WO2021241132A1 - Ferrite-based stainless steel material and corrosion resistant member - Google Patents
Ferrite-based stainless steel material and corrosion resistant member Download PDFInfo
- Publication number
- WO2021241132A1 WO2021241132A1 PCT/JP2021/017109 JP2021017109W WO2021241132A1 WO 2021241132 A1 WO2021241132 A1 WO 2021241132A1 JP 2021017109 W JP2021017109 W JP 2021017109W WO 2021241132 A1 WO2021241132 A1 WO 2021241132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- less
- steel material
- ferrite
- content
- Prior art date
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 101
- 239000000463 material Substances 0.000 title claims abstract description 92
- 239000010935 stainless steel Substances 0.000 title claims abstract description 56
- 230000007797 corrosion Effects 0.000 title claims abstract description 48
- 238000005260 corrosion Methods 0.000 title claims abstract description 48
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000009736 wetting Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 42
- 239000010959 steel Substances 0.000 description 42
- 238000005554 pickling Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000005498 polishing Methods 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 238000005422 blasting Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000002436 steel type Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000002679 ablation Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009996 mechanical pre-treatment Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000005068 transpiration Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/04—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
- B21B45/06—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G5/00—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to ferritic stainless steel materials and corrosion resistant members.
- a stainless steel sheet which is a general stainless steel material, is manufactured by the following process.
- a hot-rolled steel plate can be obtained by continuously casting hot metal in which a raw material of stainless steel is melted into a slab and hot-rolling the slab. Further, if necessary, a cold-rolled steel sheet (thin plate material) can be obtained by cold-rolling the hot-rolled steel sheet.
- an oxide scale is formed on the surface of the stainless steel material, so that the oxide scale is removed by pickling.
- descale removing the oxide scale formed on the surface of the stainless steel material is referred to as "descale”.
- the surface of the stainless steel material becomes white and loses its luster due to the unevenness of the surface formed by the mechanical pretreatment and the rough surface due to pickling, and the design is deteriorated.
- the ferritic stainless steel material has a thick oxide scale formed on the surface, it is difficult to make cracks by mechanical pretreatment, and uneven pickling is likely to occur.
- the internal oxide layer containing SiO 2 and Al 2 O 3 formed at the interface between the oxide scale and the stainless steel material is chemically stable, so that the oxide scale is formed. It becomes even more difficult to remove.
- the present invention has been made to solve the above problems, and to provide a ferritic stainless steel material having a smooth and glossy surface and excellent corrosion resistance, and a corrosion resistant member using the same. The purpose.
- the present inventors control the composition of the ferrite stainless steel material and adopt a descale process using a laser and a subsequent descale process by pickling. As a result, it was found that the smoothness and glossiness of the surface can be improved without lowering the corrosion resistance. As a result of producing various ferrite stainless steel materials based on this finding and examining them, the arithmetic average roughness Ra and 60 degree mirror surface gloss Gs (60 °) of the surface having a predetermined composition are in a predetermined range. We have found that the ferritic stainless steel material in the above can solve the above-mentioned problems, and have completed the present invention.
- C 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300 on a mass basis.
- % Or less Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al: 3. It contains less than 500% and has a composition with the balance consisting of Fe and impurities.
- a ferrite-based stainless steel material having an arithmetic average roughness Ra of the surface of 0.10 to 3.00 ⁇ m and a 60-degree mirror surface gloss Gs (60 °) of 10 to 100%, and having excellent corrosion resistance.
- the present invention is a corrosion resistant member containing the above-mentioned ferritic stainless steel material.
- the ferrite stainless steel material according to the embodiment of the present invention has C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300% or less, Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al : Contains 3.500% or less, and has a composition in which the balance is composed of Fe and impurities.
- the term "stainless steel material” as used herein means a material formed of stainless steel, and the material shape thereof is not particularly limited.
- the material shape examples include a plate shape (including a strip shape), a rod shape, a tubular shape, and the like. Further, various shaped steels having a cross-sectional shape such as T-shaped or I-shaped may be used.
- the "impurity" is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the stainless steel material is industrially manufactured, and is permissible as long as it does not adversely affect the present invention. Means what is done.
- the stainless steel material may contain 0.02% or less of ⁇ as an impurity.
- REM rare earth element
- the ferrite-based stainless steel material according to the embodiment of the present invention has Ti: 0.001 to 0.500%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, W :. It can further contain one or more selected from 0.001 to 1.000%, Zr: 0.001 to 1.000%, and Co: 0.001 to 1.200%.
- the ferritic stainless steel material according to the embodiment of the present invention is selected from Ca: 0.0001 to 0.0100%, B: 0.0001 to 0.0080%, and Sn: 0.001 to 0.500%. Can further include one or more species.
- each component will be described in detail.
- the upper limit of the Si content is controlled to 5.00%.
- the upper limit of the Si content is preferably 1.00%, more preferably 0.80. %, More preferably 0.70%, most preferably 0.60%.
- the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
- the upper limit of the Si content is preferably 4.00%, more preferably 3.00. %, More preferably 2.50%.
- the lower limit of the Si content is not particularly limited, but is preferably 0.20%, more preferably 0.40%, still more preferably 1.00, from the viewpoint of ensuring the heat resistance of the ferritic stainless steel material. %, Most preferably 1.50%.
- Mn is an element that improves the heat resistance of ferritic stainless steel materials.
- Mn is an austenite phase ( ⁇ phase) forming element, a ⁇ phase (martensite phase at room temperature) is generated at a high temperature, and the processability of the ferritic stainless steel material is also deteriorated. Therefore, the upper limit of the Mn content is controlled to 2.00%, preferably 1.50%, more preferably 1.20%, and even more preferably 1.00%.
- the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
- the upper limit of the P content is controlled to 0.050%, preferably 0.035%, more preferably 0.030%, and even more preferably 0.020%.
- the lower limit of the content of P is not particularly limited, but is preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005%, and most preferably. Is 0.010%.
- the upper limit of the S content is controlled to 0.0300%, preferably 0.0100%, more preferably 0.0050%, and even more preferably 0.0010%.
- the lower limit of the S content is not particularly limited, but is preferably 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
- Ni is an element that improves the corrosion resistance of ferritic stainless steel materials.
- Ni is an austenite phase ( ⁇ phase) forming element like Mn, if its content is too large, ⁇ phase (martensite phase at room temperature) is generated at high temperature, and ferritic stainless steel is processed. The sex is reduced.
- the Ni content is controlled to be less than 2.00%, preferably 1.00% or less, more preferably 0.70% or less, still more preferably 0.50% or less, and most preferably 0.35% or less. Will be done.
- the lower limit of the Ni content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
- Mo is an element that improves the corrosion resistance of ferritic stainless steel materials. Since Mo is expensive, if the content of Mo is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 6.00%, preferably 5.00%, more preferably 3.00%, further preferably 2.00%, and most preferably 1.00%. .. On the other hand, the lower limit of the Mo content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, still more preferably 0.05%, still more preferably 0.10%, particularly preferably. Is 0.50%, most preferably 1.00%.
- Cu is an element that improves the workability of ferritic stainless steel materials. If the Cu content is too high, the corrosion resistance of the ferritic stainless steel material will decrease, and a low melting point phase will be formed during casting, leading to a decrease in hot workability. Therefore, the upper limit of the Cu content is controlled to 0.60%, preferably 0.40%, more preferably 0.20%, and even more preferably 0.10%. On the other hand, the lower limit of the Cu content is not particularly limited, but is preferably 0.01%, more preferably 0.02%, still more preferably 0.03%, and most preferably 0.04%.
- N is an element that improves corrosion resistance. If the content of N is too large, it becomes hard and the processability of the ferritic stainless steel material deteriorates. Therefore, the upper limit of the N content is controlled to 0.050%, preferably 0.040%, more preferably 0.030%, and even more preferably 0.020%. On the other hand, the lower limit of the content of N is not particularly limited, but is preferably controlled to 0.001%, preferably 0.005%, and more preferably 0.010%.
- Al is an element that is added as needed for deoxidation in the refining process and improves corrosion resistance and heat resistance. If the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is controlled to 3.500%.
- the upper limit of the content of Al is preferably 0.400%, more preferably 0.100. %, More preferably 0.050%.
- the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.005%.
- the upper limit of the Al content is preferably 3.000%, more preferably 2.000%. %, More preferably 1.500%.
- the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.010%, and even more preferably 0.100%.
- Si + 2Al (each element symbol represents the content of each element) is less than 1.20%. It is preferably 1.10% or less, more preferably 1.00% or less, and further preferably 0.90% or less.
- the lower limit of Si + 2Al is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
- Si + 2Al (each element symbol represents the content of each element) is 1.20.
- Si + 2Al is not particularly limited, but is preferably 10.00%, more preferably 8.00%, and even more preferably 7.00%.
- Ti is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Ti, the lower limit of the Ti content is controlled to 0.001%, preferably 0.005%. On the other hand, if the Ti content is too high, it causes surface defects and causes quality deterioration, and the processability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Ti content is controlled to 0.500%, preferably 0.300%, and more preferably 0.100%.
- Nb is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary.
- the lower limit of the content of Nb is controlled to 0.001%, preferably 0.004%, and more preferably 0.010%.
- the upper limit of the Nb content is controlled to 1.000%, preferably 0.600%, and more preferably 0.060%.
- V is an element that improves corrosion resistance and is added as needed. From the viewpoint of obtaining the effect of V, the lower limit of the content of V is controlled to 0.001%, preferably 0.010%. On the other hand, if the V content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the V content is controlled to 1.000%, preferably 0.200%.
- W is an element that improves high temperature strength and corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of W, the lower limit of the content of W is controlled to 0.001%, preferably 0.010%. On the other hand, if the content of W is too large, it becomes hard and the workability is deteriorated, and surface defects are increased, so that the surface quality of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the W content is controlled to 1.000%, preferably 0.300%.
- Zr is an element that binds to C and N to improve oxidation resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Zr, the lower limit of the Zr content is controlled to 0.001%, preferably 0.010%. On the other hand, if the Zr content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Zr content is controlled to 1.000%, preferably 0.200%, and more preferably 0.050%.
- Co is an element that improves heat resistance and is added as needed. From the viewpoint of obtaining the effect of Co, the lower limit of the Co content is controlled to 0.001%, preferably 0.010%. On the other hand, since Co is expensive, if the content of Co is too large, the manufacturing cost will increase. Therefore, the upper limit of the Co content is controlled to 1.200%, preferably 0.400%.
- Ca is an element that forms sulfides and reduces the adverse effects of S, and is added as necessary. From the viewpoint of obtaining the effect of Ca, the lower limit of the Ca content is controlled to 0.0001%, preferably 0.0003%. On the other hand, if the Ca content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Ca content is controlled to 0.0100%, preferably 0.0050%.
- B is an element that improves hot workability and is added as needed. From the viewpoint of obtaining the effect of B, the lower limit of the content of B is controlled to 0.0001%, preferably 0.0003%, and more preferably 0.0005%. On the other hand, if the content of B is too large, the corrosion resistance of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the B content is controlled to 0.0080%, preferably 0.0040%, and more preferably 0.0025%.
- Sn is an element that improves corrosion resistance and high-temperature strength, and is added as necessary. From the viewpoint of obtaining the effect of Sn, the lower limit of the Sn content is controlled to 0.001%, preferably 0.002%. On the other hand, if the Sn content is too high, a low melting point phase is formed and the hot workability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Sn content is controlled to 0.500%, preferably 0.100%, and more preferably 0.050%.
- the ferrite-based stainless steel material according to the embodiment of the present invention has a surface arithmetic average roughness Ra of 0.10 to 3.00 ⁇ m, preferably 0.50 to 2.00 ⁇ m, and more preferably 1.00 to 1.90 ⁇ m. be.
- the arithmetic mean roughness Ra in the present specification means the arithmetic mean roughness Ra measured in accordance with JIS B0601: 2013.
- the ferrite-based stainless steel material according to the embodiment of the present invention has a surface surface gloss of 60 ° Gs (60 °) of 10 to 100%, preferably 13 to 70%, and more preferably 15 to 65%.
- 60 degree mirror surface gloss Gs (60 °) means 60 degree mirror surface gloss Gs (60 °) measured in accordance with JIS Z8741: 1997.
- the ferritic stainless steel material according to the embodiment of the present invention has excellent corrosion resistance.
- excellent in corrosion resistance in the present specification means that the rusting area ratio is 1% or less when 10 cycles of salt spraying, drying and wetting are performed as one cycle in the salt-dry-wet repeat test (CCT). Means that.
- the surface of the ferritic stainless steel material according to the embodiment of the present invention preferably satisfies the following (1) and (2).
- the root mean square slope R ⁇ q is 35 ° or less, preferably 30 ° or less, and more preferably 25 ° or less. By controlling the root mean square slope R ⁇ q of the surface in such a range, the gloss of the ferritic stainless steel material can be improved.
- the lower limit of the root mean square slope R ⁇ q is, for example, 3 °.
- the “root mean square slope R ⁇ q” in the present specification means the root mean square slope R ⁇ q measured in accordance with JIS B0601: 2013.
- the chromanetics index b * is 7.00 or less, preferably 6.00 or less, and more preferably 5.00 or less.
- the chromatics index b * is a chromatics index that indicates the chromaticity from blue to yellow in the L * a * b * color space, and is made of stainless steel when a burn (oxide) is formed on the surface by polishing or electrolysis. It is known that steel materials have a yellowish tint. By controlling the chromatic index b * within the above range, it is possible to obtain a ferritic stainless steel material having good corrosion resistance in which an oxide that is a starting point of corrosion does not exist.
- the lower limit of the chromatics index b * is, for example, 2.00.
- chromanetics index b * as used herein means the CIE-L * a * b * chromanetics index b in the color space used in the CIEDE2000 color difference formula measured in accordance with JIS Z8781-6: 2017. * Means.
- the surface of the ferritic stainless steel material according to the embodiment of the present invention may further satisfy the following (3).
- the aspect ratio Str of the texture is 0.50 or more, preferably 0.60 or more, and more preferably 0.70 or more. By controlling the aspect ratio Str of the texture in such a range, it is possible to obtain a ferritic stainless steel material having a good appearance without streaks.
- the upper limit of the aspect ratio Str of the texture is 1 from the definition, but is, for example, about 0.95.
- the “texture aspect ratio Str” as used herein means the texture aspect ratio Str measured in accordance with JIS B0661-2: 2018.
- the thickness (plate thickness) of the ferritic stainless steel material according to the embodiment of the present invention is not particularly limited, but is preferably 3 mm or more.
- the ferrite-based stainless steel material according to the embodiment of the present invention is used by melting stainless steel having the above composition, and as a descaling step, a descaling step using a laser (hereinafter referred to as “laser descaling”) and an acid. It can be produced by using a method known in the art, except that the step of descaling by washing (hereinafter referred to as “pickling descaling”) is adopted.
- laser descaling a laser descaling step using a laser
- pickling descaling the step of descaling by washing
- stainless steel having the above composition is melted and forged or cast to produce steel pieces. After that, the steel pieces may be hot-rolled, and then a laser descaling step and then a pickling descaling step may be carried out. Annealing may be appropriately performed before the laser descaling step.
- the laser descaling step is a step of evaporating and removing the oxide scale by irradiating the oxide scale formed on the surface of the ferritic stainless steel material with a laser beam.
- Various conditions of the laser descaling process may be adjusted in consideration of the following items according to the apparatus to be used.
- a continuous wave laser is preferable because the heat input is too large and the base material (ferritic stainless steel material) is likely to melt.
- wavelength In general, the reflectance of a substance to light has a wavelength dependence, and if a wavelength having a low reflectance is selected, heat input increases and transpiration is likely to occur. Therefore, the oxidation scale can be selectively transpired and removed by selecting a wavelength having a high reflectance of the base material and a low reflectance of the oxide.
- pulse width If the pulse width is short, ablation occurs before the heat input by the laser is transmitted to the surroundings, so that the ablation threshold becomes small.
- the pulse width is mainly determined by the performance of the oscillator, and a device capable of oscillating with a short pulse width is expensive. Therefore, it is preferable to select a short pulse width within the specification range of the laser descale equipment. (Oscillation frequency)
- scan frequency The higher the scan frequency, the faster the line processing speed, but if it is too high, gaps between pulses will occur and the descale rate will decrease. Therefore, it is preferable to increase the scan frequency within a range in which the descale rate can be maintained.
- Laser beam diameter The larger the value, the wider the irradiation range, that is, the range that can be descaled by one pulse, and the descale efficiency is improved, but the energy density (fluence) of one pulse is lowered. It is preferable to increase the beam diameter within a range in which the fluence capable of transpiration removal of the scale is maintained.
- Oxidation scale can be evaporated and removed by irradiating a laser beam with fluence exceeding the ablation threshold of the oxides constituting the scale, but if the fluence is set too high, not only the scale but also the base metal is evaporated and removed. Material damage will increase. Therefore, the fluence may be adjusted in consideration of the descale rate and the damage to the base metal.
- the pickling descaling step is a step of immersing the ferritic stainless steel material that has undergone the laser descaling step in a pickling bath to wash off the oxide scale that could not be completely removed by the laser descaling step.
- the pickling solution used in the pickling bath is not particularly limited, but includes one component such as nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), hydrofluoric acid (HF), and ferric chloride (FeCl 3).
- a solution containing the above can be used.
- a typical pickling solution is a mixture of nitric acid and hydrofluoric acid.
- FIG. 1 is an SEM photograph of (a) 100 times and (b) 1000 times the surface of the above (1).
- this stainless steel sheet has a surface structure having many smooth portions, although pulse marks due to a pulse laser are seen on the surface. Therefore, it is possible to control the surface roughness parameter (arithmetic mean roughness Ra, etc.), 60 degree mirror surface gloss Gs (60 °, etc.) within the above range.
- FIG. 2 is a laser micrograph (50 times) of the surface of the above (2).
- this stainless steel sheet has a rough surface structure in which impact marks due to shot blasting treatment and dissolution marks due to pickling are mixed. Therefore, the arithmetic mean roughness Ra and the root mean square slope R ⁇ q tend to be large, and the 60-degree mirror surface gloss Gs (60 °) tends to be small.
