[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021127870A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021127870A1
WO2021127870A1 PCT/CN2019/127516 CN2019127516W WO2021127870A1 WO 2021127870 A1 WO2021127870 A1 WO 2021127870A1 CN 2019127516 W CN2019127516 W CN 2019127516W WO 2021127870 A1 WO2021127870 A1 WO 2021127870A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
radius
ttl
imaging optical
Prior art date
Application number
PCT/CN2019/127516
Other languages
English (en)
French (fr)
Inventor
马健
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/127516 priority Critical patent/WO2021127870A1/zh
Publication of WO2021127870A1 publication Critical patent/WO2021127870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the pixel size of photosensitive devices has been reduced, and the development trend of current electronic products with good functions, thin and short appearance, therefore, has a good
  • the miniaturized camera lens with image quality has become the mainstream in the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the purpose of the present invention is to provide an imaging optical lens that can meet the requirements of large aperture, wide-angle, and ultra-thin while achieving high imaging performance.
  • an embodiment of the present invention provides an imaging optical lens.
  • the imaging optical lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side.
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the radius of curvature of the object side surface of the eighth lens is R15
  • the eighth lens image side The radius of curvature of is R16
  • the on-axis thickness of the seventh lens is d13
  • the on-axis distance from the image side of the seventh lens to the object side of the eighth lens is d14, which satisfies the following relationship:
  • the focal length of the third lens is f3, and satisfies the following relationship:
  • the radius of curvature of the object side surface of the first lens is R1
  • the radius of curvature of the image side surface of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens It is TTL and satisfies the following relationship:
  • the curvature radius of the object side surface of the second lens is R3
  • the curvature radius of the image side surface of the second lens is R4
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens It is TTL and satisfies the following relationship:
  • the radius of curvature of the object side surface of the third lens is R5
  • the radius of curvature of the image side surface of the third lens is R6, and the axial thickness of the third lens is d5, and the total optical length of the imaging optical lens It is TTL and satisfies the following relationship:
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, and the on-axis thickness of the fourth lens is d7
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the sixth lens is f6, the radius of curvature of the object side of the sixth lens is R11, the radius of curvature of the image side of the sixth lens is R12, and the on-axis thickness of the sixth lens is d11 ,
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the seventh lens is f7
  • the on-axis curvature radius of the object side of the seventh lens is R13
  • the on-axis curvature radius of the image side of the seventh lens is R14
  • the optical The total length is TTL and satisfies the following relationship:
  • the focal length of the eighth lens is f8, the on-axis thickness of the eighth lens is d15, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the beneficial effect of the present invention is that the imaging optical lens according to the present invention has excellent optical characteristics, meets the requirements of large aperture, wide-angle, and ultra-thin, and is especially suitable for mobile phone imaging composed of high-pixel CCD, CMOS and other imaging elements. Lens components and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes eight lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens. Lens L6, seventh lens L7, and eighth lens L8.
  • An optical element such as an optical filter GF may be provided between the eighth lens L8 and the image plane Si.
  • the focal length of the overall imaging optical lens 10 as f
  • the focal length of the first lens L1 as f1
  • the first lens L1 has a positive
  • the refractive power specifies the ratio of the focal length of the first lens to the total focal length of the system, which can effectively balance the spherical aberration and field curvature of the system.
  • 0.70 ⁇ f1/f ⁇ 1.66 is satisfied.
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relational expression: f2 ⁇ 0mm, which specifies the positive and negative of the focal length of the second lens.
  • f2 ⁇ 0mm which specifies the positive and negative of the focal length of the second lens.
  • Sex Preferably, f2 ⁇ -9.99mm.
  • the radius of curvature of the object side surface of the eighth lens L8 is R15
  • the radius of curvature of the image side surface of the eighth lens L8 is R16, -1.00 ⁇ (R15+R16)/(R15-R16) ⁇ -0.35, which specifies the eighth lens
  • the shape of the lens within the range specified by the conditional formula, can ease the degree of deflection of light passing through the lens and effectively reduce aberrations.
