[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021139686A1 - 显示基板的检测方法及装置 - Google Patents

显示基板的检测方法及装置 Download PDF

Info

Publication number
WO2021139686A1
WO2021139686A1 PCT/CN2021/070486 CN2021070486W WO2021139686A1 WO 2021139686 A1 WO2021139686 A1 WO 2021139686A1 CN 2021070486 W CN2021070486 W CN 2021070486W WO 2021139686 A1 WO2021139686 A1 WO 2021139686A1
Authority
WO
WIPO (PCT)
Prior art keywords
display substrate
target area
signal
pixel
electrode
Prior art date
Application number
PCT/CN2021/070486
Other languages
English (en)
French (fr)
Inventor
李广耀
丁远奎
倪柳松
汪军
王海涛
王东方
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/435,297 priority Critical patent/US11594162B2/en
Publication of WO2021139686A1 publication Critical patent/WO2021139686A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a detection method and device for a display substrate.
  • OLED display panels can be fabricated using oxide thin film transistors.
  • a sputtering process is generally used to deposit metal oxide on a glass substrate to fabricate various display devices.
  • the target area the area on the glass substrate directly facing the target is the target area, and the gap area between adjacent target areas is the non-target area. Due to the metal oxide sputtering equipment, the thickness of the metal oxide film formed in the target area and the non-target area is uneven.
  • the target area of the formed display substrate is likely to cause problems in the pixel drive circuit.
  • the threshold voltage of the driving transistor shifts and the on-state current changes.
  • the target area and the non-target area are prone to display image unevenness (mura). Therefore, the display substrate needs to be inspected.
  • the embodiment of the present disclosure provides a method for detecting a display substrate, including:
  • each pixel driving circuit According to the voltage output by each pixel driving circuit in response to the detection signal, it is determined whether the display substrate is normal.
  • the display substrate has a target area and a non-target area; the target area is the area directly facing the target during the manufacturing process, and the non-target area is the adjacent target area.
  • the gap area between the material areas; the detection method of the display substrate includes:
  • the display substrate According to the first voltage output by the pixel driving circuit in the target area and the second voltage output by the pixel driving circuit in the non-target area, it is determined whether the display substrate is normal.
  • the energizing the threshold voltage of the driving transistor in the pixel driving circuit in the target area includes:
  • the pixel driving circuit includes a first switching transistor, a second switching transistor, a storage capacitor, a driving transistor, and a light emitting diode,
  • the control electrode of the first switch transistor is connected to the scan signal terminal, the first electrode is connected to the data signal terminal, and the second electrode is connected to the first node;
  • the first pole of the storage capacitor is connected to the first node, and the second pole is connected to the second node;
  • the control electrode of the driving transistor is connected to the first node, the first electrode is connected to the first power terminal, and the second electrode is connected to the second node;
  • the control electrode of the second switch transistor is connected to the compensation control signal terminal, the first electrode is connected to the compensation signal terminal, and the second electrode is connected to the second node;
  • the first pole of the light emitting diode is connected to the second node, and the second pole is connected to the second power terminal.
  • the inputting an excitation signal to the pixel driving circuit in the target area includes:
  • a first data signal is input to the data signal terminal of each pixel driving circuit in the target area, and the first data signal includes a high-level signal.
  • the inputting an excitation signal to the pixel driving circuit in the target area includes:
  • a second data signal is input to the data signal terminal of each pixel driving circuit in the target area, and the second data signal includes a low-level signal.
  • the inputting a non-excitation signal to the pixel driving circuit in the non-target area includes:
  • a third data signal is input to the data signal terminal of the pixel driving circuit in the non-target area, and the voltage of the third data signal is a ground voltage.
  • the detection signal includes a data signal that enables the pixel driving circuit to drive the display substrate to perform low-gray scale display.
  • the judging whether the display substrate is normal according to the voltage output by each pixel driving circuit includes:
  • the comparing whether the voltages output by the pixel driving circuits are consistent includes:
  • the liquid crystal cell Placing the liquid crystal cell close to the voltage output terminal of the pixel driving circuit, the liquid crystal cell including a first electrode, a second electrode, and a liquid crystal layer between the first electrode and the second electrode;
  • An embodiment of the present disclosure also provides a detection device for a display substrate, including:
  • the timing controller is configured to perform timing control on the gate drive circuit and the source drive circuit in the display substrate, so as to drive the pixels in the display substrate through the gate drive circuit and the source drive circuit
  • the threshold voltage of the drive transistor in the circuit is excited, so that the threshold voltage of the drive transistor whose threshold voltage has shifted is further shifted, and then the gate drive circuit and the source drive circuit in the display substrate are time-sequentially controlled to pass
  • the gate drive circuit and the source drive circuit input a detection signal to the pixel drive circuit in the display substrate, and the detection signal is a signal that makes the pixel drive circuit work normally;
  • the processor is configured to determine whether the display substrate is normal according to the voltage output by each pixel drive circuit in response to the detection signal.
  • the detection device for the display substrate further includes: a liquid crystal cell, the liquid crystal cell includes a first electrode, a second electrode, and a liquid crystal layer between the first electrode and the second electrode, and is configured to be close to the
  • the voltage output terminal of the pixel drive circuit detects the voltage output by the pixel drive circuit in response to the detection signal.
  • the liquid crystal molecules in the liquid crystal layer of the liquid crystal cell are different. deflection.
  • the detection device of the display substrate further includes: a light source that illuminates the liquid crystal cell, so that the liquid crystal cell can emit different patterns according to the voltage output by the pixel drive. Light.
  • FIG. 1 is a schematic diagram of a manufacturing process of a display substrate in the prior art
  • FIGS. 2 to 5 are schematic flowcharts of a method for detecting a display substrate provided by an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the disclosure.
  • FIG. 7 is a waveform diagram of an excitation signal provided by an embodiment of the disclosure.
  • FIG. 8 is another waveform diagram of the excitation signal provided by the embodiment of the disclosure.
  • FIG. 9 is a waveform diagram of a non-excitation signal provided by an embodiment of the disclosure.
  • 10 to 11 are schematic flowcharts of a method for detecting a display substrate according to an embodiment of the disclosure.
  • Fig. 12a is a schematic diagram showing a detection result of a substrate in the prior art
  • Fig. 12b is a schematic diagram showing a detection result of a substrate provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a detection device for a display substrate provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of a manufacturing process of a display substrate in the prior art. As shown in FIG.
  • a magnetron sputtering process can be used to bombard a target 102 above a glass substrate 101, so that the target 102 forms a sputtering
  • the sputtered target particles are deposited on the glass substrate 101 to form a metal oxide thin film layer to form various display devices and display film layers, and then cut to finally form a display substrate of the required size.
  • the area on the glass substrate 101 directly opposite to the target 102 is the target area, and the gap area between adjacent target areas is the non-target area. Due to the metal oxide sputtering equipment, the metal oxide film layer formed in the target area is prone to unevenness, so that the metal oxide layer in the target area and the non-target area has a certain difference.
  • the threshold voltage of the driving transistor in the pixel driving circuit to shift (for example, a positive or negative shift), and the on-state current of the light-emitting diode changes.
  • the target of the display substrate The material area and the non-target material area are prone to display unevenness. Therefore, it is necessary to inspect the display substrate.
  • the detection method in the prior art has low accuracy. Even if there is no display unevenness in the detected image during the detection process, uneven display may also occur in the subsequent lighting or reliability test. The matching rate of the accuracy of the lighting or reliability test is low.
  • embodiments of the present disclosure provide a detection method and device for a display substrate.
  • the method and device for detecting the display substrate provided by the embodiments of the present disclosure will be further described in detail.
  • the method for detecting a display panel includes the following steps S201 to S203.
  • a plurality of array-distributed pixel driving circuits are provided on the display substrate for driving the corresponding light-emitting diodes in the display substrate to emit light for display.
  • the driving transistor in the pixel driving circuit has a certain threshold voltage. Due to the metal oxide sputtering equipment, it is easy to cause the threshold voltage of some driving transistors in the display substrate to shift (for example, positive or negative shift), and light emission The on-state current of the diode changes.
  • the threshold voltage of the driving transistor in the pixel driving circuit is excited, so that the threshold voltage of the driving transistor whose threshold voltage has shifted can be further shifted, thereby improving the detection accuracy of the display substrate.
  • S202 Input a detection signal to a pixel drive circuit in the display substrate.
  • the detection signal input method in the prior art can be used to input the detection signal to the pixel driving circuit of the entire display substrate, and the driving transistor can operate under the control of the detection signal.
  • the detection signal may enable the pixel driving circuit to work normally and drive the display substrate for low-gray scale display.
  • the detection signal may be a voltage signal of 1 volt to 5 volts. It can be understood that the display unevenness of the display substrate is basically caused by the shift (for example, positive or negative shift) of the threshold voltage of some driving transistors, so it is necessary to ensure that the input is input during detection.
  • the detection signal is related to the threshold voltage of the driving transistor in the pixel driving circuit, and its specific signals and waveforms will not be repeated here.
  • S203 Determine whether the display substrate is normal according to the voltage output by each pixel driving circuit.
  • the driving transistor under the control of the detection signal, the driving transistor operates, and at this time, a voltage is output at the output terminal of the pixel driving circuit. Due to the production of the metal oxide film layer, the threshold voltage of some driving transistors may be shifted (for example, positive or negative shift). Therefore, the output voltage of some pixel driving circuits may be different. Furthermore, in the embodiments of the present disclosure, before the detection signal is input, the threshold voltage of the driving transistor is excited, and the threshold voltage of the driving transistor whose threshold voltage has shifted will be further shifted. In this way, under the control of the detection signal, The voltage output by the corresponding pixel drive circuit will change significantly, so that the detection accuracy of the display substrate can be improved.