- FIG. 3 is a laser micrograph (50 times) of the surface of the above (3). As shown in FIG. 3, this stainless steel sheet has a surface structure having a streak pattern by belt polishing. Therefore, the aspect ratio Str of the texture tends to be small.
- the ferrite-based stainless steel material according to the embodiment of the present invention having the above-mentioned characteristics is excellent in corrosion resistance, and therefore can be used as a corrosion-resistant member.
- this ferritic stainless steel material has a smooth and glossy surface and is excellent in designability, and is therefore suitable for use in corrosion-resistant members that require designability.
- Example 1 A laser descaling step and a pickling descaling step were sequentially carried out on the hot-rolled steel sheet having the composition of steel type A.
- the laser descaling step was performed using a commercially available device (LaserClear 50A manufactured by IHI Corporation).
- a hot-rolled steel sheet is installed on the movable stage of this device, and while moving at 0.2 m / min along the rolling direction, it is scanned from above the hot-rolled steel sheet at a constant speed in the plate width direction and irradiated with a pulse laser once. bottom.
- the scan width per scan was 25 mm.
- the irradiation conditions of the pulse laser were as follows.
- Wavelength 1085 nm Pulse width: 100ns Oscillation frequency: 120kHz Scan frequency: 100Hz Laser beam diameter: 90 ⁇ m Fluence: 6J / cm 2
- an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid is kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet is immersed for 90 seconds, and then immediately washed with running water and air-dried. I went by that.
- Examples 2 to 5 The same procedure as in Example 1 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
- Example 6 After using a hot-rolled steel sheet having the composition of steel type F, and holding a hydrofluoric acid aqueous solution containing 45 g / L of hydrofluoric acid and 145 g / L of nitric acid at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 230 seconds. The same procedure as in Example 1 was carried out except that the pickling descale was immediately washed with running water and naturally dried.
- Examples 7 to 10 The same procedure as in Example 6 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
- a hot-rolled steel sheet having the composition of steel type A is subjected to bending and unbending treatment with a bending radius of 50 mm by a scale breaker, and pretreatment by shot blasting using steel shot (SB-5), and then acid.
- a washing descale process was carried out.
- the pickling descaling step was carried out as follows. First, an aqueous solution of hydrofluoric acid containing 50 g / L of hydrofluoric acid and 150 g / L of nitric acid was kept at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 240 seconds, and then immediately washed with running water and air-dried.
- an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid was kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 90 seconds, and then immediately washed with running water and air-dried.
- Comparative Example 2 The hot-rolled steel sheet after the pickling descaling step obtained in Comparative Example 1 was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 ⁇ m from the surface.
- Comparative Example 3 The same procedure as in Comparative Example 1 was carried out except that a hot-rolled steel sheet having a composition of steel type F was used.
- Comparative Example 4 The hot-rolled steel sheet obtained in Comparative Example 3 after the pickling descaling step was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 ⁇ m from the surface.
- the observation magnification at the time of measurement was 50 times, and the measurement range was 3 mm ⁇ 3 mm.
- the arithmetic mean roughness Ra, the root mean square slope R ⁇ q, and the aspect ratio Str of the texture were measured at five points excluding the range from the end to 5 mm, and the average value was used as the evaluation result.
- the distance between the measurement positions was 5 mm or more.
- 60 degree mirror gloss Gs 60 ° was measured using a gloss meter (PG-1M manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS Z8741: 1997. It was measured. The 60-degree mirror gloss Gs (60 °) was measured at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result. The distance between the measurement positions was 5 mm or more.
- Chromanetic index b * The chromanetics index b * was measured on the surface of the hot-rolled steel sheet subjected to the descaling step using a spectrophotometer (CM-700d manufactured by Konica Minolta Co., Ltd.) in accordance with JIS Z 8722: 2009. The geometric conditions of the measurement were c (di: 8 °), the measurement diameter was 8 mm ⁇ , the field of view was 10 °, and the D65 illuminant was used as the illumination light source. Measurements were performed at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result.
- the corrosion resistance test was carried out by a repeated salt-dry-wet test in which salt spraying, drying and wetting were repeated.
- the hot-rolled steel sheet subjected to the descale step was sprayed with a 5% NaCl aqueous solution (15 minutes at 35 ° C), dried (relative humidity 30%, temperature 60 ° C for 1 hour), and Wetting (relative humidity 95%, temperature 50 ° C. for 3 hours) was taken as one cycle for 10 cycles. Then, the hot-rolled steel sheet was washed with water and dried, and the rusted area ratio of the hot-rolled steel sheet was calculated.
- the rusting area ratio was calculated by the following procedure.
- the surface of the hot-rolled steel sheet after the repeated salt-dry-wet test was photographed, and the ratio of the area of the rusted portion in the central 25 mm ⁇ 25 mm range excluding the end face was determined.
- the area of the rusted portion was obtained by binarizing the photograph of the surface of the hot-rolled steel sheet by image analysis, calculating the area per pixel, and then counting the number of pixels of the rusted portion.
- the rusting area ratio was calculated by the following formula.
- Rust area ratio (%) Area of rusting part (mm 2 ) / Area of the entire observation part (625 mm 2 ) x 100 In this evaluation, those having a rusting area ratio of 1% or less were evaluated as " ⁇ " (good corrosion resistance), and those having a rust area ratio of more than 1% were evaluated as "x" (poor corrosion resistance). The results of each of the above evaluations are shown in Table 2.
- the hot-rolled steel sheets of Examples 1 to 10 have a surface arithmetic average roughness Ra of 0.10 to 3.00 ⁇ m and a 60-degree mirror gloss Gs (60 °) of 10 to 100%. It was confirmed that it was in the range and had a smooth and glossy surface. In addition, the hot-rolled steel sheets of Examples 1 to 10 had good corrosion resistance. On the other hand, in the hot-rolled steel sheets of Comparative Examples 1 and 3, one or both of the arithmetic mean roughness Ra and the 60-degree mirror surface gloss Gs (60 °) of the surface is out of the above range, and the surface is rough and has no gloss. Had. Further, the hot-rolled steel sheets of Comparative Examples 2 and 4 were polished after the pickling descaling step, so that the corrosion resistance was not sufficient.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
This ferrite-based stainless steel material has a compositional makeup including, in mass basis, 0.001-0.100% of C, not more than 5.00% of Si, not more than 2.00% of Mn, not more than 0.050% of P, not more than 0.0300% of S, less than 2.00% of Ni, 11.00-30.00% of Cr, not more than 6.00% of Mo, not more than 0.60% of Cu, not more than 0.050% of N, and not more than 3.500% of Al, the remaining portion being Fe and impurities, and has excellent corrosion resistance. The surface of the ferrite-based stainless steel material has an arithmetic mean roughness Ra of 0.10-3.00 μm and a 60-degree specular gloss Gs (60°) of 10-100%.
Description
本発明は、フェライト系ステンレス鋼材及び耐食性部材に関する。
The present invention relates to ferritic stainless steel materials and corrosion resistant members.
ステンレス鋼材は、耐食性などの各種特性に優れるため、自動車用部品、建築用部品、厨房用器具などの広範な用途に用いられている。
ステンレス鋼材は、形状によって、鋼板、条鋼、鋼帯、棒鋼、鋼管などに分類される。一般的なステンレス鋼材であるステンレス鋼板は、次のような工程によって製造される。ステンレス鋼の原料を溶解した溶銑を連続鋳造してスラブとし、スラブを熱間圧延することによって熱延鋼板(厚板材)が得られる。また、必要に応じて、熱延鋼板を冷間圧延することによって冷延鋼板(薄板材)が得られる。このようなステンレス鋼材の製造において、ステンレス鋼材の表面には酸化スケールが形成されるため、酸洗によって酸化スケールを除去することが行われる。以下、ステンレス鋼材の表面に形成された酸化スケールを除去することを「デスケール」と称する。 Since stainless steel has excellent corrosion resistance and other properties, it is used in a wide range of applications such as automobile parts, building parts, and kitchen utensils.
Stainless steel materials are classified into steel plates, strips, strips, steel bars, steel pipes, etc. according to their shapes. A stainless steel sheet, which is a general stainless steel material, is manufactured by the following process. A hot-rolled steel plate (thick plate material) can be obtained by continuously casting hot metal in which a raw material of stainless steel is melted into a slab and hot-rolling the slab. Further, if necessary, a cold-rolled steel sheet (thin plate material) can be obtained by cold-rolling the hot-rolled steel sheet. In the production of such a stainless steel material, an oxide scale is formed on the surface of the stainless steel material, so that the oxide scale is removed by pickling. Hereinafter, removing the oxide scale formed on the surface of the stainless steel material is referred to as "descale".
ステンレス鋼材は、形状によって、鋼板、条鋼、鋼帯、棒鋼、鋼管などに分類される。一般的なステンレス鋼材であるステンレス鋼板は、次のような工程によって製造される。ステンレス鋼の原料を溶解した溶銑を連続鋳造してスラブとし、スラブを熱間圧延することによって熱延鋼板(厚板材)が得られる。また、必要に応じて、熱延鋼板を冷間圧延することによって冷延鋼板(薄板材)が得られる。このようなステンレス鋼材の製造において、ステンレス鋼材の表面には酸化スケールが形成されるため、酸洗によって酸化スケールを除去することが行われる。以下、ステンレス鋼材の表面に形成された酸化スケールを除去することを「デスケール」と称する。 Since stainless steel has excellent corrosion resistance and other properties, it is used in a wide range of applications such as automobile parts, building parts, and kitchen utensils.
Stainless steel materials are classified into steel plates, strips, strips, steel bars, steel pipes, etc. according to their shapes. A stainless steel sheet, which is a general stainless steel material, is manufactured by the following process. A hot-rolled steel plate (thick plate material) can be obtained by continuously casting hot metal in which a raw material of stainless steel is melted into a slab and hot-rolling the slab. Further, if necessary, a cold-rolled steel sheet (thin plate material) can be obtained by cold-rolling the hot-rolled steel sheet. In the production of such a stainless steel material, an oxide scale is formed on the surface of the stainless steel material, so that the oxide scale is removed by pickling. Hereinafter, removing the oxide scale formed on the surface of the stainless steel material is referred to as "descale".
しかしながら、酸洗のみによっては酸化スケールを十分に除去できないことがある。特に、熱間圧延は、加熱温度が高く且つ加熱時間が長いため、ステンレス鋼材の表面に形成された酸化スケールは、厚くて安定な酸化物で構成されており、除去し難い。
そこで、一般的なデスケール工程では、スケールブレーカーやショットブラストなどによる機械的な前処理を施して酸化スケールにクラックを入れた後に、酸洗することによって酸化スケールを除去し易くする方法が行われている(例えば、特許文献1及び2)。 However, it may not be possible to sufficiently remove the oxidation scale only by pickling. In particular, in hot rolling, the heating temperature is high and the heating time is long, so that the oxide scale formed on the surface of the stainless steel material is composed of a thick and stable oxide and is difficult to remove.
Therefore, in a general descale process, a method is performed in which mechanical pretreatment such as a scale breaker or shot blast is performed to crack the oxide scale, and then pickling is performed to facilitate removal of the oxide scale. (For example, Patent Documents 1 and 2).
そこで、一般的なデスケール工程では、スケールブレーカーやショットブラストなどによる機械的な前処理を施して酸化スケールにクラックを入れた後に、酸洗することによって酸化スケールを除去し易くする方法が行われている(例えば、特許文献1及び2)。 However, it may not be possible to sufficiently remove the oxidation scale only by pickling. In particular, in hot rolling, the heating temperature is high and the heating time is long, so that the oxide scale formed on the surface of the stainless steel material is composed of a thick and stable oxide and is difficult to remove.
Therefore, in a general descale process, a method is performed in which mechanical pretreatment such as a scale breaker or shot blast is performed to crack the oxide scale, and then pickling is performed to facilitate removal of the oxide scale. (For example, Patent Documents 1 and 2).
しかしながら、上記のデスケール工程では、機械的な前処理で形成される表面の凹凸と酸洗による表面の荒れによって、ステンレス鋼材の表面が白くなり光沢を失ってしまい、意匠性が低下してしまう。特に、フェライト系ステンレス鋼材は、表面に形成される酸化スケールが厚いため、機械的な前処理でクラックを入れることが難しく、酸洗ムラも生じ易い。また、SiやAlの含有量が多いステンレス鋼材の場合、酸化スケールとステンレス鋼材との界面に形成されるSiO2やAl2O3を含む内部酸化層が化学的に安定であるため、酸化スケールを除去することがより一層難しくなる。
一方、ステンレス鋼材の意匠性を確保するために上記のデスケール工程の後に表面を研磨することも考えられるが、表面を平滑になるまで研磨すると、研削量が多くなって歩留まりが低下するとともに、研磨目に研削油(冷却油)や研磨屑が残存して耐食性が低下する場合がある。 However, in the above-mentioned descale process, the surface of the stainless steel material becomes white and loses its luster due to the unevenness of the surface formed by the mechanical pretreatment and the rough surface due to pickling, and the design is deteriorated. In particular, since the ferritic stainless steel material has a thick oxide scale formed on the surface, it is difficult to make cracks by mechanical pretreatment, and uneven pickling is likely to occur. Further, in the case of a stainless steel material having a high content of Si and Al, the internal oxide layer containing SiO 2 and Al 2 O 3 formed at the interface between the oxide scale and the stainless steel material is chemically stable, so that the oxide scale is formed. It becomes even more difficult to remove.
On the other hand, in order to ensure the design of the stainless steel material, it is conceivable to polish the surface after the above descaling step, but if the surface is polished until it becomes smooth, the amount of grinding increases, the yield decreases, and polishing is performed. Grinding oil (cooling oil) and polishing debris may remain in the eyes and the corrosion resistance may decrease.
一方、ステンレス鋼材の意匠性を確保するために上記のデスケール工程の後に表面を研磨することも考えられるが、表面を平滑になるまで研磨すると、研削量が多くなって歩留まりが低下するとともに、研磨目に研削油(冷却油)や研磨屑が残存して耐食性が低下する場合がある。 However, in the above-mentioned descale process, the surface of the stainless steel material becomes white and loses its luster due to the unevenness of the surface formed by the mechanical pretreatment and the rough surface due to pickling, and the design is deteriorated. In particular, since the ferritic stainless steel material has a thick oxide scale formed on the surface, it is difficult to make cracks by mechanical pretreatment, and uneven pickling is likely to occur. Further, in the case of a stainless steel material having a high content of Si and Al, the internal oxide layer containing SiO 2 and Al 2 O 3 formed at the interface between the oxide scale and the stainless steel material is chemically stable, so that the oxide scale is formed. It becomes even more difficult to remove.
On the other hand, in order to ensure the design of the stainless steel material, it is conceivable to polish the surface after the above descaling step, but if the surface is polished until it becomes smooth, the amount of grinding increases, the yield decreases, and polishing is performed. Grinding oil (cooling oil) and polishing debris may remain in the eyes and the corrosion resistance may decrease.
本発明は、上記のような問題を解決するためになされたものであり、平滑で光沢のある表面を有し、耐食性に優れるフェライト系ステンレス鋼材、及びこれを用いた耐食性部材を提供することを目的とする。
The present invention has been made to solve the above problems, and to provide a ferritic stainless steel material having a smooth and glossy surface and excellent corrosion resistance, and a corrosion resistant member using the same. The purpose.
本発明者らは、上記のような問題を解決すべく鋭意研究を行った結果、フェライト系ステンレス鋼材の組成を制御するとともに、レーザを用いたデスケール工程及びその後の酸洗によるデスケール工程を採用することにより、耐食性を低下させることなく、表面の平滑性及び光沢性を向上させ得るという知見を得た。この知見に基づいて様々なフェライト系ステンレス鋼材を作製して検討を行った結果、所定の組成を有し、且つ表面の算術平均粗さRa及び60度鏡面光沢Gs(60°)が所定の範囲にあるフェライト系ステンレス鋼材が上記の課題を解決し得ることを見出し、本発明を完成するに至った。
As a result of diligent research to solve the above problems, the present inventors control the composition of the ferrite stainless steel material and adopt a descale process using a laser and a subsequent descale process by pickling. As a result, it was found that the smoothness and glossiness of the surface can be improved without lowering the corrosion resistance. As a result of producing various ferrite stainless steel materials based on this finding and examining them, the arithmetic average roughness Ra and 60 degree mirror surface gloss Gs (60 °) of the surface having a predetermined composition are in a predetermined range. We have found that the ferritic stainless steel material in the above can solve the above-mentioned problems, and have completed the present invention.
すなわち、本発明は、質量基準で、C:0.001~0.100%、Si:5.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.0300%以下、Ni:2.00%未満、Cr:11.00~30.00%、Mo:6.00%以下、Cu:0.60%以下、N:0.050%以下、Al:3.500%以下を含み、残部がFe及び不純物からなる組成を有し、
表面の算術平均粗さRaが0.10~3.00μm及び60度鏡面光沢Gs(60°)が10~100%である、耐食性に優れるフェライト系ステンレス鋼材である。 That is, in the present invention, C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300 on a mass basis. % Or less, Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al: 3. It contains less than 500% and has a composition with the balance consisting of Fe and impurities.
A ferrite-based stainless steel material having an arithmetic average roughness Ra of the surface of 0.10 to 3.00 μm and a 60-degree mirror surface gloss Gs (60 °) of 10 to 100%, and having excellent corrosion resistance.
表面の算術平均粗さRaが0.10~3.00μm及び60度鏡面光沢Gs(60°)が10~100%である、耐食性に優れるフェライト系ステンレス鋼材である。 That is, in the present invention, C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300 on a mass basis. % Or less, Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al: 3. It contains less than 500% and has a composition with the balance consisting of Fe and impurities.
A ferrite-based stainless steel material having an arithmetic average roughness Ra of the surface of 0.10 to 3.00 μm and a 60-degree mirror surface gloss Gs (60 °) of 10 to 100%, and having excellent corrosion resistance.
また、本発明は、上記のフェライト系ステンレス鋼材を含む耐食性部材である。
Further, the present invention is a corrosion resistant member containing the above-mentioned ferritic stainless steel material.
本発明によれば、平滑で光沢のある表面を有し、耐食性に優れるフェライト系ステンレス鋼材、及びこれを用いた耐食性部材を提供することができる。
According to the present invention, it is possible to provide a ferritic stainless steel material having a smooth and glossy surface and excellent corrosion resistance, and a corrosion resistant member using the same.
