WO2021129372A1 - 一种基于摩擦纳米发电机的自驱动位移传感器 - Google Patents
一种基于摩擦纳米发电机的自驱动位移传感器 Download PDFInfo
- Publication number
- WO2021129372A1 WO2021129372A1 PCT/CN2020/134373 CN2020134373W WO2021129372A1 WO 2021129372 A1 WO2021129372 A1 WO 2021129372A1 CN 2020134373 W CN2020134373 W CN 2020134373W WO 2021129372 A1 WO2021129372 A1 WO 2021129372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- material layer
- dielectric material
- cylinder
- displacement
- inner column
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Definitions
- the invention relates to a self-powered sensing device used for structural dynamic displacement monitoring, in particular to a self-driving displacement sensor based on a friction nano generator.
- strain testing is a very important link for engineers to optimize the design of the structure, understand the stress state of the structure, and ensure the safety of the structure.
- strain measuring instruments are widely used for strain measurement of bridges, railways, dams, and various construction facilities. At present, the commonly used strain measuring instruments mainly include dial gauge strain gauges, resistance strain gauges, vibrating wire sensors, and so on.
- the dial gauge strain gauge is used, it is more limited in practical application due to the limitation of label length and installation; if the resistance strain gauge is used, it has non-linearity, weak output signal, poor anti-interference ability, and is affected by the environment. It can only measure the strain of a point on the surface of the component along a certain direction and cannot perform global measurement; if a vibrating wire sensor is used, the sensor material and processing technology are required to be high, and the measurement accuracy is low.
- the present invention proposes a self-driving displacement sensor based on a friction nanogenerator, which can be used to measure the vibration displacement of a structure without additional energy supply, and can convert the mechanical energy of the structure to be tested into electrical energy.
- the electrical signal is output in the form of an electrical signal, and the displacement of the structure is calculated by the electrical signal.
- it has the characteristics of low cost, high precision, wide application range, easy processing and simple operation.
- a self-driving displacement sensor based on a friction nanogenerator includes a cylindrical inner column and a cylinder with a cylindrical cavity.
- One end of the inner column is fixedly connected to a component to be measured, and the other end is inserted Into the cavity of the cylinder; the cylinder is fixed at a stable fixed end; the inner column is composed of an inner rigid substrate, an inner electrode layer and an inner dielectric material layer from the inside to the outside, the cylinder From the inside to the outside, it is composed of an outer dielectric material layer, an outer electrode layer, and an outer rigid substrate.
- the inner dielectric material layer is attached to the outer dielectric material layer, and the polarity of the inner dielectric material layer is the same as that of the outer dielectric material.
- the polarities of the layers are opposite; the inner column and the cylinder produce axial relative displacement with the displacement of the component to be measured, and the inner dielectric material layer and the outer dielectric material layer rub against, thereby generating an electrical signal.
- an elastic material layer is arranged between the inner rigid substrate and the inner electrode layer of the inner column, so that when the inner column is inserted into the cylinder, the inner dielectric material layer is attached to the outer dielectric material layer.
- an elastic material layer is arranged between the outer rigid substrate and the outer electrode layer of the cylinder, so that when the inner column is inserted into the cylinder, the inner dielectric material layer is attached to the outer dielectric material layer.
- a measuring circuit which includes a wire and an electrical signal measuring device, the electrical signal measuring device measures the potential difference between the two conductive layers, and calculates the magnitude of the displacement based on the magnitude of the potential difference.
- the present invention can convert the mechanical energy of structural vibration into electrical energy to achieve the effect of self-supply. According to its power-to-electric conversion characteristics, the mechanical law when the component undergoes a small displacement is converted into an electrical signal, according to the displacement-output relationship of the device. Get the displacement of the structure.
- the present invention designs the displacement sensor to be cylindrical, and the circular contact surface conveniently applies additional pressure to the two dielectric material layers uniformly to make the contact closer and avoid the problem of poor contact in the friction structure; On the other hand, the friction contact area can be as large as possible under the limited equipment volume, and the electrical signal output is more obvious.
- a self-driving displacement sensor based on a friction nanogenerator has simple structure, wide application range, high measurement accuracy, no need for additional power supply, and low cost.
- Figure 1 is a schematic diagram of the structure of the present invention.