  • step S203 may include the steps: S203-1, comparing whether the voltages output by the pixel driving circuits are consistent; S203-2, if the voltages output by the pixel driving circuits are consistent , It is determined that the display substrate is normal.
  • step S203-1 may include the steps of: S203-11, bringing the liquid crystal cell close to the voltage output terminal of the pixel driving circuit, and the liquid crystal cell includes a first electrode and a second electrode. , And the liquid crystal layer between the first electrode and the second electrode; S203-12, irradiate light to the liquid crystal cell; and S203-13, compare whether the pattern of light emitted from the liquid crystal cell corresponding to each pixel drive circuit is Unanimous.
  • the liquid crystal cell may be about 5 ⁇ m to 15 ⁇ m away from the voltage output terminal of the pixel drive circuit.
  • the present disclosure is not limited to this, as long as the pixel drive circuit outputs the voltage through its voltage output terminal.
  • the voltage can have an identifiable influence on the capacitance between the first electrode and the second electrode in the liquid crystal cell (that is, it can have an identifiable influence on the deflection of the liquid crystal molecules in the liquid crystal layer of the liquid crystal cell) That's it.
  • one of the first electrode and the second electrode in the liquid crystal cell can be a reflective electrode, and the other can be a transparent electrode.
  • a light source can be used to illuminate one side of the transparent electrode of the liquid crystal cell, and then receive the The reflected light emitted by the liquid crystal cell is compared to whether the patterns of the reflected light emitted by the liquid crystal cell corresponding to each pixel driving circuit are consistent.
  • both the first electrode and the second electrode in the liquid crystal cell can be transparent electrodes, and a light source can be used to illuminate one side of the liquid crystal cell, and then receive the light emitted from the other side of the liquid crystal cell. Then compare whether the patterns of light emitted by the liquid crystal cells corresponding to the pixel driving circuits are consistent.
  • the processor can analyze and determine whether the light pattern of the liquid crystal cell corresponding to each of the pixel drive circuits is consistent, or according to actual needs, use other reasonable methods to analyze and determine whether the patterns corresponding to each of the pixel drive circuits are consistent. Whether the patterns of the emitted light from the liquid crystal cell of the pixel driving circuit are consistent.
  • the display substrate is normal, and it is not easy to show uneven brightness in subsequent tests and practical applications; if it corresponds to each of the The inconsistent patterns of the reflected light emitted by the liquid crystal cell of the pixel driving circuit indicate that the display substrate is prone to display brightness unevenness, so the display substrate can be eliminated to save manufacturing costs.
  • the detection method of the display substrate excites the threshold voltage of the driving transistor in the pixel driving circuit on the display substrate, so that the threshold voltage of the driving transistor whose threshold voltage is shifted can be further shifted, and then pass Inputting a detection signal to the entire display substrate can make a significant change in the voltage output by the corresponding pixel drive circuit, and therefore can make the detection of the display substrate more accurate, thereby realizing effective detection of uneven display of the display substrate.
  • the display substrates that are prone to display unevenness can be directly eliminated, and the effective interception of the defective substrates can be realized, thereby improving the matching rate with the accuracy of the subsequent lighting or reliability test, thereby saving the display substrate. Production costs.
  • the display substrate detection method provided by the embodiment of the present disclosure may be applied to the display substrate formed by the manufacturing method shown in FIG. 1.
  • the display substrate detection method is shown in FIG. 5, which specifically includes Steps S301 to S303 are as follows.
  • S302 Input a detection signal to each pixel driving circuit in the target area and the non-target area.
  • S303 Determine whether the display substrate is normal based on the first voltage output by the pixel drive circuit in the target area and the second voltage output by the pixel drive circuit in the non-target area.
  • the display substrate includes a target area and a non-target area.
  • the thickness of the metal oxide film in the target area Problems are prone to occur, which easily causes the threshold voltage of the driving transistor in the target area to shift (for example, a positive or negative shift), while the threshold voltage of the driving transistor in the non-target area is not prone to shift.
  • only the threshold voltage of the drive transistor in the target area can be excited, and the threshold voltage of the drive transistor in the non-target area is not excited, so that the threshold voltage of the target area can be shifted.
  • the threshold voltage of the transistor is further shifted, which can make the difference between the threshold voltage of the driving transistor in the target area and the threshold voltage of the transistor in the non-target area more obvious, so that the pixel driving circuit in the target area and the non-target area
  • the pixel drive circuits in the target area and the non-target area can respectively output a first voltage and a second voltage.
  • the first voltage is significantly different from the second voltage, so the display substrate can be improved.
  • the accuracy of the detection At the same time, the display substrates that are prone to display unevenness can be directly eliminated, and the effective interception of the defective substrates can be realized, thereby improving the matching rate with the accuracy of the subsequent lighting or reliability test, thereby saving the display substrate. Production costs.
  • stimulating the threshold voltage of the driving transistor in the pixel driving circuit in the target area in S301 includes: inputting an excitation signal to the pixel driving circuit in the target area, and driving the pixels in the non-target area The circuit inputs a non-excitation signal.
  • the excitation signal can be independently input to the pixel drive circuit in the target area, and the non-excitation signal can be independently input to the pixel drive circuit in the non-target area.
  • the excitation signal can be related to the threshold voltage of the drive transistor.
  • the threshold voltage of the target area can be shifted (for example, positive or negative shift). Offset, thereby increasing the gap between the threshold voltages of the driving transistors in the target area and the non-target area, thereby improving the detection accuracy.
  • the pixel driving circuit includes: a first switching transistor T1, a second switching transistor T2, a storage capacitor C, a driving transistor T, and Light-emitting diode D.
  • the control electrode of the first switch transistor T1 is connected to the scan signal terminal G1, the first electrode is connected to the data signal terminal Data, and the second electrode is connected to the first node N1.
  • the first pole of the storage capacitor C is connected to the first node N1, and the second pole is connected to the second node N2.
  • the control electrode of the driving transistor T is connected to the first node N1, the first electrode is connected to the first power supply terminal VDD, and the second electrode is connected to the second node N2.
  • the control electrode of the second switch transistor T2 is connected to the compensation control signal terminal G2, the first electrode is connected to the compensation signal terminal Sense, and the second electrode is connected to the second node N2.
  • the first pole of the light emitting diode D is connected to the second node N2, and the second pole is connected to the second power terminal VSS.
  • the gate drive circuit 600 can provide signals to the scan signal terminal G1 and the compensation control signal terminal G2, and the source drive circuit 601 can provide signals to the data signal terminal Data.
  • the timing controller 603 can provide signals to the scan signal terminal G1 and the compensation control signal terminal G2. The timing control of the gate driving circuit 600 and the source driving circuit 601 is performed.
  • the source and drain of each transistor are interchangeable under certain conditions. Therefore, there is no difference in the description of the connection relationship between the source and drain of each transistor. .
  • one of the electrodes is called the first electrode
  • the other is called the second electrode
  • the gate is called the control electrode.
  • transistors can be divided into N-type transistors and P-type transistors.
  • the first pole is the source of the N-type transistor
  • the second pole is the drain of the N-type transistor
  • the gate is high. Normally, the source and drain are turned on, and the P-type transistor is the opposite.
  • the display substrate in the embodiment of the present disclosure includes a plurality of pixel drive circuits as shown in FIG. 6 arranged in an array.
  • the following will take the pixel drive circuit shown in FIG. 6 as an example to carry out the detection method of the display substrate provided by the embodiment of the present disclosure. Further details.
  • inputting the excitation signal to the pixel driving circuit in the target area includes: inputting a first data signal to the data signal terminal of the pixel driving circuit in the target area, and the first data signal includes a high-level signal.
  • the waveform diagram of the above-mentioned excitation signal may be as shown in FIG. 7, and specifically may be: inputting a first data signal to the data signal terminal Data of the pixel driving circuit of the target area, and the first data signal may be a high voltage signal.
  • the scanning signal terminal G1 inputs a scanning signal, which can control the first switching transistor T1 to be turned on or off according to a preset timing
  • the first power supply terminal VDD inputs a first power supply voltage, the first power supply voltage may be a ground voltage (For example, 0V)
  • the compensation control signal terminal G2 can input a compensation control signal, which can control the second switching transistor T2 to turn on or off
  • the compensation signal terminal Sense can input a compensation signal, and the voltage of the compensation signal can be Ground voltage (for example, 0 volts).
  • the first data signal (ie, high-level signal) can simulate the working signal of the driving transistor T to excite the threshold voltage of the driving transistor T in the target area, so that the threshold voltage is shifted (for example, forward shift)
  • the threshold voltage of the driving transistor T is further shifted, and the gap between the threshold voltage of the driving transistor in the target area and the non-target area increases, so that the detection of the display substrate can be more accurate, so as to realize the display of the display substrate Effective detection of unevenness.
  • inputting an excitation signal to the pixel driving circuit in the target area includes: inputting a second data signal to the data signal terminal of the pixel driving circuit in the target area, and the second data signal includes a low-level signal.
  • the waveform diagram of the above excitation signal may be as shown in FIG. 8. Specifically, it may be: inputting a second data signal to the data signal terminal Data of the pixel driving circuit of the target area, and the second data signal may be a low-voltage signal.
  • the scanning signal terminal G1 inputs a scanning signal, which can control the first switching transistor T1 to be turned on or off according to a preset timing
  • the first power supply terminal VDD inputs a first power supply voltage, the first power supply voltage may be a ground voltage (For example, 0V)
  • the compensation control signal terminal G2 can input a compensation control signal, which can control the second switching transistor T2 to turn on or off
  • the compensation signal terminal Sense can input a compensation signal, and the voltage of the compensation signal can be Ground voltage (for example, 0 volts).
  • the second data signal (ie, low-level signal) can simulate the working signal of the driving transistor T, and excite the threshold voltage of the driving transistor T in the target area, so that the threshold voltage is shifted (for example, a negative shift)