  • -0.95 ⁇ (R15+R16)/(R15-R16) ⁇ -0.36 is satisfied.
  • the on-axis thickness of the seventh lens L7 is defined as d13, and the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the eighth lens L8 is d14, which satisfies the following relationship: 2.00 ⁇ d13/d14 ⁇ 10.00, which specifies the ratio of the thickness of the seventh lens to the air gap of the seventh and eighth lenses, which helps to compress the total length of the optical system within the scope of the conditional formula and achieves ultra-thinness. It satisfies 2.25 ⁇ d13/d14 ⁇ 9.71.
  • the focal length of the overall imaging optical lens 10 as f
  • the focal length of the third lens L3 as f3
  • the third lens L3 has Negative refractive power specifies the ratio of the focal length of the third lens to the total focal length of the system.
  • the system has better imaging quality and lower sensitivity.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, the on-axis distance from the image side to the object side of the relevant lens, and the on-axis thickness satisfy the above relationship, the imaging optical lens 10 can be made to have high performance and satisfy Large aperture, wide-angle, ultra-thin design requirements.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, -6.39 ⁇ (R1+R2)/(R1-R2) ⁇ -0.83, which stipulates the first
  • it satisfies -4.00 ⁇ (R1+R2)/(R1-R2) ⁇ -1.04.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relational expression: 0.06 ⁇ d1/TTL ⁇ 0.24, which is beneficial to achieve ultra-thinness within the specified range of the conditional expression.
  • 0.09 ⁇ d1/TTL ⁇ 0.19 is satisfied.
  • the focal length of the second lens L2 is f2, which satisfies a series of relational expressions: -212.87 ⁇ f2/f ⁇ -1.79.
  • the second lens L2 has a negative refractive power.
  • the optical power is controlled in a reasonable range, which is beneficial to correct the aberration of the optical system.
  • -133.04 ⁇ f2/f ⁇ -2.24 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, 1.53 ⁇ (R3+R4)/(R3-R4) ⁇ 45.99, which specifies the second lens L2
  • the shape of the lens can ease the deflection of light passing through the lens and effectively reduce aberrations. Preferably, it satisfies 2.45 ⁇ (R3+R4)/(R3-R4) ⁇ 36.79.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • 0.03 ⁇ d3/TTL ⁇ 0.07 is satisfied.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, 0.65 ⁇ (R5+R6)/(R5-R6) ⁇ 7.41, which specifies the third lens L3
  • the shape of the lens can effectively control the shape of the third lens L3, which is conducive to the molding of the third lens L3.
  • the degree of deflection of the light passing through the lens can be reduced, and aberrations can be effectively reduced.
  • 1.04 ⁇ (R5+R6)/(R5-R6) ⁇ 5.93 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.09. Within the specified range of the conditional formula, it is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d5/TTL ⁇ 0.07 is satisfied.
  • the focal length of the fourth lens L4 is f4, which satisfies the series relationship: 1.61 ⁇ f4/f ⁇ 52.12, which specifies the ratio of the focal length of the fourth lens L4 to the overall focal length.
  • the fourth lens L4 has a positive refractive power, and the reasonable distribution of the optical power enables the system to have better imaging quality and lower sensitivity.
  • 2.58 ⁇ f4/f ⁇ 41.70 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, -7.19 ⁇ (R7+R8)/(R7-R8) ⁇ -0.05, which specifies the fourth
  • the shape of the lens L4 is within the range of the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • it satisfies -4.50 ⁇ (R7+R8)/(R7-R8) ⁇ -0.06.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d7/TTL ⁇ 0.12, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d7/TTL ⁇ 0.09 is satisfied.
  • the focal length of the fifth lens L5 is f5, which satisfies the series relationship: 2.85 ⁇ f5/f ⁇ 97.28.
