[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021128536A1 - 像素阵列及仿生视觉传感器 - Google Patents

像素阵列及仿生视觉传感器 Download PDF

Info

Publication number
WO2021128536A1
WO2021128536A1 PCT/CN2020/073543 CN2020073543W WO2021128536A1 WO 2021128536 A1 WO2021128536 A1 WO 2021128536A1 CN 2020073543 W CN2020073543 W CN 2020073543W WO 2021128536 A1 WO2021128536 A1 WO 2021128536A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
pixel array
frequency band
photosensitive device
row
Prior art date
Application number
PCT/CN2020/073543
Other languages
English (en)
French (fr)
Inventor
施路平
杨哲宇
赵蓉
裴京
徐海峥
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021128536A1 publication Critical patent/WO2021128536A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the utility model relates to the technical field of integrated circuits, and more specifically, to a pixel array and a bionic vision sensor.
  • bionic vision sensors are playing an increasingly important role in many application fields such as industrial manufacturing, intelligent transportation, and intelligent robots.
  • the bionic vision sensor mainly simulates the modalities of the retina of the human eye.
  • the retina of the human eye mainly includes two visual perception cells, namely cone cells and rod cells, corresponding to two different modalities respectively.
  • the mode of cone cells is mainly sensitive to absolute light intensity information and color information, and has high image restoration accuracy, but the restoration speed is slow; contrary to the mode of cone cells, rod cells mainly respond to light.
  • the strong gradient information is perceived, and it has a faster perceiving speed and a larger perceptual dynamic range, but it cannot perceive absolute light intensity information and color information.
  • bionic vision sensors in the prior art can only simulate one of the modalities of the retina of the human eye, forming a single perception mode, and thus can only perceive a certain type of information.
  • traditional cameras similar to cones, mainly perceive color information.
  • Dynamic Vision Sensor (DVS) similar to rod cells, mainly perceives light intensity gradient information.
  • DVS Dynamic Vision Sensor
  • the application scenarios of single-modal vision sensors are limited. For example, for a bionic vision sensor similar to cone cells, since it captures absolute light intensity information instead of light intensity gradient information, although it is widely used in home entertainment electronic equipment, it often faces speed in the field of industrial control. Insufficient dynamic range is too small and other issues, so it is difficult to apply.
  • the bionic vision sensor similar to the rod cell although the sensing speed is very fast, it is only sensitive to moving targets, which makes it difficult to capture images, or the captured images are of poor quality, which is difficult to meet the needs of entertainment electronic devices. Moreover, because the bionic vision sensor only contains a single perception mode, the bionic vision sensor will fail when this perception mode fails, which has great limitations for unmanned, unmanned aerial vehicles and other robots that have high requirements for stability. In addition, the current main indicators for evaluating the performance of the bionic vision sensor include image quality, dynamic range and shooting speed.
  • these three indicators are often mutually exclusive: for example, when the shooting speed increases, the dynamic range of the bionic vision sensor will decrease; when the image quality increases, the shooting speed will generally be It is difficult to take both into consideration at the same time.
  • the pixel array in the prior art usually adopts the BAYER mode.
  • the plane of the pixels in the column direction is as follows: RGRGRG... (respectively 0, 2, 4... columns), GBGBGB... (respectively 1, 3, 5...columns), using a light-shielding layer for shading between every two pixels, so only one color image can be collected at a time, which is not suitable for the bionic vision sensor with dual perception mode .
  • embodiments of the present invention provide a pixel array and a bionic vision sensor.
  • an embodiment of the present invention provides a pixel array, including: a plurality of first-type photosensitive devices and a plurality of second-type photosensitive devices, the first-type photosensitive devices are used to obtain target light signals, and The target optical signal is converted into a first-type current signal, and the second-type photosensitive device is used to obtain the target optical signal, and extract the optical signal of a specified frequency band from the target optical signal, and convert the optical signal of the specified frequency band The optical signal is converted into a second type current signal; the designated frequency band is a red light frequency band, a blue light frequency band or a green light frequency band; all the first type photosensitive devices and all the second type photosensitive devices are arranged to form a pixel array;
  • each photosensitive device of the first type is arranged alternately with each photosensitive device of the second type, and each photosensitive device of the second type is used to extract the same designated frequency band Light signal.
  • each repeating unit simultaneously contains a second type of photosensitive device that extracts the optical signal in the red light band, and a sensor that senses the light signal in the blue light band.
  • the second type photosensitive device and the second type photosensitive device sensing the light signal in the green light frequency band.
  • each of the first type photosensitive devices is surrounded by two second optical signals for extracting the optical signal of the red light frequency band.
  • Class photosensitive device is surrounded by two second optical signals for extracting the optical signal of the red light frequency band.
  • each of the first type photosensitive devices is surrounded by two second types for extracting optical signals in the blue light band.
  • Photosensitive device is surrounded by two second types for extracting optical signals in the blue light band.
  • each of the first type photosensitive devices is surrounded by two second optical signals for extracting the optical signal in the green light band.
  • Class photosensitive device is surrounded by two second optical signals for extracting the optical signal in the green light band.
  • each of the first type photosensitive device and the second type photosensitive device includes a photodiode.
  • an embodiment of the present invention provides a pixel array, including: a plurality of first-type photosensitive devices and a plurality of second-type photosensitive devices, the first-type photosensitive devices are used to obtain a target light signal, and The target optical signal is converted into a first-type current signal, and the second-type photosensitive device is used to obtain the target optical signal, and extract the optical signal of a specified frequency band from the target optical signal, and convert the optical signal of the specified frequency band The optical signal is converted into a second type current signal; the designated frequency band is a red light frequency band, a blue light frequency band or a green light frequency band; all the first type photosensitive devices and all the second type photosensitive devices are arranged to form a pixel array;
  • every two adjacent rows of the pixel array there is one row that contains only the first type of photosensitive device, and each of the first type of photosensitive device and each of the second type of photosensitive device in the other row are arranged alternately, Every three adjacent photosensitive devices of the second type extract light signals of different designated frequency bands.
  • each of the first type photosensitive device and the second type photosensitive device includes a photodiode.
  • an embodiment of the present invention provides a bionic vision sensor, including: the pixel array as described in the first or second aspect.
  • An embodiment of the utility model provides a pixel array and a bionic vision sensor.
  • the pixel array includes: a plurality of first-type photosensitive devices and a plurality of second-type photosensitive devices.
  • the first-type photosensitive devices are used to obtain target light signals and combine The target light signal is converted into the first type current signal, and the second type photosensitive device is used to obtain the target light signal, extract the light signal of the specified frequency band from the target light signal, and convert the light signal of the specified frequency band into the second type current signal;
  • the designated frequency bands are red, blue or green; all first-type photosensitive devices and all second-type photosensitive devices are arranged to form a pixel array; in each row of the pixel array, each first-type photosensitive device and each second-type photosensitive device The second-type photosensitive devices are arranged alternately, and each second-type photosensitive device is used to extract optical signals of the same designated frequency band.