  • the threshold voltage of the driving transistor T is further shifted, and the gap between the threshold voltage of the driving transistor in the target area and the non-target area increases, so that the detection of the display substrate can be more accurate, so as to realize the display of the display substrate Effective detection of unevenness.
  • the threshold voltage of the driving transistor T in the non-target area may not be excited, and therefore, no excitation signal may be input to the driving transistor T in the non-target area.
  • a non-excitation signal may be as shown in FIG. 9, specifically: inputting the third signal to the data signal terminal Data of the pixel drive circuit in the non-target area.
  • a data signal, the voltage of the third data signal may be a ground voltage (for example, 0V);
  • the scan signal terminal G1 inputs a scan signal, and the scan signal can control the first switch transistor T1 to be turned on or off according to a preset timing;
  • a power supply terminal VDD inputs the first power supply voltage, the first power supply voltage can be a ground voltage (for example, 0V);
  • the compensation control signal terminal G2 can input a compensation control signal, which can control the second switching transistor T2 to turn on or off Off;
  • the compensation signal terminal Sense can input a compensation signal, and the voltage of the compensation signal can be a ground voltage (for example, 0 volts).
  • the voltage of the third data signal is the ground voltage (for example, 0 volts), which can simulate the non-operating signal of the driving transistor T without exciting the threshold voltage of the driving transistor T in the non-target area, so that the non-target area can be
  • the threshold voltage of the driving transistor T is used as a reference, so that the gap between the threshold voltage of the driving transistor T in the target area and the non-target area is increased, so that the detection of the display substrate can be more accurate, thereby realizing the display of the display substrate Effective detection of unevenness.
  • the first switching transistor T1 and the second switching transistor T2 in the embodiment of the present disclosure may both be N-type transistors, and the turn-on voltage of the two is a high-level voltage, which may be 0 to 30 volts ( For example, it can be 24V), and the turn-off voltage is a low-level voltage, which can be -20V to -5V (for example, it can be -10V).
  • a high-level voltage may be input to the control electrodes of the first switching transistor T1 and the second switching transistor T2, for example, the high-level voltage may be 24 volts, which can make the two conduction.
  • a low-level voltage may be input to the control electrodes of the first switching transistor T1 and the second switching transistor T2, for example, the low-level voltage may be -10 volts, which can turn off the two.
  • the first switching transistor T1 and the second switching transistor T2 may also be P-type transistors, and their implementation principles are similar, and will not be repeated here.
  • the first data signal may be a high-level signal of 15 volts to 30 volts.
  • the level voltage of the second data signal may be higher than the level voltage of the scan signal input from the scan signal terminal G1.
  • the second data signal may be a low-level signal of -8 volts to -2 volts.
  • the above step S303 may include the following steps: S303-1, comparing the voltage output by the pixel driving circuit in the target area and the voltage output by the pixel driving circuit in the non-target area is consistent; S303 -2. If the voltage output by the pixel drive circuit in the target area is consistent with the voltage output by the pixel drive circuit in the non-target area, it is determined that the display substrate is normal.
  • step S303-1 may include the step of S303-11, bringing the liquid crystal cell close to the voltage output terminal of the pixel driving circuit (for example, the second node N2 shown in FIG. 6), so
  • the liquid crystal cell includes a first electrode, a second electrode, and a liquid crystal layer between the first electrode and the second electrode; S303-12, irradiating light to the liquid crystal cell; and S303-13, corresponding to the target material Whether the pattern of the emitted light of the liquid crystal cell of the pixel drive circuit in the zone is consistent with the pattern of the emitted light of the liquid crystal cell of the pixel drive circuit in the non-target material zone.
  • the liquid crystal cell may be about 5 ⁇ m to 15 ⁇ m away from the voltage output terminal of the pixel drive circuit.
  • the present disclosure is not limited to this, as long as the pixel drive circuit outputs the voltage through its voltage output terminal.
  • the voltage can have an identifiable influence on the capacitance between the first electrode and the second electrode in the liquid crystal cell (that is, it can have an identifiable influence on the deflection of the liquid crystal molecules in the liquid crystal layer of the liquid crystal cell) That's it.
  • one of the first electrode and the second electrode in the liquid crystal cell can be a reflective electrode, and the other can be a transparent electrode.
  • a light source can be used to illuminate one side of the transparent electrode of the liquid crystal cell and then receive the The reflected light emitted by the liquid crystal cell is compared with the pattern of the reflected light emitted by the liquid crystal cell corresponding to the pixel drive circuit in the target area and the liquid crystal cell corresponding to the pixel drive circuit in the non-target area. Whether the patterns of the emitted reflected light are consistent.
  • both the first electrode and the second electrode in the liquid crystal cell can be transparent electrodes, and a light source can be used to illuminate one side of the liquid crystal cell, and then receive the light emitted from the other side of the liquid crystal cell. Then compare whether the pattern of light emitted by the liquid crystal cell corresponding to the pixel drive circuit in the target area is consistent with the pattern of light emitted by the liquid crystal cell corresponding to the pixel drive circuit in the non-target area .
  • the pattern of the emitted light of the liquid crystal cell corresponding to the pixel drive circuit in the target area and the liquid crystal cell corresponding to the pixel drive circuit in the non-target area can be analyzed and determined by a processor. Whether the pattern of the emitted light of the cell is consistent, or according to actual needs, other reasonable methods can be used to analyze and determine the pattern of the emitted light of the liquid crystal cell corresponding to the pixel drive circuit in the target area and the pattern corresponding to the non- Whether the patterns of the light emitted from the liquid crystal cells of the pixel driving circuit in the target area are consistent.
  • the pattern of light emitted from the liquid crystal cell corresponding to the pixel drive circuit in the target area is consistent with the pattern of light emitted from the liquid crystal cell corresponding to the pixel drive circuit in the non-target area, it means that The display substrate is normal, and the display brightness unevenness is not easy to appear in subsequent tests and practical applications; if the light pattern of the liquid crystal cell corresponding to the pixel drive circuit in the target area is the same as that corresponding to the non-target
  • the inconsistent patterns of the light emitted from the liquid crystal cell of the pixel drive circuit in the material area indicate that the display substrate is prone to display unevenness in brightness, so the display substrate can be eliminated to save manufacturing costs.
  • FIG. 12a is a schematic diagram of a detection result of a display substrate in the prior art.
  • the detection method in the prior art is used to detect the existing display substrate.
  • the display The target area and the non-target area of the substrate did not show uneven display defects.
  • the display substrate still exhibits uneven display defects in practical applications.
  • Figure 12b is a schematic diagram of a detection result of a display substrate provided by an embodiment of the present disclosure.
  • the detection method provided by the embodiment of the present disclosure is used to detect the same display substrate.
  • the threshold voltage of the driving transistor is excited.
  • the display substrate detection method provided by the embodiments of the present disclosure, the threshold voltage of the driving transistor in the target area is excited, and then the pixel driving circuit input detection signal in the entire display substrate is detected.
  • the gap between the threshold voltages of the drive transistors in the target area and the non-target area can be increased, and the gap between the first voltage and the second voltage output by the pixel drive circuit in the target area and the non-target area is more obvious Therefore, the detection of the display substrate can be made more accurate, thereby realizing effective detection of uneven display of the display substrate.
  • the display substrates that are prone to display unevenness can be directly eliminated, and the effective interception of the defective substrates can be realized, thereby improving the matching rate with the accuracy of the subsequent lighting or reliability test, thereby saving the display substrate. Production costs.
  • FIG. 13 is a schematic structural diagram of a detection device for a display substrate provided by an embodiment of the disclosure.
  • the detection device for a display substrate is Including: a timing controller 603, configured to perform timing control on the gate drive circuit 600 and the source drive circuit 601 in the display substrate, so that the gate drive circuit 600 and the source drive circuit 601 compare all The threshold voltage of the driving transistor in the pixel driving circuit in the display substrate is excited, so that the threshold voltage of the driving transistor whose threshold voltage is shifted is further shifted, and then the gate driving circuit 600 and the source in the display substrate
  • the driving circuit 601 performs timing control to input a detection signal to the pixel driving circuit in the display substrate through the gate driving circuit 600 and the source driving circuit 601, and the detection signal is such that the pixel is driven A signal for the circuit to work normally;
  • the processor 604 is configured to determine whether the display substrate is normal according to the voltage output by each of the pixel driving circuits
  • the detection device for the display substrate further includes: a liquid crystal cell 605.
  • the liquid crystal cell 605 includes a first electrode 111, a second electrode 112, and a first electrode 111 and a second electrode 111.
  • the liquid crystal layer 113 between the electrodes 112 is configured to be close to the voltage output terminal of the pixel drive circuit to detect the voltage output by the pixel drive circuit in response to the detection signal.
  • the liquid crystal molecules in the liquid crystal layer 113 of the liquid crystal cell 605 are deflected differently.
  • the detection device of the display substrate further includes a light source 606 that illuminates the liquid crystal cell 605, so that the liquid crystal cell 605 can emit light according to the voltage output by the pixel drive. Form different patterns of light.
  • the detection device for the display substrate provided by the embodiment of the present disclosure can execute the steps S201 to S203 or S301 to S303 in the detection method of the display substrate in the above-mentioned embodiment, and its implementation principle is the same as that of the display substrate provided by the above-mentioned embodiment.
  • the implementation principle of the detection method is similar, so I won't repeat it here.
  • the “consistent” involved in the present disclosure refers to substantially the same, that is, even if there is a difference between the two, but the difference is negligible or within a tolerance range, the two can be considered to be consistent;
  • “inconsistency” means that there is a difference that cannot be ignored. For example, if there is a difference greater than a predetermined threshold between the two, it can be considered that the two are inconsistent.
  • the predetermined threshold here can be calculated or set according to needs or practical experience. Certainly, this disclosure does not specifically limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板的检测方法和一种显示基板的检测装置,显示基板的检测方法包括:对显示基板中的各像素驱动电路中驱动晶体管的阈值电压进行激发(S201),使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移;向显示基板中的各像素驱动电路输入检测信号(S202),检测信号为使得像素驱动电路正常工作的信号;根据各像素驱动电路输出的电压,判断显示基板是否正常(S203)。