  • the fifth lens L5 has a positive refractive power, which specifies the focal length of the fifth lens and the system
  • the ratio of the total focal length, through the reasonable allocation of the focal length, makes the system have better imaging quality and lower sensitivity.
  • 4.56 ⁇ f5/f ⁇ 77.83 is satisfied.
  • the radius of curvature of the object side surface of the fifth lens L5 is R9
  • the radius of curvature of the image side surface of the fifth lens L5 is R10, -36.21 ⁇ (R9+R10)/(R9-R10) ⁇ 36.53, which specifies the fifth lens
  • the shape of L5 is within the range of the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • it satisfies -22.63 ⁇ (R9+R10)/(R9-R10) ⁇ 29.23.
  • the axial thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens is TTL, which satisfies the following relational expression: 0.02 ⁇ d9/TTL ⁇ 0.09. Within the range of the conditional expression, it is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d9/TTL ⁇ 0.08 is satisfied.
  • the focal length of the sixth lens L6 is f6, which satisfies the series relationship: -5.39 ⁇ f6/f ⁇ 21.78, which specifies the ratio of the focal length of the sixth lens L6 to the overall focal length. Within the specified range, the system has better imaging quality and lower sensitivity. Preferably, it satisfies -3.37 ⁇ f6/f ⁇ 17.42.
  • the radius of curvature of the object side surface of the sixth lens L6 is R11
  • the radius of curvature of the image side surface of the sixth lens L6 is R12
  • -103.07 ⁇ (R11+R12)/(R11-R12) ⁇ 6.72 which specifies the sixth lens
  • the shape of L6 is within the range of the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • -64.42 ⁇ (R11+R12)/(R11-R12) ⁇ 5.37 is satisfied.
  • the on-axis thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d11/TTL ⁇ 0.10, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d11/TTL ⁇ 0.08 is satisfied.
  • the focal length of the seventh lens L7 is f7, which satisfies the series relationship: 0.33 ⁇ f7/f ⁇ 1.32, which specifies the ratio of the focal length of the seventh lens L7 to the overall focal length.
  • the seventh lens L7 has a positive refractive power, so that the system has better imaging quality and lower sensitivity.
  • 0.52 ⁇ f7/f ⁇ 1.05 is satisfied.
  • the curvature radius R13 of the object side surface of the seventh lens L7 and the curvature radius R14 of the image side surface of the seventh lens L7 satisfying the following relationship: -1.46 ⁇ (R13+R14)/(R13-R14) ⁇ -0.04, which specifies
  • the shape of the seventh lens helps reduce the degree of light deflection and aberrations.
  • -0.91 ⁇ (R13+R14)/(R13-R14) ⁇ -0.05 is satisfied.
  • the axial thickness of the seventh lens L7 is d13, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.07 ⁇ d13/TTL ⁇ 0.22, which is beneficial to realize ultra-thinness.
  • 0.11 ⁇ d13/TTL ⁇ 0.17 is satisfied.
  • the focal length of the eighth lens L8 is f8, which satisfies the series relationship: -1.45 ⁇ f8/f ⁇ -0.32, which specifies the ratio of the focal length of the eighth lens L8 to the overall focal length.
  • the eighth lens L8 has a negative refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • -0.91 ⁇ f8/f ⁇ -0.40 is satisfied.
  • the on-axis thickness of the eighth lens L8 is d15, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d15/TTL ⁇ 0.13, which is beneficial to realize ultra-thinness.
  • 0.05 ⁇ d15/TTL ⁇ 0.11 is satisfied.
  • the combined focal length of the first lens L1 and the second lens L2 is defined as f12, which satisfies the following relational expression: 0.52 ⁇ f12/f ⁇ 2.32.
  • the imaging optics can be eliminated
  • the aberration and distortion of the lens 10 can suppress the back focal length of the imaging optical lens 10 and maintain the miniaturization of the image lens system group.