  • the pixel array provided in the embodiment of the utility model can be used in a bionic vision sensor, so that the bionic vision sensor has both the function of sensing color information and absolute light intensity information and the function of sensing light intensity gradient information, which complements the prior art There is no defect in the pixel array that can be matched with the dual-sensing mode bionic vision sensor.
  • FIG. 1 is a schematic diagram of a structure of a pixel array in the prior art
  • FIG. 2 is a schematic structural diagram of a pixel array provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pixel array provided by an embodiment of the utility model
  • FIG. 4 is a schematic structural diagram of a pixel array provided by an embodiment of the utility model
  • FIG. 5 is a schematic diagram of a structure of a pixel array provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a voltage mode active pixel sensor circuit in a bionic vision sensor according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a current mode active pixel sensor circuit in a bionic vision sensor provided by an embodiment of the utility model;
  • FIG. 8 is a schematic diagram of a circuit structure for associating a certain current mode active pixel sensor circuit with other current mode active pixel sensor circuits in a bionic vision sensor according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a change form of a designated digital signal input to a digital-to-analog converter in a current-mode active pixel sensor circuit in a bionic vision sensor according to an embodiment of the present invention.
  • the embodiment of the present invention provides a pixel array, including: a plurality of first-type photosensitive devices and a plurality of second-type photosensitive devices, the first-type photosensitive devices are used to obtain a target light signal, and the target light The signal is converted into a first-type current signal, and the second-type photosensitive device is used to obtain the target optical signal, extract the optical signal of a specified frequency band from the target optical signal, and convert the optical signal of the specified frequency band into The second type of current signal; the designated frequency band is a red light frequency band, a blue light frequency band or a green light frequency band; all the first type photosensitive devices and all the second type photosensitive devices are arranged to form a pixel array;
  • each photosensitive device of the first type is arranged alternately with each photosensitive device of the second type, and each photosensitive device of the second type is used to extract the same designated frequency band Light signal.
  • a pixel array that can be applied to the above bionic vision sensor.
  • the pixel array is formed by arranging a plurality of photosensitive devices of the first type and a plurality of photosensitive devices of the second type, and specifically may be formed by arranging the photosensitive devices of the first type and the photosensitive devices of the second type alternately.
  • Each photosensitive device of the first type and each photosensitive device of the second type respectively serve as a pixel.
  • the number of photosensitive devices of the first type and the number of photosensitive devices of the second type can be set according to the size of the pixel array, and can be the same or different, which is not specifically limited in the embodiment of the present invention.
  • the first type of photosensitive device and the second type of photosensitive device are both used to obtain the target light signal.
  • the first type of photosensitive device is also used to convert the target light signal into the first type of current signal, and the second type of photosensitive device is also used to obtain the target light signal.
  • the optical signal of the designated frequency band is extracted from the signal, and the optical signal of the designated frequency band is converted into the second type current signal.
  • the first type of photosensitive device may specifically be photodiodes with the same response curve
  • the second type of photosensitive device may have photodiodes with different response curves
  • the response frequency band of the second type of photosensitive device may specifically be a designated frequency band
  • the designated frequency band may be red Light band, blue light band or green light band.
  • the second type of photosensitive device can also be composed of photodiodes and color filters (CF) with the same response curve.
  • the color filters can specifically be red, blue, or green filters, respectively It is used to extract the optical signal in the red, blue or green frequency band from the target optical signal.
  • the color filter may be a light filter or a lens. When the color filter is a lens, a Byron lens may be used, or other types of lenses may be used.
  • the second type of photosensitive device is composed of photodiodes and color filters with the same response curve as an example for description.
  • FIG. 2 only a 7 ⁇ 7 pixel array is shown in FIG. 2, which is formed by 25 first-type photosensitive devices 11 and 24 second-type photosensitive devices 12 arranged alternately.
  • the R, G, and B markings in Figure 2 are all second-type photosensitive devices, and respectively represent the second-type photosensitive devices that extract light signals in the red frequency band, the second-type photosensitive devices that extract light signals in the green frequency band, and the blue light-sensitive devices.
  • the second type of photosensitive device for light signals in the color band are a second-type photosensitive device with a red color filter, a second-type photosensitive device with a green color filter, and a second-type photosensitive device with a blue color filter, respectively.
  • each first-type photosensitive device and each second-type photosensitive device are alternately arranged, and each second-type photosensitive device Both are used to extract optical signals of the same designated frequency band.
  • each second-type photosensitive device in the first row contains a green color filter, marked as G
  • each second-type photosensitive device in the second row contains a red color filter , Marked as R
  • each second type photosensitive device in the third row contains a blue color filter, marked as B
  • each second type photosensitive device in the fourth row contains a red color filter, Marked as R
  • each second-type photosensitive device in the fifth row contains a green color filter, marked as G
  • each second-type photosensitive device in the sixth row contains a red color filter, marked as R
  • Each second-type photosensitive device in the seventh row contains a blue color filter, marked as B.
  • the photosensitive devices of the first type in the first to seventh rows are not marked.
  • the function of sensing light intensity gradient information can be realized through all the first-type photosensitive devices of the pixel array combined with the corresponding control circuit, and each first-type photosensitive device directly converts the target light signal It is the first type of current signal, in which there is no need to extract the optical signal of the specified frequency band.
  • Each first type photosensitive device can be compared with the electrical signals obtained by the surrounding four first type photosensitive devices, and finally generated by the first type photosensitive device
  • the image of is a grayscale image representing edge information; through all the second-type photosensitive devices of the pixel array combined with the corresponding control circuit to realize the function of perceiving color information and absolute light intensity information, because each second-type photosensitive device is used to obtain The target light signal, and extracts the light signal of the designated frequency band from the target light signal, and converts the light signal of the designated frequency band into the second-type current signal, so the final image produced by the second-type photosensitive device is a color image.
  • An embodiment of the utility model provides a pixel array, which includes: a plurality of photosensitive devices of the first type and a plurality of photosensitive devices of the second type.
  • the photosensitive devices of the first type are used to obtain a target light signal and convert the target light signal into The first type of current signal
  • the second type of photosensitive device is used to obtain the target optical signal, and extract the optical signal of the specified frequency band from the target optical signal, and convert the optical signal of the specified frequency band into the second type of current signal
  • the specified frequency band is red light Frequency band, blue light band or green light band
  • all first-type photosensitive devices and all second-type photosensitive devices are arranged to form a pixel array; in each row of the pixel array, each first-type photosensitive device and each second-type photosensitive device are alternated Arranged, and each second-type photosensitive device is used to extract the optical signal of the same designated frequency band.
  • the pixel array provided in the embodiment of the utility model can be used in a bionic vision sensor, so that the bionic vision sensor has both the function of sensing color information and absolute light intensity information and the function of sensing light intensity gradient information, which complements the prior art There is no defect in the pixel array that can be matched with the dual-sensing mode bionic vision sensor.