以下、本発明の実施形態について具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
なお、本明細書において成分に関する「%」表示は、特に断らない限り「質量%」を意味する。 Hereinafter, embodiments of the present invention will be specifically described. The present invention is not limited to the following embodiments, and changes, improvements, etc. have been appropriately added to the following embodiments based on the ordinary knowledge of those skilled in the art, without departing from the spirit of the present invention. It should be understood that things also fall within the scope of the present invention.
In addition, in this specification, "%" notation about a component means "mass%" unless otherwise specified.
なお、本明細書において成分に関する「%」表示は、特に断らない限り「質量%」を意味する。 Hereinafter, embodiments of the present invention will be specifically described. The present invention is not limited to the following embodiments, and changes, improvements, etc. have been appropriately added to the following embodiments based on the ordinary knowledge of those skilled in the art, without departing from the spirit of the present invention. It should be understood that things also fall within the scope of the present invention.
In addition, in this specification, "%" notation about a component means "mass%" unless otherwise specified.
本発明の実施形態に係るフェライト系ステンレス鋼材は、C:0.001~0.100%、Si:5.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.0300%以下、Ni:2.00%未満、Cr:11.00~30.00%、Mo:6.00%以下、Cu:0.60%以下、N:0.050%以下、Al:3.500%以下を含み、残部がFe及び不純物からなる組成を有する。
ここで、本明細書において「ステンレス鋼材」とは、ステンレス鋼から形成された材料のことを意味し、その材形は特に限定されない。材形の例としては、板状(帯状を含む)、棒状、管状などが挙げられる。また、断面形状がT形、I形などの各種形鋼であってもよい。また、「不純物」とは、ステンレス鋼材を工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。例えば、ステンレス鋼材は、不純物としてОを0.02%以下含有してもよい。また、REM(希土類元素)を合計で0.1%以下含有してもよい。 The ferrite stainless steel material according to the embodiment of the present invention has C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300% or less, Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al : Contains 3.500% or less, and has a composition in which the balance is composed of Fe and impurities.
Here, the term "stainless steel material" as used herein means a material formed of stainless steel, and the material shape thereof is not particularly limited. Examples of the material shape include a plate shape (including a strip shape), a rod shape, a tubular shape, and the like. Further, various shaped steels having a cross-sectional shape such as T-shaped or I-shaped may be used. Further, the "impurity" is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the stainless steel material is industrially manufactured, and is permissible as long as it does not adversely affect the present invention. Means what is done. For example, the stainless steel material may contain 0.02% or less of О as an impurity. Further, REM (rare earth element) may be contained in a total of 0.1% or less.
ここで、本明細書において「ステンレス鋼材」とは、ステンレス鋼から形成された材料のことを意味し、その材形は特に限定されない。材形の例としては、板状(帯状を含む)、棒状、管状などが挙げられる。また、断面形状がT形、I形などの各種形鋼であってもよい。また、「不純物」とは、ステンレス鋼材を工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。例えば、ステンレス鋼材は、不純物としてОを0.02%以下含有してもよい。また、REM(希土類元素)を合計で0.1%以下含有してもよい。 The ferrite stainless steel material according to the embodiment of the present invention has C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300% or less, Ni: less than 2.00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al : Contains 3.500% or less, and has a composition in which the balance is composed of Fe and impurities.
Here, the term "stainless steel material" as used herein means a material formed of stainless steel, and the material shape thereof is not particularly limited. Examples of the material shape include a plate shape (including a strip shape), a rod shape, a tubular shape, and the like. Further, various shaped steels having a cross-sectional shape such as T-shaped or I-shaped may be used. Further, the "impurity" is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the stainless steel material is industrially manufactured, and is permissible as long as it does not adversely affect the present invention. Means what is done. For example, the stainless steel material may contain 0.02% or less of О as an impurity. Further, REM (rare earth element) may be contained in a total of 0.1% or less.
また、本発明の実施形態に係るフェライト系ステンレス鋼材は、Ti:0.001~0.500%、Nb:0.001~1.000%、V:0.001~1.000%、W:0.001~1.000%、Zr:0.001~1.000%、Co:0.001~1.200%から選択される1種以上を更に含むことができる。
さらに、本発明の実施形態に係るフェライト系ステンレス鋼材は、Ca:0.0001~0.0100%、B:0.0001~0.0080%、Sn:0.001~0.500%から選択される1種以上を更に含むことができる。
以下、各成分について詳細に説明する。 Further, the ferrite-based stainless steel material according to the embodiment of the present invention has Ti: 0.001 to 0.500%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, W :. It can further contain one or more selected from 0.001 to 1.000%, Zr: 0.001 to 1.000%, and Co: 0.001 to 1.200%.
Further, the ferritic stainless steel material according to the embodiment of the present invention is selected from Ca: 0.0001 to 0.0100%, B: 0.0001 to 0.0080%, and Sn: 0.001 to 0.500%. Can further include one or more species.
Hereinafter, each component will be described in detail.
さらに、本発明の実施形態に係るフェライト系ステンレス鋼材は、Ca:0.0001~0.0100%、B:0.0001~0.0080%、Sn:0.001~0.500%から選択される1種以上を更に含むことができる。
以下、各成分について詳細に説明する。 Further, the ferrite-based stainless steel material according to the embodiment of the present invention has Ti: 0.001 to 0.500%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, W :. It can further contain one or more selected from 0.001 to 1.000%, Zr: 0.001 to 1.000%, and Co: 0.001 to 1.200%.
Further, the ferritic stainless steel material according to the embodiment of the present invention is selected from Ca: 0.0001 to 0.0100%, B: 0.0001 to 0.0080%, and Sn: 0.001 to 0.500%. Can further include one or more species.
Hereinafter, each component will be described in detail.
<C:0.001~0.100%>
Cの含有量は多すぎると、硬質になって加工性が下がることに加え、溶接などの熱影響を受けた際に鋭敏化が生じ、フェライト系ステンレス鋼材の耐食性が低下してしまう。そのため、Cの含有量の上限値は、0.100%、好ましくは0.060%、より好ましくは0.040%、更に好ましくは0.020%に制御される。一方、Cの含有量は少なすぎると、加工性の劣化や精練コストの上昇につながる。そのため、Cの含有量の下限値は、0.001%、好ましくは0.002%、より好ましくは0.005%、更に好ましくは0.010%に制御される。 <C: 0.001 to 0.100%>
If the content of C is too large, it becomes hard and the workability is lowered, and sensitization occurs when it is affected by heat such as welding, and the corrosion resistance of the ferritic stainless steel material is lowered. Therefore, the upper limit of the C content is controlled to 0.100%, preferably 0.060%, more preferably 0.040%, and even more preferably 0.020%. On the other hand, if the content of C is too small, it leads to deterioration of workability and an increase in refining cost. Therefore, the lower limit of the C content is controlled to 0.001%, preferably 0.002%, more preferably 0.005%, and even more preferably 0.010%.
Cの含有量は多すぎると、硬質になって加工性が下がることに加え、溶接などの熱影響を受けた際に鋭敏化が生じ、フェライト系ステンレス鋼材の耐食性が低下してしまう。そのため、Cの含有量の上限値は、0.100%、好ましくは0.060%、より好ましくは0.040%、更に好ましくは0.020%に制御される。一方、Cの含有量は少なすぎると、加工性の劣化や精練コストの上昇につながる。そのため、Cの含有量の下限値は、0.001%、好ましくは0.002%、より好ましくは0.005%、更に好ましくは0.010%に制御される。 <C: 0.001 to 0.100%>
If the content of C is too large, it becomes hard and the workability is lowered, and sensitization occurs when it is affected by heat such as welding, and the corrosion resistance of the ferritic stainless steel material is lowered. Therefore, the upper limit of the C content is controlled to 0.100%, preferably 0.060%, more preferably 0.040%, and even more preferably 0.020%. On the other hand, if the content of C is too small, it leads to deterioration of workability and an increase in refining cost. Therefore, the lower limit of the C content is controlled to 0.001%, preferably 0.002%, more preferably 0.005%, and even more preferably 0.010%.
<Si:5.00%以下>
Siの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Siの含有量の上限値は、5.00%に制御される。
特に、Si及びAlの含有量が少ない(Si+2Alが1.20%未満である)フェライト系ステンレス鋼材の場合、Siの含有量の上限値は、好ましくは1.00%、より好ましくは0.80%、更に好ましくは0.70%、最も好ましくは0.60%である。一方、Siの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
また、Si及びAlの含有量が多い(Si+2Alが1.20%以上である)フェライト系ステンレス鋼材の場合、Siの含有量の上限値は、好ましくは4.00%、より好ましくは3.00%、更に好ましくは2.50%である。一方、Siの含有量の下限値は、特に限定されないが、フェライト系ステンレス鋼材の耐熱性を確保する観点から、好ましくは0.20%、より好ましくは0.40%、更に好ましくは1.00%、最も好ましくは1.50%である。 <Si: 5.00% or less>
If the Si content is too high, it will become hard and the workability of the ferritic stainless steel will deteriorate. Therefore, the upper limit of the Si content is controlled to 5.00%.
In particular, in the case of a ferrite stainless steel material having a low content of Si and Al (Si + 2Al is less than 1.20%), the upper limit of the Si content is preferably 1.00%, more preferably 0.80. %, More preferably 0.70%, most preferably 0.60%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
Further, in the case of a ferrite stainless steel material having a high content of Si and Al (Si + 2Al is 1.20% or more), the upper limit of the Si content is preferably 4.00%, more preferably 3.00. %, More preferably 2.50%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.20%, more preferably 0.40%, still more preferably 1.00, from the viewpoint of ensuring the heat resistance of the ferritic stainless steel material. %, Most preferably 1.50%.
Siの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Siの含有量の上限値は、5.00%に制御される。
特に、Si及びAlの含有量が少ない(Si+2Alが1.20%未満である)フェライト系ステンレス鋼材の場合、Siの含有量の上限値は、好ましくは1.00%、より好ましくは0.80%、更に好ましくは0.70%、最も好ましくは0.60%である。一方、Siの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
また、Si及びAlの含有量が多い(Si+2Alが1.20%以上である)フェライト系ステンレス鋼材の場合、Siの含有量の上限値は、好ましくは4.00%、より好ましくは3.00%、更に好ましくは2.50%である。一方、Siの含有量の下限値は、特に限定されないが、フェライト系ステンレス鋼材の耐熱性を確保する観点から、好ましくは0.20%、より好ましくは0.40%、更に好ましくは1.00%、最も好ましくは1.50%である。 <Si: 5.00% or less>
If the Si content is too high, it will become hard and the workability of the ferritic stainless steel will deteriorate. Therefore, the upper limit of the Si content is controlled to 5.00%.
In particular, in the case of a ferrite stainless steel material having a low content of Si and Al (Si + 2Al is less than 1.20%), the upper limit of the Si content is preferably 1.00%, more preferably 0.80. %, More preferably 0.70%, most preferably 0.60%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
Further, in the case of a ferrite stainless steel material having a high content of Si and Al (Si + 2Al is 1.20% or more), the upper limit of the Si content is preferably 4.00%, more preferably 3.00. %, More preferably 2.50%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.20%, more preferably 0.40%, still more preferably 1.00, from the viewpoint of ensuring the heat resistance of the ferritic stainless steel material. %, Most preferably 1.50%.
<Mn:2.00%以下>
Mnは、フェライト系ステンレス鋼材の耐熱性を向上させる元素である。しかし、Mnの含有量が多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまう。また、Mnは、オーステナイト相(γ相)形成元素であるため、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性も低下してしまう。そのため、Mnの含有量の上限値は、2.00%、好ましくは1.50%、より好ましくは1.20%、更に好ましくは1.00%に制御される。一方、Mnの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。 <Mn: 2.00% or less>
Mn is an element that improves the heat resistance of ferritic stainless steel materials. However, if the Mn content is too high, the corrosion resistance of the ferritic stainless steel material will deteriorate. Further, since Mn is an austenite phase (γ phase) forming element, a γ phase (martensite phase at room temperature) is generated at a high temperature, and the processability of the ferritic stainless steel material is also deteriorated. Therefore, the upper limit of the Mn content is controlled to 2.00%, preferably 1.50%, more preferably 1.20%, and even more preferably 1.00%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
Mnは、フェライト系ステンレス鋼材の耐熱性を向上させる元素である。しかし、Mnの含有量が多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまう。また、Mnは、オーステナイト相(γ相)形成元素であるため、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性も低下してしまう。そのため、Mnの含有量の上限値は、2.00%、好ましくは1.50%、より好ましくは1.20%、更に好ましくは1.00%に制御される。一方、Mnの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。 <Mn: 2.00% or less>
Mn is an element that improves the heat resistance of ferritic stainless steel materials. However, if the Mn content is too high, the corrosion resistance of the ferritic stainless steel material will deteriorate. Further, since Mn is an austenite phase (γ phase) forming element, a γ phase (martensite phase at room temperature) is generated at a high temperature, and the processability of the ferritic stainless steel material is also deteriorated. Therefore, the upper limit of the Mn content is controlled to 2.00%, preferably 1.50%, more preferably 1.20%, and even more preferably 1.00%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
<P:0.050%以下>
Pの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性や加工性が低下してしまう。そのため、Pの含有量の上限値は、0.050%、好ましくは0.035%、より好ましくは0.030%、更に好ましくは0.020%に制御される。一方、Pの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.002%、更に好ましくは0.003%、また更に好ましくは0.005%、最も好ましくは0.010%である。 <P: 0.050% or less>
If the content of P is too large, the corrosion resistance and workability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.035%, more preferably 0.030%, and even more preferably 0.020%. On the other hand, the lower limit of the content of P is not particularly limited, but is preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005%, and most preferably. Is 0.010%.
Pの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性や加工性が低下してしまう。そのため、Pの含有量の上限値は、0.050%、好ましくは0.035%、より好ましくは0.030%、更に好ましくは0.020%に制御される。一方、Pの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.002%、更に好ましくは0.003%、また更に好ましくは0.005%、最も好ましくは0.010%である。 <P: 0.050% or less>
If the content of P is too large, the corrosion resistance and workability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.035%, more preferably 0.030%, and even more preferably 0.020%. On the other hand, the lower limit of the content of P is not particularly limited, but is preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005%, and most preferably. Is 0.010%.
<S:0.0300%以下>
Sの含有量は多すぎると、熱間加工性が下がってフェライト系ステンレス鋼材の製造性が低下してしまうとともに、耐食性にも悪影響を及ぼす。そのため、Sの含有量の上限値は、0.0300%、好ましくは0.0100%、より好ましくは0.0050%、更に好ましくは0.0010%に制御される。一方、Sの含有量の下限値は、特に限定されないが、好ましくは0.0001%、より好ましくは0.0002%、更に好ましくは0.0003%である。 <S: 0.0300% or less>
If the content of S is too large, the hot workability is lowered, the manufacturability of the ferritic stainless steel material is lowered, and the corrosion resistance is also adversely affected. Therefore, the upper limit of the S content is controlled to 0.0300%, preferably 0.0100%, more preferably 0.0050%, and even more preferably 0.0010%. On the other hand, the lower limit of the S content is not particularly limited, but is preferably 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
Sの含有量は多すぎると、熱間加工性が下がってフェライト系ステンレス鋼材の製造性が低下してしまうとともに、耐食性にも悪影響を及ぼす。そのため、Sの含有量の上限値は、0.0300%、好ましくは0.0100%、より好ましくは0.0050%、更に好ましくは0.0010%に制御される。一方、Sの含有量の下限値は、特に限定されないが、好ましくは0.0001%、より好ましくは0.0002%、更に好ましくは0.0003%である。 <S: 0.0300% or less>
If the content of S is too large, the hot workability is lowered, the manufacturability of the ferritic stainless steel material is lowered, and the corrosion resistance is also adversely affected. Therefore, the upper limit of the S content is controlled to 0.0300%, preferably 0.0100%, more preferably 0.0050%, and even more preferably 0.0010%. On the other hand, the lower limit of the S content is not particularly limited, but is preferably 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
<Ni:2.00%未満>
Niは、フェライト系ステンレス鋼材の耐食性を向上させる元素である。しかし、Niは、Mnと同様にオーステナイト相(γ相)形成元素であるため、その含有量が多すぎると、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性が低下してしまう。また、Niは、高価な元素であるため、製造コストの上昇にもつながる。そのため、Niの含有量は、2.00%未満、好ましくは1.00%以下、より好ましくは0.70%以下、更に好ましくは0.50%以下、最も好ましくは0.35%以下に制御される。一方、Niの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.05%である。 <Ni: less than 2.00%>
Ni is an element that improves the corrosion resistance of ferritic stainless steel materials. However, since Ni is an austenite phase (γ phase) forming element like Mn, if its content is too large, γ phase (martensite phase at room temperature) is generated at high temperature, and ferritic stainless steel is processed. The sex is reduced. Moreover, since Ni is an expensive element, it also leads to an increase in manufacturing cost. Therefore, the Ni content is controlled to be less than 2.00%, preferably 1.00% or less, more preferably 0.70% or less, still more preferably 0.50% or less, and most preferably 0.35% or less. Will be done. On the other hand, the lower limit of the Ni content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
Niは、フェライト系ステンレス鋼材の耐食性を向上させる元素である。しかし、Niは、Mnと同様にオーステナイト相(γ相)形成元素であるため、その含有量が多すぎると、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性が低下してしまう。また、Niは、高価な元素であるため、製造コストの上昇にもつながる。そのため、Niの含有量は、2.00%未満、好ましくは1.00%以下、より好ましくは0.70%以下、更に好ましくは0.50%以下、最も好ましくは0.35%以下に制御される。一方、Niの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.05%である。 <Ni: less than 2.00%>
Ni is an element that improves the corrosion resistance of ferritic stainless steel materials. However, since Ni is an austenite phase (γ phase) forming element like Mn, if its content is too large, γ phase (martensite phase at room temperature) is generated at high temperature, and ferritic stainless steel is processed. The sex is reduced. Moreover, since Ni is an expensive element, it also leads to an increase in manufacturing cost. Therefore, the Ni content is controlled to be less than 2.00%, preferably 1.00% or less, more preferably 0.70% or less, still more preferably 0.50% or less, and most preferably 0.35% or less. Will be done. On the other hand, the lower limit of the Ni content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
<Cr:11.00~30.00%>
Crの含有量は多すぎると、精錬コストの上昇を招く上に、固溶強化によって硬質化し、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Crの含有量の上限値は、30.00%、好ましくは24.00%、より好ましくは22.00%、更に好ましくは18.00%に制御される。一方、Crの含有量は少なすぎると、耐食性が十分に得られない。そのため、Crの含有量の下限値は、11.00%、好ましくは13.00%、より好ましくは14.00%、更に好ましくは15.00%に制御される。 <Cr: 11.00 to 30.00%>
If the Cr content is too high, the refining cost will increase and the solid solution will be strengthened to harden the ferritic stainless steel material, resulting in a decrease in workability. Therefore, the upper limit of the Cr content is controlled to 30.00%, preferably 24.00%, more preferably 22.00%, and even more preferably 18.00%. On the other hand, if the Cr content is too small, sufficient corrosion resistance cannot be obtained. Therefore, the lower limit of the Cr content is controlled to 11.00%, preferably 13.00%, more preferably 14.00%, and even more preferably 15.00%.
