[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021125032A1 - Sheet-like article and method for producing same - Google Patents

Sheet-like article and method for producing same Download PDF

Info

Publication number
WO2021125032A1
WO2021125032A1 PCT/JP2020/046009 JP2020046009W WO2021125032A1 WO 2021125032 A1 WO2021125032 A1 WO 2021125032A1 JP 2020046009 W JP2020046009 W JP 2020046009W WO 2021125032 A1 WO2021125032 A1 WO 2021125032A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
elastic body
polymer elastic
woven fabric
fiber
Prior art date
Application number
PCT/JP2020/046009
Other languages
French (fr)
Japanese (ja)
Inventor
芝野卓也
宿利隆司
石井孝樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080078176.2A priority Critical patent/CN114729501B/en
Priority to JP2020569210A priority patent/JP6904493B1/en
Priority to EP20903475.0A priority patent/EP4079962A4/en
Priority to US17/773,915 priority patent/US20220380976A1/en
Priority to KR1020227018399A priority patent/KR20220113689A/en
Publication of WO2021125032A1 publication Critical patent/WO2021125032A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0025Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
    • D06N3/0027Rubber or elastomeric fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0034Polyamide fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0077Embossing; Pressing of the surface; Tumbling and crumbling; Cracking; Cooling; Heating, e.g. mirror finish
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/146Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the macromolecular diols used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/06Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/068Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/02Dispersion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/20Cured materials, e.g. vulcanised, cross-linked
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/103Resistant to mechanical forces, e.g. shock, impact, puncture, flexion, shear, compression, tear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/105Resistant to abrasion, scratch
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1635Elasticity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1678Resistive to light or to UV
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/241Polyamides; Polyurethanes using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs

Definitions

  • the present invention relates to a sheet-like material and a method for producing the same, particularly a sheet-like material having excellent flexibility and light resistance and a method for producing the same.
  • Sheet-like materials mainly composed of fibrous base materials such as non-woven fabrics and polyurethane have excellent characteristics not found in natural leather, and are widely used in various applications such as artificial leather.
  • sheet-like materials using a polyester-based fibrous base material have excellent moldability, and are therefore expanding year by year to applications such as clothing, upholstery, and automobile interior materials.
  • the fibrous base material is impregnated with an organic solvent solution of polyurethane, and then the obtained fibrous base material is immersed in water or an aqueous solution of an organic solvent which is a non-solvent of polyurethane.
  • a combination of steps of wet-solidifying polyurethane is generally adopted.
  • the organic solvent which is the solvent of polyurethane a water-miscible organic solvent such as N, N-dimethylformamide is used, but since the organic solvent is generally highly harmful to the environment, it is in the form of a sheet.
  • the organic solvent which is the solvent of polyurethane
  • a water-miscible organic solvent such as N, N-dimethylformamide
  • a method of using a water-dispersed polyurethane in which a polyurethane resin is dispersed in water is being studied instead of the conventional organic solvent-based polyurethane, but generally, a water-dispersed polyurethane is used.
  • the solidified sheet-like material has a problem that the texture tends to be hard.
  • the coagulation method of polyurethane to which an organic solvent is applied is a so-called wet coagulation method in which polyurethane molecules dissolved in an organic solvent are solvent-substituted with water to coagulate. It is formed. Therefore, even when polyurethane is impregnated in the fibrous base material and solidified, the adhesive area between the fiber and polyurethane is reduced, and it is considered that a soft sheet-like material is formed.
  • the mainstream of water-dispersed polyurethane is a so-called moist heat coagulation method in which the hydrated state of the water-dispersed polyurethane dispersion is disrupted by heating and the polyurethane emulsions are coagulated to coagulate.
  • the polyurethane film structure to be obtained is a dense non-porous film. Therefore, it is considered that the fibrous base material and the polyurethane are closely adhered to each other, and the entangled portion of the fibers is strongly gripped, so that the texture becomes hard.
  • Patent Document 2 As a method using the same coagulation method by hot water treatment, a method of obtaining a sheet-like material having excellent moisture and heat resistance by preventing deterioration of physical properties due to polyurethane swelling during dyeing by performing a cure treatment after dyeing (Patent Document 2). ) And water-dispersed polyurethane containing a hindered amine compound have been applied to obtain a sheet-like material having excellent light resistance and flexibility such as light yellowing resistance and light dyeing fastness (Patent Document 3).
  • the heat-sensitive gelation temperature which is the temperature at which the water-dispersed polyurethane gels.