  • each repeating unit simultaneously contains an optical signal for extracting the red light frequency band.
  • the second type of photosensitive device the second type of photosensitive device that extracts the light signal in the blue light band
  • the second type of photosensitive device that extracts the light signal in the green light band.
  • each repeating unit contains a second type of photosensitive device including a red color filter, a blue color filter, and a green color filter.
  • the fifth row is the same as the first row
  • the sixth row is the same as the second row
  • the seventh row is the same as the third row. If the pixel array shown in FIG. 2 has an eighth row, the eighth row is the same as the fourth row, and the fifth row to the eighth row constitute a repeating unit.
  • the pixel array obtained by such arrangement can make the first type photosensitive device and the second type photosensitive device be arranged relatively uniformly, so that the color information, absolute light intensity information and light intensity gradient information perceived by the matched bionic vision sensor are more comprehensive and accurate. The resulting image effect is better.
  • the pixel array provided in the embodiment of the present invention except for the first row, the first column, the last row, and the last column in the pixel array, around each of the first type photosensitive devices
  • Each has two second-type photosensitive devices for extracting optical signals in the red light frequency band.
  • the first type photosensitive devices in the second row and second column As an example, the surrounding four second-type photosensitive devices are respectively marked as G, R, R, and B, that is, there are two second-type photosensitive devices that extract optical signals in the red light frequency band. For example, it may be two second-type photosensitive devices including a red color filter. Another example is the first-type photosensitive device in the third row and third column. The four second-type photosensitive devices around it are marked as R, B, B, and R respectively. Among them, there are also two second-type photosensitive devices that extract optical signals in the red light band. Type two photosensitive device. In the pixel array obtained by such arrangement, the pixel color intensity ratio is: 50% red, 25% blue, and 25% green.
  • the second-type photosensitive devices existing in the first row to the fourth row in a repeating unit respectively include a green color filter, a red color filter, a blue color filter, and a red color filter.
  • the pixel array provided in the embodiment of the present invention except for the first row, the first column, the last row, and the last column in the pixel array, around each of the first type photosensitive devices
  • Each has two second-type photosensitive devices for extracting light signals in the blue light band.
  • the first-type photosensitive devices in the second row and second column As an example, the surrounding four second-type photosensitive devices are respectively marked as G, B, B, and R, that is, there are two second-type photosensitive devices that extract light signals in the blue band. For example, it may be two second-type photosensitive devices including blue light filters. Another example is the first-type photosensitive device in the third row and third column. The four second-type photosensitive devices around it are marked as B, R, R, and B respectively. There are also two second types that extract light signals in the blue band. Class photosensitive device. In the pixel array obtained by such arrangement, the pixel color intensity ratio is: 25% red, 50% blue, and 25% green.
  • the second-type photosensitive devices existing in the first row to the fourth row in a repeating unit respectively include a green color filter, a blue color filter, a red color filter, and a blue color filter.
  • the pixel array provided in the embodiment of the present invention except for the first row, the first column, the last row, and the last column in the pixel array, around each of the first type photosensitive devices
  • Each has two second-type photosensitive devices for extracting optical signals in the green light frequency band.
  • the first-type photosensitive devices in the second row and second column As an example, the surrounding four second-type photosensitive devices are marked as R, G, G, and B respectively, that is, there are two second-type photosensitive devices that extract light signals in the green light frequency band. For example, it may be two second-type photosensitive devices including a green color filter. Another example is the first-type photosensitive device in the third row and third column. The four second-type photosensitive devices around it are marked as G, B, B, and G respectively, and there are also two second-type photosensitive devices that extract optical signals in the green light band. Type two photosensitive device. In the pixel array obtained by such arrangement, the pixel color intensity ratio is: 25% red, 25% blue, and 50% green.
  • the second-type photosensitive devices existing in the first row to the fourth row in a repeating unit respectively include a red color filter, a green color filter, a blue color filter, and a green color filter.
  • each of the first type photosensitive device and the second type photosensitive device includes a photodiode.
  • the embodiments of the present invention provide a pixel array, including: a plurality of first-type photosensitive devices and a plurality of second-type photosensitive devices, the first-type photosensitive devices are used to obtain a target Optical signal and convert the target optical signal into a first-type current signal, and the second-type photosensitive device is used to obtain the target optical signal, and extract the optical signal of a specified frequency band from the target optical signal, and convert The optical signal of the designated frequency band is converted into a second type current signal; the designated frequency band is a red light frequency band, a blue light frequency band or a green light frequency band; all the first type photosensitive devices and all the second type photosensitive devices are arranged to form Pixel array
  • every two adjacent rows of the pixel array there is one row that contains only the first type of photosensitive device, and each of the first type of photosensitive device and each of the second type of photosensitive device in the other row are arranged alternately, Every three adjacent photosensitive devices of the second type extract light signals of different designated frequency bands.
  • a pixel array that can be applied to the above bionic vision sensor.
  • the pixel array is formed by arranging a plurality of photosensitive devices of the first type and a plurality of photosensitive devices of the second type, and specifically may be formed by arranging the photosensitive devices of the first type and the photosensitive devices of the second type alternately.
  • the number of photosensitive devices of the first type and the number of photosensitive devices of the second type can be set according to the size of the pixel array, and can be the same or different, which is not specifically limited in the embodiment of the present invention.
  • FIG. 5 only a 7 ⁇ 7 pixel array is shown in FIG. 5, which consists of 33 first-type photosensitive devices 22 and 16 second-type photosensitive devices 21.
  • the unmarked ones in Figure 5 are all first-type photosensitive devices, and those marked with R, G, and B are all second-type photosensitive devices, and respectively represent the second-type photosensitive devices that extract light signals in the red frequency band, and extract the green frequency band.
  • the second type of photosensitive device for the optical signal and the second type of photosensitive device for extracting the light signal in the blue frequency band are a second-type photosensitive device with a red color filter, a second-type photosensitive device with a green color filter, and a second-type photosensitive device with a blue color filter.
  • the second row contains only the first-type photosensitive device In the first row, each first-type photosensitive device and each second-type photosensitive device are arranged alternately, and every three adjacent second-type photosensitive devices extract light signals of different designated frequency bands.
  • the second column contains only the first type of photosensitive device, and each first type of photosensitive device in the first column is associated with each second type of photosensitive device.
  • the photosensitive devices are arranged alternately, and every three adjacent second-type photosensitive devices extract light signals of different designated frequency bands.
  • the second type photosensitive devices in the first row, first column, first row, third column, and first row, fifth column in FIG. 5 are three adjacent second type photosensitive devices, among which the second type photosensitive device in the first row and first column Class 2 photosensitive device extracts the light signal in the red frequency band, marked as R, the second kind photosensitive device in the first row and third column extracts the light signal in the green frequency band, marked as G, the second kind photosensitive device in the first row and fifth column extracts The light signal in the blue band is marked as B.