Crの含有量は多すぎると、精錬コストの上昇を招く上に、固溶強化によって硬質化し、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Crの含有量の上限値は、30.00%、好ましくは24.00%、より好ましくは22.00%、更に好ましくは18.00%に制御される。一方、Crの含有量は少なすぎると、耐食性が十分に得られない。そのため、Crの含有量の下限値は、11.00%、好ましくは13.00%、より好ましくは14.00%、更に好ましくは15.00%に制御される。 <Cr: 11.00 to 30.00%>
If the Cr content is too high, the refining cost will increase and the solid solution will be strengthened to harden the ferritic stainless steel material, resulting in a decrease in workability. Therefore, the upper limit of the Cr content is controlled to 30.00%, preferably 24.00%, more preferably 22.00%, and even more preferably 18.00%. On the other hand, if the Cr content is too small, sufficient corrosion resistance cannot be obtained. Therefore, the lower limit of the Cr content is controlled to 11.00%, preferably 13.00%, more preferably 14.00%, and even more preferably 15.00%.
<Mo:6.00%以下>
Moは、フェライト系ステンレス鋼材の耐食性を改善する元素である。Moは高価であるため、Moの含有量が多すぎると、製造コストの上昇につながる。そのため、Moの含有量の上限値は、6.00%、好ましくは5.00%、より好ましくは3.00%、更に好ましくは2.00%、最も好ましくは1.00%に制御される。一方、Moの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.05%、また更に好ましくは0.10%、特に好ましくは0.50%、最も好ましくは1.00%である。 <Mo: 6.00% or less>
Mo is an element that improves the corrosion resistance of ferritic stainless steel materials. Since Mo is expensive, if the content of Mo is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 6.00%, preferably 5.00%, more preferably 3.00%, further preferably 2.00%, and most preferably 1.00%. .. On the other hand, the lower limit of the Mo content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, still more preferably 0.05%, still more preferably 0.10%, particularly preferably. Is 0.50%, most preferably 1.00%.
Moは、フェライト系ステンレス鋼材の耐食性を改善する元素である。Moは高価であるため、Moの含有量が多すぎると、製造コストの上昇につながる。そのため、Moの含有量の上限値は、6.00%、好ましくは5.00%、より好ましくは3.00%、更に好ましくは2.00%、最も好ましくは1.00%に制御される。一方、Moの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.05%、また更に好ましくは0.10%、特に好ましくは0.50%、最も好ましくは1.00%である。 <Mo: 6.00% or less>
Mo is an element that improves the corrosion resistance of ferritic stainless steel materials. Since Mo is expensive, if the content of Mo is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 6.00%, preferably 5.00%, more preferably 3.00%, further preferably 2.00%, and most preferably 1.00%. .. On the other hand, the lower limit of the Mo content is not particularly limited, but is preferably 0.01%, more preferably 0.03%, still more preferably 0.05%, still more preferably 0.10%, particularly preferably. Is 0.50%, most preferably 1.00%.
<Cu:0.60%以下>
Cuは、フェライト系ステンレス鋼材の加工性を改善する元素である。Cuの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまうとともに、鋳造時に低融点相を形成して熱間加工性の低下を招く。そのため、Cuの含有量の上限値は、0.60%、好ましくは0.40%、より好ましくは0.20%、更に好ましくは0.10%に制御される。一方、Cuの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.02%、更に好ましくは0.03%、最も好ましくは0.04%である。 <Cu: 0.60% or less>
Cu is an element that improves the workability of ferritic stainless steel materials. If the Cu content is too high, the corrosion resistance of the ferritic stainless steel material will decrease, and a low melting point phase will be formed during casting, leading to a decrease in hot workability. Therefore, the upper limit of the Cu content is controlled to 0.60%, preferably 0.40%, more preferably 0.20%, and even more preferably 0.10%. On the other hand, the lower limit of the Cu content is not particularly limited, but is preferably 0.01%, more preferably 0.02%, still more preferably 0.03%, and most preferably 0.04%.
Cuは、フェライト系ステンレス鋼材の加工性を改善する元素である。Cuの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまうとともに、鋳造時に低融点相を形成して熱間加工性の低下を招く。そのため、Cuの含有量の上限値は、0.60%、好ましくは0.40%、より好ましくは0.20%、更に好ましくは0.10%に制御される。一方、Cuの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.02%、更に好ましくは0.03%、最も好ましくは0.04%である。 <Cu: 0.60% or less>
Cu is an element that improves the workability of ferritic stainless steel materials. If the Cu content is too high, the corrosion resistance of the ferritic stainless steel material will decrease, and a low melting point phase will be formed during casting, leading to a decrease in hot workability. Therefore, the upper limit of the Cu content is controlled to 0.60%, preferably 0.40%, more preferably 0.20%, and even more preferably 0.10%. On the other hand, the lower limit of the Cu content is not particularly limited, but is preferably 0.01%, more preferably 0.02%, still more preferably 0.03%, and most preferably 0.04%.
<N:0.050%以下>
Nは耐食性を改善する元素である。Nの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nの含有量の上限値は、0.050%、好ましくは0.040%、より好ましくは0.030%、更に好ましくは0.020%に制御される。一方、Nの含有量の下限値は、特に限定されないが、好ましくは0.001%、好ましくは0.005%、より好ましくは0.010%に制御される。 <N: 0.050% or less>
N is an element that improves corrosion resistance. If the content of N is too large, it becomes hard and the processability of the ferritic stainless steel material deteriorates. Therefore, the upper limit of the N content is controlled to 0.050%, preferably 0.040%, more preferably 0.030%, and even more preferably 0.020%. On the other hand, the lower limit of the content of N is not particularly limited, but is preferably controlled to 0.001%, preferably 0.005%, and more preferably 0.010%.
Nは耐食性を改善する元素である。Nの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nの含有量の上限値は、0.050%、好ましくは0.040%、より好ましくは0.030%、更に好ましくは0.020%に制御される。一方、Nの含有量の下限値は、特に限定されないが、好ましくは0.001%、好ましくは0.005%、より好ましくは0.010%に制御される。 <N: 0.050% or less>
N is an element that improves corrosion resistance. If the content of N is too large, it becomes hard and the processability of the ferritic stainless steel material deteriorates. Therefore, the upper limit of the N content is controlled to 0.050%, preferably 0.040%, more preferably 0.030%, and even more preferably 0.020%. On the other hand, the lower limit of the content of N is not particularly limited, but is preferably controlled to 0.001%, preferably 0.005%, and more preferably 0.010%.
<Al:3.500%以下>
Alは、精錬工程において脱酸のために必要に応じて添加され、耐食性及び耐熱性を改善する元素である。Alの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Alの含有量の上限値は、3.500%に制御される。
特に、Si及びAlの含有量が少ない(Si+2Alが1.20%未満である)フェライト系ステンレス鋼材の場合、Alの含有量の上限値は、好ましくは0.400%、より好ましくは0.100%、より好ましくは0.050%である。一方、Alの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.005%である。
また、Si及びAlの含有量が多い(Si+2Alが1.20%以上である)フェライト系ステンレス鋼材の場合、Alの含有量の上限値は、好ましくは3.000%、より好ましくは2.000%、更に好ましくは1.500%である。一方、Alの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.010%、更に好ましくは0.100%である。 <Al: 3.500% or less>
Al is an element that is added as needed for deoxidation in the refining process and improves corrosion resistance and heat resistance. If the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is controlled to 3.500%.
In particular, in the case of a ferrite stainless steel material having a low content of Si and Al (Si + 2Al is less than 1.20%), the upper limit of the content of Al is preferably 0.400%, more preferably 0.100. %, More preferably 0.050%. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.005%.
Further, in the case of a ferrite stainless steel material having a high content of Si and Al (Si + 2Al is 1.20% or more), the upper limit of the Al content is preferably 3.000%, more preferably 2.000%. %, More preferably 1.500%. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.010%, and even more preferably 0.100%.
Alは、精錬工程において脱酸のために必要に応じて添加され、耐食性及び耐熱性を改善する元素である。Alの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Alの含有量の上限値は、3.500%に制御される。
特に、Si及びAlの含有量が少ない(Si+2Alが1.20%未満である)フェライト系ステンレス鋼材の場合、Alの含有量の上限値は、好ましくは0.400%、より好ましくは0.100%、より好ましくは0.050%である。一方、Alの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.005%である。
また、Si及びAlの含有量が多い(Si+2Alが1.20%以上である)フェライト系ステンレス鋼材の場合、Alの含有量の上限値は、好ましくは3.000%、より好ましくは2.000%、更に好ましくは1.500%である。一方、Alの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.010%、更に好ましくは0.100%である。 <Al: 3.500% or less>
Al is an element that is added as needed for deoxidation in the refining process and improves corrosion resistance and heat resistance. If the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is controlled to 3.500%.
In particular, in the case of a ferrite stainless steel material having a low content of Si and Al (Si + 2Al is less than 1.20%), the upper limit of the content of Al is preferably 0.400%, more preferably 0.100. %, More preferably 0.050%. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.005%.
Further, in the case of a ferrite stainless steel material having a high content of Si and Al (Si + 2Al is 1.20% or more), the upper limit of the Al content is preferably 3.000%, more preferably 2.000%. %, More preferably 1.500%. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.001%, more preferably 0.010%, and even more preferably 0.100%.
本発明の実施形態に係るフェライト系ステンレス鋼材は、Si及びAlの含有量が少ないものを対象とする場合、Si+2Al(各元素記号は、各元素の含有量を表す)は、1.20%未満、好ましくは1.10%以下、より好ましくは1.00%以下、更に好ましくは0.90%以下である。なお、Si+2Alの下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
また、本発明の実施形態に係るフェライト系ステンレス鋼材は、Si及びAlの含有量が多いものを対象とする場合、Si+2Al(各元素記号は、各元素の含有量を表す)は、1.20%以上、好ましくは1.30%以上、より好ましくは1.50%以上、更に好ましくは2.00%以上である。なお、Si+2Alの上限値は、特に限定されないが、好ましくは10.00%、より好ましくは8.00%、更に好ましくは7.00%である。 When the ferritic stainless steel material according to the embodiment of the present invention is intended for a material having a low content of Si and Al, Si + 2Al (each element symbol represents the content of each element) is less than 1.20%. It is preferably 1.10% or less, more preferably 1.00% or less, and further preferably 0.90% or less. The lower limit of Si + 2Al is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
Further, when the ferritic stainless steel material according to the embodiment of the present invention is intended for a material having a large content of Si and Al, Si + 2Al (each element symbol represents the content of each element) is 1.20. % Or more, preferably 1.30% or more, more preferably 1.50% or more, still more preferably 2.00% or more. The upper limit of Si + 2Al is not particularly limited, but is preferably 10.00%, more preferably 8.00%, and even more preferably 7.00%.
また、本発明の実施形態に係るフェライト系ステンレス鋼材は、Si及びAlの含有量が多いものを対象とする場合、Si+2Al(各元素記号は、各元素の含有量を表す)は、1.20%以上、好ましくは1.30%以上、より好ましくは1.50%以上、更に好ましくは2.00%以上である。なお、Si+2Alの上限値は、特に限定されないが、好ましくは10.00%、より好ましくは8.00%、更に好ましくは7.00%である。 When the ferritic stainless steel material according to the embodiment of the present invention is intended for a material having a low content of Si and Al, Si + 2Al (each element symbol represents the content of each element) is less than 1.20%. It is preferably 1.10% or less, more preferably 1.00% or less, and further preferably 0.90% or less. The lower limit of Si + 2Al is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and even more preferably 0.10%.
Further, when the ferritic stainless steel material according to the embodiment of the present invention is intended for a material having a large content of Si and Al, Si + 2Al (each element symbol represents the content of each element) is 1.20. % Or more, preferably 1.30% or more, more preferably 1.50% or more, still more preferably 2.00% or more. The upper limit of Si + 2Al is not particularly limited, but is preferably 10.00%, more preferably 8.00%, and even more preferably 7.00%.
<Ti:0.001~0.500%>
Tiは、CやNと結合して耐食性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Tiによる効果を得る観点から、Tiの含有量の下限値は、0.001%、好ましくは0.005%に制御される。一方、Tiの含有量は多すぎると、表面疵の原因となって品質低下を招くとともに、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Tiの含有量の上限値は、0.500%、好ましくは0.300%、より好ましくは0.100%に制御される。 <Ti: 0.001 to 0.500%>
Ti is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Ti, the lower limit of the Ti content is controlled to 0.001%, preferably 0.005%. On the other hand, if the Ti content is too high, it causes surface defects and causes quality deterioration, and the processability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Ti content is controlled to 0.500%, preferably 0.300%, and more preferably 0.100%.
Tiは、CやNと結合して耐食性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Tiによる効果を得る観点から、Tiの含有量の下限値は、0.001%、好ましくは0.005%に制御される。一方、Tiの含有量は多すぎると、表面疵の原因となって品質低下を招くとともに、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Tiの含有量の上限値は、0.500%、好ましくは0.300%、より好ましくは0.100%に制御される。 <Ti: 0.001 to 0.500%>
Ti is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Ti, the lower limit of the Ti content is controlled to 0.001%, preferably 0.005%. On the other hand, if the Ti content is too high, it causes surface defects and causes quality deterioration, and the processability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Ti content is controlled to 0.500%, preferably 0.300%, and more preferably 0.100%.
<Nb:0.001~1.000%>
Nbは、Tiと同様に、CやNと結合して耐食性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Nbによる効果を得る観点から、Nbの含有量の下限値は、0.001%、好ましくは0.004%、より好ましくは0.010%に制御される。一方、Nbの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nbの含有量の上限値は、1.000%、好ましくは0.600%、より好ましくは0.060%に制御される。 <Nb: 0.001 to 1.000%>
Like Ti, Nb is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Nb, the lower limit of the content of Nb is controlled to 0.001%, preferably 0.004%, and more preferably 0.010%. On the other hand, if the content of Nb is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Nb content is controlled to 1.000%, preferably 0.600%, and more preferably 0.060%.
Nbは、Tiと同様に、CやNと結合して耐食性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Nbによる効果を得る観点から、Nbの含有量の下限値は、0.001%、好ましくは0.004%、より好ましくは0.010%に制御される。一方、Nbの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nbの含有量の上限値は、1.000%、好ましくは0.600%、より好ましくは0.060%に制御される。 <Nb: 0.001 to 1.000%>
Like Ti, Nb is an element that binds to C and N to improve corrosion resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Nb, the lower limit of the content of Nb is controlled to 0.001%, preferably 0.004%, and more preferably 0.010%. On the other hand, if the content of Nb is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Nb content is controlled to 1.000%, preferably 0.600%, and more preferably 0.060%.
<V:0.001~1.000%>
Vは、耐食性を向上させる元素であり、必要に応じて添加される。Vによる効果を得る観点から、Vの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Vの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Vの含有量の上限値は、1.000%、好ましくは0.200%に制御される。 <V: 0.001 to 1.000%>
V is an element that improves corrosion resistance and is added as needed. From the viewpoint of obtaining the effect of V, the lower limit of the content of V is controlled to 0.001%, preferably 0.010%. On the other hand, if the V content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the V content is controlled to 1.000%, preferably 0.200%.
Vは、耐食性を向上させる元素であり、必要に応じて添加される。Vによる効果を得る観点から、Vの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Vの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Vの含有量の上限値は、1.000%、好ましくは0.200%に制御される。 <V: 0.001 to 1.000%>
V is an element that improves corrosion resistance and is added as needed. From the viewpoint of obtaining the effect of V, the lower limit of the content of V is controlled to 0.001%, preferably 0.010%. On the other hand, if the V content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the V content is controlled to 1.000%, preferably 0.200%.
<W:0.001~1.000%>
Wは、高温強度及び耐食性を向上させる元素であり、必要に応じて添加される。Wによる効果を得る観点から、Wの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Wの含有量は多すぎると、硬質化して加工性が低下するとともに、表面疵が増加してフェライト系ステンレス鋼材の表面品質が低下してしまう。そのため、Wの含有量の上限値は、1.000%、好ましくは0.300%に制御される。 <W: 0.001 to 1.000%>
W is an element that improves high temperature strength and corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of W, the lower limit of the content of W is controlled to 0.001%, preferably 0.010%. On the other hand, if the content of W is too large, it becomes hard and the workability is deteriorated, and surface defects are increased, so that the surface quality of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the W content is controlled to 1.000%, preferably 0.300%.
Wは、高温強度及び耐食性を向上させる元素であり、必要に応じて添加される。Wによる効果を得る観点から、Wの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Wの含有量は多すぎると、硬質化して加工性が低下するとともに、表面疵が増加してフェライト系ステンレス鋼材の表面品質が低下してしまう。そのため、Wの含有量の上限値は、1.000%、好ましくは0.300%に制御される。 <W: 0.001 to 1.000%>
W is an element that improves high temperature strength and corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of W, the lower limit of the content of W is controlled to 0.001%, preferably 0.010%. On the other hand, if the content of W is too large, it becomes hard and the workability is deteriorated, and surface defects are increased, so that the surface quality of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the W content is controlled to 1.000%, preferably 0.300%.