  • a method has been proposed in which particles of a polymer emulsion are attracted by the movement of water and intensively adhere to the surface layer of a sheet-like material, that is, a so-called migration phenomenon is suppressed to obtain a flexible texture (a method for obtaining a flexible texture).
  • Patent Document 5 a method has been proposed in which a sheet-like material is impregnated with water-dispersible polyurethane to which a polysaccharide is added, and the polymer elastic body is made into a porous structure by heating and drying at a two-step temperature to soften the texture.
  • Patent Document 5 the polymer elastic body is completely coagulated in the state where the polysaccharide grips the water in the first step drying, and the polymer is in the state where the polymer elastic body is completely coagulated in the second step drying.
  • Patent Document 6 a method has been proposed in which a cross-linking agent is applied and heated to a sheet-like material obtained by coagulating water-dispersible polyurethane to cause a reaction to maintain the texture before the addition of the cross-linking agent.
  • the water-dispersible polyurethane can be reacted with the cross-linking agent regardless of the method for coagulating the polyurethane, and a state close to the original coagulated structure of polyurethane can be maintained.
  • water-dispersible polyurethane is obtained by reacting a polymer polyol, an organic polyisocyanate, and a chain extender, and exhibits various properties depending on the components of the polymer polyol.
  • a polymer polyol There are two types of typical high molecular weight polyols, a polyether-based polyol and a polycarbonate-based polyol.
  • a sheet-like product using a polyether-based applicable polyurethane can obtain a softer texture than a polycarbonate-based applicable polyurethane. It is inferior in light resistance. In order to achieve both a flexible texture and light resistance, it is necessary to improve the light resistance by using a polyether-based polyurethane in order to withstand actual use.
  • the cross-linking agent is impregnated after the polyurethane is solidified, but the reaction between the polyurethane and the cross-linking agent does not proceed so much, so that the three-dimensional structure of the polyurethane and the cross-linking agent is sufficiently sufficient. It cannot be formed, resulting in insufficient wear resistance and light resistance.
  • an object of the present invention is to provide a sheet-like material having both a flexible texture and excellent light resistance and a method for producing the same, in view of the background of the above-mentioned prior art.
  • a polymer elastic material containing a polyether diol as a constituent component and a specific amount of a monovalent cation-containing inorganic salt and a cross-linking agent in combination is used.
  • a drying temperature in solidification not only can a sheet-like material be manufactured in consideration of the environment, but also a sheet-like material having excellent texture and light resistance can be obtained as compared with a conventional sheet-like material.
  • the present invention is intended to solve the above problems, and the sheet-like material of the present invention is a sheet-like material containing a polymer elastic body in a fibrous base material, and the fibrous base material is an average. It is composed of ultrafine fibers having a single fiber diameter of 0.1 ⁇ m or more and 10 ⁇ m or less, the polymer elastic body has a hydrophilic group, contains a polyether diol as a constituent component, and has an N-acylurea bond and an N-acylurea bond inside the polymer elastic body. / Or a sheet-like substance having an isourea bond and satisfying the following conditions 1 and 2.
  • Condition 1 JIS L 1096: 2010
  • the longitudinal stiffness specified by method A (45 ° cantilever method) described in "Fabric test method for woven fabrics and knitted fabrics" is 40 mm or more and 140 mm or less
  • Condition 2 JIS L 0843: 2006 lightfastness measurement of xenon arc amount 110 mJ / m 2 conditions after light resistance test was measured by JIS L 1096: abrasion loss in Martindale abrasion test 20,000 times defined by 2005 is less than 25mg
  • the wear loss in the sheet-like material before the light resistance test in the Martindale wear test 20,000 times defined by JIS L 1096: 2010 is 20 mg or less.
  • the polymer elastic body is contained in an amount of 10% by mass or more.
  • the sheet-like material further satisfies the following condition 3.
  • Condition 3 The retention rate of the L value when the raised surface of the sheet-like material is placed on a hot plate heated to 150 ° C. and pressed for 10 seconds with a pressing load of 2.5 kPa is 90% or more and 100% or less.
  • the method for producing a sheet-like material of the present invention is a method for producing a sheet-like material, which comprises the following steps (1) to (4) in this order.
  • a fibrous base material made of ultrafine fiber-expressing fibers is impregnated with an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent, and then at 120 ° C. or higher and 180 ° C. or lower.
  • Polymer elastic body impregnation step in which the content of the inorganic salt is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body
  • the ultrafine fiber-expressing type fiber is alkali-treated to be an ultrafine fiber.
  • a dyeing step of dyeing an unbrushed sheet-like material or a sheet-like material after the drying step is included.