  • 0.83 ⁇ f12/f ⁇ 1.86 Preferably, 0.83 ⁇ f12/f ⁇ 1.86.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 9.89 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 9.44 mm.
  • the aperture F number (Fno) of the imaging optical lens 10 is less than or equal to 1.60. Large aperture, good imaging performance. Preferably, the aperture F number is less than or equal to 1.57.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the eighth lens L8;
  • R16 the radius of curvature of the image side surface of the eighth lens L8;
  • R17 the radius of curvature of the object side of the optical filter GF
  • R18 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
  • d16 the on-axis distance from the image side surface of the eighth lens L8 to the object side surface of the optical filter GF;
  • d17 the axial thickness of the optical filter GF
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • V8 Abbe number of the eighth lens L8;
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
  • P4R1, P4R2 represent the object side and image side of the fourth lens L4
  • P5R1, P5R2 represent the object side and image side of the fifth lens L5
  • P6R1, P6R2 represent the object side and image side of the sixth lens L6
  • P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively.
  • P8R1 and P8R2 respectively represent the object side surface and the image side surface of the eighth lens L8.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm pass through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. song.
  • Table 13 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 4.800mm
  • the full-field image height is 6.000mm
  • the diagonal field angle is 77.50°
  • the aperture is large, wide-angle, and ultra-thin.
  • On-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 4.575mm
  • the full-field image height is 6.000mm
  • the diagonal field angle is 79.20°
  • the aperture is large, wide-angle, and ultra-thin.
  • On-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter of the imaging optical lens is 4.395mm
  • the full-field image height is 6.000mm
  • the diagonal viewing angle is 80.00°
  • the aperture is large, wide-angle, and ultra-thin.
  • On-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 f1/f 0.81 1.10 1.62 (R15+R16)/(R15-R16) -0.90 -0.66 -0.38 d13/d14 2.50 6.03 9.42 f 7.440 7.091 6.813 f1 6.000 7.772 11.021 f2 -19.98 -35.80 -725.13 f3 -24.873 -54.363 -41.860 f4 35.059 246.410 21.958 f5 482.515 40.398 441.197 f6 -20.068 102.963 89.837 f7 5.807 4.622 5.979 f8 -5.062 -3.446 -4.956 f12 7.734 9.080 10.533 Fno 1.55 1.55 1.55
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),摄像光学镜头(10)自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5),第六透镜(L6),第七透镜(L7),以及第八透镜(L8);且满足下列关系式:0.60≤f1/f≤1.70;f2≤0mm;-1.00≤(R15+R16)/(R15-R16)≤-0.35;2.00≤d13/d14≤10.00。摄像光学镜头(10)具有大光圈、广角化、超薄等良好的光学性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中。迫切需求提供具有良好光学性能的大光圈、广角化、超薄的光学摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、广角化、超薄的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜, 第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第七透镜的轴上厚度为d13,所述第七透镜的像侧面到所述第八透镜的物侧面的轴上距离为d14,满足下列关系式:
0.60≤f1/f≤1.70;
f2≤0mm;
-1.00≤(R15+R16)/(R15-R16)≤-0.35;