<Zr:0.001~1.000%>
Zrは、CやNと結合して耐酸化性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Zrによる効果を得る観点から、Zrの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Zrの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Zrの含有量の上限値は、1.000%、好ましくは0.200%、より好ましくは0.050%に制御される。 <Zr: 0.001 to 1.000%>
Zr is an element that binds to C and N to improve oxidation resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Zr, the lower limit of the Zr content is controlled to 0.001%, preferably 0.010%. On the other hand, if the Zr content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Zr content is controlled to 1.000%, preferably 0.200%, and more preferably 0.050%.
Zrは、CやNと結合して耐酸化性及び耐粒界腐食性を向上させる元素であり、必要に応じて添加される。Zrによる効果を得る観点から、Zrの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Zrの含有量は多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Zrの含有量の上限値は、1.000%、好ましくは0.200%、より好ましくは0.050%に制御される。 <Zr: 0.001 to 1.000%>
Zr is an element that binds to C and N to improve oxidation resistance and intergranular corrosion resistance, and is added as necessary. From the viewpoint of obtaining the effect of Zr, the lower limit of the Zr content is controlled to 0.001%, preferably 0.010%. On the other hand, if the Zr content is too large, the processability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Zr content is controlled to 1.000%, preferably 0.200%, and more preferably 0.050%.
<Co:0.001~1.200%>
Coは、耐熱性を向上させる元素であり、必要に応じて添加される。Coによる効果を得る観点から、Coの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Coは高価であるため、Coの含有量が多すぎると、製造コストの上昇につながる。そのため、Coの含有量の上限値は、1.200%、好ましくは0.400%に制御される。 <Co: 0.001 to 1.200%>
Co is an element that improves heat resistance and is added as needed. From the viewpoint of obtaining the effect of Co, the lower limit of the Co content is controlled to 0.001%, preferably 0.010%. On the other hand, since Co is expensive, if the content of Co is too large, the manufacturing cost will increase. Therefore, the upper limit of the Co content is controlled to 1.200%, preferably 0.400%.
Coは、耐熱性を向上させる元素であり、必要に応じて添加される。Coによる効果を得る観点から、Coの含有量の下限値は、0.001%、好ましくは0.010%に制御される。一方、Coは高価であるため、Coの含有量が多すぎると、製造コストの上昇につながる。そのため、Coの含有量の上限値は、1.200%、好ましくは0.400%に制御される。 <Co: 0.001 to 1.200%>
Co is an element that improves heat resistance and is added as needed. From the viewpoint of obtaining the effect of Co, the lower limit of the Co content is controlled to 0.001%, preferably 0.010%. On the other hand, since Co is expensive, if the content of Co is too large, the manufacturing cost will increase. Therefore, the upper limit of the Co content is controlled to 1.200%, preferably 0.400%.
<Ca:0.0001~0.0100%>
Caは、硫化物を形成してSの悪影響を低減する元素であり、必要に応じて添加される。Caによる効果を得る観点から、Caの含有量の下限値は、0.0001%、好ましくは0.0003%に制御される。一方、Caの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Caの含有量の上限値は、0.0100%、好ましくは0.0050%に制御される。 <Ca: 0.0001 to 0.0100%>
Ca is an element that forms sulfides and reduces the adverse effects of S, and is added as necessary. From the viewpoint of obtaining the effect of Ca, the lower limit of the Ca content is controlled to 0.0001%, preferably 0.0003%. On the other hand, if the Ca content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Ca content is controlled to 0.0100%, preferably 0.0050%.
Caは、硫化物を形成してSの悪影響を低減する元素であり、必要に応じて添加される。Caによる効果を得る観点から、Caの含有量の下限値は、0.0001%、好ましくは0.0003%に制御される。一方、Caの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Caの含有量の上限値は、0.0100%、好ましくは0.0050%に制御される。 <Ca: 0.0001 to 0.0100%>
Ca is an element that forms sulfides and reduces the adverse effects of S, and is added as necessary. From the viewpoint of obtaining the effect of Ca, the lower limit of the Ca content is controlled to 0.0001%, preferably 0.0003%. On the other hand, if the Ca content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Ca content is controlled to 0.0100%, preferably 0.0050%.
<B:0.0001~0.0080%>
Bは、熱間加工性を向上させる元素であり、必要に応じて添加される。Bによる効果を得る観点から、Bの含有量の下限値は、0.0001%、好ましくは0.0003%、より好ましくは0.0005%に制御される。一方、Bの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまう。そのため、Bの含有量の上限値は、0.0080%、好ましくは0.0040%、より好ましくは0.0025%に制御される。 <B: 0.0001 to 0.0080%>
B is an element that improves hot workability and is added as needed. From the viewpoint of obtaining the effect of B, the lower limit of the content of B is controlled to 0.0001%, preferably 0.0003%, and more preferably 0.0005%. On the other hand, if the content of B is too large, the corrosion resistance of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the B content is controlled to 0.0080%, preferably 0.0040%, and more preferably 0.0025%.
Bは、熱間加工性を向上させる元素であり、必要に応じて添加される。Bによる効果を得る観点から、Bの含有量の下限値は、0.0001%、好ましくは0.0003%、より好ましくは0.0005%に制御される。一方、Bの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまう。そのため、Bの含有量の上限値は、0.0080%、好ましくは0.0040%、より好ましくは0.0025%に制御される。 <B: 0.0001 to 0.0080%>
B is an element that improves hot workability and is added as needed. From the viewpoint of obtaining the effect of B, the lower limit of the content of B is controlled to 0.0001%, preferably 0.0003%, and more preferably 0.0005%. On the other hand, if the content of B is too large, the corrosion resistance of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the B content is controlled to 0.0080%, preferably 0.0040%, and more preferably 0.0025%.
<Sn:0.001~0.500%>
Snは、耐食性及び高温強度を向上させる元素であり、必要に応じて添加される。Snによる効果を得る観点から、Snの含有量の下限値は、0.001%、好ましくは0.002%に制御される。一方、Snの含有量は多すぎると、低融点相を形成してフェライト系ステンレス鋼材の熱間加工性が低下してしまう。そのため、Snの含有量の上限値は、0.500%、好ましくは0.100%、より好ましくは0.050%に制御される。 <Sn: 0.001 to 0.500%>
Sn is an element that improves corrosion resistance and high-temperature strength, and is added as necessary. From the viewpoint of obtaining the effect of Sn, the lower limit of the Sn content is controlled to 0.001%, preferably 0.002%. On the other hand, if the Sn content is too high, a low melting point phase is formed and the hot workability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Sn content is controlled to 0.500%, preferably 0.100%, and more preferably 0.050%.
Snは、耐食性及び高温強度を向上させる元素であり、必要に応じて添加される。Snによる効果を得る観点から、Snの含有量の下限値は、0.001%、好ましくは0.002%に制御される。一方、Snの含有量は多すぎると、低融点相を形成してフェライト系ステンレス鋼材の熱間加工性が低下してしまう。そのため、Snの含有量の上限値は、0.500%、好ましくは0.100%、より好ましくは0.050%に制御される。 <Sn: 0.001 to 0.500%>
Sn is an element that improves corrosion resistance and high-temperature strength, and is added as necessary. From the viewpoint of obtaining the effect of Sn, the lower limit of the Sn content is controlled to 0.001%, preferably 0.002%. On the other hand, if the Sn content is too high, a low melting point phase is formed and the hot workability of the ferritic stainless steel material is deteriorated. Therefore, the upper limit of the Sn content is controlled to 0.500%, preferably 0.100%, and more preferably 0.050%.
本発明の実施形態に係るフェライト系ステンレス鋼材は、表面の算術平均粗さRaが0.10~3.00μm、好ましくは0.50~2.00μm、より好ましくは1.00~1.90μmである。このような範囲に表面の算術平均粗さRaを制御することにより、フェライト系ステンレス鋼材の平滑性を確保することができる。
ここで、本明細書において「算術平均粗さRa」とは、JIS B0601:2013に準拠して測定される算術平均粗さRaを意味する。 The ferrite-based stainless steel material according to the embodiment of the present invention has a surface arithmetic average roughness Ra of 0.10 to 3.00 μm, preferably 0.50 to 2.00 μm, and more preferably 1.00 to 1.90 μm. be. By controlling the arithmetic average roughness Ra of the surface within such a range, the smoothness of the ferritic stainless steel material can be ensured.
Here, the "arithmetic mean roughness Ra" in the present specification means the arithmetic mean roughness Ra measured in accordance with JIS B0601: 2013.
ここで、本明細書において「算術平均粗さRa」とは、JIS B0601:2013に準拠して測定される算術平均粗さRaを意味する。 The ferrite-based stainless steel material according to the embodiment of the present invention has a surface arithmetic average roughness Ra of 0.10 to 3.00 μm, preferably 0.50 to 2.00 μm, and more preferably 1.00 to 1.90 μm. be. By controlling the arithmetic average roughness Ra of the surface within such a range, the smoothness of the ferritic stainless steel material can be ensured.
Here, the "arithmetic mean roughness Ra" in the present specification means the arithmetic mean roughness Ra measured in accordance with JIS B0601: 2013.
本発明の実施形態に係るフェライト系ステンレス鋼材は、表面の60度鏡面光沢Gs(60°)が10~100%、好ましくは13~70%、より好ましくは15~65%である。このような範囲に表面の60度鏡面光沢Gs(60°)を制御することにより、フェライト系ステンレス鋼材の光沢性を確保することができる。
ここで、本明細書において「60度鏡面光沢Gs(60°)」とは、JIS Z8741:1997に準拠して測定される60度鏡面光沢Gs(60°)を意味する。 The ferrite-based stainless steel material according to the embodiment of the present invention has a surface surface gloss of 60 ° Gs (60 °) of 10 to 100%, preferably 13 to 70%, and more preferably 15 to 65%. By controlling the 60-degree mirror surface gloss Gs (60 °) of the surface within such a range, the glossiness of the ferritic stainless steel material can be ensured.
Here, in the present specification, "60 degree mirror surface gloss Gs (60 °)" means 60 degree mirror surface gloss Gs (60 °) measured in accordance with JIS Z8741: 1997.
ここで、本明細書において「60度鏡面光沢Gs(60°)」とは、JIS Z8741:1997に準拠して測定される60度鏡面光沢Gs(60°)を意味する。 The ferrite-based stainless steel material according to the embodiment of the present invention has a surface surface gloss of 60 ° Gs (60 °) of 10 to 100%, preferably 13 to 70%, and more preferably 15 to 65%. By controlling the 60-degree mirror surface gloss Gs (60 °) of the surface within such a range, the glossiness of the ferritic stainless steel material can be ensured.
Here, in the present specification, "60 degree mirror surface gloss Gs (60 °)" means 60 degree mirror surface gloss Gs (60 °) measured in accordance with JIS Z8741: 1997.
本発明の実施形態に係るフェライト系ステンレス鋼材は、耐食性に優れる。ここで、本明細書において「耐食性に優れる」とは、塩乾湿繰り返し試験(CCT)において塩水噴霧、乾燥及び湿潤を1サイクルとして10サイクル行った際に、発銹面積率が1%以下であることを意味する。
The ferritic stainless steel material according to the embodiment of the present invention has excellent corrosion resistance. Here, "excellent in corrosion resistance" in the present specification means that the rusting area ratio is 1% or less when 10 cycles of salt spraying, drying and wetting are performed as one cycle in the salt-dry-wet repeat test (CCT). Means that.
本発明の実施形態に係るフェライト系ステンレス鋼材は、表面が、以下の(1)及び(2)を満たすことが好ましい。
(1)二乗平均平方根傾斜RΔqが35°以下、好ましくは30°以下、より好ましくは25°以下である。このような範囲に表面の二乗平均平方根傾斜RΔqを制御することにより、フェライト系ステンレス鋼材の光沢を向上させることができる。なお、二乗平均平方根傾斜RΔqの下限値は、例えば3°である。
ここで、本明細書において「二乗平均平方根傾斜RΔq」とは、JIS B0601:2013に準拠して測定される二乗平均平方根傾斜RΔqを意味する。 The surface of the ferritic stainless steel material according to the embodiment of the present invention preferably satisfies the following (1) and (2).
(1) The root mean square slope RΔq is 35 ° or less, preferably 30 ° or less, and more preferably 25 ° or less. By controlling the root mean square slope RΔq of the surface in such a range, the gloss of the ferritic stainless steel material can be improved. The lower limit of the root mean square slope RΔq is, for example, 3 °.
Here, the “root mean square slope RΔq” in the present specification means the root mean square slope RΔq measured in accordance with JIS B0601: 2013.
(1)二乗平均平方根傾斜RΔqが35°以下、好ましくは30°以下、より好ましくは25°以下である。このような範囲に表面の二乗平均平方根傾斜RΔqを制御することにより、フェライト系ステンレス鋼材の光沢を向上させることができる。なお、二乗平均平方根傾斜RΔqの下限値は、例えば3°である。
ここで、本明細書において「二乗平均平方根傾斜RΔq」とは、JIS B0601:2013に準拠して測定される二乗平均平方根傾斜RΔqを意味する。 The surface of the ferritic stainless steel material according to the embodiment of the present invention preferably satisfies the following (1) and (2).
(1) The root mean square slope RΔq is 35 ° or less, preferably 30 ° or less, and more preferably 25 ° or less. By controlling the root mean square slope RΔq of the surface in such a range, the gloss of the ferritic stainless steel material can be improved. The lower limit of the root mean square slope RΔq is, for example, 3 °.
Here, the “root mean square slope RΔq” in the present specification means the root mean square slope RΔq measured in accordance with JIS B0601: 2013.
(2)クロマネティクス指数b*が7.00以下、好ましくは6.00以下、より好ましくは5.00以下である。クロマネティクス指数b*は、L*a*b*色空間における青から黄にかけての色味を示すクロマネティクス指数であり、研磨や電解などで表面に焼け(酸化物)が形成された場合はステンレス鋼材が黄色みを帯びた色合いになることが知られている。クロマネティクス指数b*を上記のような範囲に制御することで、腐食の起点となる酸化物が存在していない良好な耐食性を有するフェライト系ステンレス鋼材を得ることができる。なお、クロマネティクス指数b*の下限値は、例えば2.00である。
ここで、本明細書において「クロマネティクス指数b*」とは、JIS Z8781-6:2017に準拠して測定されるCIEDE2000色差式に用いるCIE-L*a*b*色空間におけるクロマネティクス指数b*を意味する。 (2) The chromanetics index b * is 7.00 or less, preferably 6.00 or less, and more preferably 5.00 or less. The chromatics index b * is a chromatics index that indicates the chromaticity from blue to yellow in the L * a * b * color space, and is made of stainless steel when a burn (oxide) is formed on the surface by polishing or electrolysis. It is known that steel materials have a yellowish tint. By controlling the chromatic index b * within the above range, it is possible to obtain a ferritic stainless steel material having good corrosion resistance in which an oxide that is a starting point of corrosion does not exist. The lower limit of the chromatics index b * is, for example, 2.00.
Here, the “ chromanetics index b * ” as used herein means the CIE-L * a * b * chromanetics index b in the color space used in the CIEDE2000 color difference formula measured in accordance with JIS Z8781-6: 2017. * Means.
ここで、本明細書において「クロマネティクス指数b*」とは、JIS Z8781-6:2017に準拠して測定されるCIEDE2000色差式に用いるCIE-L*a*b*色空間におけるクロマネティクス指数b*を意味する。 (2) The chromanetics index b * is 7.00 or less, preferably 6.00 or less, and more preferably 5.00 or less. The chromatics index b * is a chromatics index that indicates the chromaticity from blue to yellow in the L * a * b * color space, and is made of stainless steel when a burn (oxide) is formed on the surface by polishing or electrolysis. It is known that steel materials have a yellowish tint. By controlling the chromatic index b * within the above range, it is possible to obtain a ferritic stainless steel material having good corrosion resistance in which an oxide that is a starting point of corrosion does not exist. The lower limit of the chromatics index b * is, for example, 2.00.
Here, the “ chromanetics index b * ” as used herein means the CIE-L * a * b * chromanetics index b in the color space used in the CIEDE2000 color difference formula measured in accordance with JIS Z8781-6: 2017. * Means.
本発明の実施形態に係るフェライト系ステンレス鋼材は、表面が、以下の(3)を更に満たしてもよい。
(3)テクスチャのアスペクト比Strが0.50以上、好ましくは0.60以上、より好ましくは0.70以上である。このような範囲にテクスチャのアスペクト比Strを制御することにより、筋目模様がない良好な外観を有するフェライト系ステンレス鋼材を得ることができる。なお、テクスチャのアスペクト比Strの上限値は、その定義から1となるが、例えば0.95程度である。
ここで、本明細書において「テクスチャのアスペクト比Str」とは、JIS B0681-2:2018に準拠して測定されるテクスチャのアスペクト比Strを意味する。 The surface of the ferritic stainless steel material according to the embodiment of the present invention may further satisfy the following (3).
(3) The aspect ratio Str of the texture is 0.50 or more, preferably 0.60 or more, and more preferably 0.70 or more. By controlling the aspect ratio Str of the texture in such a range, it is possible to obtain a ferritic stainless steel material having a good appearance without streaks. The upper limit of the aspect ratio Str of the texture is 1 from the definition, but is, for example, about 0.95.
Here, the “texture aspect ratio Str” as used herein means the texture aspect ratio Str measured in accordance with JIS B0661-2: 2018.
(3)テクスチャのアスペクト比Strが0.50以上、好ましくは0.60以上、より好ましくは0.70以上である。このような範囲にテクスチャのアスペクト比Strを制御することにより、筋目模様がない良好な外観を有するフェライト系ステンレス鋼材を得ることができる。なお、テクスチャのアスペクト比Strの上限値は、その定義から1となるが、例えば0.95程度である。
ここで、本明細書において「テクスチャのアスペクト比Str」とは、JIS B0681-2:2018に準拠して測定されるテクスチャのアスペクト比Strを意味する。 The surface of the ferritic stainless steel material according to the embodiment of the present invention may further satisfy the following (3).
(3) The aspect ratio Str of the texture is 0.50 or more, preferably 0.60 or more, and more preferably 0.70 or more. By controlling the aspect ratio Str of the texture in such a range, it is possible to obtain a ferritic stainless steel material having a good appearance without streaks. The upper limit of the aspect ratio Str of the texture is 1 from the definition, but is, for example, about 0.95.