- Fig. 2 is a schematic diagram of the installation of a self-driving displacement sensor based on a friction nanogenerator shown in Fig. 1 on a component to be measured.
- Fig. 3 is a diagram of the movement state of the displacement sensor shown in Fig. 2 when the component to be measured is displaced upward.
- Fig. 4 is a movement state diagram of the displacement sensor shown in Fig. 2 when the component to be measured is displaced downward.
- outer rigid substrate 1 outer electrode layer 2, outer dielectric material layer 3, inner dielectric material layer 4, inner electrode layer 5, elastic material layer 6 and inner rigid substrate 7.
- the displacement sensor of the present invention includes a cylindrical inner column and a cylinder with a cylindrical cavity.
- One end of the inner column is fixedly connected to the component to be measured, and the other end is inserted into the cylinder.
- the cylinder is fixed at a stable fixed end;
- the inner column is composed of an inner rigid substrate 7, an inner electrode layer 5 and an inner dielectric material layer 4 from the inside to the outside, and the cylinder is from the inside to the outside.
- the outer layer is composed of an outer dielectric material layer 3, an outer electrode layer 2 and an outer rigid substrate 1.
- the inner dielectric material layer 4 is attached to the outer dielectric material layer 3, and the polarity of the inner dielectric material layer 4 is the same as that of the outer rigid substrate 1.
- the polarity of the dielectric material layer 3 is opposite; the inner column and the cylinder produce axial relative displacement with the displacement of the component to be measured, and the inner dielectric material layer 4 and the outer dielectric material layer 3 rub, thereby Generate electrical signals.
- an elastic material layer 6 is provided between the inner rigid substrate 7 of the inner column and the inner electrode layer 5, such as As shown in Figure 1.
- the elastic material layer 6 may also be arranged between the outer rigid substrate 7 and the outer electrode layer 2 of the cylinder.
- the displacement sensor of the present invention also includes a measuring circuit.
- the measuring circuit includes a wire and an electric signal measuring device.
- the electric signal measuring device measures the electric potential difference between the two conductive layers and calculates the magnitude of the displacement based on the electric potential difference.
- FIG. 2 shows the initial state after the displacement sensor is installed.
- the inner column is embedded in the cylindrical cavity of the cylinder, and the elastic material layer 6 is squeezed to give a certain uniform additional pressure to the inner column and the cylinder to make the inner dielectric material layer 4 and the outer dielectric material layer 3 maintain close contact.
- the structure vibrates, it drives the inner column to move upwards ( Figure 3) and downwards ( Figure 4) in the axial direction.
- the inner dielectric material layer 4 and the outer dielectric material layer 3 are rubbed, thereby generating charge transfer.
- a potential difference is generated between the layers, and the electrical signal measuring device can measure the magnitude of the potential difference, and obtain the structural displacement by measuring the magnitude of the potential difference.
- the electrical signal measuring device and related connecting wires can be integrated on the outer substrate.
- x(t) represents the relative displacement between the inner column and the cylinder.
- x(t) changes from 0 to the maximum.
- the electrode plates are charged, and the surfaces of the two electrode plates obtain opposite electrostatic charges, with equal charge density ⁇ (contact friction produces Charge density).
- the electric charge generates current through the external circuit.