  • the function of sensing light intensity gradient information can be realized through all the first-type photosensitive devices of the pixel array combined with the corresponding control circuit, and each first-type photosensitive device directly converts the target light signal It is the first type of current signal, in which there is no need to extract the optical signal of the specified frequency band.
  • Each first type photosensitive device can be compared with the electrical signals obtained by the surrounding four first type photosensitive devices, and finally generated by the first type photosensitive device
  • the image of is a grayscale image representing edge information; through all the second-type photosensitive devices of the pixel array combined with the corresponding control circuit to realize the function of perceiving color information and absolute light intensity information, because each second-type photosensitive device is used to obtain The target light signal, and extracts the light signal of the designated frequency band from the target light signal, and converts the light signal of the designated frequency band into the second-type current signal, so the final image produced by the second-type photosensitive device is a color image.
  • An embodiment of the utility model provides a pixel array, which includes: a plurality of photosensitive devices of the first type and a plurality of photosensitive devices of the second type.
  • the photosensitive devices of the first type are used to obtain a target light signal and convert the target light signal into The first type of current signal
  • the second type of photosensitive device is used to obtain the target optical signal, and extract the optical signal of the specified frequency band from the target optical signal, and convert the optical signal of the specified frequency band into the second type of current signal
  • the specified frequency band is red light Frequency band, blue light frequency band or green light frequency band
  • all first-type photosensitive devices and all second-type photosensitive devices are arranged to form a pixel array; in every two adjacent rows of the pixel array, there is one row that contains only the first-type photosensitive device, In another row, each photosensitive device of the first type and each photosensitive device of the second type are arranged alternately, and every three adjacent photosensitive devices of the second type extract light signals of different designated frequency bands.
  • the pixel array provided in the embodiment of the utility model can be used in a bionic vision sensor, so that the bionic vision sensor has both the function of sensing color information and absolute light intensity information and the function of sensing light intensity gradient information, which complements the prior art There is no defect in the pixel array that can be matched with the dual-sensing mode bionic vision sensor.
  • the pixel array provided in the embodiment of the present invention, there is a repeating unit for every six adjacent rows in the pixel array.
  • the first row to the sixth row have a repeating unit, and the repeat In each row of the unit, three adjacent second-type photosensitive devices extract light signals of different designated frequency bands. For example, there are different color filters in three adjacent second-type photosensitive devices in each row of the repeating unit.
  • the seventh row is the same as the first row.
  • the eighth row is the same as the second row
  • the ninth row is the same as the third row
  • the tenth row is the same as the fourth row
  • the eleventh row Same as the fifth row
  • the twelfth row is the same as the sixth row
  • the seventh to twelfth rows constitute a repeating unit.
  • the pixel array thus arranged can make the light intensity gradient information sensed by the matched bionic vision sensor more comprehensive and accurate, and obtain more accurate edge information.
  • each of the first type photosensitive device and the second type photosensitive device includes a photodiode.
  • an embodiment of the present invention provides a bionic vision sensor, including: the pixel array described in the foregoing embodiment.
  • each first-type photosensitive device and each second-type photosensitive device in the pixel array respectively correspond to a control circuit.
  • the control circuit corresponding to the first type of photosensitive device may be a current mode active pixel sensor circuit
  • the control circuit corresponding to the second type of photosensitive device may be a voltage mode active pixel sensor circuit.
  • the voltage mode active pixel sensor circuit is shown in Figure 6, which is equivalent to the cone cells of the retina of the human eye.
  • Vcc1 is the power supply of the voltage mode active pixel sensor circuit, and Vcc1 may specifically be 3.3V.
  • the second type of photosensitive device 12 is connected to the MOS tube 13 and 14 respectively, and the MOS tube 14 is connected to the MOS tube 15.
  • the MOS tube 13 is used for biasing
  • the MOS tube 14 is used for switching
  • the MOS tube 15 is used for current integration of the electrical signal converted by the second type of photosensitive device 12 to obtain a voltage signal, which represents the light in the optical signal. Strong information and color information.
  • the current mode active pixel sensor circuit is shown in Figure 7, which is equivalent to the rod cells of the retina of the human eye.
  • Vcc2 is the power supply of the current mode active pixel sensor circuit, and Vcc2 may specifically be 3.3V.
  • the first type of photosensitive device 11 is connected to the MOS tube 23, and the MOS tube 23 is connected to the MOS tube 24 to form a current mirror.
  • the current signal I c obtained by the first type of photosensitive device 11 can be converted
  • the magnitude of the current signal at the end corresponding to the mirror image of the first type photosensitive device 11 in the MOS tube 24 has a P times relationship, that is, the current at the end corresponding to the mirror image of the first type photosensitive device 11 in the MOS tube 24 is P*I c .
  • a certain current mode active pixel sensor circuit is associated with other current mode active pixel sensor circuits through the circuit shown in FIG. 8.
  • Vcc3 is the power supply of the circuit, and Vcc3 can specifically be 3.3V.
  • the Digital to Analog Converter (DAC) 31 is connected to the comparator 32, the electrical signal converted by the first type photosensitive device is I c , and the 4 other first type photosensitive devices around the first type photosensitive device are converted
  • the comparator 32 is connected to the addressing unit 33, and the addressing unit 33 is connected to the DAC 31 and the storage unit 34, respectively. It should be noted that the input of the DAC 31 can be a periodic digital signal input by humans.
  • the addressing unit 33 is used to output the event pulse signal at the output terminal of the comparator 32, that is, the comparator 32 is in the edge trigger state.
  • the storage unit 34 is addressed to store the output result of the current mode active pixel sensor circuit.
  • the comparator 32 is used to control the output action of the current mode active pixel sensor circuit. When the output terminal of the comparator 32 outputs the event pulse signal, that is, the comparator 32 is in the edge trigger state, and the current mode is active.
  • the pixel sensor circuit outputs the designated digital signal at this time, and the designated digital signal at this time is used to characterize the light intensity gradient information in the target light signal.
  • the storage unit 34 may specifically be a register, a latch, SRAM (Static Random Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), a memristor, and the like. Taking a register as an example, the number of bits of the register is related to the accuracy of the DAC31, and a 4-bit register can be selected in the embodiment of the present invention.
  • the change form of the designated digital signal input to the DAC31 is shown in Fig. 9.
  • the designated digital signal increases stepwise with time.
  • N*step the designated digital signal takes the value ⁇ I, and the comparator 32
  • the ⁇ I at this time is used as the output of the current mode active pixel sensor circuit.
  • N is the number of steps passed before, and step is the time length of each step.
  • every nine pixels in the pixel array can be regarded as a pixel group, and the central pixel in the pixel group is the first type of photosensitive device, and the central pixel in each pixel group is combined with each other through the control circuit.
  • the electrical signals obtained by the surrounding four first-type photosensitive devices are compared, and the final image produced by the first-type photosensitive device is a grayscale image representing edge information, which realizes the function of sensing light intensity gradient information.
  • the second-type photosensitive devices of the pixel array combined with the corresponding control circuit to realize the function of perceiving color information and absolute light intensity information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