Here, the “texture aspect ratio Str” as used herein means the texture aspect ratio Str measured in accordance with JIS B0661-2: 2018.
本発明の実施形態に係るフェライト系ステンレス鋼材の厚さ(板厚)は、特に限定されないが、3mm以上であることが好ましい。
The thickness (plate thickness) of the ferritic stainless steel material according to the embodiment of the present invention is not particularly limited, but is preferably 3 mm or more.
本発明の実施形態に係るフェライト系ステンレス鋼材は、上記の組成を有するステンレス鋼を溶製して用いるとともに、デスケール工程として、レーザを用いたデスケール(以下、「レーザデスケール」と称する)工程及び酸洗によるデスケール(以下、「酸洗デスケール」と称する)工程を採用すること以外は、当該技術分野において公知の方法を用いることによって製造することができる。具体的には、上記の組成を有するステンレス鋼を溶製し、鍛造又は鋳造により鋼片を製造する。その後、鋼片を熱間圧延し、次いでレーザデスケール工程、次いで酸洗デスケール工程を実施すればよい。なお、レーザデスケール工程の前には、焼鈍を適宜実施してもよい。
The ferrite-based stainless steel material according to the embodiment of the present invention is used by melting stainless steel having the above composition, and as a descaling step, a descaling step using a laser (hereinafter referred to as “laser descaling”) and an acid. It can be produced by using a method known in the art, except that the step of descaling by washing (hereinafter referred to as “pickling descaling”) is adopted. Specifically, stainless steel having the above composition is melted and forged or cast to produce steel pieces. After that, the steel pieces may be hot-rolled, and then a laser descaling step and then a pickling descaling step may be carried out. Annealing may be appropriately performed before the laser descaling step.
レーザデスケール工程は、フェライト系ステンレス鋼材の表面に形成された酸化スケールに対してレーザ光を照射することにより、酸化スケールを蒸散させて除去する工程である。
レーザデスケール工程の各種条件は、使用する装置に応じて、以下の事項を考慮して調整すればよい。 The laser descaling step is a step of evaporating and removing the oxide scale by irradiating the oxide scale formed on the surface of the ferritic stainless steel material with a laser beam.
Various conditions of the laser descaling process may be adjusted in consideration of the following items according to the apparatus to be used.
レーザデスケール工程の各種条件は、使用する装置に応じて、以下の事項を考慮して調整すればよい。 The laser descaling step is a step of evaporating and removing the oxide scale by irradiating the oxide scale formed on the surface of the ferritic stainless steel material with a laser beam.
Various conditions of the laser descaling process may be adjusted in consideration of the following items according to the apparatus to be used.
(レーザの種類)
連続波レーザだと入熱が大きすぎて母材(フェライト系ステンレス鋼材)の溶解が起こり易いため、パルスレーザが好ましい。
(波長)
一般に物質の光に対する反射率は波長依存性を有し、反射率が低い波長を選択すると入熱が大きくなり、蒸散が生じ易くなる。そのため、母材の反射率が高く、酸化物の反射率が低い波長を選択することで酸化スケールを選択的に蒸散除去することができる。
(パルス幅)
パルス幅が短いとレーザによる入熱が周囲に伝達される前にアブレーションが生じるため、アブレーション閾値が小さくなる。ただし、パルス幅は主に発振器の性能で決定され、短いパルス幅で発振可能な装置は高額であるため、レーザデスケール設備の仕様範囲内で、短いパルス幅を選択することが好ましい。
(発振周波数)
パルス幅が短いほど発振周波数が高くなり、発振周波数が高いほどスキャンした際のパルス間の空隙を小さくできるため、レーザデスケール設備の仕様範囲内で、高い発振周波数を選択することが好ましい。 (Type of laser)
A continuous wave laser is preferable because the heat input is too large and the base material (ferritic stainless steel material) is likely to melt.
(wavelength)
In general, the reflectance of a substance to light has a wavelength dependence, and if a wavelength having a low reflectance is selected, heat input increases and transpiration is likely to occur. Therefore, the oxidation scale can be selectively transpired and removed by selecting a wavelength having a high reflectance of the base material and a low reflectance of the oxide.
(pulse width)
If the pulse width is short, ablation occurs before the heat input by the laser is transmitted to the surroundings, so that the ablation threshold becomes small. However, the pulse width is mainly determined by the performance of the oscillator, and a device capable of oscillating with a short pulse width is expensive. Therefore, it is preferable to select a short pulse width within the specification range of the laser descale equipment.
(Oscillation frequency)
The shorter the pulse width, the higher the oscillation frequency, and the higher the oscillation frequency, the smaller the gap between the pulses when scanning can be made. Therefore, it is preferable to select a high oscillation frequency within the specification range of the laser descale equipment.
連続波レーザだと入熱が大きすぎて母材(フェライト系ステンレス鋼材)の溶解が起こり易いため、パルスレーザが好ましい。
(波長)
一般に物質の光に対する反射率は波長依存性を有し、反射率が低い波長を選択すると入熱が大きくなり、蒸散が生じ易くなる。そのため、母材の反射率が高く、酸化物の反射率が低い波長を選択することで酸化スケールを選択的に蒸散除去することができる。
(パルス幅)
パルス幅が短いとレーザによる入熱が周囲に伝達される前にアブレーションが生じるため、アブレーション閾値が小さくなる。ただし、パルス幅は主に発振器の性能で決定され、短いパルス幅で発振可能な装置は高額であるため、レーザデスケール設備の仕様範囲内で、短いパルス幅を選択することが好ましい。
(発振周波数)
パルス幅が短いほど発振周波数が高くなり、発振周波数が高いほどスキャンした際のパルス間の空隙を小さくできるため、レーザデスケール設備の仕様範囲内で、高い発振周波数を選択することが好ましい。 (Type of laser)
A continuous wave laser is preferable because the heat input is too large and the base material (ferritic stainless steel material) is likely to melt.
(wavelength)
In general, the reflectance of a substance to light has a wavelength dependence, and if a wavelength having a low reflectance is selected, heat input increases and transpiration is likely to occur. Therefore, the oxidation scale can be selectively transpired and removed by selecting a wavelength having a high reflectance of the base material and a low reflectance of the oxide.
(pulse width)
If the pulse width is short, ablation occurs before the heat input by the laser is transmitted to the surroundings, so that the ablation threshold becomes small. However, the pulse width is mainly determined by the performance of the oscillator, and a device capable of oscillating with a short pulse width is expensive. Therefore, it is preferable to select a short pulse width within the specification range of the laser descale equipment.
(Oscillation frequency)
The shorter the pulse width, the higher the oscillation frequency, and the higher the oscillation frequency, the smaller the gap between the pulses when scanning can be made. Therefore, it is preferable to select a high oscillation frequency within the specification range of the laser descale equipment.
(スキャン周波数)
スキャン周波数が高いほどラインの処理速度が速くなるが、高くしすぎるとパルス間の空隙が生じてデスケール率が低下する。そのため、デスケール率を維持できる範囲でスキャン周波数を高くすることが好ましい。
(レーザのビーム径)
大きいほど照射範囲、すなわち一回のパルスでデスケールできる範囲が広くなり、デスケール効率がよくなるが、パルス一回のエネルギー密度(フルエンス)が低くなる。スケールを蒸散除去できるフルエンスを維持した範囲でビーム径を大きくすることが好ましい。
(フルエンス)
スケールを構成する酸化物のアブレーション閾値を超えるフルエンスを有するレーザ光を照射することで、酸化スケールを蒸散除去できるが、フルエンスを高くしすぎるとスケールだけでなく母材も蒸散除去されるため、母材損傷が大きくなってしまう。従って、デスケール率と母材損傷とを考慮してフルエンスを調整すればよい。 (Scan frequency)
The higher the scan frequency, the faster the line processing speed, but if it is too high, gaps between pulses will occur and the descale rate will decrease. Therefore, it is preferable to increase the scan frequency within a range in which the descale rate can be maintained.
(Laser beam diameter)
The larger the value, the wider the irradiation range, that is, the range that can be descaled by one pulse, and the descale efficiency is improved, but the energy density (fluence) of one pulse is lowered. It is preferable to increase the beam diameter within a range in which the fluence capable of transpiration removal of the scale is maintained.
(Fruence)
Oxidation scale can be evaporated and removed by irradiating a laser beam with fluence exceeding the ablation threshold of the oxides constituting the scale, but if the fluence is set too high, not only the scale but also the base metal is evaporated and removed. Material damage will increase. Therefore, the fluence may be adjusted in consideration of the descale rate and the damage to the base metal.
スキャン周波数が高いほどラインの処理速度が速くなるが、高くしすぎるとパルス間の空隙が生じてデスケール率が低下する。そのため、デスケール率を維持できる範囲でスキャン周波数を高くすることが好ましい。
(レーザのビーム径)
大きいほど照射範囲、すなわち一回のパルスでデスケールできる範囲が広くなり、デスケール効率がよくなるが、パルス一回のエネルギー密度(フルエンス)が低くなる。スケールを蒸散除去できるフルエンスを維持した範囲でビーム径を大きくすることが好ましい。
(フルエンス)
スケールを構成する酸化物のアブレーション閾値を超えるフルエンスを有するレーザ光を照射することで、酸化スケールを蒸散除去できるが、フルエンスを高くしすぎるとスケールだけでなく母材も蒸散除去されるため、母材損傷が大きくなってしまう。従って、デスケール率と母材損傷とを考慮してフルエンスを調整すればよい。 (Scan frequency)
The higher the scan frequency, the faster the line processing speed, but if it is too high, gaps between pulses will occur and the descale rate will decrease. Therefore, it is preferable to increase the scan frequency within a range in which the descale rate can be maintained.
(Laser beam diameter)
The larger the value, the wider the irradiation range, that is, the range that can be descaled by one pulse, and the descale efficiency is improved, but the energy density (fluence) of one pulse is lowered. It is preferable to increase the beam diameter within a range in which the fluence capable of transpiration removal of the scale is maintained.
(Fruence)
Oxidation scale can be evaporated and removed by irradiating a laser beam with fluence exceeding the ablation threshold of the oxides constituting the scale, but if the fluence is set too high, not only the scale but also the base metal is evaporated and removed. Material damage will increase. Therefore, the fluence may be adjusted in consideration of the descale rate and the damage to the base metal.
酸洗デスケール工程は、レーザデスケール工程を行ったフェライト系ステンレス鋼材を酸洗浴に浸漬することにより、レーザデスケール工程で除去しきれなかった酸化スケールを洗い落とす工程である。酸洗浴に用いられる酸洗液としては、特に限定されないが、硝酸(HNO3)、硫酸(H2SO4)、フッ酸(HF)、塩化第二鉄(FeCl3)などの成分を1種以上含む溶液を用いることができる。典型的な酸洗液は、硝酸とフッ酸との混合液である。
The pickling descaling step is a step of immersing the ferritic stainless steel material that has undergone the laser descaling step in a pickling bath to wash off the oxide scale that could not be completely removed by the laser descaling step. The pickling solution used in the pickling bath is not particularly limited, but includes one component such as nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), hydrofluoric acid (HF), and ferric chloride (FeCl 3). A solution containing the above can be used. A typical pickling solution is a mixture of nitric acid and hydrofluoric acid.
ここで、表面状態の違いを示す参考として、(1)レーザデスケール工程及び酸洗デスケール工程を実施して製造されたステンレス鋼板の表面、(2)ショットブラスト処理による前処理を行った後に酸洗デスケール工程を行って製造されたステンレス鋼板の表面、及び(3)ショットブラスト処理による前処理を行った後に酸洗デスケール工程を行い、次いでベルト研磨を行って製造されたステンレス鋼板の表面のSEM写真又はレーザ顕微鏡写真を、それぞれ図1、図2及び図3に示す。
図1は、上記(1)の表面の(a)100倍及び(b)1000倍のSEM写真である。図1に示されるように、このステンレス鋼板は、パルスレーザによるパルス痕が表面にみられるものの、平滑部が多い表面構造を有している。そのため、表面粗さパラメータ(算術平均粗さRaなど)や60度鏡面光沢Gs(60°)などを上記の範囲に制御することが可能になる。 Here, as a reference showing the difference in surface condition, (1) the surface of the stainless steel plate manufactured by performing the laser descaling step and the pickling descaling step, and (2) pickling after performing the pretreatment by the shot blasting treatment. SEM photograph of the surface of the stainless steel plate manufactured by performing the descaling process and (3) the surface of the stainless steel plate manufactured by performing the pickling descaling process after pretreatment by shot blasting and then belt polishing. Alternatively, laser micrographs are shown in FIGS. 1, 2 and 3, respectively.
FIG. 1 is an SEM photograph of (a) 100 times and (b) 1000 times the surface of the above (1). As shown in FIG. 1, this stainless steel sheet has a surface structure having many smooth portions, although pulse marks due to a pulse laser are seen on the surface. Therefore, it is possible to control the surface roughness parameter (arithmetic mean roughness Ra, etc.), 60 degree mirror surface gloss Gs (60 °, etc.) within the above range.
図1は、上記(1)の表面の(a)100倍及び(b)1000倍のSEM写真である。図1に示されるように、このステンレス鋼板は、パルスレーザによるパルス痕が表面にみられるものの、平滑部が多い表面構造を有している。そのため、表面粗さパラメータ(算術平均粗さRaなど)や60度鏡面光沢Gs(60°)などを上記の範囲に制御することが可能になる。 Here, as a reference showing the difference in surface condition, (1) the surface of the stainless steel plate manufactured by performing the laser descaling step and the pickling descaling step, and (2) pickling after performing the pretreatment by the shot blasting treatment. SEM photograph of the surface of the stainless steel plate manufactured by performing the descaling process and (3) the surface of the stainless steel plate manufactured by performing the pickling descaling process after pretreatment by shot blasting and then belt polishing. Alternatively, laser micrographs are shown in FIGS. 1, 2 and 3, respectively.
FIG. 1 is an SEM photograph of (a) 100 times and (b) 1000 times the surface of the above (1). As shown in FIG. 1, this stainless steel sheet has a surface structure having many smooth portions, although pulse marks due to a pulse laser are seen on the surface. Therefore, it is possible to control the surface roughness parameter (arithmetic mean roughness Ra, etc.), 60 degree mirror surface gloss Gs (60 °, etc.) within the above range.
図2は、上記(2)の表面のレーザ顕微鏡写真(50倍)である。図2に示されるように、このステンレス鋼板は、ショットブラスト処理による打撃痕及び酸洗による溶解の痕が入り混じったような粗い表面構造を有している。そのため、算術平均粗さRaや二乗平均平方根傾斜RΔqが大きく、また60度鏡面光沢Gs(60°)が小さくなる傾向にある。
図3は、上記(3)の表面のレーザ顕微鏡写真(50倍)である。図3に示されるように、このステンレス鋼板は、ベルト研磨による筋目模様を有する表面構造を有している。そのため、テクスチャのアスペクト比Strが小さくなる傾向にある。 FIG. 2 is a laser micrograph (50 times) of the surface of the above (2). As shown in FIG. 2, this stainless steel sheet has a rough surface structure in which impact marks due to shot blasting treatment and dissolution marks due to pickling are mixed. Therefore, the arithmetic mean roughness Ra and the root mean square slope RΔq tend to be large, and the 60-degree mirror surface gloss Gs (60 °) tends to be small.
FIG. 3 is a laser micrograph (50 times) of the surface of the above (3). As shown in FIG. 3, this stainless steel sheet has a surface structure having a streak pattern by belt polishing. Therefore, the aspect ratio Str of the texture tends to be small.
図3は、上記(3)の表面のレーザ顕微鏡写真(50倍)である。図3に示されるように、このステンレス鋼板は、ベルト研磨による筋目模様を有する表面構造を有している。そのため、テクスチャのアスペクト比Strが小さくなる傾向にある。 FIG. 2 is a laser micrograph (50 times) of the surface of the above (2). As shown in FIG. 2, this stainless steel sheet has a rough surface structure in which impact marks due to shot blasting treatment and dissolution marks due to pickling are mixed. Therefore, the arithmetic mean roughness Ra and the root mean square slope RΔq tend to be large, and the 60-degree mirror surface gloss Gs (60 °) tends to be small.
FIG. 3 is a laser micrograph (50 times) of the surface of the above (3). As shown in FIG. 3, this stainless steel sheet has a surface structure having a streak pattern by belt polishing. Therefore, the aspect ratio Str of the texture tends to be small.
上記の特徴を有する本発明の実施形態に係るフェライト系ステンレス鋼材は、耐食性に優れるため、耐食性部材として用いることができる。特に、このフェライト系ステンレス鋼材は、平滑で光沢のある表面を有し、意匠性に優れているため、意匠性が要求される耐食性部材に用いるのに好適である。
The ferrite-based stainless steel material according to the embodiment of the present invention having the above-mentioned characteristics is excellent in corrosion resistance, and therefore can be used as a corrosion-resistant member. In particular, this ferritic stainless steel material has a smooth and glossy surface and is excellent in designability, and is therefore suitable for use in corrosion-resistant members that require designability.
以下に、実施例を挙げて本発明の内容を詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
Hereinafter, the contents of the present invention will be described in detail with reference to examples, but the present invention is not limited to these.
表1に示す鋼種A~Jの組成(残部はFe及び不純物である)を有するステンレス鋼30kgを真空溶解で溶製し、厚さ30mmの鋼片に鍛造した後、1230℃で2時間加熱し、厚さ3mmに熱間圧延して熱延鋼板(フェライト系ステンレス鋼板)を得た。熱延鋼板は、切削加工によって50mm(圧延方向)×50mm(幅方向)に切り出し、以下の各実施例及び各比較例に用いた。
30 kg of stainless steel having the composition of steel grades A to J shown in Table 1 (the balance is Fe and impurities) is melted by vacuum melting, forged into a steel piece having a thickness of 30 mm, and then heated at 1230 ° C. for 2 hours. , Hot-rolled to a thickness of 3 mm to obtain a hot-rolled steel sheet (ferrite-based stainless steel sheet). The hot-rolled steel sheet was cut into 50 mm (rolling direction) × 50 mm (width direction) by cutting, and used in each of the following Examples and Comparative Examples.