Description

显示基板的检测方法及装置
相关申请的交叉引用
本申请要求于2020年1月6日提交的中国专利申请No.202010009304.X的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开属于显示技术领域,具体涉及显示基板的检测方法及装置。
背景技术
目前,有机发光二极管(organic light-emitting diode,OLED)显示面板可以采用氧化物薄膜晶体管制作,在制作过程中,一般利用溅射工艺,在玻璃基板上沉积金属氧化物,从而制作各个显示器件,以形成显示基板。制作过程中,玻璃基板上与靶材正对的区域为靶材区,相邻的靶材区之间的间隙区域为非靶材区。由于金属氧化物溅射设备的原因,在靶材区和非靶材区形成的金属氧化物膜层的厚度不均,相应的,在形成的显示基板的靶材区容易引起像素驱动电路中的驱动晶体管的阈值电压发生偏移,并且开态电流发生变化,靶材区和非靶材区容易出现显示图像不均(mura)的不良,因此,需要对显示基板进行检测。
公开内容
本公开实施例提供一种显示基板的检测方法,包括:
对所述显示基板中的各像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移;
向所述显示基板中的各所述像素驱动电路输入检测信号,所述检测信号为使得所述像素驱动电路正常工作的信号;
根据各所述像素驱动电路响应于所述检测信号输出的电压,判断所述显示基板是否正常。
在一些实施方式中,所述显示基板具有靶材区和非靶材区;所述靶材区为制作过程中与靶材正对的区域,所述非靶材区为相邻的所述靶材区之间的间隙区域;所述显示基板的检测方法包括:
对所述靶材区中的各像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移;
向所述靶材区和所述非靶材区中的各所述像素驱动电路输入检测信号;
根据所述靶材区中的所述像素驱动电路输出的第一电压和所述非靶材区中的所述像素驱动电路输出的第二电压,判断所述显示基板是否正常。
在一些实施方式中,所述对所述靶材区中的像素驱动电路中驱动晶体管的阈值电压进行激发包括:
向所述靶材区中的所述像素驱动电路输入激发信号,以及向所述非靶材区中的所述像素驱动电路输入非激发信号,所述激发信号模拟所述驱动晶体管的工作信号,所述非激发信号模拟所述驱动晶体管的非工作信号。
在一些实施方式中,所述像素驱动电路包括第一开关晶体管、第二开关晶体管、存储电容、驱动晶体管和发光二极管,
所述第一开关晶体管的控制极连接扫描信号端,第一极连接数据信号端,第二极连接第一节点;
所述存储电容的第一极连接所述第一节点,第二极连接第二节点;
所述驱动晶体管的控制极连接所述第一节点,第一极连接第一电源端,第二极连接所述第二节点;
所述第二开关晶体管的控制极连接补偿控制信号端,第一极连接补偿信号端,第二极连接所述第二节点;
所述发光二极管的第一极连接所述第二节点,第二极连接第二电源端。
在一些实施方式中,所述向所述靶材区中的所述像素驱动电路输入激发信号包括:
向所述靶材区中的各所述像素驱动电路的所述数据信号端输入第一数据信号,所述第一数据信号包括高电平信号。
在一些实施方式中,所述向所述靶材区中的所述像素驱动电路输入激发信号包括:
向所述靶材区中的各所述像素驱动电路的所述数据信号端输入第二数据信号,所述第二数据信号包括低电平信号。
在一些实施方式中,所述向所述非靶材区中的所述像素驱动电路输入非激发信号包括:
向所述非靶材区中的所述像素驱动电路的所述数据信号端输入第三数据信号,所述第三数据信号的电压为接地电压。
在一些实施方式中,所述检测信号包括使得所述像素驱动电路驱动所述显示基板进行低灰阶显示的数据信号。
在一些实施方式中,所述根据各所述像素驱动电路输出的电压判断所述显示基板是否正常包括:
比较各所述像素驱动电路输出的电压是否一致;
如果各所述像素驱动电路输出的电压一致,则确定所述显示基板正常。
在一些实施方式中,所述比较各所述像素驱动电路输出的电压是否一致包括:
将液晶盒靠近所述像素驱动电路的电压输出端,所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层;
向所述液晶盒照射光;以及
比较对应于各所述像素驱动电路的液晶盒的出射光的图案是否一致。
本公开实施例还提供一种显示基板的检测装置,包括:
时序控制器,配置为对所述显示基板中的栅极驱动电路和源极 驱动电路进行时序控制,以通过所述栅极驱动电路和所述源极驱动电路对所述显示基板中的像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移,然后,对所述显示基板中的栅极驱动电路和源极驱动电路进行时序控制,以通过所述栅极驱动电路和所述源极驱动电路向所述显示基板中的所述像素驱动电路输入检测信号,所述检测信号为使得所述像素驱动电路正常工作的信号;以及
处理器,配置为根据各所述像素驱动电路响应于所述检测信号输出的电压,判断所述显示基板是否正常。
在一些实施方式中,所述显示基板的检测装置还包括:液晶盒,所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层,配置为靠近所述像素驱动电路的电压输出端来检测所述像素驱动电路响应于所述检测信号输出的电压,所述像素驱动电路输出的电压不同时,所述液晶盒的液晶层中的液晶分子发生不同的偏转。
在一些实施方式中,所述显示基板的检测装置还包括:光源,所述光源照射所述液晶盒,从而所述液晶盒能够根据所述像素驱动输出的电压的不同而出射能够形成不同图案的光。
附图说明
图1为现有技术中的一种显示基板的制作过程示意图;
图2至图5为本公开实施例提供的显示基板的检测方法的流程示意图;
图6为本公开实施例提供的一种像素驱动电路的结构示意图;
图7为本公开实施例提供的激发信号的一种波形图;
图8为本公开实施例提供的激发信号的另一种波形图;
图9为本公开实施例提供的非激发信号的一种波形图;
图10至图11为本公开实施例提供的显示基板的检测方法的流程示意图;
图12a为现有技术中的一种显示基板的检测结果的示意图;
图12b为本公开实施例提供的一种显示基板的检测结果的示意 图;
图13为本公开实施例提供的一种显示基板的检测装置的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开的技术方案作进一步详细描述。
在显示技术领域,显示基板一般是通过先在大尺寸玻璃基板上制作整块显示母板,然后切割形成。随着技术的发展,显示基板世代线的代数越来越高,制作的显示基板的尺寸也越来越大。为了实现切割的经济性,往往将一块显示母板切割为6块或8块显示基板。以目前的10.5代线为例,可以将在尺寸为2940毫米(mm)*3370mm的玻璃基板上形成的整块显示母板切割成8块65寸的显示基板。图1为现有技术中的一种显示基板的制作过程示意图,如图1所示,可以采用磁控溅射工艺,对玻璃基板101上方的靶材102进行轰击,使得靶材102形成溅射,溅射的靶材粒子在玻璃基板101上相应位置沉积形成金属氧化物薄膜层,构成各个显示器件及显示膜层,再进行切割,最终形成需要的尺寸的显示基板。制作过程中,玻璃基板101上与靶材102正对的区域为靶材区,相邻的靶材区之间的间隙区域为非靶材区。由于金属氧化物溅射设备的原因,在靶材区形成的金属氧化物膜层容易出现不均的问题,从而使得靶材区和非靶材区的金属氧化层具有一定的差异,相应的,在形成的显示基板的靶材区容易引起像素驱动电路中的驱动晶体管的阈值电压发生偏移(例如正向或负向偏移),以及发光二极管的开态电流变化,这样,显示基板的靶材区和非靶材区容易出现显示不均的不良,因此,需要对显示基板进行检测。现有技术中的检测方法准确度较低,即使检测过程中检测图像中没有出现显示不均的不良,在后续的点亮或信赖性测试中也可能会出现显示不均的不良,因此与后续的点亮或信赖性测试的准确度的匹配率较低。为了解决现有技术中的检测方法准确度较低的技术问题,本公开实施例提供了一种显示基板的检测方法及装置。下面将以10.5代线为例 结合附图和具体实施方式,对本公开实施例提供的显示基板的检测方法及装置进行进一步详细说明。
图2为本公开实施例提供的一种显示基板的检测方法的流程示意图,如图2所示,该显示面板的检测方法包括如下步骤S201至S203。
S201,对显示基板中的像素驱动电路中驱动晶体管的阈值电压进行激发。
需要说明的是,显示基板上均设置有多个阵列分布的像素驱动电路,用于驱动显示基板中对应的发光二极管进行发光,以进行显示。像素驱动电路中的驱动晶体管具有一定的阈值电压,由于金属氧化物溅射设备的原因,容易引起显示基板中部分驱动晶体管的阈值电压发生偏移(例如正向或负向偏移),以及发光二极管的开态电流变化。在本公开实施例中,对像素驱动电路中的驱动晶体管的阈值电压进行激发,这样,可以使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移,从而可以提高显示基板的检测准确度。
S202,向显示基板中的像素驱动电路输入检测信号。