2.00≤d13/d14≤10.00。
优选地,所述第三透镜的焦距为f3,且满足下列关系式:
-8.00≤f3/f≤-3.00。
优选地,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.39≤(R1+R2)/(R1-R2)≤-0.83;
0.06≤d1/TTL≤0.24。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,以及所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-212.87≤f2/f≤-1.79;
1.53≤(R3+R4)/(R3-R4)≤45.99;
0.02≤d3/TTL≤0.09。
优选地,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,以及所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.65≤(R5+R6)/(R5-R6)≤7.41;
0.02≤d5/TTL≤0.09。
优选地,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,以及所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.61≤f4/f≤52.12;
-7.19≤(R7+R8)/(R7-R8)≤-0.05;
0.03≤d7/TTL≤0.12。
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,以及所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
2.85≤f5/f≤97.28;
-36.21≤(R9+R10)/(R9-R10)≤36.53;
0.02≤d9/TTL≤0.09。
优选地,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-5.39≤f6/f≤21.78;
-103.07≤(R11+R12)/(R11-R12)≤6.72;
0.03≤d11/TTL≤0.10。
优选地,所述第七透镜的焦距为f7,所述第七透镜物侧面的轴上曲率半径为R13,所述第七透镜像侧面的轴上曲率半径为R14,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.33≤f7/f≤1.32;
-1.46≤(R13+R14)/(R13-R14)≤-0.04;
0.07≤d13/TTL≤0.22。
优选地,所述第八透镜的焦距为f8,以及所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.45≤f8/f≤-0.32;
0.03≤d15/TTL≤0.13。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,满足大光圈、广角化、超薄的要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.60≤f1/f≤1.70,在条件式规定范围内,所述第一透镜L1具有正屈折力,规定了第一透镜焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。优选地,满足0.70≤f1/f≤1.66。
定义所述第二透镜L2的焦距为f2,满足下列关系式:f2≤0mm,规定了第二透镜焦距的正负,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,f2≤-9.99mm。
所述第八透镜L8物侧面的曲率半径为R15,所述第八透镜L8像 侧面的曲率半径为R16,-1.00≤(R15+R16)/(R15-R16)≤-0.35,规定了第八透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-0.95≤(R15+R16)/(R15-R16)≤-0.36。
定义所述第七透镜L7的轴上厚度为d13,所述第七透镜L7的像侧面到所述第八透镜L8的物侧面的轴上距离为d14,满足下列关系式:2.00≤d13/d14≤10.00,规定了第七透镜厚度与第七第八透镜空气间隔的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。满足2.25≤d13/d14≤9.71。
定义整体摄像光学镜头10的焦距为f,所述第三透镜L3的焦距为f3,满足下列关系式:-8.00≤f3/f≤-3.00,在条件式范围内,所述第三透镜L3具有负屈折力,规定了第三透镜焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,-7.83≤f3/f≤-3.17。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜像侧面到物侧面的轴上距离、轴上厚度满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足大光圈、广角化、超薄的设计需求。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,-6.39≤(R1+R2)/(R1-R2)≤-0.83,规定了第一透镜L1的形状,在条件式规定范围内时,有利于合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-4.00≤(R1+R2)/(R1-R2)≤-1.04。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.24,在条件式规定范围内时有利于实现超薄化。优选地,满足0.09≤d1/TTL≤0.19。
所述第二透镜L2的焦距为f2,满足系列关系式:-212.87≤f2/f≤ -1.79,条件式范围内,所述第二透镜L2具有负屈折力,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-133.04≤f2/f≤-2.24。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,1.53≤(R3+R4)/(R3-R4)≤45.99,规定了第二透镜L2的形状,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足2.45≤(R3+R4)/(R3-R4)≤36.79。
所述第二透镜L2的轴上厚度为d3,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.09,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.07。
所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,0.65≤(R5+R6)/(R5-R6)≤7.41,规定了第三透镜L3的形状,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足1.04≤(R5+R6)/(R5-R6)≤5.93。