(実施例1)
鋼種Aの組成を有する熱延鋼板に対して、レーザデスケール工程及び酸洗デスケール工程を順次実施した。
レーザデスケール工程は、市販の装置(株式会社IHI検査計測製LaserClear50A)を用いて行った。この装置の可動ステージに熱延鋼板を設置し、圧延方向に沿って0.2m/分で移動させつつ、熱延鋼板の上方から板幅方向に一定速度でスキャンしてパルスレーザを1回照射した。1回あたりのスキャン幅は25mmとした。パルスレーザの照射条件は以下の通りとした。
波長:1085nm
パルス幅:100ns
発振周波数:120kHz
スキャン周波数:100Hz
レーザのビーム径:90μm
フルエンス:6J/cm2
酸洗デスケールは、フッ酸30g/L及び硝酸60g/Lを含むフッ硝酸水溶液を恒温槽で60℃に保持し、熱延鋼板を90秒浸漬させた後、直ぐに流水で水洗して自然乾燥させることによって行った。 (Example 1)
A laser descaling step and a pickling descaling step were sequentially carried out on the hot-rolled steel sheet having the composition of steel type A.
The laser descaling step was performed using a commercially available device (LaserClear 50A manufactured by IHI Corporation). A hot-rolled steel sheet is installed on the movable stage of this device, and while moving at 0.2 m / min along the rolling direction, it is scanned from above the hot-rolled steel sheet at a constant speed in the plate width direction and irradiated with a pulse laser once. bottom. The scan width per scan was 25 mm. The irradiation conditions of the pulse laser were as follows.
Wavelength: 1085 nm
Pulse width: 100ns
Oscillation frequency: 120kHz
Scan frequency: 100Hz
Laser beam diameter: 90 μm
Fluence: 6J / cm 2
For pickling descale, an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid is kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet is immersed for 90 seconds, and then immediately washed with running water and air-dried. I went by that.
鋼種Aの組成を有する熱延鋼板に対して、レーザデスケール工程及び酸洗デスケール工程を順次実施した。
レーザデスケール工程は、市販の装置(株式会社IHI検査計測製LaserClear50A)を用いて行った。この装置の可動ステージに熱延鋼板を設置し、圧延方向に沿って0.2m/分で移動させつつ、熱延鋼板の上方から板幅方向に一定速度でスキャンしてパルスレーザを1回照射した。1回あたりのスキャン幅は25mmとした。パルスレーザの照射条件は以下の通りとした。
波長:1085nm
パルス幅:100ns
発振周波数:120kHz
スキャン周波数:100Hz
レーザのビーム径:90μm
フルエンス:6J/cm2
酸洗デスケールは、フッ酸30g/L及び硝酸60g/Lを含むフッ硝酸水溶液を恒温槽で60℃に保持し、熱延鋼板を90秒浸漬させた後、直ぐに流水で水洗して自然乾燥させることによって行った。 (Example 1)
A laser descaling step and a pickling descaling step were sequentially carried out on the hot-rolled steel sheet having the composition of steel type A.
The laser descaling step was performed using a commercially available device (LaserClear 50A manufactured by IHI Corporation). A hot-rolled steel sheet is installed on the movable stage of this device, and while moving at 0.2 m / min along the rolling direction, it is scanned from above the hot-rolled steel sheet at a constant speed in the plate width direction and irradiated with a pulse laser once. bottom. The scan width per scan was 25 mm. The irradiation conditions of the pulse laser were as follows.
Wavelength: 1085 nm
Pulse width: 100ns
Oscillation frequency: 120kHz
Scan frequency: 100Hz
Laser beam diameter: 90 μm
Fluence: 6J / cm 2
For pickling descale, an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid is kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet is immersed for 90 seconds, and then immediately washed with running water and air-dried. I went by that.
(実施例2~5)
表2に示す鋼種の組成を有する熱延鋼板を用いたこと、及びレーザデスケール工程におけるパルスレーザのフルエンスを7J/cm2としたこと以外は実施例1と同様にした。 (Examples 2 to 5)
The same procedure as in Example 1 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
表2に示す鋼種の組成を有する熱延鋼板を用いたこと、及びレーザデスケール工程におけるパルスレーザのフルエンスを7J/cm2としたこと以外は実施例1と同様にした。 (Examples 2 to 5)
The same procedure as in Example 1 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
(実施例6)
鋼種Fの組成を有する熱延鋼板を用いたこと、並びにフッ酸45g/L及び硝酸145g/Lを含むフッ硝酸水溶液を恒温槽で50℃に保持し、熱延鋼板を230秒浸漬させた後、直ぐに流水で水洗して自然乾燥させることによって酸洗デスケールを行ったこと以外は実施例1と同様にした。 (Example 6)
After using a hot-rolled steel sheet having the composition of steel type F, and holding a hydrofluoric acid aqueous solution containing 45 g / L of hydrofluoric acid and 145 g / L of nitric acid at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 230 seconds. The same procedure as in Example 1 was carried out except that the pickling descale was immediately washed with running water and naturally dried.
鋼種Fの組成を有する熱延鋼板を用いたこと、並びにフッ酸45g/L及び硝酸145g/Lを含むフッ硝酸水溶液を恒温槽で50℃に保持し、熱延鋼板を230秒浸漬させた後、直ぐに流水で水洗して自然乾燥させることによって酸洗デスケールを行ったこと以外は実施例1と同様にした。 (Example 6)
After using a hot-rolled steel sheet having the composition of steel type F, and holding a hydrofluoric acid aqueous solution containing 45 g / L of hydrofluoric acid and 145 g / L of nitric acid at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 230 seconds. The same procedure as in Example 1 was carried out except that the pickling descale was immediately washed with running water and naturally dried.
(実施例7~10)
表2に示す鋼種の組成を有する熱延鋼板を用いたこと、及びレーザデスケール工程におけるパルスレーザのフルエンスを7J/cm2としたこと以外は実施例6と同様にした。 (Examples 7 to 10)
The same procedure as in Example 6 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
表2に示す鋼種の組成を有する熱延鋼板を用いたこと、及びレーザデスケール工程におけるパルスレーザのフルエンスを7J/cm2としたこと以外は実施例6と同様にした。 (Examples 7 to 10)
The same procedure as in Example 6 was carried out except that a hot-rolled steel sheet having the composition of the steel type shown in Table 2 was used and the fluence of the pulse laser in the laser descaling step was set to 7 J / cm 2.
(比較例1)
鋼種Aの組成を有する熱延鋼板に対して、スケールブレーカーによる曲げ半径が50mmの曲げ及び曲げ戻し処理、並びにスチールショット(SB-5)を用いたショットブラスト処理による前処理を行った後、酸洗デスケール工程を実施した。
酸洗デスケール工程は、次のようにして実施した。まず、フッ酸50g/L及び硝酸150g/Lを含むフッ硝酸水溶液を恒温槽で50℃に保持し、熱延鋼板を240秒浸漬させた後、直ぐに流水で水洗して自然乾燥させた。次に、フッ酸30g/L及び硝酸60g/Lを含むフッ硝酸水溶液を恒温槽で60℃に保持し、熱延鋼板を90秒浸漬させた後、直ぐに流水で水洗して自然乾燥させた。 (Comparative Example 1)
A hot-rolled steel sheet having the composition of steel type A is subjected to bending and unbending treatment with a bending radius of 50 mm by a scale breaker, and pretreatment by shot blasting using steel shot (SB-5), and then acid. A washing descale process was carried out.
The pickling descaling step was carried out as follows. First, an aqueous solution of hydrofluoric acid containing 50 g / L of hydrofluoric acid and 150 g / L of nitric acid was kept at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 240 seconds, and then immediately washed with running water and air-dried. Next, an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid was kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 90 seconds, and then immediately washed with running water and air-dried.
鋼種Aの組成を有する熱延鋼板に対して、スケールブレーカーによる曲げ半径が50mmの曲げ及び曲げ戻し処理、並びにスチールショット(SB-5)を用いたショットブラスト処理による前処理を行った後、酸洗デスケール工程を実施した。
酸洗デスケール工程は、次のようにして実施した。まず、フッ酸50g/L及び硝酸150g/Lを含むフッ硝酸水溶液を恒温槽で50℃に保持し、熱延鋼板を240秒浸漬させた後、直ぐに流水で水洗して自然乾燥させた。次に、フッ酸30g/L及び硝酸60g/Lを含むフッ硝酸水溶液を恒温槽で60℃に保持し、熱延鋼板を90秒浸漬させた後、直ぐに流水で水洗して自然乾燥させた。 (Comparative Example 1)
A hot-rolled steel sheet having the composition of steel type A is subjected to bending and unbending treatment with a bending radius of 50 mm by a scale breaker, and pretreatment by shot blasting using steel shot (SB-5), and then acid. A washing descale process was carried out.
The pickling descaling step was carried out as follows. First, an aqueous solution of hydrofluoric acid containing 50 g / L of hydrofluoric acid and 150 g / L of nitric acid was kept at 50 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 240 seconds, and then immediately washed with running water and air-dried. Next, an aqueous solution of hydrofluoric acid containing 30 g / L of hydrofluoric acid and 60 g / L of nitric acid was kept at 60 ° C. in a constant temperature bath, the hot-rolled steel sheet was immersed for 90 seconds, and then immediately washed with running water and air-dried.
(比較例2)
比較例1で得られた酸洗デスケール工程後の熱延鋼板に対して、SiC研磨紙(番手#400)及び水溶性研削油を用いたベルト研磨を行った。研削深さは、表面から20μmの深さとした。 (Comparative Example 2)
The hot-rolled steel sheet after the pickling descaling step obtained in Comparative Example 1 was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 μm from the surface.
比較例1で得られた酸洗デスケール工程後の熱延鋼板に対して、SiC研磨紙(番手#400)及び水溶性研削油を用いたベルト研磨を行った。研削深さは、表面から20μmの深さとした。 (Comparative Example 2)
The hot-rolled steel sheet after the pickling descaling step obtained in Comparative Example 1 was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 μm from the surface.
(比較例3)
鋼種Fの組成を有する熱延鋼板を用いたこと以外は比較例1と同様にした。 (Comparative Example 3)
The same procedure as in Comparative Example 1 was carried out except that a hot-rolled steel sheet having a composition of steel type F was used.
鋼種Fの組成を有する熱延鋼板を用いたこと以外は比較例1と同様にした。 (Comparative Example 3)
The same procedure as in Comparative Example 1 was carried out except that a hot-rolled steel sheet having a composition of steel type F was used.
(比較例4)
比較例3で得られた酸洗デスケール工程後の熱延鋼板に対して、SiC研磨紙(番手#400)及び水溶性研削油を用いたベルト研磨を行った。研削深さは、表面から20μmの深さとした。 (Comparative Example 4)
The hot-rolled steel sheet obtained in Comparative Example 3 after the pickling descaling step was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 μm from the surface.
比較例3で得られた酸洗デスケール工程後の熱延鋼板に対して、SiC研磨紙(番手#400)及び水溶性研削油を用いたベルト研磨を行った。研削深さは、表面から20μmの深さとした。 (Comparative Example 4)
The hot-rolled steel sheet obtained in Comparative Example 3 after the pickling descaling step was subjected to belt polishing using SiC abrasive paper (count # 400) and water-soluble grinding oil. The grinding depth was 20 μm from the surface.
上記の実施例及び比較例で得られた熱延鋼板に対して以下の評価を行った。
The following evaluations were performed on the hot-rolled steel sheets obtained in the above Examples and Comparative Examples.
(表面粗さ測定)
デスケール工程を実施した上記の熱延鋼板の表面について、JIS B0601:2013に準拠し、接触式の表面粗さ計(株式会社東京精密製サーフコム2800)を用いて算術平均粗さRa及び二乗平均平方根傾斜RΔqを測定した。算術平均粗さRaの測定では、基準長さを4mmとした。
同様に、デスケール工程を実施した上記の熱延鋼板の表面について、JIS B0681-2:2018に準拠し、3D測定レーザ顕微鏡(オリンパス株式会社製LEXT OLS4100)を用いてテクスチャのアスペクト比Strを測定した。測定時の観察倍率は50倍とし、測定範囲は3mm×3mmとした。
算術平均粗さRa、二乗平均平方根傾斜RΔq及びテクスチャのアスペクト比Strは、端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果とした。なお、各測定位置の間は5mm以上離した。 (Measurement of surface roughness)
Arithmetic mean roughness Ra and root mean square root of the surface of the above hot-rolled steel plate subjected to the descale process using a contact-type surface roughness meter (Surfcom 2800 manufactured by Tokyo Precision Co., Ltd.) in accordance with JIS B0601: 2013. The slope RΔq was measured. In the measurement of the arithmetic mean roughness Ra, the reference length was set to 4 mm.
Similarly, on the surface of the above-mentioned hot-rolled steel sheet subjected to the descaling step, the aspect ratio Str of the texture was measured using a 3D measuring laser microscope (LEXT OLS4100 manufactured by Olympus Corporation) in accordance with JIS B0681-2: 2018. .. The observation magnification at the time of measurement was 50 times, and the measurement range was 3 mm × 3 mm.
The arithmetic mean roughness Ra, the root mean square slope RΔq, and the aspect ratio Str of the texture were measured at five points excluding the range from the end to 5 mm, and the average value was used as the evaluation result. The distance between the measurement positions was 5 mm or more.
デスケール工程を実施した上記の熱延鋼板の表面について、JIS B0601:2013に準拠し、接触式の表面粗さ計(株式会社東京精密製サーフコム2800)を用いて算術平均粗さRa及び二乗平均平方根傾斜RΔqを測定した。算術平均粗さRaの測定では、基準長さを4mmとした。
同様に、デスケール工程を実施した上記の熱延鋼板の表面について、JIS B0681-2:2018に準拠し、3D測定レーザ顕微鏡(オリンパス株式会社製LEXT OLS4100)を用いてテクスチャのアスペクト比Strを測定した。測定時の観察倍率は50倍とし、測定範囲は3mm×3mmとした。
算術平均粗さRa、二乗平均平方根傾斜RΔq及びテクスチャのアスペクト比Strは、端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果とした。なお、各測定位置の間は5mm以上離した。 (Measurement of surface roughness)
Arithmetic mean roughness Ra and root mean square root of the surface of the above hot-rolled steel plate subjected to the descale process using a contact-type surface roughness meter (Surfcom 2800 manufactured by Tokyo Precision Co., Ltd.) in accordance with JIS B0601: 2013. The slope RΔq was measured. In the measurement of the arithmetic mean roughness Ra, the reference length was set to 4 mm.
Similarly, on the surface of the above-mentioned hot-rolled steel sheet subjected to the descaling step, the aspect ratio Str of the texture was measured using a 3D measuring laser microscope (LEXT OLS4100 manufactured by Olympus Corporation) in accordance with JIS B0681-2: 2018. .. The observation magnification at the time of measurement was 50 times, and the measurement range was 3 mm × 3 mm.
The arithmetic mean roughness Ra, the root mean square slope RΔq, and the aspect ratio Str of the texture were measured at five points excluding the range from the end to 5 mm, and the average value was used as the evaluation result. The distance between the measurement positions was 5 mm or more.
(光沢度測定)
デスケール工程を実施した上記の熱延鋼板の表面について、JIS Z8741:1997に準拠し、光沢度計(日本電色工業株式会社製PG-1M)を用いて60度鏡面光沢Gs(60°)を測定した。60度鏡面光沢Gs(60°)は、端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果とした。なお、各測定位置の間は5mm以上離した。 (Gloss measurement)
For the surface of the above hot-rolled steel sheet that has undergone the descale process, 60 degree mirror gloss Gs (60 °) was measured using a gloss meter (PG-1M manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS Z8741: 1997. It was measured. The 60-degree mirror gloss Gs (60 °) was measured at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result. The distance between the measurement positions was 5 mm or more.
デスケール工程を実施した上記の熱延鋼板の表面について、JIS Z8741:1997に準拠し、光沢度計(日本電色工業株式会社製PG-1M)を用いて60度鏡面光沢Gs(60°)を測定した。60度鏡面光沢Gs(60°)は、端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果とした。なお、各測定位置の間は5mm以上離した。 (Gloss measurement)
For the surface of the above hot-rolled steel sheet that has undergone the descale process, 60 degree mirror gloss Gs (60 °) was measured using a gloss meter (PG-1M manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS Z8741: 1997. It was measured. The 60-degree mirror gloss Gs (60 °) was measured at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result. The distance between the measurement positions was 5 mm or more.
(クロマネティクス指数b*)
デスケール工程を実施した上記の熱延鋼板の表面について、JIS Z 8722:2009に準拠し、分光測色計(コニカミノルタ株式会社製CM-700d)を用いてクロマネティクス指数b*を測定した。測定の幾何条件はc(di:8°)、測定径は8mmφ、視野は10°とし、照明光源としてD65イルミナントを用いた。端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果として用いた。 (Chromanetic index b * )
The chromanetics index b * was measured on the surface of the hot-rolled steel sheet subjected to the descaling step using a spectrophotometer (CM-700d manufactured by Konica Minolta Co., Ltd.) in accordance with JIS Z 8722: 2009. The geometric conditions of the measurement were c (di: 8 °), the measurement diameter was 8 mmφ, the field of view was 10 °, and the D65 illuminant was used as the illumination light source. Measurements were performed at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result.
デスケール工程を実施した上記の熱延鋼板の表面について、JIS Z 8722:2009に準拠し、分光測色計(コニカミノルタ株式会社製CM-700d)を用いてクロマネティクス指数b*を測定した。測定の幾何条件はc(di:8°)、測定径は8mmφ、視野は10°とし、照明光源としてD65イルミナントを用いた。端部から5mmまでの範囲を除く5箇所で測定を行い、その平均値を評価結果として用いた。 (Chromanetic index b * )
The chromanetics index b * was measured on the surface of the hot-rolled steel sheet subjected to the descaling step using a spectrophotometer (CM-700d manufactured by Konica Minolta Co., Ltd.) in accordance with JIS Z 8722: 2009. The geometric conditions of the measurement were c (di: 8 °), the measurement diameter was 8 mmφ, the field of view was 10 °, and the D65 illuminant was used as the illumination light source. Measurements were performed at 5 points excluding the range from the end to 5 mm, and the average value was used as the evaluation result.