- the voltage can be expressed as:
- the voltage V(t) and x(t) have a mapping relationship x(t) ⁇ V(t) at a certain time t, that is, at a certain time t, by measuring the voltage V( t), the displacement amount x(t) at the moment can be obtained so that the displacement magnitude can be expressed as an electrical signal through the measurement circuit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
一种基于摩擦纳米发电机的自驱动位移传感器,包括一圆柱形内柱与一带有圆柱形空腔的圆筒,内柱一端固定连接在待测构件上,另一端插入到圆筒的空腔中,内柱随待测构件的位移与圆筒产生轴向相对位移,内介电材料层(4)和外介电材料层(3)摩擦,从而产生电信号。基于摩擦纳米发电机的自驱动位移传感器具有结构简单、应用范围广、测量精度高、无需额外提供电源、成本低廉、易加工和操作简便的优点。
Description
本发明涉及用于结构动位移监测的自供能传感设备,尤其是一种基于摩擦纳米发电机的自驱动位移传感器。
在风荷载、地震荷载和交通荷载等外荷载作用下,土木工程结构会产生振动和位移,超过一定限值将影响结构的正常使用,甚至造成结构的破坏,所以必须要通过加强对建筑物结构振动的位移监测,来确保其安全性和可行性。目前的位移监测多数是利用应变测试完成的,结构的应变测试是工程人员进行结构优化设计,了解结构受力状态以及保证结构安全的一个很重要的环节。在现今的土木工程行业中,应变测量仪器广泛地应用于桥梁、铁路、大坝以及各种建筑设施的应变测量。目前常用的应变测量仪器主要有千分表应变计、电阻应变计、振弦式传感器,等等。其中,如采用千分表应变计,由于标注长度以及安装的限制,在实际应用中受限较大;如采用电阻应变计,具有非线性,输出信号微弱,抗干扰能力较差,受环境影响较大,且其只能测构件表面一个点沿某个方向的应变而不能进行全域性测量;如采用振弦式传感器,则对传感器材料及加工工艺要求较高,且测量精度较低。
发明内容
针对现有技术的不足,本发明提出一种基于摩擦纳米发电机的自驱动位移传感器,能够用于结构振动位移的测量,并且无需额外提供能源,能够将待测结构的机械能转化为电能并以电信号的形式输出,以该电信号计算出结构的位移大小,同时还具备成本低廉、精度高、应用范围广、易加工和操作简便等特点。具体技术方案如下:
提供一种基于摩擦纳米发电机的自驱动位移传感器,该位移传感器包括一圆柱形内柱与一带有圆柱形空腔的圆筒,所述内柱一端固定连接在待测构件上,另一端插入到所述圆筒的空腔中;所述圆筒固定于稳定的固定端;所述内柱由内到外分别由内刚性基板、内电极层和内介电材料层构成,所述圆筒由内到外分别由外介电材料层、外电极层和外刚性基板构成,所述内介电材料层与外介电材料层贴合,内介电材料层的极性与外介电材料层的极性相反;所述的内柱随待测构件的位移与所述圆筒产生轴向相对位移,所述内介电材料层和外介电材料层摩擦,从而产生电信号。
进一步地,内柱的内刚性基板与内电极层之间设置弹性材料层,使得内柱插入所述的 圆筒时内介电材料层与外介电材料层贴合。
进一步地,圆筒的外刚性基板与外电极层之间设置弹性材料层,使得内柱插入所述的圆筒时内介电材料层与外介电材料层贴合。
进一步地,还包括测量电路,测量电路包括电线与电信号测量装置,电信号测量装置测量两个导电层之间的电势差,并通过电势差大小计算位移大小。
本发明的有益效果是:
(1)本发明可以将结构振动的机械能转化为电能,达到自供能的效果,根据其力电转换特性将构件发生微小位移时的力学规律转化为电信号,根据装置的位移-输出关系即可得到结构的位移。
(2)本发明将位移传感器设计为柱形,圆形的接触面方便地给两层介电材料层均匀地加上附加压力,使其接触更紧密,避免了摩擦结构中接触不良的问题;另一方面可以在有限的设备体积下获得尽量大的摩擦接触面积,电信号输出更为明显。
(3)相比其他应变测量装置来说,一种基于摩擦纳米发电机的自驱动位移传感器结构简单、应用范围广、测量精度高、无需额外提供电源、成本低廉。
图1是本发明的结构示意图。
图2是图1所示一种基于摩擦纳米发电机的自驱动位移传感器在待测构件上的安装示意图。
图3是图2所示待测构件向上位移的位移传感计运动状态图。
图4是图2所示待测构件向下位移的位移传感计运动状态图。
图中标号:外刚性基板1、外电极层2、外介电材料层3、内介电材料层4、内电极层5、弹性材料层6和内刚性基板7。
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的位移传感器包括一圆柱形内柱与一带有圆柱形空腔的圆筒,所述内柱一端固定连接在待测构件上,另一端插入到所述圆筒的空腔中;所述圆筒固定于稳定的固定端;所述内柱由内到外分别由内刚性基板7、内电极层5和内介电材料层4构成,所述圆筒由内到外分别由外介电材料层3、外电极层2和外刚性基板1构成,所述内介电材料层4与外介电材料层3贴合,内介电材料层4的极性与外介电材料层3的极性相反;所述的内柱随待测构件的位移与所述圆筒产生轴向相对位移,所述内介电材料层4和外介电 材料层3摩擦,从而产生电信号。