  • the monovalent cation-containing inorganic salt is sodium chloride and / or sodium sulfate.
  • the cross-linking agent is a carbodiimide-based cross-linking agent.
  • a sheet-like material having both a flexible texture and excellent light resistance can be obtained.
  • the sheet-like material of the present invention is a sheet-like material containing a polymer elastic body in a fibrous base material, and the fibrous base material is composed of ultrafine fibers having an average single fiber diameter of 0.1 ⁇ m or more and 10 ⁇ m or less, and is a polymer.
  • the elastic body has a hydrophilic group, contains a polyether diol as a constituent component, has an N-acylurea bond and / or an isourea bond inside the polymer elastic body, and satisfies the following conditions 1 and 2. It is a sheet-like material.
  • Condition 1 The rigidity in the vertical direction defined by the method A (45 ° cantilever method) described in JIS L 1096: 2010 “Fabric test method for woven fabrics and knitted fabrics” is 40 mm or more and 140 mm or less.
  • Condition 2 JIS L 0843: 2006
  • the xenon arc amount of the light fastness measurement method is 110 MJ / m.
  • the wear loss in the Martindale wear test 20,000 times specified in JIS L 1096: 2005 after the light resistance test measured under 2 conditions is It is 25 mg or less.
  • polyester resins examples include polyester resins and polyamide resins from the viewpoints of excellent durability, particularly mechanical strength, heat resistance and light resistance.
  • Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and the like.
  • the polyester resin can be obtained from, for example, a dicarboxylic acid and / or an ester-forming derivative thereof and a diol.
  • dicarboxylic acid and / or its ester-forming derivative used in the polyester resin examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid and its ester-forming derivative.
  • the ester-forming derivative referred to in the present invention is a lower alkyl ester of a dicarboxylic acid, an acid anhydride, an acyl chloride or the like. Specifically, methyl ester, ethyl ester, hydroxy ethyl ester and the like are preferably used.
  • a more preferred embodiment of the dicarboxylic acid and / or ester-forming derivative thereof used in the present invention is terephthalic acid and / or a dimethyl ester thereof.
  • diol used in the polyester resin examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, cyclohexanedimethanol and the like. Of these, ethylene glycol is preferably used.
  • polyamide 6 polyamide 66, polyamide 56, polyamide 610, polyamide 11, polyamide 12, copolymerized polyamide and the like can be used.
  • the resin used for the ultrafine fibers contains inorganic particles such as titanium oxide particles, a lubricant, a pigment, a heat stabilizer, an ultraviolet absorber, a conductive agent, a heat storage agent, an antibacterial agent, and the like, depending on various purposes. Can be done.
  • the resin used for the ultrafine fiber contains a component derived from a biomass resource.
  • the component derived from the biomass resource may be a component derived from the biomass resource as a component dicarboxylic acid or an ester-forming derivative thereof, or a diol.
  • the component derived from the biomass resource it is preferable to use the component derived from the biomass resource for both the dicarboxylic acid or its ester-forming derivative and the diol.
  • the components derived from the biomass resource include polyamide 56, polyamide 610, and polyamide 56, polyamide 610, from the viewpoint of economically advantageous availability of a raw material derived from the biomass resource and the physical characteristics of the fiber.
  • Polyamide 11 is preferably used.
  • the cross-sectional shape of the ultrafine fiber either a round cross section or a deformed cross section can be adopted.
  • Specific examples of the irregular cross section include polygons such as ellipses, flats, and triangles, sectors, and crosses.
  • the average single fiber diameter of the ultrafine fibers is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average single fiber diameter of the ultrafine fibers is 10 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, the sheet-like material can be made more flexible. In addition, the quality of standing hair can be improved.
  • the average single fiber diameter of the ultrafine fibers is 0.1 ⁇ m or more, preferably 0.3 ⁇ m or more, more preferably 0.7 ⁇ m or more, a sheet-like material having excellent color development after dyeing is performed. Can be. Further, when the raising treatment by buffing is performed, it is possible to improve the ease of dispersing and the ease of handling of the ultrafine fibers existing in a bundle.
  • the average single fiber diameter referred to in the present invention is measured by the following method. That is, (1) The cross section of the sheet-like material cut in the thickness direction is observed with a scanning electron microscope (SEM). (2) The fiber diameters of any 50 ultrafine fibers in the observation surface are measured in three directions in each ultrafine fiber cross section. However, when ultrafine fibers having a modified cross section are used, the cross-sectional area of the single fiber is first measured, and the diameter of the circle having the cross-sectional area is calculated by the following formula. The diameter obtained from this is taken as the single fiber diameter of the single fiber.