(耐食性試験)
耐食性試験は、塩水噴霧、乾燥及び湿潤を繰り返す塩乾湿繰り返し試験によって行った。塩乾湿繰り返し試験は、デスケール工程を実施した上記熱延鋼板に対して、5%のNaCl水溶液の噴霧(35℃で15分)、乾燥(相対湿度30%、温度60℃で1時間)、及び湿潤(相対湿度95%、温度50℃で3時間)を1サイクルとして10サイクル行った。その後、熱延鋼板を水洗して乾燥させ、熱延鋼板の発銹面積率を算出した。
発銹面積率の算出は、次のような手順で行った。塩乾湿繰り返し試験後の熱延鋼板の表面を写真撮影し、端面を除いた中央の25mm×25mmの範囲における発銹部分の面積の割合を求めた。発銹部分の面積は、熱延鋼板の表面の写真を画像解析により2値化し、1ピクセルあたりの面積を算出した後、発銹部分のピクセル数をカウントして求めた。発銹面積率は、以下の式によって算出した。
発銹面積率(%)=発銹部分の面積(mm2)/観察部全体の面積(625mm2)×100
この評価において、発銹面積率が1%以下のものを「○」(耐食性が良好)、1%を超えるものを「×」(耐食性が不良)とした。
上記の各評価結果を表2に示す。 (Corrosion resistance test)
The corrosion resistance test was carried out by a repeated salt-dry-wet test in which salt spraying, drying and wetting were repeated. In the salt-dry-wet repeat test, the hot-rolled steel sheet subjected to the descale step was sprayed with a 5% NaCl aqueous solution (15 minutes at 35 ° C), dried (relative humidity 30%, temperature 60 ° C for 1 hour), and Wetting (relative humidity 95%,temperature 50 ° C. for 3 hours) was taken as one cycle for 10 cycles. Then, the hot-rolled steel sheet was washed with water and dried, and the rusted area ratio of the hot-rolled steel sheet was calculated.
The rusting area ratio was calculated by the following procedure. The surface of the hot-rolled steel sheet after the repeated salt-dry-wet test was photographed, and the ratio of the area of the rusted portion in the central 25 mm × 25 mm range excluding the end face was determined. The area of the rusted portion was obtained by binarizing the photograph of the surface of the hot-rolled steel sheet by image analysis, calculating the area per pixel, and then counting the number of pixels of the rusted portion. The rusting area ratio was calculated by the following formula.
Rust area ratio (%) = Area of rusting part (mm 2 ) / Area of the entire observation part (625 mm 2 ) x 100
In this evaluation, those having a rusting area ratio of 1% or less were evaluated as "○" (good corrosion resistance), and those having a rust area ratio of more than 1% were evaluated as "x" (poor corrosion resistance).
The results of each of the above evaluations are shown in Table 2.
耐食性試験は、塩水噴霧、乾燥及び湿潤を繰り返す塩乾湿繰り返し試験によって行った。塩乾湿繰り返し試験は、デスケール工程を実施した上記熱延鋼板に対して、5%のNaCl水溶液の噴霧(35℃で15分)、乾燥(相対湿度30%、温度60℃で1時間)、及び湿潤(相対湿度95%、温度50℃で3時間)を1サイクルとして10サイクル行った。その後、熱延鋼板を水洗して乾燥させ、熱延鋼板の発銹面積率を算出した。
発銹面積率の算出は、次のような手順で行った。塩乾湿繰り返し試験後の熱延鋼板の表面を写真撮影し、端面を除いた中央の25mm×25mmの範囲における発銹部分の面積の割合を求めた。発銹部分の面積は、熱延鋼板の表面の写真を画像解析により2値化し、1ピクセルあたりの面積を算出した後、発銹部分のピクセル数をカウントして求めた。発銹面積率は、以下の式によって算出した。
発銹面積率(%)=発銹部分の面積(mm2)/観察部全体の面積(625mm2)×100
この評価において、発銹面積率が1%以下のものを「○」(耐食性が良好)、1%を超えるものを「×」(耐食性が不良)とした。
上記の各評価結果を表2に示す。 (Corrosion resistance test)
The corrosion resistance test was carried out by a repeated salt-dry-wet test in which salt spraying, drying and wetting were repeated. In the salt-dry-wet repeat test, the hot-rolled steel sheet subjected to the descale step was sprayed with a 5% NaCl aqueous solution (15 minutes at 35 ° C), dried (relative humidity 30%, temperature 60 ° C for 1 hour), and Wetting (relative humidity 95%,
The rusting area ratio was calculated by the following procedure. The surface of the hot-rolled steel sheet after the repeated salt-dry-wet test was photographed, and the ratio of the area of the rusted portion in the central 25 mm × 25 mm range excluding the end face was determined. The area of the rusted portion was obtained by binarizing the photograph of the surface of the hot-rolled steel sheet by image analysis, calculating the area per pixel, and then counting the number of pixels of the rusted portion. The rusting area ratio was calculated by the following formula.
Rust area ratio (%) = Area of rusting part (mm 2 ) / Area of the entire observation part (625 mm 2 ) x 100
In this evaluation, those having a rusting area ratio of 1% or less were evaluated as "○" (good corrosion resistance), and those having a rust area ratio of more than 1% were evaluated as "x" (poor corrosion resistance).
The results of each of the above evaluations are shown in Table 2.
表2に示されるように、実施例1~10の熱延鋼板は、表面の算術平均粗さRaが0.10~3.00μm及び60度鏡面光沢Gs(60°)が10~100%の範囲にあり、平滑で光沢のある表面を有していることが確認された。また、実施例1~10の熱延鋼板は、耐食性も良好であった。
これに対して比較例1及び3の熱延鋼板は、表面の算術平均粗さRa及び60度鏡面光沢Gs(60°)の一方又は両方が上記の範囲外であり、粗くて光沢のない表面を有していた。また、比較例2及び4の熱延鋼板は、酸洗デスケール工程の後に研磨を行ったため、耐食性が十分でなかった。 As shown in Table 2, the hot-rolled steel sheets of Examples 1 to 10 have a surface arithmetic average roughness Ra of 0.10 to 3.00 μm and a 60-degree mirror gloss Gs (60 °) of 10 to 100%. It was confirmed that it was in the range and had a smooth and glossy surface. In addition, the hot-rolled steel sheets of Examples 1 to 10 had good corrosion resistance.
On the other hand, in the hot-rolled steel sheets of Comparative Examples 1 and 3, one or both of the arithmetic mean roughness Ra and the 60-degree mirror surface gloss Gs (60 °) of the surface is out of the above range, and the surface is rough and has no gloss. Had. Further, the hot-rolled steel sheets of Comparative Examples 2 and 4 were polished after the pickling descaling step, so that the corrosion resistance was not sufficient.
これに対して比較例1及び3の熱延鋼板は、表面の算術平均粗さRa及び60度鏡面光沢Gs(60°)の一方又は両方が上記の範囲外であり、粗くて光沢のない表面を有していた。また、比較例2及び4の熱延鋼板は、酸洗デスケール工程の後に研磨を行ったため、耐食性が十分でなかった。 As shown in Table 2, the hot-rolled steel sheets of Examples 1 to 10 have a surface arithmetic average roughness Ra of 0.10 to 3.00 μm and a 60-degree mirror gloss Gs (60 °) of 10 to 100%. It was confirmed that it was in the range and had a smooth and glossy surface. In addition, the hot-rolled steel sheets of Examples 1 to 10 had good corrosion resistance.
On the other hand, in the hot-rolled steel sheets of Comparative Examples 1 and 3, one or both of the arithmetic mean roughness Ra and the 60-degree mirror surface gloss Gs (60 °) of the surface is out of the above range, and the surface is rough and has no gloss. Had. Further, the hot-rolled steel sheets of Comparative Examples 2 and 4 were polished after the pickling descaling step, so that the corrosion resistance was not sufficient.
以上の結果からわかるように、本発明によれば、平滑で光沢のある表面を有し、耐食性に優れるフェライト系ステンレス鋼材、及びこれを用いた耐食性部材を提供することができる。
As can be seen from the above results, according to the present invention, it is possible to provide a ferritic stainless steel material having a smooth and glossy surface and excellent corrosion resistance, and a corrosion resistant member using the same.
Claims (8)
- 質量基準で、C:0.001~0.100%、Si:5.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.0300%以下、Ni:2.00%未満、Cr:11.00~30.00%、Mo:6.00%以下、Cu:0.60%以下、N:0.050%以下、Al:3.500%以下を含み、残部がFe及び不純物からなる組成を有し、
表面の算術平均粗さRaが0.10~3.00μm及び60度鏡面光沢Gs(60°)が10~100%である、耐食性に優れるフェライト系ステンレス鋼材。 Based on mass, C: 0.001 to 0.100%, Si: 5.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.0300% or less, Ni: 2 Includes less than .00%, Cr: 11.00 to 30.00%, Mo: 6.00% or less, Cu: 0.60% or less, N: 0.050% or less, Al: 3.500% or less. The balance has a composition consisting of Fe and impurities.
A ferrite stainless steel material having an arithmetic average roughness Ra of 0.10 to 3.00 μm and a 60 degree mirror gloss Gs (60 °) of 10 to 100%, and having excellent corrosion resistance. - 前記フェライト系ステンレス鋼材の表面が、以下の(1)及び(2)を満たす、請求項1に記載のフェライト系ステンレス鋼材。
(1)二乗平均平方根傾斜RΔqが35°以下である。
(2)クロマネティクス指数b*が7.00以下である。 The ferrite-based stainless steel material according to claim 1, wherein the surface of the ferrite-based stainless steel material satisfies the following (1) and (2).
(1) The root mean square slope RΔq is 35 ° or less.
(2) The chromanetics index b * is 7.00 or less. - 質量基準で、Siが1.00%以下、Alが0.400%以下、Si+2Alが1.20%未満である、請求項1又は2に記載のフェライト系ステンレス鋼材。 The ferrite-based stainless steel material according to claim 1 or 2, wherein Si is 1.00% or less, Al is 0.400% or less, and Si + 2Al is less than 1.20% on a mass basis.
- 質量基準で、Siが0.20~5.00%、Si+2Alが1.20%以上である、請求項1又は2に記載のフェライト系ステンレス鋼材。 The ferrite-based stainless steel material according to claim 1 or 2, wherein Si is 0.20 to 5.00% and Si + 2Al is 1.20% or more on a mass basis.
- 質量基準で、Ti:0.001~0.500%、Nb:0.001~1.000%、V:0.001~1.000%、W:0.001~1.000%、Zr:0.001~1.000%、Co:0.001~1.200%から選択される1種以上を更に含む、請求項1~4のいずれか一項に記載のフェライト系ステンレス鋼材。 On a mass basis, Ti: 0.001 to 0.500%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, W: 0.001 to 1.000%, Zr: The ferrite-based stainless steel material according to any one of claims 1 to 4, further comprising one or more selected from 0.001 to 1.000% and Co: 0.001 to 1.200%.
- 質量基準で、Ca:0.0001~0.0100%、B:0.0001~0.0080%、Sn:0.001~0.500%から選択される1種以上を更に含む、請求項1~5のいずれか一項に記載のフェライト系ステンレス鋼材。 Claim 1 further comprises one or more selected from Ca: 0.0001 to 0.0100%, B: 0.0001 to 0.0080%, Sn: 0.001 to 0.500% on a mass basis. The ferrite-based stainless steel material according to any one of 5 to 5.
- 塩乾湿繰り返し試験において、塩水噴霧、乾燥及び湿潤を1サイクルとして10サイクル行った後の発銹面積率が1%以下である、請求項1~6のいずれか一項に記載のフェライト系ステンレス鋼材。 The ferrite-based stainless steel material according to any one of claims 1 to 6, wherein in the salt-dry-wet repeat test, the rusting area ratio after 10 cycles of salt spraying, drying and wetting as one cycle is 1% or less. ..
- 請求項1~7のいずれか一項に記載のフェライト系ステンレス鋼材を含む耐食性部材。 Corrosion resistant member containing the ferrite stainless steel material according to any one of claims 1 to 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180007523.7A CN114901848B (en) | 2020-05-28 | 2021-04-28 | Ferritic stainless steel material and corrosion resistant member |
KR1020227022034A KR20220107255A (en) | 2020-05-28 | 2021-04-28 | Ferritic stainless steel and corrosion-resistant members |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-093523 | 2020-05-28 | ||
JP2020093523 | 2020-05-28 | ||
JP2020-093519 | 2020-05-28 | ||
JP2020093519 | 2020-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021241132A1 true WO2021241132A1 (en) | 2021-12-02 |
Family
ID=78745313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/017109 WO2021241132A1 (en) | 2020-05-28 | 2021-04-28 | Ferrite-based stainless steel material and corrosion resistant member |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20220107255A (en) |
CN (1) | CN114901848B (en) |
WO (1) | WO2021241132A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188862A (en) * | 1993-12-27 | 1995-07-25 | Nisshin Steel Co Ltd | Ferritic stainless steel sheet excellent in corrosion resistance, antidazzling characteristic, and workability and its production |
JP2005302713A (en) * | 2004-03-18 | 2005-10-27 | Jfe Steel Kk | Metal material for energizing member, fuel cell separator using it and fuel cell |
JP2016196019A (en) * | 2015-04-03 | 2016-11-24 | 日新製鋼株式会社 | Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet |
JP2017179519A (en) * | 2016-03-31 | 2017-10-05 | 日新製鋼株式会社 | Stainless steel sheet excellent in corrosion resistance |
JP2018145497A (en) * | 2017-03-07 | 2018-09-20 | 日新製鋼株式会社 | FERRITIC STAINLESS STEEL EXCELLENT IN Cu BRAZABILITY |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02145785A (en) | 1988-11-24 | 1990-06-05 | Daido Steel Co Ltd | Surface treatment for stainless steel |
JP5709594B2 (en) * | 2011-03-14 | 2015-04-30 | 新日鐵住金ステンレス株式会社 | High purity ferritic stainless steel plate with excellent weather resistance and antiglare properties |
JP6082625B2 (en) | 2013-03-11 | 2017-02-15 | 日新製鋼株式会社 | Stainless steel strip manufacturing method |
JP5837258B2 (en) * | 2013-03-27 | 2015-12-24 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel having excellent surface corrosion resistance after polishing and method for producing the same |
JP6302690B2 (en) * | 2014-02-04 | 2018-03-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent corrosion resistance after polishing |
-
2021
- 2021-04-28 WO PCT/JP2021/017109 patent/WO2021241132A1/en active Application Filing
- 2021-04-28 KR KR1020227022034A patent/KR20220107255A/en not_active Application Discontinuation
- 2021-04-28 CN CN202180007523.7A patent/CN114901848B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188862A (en) * | 1993-12-27 | 1995-07-25 | Nisshin Steel Co Ltd | Ferritic stainless steel sheet excellent in corrosion resistance, antidazzling characteristic, and workability and its production |
JP2005302713A (en) * | 2004-03-18 | 2005-10-27 | Jfe Steel Kk | Metal material for energizing member, fuel cell separator using it and fuel cell |
JP2016196019A (en) * | 2015-04-03 | 2016-11-24 | 日新製鋼株式会社 | Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet |
JP2017179519A (en) * | 2016-03-31 | 2017-10-05 | 日新製鋼株式会社 | Stainless steel sheet excellent in corrosion resistance |
JP2018145497A (en) * | 2017-03-07 | 2018-09-20 | 日新製鋼株式会社 | FERRITIC STAINLESS STEEL EXCELLENT IN Cu BRAZABILITY |
Also Published As
Publication number | Publication date |
---|---|
CN114901848B (en) | 2023-09-19 |
CN114901848A (en) | 2022-08-12 |
KR20220107255A (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021241133A1 (en) | Two-phase ferrite/austenite stainless steel material and corrosion resistant member | |
JP5918127B2 (en) | Stainless steel cold rolled steel sheet and method for producing the same | |
CN105074035A (en) | Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same | |
MX2007015786A (en) | Austenitic stainless steel strip having a bright surface finish and excellent mechanical properties. | |
JP2021188121A (en) | Austenite stainless steel material and corrosion resistant member | |
KR102286876B1 (en) | Ferritic stainless steel sheet and manufacturing method thereof | |
JP2019112673A (en) | Ferritic stainless cold rolled steel sheet and manufacturing method thereof | |
WO2021241131A1 (en) | Austenitic stainless steel product and corrosion resistant component | |
JP2021188123A (en) | Two-phase ferrite/austenite stainless steel material and corrosion resistant member | |
WO2021241132A1 (en) | Ferrite-based stainless steel material and corrosion resistant member | |
KR100262732B1 (en) | Austenite stainless steel plate with excellent surface brightness and corrosion resistance and method for producing same | |
JP2021188125A (en) | Ferrite stainless steel material and corrosion resistant member | |
JP2021188122A (en) | Ferrite stainless steel material and corrosion resistant member | |
JP2021188126A (en) | Two-phase ferrite/austenite stainless steel material and corrosion resistant member | |
JP2021188124A (en) | Austenite stainless steel material and corrosion resistant member | |
KR20190131527A (en) | Material for stainless steel cold rolled steel sheet and manufacturing method thereof | |
JP2022155342A (en) | Ferritic stainless steel material and method for manufacturing the same, and corrosion-resistant member | |
JP3052787B2 (en) | Pure titanium for building materials, pure titanium plate and method for producing the same | |
JP2022155337A (en) | Austenitic stainless steel material and method for manufacturing the same, and corrosion-resistant member | |
JP2022155343A (en) | Ferrite-austenite two-phase system stainless steel material and method for manufacturing the same, and corrosion-resistant member | |
JP7322602B2 (en) | Ferritic stainless steel sheet and manufacturing method thereof | |
JP2022155338A (en) | Ferritic stainless steel material, martensite-based stainless steel material, ferrite-martensite two-phase system stainless steel material and method for manufacturing them, and corrosion-resistant member | |
JP2022155341A (en) | Austenitic stainless steel material and method for manufacturing the same, and corrosion-resistant member | |
JP4070253B2 (en) | Highly anti-glare ferritic stainless steel sheet with excellent antiglare property and manufacturing method thereof | |
JP7092274B1 (en) | Stainless steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813555 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227022034 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21813555 Country of ref document: EP Kind code of ref document: A1 |