一种像素阵列及仿生视觉传感器,像素阵列包括:多个第一类感光器件以及多个第二类感光器件,第一类感光器件用于获取目标光信号,并将目标光信号转换为第一类电流信号,第二类感光器件用于提取指定频段的光信号,并将指定频段的光信号转换为第二类电流信号;像素阵列的每一行中,每个第一类感光器件与每个第二类感光器件相间排列,且每个第二类感光器件均用于提取相同指定频段的光信号。

Description

像素阵列及仿生视觉传感器 技术领域
本实用新型涉及集成电路技术领域,更具体地,涉及像素阵列及仿生视觉传感器。
背景技术
目前,随着对图像传感器与图像处理识别算法研究地不断深入,仿生视觉传感器在工业制造、智能交通、智能机器人等多个应用领域扮演着越来越重要的作用。
仿生视觉传感器主要是对人眼视网膜的模态进行仿真,人眼视网膜主要包括两种视觉感知细胞,即视锥细胞和视杆细胞,分别对应两种不同的模态。其中,视锥细胞的模态主要是对绝对光强信息与颜色信息敏感,具有很高的图像还原精度,但是还原速度较慢;与视锥细胞的模态相反,视杆细胞主要是对光强梯度信息进行感知,具有感知速度较快且感知的动态范围较大,但是其无法感知绝对光强信息与颜色信息。
但是,现有技术中存在的仿生视觉传感器均只能对人眼视网膜的其中一种模态进行仿真,形成单一的感知模式,进而只能对某一类信息进行感知。如传统相机,类似于视锥细胞,主要对颜色信息进行感知。如动态视觉传感器(Dynamic Vision Sensor,DVS),类似于视杆细胞,主要对光强梯度信息进行感知。而单一模态的视觉传感器应用场景有限。例如,对于类似于视锥细胞的仿生视觉传感器,由于其拍摄得到的是绝对光强信息而非光强梯度信息,虽然在家用娱乐电子设备中应用非常广泛,但在工业控制领域,往往面临速度不够动态范围 太小等问题,因而很难应用。对于类似于视杆细胞的仿生视觉传感器,虽然感知速度很快,但是由于只对运动目标敏感,导致难以拍摄到图像,或者拍摄到的图像质量较差,难以满足娱乐电子设备的需求。而且由于仿生视觉传感器只包含单一的感知模式,在这种感知模式失效时仿生视觉传感器则失效,这对于对稳定性有高要求的无人驾驶、无人机等机器人有很大的局限。另外,目前评价仿生视觉传感器性能的主要指标有图像质量,动态范围与拍摄速度。由上述内容可知,在传统的仿生视觉传感器的框架下,这三个指标往往互斥:如当拍摄速度提高时,仿生视觉传感器的动态范围就会降低;当图像质量提高时拍摄速度一般就会降低,很难同时兼顾。
因此,现急需提供一种具有双感知模式的仿生视觉传感器,可以同时感知绝对光强信息与颜色信息以及光强梯度信息,进而需要提供一种与之匹配的像素阵列。但是现有技术中的像素阵列通常是采用BAYER模式,如图1所示,像素按照列方向的平面示意为:RGRGRG…(分别为0、2、4…列),GBGBGB…(分别为1、3、5…列)的方式展开、平铺,在每两个像素之间采用遮光层进行遮光,因此每次只能采集到一幅彩色图像,并无法适用于具有双感知模式的仿生视觉传感器。
实用新型内容
为克服上述问题或者至少部分地解决上述问题,本实用新型实施例提供了一种像素阵列及仿生视觉传感器。
第一方面,本实用新型实施例提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信 号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
所述像素阵列的每一行中,每个所述第一类感光器件与每个所述第二类感光器件相间排列,且每个所述第二类感光器件均用于提取相同所述指定频段的光信号。
优选的,所述像素阵列中每相邻四行为一个重复单元,且每个重复单元中同时存在提取所述红光频段的光信号的第二类感光器件、感应所述蓝光频段的光信号的第二类感光器件以及感应所述绿光频段的光信号的第二类感光器件。
优选的,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述红光频段的光信号的第二类感光器件。
优选的,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述蓝光频段的光信号的第二类感光器件。
优选的,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述绿光频段的光信号的第二类感光器件。
优选的,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
第二方面,本实用新型实施例提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
所述像素阵列的每相邻两行中,存在一行仅包含有所述第一类感光器件,另一行中每个所述第一类感光器件与每个所述第二类感光器件相间排列,每相邻三个所述第二类感光器件提取不同所述指定频段的光信号。
优选的,所述像素阵列中每相邻六行为一个重复单元。
优选的,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
第三方面,本实用新型实施例提供了一种仿生视觉传感器,包括:如第一方面或第二方面所述的像素阵列。
本实用新型实施例提供的一种像素阵列及仿生视觉传感器,像素阵列包括:多个第一类感光器件以及多个第二类感光器件,第一类感光器件用于获取目标光信号,并将目标光信号转换为第一类电流信号,第二类感光器件用于获取目标光信号,并从目标光信号中提取指定频段的光信号,将指定频段的光信号转换为第二类电流信号;指定频段为红光频段、蓝光频段或绿光频段;所有第一类感光器件与所有第二类感光器件排列形成像素阵列;像素阵列的每一行中,每个第一类感光器件与每个第二类感光器件相间排列,且每个第二类感光器件均用于提取相同指定频段的光信号。本实用新型实施例中提供的像素阵列,可以用于仿生视觉传感器中,以使仿生视觉传感器同时具有感知颜色信息以及绝对光强信息的功能和感知光强梯度信息的功能,弥补了现有技术中没有可以与双感知模式的仿生视觉传感器相匹配的像素阵列的缺陷。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对 于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中存在的一种像素阵列的结构示意图;
图2为本实用新型实施例提供的一种像素阵列的结构示意图;
图3为本实用新型实施例提供的一种像素阵列的结构示意图;
图4为本实用新型实施例提供的一种像素阵列的结构示意图;
图5为本实用新型实施例提供的一种像素阵列的结构示意图;
图6为本实用新型实施例提供的一种仿生视觉传感器中电压模式有源像素传感器电路的结构示意图;
图7为本实用新型实施例提供的一种仿生视觉传感器中电流模式有源像素传感器电路的结构示意图;
图8为本实用新型实施例提供的一种仿生视觉传感器中用于将某一电流模式有源像素传感器电路与其他电流模式有源像素传感器电路进行关联的电路结构示意图;
图9为本实用新型实施例提供的一种仿生视觉传感器中电流模式有源像素传感器电路中输入至数模转换器的指定数字信号的变化形式示意图。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型实施例提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光 信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
所述像素阵列的每一行中,每个所述第一类感光器件与每个所述第二类感光器件相间排列,且每个所述第二类感光器件均用于提取相同所述指定频段的光信号。
具体地,本实用新型实施例中为匹配具有双感知模式的仿生视觉传感器,提供了一种可以应用于上述仿生视觉传感器的像素阵列。像素阵列由多个第一类感光器件以及多个第二类感光器件排列形成,具体可以是由第一类感光器件以及第二类感光器件相间排列形成。每个第一类感光器件和每个第二类感光器件均分别作为一个像素。其中,第一类感光器件以及第二类感光器件的数量可以根据像素阵列的大小进行设定,可相同也可不同,本实用新型实施例中对此不作具体限定。第一类感光器件以及第二类感光器件均用于获取目标光信号,第一类感光器件还用于将目标光信号转换为第一类电流信号,第二类感光器件还用于从目标光信号中提取指定频段的光信号,并将指定频段的光信号转换为第二类电流信号。第一类感光器件具体可以是响应曲线均相同的光电二极管,第二类感光器件具有可以是具有不同响应曲线的光电二极管,第二类感光器件的响应频段具体是指定频段,指定频段可以为红光频段、蓝光频段或绿光频段。第二类感光器件还可以是由相同响应曲线的光电二极管和滤色器(Colour Filter,CF)组成,滤色器具体可以为红色滤色器、蓝色滤色器或绿色滤色器,分别用于从目标光信号中提取红光频段、蓝光频段或绿光频段的光信号。需要说明的是,滤色器具体可以是滤光片或者透镜,当滤色器为透镜时,具体可选用拜伦透镜,也可以选用其他类型的透镜。