需要说明的是,可以利用现有技术中的检测信号的输入方法,向整个显示基板的像素驱动电路输入检测信号,驱动晶体管在检测信号的控制下可以进行工作。例如,为了更容易地发现像素驱动电路中驱动晶体管的阈值电压的偏移,所述检测信号可以使得所述像素驱动电路正常工作而驱动所述显示基板进行低灰阶显示。作为示例,所述检测信号可以为1伏至5伏的电压信号。可以理解的是,由于显示基板中出现显示不均的不良根本上是由于部分驱动晶体管的阈值电压发生偏移(例如正向或负向偏移)引起的,因此需要保证在进行检测时输入的检测信号与像素驱动电路中的驱动晶体管的阈值电压有关,其具体信号及波形在此不再赘述。
S203,根据各所述像素驱动电路输出的电压,判断所述显示基板是否正常。
需要说明的是,在检测信号的控制下,驱动晶体管进行工作,此时,在像素驱动电路的输出端输出电压。由于金属氧化物膜层的制 作原因,部分驱动晶体管的阈值电压可能会出现偏移(例如正向或负向偏移),因此,部分像素驱动电路输出的电压可能不同。再者,本公开实施例中,在输入检测信号前,对驱动晶体管的阈值电压进行了激发,阈值电压发生偏移的驱动晶体管的阈值电压会进一步偏移,这样,在检测信号的控制下,相应的像素驱动电路输出的电压会发生明显变化,从而可提高显示基板的检测准确度。
在一些实施方式中,如图3所示,步骤S203可包括步骤:S203-1,比较各所述像素驱动电路输出的电压是否一致;S203-2,如果各所述像素驱动电路输出的电压一致,则确定所述显示基板正常。
在一些实施方式中,如图4所示,步骤S203-1可包括步骤:S203-11,将液晶盒靠近所述像素驱动电路的电压输出端,所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层;S203-12,向所述液晶盒照射光;以及S203-13,比较对应于各所述像素驱动电路的液晶盒的出射光的图案是否一致。
具体地,步骤S203-1中,所述液晶盒可距离所述像素驱动电路的电压输出端约5μm至15μm,但是,本公开不限于此,只要所述像素驱动电路通过其电压输出端输出的电压能够对所述液晶盒中所述第一电极和所述第二电极之间的电容产生可辨识影响(即,能够对所述液晶盒的液晶层中的液晶分子的偏转产生可辨识影响)即可。
例如,所述液晶盒中的第一电极和第二电极中的一者可以为反射电极,另一者可以为透明电极,可利用光源照射所述液晶盒的透明电极的一侧,然后接收所述液晶盒出射的反射光,再比较对应于各所述像素驱动电路的液晶盒出射的反射光的图案是否一致。
当然,作为选择,所述液晶盒中的第一电极和第二电极二者可以均为透明电极,可利用光源照射所述液晶盒的一侧,然后接收所述液晶盒的另一侧出射的光,再比较对应于各所述像素驱动电路的液晶盒出射的光的图案是否一致。
需要说明的是,可以通过处理器分析和确定对应于各所述像素驱动电路的液晶盒的出射光的图案是否一致,也可以根据实际需要,利用其他合理的方式分析和确定对应于各所述像素驱动电路的液晶 盒的出射光的图案是否一致。
如果对应于各所述像素驱动电路的液晶盒出射的反射光的图案一致,则表示该显示基板正常,在后续测试以及实际应用中不容易出现显示亮度不均的不良;如果对应于各所述像素驱动电路的液晶盒出射的反射光的图案不一致,则表示该显示基板容易出现显示亮度不均的不良,从而可以将该显示基板排除,以节约制作成本。
本公开实施例提供的显示基板的检测方法通过对显示基板上的像素驱动电路中的驱动晶体管的阈值电压进行激发,可以使得部分阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移,再通过对整个显示基板输入检测信号,可以使得相应的像素驱动电路输出的电压发生明显变化,因此可以使得显示基板的检测更为准确,从而实现对显示基板显示不均不良的有效检测。同时,可以直接将检测出容易出现显示不均不良的显示基板排除,实现不良基板的有效拦截,从而提高了与后续的点亮或信赖性测试的准确度的匹配率,进而节约了显示基板的制作成本。
在一些实施方式中,本公开实施例提供的显示基板的检测方法可以应用于如图1所示制作方法形成的显示基板,具体地,该显示基板的检测方法如图5所示,其具体包括如下步骤S301至S303。
S301,对靶材区中的各像素驱动电路中驱动晶体管的阈值电压进行激发。
S302,向靶材区和非靶材区中的各像素驱动电路输入检测信号。
S303,根据靶材区中的像素驱动电路输出的第一电压和非靶材区中的像素驱动电路输出的第二电压,判断所述显示基板是否正常。
在此需要说明的是,该显示基板包括靶材区和非靶材区,在显示基板的制作过程中,由于金属氧化物溅射设备的原因,在靶材区的金属氧化物膜层的厚度容易出现问题,从而容易引起靶材区的驱动晶体管的阈值电压发生偏移(例如正向或负向偏移),而非靶材区的驱动晶体管的阈值电压不容易发生偏移。在本公开实施例中,可以仅对靶材区的驱动晶体管的阈值电压进行激发,而不对非靶材区的驱动晶体管的阈值电压进行激发,可以使得靶材区的阈值电压发生偏移的驱 动晶体管的阈值电压进一步偏移,从而可以使得靶材区的驱动晶体管与非靶材区的晶体管的阈值电压之间的差距更加明显,这样,在对靶材区与非靶材区的像素驱动电路输入同样的检测信号时,靶材区与非靶材区的像素驱动电路可以分别输出第一电压和第二电压,所述第一电压明显不同于所述第二电压,因此可以提高对显示基板的检测的准确度。同时,可以直接将检测出容易出现显示不均不良的显示基板排除,实现不良基板的有效拦截,从而提高了与后续的点亮或信赖性测试的准确度的匹配率,进而节约了显示基板的制作成本。
在一些实施方式中,S301中对靶材区中的像素驱动电路中驱动晶体管的阈值电压进行激发包括:向靶材区中的像素驱动电路输入激发信号,以及向非靶材区中的像素驱动电路输入非激发信号。
需要说明的是,可以独立地对靶材区中的像素驱动电路输入激发信号,独立地对非靶材区中的像素驱动电路输入非激发信号,该激发信号可以为与驱动晶体管的阈值电压有关的信号,当然也可以不对非靶材区中的像素驱动电路做任何处理,这样,可以使得靶材区的阈值电压发生偏移(例如正向或负向偏移)的驱动晶体管的阈值电压进一步偏移,从而使得靶材区与非靶材区的驱动晶体管的阈值电压之间的差距增大,进而提高检测准确度。
图6为本公开实施例提供的一种像素驱动电路的结构示意图,如图6所示,该像素驱动电路包括:第一开关晶体管T1、第二开关晶体管T2、存储电容C、驱动晶体管T和发光二极管D。
第一开关晶体管T1的控制极连接扫描信号端G1,第一极连接数据信号端Data,第二极连接第一节点N1。存储电容C的第一极连接第一节点N1,第二极连接第二节点N2。驱动晶体管T的控制极连接第一节点N1,第一极连接第一电源端VDD,第二极连接第二节点N2。第二开关晶体管T2的控制极连接补偿控制信号端G2,第一极连接补偿信号端Sense,第二极连接第二节点N2。发光二极管D的第一极连接第二节点N2,第二极连接第二电源端VSS。
如图6所示,可通过栅极驱动电路600向扫描信号端G1和补偿控制信号端G2提供信号,可通过源极驱动电路601向数据信号端 Data提供信号,此外,可通过时序控制器603对所述栅极驱动电路600和所述源极驱动电路601进行时序控制。
可以理解的是,在本公开实施例中,各个晶体管的源极和漏极在一定条件下是可以互换的,因此,各个晶体管的源极、漏极从连接关系的描述上是没有区别的。在本公开实施例中,为了区分晶体管的源极和漏极,将其中一极称为第一极,另一极称为第二极,栅极称为控制极。此外,按照晶体管的特性,可以将晶体管分为N型晶体管和P型晶体管,对于N型晶体管,第一极为N型晶体管的源极,第二极为N型晶体管的漏极,栅极输入高电平时,源漏极导通,P型晶体管相反。
本公开实施例中的显示基板包括多个阵列分布的如图6所示的像素驱动电路,下面将以图6所示的像素驱动电路为例,对本公开实施例提供的显示基板的检测方法进行进一步详细说明。
在一些实施方式中,向靶材区中的像素驱动电路输入激发信号包括:向靶材区中的像素驱动电路的数据信号端输入第一数据信号,第一数据信号包括高电平信号。
需要说明的是,上述激发信号的波形图可以如图7所示,具体可以为:向靶材区的像素驱动电路的数据信号端Data输入第一数据信号,该第一数据信号可以为高电平信号;扫描信号端G1输入扫描信号,该扫描信号可以控制第一开关晶体管T1按照预设时序导通或关断;第一电源端VDD输入第一电源电压,第一电源电压可以为接地电压(例如0伏);补偿控制信号端G2可以输入补偿控制信号,该补偿控制信号可以控制第二开关晶体管T2导通或关断;补偿信号端Sense可以输入补偿信号,该补偿信号的电压可以为接地电压(例如0伏)。这样,第一数据信号(即,高电平信号)可以模拟驱动晶体管T的工作信号,对靶材区的驱动晶体管T的阈值电压进行激发,使得阈值电压发生偏移(例如正向偏移)的驱动晶体管T的阈值电压进一步偏移,靶材区与非靶材区的驱动晶体管的阈值电压之间的差距增大,因此可以使得对显示基板的检测更为准确,从而实现对显示基板显示不均不良的有效检测。
在一些实施方式中,向靶材区中的像素驱动电路输入激发信号包括:向靶材区中的像素驱动电路的数据信号端输入第二数据信号,第二数据信号包括低电平信号。
需要说明的是,上述激发信号的波形图可以如图8所示,具体可以为:向靶材区的像素驱动电路的数据信号端Data输入第二数据信号,该第二数据信号可以为低电平信号;扫描信号端G1输入扫描信号,该扫描信号可以控制第一开关晶体管T1按照预设时序导通或关断;第一电源端VDD输入第一电源电压,第一电源电压可以为接地电压(例如0伏);补偿控制信号端G2可以输入补偿控制信号,该补偿控制信号可以控制第二开关晶体管T2导通或关断;补偿信号端Sense可以输入补偿信号,该补偿信号的电压可以为接地电压(例如0伏)。这样,第二数据信号(即,低电平信号)可以模拟驱动晶体管T的工作信号,对靶材区的驱动晶体管T的阈值电压进行激发,使得阈值电压发生偏移(例如负向偏移)的驱动晶体管T的阈值电压进一步偏移,靶材区与非靶材区的驱动晶体管的阈值电压之间的差距增大,因此可以使得对显示基板的检测更为准确,从而实现对显示基板显示不均不良的有效检测。