所述第三透镜L3的轴上厚度为d5,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.09,在条件式规定范围内,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.07。
所述第四透镜L4的焦距为f4,满足系列关系式:1.61≤f4/f≤52.12,规定了第四透镜L4的焦距与整体焦距的比值。在规定的范围内时,所述第四透镜L4具有正屈折力,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足2.58≤f4/f≤41.70。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,-7.19≤(R7+R8)/(R7-R8)≤-0.05,规定了第四透镜L4的形状,在条件式范围内时,随着超薄广角化的发展,有利于补正 轴外画角的像差等问题。优选地,满足-4.50≤(R7+R8)/(R7-R8)≤-0.06。
所述第四透镜L4的轴上厚度为d7,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d7/TTL≤0.12,有利于实现超薄化。优选地,满足0.04≤d7/TTL≤0.09。
所述第五透镜L5的焦距为f5,满足系列关系式:2.85≤f5/f≤97.28,在条件式规定范围内,所述第五透镜L5具有正屈折力,规定了第五透镜焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足4.56≤f5/f≤77.83。
所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,-36.21≤(R9+R10)/(R9-R10)≤36.53,规定了第五透镜L5的形状,在条件式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-22.63≤(R9+R10)/(R9-R10)≤29.23。
所述第五透镜L5的轴上厚度为d9,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.08。
所述第六透镜L6的焦距为f6,满足系列关系式:-5.39≤f6/f≤21.78,规定了第六透镜L6的焦距与整体焦距的比值。在规定的范围内时,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-3.37≤f6/f≤17.42。
所述第六透镜L6物侧面的曲率半径为R11,所述第六透镜L6像侧面的曲率半径为R12,-103.07≤(R11+R12)/(R11-R12)≤6.72,规定了第六透镜L6的形状,在条件式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-64.42≤(R11+R12)/(R11-R12)≤5.37。
所述第六透镜L6的轴上厚度为d11,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d11/TTL≤0.10,有利于实现超薄化。优选地,满足0.04≤d11/TTL≤0.08。
所述第七透镜L7的焦距为f7,满足系列关系式:0.33≤f7/f≤1.32,规定了第七透镜L7的焦距与整体焦距的比值。在规定的范围内时,所述第七透镜L7具有正屈折力,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.52≤f7/f≤1.05。
定义所述第七透镜L7物侧面的曲率半径R13,第七透镜L7像侧面的曲率半径R14,满足下列关系式:-1.46≤(R13+R14)/(R13-R14)≤-0.04,规定了第七透镜的形状,有助于减小光线偏折程度,减小像差。优选地,满足-0.91≤(R13+R14)/(R13-R14)≤-0.05。
所述第七透镜L7的轴上厚度为d13,摄像光学镜头的光学总长为TTL,满足下列关系式:0.07≤d13/TTL≤0.22,有利于实现超薄化。优选地,满足0.11≤d13/TTL≤0.17。
所述第八透镜L8的焦距为f8,满足系列关系式:-1.45≤f8/f≤-0.32,规定了第八透镜L8的焦距与整体焦距的比值。在规定的范围内时,所述第八透镜L8具有负屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足-0.91≤f8/f≤-0.40。
所述第八透镜L8的轴上厚度为d15,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d15/TTL≤0.13,有利于实现超薄化。优选地,满足0.05≤d15/TTL≤0.11。
本实施方式中,定义所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.52≤f12/f≤2.32,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,0.83≤f12/f≤1.86。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于9.89毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于9.44毫米。
本实施方式中,摄像光学镜头10的光圈F数(Fno)小于或等于1.60。大光圈,成像性能好。优选地,光圈F数小于或等于1.57。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019127516-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的物侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
V8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019127516-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20         (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1          
P1R2          
P2R1          
P2R2          
P3R1 1 0.275      
P3R2 2 0.555 1.595    
P4R1 2 0.355 1.605    
P4R2 1 2.135      
P5R1          
P5R2 2 2.035 2.255    
P6R1 2 0.795 2.505    
P6R2 4 0.555 2.475 2.765 3.025
P7R1 4 0.645 2.585 2.915 3.195
P7R2 1 3.645      
P8R1 2 2.625 4.915    
P8R2 3 1.135 4.635 5.185  
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2      
P2R1      
P2R2      
P3R1 1 0.435  
P3R2 2 0.985 1.885
P4R1 2 0.675 1.935
P4R2      
P5R1      
P5R2      
P6R1 1 1.375  