作为其中一种实施方式,为了使内介电材料层4与外介电材料层3贴合贴合紧密,在内柱的内刚性基板7与内电极层5之间设置弹性材料层6,如图1所示。该弹性材料层6也可以设置在圆筒的外刚性基板7与外电极层2之间。
本发明的位移传感器还包括测量电路,测量电路包括电线与电信号测量装置,电信号测量装置测量两个导电层之间的电势差,并通过电势差大小计算位移大小。
本发明的位移传感器与待测构件的安装如图2所示。内柱与外圆筒分别固定在待测构件和固定端上,固定方式包括但不限于胶黏剂。图2展示了位移传感器安装之后的初始状态,内柱嵌入圆筒的圆柱形空腔中,弹性材料层6受到挤压从而给予内柱与圆筒一定的均匀附加压力,使内介电材料层4和外介电材料层3保持紧密接触。结构发生振动后,带动内柱沿轴向向上(图3)和向下(图4)位移,内介电材料层4与外介电材料层3发生摩擦,从而产生电荷转移,在两个电极层之间产生电势差,电信号测量装置可以测得电势差的大小,通过测量电势差的大小,求得结构位移。该电信号测量装置及相关的连接导线可集成在外基板上。
本发明的一种基于摩擦纳米发电机的自驱动位移传感器实现位移测量的原理如下:
在一种基于摩擦纳米发电机的自驱动位移传感器中,两种介电材料的厚度分别为d
1和d
2,两者的相对介电常数分别为ε
r1和ε
r2。x(t)代表内柱和圆筒之间的相对位移。当位移传感器工作时,x(t)从0到最大变化。当两个涂有介电材料的电极板无相对位移(即x(t)=0),电极板充电,两个电极板的表面获得相反的静电荷,具有相等的电荷密度σ(接触摩擦产生的电荷密度)。并且当两电极板产生相对位移时,电荷经外加电路产生电流。当负载电阻给定为R时,电荷量Q的表达式为:
其中,d
0=d
1/ε
r1+d
2/ε
r2,为介电材料的等效厚度,l为x(t)=0时内柱和圆筒接触的长度,w为内柱的外周周长,ε
0为真空介电常数。
电压可表示为:
联立(1)(2)两式,可以得到电压V(t)与x(t)在某时刻t存在映射关系x(t)→V(t),即某时刻t,通过测量电压V(t),能够得出此刻的位移量x(t)从而通过测量电路将位移大小表 达为电信号。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。
Claims (1)
- 一种基于摩擦纳米发电机的自驱动位移传感器,其特征在于,该位移传感器包括一圆柱形内柱与一带有圆柱形空腔的圆筒,所述内柱一端固定连接在待测构件上,另一端插入到所述圆筒的空腔中;所述圆筒固定于稳定的固定端;所述内柱由内到外分别由内刚性基板、内电极层和内介电材料层构成,所述圆筒由内到外分别由外介电材料层、外电极层和外刚性基板构成,所述的内柱的内刚性基板与内电极层之间设置弹性材料层,使得所述的内柱插入所述的圆筒时所述内介电材料层与外介电材料层贴合;所述内介电材料层与外介电材料层贴合,内介电材料层的极性与外介电材料层的极性相反;所述的圆筒的外刚性基板与外电极层之间设置弹性材料层,使得所述的内柱插入所述的圆筒时所述内介电材料层与外介电材料层贴合;所述的内柱随待测构件的位移与所述圆筒产生轴向相对位移,所述内介电材料层和外介电材料层摩擦,从而产生电信号;该位移传感器还包括测量电路,测量电路包括电线与电信号测量装置,电信号测量装置测量两个导电层之间的电势差,并通过电势差大小计算位移大小;当负载电阻给定为R时,电荷量Q的表达式为:其中,d 0为介电材料的等效厚度,d 0=d 1/ε r1+d 2/ε r2,d 1和d 2分别为内介电材料层、外介电材料层的厚度;ε r1和ε r2分别为内介电材料层、外介电材料层的相对介电常数,x(t)代表内柱和圆筒之间的相对位移;l为x(t)=0时内柱和圆筒接触的长度,w为内柱的外周周长,ε 0为真空介电常数;电压表示为:联立(1)(2)两式,得到电压V(t)与x(t)在某时刻t存在映射关系x(t)→V(t),即某时刻t,通过测量电压V(t),能够得出此刻的位移量x(t),从而通过测量电路将位移大小表达为电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911384633.6 | 2019-12-28 | ||
CN201911384633.6A CN111059995B (zh) | 2019-12-28 | 2019-12-28 | 一种基于摩擦纳米发电机的自驱动位移传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021129372A1 true WO2021129372A1 (zh) | 2021-07-01 |
Family
ID=70304376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/134373 WO2021129372A1 (zh) | 2019-12-28 | 2020-12-08 | 一种基于摩擦纳米发电机的自驱动位移传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111059995B (zh) |
WO (1) | WO2021129372A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111059995B (zh) * | 2019-12-28 | 2020-12-25 | 浙江大学 | 一种基于摩擦纳米发电机的自驱动位移传感器 |