在本公开实施例中,可不对非靶材区的驱动晶体管T的阈值电压进行激发,因此可以不对非靶材区的驱动晶体管T输入激发信号。当然,也可以对非靶材区的像素驱动电路输入非激发信号,该非激发信号可以如图9所示,具体可以为:向非靶材区的像素驱动电路的数据信号端Data输入第三数据信号,该第三数据信号的电压可以为接地电压(例如0伏);扫描信号端G1输入扫描信号,该扫描信号可以控制第一开关晶体管T1按照预设时序导通开启或关断;第一电源端VDD输入第一电源电压,第一电源电压可以为接地电压(例如0伏);补偿控制信号端G2可以输入补偿控制信号,该补偿控制信号可以控制第二开关晶体管T2导通或关断;补偿信号端Sense可以输入补偿信号,该补偿信号的电压可以为接地电压(例如0伏)。这样,第三数据信号的电压为接地电压(例如0伏),可以模拟驱动晶体管T的非工作信号而不对非靶材区的驱动晶体管T的阈值电压进行激发, 从而可以以非靶材区的驱动晶体管T的阈值电压为参考,使得靶材区与非靶材区的驱动晶体管T的阈值电压之间的差距增大,因此可以使得对显示基板的检测更为准确,从而实现对显示基板显示不均不良的有效检测。
在一些实施方式中,本公开实施例中的第一开关晶体管T1和第二开关晶体管T2可以均为N型晶体管,二者的导通电压为高电平电压,可以为0伏至30伏(例如可以为24伏),关断电压为低电平电压,可以为-20伏至-5伏(例如可以为-10伏)。
需要说明的是,可以向第一开关晶体管T1和第二开关晶体管T2的控制极输入高电平电压,例如该高电平电压可以为24伏,可以使得二者导通。可以向第一开关晶体管T1和第二开关晶体管T2的控制极输入低电平电压,例如该低电平电压可以为-10伏,可以使得二者关断。可以理解的是在本公开实施例中,第一开关晶体管T1和第二开关晶体管T2也可以为P型晶体管,其实现原理类似,在此不再赘述。
此外,所述第一数据信号可以为15伏至30伏的高电平信号。
应当理解,为了确保对第一开关晶体管T1和第二开关晶体管T2的有效控制,所述第二数据信号的电平电压可高于扫描信号端G1输入的扫描信号的电平电压。
例如,所述第一开关晶体管T1的控制极输入-10伏的低电平电压时,所述第二数据信号可以为-8伏至-2伏的低电平信号。
在一些实施方式中,如图10所示,上述步骤S303可包括步骤:S303-1,比较靶材区中像素驱动电路输出的电压和非靶材区中像素驱动电路输出的电压是否一致;S303-2,若靶材区中像素驱动电路输出的电压和非靶材区中像素驱动电路输出的电压一致,则确定显示基板正常。
在一些实施方式中,如图11所示,步骤S303-1可包括步骤:S303-11,将液晶盒靠近所述像素驱动电路的电压输出端(例如图6所示第二节点N2),所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层;S303-12,向所述液晶盒照射光;以 及S303-13,比较对应于所述靶材区中所述像素驱动电路的液晶盒的出射光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒的出射光的图案是否一致。
具体地,步骤S303-1中,所述液晶盒可距离所述像素驱动电路的电压输出端约5μm至15μm,但是,本公开不限于此,只要所述像素驱动电路通过其电压输出端输出的电压能够对所述液晶盒中所述第一电极和所述第二电极之间的电容产生可辨识影响(即,能够对所述液晶盒的液晶层中的液晶分子的偏转产生可辨识影响)即可。
例如,所述液晶盒中的第一电极和第二电极中的一者可以为反射电极,另一者可以为透明电极,可利用光源照射所述液晶盒的透明电极的一侧,然后接收所述液晶盒出射的反射光,再比较对应于所述靶材区中所述像素驱动电路的液晶盒出射的反射光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒出射的反射光的图案是否一致。
当然,作为选择,所述液晶盒中的第一电极和第二电极二者可以均为透明电极,可利用光源照射所述液晶盒的一侧,然后接收所述液晶盒的另一侧出射的光,再比较对应于所述靶材区中所述像素驱动电路的液晶盒出射的光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒出射的光的图案是否一致。
需要说明的是,可以通过处理器分析和确定对应于所述靶材区中所述像素驱动电路的液晶盒的出射光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒的出射光的图案是否一致,也可以根据实际需要,利用其他合理的方式分析和确定对应于所述靶材区中所述像素驱动电路的液晶盒的出射光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒的出射光的图案是否一致。
如果对应于所述靶材区中所述像素驱动电路的液晶盒的出射光的图案与对应于所述非靶材区中所述像素驱动电路的液晶盒的出射光的图案一致,则表示该显示基板正常,在后续测试以及实际应用中不容易出现显示亮度不均的不良;如果对应于所述靶材区中所述像素驱动电路的液晶盒的出射光的图案与对应于所述非靶材区中所述像 素驱动电路的液晶盒的出射光的图案不一致,则表示该显示基板容易出现显示亮度不均的不良,从而可以将该显示基板排除,以节约制作成本。
图12a为现有技术中的一种显示基板的检测结果的示意图,利用现有技术中的检测方法对现有的显示基板进行检测,如图12a中左图所示,在检测过程中,显示基板中靶材区和非靶材区中未出现显示不均的不良,然而,如图12a中右图所示,在实际应用中该显示基板仍然出现了显示不均的不良。图12b为本公开实施例提供的一种显示基板的检测结果的示意图,利用本公开实施例提供的检测方法对同样的显示基板进行检测,如图12b中左图所示,对靶材区的驱动晶体管的阈值电压进行激发,在检测过程中,显示基板中靶材区和非靶材区中出现显示不均的不良,如图12b中右图所示,在实际应用中该显示基板同样出现了显示不均的不良。因此可以看出,利用本公开实施例提供的显示基板的检测方法,通过对靶材区中的驱动晶体管的阈值电压进行激发后,再对整个显示基板中的像素驱动电路输入检测信号进行检测,可以使得靶材区与非靶材区的驱动晶体管的阈值电压之间的差距增大,靶材区和非靶材区的像素驱动电路输出的第一电压和第二电压之间的差距较为明显,因此可以使得对显示基板的检测更为准确,从而实现对显示基板显示不均不良的有效检测。同时,可以直接将检测出容易出现显示不均不良的显示基板排除,实现不良基板的有效拦截,从而提高了与后续的点亮或信赖性测试的准确度的匹配率,进而节约了显示基板的制作成本。
基于同一构思,本公开实施例提供了一种显示基板的检测装置,图13为本公开实施例提供的一种显示基板的检测装置的结构示意图,如图13所示,该显示基板的检测装置包括:时序控制器603,配置为对所述显示基板中的栅极驱动电路600和源极驱动电路601进行时序控制,以通过所述栅极驱动电路600和所述源极驱动电路601对所述显示基板中的像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移,然后,对 所述显示基板中的栅极驱动电路600和源极驱动电路601进行时序控制,以通过所述栅极驱动电路600和所述源极驱动电路601向所述显示基板中的所述像素驱动电路输入检测信号,所述检测信号为使得所述像素驱动电路正常工作的信号;以处理器604,配置为根据各所述像素驱动电路响应于所述检测信号输出的电压,判断所述显示基板是否正常。
在一些实施方式中,如图13所示,所述显示基板的检测装置还包括:液晶盒605,所述液晶盒605包括第一电极111、第二电极112、及第一电极111和第二电极112之间的液晶层113,配置为靠近所述像素驱动电路的电压输出端来检测所述像素驱动电路响应于所述检测信号输出的电压,所述像素驱动电路输出的电压不同时,所述液晶盒605的液晶层113中的液晶分子发生不同的偏转。
在一些实施方式中,所述显示基板的检测装置还包括:光源606,所述光源606照射所述液晶盒605,从而所述液晶盒605能够根据所述像素驱动输出的电压的不同而出射能够形成不同图案的光。
需要说明的是,本公开实施例提供的显示基板的检测装置可以执行上述实施例中的显示基板的检测方法中的步骤S201至S203或S301至S303,其实现原理与上述实施例提供的显示基板的检测方法的实现原理类似,在此不再赘述。
应当理解,本公开中所涉及的“一致”是指实质上一致,也就是说,即使二者之间存在差异,但是该差异可忽略或者在容差范围内,则可以认为该二者一致;相应地,“不一致”是指存在不可忽略的差异,例如,如果二者之间存在大于预定阈值的差异,则可以认为该二者不一致,这里的预定阈值可以根据需要或实践经验计算获得或者设定,本公开对此不进行具体限定。
可以理解的是,以上实施例及实施方式仅仅是为了说明本公开的原理而采用的示例性实施例及实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为落入本公开的保护范围。