以下实施例中仅以第二类感光器件是由相同响应曲线的光电二极管和滤色器组成为例进行说明。
如图2所示,图2中仅示出了7×7的像素阵列,由25个第一类感光器件11以及24个第二类感光器件12相间排列形成。图2中做R、G、B标记的均为第二类感光器件,并分别表示提取红色频段的光信号的第二类感光器件、提取绿色频段的光信号的第二类感光器件以及提取蓝色频段的光信号的第二类感光器件。例如,分别是具有红色滤色器的第二类感光器件、具有绿色滤色器的第二类感光器件以及具有蓝色滤色器的第二类感光器件。
在所有第一类感光器件与所有第二类感光器件排列形成的像素阵列的每一行中,每个第一类感光器件与每个第二类感光器件相间排列,且每个第二类感光器件均用于提取相同指定频段的光信号。即如图2所示,第一行中的每个第二类感光器件均包含有绿色滤色器,标记为G,第二行中的每个第二类感光器件均包含有红色滤色器,标记为R,第三行中的每个第二类感光器件均包含有蓝色滤色器,标记为B,第四行中的每个第二类感光器件均包含有红色滤色器,标记为R,第五行中的每个第二类感光器件均包含有绿色滤色器,标记为G,第六行中的每个第二类感光器件均包含有红色滤色器,标记为R,第七行中的每个第二类感光器件均包含有蓝色滤色器,标记为B。第一行至第七行中的第一类感光器件均未做标记。
将上述像素阵列应用于仿生视觉传感器中时,可以通过像素阵列的所有第一类感光器件结合相应的控制电路实现感知光强梯度信息的功能,每个第一类感光器件直接将目标光信号转换为第一类电流信号,其中并不需要提取指定频段的光信号,每个第一类感光器件可以与周围四个第一类感光器件得到的电信号进行比较,最终经由第一类感光器件产生的图像为表示边缘信息的灰度图像;通过像素阵列的所有第二类感光器件结合相应的控制电路实现感知颜色信息以及绝对光强信 息的功能,由于每个第二类感光器件均用于获取目标光信号,并从目标光信号中提取指定频段的光信号,将指定频段的光信号转换为第二类电流信号,因此最终经由第二类感光器件产生的图像为彩色图像。
本实用新型实施例中提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,第一类感光器件用于获取目标光信号,并将目标光信号转换为第一类电流信号,第二类感光器件用于获取目标光信号,并从目标光信号中提取指定频段的光信号,将指定频段的光信号转换为第二类电流信号;指定频段为红光频段、蓝光频段或绿光频段;所有第一类感光器件与所有第二类感光器件排列形成像素阵列;像素阵列的每一行中,每个第一类感光器件与每个第二类感光器件相间排列,且每个第二类感光器件均用于提取相同指定频段的光信号。本实用新型实施例中提供的像素阵列,可以用于仿生视觉传感器中,以使仿生视觉传感器同时具有感知颜色信息以及绝对光强信息的功能和感知光强梯度信息的功能,弥补了现有技术中没有可以与双感知模式的仿生视觉传感器相匹配的像素阵列的缺陷。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,所述像素阵列中每相邻四行为一个重复单元,且每个重复单元中同时存在提取所述红光频段的光信号的第二类感光器件、提取所述蓝光频段的光信号的第二类感光器件以及提取所述绿光频段的光信号的第二类感光器件。
具体地,如图2所示,本实用新型实施例中,由所有第一类感光器件与所有第二类感光器件排列形成的像素阵列中,第一行至第四行为一个重复单元,该重复单元中同时存在提取红光频段的光信号的第二类感光器件、提取蓝光频段的光信号的第二类感光器件以及提取绿光频段的光信号的第二类感光器件。例如,每个重复单元中同时存在包含有红色滤色器、蓝色滤色器以及绿色滤色器的第二类感光器件。第五行与第一行相同,第六行与第二行相同,第七行与第三行相同。 如果图2示出的像素阵列存在第八行,则第八行与第四行相同,且第五行至第八行构成一个重复单元。
如此排列得到的像素阵列,可以使第一类感光器件与第二类感光器件得到相对均匀的排列,使匹配的仿生视觉传感器感知的颜色信息以及绝对光强信息和光强梯度信息更加全面准确,得到的图像效果更好。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述红光频段的光信号的第二类感光器件。
具体地,如图2所示,本实用新型实施例中,由所有第一类感光器件与所有第二类感光器件排列形成的像素阵列中,以第二行第二列的第一类感光器件为例进行说明,其周围的四个第二类感光器件分别标记为G、R、R、B,即其中具有两个提取红光频段的光信号的第二类感光器件。例如,可以是两个包含有红色滤色器的第二类感光器件。又如第三行第三列的第一类感光器件,其周围的四个第二类感光器件分别标记为R、B、B、R,其中也具有两个提取红光频段的光信号的第二类感光器件。如此排列得到的像素阵列中,像素色彩光强比为:50%红色,25%蓝色,25%绿色。
此时,一个重复单元中第一行至第四行中存在的第二类感光器件分别包含有绿色滤色器、红色滤色器、蓝色滤色器、红色滤色器。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述蓝光频段的光信号的第二类感光器件。
具体地,如图3所示,本实用新型实施例中,由所有第一类感光器件与所有第二类感光器件排列形成的像素阵列中,以第二行第二列 的第一类感光器件为例进行说明,其周围的四个第二类感光器件分别标记为G、B、B、R,即其中具有两个提取蓝光频段的光信号的第二类感光器件。例如,可以是两个包含有蓝光滤色器的第二类感光器件。又如第三行第三列的第一类感光器件,其周围的四个第二类感光器件分别标记为B、R、R、B,其中也具有两个提取蓝光频段的光信号的第二类感光器件。如此排列得到的像素阵列中,像素色彩光强比为:25%红色,50%蓝色,25%绿色。
此时,一个重复单元中第一行至第四行中存在的第二类感光器件分别包含有绿色滤色器、蓝色滤色器、红色滤色器、蓝色滤色器。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述绿光频段的光信号的第二类感光器件。
具体地,如图4所示,本实用新型实施例中,由所有第一类感光器件与所有第二类感光器件排列形成的像素阵列中,以第二行第二列的第一类感光器件为例进行说明,其周围的四个第二类感光器件分别标记为R、G、G、B,即其中具有两个提取绿光频段的光信号的第二类感光器件。例如,可以是两个包含有绿光滤色器的第二类感光器件。又如第三行第三列的第一类感光器件,其周围的四个第二类感光器件分别标记为G、B、B、G,其中也具有两个提取绿光频段的光信号的第二类感光器件。如此排列得到的像素阵列中,像素色彩光强比为:25%红色,25%蓝色,50%绿色。
此时,一个重复单元中第一行至第四行中存在的第二类感光器件分别包含有红色滤色器、绿色滤色器、蓝色滤色器、绿色滤色器。
由于像素阵列中所有第一类感光器件和所有第二类感光器件的排列方式不同主要是对逆马赛克变换(Demosaicing)算法有不同先验(prior),而由于人眼对于绿色最为敏感,因此在实际应用中,通常选 择如图4所示的阵列排列方式作为优选方案。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
在上述实施例的基础上,本实用新型实施例中提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
所述像素阵列的每相邻两行中,存在一行仅包含有所述第一类感光器件,另一行中每个所述第一类感光器件与每个所述第二类感光器件相间排列,每相邻三个所述第二类感光器件提取不同所述指定频段的光信号。