P6R2 1 1.165  
P7R1 1 1.225  
P7R2      
P8R1 1 4.195  
P8R2 1 1.735  
图2、图3分别示出了波长为656nm、587nm、546nm、486nm和435nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.800mm,全视场像高为6.000mm,对角线方向的视场角为77.50°,大光圈、广角化、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019127516-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019127516-appb-000004
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1          
P1R2          
P2R1          
P2R2          
P3R1 1 0.545      
P3R2 2 0.635 1.685    
P4R1 2 0.355 1.705    
P4R2 2 0.165 2.125    
P5R1 4 0.145 0.695 1.065 2.155
P5R2          
P6R1 2 1.185 2.595    
P6R2 2 0.645 2.565    
P7R1 4 0.675 2.425 2.665 2.905
P7R2 3 2.895 3.175 3.565  
P8R1 2 2.585 4.535    
P8R2 3 1.575 4.465 4.935  
【表8】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1        
P1R2        
P2R1        
P2R2        
P3R1 1 0.905    
P3R2 2 1.135 1.915  
P4R1 2 0.575 1.995  
P4R2 1 0.285    
P5R1 3 0.245 1.035 1.085
P5R2        
P6R1 1 1.725    
P6R2 1 1.405    
P7R1 1 1.165    
P7R2        
P8R1 1 4.065    
P8R2 1 2.555    
图6、图7分别示出了波长为656nm、587nm、546nm、486nm和435nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.575mm,全视场像高为6.000mm,对角线方向的视场角为79.20°,大光圈、广角化、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019127516-appb-000005
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019127516-appb-000006
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1          
P1R2          
P2R1          
P2R2          
P3R1 1 0.585      
P3R2 2 0.745 1.745    
P4R1 2 0.815 1.665    
P4R2          
P5R1 2 1.335 2.355    
P5R2 2 0.465 2.235    
P6R1 1 1.435      
P6R2 2 1.595 3.545    
P7R1 4 0.735 2.825 3.105 3.515
P7R2 1 3.445      
P8R1 1 2.665      
P8R2 4 1.605 4.525 5.325 5.355
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2      
P2R1      
P2R2      
P3R1 1 0.985  
P3R2 2 1.215 1.965
P4R1 2 1.255 1.975
P4R2      
P5R1 2 1.755 2.695
P5R2 2 0.825 2.705
P6R1 1 2.115  
P6R2 1 2.295  
P7R1 1 1.445  
P7R2      
P8R1 1 4.105  
P8R2 1 2.935  
图10、图11分别示出了波长为656nm、587nm、546nm、486nm和435nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及 倍率色差示意图。图12则示出了,波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.395mm,全视场像高为6.000mm,对角线方向的视场角为80.00°,大光圈、广角化、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
f1/f 0.81 1.10 1.62
(R15+R16)/(R15-R16) -0.90 -0.66 -0.38
d13/d14 2.50 6.03 9.42
f 7.440 7.091 6.813
f1 6.000 7.772 11.021
f2 -19.98 -35.80 -725.13
f3 -24.873 -54.363 -41.860
f4 35.059 246.410 21.958
f5 482.515 40.398 441.197
f6 -20.068 102.963 89.837
f7 5.807 4.622 5.979
f8 -5.062 -3.446 -4.956
f12 7.734 9.080 10.533
Fno 1.55 1.55 1.55
Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第七透镜的轴上厚度为d13,所述第七透镜的像侧面到所述第八透镜的物侧面的轴上距离为d14,满足下列关系式:
    0.60≤f1/f≤1.70;
    f2≤0mm;
    -1.00≤(R15+R16)/(R15-R16)≤-0.35;
    2.00≤d13/d14≤10.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,且满足下列关系式:
    -8.00≤f3/f≤-3.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -6.39≤(R1+R2)/(R1-R2)≤-0.83;
    0.06≤d1/TTL≤0.24。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,以及所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -212.87≤f2/f≤-1.79;
    1.53≤(R3+R4)/(R3-R4)≤45.99;