Claims (13)

  1. 一种显示基板的检测方法,包括:
    对所述显示基板中的各像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移;
    向所述显示基板中的各所述像素驱动电路输入检测信号,所述检测信号为使得所述像素驱动电路正常工作的信号;
    根据各所述像素驱动电路输出的电压,判断所述显示基板是否正常。
  2. 根据权利要求1所述的显示基板的检测方法,其中,所述显示基板具有靶材区和非靶材区;所述靶材区为制作过程中与靶材正对的区域,所述非靶材区为相邻的所述靶材区之间的间隙区域;所述显示基板的检测方法包括:
    对所述靶材区中的各像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移;
    向所述靶材区和所述非靶材区中的各所述像素驱动电路输入检测信号;
    根据所述靶材区中的所述像素驱动电路输出的第一电压和所述非靶材区中的所述像素驱动电路输出的第二电压,判断所述显示基板是否正常。
  3. 根据权利要求2所述的显示基板的检测方法,其中,所述对所述靶材区中的像素驱动电路中驱动晶体管的阈值电压进行激发包括:
    向所述靶材区中的各所述像素驱动电路输入激发信号,以及向所述非靶材区中的各所述像素驱动电路输入非激发信号,所述激发信号模拟所述驱动晶体管的工作信号,所述非激发信号模拟所述驱动晶体管的非工作信号。
  4. 根据权利要求3所述的显示基板的检测方法,其中,所述像素驱动电路包括第一开关晶体管、第二开关晶体管、存储电容、驱动晶体管和发光二极管,
    所述第一开关晶体管的控制极连接扫描信号端,第一极连接数据信号端,第二极连接第一节点;
    所述存储电容的第一极连接所述第一节点,第二极连接第二节点;
    所述驱动晶体管的控制极连接所述第一节点,第一极连接第一电源端,第二极连接所述第二节点;
    所述第二开关晶体管的控制极连接补偿控制信号端,第一极连接补偿信号端,第二极连接所述第二节点;
    所述发光二极管的第一极连接所述第二节点,第二极连接第二电源端。
  5. 根据权利要求4所述的显示基板的检测方法,其中,所述向所述靶材区中的所述像素驱动电路输入激发信号包括:
    向所述靶材区中的各所述像素驱动电路的所述数据信号端输入第一数据信号,所述第一数据信号包括高电平信号。
  6. 根据权利要求4所述的显示基板的检测方法,其中,所述向所述靶材区中的所述像素驱动电路输入激发信号包括:
    向所述靶材区中的各所述像素驱动电路的所述数据信号端输入第二数据信号,所述第二数据信号包括低电平信号。
  7. 根据权利要求4所述的显示基板的检测方法,其中,所述向所述非靶材区中的所述像素驱动电路输入非激发信号包括:
    向所述非靶材区中的所述像素驱动电路的所述数据信号端输入第三数据信号,所述第三数据信号的电压为接地电压。
  8. 根据权利要求1所述的显示基板的检测方法,其中,所述检测信号包括使得所述像素驱动电路驱动所述显示基板进行低灰阶显示的数据信号。
  9. 根据权利要求1所述的显示基板的检测方法,其中,所述根据各所述像素驱动电路输出的电压判断所述显示基板是否正常包括:
    比较各所述像素驱动电路输出的电压是否一致;
    如果各所述像素驱动电路输出的电压一致,则确定所述显示基板正常。
  10. 根据权利要求9所述的显示基板的检测方法,其中,比较各所述像素驱动电路输出的电压是否一致包括:
    将液晶盒靠近所述像素驱动电路的电压输出端,所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层;
    向所述液晶盒照射光;以及
    比较对应于各所述像素驱动电路的液晶盒的出射光的图案是否一致。
  11. 一种显示基板的检测装置,包括:
    时序控制器,配置为对所述显示基板中的栅极驱动电路和源极驱动电路进行时序控制,以通过所述栅极驱动电路和所述源极驱动电路对所述显示基板中的像素驱动电路中驱动晶体管的阈值电压进行激发,使得阈值电压发生偏移的驱动晶体管的阈值电压进一步偏移,然后,对所述显示基板中的栅极驱动电路和源极驱动电路进行时序控制,以通过所述栅极驱动电路和所述源极驱动电路向所述显示基板中的所述像素驱动电路输入检测信号,所述检测信号为使得所述像素驱动电路正常工作的信号;以及
    处理器,配置为根据各所述像素驱动电路响应于所述检测信号输出的电压,判断所述显示基板是否正常,并且响应于各所述像素驱动电路输出的电压一致而确定所述显示基板正常。
  12. 根据权利要求11所述的显示基板的检测装置,还包括:
    液晶盒,所述液晶盒包括第一电极、第二电极、及第一电极和第二电极之间的液晶层,配置为靠近所述像素驱动电路的电压输出端来检测所述像素驱动电路响应于所述检测信号输出的电压,所述像素驱动电路输出的电压不同时,所述液晶盒的液晶层中的液晶分子发生不同的偏转。
  13. 根据权利要求12所述的显示基板的检测装置,还包括:
    光源,所述光源照射所述液晶盒,从而所述液晶盒能够根据所述像素驱动输出的电压的不同而出射能够形成不同图案的光。
PCT/CN2021/070486 2020-01-06 2021-01-06 显示基板的检测方法及装置 WO2021139686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,297 US11594162B2 (en) 2020-01-06 2021-01-06 Method and device for detecting display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010009304.X 2020-01-06
CN202010009304.XA CN111179793B (zh) 2020-01-06 2020-01-06 显示基板的检测方法及装置