CN111911333B (zh) * | 2020-05-22 | 2021-09-17 | 浙江大学 | 一种高效率压电控制型纳米摩擦波浪能发电装置 |
CN111982193A (zh) * | 2020-08-11 | 2020-11-24 | 北京理工大学 | 一种用于测量轴承和衬套之间微小滑移的自驱动传感器 |
CN112129349B (zh) * | 2020-09-23 | 2021-10-08 | 西安交通大学 | 基于摩擦纳米发电机的温度压力一体化传感器及传感方法 |
CN113565921A (zh) * | 2021-07-29 | 2021-10-29 | 合肥工业大学 | 一种自传感磁流变车辆悬架阻尼器 |
CN114754661A (zh) * | 2022-04-15 | 2022-07-15 | 北京纳米能源与系统研究所 | 基于摩擦纳米发电机的智能裂缝监测装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779831A (zh) * | 2015-02-16 | 2015-07-15 | 纳米新能源(唐山)有限责任公司 | 基于摩擦发电机的位移传感器 |
CN106787931A (zh) * | 2017-01-09 | 2017-05-31 | 复旦大学 | 一种可拉伸同轴纤维状摩擦发电和传感器件及其制备方法 |
JP2017125730A (ja) * | 2016-01-13 | 2017-07-20 | 株式会社Soken | 圧電型センサ |
CN107525948A (zh) * | 2017-09-11 | 2017-12-29 | 浙江大学 | 接触式摩擦发电加速度传感器 |
CN107576810A (zh) * | 2017-09-11 | 2018-01-12 | 浙江大学 | 摩擦式发电加速度传感器 |
CN110572072A (zh) * | 2019-09-06 | 2019-12-13 | 北京纳米能源与系统研究所 | 混合型纳米发电结构及其制作方法、供能器件、传感器 |
CN111059995A (zh) * | 2019-12-28 | 2020-04-24 | 浙江大学 | 一种基于摩擦纳米发电机的自驱动位移传感器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3520199A1 (de) * | 1984-10-05 | 1986-04-10 | Wabco Westinghouse Steuerungstechnik GmbH & Co, 3000 Hannover | Potentiometer |
CN1098782A (zh) * | 1994-03-26 | 1995-02-15 | 冶金工业部钢铁研究总院 | 特殊磁芯互感式位移传感器 |
US6141087A (en) * | 1998-12-18 | 2000-10-31 | General Electric Company | System and method for measuring engine rotor thrust using Fabry-Perot fiber sensor |
JP3969942B2 (ja) * | 2000-09-01 | 2007-09-05 | キヤノン株式会社 | ローラとその製造方法、及び加熱定着装置 |
JP5487035B2 (ja) * | 2010-07-22 | 2014-05-07 | 日立オムロンターミナルソリューションズ株式会社 | 紙葉類の厚さ検出装置及び紙幣取扱装置 |
US8739868B2 (en) * | 2010-11-29 | 2014-06-03 | Schlumberger Technology Corporation | System and method of strain measurement amplification |
CN102122900B (zh) * | 2010-12-10 | 2013-01-09 | 上海交通大学 | 自传感驱动装置 |
JP6324213B2 (ja) * | 2014-05-27 | 2018-05-16 | サトーホールディングス株式会社 | 弾性体ローラー |
CN206426622U (zh) * | 2016-12-23 | 2017-08-22 | 郑州华美彩印纸品有限公司 | 一种胶印机耐磨送纸辊机构 |
CN108613623B (zh) * | 2018-05-11 | 2020-09-15 | 浙江大学 | 静电式自供能应变传感器 |
CN109458922B (zh) * | 2018-11-05 | 2019-08-30 | 浙江大学 | 一种静电式自供能位移栅格传感器 |
CN109470133B (zh) * | 2018-11-05 | 2019-09-06 | 浙江大学 | 静电式自供能应变栅格传感器 |
CN209623609U (zh) * | 2019-05-17 | 2019-11-12 | 安阳市华阳电磁铁制造有限公司 | 一种直流回弹式lvdt直线位移传感器 |
-
2019
- 2019-12-28 CN CN201911384633.6A patent/CN111059995B/zh active Active