具体地,本实用新型实施例中为匹配具有双感知模式的仿生视觉传感器,提供了一种可以应用于上述仿生视觉传感器的像素阵列。像素阵列由多个第一类感光器件以及多个第二类感光器件排列形成,具体可以是由第一类感光器件以及第二类感光器件相间排列形成。其中,第一类感光器件以及第二类感光器件的数量可以根据像素阵列的大小进行设定,可相同也可不同,本实用新型实施例中对此不作具体限定。
如图5所示,图5中仅示出了7×7的像素阵列,由33个第一类感光器件22以及16个第二类感光器件21。图5中未做标记的均为第一类感光器件,做R、G、B标记的均为第二类感光器件,并分别表示提取红色频段的光信号的第二类感光器件、提取绿色频段的光信号的第二类感光器件以及提取蓝色频段的光信号的第二类感光器件。例如, 分别是具有红色滤色器的第二类感光器件、具有绿色滤色器的第二类感光器件以及具有蓝色滤色器的第二类感光器件。
在由所有第一类感光器件以及所有第二类感光器件构成的像素阵列中,每相邻两行中,以第一行和第二行为例,第二行中仅包含有第一类感光器件,第一行中每个第一类感光器件与每个第二类感光器件相间排列,每相邻三个第二类感光器件提取不同指定频段的光信号。同理,每相邻两列,以第一列和第二列为例,第二列中仅包含有第一类感光器件,第一列中每个第一类感光器件与每个第二类感光器件相间排列,且每相邻三个第二类感光器件提取不同指定频段的光信号。
图5中第一行第一列、第一行第三列以及第一行第五列的第二类感光器件为相邻三个第二类感光器件,其中第一行第一列的第二类感光器件提取红色频段的光信号,标记为R,第一行第三列的第二类感光器件提取绿色频段的光信号,标记为G,第一行第五列的第二类感光器件提取蓝色频段的光信号,标记为B。
将上述像素阵列应用于仿生视觉传感器中时,可以通过像素阵列的所有第一类感光器件结合相应的控制电路实现感知光强梯度信息的功能,每个第一类感光器直接将目标光信号转换为第一类电流信号,其中并不需要提取指定频段的光信号,每个第一类感光器件可以与周围四个第一类感光器件得到的电信号进行比较,最终经由第一类感光器件产生的图像为表示边缘信息的灰度图像;通过像素阵列的所有第二类感光器件结合相应的控制电路实现感知颜色信息以及绝对光强信息的功能,由于每个第二类感光器件均用于获取目标光信号,并从目标光信号中提取指定频段的光信号,将指定频段的光信号转换为第二类电流信号,因此最终经由第二类感光器件产生的图像为彩色图像。
本实用新型实施例中提供了一种像素阵列,包括:多个第一类感光器件以及多个第二类感光器件,第一类感光器件用于获取目标光信号,并将目标光信号转换为第一类电流信号,第二类感光器件用于获 取目标光信号,并从目标光信号中提取指定频段的光信号,将指定频段的光信号转换为第二类电流信号;指定频段为红光频段、蓝光频段或绿光频段;所有第一类感光器件与所有第二类感光器件排列形成像素阵列;像素阵列的每相邻两行中,存在一行仅包含有所述第一类感光器件,另一行中每个所述第一类感光器件与每个所述第二类感光器件相间排列,每相邻三个所述第二类感光器件提取不同指定频段的光信号。本实用新型实施例中提供的像素阵列,可以用于仿生视觉传感器中,以使仿生视觉传感器同时具有感知颜色信息以及绝对光强信息的功能和感知光强梯度信息的功能,弥补了现有技术中没有可以与双感知模式的仿生视觉传感器相匹配的像素阵列的缺陷。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,所述像素阵列中每相邻六行为一个重复单元。
具体地,如图5所示,本实用新型实施例中,由所有第一类感光器件与所有第二类感光器件排列形成的像素阵列中,第一行至第六行为一个重复单元,该重复单元中的每一行相邻三个第二类感光器件提取不同指定频段的光信号。例如,重复单元中的每一行相邻三个第二类感光器件中存在互不相同的滤色器。第七行与第一行相同。如果图2示出的像素阵列存在第八行至第十二行,则第八行与第二行相同,第九行与第三行相同,第十行与第四行相同,第十一行与第五行相同,第十二行与第六行相同,且第七行至第十二行构成一个重复单元。
如此排列得到的像素阵列,可以使匹配的仿生视觉传感器感知的光强梯度信息更加全面准确,得到更加准确的边缘信息。
在上述实施例的基础上,本实用新型实施例中提供的像素阵列,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
在上述实施例的基础上,本实用新型实施例中提供了一种仿生视觉传感器,包括:如上述实施例所述的像素阵列。
具体地,本实用新型实施例中提供的仿生视觉传感器中,像素阵列中的每个第一类感光器件和每个第二类感光器件均分别对应一控制电路。第一类感光器件对应的控制电路可以是电流模式有源像素传感器电路,第二类感光器件对应的控制电路可以是电压模式有源像素传感器电路。电压模式有源像素传感器电路如图6所示,这相当于人眼视网膜的视锥细胞。图6中Vcc1为电压模式有源像素传感器电路的电源,Vcc1具体可以是3.3V。第二类感光器件12分别与MOS管13、14连接,MOS管14与MOS管15连接。MOS管13用于起偏置作用,MOS管14用于起开关作用,MOS管15用于对第二类感光器件12转换得到的电信号进行电流积分,得到电压信号,表征光信号中的光强信息以及颜色信息。
电流模式有源像素传感器电路如图7所示,这相当于人眼视网膜的视杆细胞。图7中,Vcc2为电流模式有源像素传感器电路的电源,Vcc2具体可以是3.3V。第一类感光器件11与MOS管23连接,MOS管23与MOS管24连接且形成电流镜,通过改变MOS管24的沟道宽度,可以使第一类感光器件11转换得到的电流信号I c与MOS管24中和第一类感光器件11镜像对应的一端的电流信号大小具有P倍的关系,即MOS管24中和第一类感光器件11镜像对应的一端的电流为P*I c
某一电流模式有源像素传感器电路与其他电流模式有源像素传感器电路之间通过如图8所示的电路进行关联。图8中,Vcc3为电路的电源,Vcc3具体可以是3.3V。数模转换器(Digital to Analog Converter,DAC)31与比较器32连接,第一类感光器件转换得到的电信号为I c,第一类感光器件周围的4个其他第一类感光器件转换得到的电信号分别为I 1、I 2、I 3、I 4,缩小P=4倍后分别为I 1/4、I 2/4、I 3/4、I 4/4。比较器32与寻址单元33连接,且寻址单元33分别与DAC31和存储单元34连接。需要说明的是,DAC31的输入可以是人为输入的一个周期性 的数字信号,由寻址单元33用于在比较器32的输出端输出事件脉冲信号时,即比较器32处于边沿触发状态,对存储单元34进行寻址以存储电流模式有源像素传感器电路的输出结果。本发明实施例中通过比较器32实现对电流模式有源像素传感器电路的输出动作的控制,当比较器32的输出端输出事件脉冲信号时,即比较器32处于边沿触发状态,电流模式有源像素传感器电路输出此时的指定数字信号,此时的指定数字信号用于表征目标光信号中的光强梯度信息。存储单元34具体可以是寄存器、锁存器、SRAM(Static Random Access Memory,静态随机存储器)、DRAM(Dynamic Random Access Memory,动态随机存储器)、忆阻器等。以寄存器为例,寄存器的位数与DAC31的精度有关,本实用新型实施例中可以选择4位寄存器。
其中,输入至DAC31的指定数字信号的变化形式具体如图9所示,指定数字信号具体随时间呈阶梯型递增,当某一时刻N*step时,指定数字信号取值为ΔI,比较器32输出事件脉冲信号,即比较器32处于边沿触发状态,则将此时的ΔI作为电流模式有源像素传感器电路的输出。其中,N为此前经过的台阶数,step为每一台阶经过的时长。
本实用新型实施例中,可以将像素阵列中的每九个像素作为一个像素组,且该像素组中的中心像素为第一类感光器件,通过控制电路将每个像素组中的中心像素与周围四个第一类感光器件得到的电信号进行比较,最终经由第一类感光器件产生的图像为表示边缘信息的灰度图像,实现感知光强梯度信息的功能。并通过像素阵列的所有第二类感光器件结合相应的控制电路实现感知颜色信息以及绝对光强信息的功能。
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这 些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。