Publications (1)

Publication Number Publication Date
WO2021139686A1 true WO2021139686A1 (zh) 2021-07-15

Family

ID=70652428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070486 WO2021139686A1 (zh) 2020-01-06 2021-01-06 显示基板的检测方法及装置

Country Status (3)

Country Link
US (1) US11594162B2 (zh)
CN (1) CN111179793B (zh)
WO (1) WO2021139686A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179793B (zh) 2020-01-06 2022-03-25 京东方科技集团股份有限公司 显示基板的检测方法及装置
CN113345355B (zh) * 2021-06-09 2022-08-23 云谷(固安)科技有限公司 显示面板的Mura检测方法、装置及介质
CN114035020A (zh) * 2021-09-29 2022-02-11 重庆康佳光电技术研究院有限公司 背板电路检测装置及方法
CN114283718B (zh) * 2021-12-23 2023-10-24 云谷(固安)科技有限公司 显示面板的Mura检测方法、装置及可读存储介质
US11837154B2 (en) * 2022-04-19 2023-12-05 Novatek Microelectronics Corp. Driving device and operation method thereof and display apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804647A (zh) * 2006-01-13 2006-07-19 广辉电子股份有限公司 有机发光显示面板的测试装置与方法
CN101387764A (zh) * 2007-09-13 2009-03-18 北京京东方光电科技有限公司 液晶显示器临界点不良测试方法
CN103572240A (zh) * 2013-11-20 2014-02-12 京东方科技集团股份有限公司 一种镀膜装置
US20150145754A1 (en) * 2013-11-25 2015-05-28 Sarnsung Display Co., Ltd. Pixel circuit for increasing accuracy of current sensing
CN106128342A (zh) * 2016-06-24 2016-11-16 京东方科技集团股份有限公司 阵列基板、显示装置及阵列基板的检测方法
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN107610629A (zh) * 2017-11-06 2018-01-19 合肥鑫晟光电科技有限公司 阵列基板驱动电路的检测方法
CN107680522A (zh) * 2017-09-30 2018-02-09 京东方科技集团股份有限公司 一种显示面板检测方法及其装置
CN107863055A (zh) * 2017-11-29 2018-03-30 武汉天马微电子有限公司 一种柔性基板及其状态检测方法、显示装置
CN108053785A (zh) * 2017-12-29 2018-05-18 武汉华星光电半导体显示技术有限公司 Oled显示面板的检测模块及检测装置
CN111179793A (zh) * 2020-01-06 2020-05-19 京东方科技集团股份有限公司 显示基板的检测方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064403B1 (ko) * 2009-10-07 2011-09-14 삼성모바일디스플레이주식회사 원장검사가 가능한 유기전계발광 표시장치의 모기판 및 그의 원장검사방법
WO2011125109A1 (ja) * 2010-04-05 2011-10-13 パナソニック株式会社 有機el表示装置の表示方法および有機el表示装置
KR101831368B1 (ko) * 2011-06-03 2018-02-23 삼성디스플레이 주식회사 유기 발광 표시 장치의 어레이 시험 장치 및 시험 방법, 및 유기 발광 표시 장치의 제조 방법
KR101918185B1 (ko) * 2012-03-14 2018-11-14 삼성디스플레이 주식회사 어레이 검사 방법 및 어레이 검사 장치
US10269275B2 (en) * 2014-06-13 2019-04-23 Joled Inc. Display panel inspecting method and display panel fabricating method
CN105513536B (zh) * 2016-02-02 2018-06-29 京东方科技集团股份有限公司 一种像素驱动芯片、方法及像素结构
CN109767975B (zh) * 2019-01-16 2021-11-05 合肥鑫晟光电科技有限公司 半导体层的制备方法及装置、显示基板制备方法
CN110070833B (zh) * 2019-04-19 2020-08-04 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其驱动方法
CN110288933B (zh) * 2019-06-25 2023-03-21 京东方科技集团股份有限公司 一种电致发光阵列基板的检测方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804647A (zh) * 2006-01-13 2006-07-19 广辉电子股份有限公司 有机发光显示面板的测试装置与方法
CN101387764A (zh) * 2007-09-13 2009-03-18 北京京东方光电科技有限公司 液晶显示器临界点不良测试方法
CN103572240A (zh) * 2013-11-20 2014-02-12 京东方科技集团股份有限公司 一种镀膜装置
US20150145754A1 (en) * 2013-11-25 2015-05-28 Sarnsung Display Co., Ltd. Pixel circuit for increasing accuracy of current sensing
CN106128342A (zh) * 2016-06-24 2016-11-16 京东方科技集团股份有限公司 阵列基板、显示装置及阵列基板的检测方法
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN107680522A (zh) * 2017-09-30 2018-02-09 京东方科技集团股份有限公司 一种显示面板检测方法及其装置
CN107610629A (zh) * 2017-11-06 2018-01-19 合肥鑫晟光电科技有限公司 阵列基板驱动电路的检测方法
CN107863055A (zh) * 2017-11-29 2018-03-30 武汉天马微电子有限公司 一种柔性基板及其状态检测方法、显示装置
CN108053785A (zh) * 2017-12-29 2018-05-18 武汉华星光电半导体显示技术有限公司 Oled显示面板的检测模块及检测装置
CN111179793A (zh) * 2020-01-06 2020-05-19 京东方科技集团股份有限公司 显示基板的检测方法及装置

Also Published As

Publication number Publication date
US20220157212A1 (en) 2022-05-19
US11594162B2 (en) 2023-02-28
CN111179793B (zh) 2022-03-25
CN111179793A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021139686A1 (zh) 显示基板的检测方法及装置
TWI585425B (zh) 線路與解多工器之缺陷檢測方法、缺陷檢測裝置、以及包含該缺陷檢測裝置之顯示面板
US10175808B2 (en) In-cell touch screen panel, driving method thereof, and display device
US7358756B2 (en) Method and apparatus for testing liquid crystal display device
EP3316087B1 (en) In-cell touch display panel, driving method therefor, and display device
TWI317112B (en) Pixel circuit board test method, pixel circuit, pixel circuit test method, and test apparatus
US20060267948A1 (en) Liquid crystal display device with tablet function
CN107170400B (zh) 一种电致发光显示面板及其检测方法、显示装置
WO2017118212A1 (zh) 显示面板测试方法及测试装置
US8054257B2 (en) Organic light emitting display and driving method of inspection circuit of organic light emitting display
US20210241664A1 (en) Method of detecting threshold voltage shift and threshold votage shift detection device
WO2021104372A1 (zh) 像素电路与检测方法
JP6852188B2 (ja) 有機発光表示パネル補修方法及び有機発光表示パネル
US20040155838A1 (en) Apparatus and method for testing pixels of flat panel display
US20060267625A1 (en) Active matrix display circuit substrate, display panel including the same, inspection method thereof, and inspection device thereof
JP3835688B2 (ja) パッシブマトリクス有機薄膜発光ディスプレイおよびその修復方法
JP2007140315A (ja) 発光装置
US10573210B2 (en) Test circuit, array substrate, and light-emitting display apparatus
JP2007183265A (ja) 表面電子放出素子アレイを利用したtft検査装置、及びその検査方法
US9095031B2 (en) Organic light emitting diode driving circuit, display panel, display and driving method
JPWO2004109376A1 (ja) アレイ基板の検査方法
US20240168081A1 (en) Display panel and burn-in test method of the display panel
KR101564984B1 (ko) 유기전계 발광소자용 기판
KR101274656B1 (ko) 표시장치용 트랜지스터 어레이 기판
KR100385881B1 (ko) 전계방출 표시장치 및 그의 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21738447

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21738447

Country of ref document: EP

Kind code of ref document: A1