-
2020
- 2020-12-08 WO PCT/CN2020/134373 patent/WO2021129372A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779831A (zh) * | 2015-02-16 | 2015-07-15 | 纳米新能源(唐山)有限责任公司 | 基于摩擦发电机的位移传感器 |
JP2017125730A (ja) * | 2016-01-13 | 2017-07-20 | 株式会社Soken | 圧電型センサ |
CN106787931A (zh) * | 2017-01-09 | 2017-05-31 | 复旦大学 | 一种可拉伸同轴纤维状摩擦发电和传感器件及其制备方法 |
CN107525948A (zh) * | 2017-09-11 | 2017-12-29 | 浙江大学 | 接触式摩擦发电加速度传感器 |
CN107576810A (zh) * | 2017-09-11 | 2018-01-12 | 浙江大学 | 摩擦式发电加速度传感器 |
CN110572072A (zh) * | 2019-09-06 | 2019-12-13 | 北京纳米能源与系统研究所 | 混合型纳米发电结构及其制作方法、供能器件、传感器 |
CN111059995A (zh) * | 2019-12-28 | 2020-04-24 | 浙江大学 | 一种基于摩擦纳米发电机的自驱动位移传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN111059995A (zh) | 2020-04-24 |
CN111059995B (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021129372A1 (zh) | 一种基于摩擦纳米发电机的自驱动位移传感器 | |
CN108613623B (zh) | 静电式自供能应变传感器 | |
CN103557989B (zh) | 一种压电应变传感器、传感器应变灵敏度的测试方法及其应用 | |
CN104089737B (zh) | 一种高灵敏度叠层式挠曲电压力传感器 | |
US11402293B2 (en) | Electrostatic self-powered displacement grid sensor | |
WO2015032364A1 (zh) | 一种长标距碳纤维应变传感器件及其测试方法 | |
US11143496B2 (en) | Electrostatic self-powered strain grid sensor | |
Han et al. | Micro piezoelectric-capacitive sensors for highsensitivity measurement of space electric fields | |
CN109212264B (zh) | 环形剪切式挠曲电加速度传感器及层叠结构加速度传感器 | |
CN207502701U (zh) | 一种基于长周期光纤光栅的磁场传感器 | |
CN106199173A (zh) | 基于悬臂梁级联结构的高精度微波功率检测系统及方法 | |
CN208588778U (zh) | 一种基于电致伸缩效应的电场传感器 | |
CN208092124U (zh) | 基于固支梁的d31的压电式微波功率传感器 | |
CN102156222B (zh) | 一种材料在高应变率状态下的力阻效应测量方法 | |
CN105300586A (zh) | 结构表面风雨荷载的监测系统及方法 | |
CN211668429U (zh) | 一种岩石类材料超动态应变测试装置 | |
CN105157551A (zh) | 一种“三角形”位移传感器 | |
RU2483277C1 (ru) | Тензометр | |
Janiczek | Analysis of PVDF transducer signals stimulated by mechanical tension | |
RU2427811C1 (ru) | Устройство для измерения давления или силы | |
CN207231609U (zh) | 电阻应变式车辆称重传感器 | |
RU170862U1 (ru) | Чувствительный элемент датчика удара | |
RU2621467C1 (ru) | Малогабаритный датчик удара | |
McAlorum et al. | A low-cost electrical impedance analyser for interrogating self-sensing cement repairs | |
CN204439256U (zh) | 一种地下工程物理相似模拟实验用锚杆测力计 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20904352 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20904352 Country of ref document: EP Kind code of ref document: A1 |