Claims (10)

  1. 一种像素阵列,其特征在于,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
    所述像素阵列的每一行中,每个所述第一类感光器件与每个所述第二类感光器件相间排列,且每个所述第二类感光器件均用于提取相同所述指定频段的光信号。
  2. 根据权利要求1所述的像素阵列,其特征在于,所述像素阵列中每相邻四行为一个重复单元,且每个重复单元中同时存在提取所述红光频段的光信号的第二类感光器件、提取所述蓝光频段的光信号的第二类感光器件以及提取所述绿光频段的光信号的第二类感光器件。
  3. 根据权利要求2所述的像素阵列,其特征在于,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述红光频段的光信号的第二类感光器件。
  4. 根据权利要求2所述的像素阵列,其特征在于,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述蓝光频段的光信号的第二类感光器件。
  5. 根据权利要求2所述的像素阵列,其特征在于,所述像素阵列中除第一行、第一列、最后一行以及最后一列外的每个所述第一类感光器件周围均具有两个提取所述绿光频段的光信号的第二类感光器件。
  6. 根据权利要求1-5中任一项所述的像素阵列,其特征在于,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
  7. 一种像素阵列,其特征在于,包括:多个第一类感光器件以及多个第二类感光器件,所述第一类感光器件用于获取目标光信号,并将所述目标光信号转换为第一类电流信号,所述第二类感光器件用于获取所述目标光信号,并从所述目标光信号中提取指定频段的光信号,将所述指定频段的光信号转换为第二类电流信号;所述指定频段为红光频段、蓝光频段或绿光频段;所有所述第一类感光器件与所有所述第二类感光器件排列形成像素阵列;
    所述像素阵列的每相邻两行中,存在一行仅包含有所述第一类感光器件,另一行中每个所述第一类感光器件与每个所述第二类感光器件相间排列,每相邻三个所述第二类感光器件提取不同所述指定频段的光信号。
  8. 根据权利要求7所述的像素阵列,其特征在于,所述像素阵列中每相邻六行为一个重复单元。
  9. 根据权利要求7或8所述的像素阵列,其特征在于,每个所述第一类感光器件和所述第二类感光器件中均包括光电二极管。
  10. 一种仿生视觉传感器,其特征在于,包括:如权利要求1-9中任一项所述的像素阵列。
PCT/CN2020/073543 2019-12-24 2020-01-21 像素阵列及仿生视觉传感器 WO2021128536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922360390.4U CN211296854U (zh) 2019-12-24 2019-12-24 像素阵列及仿生视觉传感器
CN201922360390.4 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021128536A1 true WO2021128536A1 (zh) 2021-07-01

Family

ID=72022687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073543 WO2021128536A1 (zh) 2019-12-24 2020-01-21 像素阵列及仿生视觉传感器

Country Status (2)

Country Link
CN (1) CN211296854U (zh)
WO (1) WO2021128536A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584016B (zh) * 2020-12-03 2022-07-19 北京灵汐科技有限公司 红外仿生视觉传感器
CN112543271B (zh) * 2020-12-03 2022-09-02 清华大学 双模态紫外仿生视觉传感器
CN112702588B (zh) * 2020-12-21 2023-04-07 北京灵汐科技有限公司 双模态图像信号处理器和双模态图像信号处理系统
WO2022199413A1 (zh) * 2021-03-23 2022-09-29 北京灵汐科技有限公司 像素传感阵列和视觉传感器
CN113038046B (zh) * 2021-03-23 2023-07-25 北京灵汐科技有限公司 像素传感阵列和视觉传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623475A (zh) * 2012-04-17 2012-08-01 上海中科高等研究院 层叠式cmos图像传感器
US20150062347A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Image processing methods for visible and infrared imaging
CN105611136A (zh) * 2016-02-26 2016-05-25 联想(北京)有限公司 一种图像传感器以及电子设备
CN107017269A (zh) * 2015-10-06 2017-08-04 三星电子株式会社 包括分色元件的图像传感器
CN107799540A (zh) * 2016-09-02 2018-03-13 三星电子株式会社 半导体器件
CN108426639A (zh) * 2017-02-14 2018-08-21 芯视达系统公司 多光谱传感系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623475A (zh) * 2012-04-17 2012-08-01 上海中科高等研究院 层叠式cmos图像传感器
US20150062347A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Image processing methods for visible and infrared imaging
CN107017269A (zh) * 2015-10-06 2017-08-04 三星电子株式会社 包括分色元件的图像传感器
CN105611136A (zh) * 2016-02-26 2016-05-25 联想(北京)有限公司 一种图像传感器以及电子设备
CN107799540A (zh) * 2016-09-02 2018-03-13 三星电子株式会社 半导体器件
CN108426639A (zh) * 2017-02-14 2018-08-21 芯视达系统公司 多光谱传感系统和方法

Also Published As

Publication number Publication date
CN211296854U (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2021128536A1 (zh) 像素阵列及仿生视觉传感器
US11943550B2 (en) Dual-modality neuromorphic vision sensor
CN111083404B (zh) 视锥视杆双模态仿生视觉传感器
CN103327342B (zh) 具有透明滤波器像素的成像系统
US10136107B2 (en) Imaging systems with visible light sensitive pixels and infrared light sensitive pixels
CN102970493B (zh) 多重转换增益图像传感器的多电平复位电压
CN102625059B (zh) 用于移动式应用的cmos图像传感器的动态范围扩展
JP2013520936A (ja) カラー部分画素アレイの解像度を増大すること
EP3902242B1 (en) Image sensor and signal processing method
CN112532898B (zh) 双模态红外仿生视觉传感器
WO2021128532A1 (zh) 视锥视杆复用式仿生视觉传感器
WO2021128535A1 (zh) 双模态仿生视觉传感器像素读出系统
DE102013111712A1 (de) Bildverarbeitungs-Vorrichtung und Bildverarbeitungs-Verfahren
CN111031267B (zh) 视杆仿生视觉传感器
US11463643B2 (en) Image sensing device and image sensing method
KR20190100833A (ko) Hdr 이미지 생성 장치
EP4117282A1 (en) Image sensor, imaging apparatus, electronic device, image processing system and signal processing method
CN112543271B (zh) 双模态紫外仿生视觉传感器
US10735699B1 (en) Computer vision sensor
WO2022116991A1 (zh) 仿生视觉传感器
CN104967763B (zh) 一种图像采集器件、图像采集方法及电子设备
CN113301280B (zh) 感光块的像素电路、图像处理方法、装置及电子设备
CN108040216A (zh) 一种高动态cmos像素单元及其信号采集和处理方法
CN118433562A (zh) 图像采集方法、拍摄装置及电子设备
CN112600996A (zh) 紫外仿生视觉传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906896

Country of ref document: EP

Kind code of ref document: A1