    0.02≤d3/TTL≤0.09。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,以及所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.65≤(R5+R6)/(R5-R6)≤7.41;
    0.02≤d5/TTL≤0.09。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,以及所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    1.61≤f4/f≤52.12;
    -7.19≤(R7+R8)/(R7-R8)≤-0.05;
    0.03≤d7/TTL≤0.12。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,以及所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    2.85≤f5/f≤97.28;
    -36.21≤(R9+R10)/(R9-R10)≤36.53;
    0.02≤d9/TTL≤0.09。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -5.39≤f6/f≤21.78;
    -103.07≤(R11+R12)/(R11-R12)≤6.72;
    0.03≤d11/TTL≤0.10。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的轴上曲率半径为R13,所述第七透镜像侧面的轴上曲率半径为R14,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.33≤f7/f≤1.32;
    -1.46≤(R13+R14)/(R13-R14)≤-0.04;
    0.07≤d13/TTL≤0.22。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,以及所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.45≤f8/f≤-0.32;
    0.03≤d15/TTL≤0.13。
PCT/CN2019/127516 2019-12-23 2019-12-23 摄像光学镜头 WO2021127870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127516 WO2021127870A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127516 WO2021127870A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021127870A1 true WO2021127870A1 (zh) 2021-07-01

Family

ID=76573409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127516 WO2021127870A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021127870A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252996A1 (en) * 2007-04-11 2008-10-16 Hoya Corporation Telephoto lens system
CN106501921A (zh) * 2016-12-21 2017-03-15 江西联益光学有限公司 无人机摄像镜头
CN107643586A (zh) * 2017-11-10 2018-01-30 浙江舜宇光学有限公司 摄像透镜组
CN108121053A (zh) * 2017-12-29 2018-06-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN109061838A (zh) * 2018-09-12 2018-12-21 广东旭业光电科技股份有限公司 一种光学成像镜头及电子设备
CN109239891A (zh) * 2018-11-16 2019-01-18 浙江舜宇光学有限公司 光学成像透镜组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252996A1 (en) * 2007-04-11 2008-10-16 Hoya Corporation Telephoto lens system
CN106501921A (zh) * 2016-12-21 2017-03-15 江西联益光学有限公司 无人机摄像镜头
CN107643586A (zh) * 2017-11-10 2018-01-30 浙江舜宇光学有限公司 摄像透镜组
CN108121053A (zh) * 2017-12-29 2018-06-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN109061838A (zh) * 2018-09-12 2018-12-21 广东旭业光电科技股份有限公司 一种光学成像镜头及电子设备
CN109239891A (zh) * 2018-11-16 2019-01-18 浙江舜宇光学有限公司 光学成像透镜组

Similar Documents

Publication Publication Date Title
WO2021168905A1 (zh) 摄像光学镜头
WO2020134280A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021128390A1 (zh) 摄像光学镜头
WO2021127895A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021128144A1 (zh) 摄像光学镜头
WO2021127870A1 (zh) 摄像光学镜头
WO2021127878A1 (zh) 摄像光学镜头
WO2021127868A1 (zh) 摄像光学镜头
WO2021128394A1 (zh) 摄像光学镜头
WO2021128399A1 (zh) 摄像光学镜头
WO2021127875A1 (zh) 摄像光学镜头
WO2021128391A1 (zh) 摄像光学镜头
WO2021128398A1 (zh) 摄像光学镜头
WO2021128389A1 (zh) 摄像光学镜头
WO2021127863A1 (zh) 摄像光学镜头
WO2021127873A1 (zh) 摄像光学镜头
WO2021127871A1 (zh) 摄像光学镜头
WO2021127867A1 (zh) 摄像光学镜头
WO2021128395A1 (zh) 摄像光学镜头
WO2021127869A1 (zh) 摄像光学镜头
WO2021128392A1 (zh) 摄像光学镜头
WO2021127872A1 (zh) 摄像光学镜头
WO2021127880A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958068

Country of ref document: EP

Kind code of ref document: A1