  • SEM scanning electron microscope
  • -Single fiber diameter ( ⁇ m) (4 x (single fiber cross-sectional area ( ⁇ m 2 )) / ⁇ ) 1/2 (3) Calculate the arithmetic mean value ( ⁇ m) of the total of 150 points obtained, and round off to the second decimal place.
  • the fibrous base material used in the present invention comprises the ultrafine fibers. It is permissible for the fibrous base material to be a mixture of ultrafine fibers made of different raw materials.
  • a non-woven fabric formed by entwining each of the ultrafine fibers or a non-woven fabric formed by entwining fiber bundles of ultrafine fibers can be used.
  • a non-woven fabric formed by entwining fiber bundles of ultrafine fibers is preferably used from the viewpoint of strength and texture of a sheet-like material.
  • a non-woven fabric in which the ultrafine fibers constituting the fiber bundle of the ultrafine fibers are appropriately separated from each other and has voids is preferably used.
  • the non-woven fabric in which the fiber bundles of the ultrafine fibers are entangled can be obtained, for example, by entwining the ultrafine fiber-expressing fibers in advance and then expressing the ultrafine fibers.
  • the non-woven fabric in which the ultrafine fibers constituting the fiber bundle of the ultrafine fibers are appropriately separated from each other and have voids is, for example, a sea-island type composite fiber capable of forming voids between the island components by removing the sea component. It can be obtained by using it.
  • the non-woven fabric may be either a short-fiber non-woven fabric or a long-fiber non-woven fabric, but the short-fiber non-woven fabric is more preferably used from the viewpoint of the texture and quality of the sheet-like material.
  • the fiber length of the short fiber is preferably in the range of 25 mm or more and 90 mm or less.
  • the fiber length is preferably in the range of 25 mm or more and 90 mm or less.
  • the fiber length is set to 25 mm or more, more preferably 35 mm or more, still more preferably 40 mm or more, it becomes easy to obtain a sheet-like material having excellent wear resistance due to entanglement.
  • the fiber length is set to 90 mm or less, more preferably 80 mm or less, still more preferably 70 mm or less, a sheet-like material having more excellent texture and quality can be obtained.
  • the non-woven fabric or knitted fabric when a non-woven fabric is used as the fibrous base material, the non-woven fabric or knitted fabric can be inserted, laminated, or lined inside the non-woven fabric for the purpose of improving the strength.
  • the average single fiber diameter of the fibers constituting such a woven fabric or knitted fabric is more preferably 0.3 ⁇ m or more and 10 ⁇ m or less because damage at the time of needle punching can be suppressed and strength can be maintained.
  • the fibers constituting the woven fabric or knitted fabric include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, synthetic fibers such as polyamides such as 6-nylon and 66-nylon, and cellulose-based polymers. Recycled fibers, natural fibers such as cotton and linen can be used.
  • examples of the polymer elastic body include an aqueous dispersion type silicone resin, an aqueous dispersion type acrylic resin, an aqueous dispersion type urethane resin, and a copolymer thereof.
  • a water-dispersible polyurethane resin is preferably used from the viewpoint of texture.
  • the water-dispersible polyurethane resin a resin obtained by reacting a polymer polyol having a number average molecular weight of preferably 500 or more and 5,000 or less, an organic polyisocyanate, and a chain extender is preferably used. Further, in order to improve the stability of the water-dispersed polyurethane dispersion, it is preferable to use a hydrophilic group-containing active hydrogen component in combination. By setting the number average molecular weight of the polymer polyol to 500 or more, more preferably 1,500 or more, it is possible to easily prevent the texture from becoming hard.
  • the number average molecular weight is 5,000 or less, more preferably 4,000 or less, it is possible to easily maintain the strength of polyurethane as a binder.
  • a water-dispersible polyurethane resin is used as the polymer elastic body will be described below.
  • the polymer elastic body contains a polyether diol as a constituent component.
  • the content of the polyether diol in the polymer polyol is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more of the total polymer polyol.
  • Specific examples of the polyether diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like, and copolymerized polyether diols in combination thereof.
  • "included as a constituent component” means that it is contained as a monomer component and an oligomer component constituting a polymer elastic body. Since the degree of freedom of the ether bond of the polyether diol is high, the glass transition temperature is low and the cohesive force is weak, so that polyurethane having excellent flexibility can be easily obtained.
  • organic diisocyanates used in the present invention include aromatic diisocyanates having 6 or more and 20 or less carbon atoms (excluding carbons in NCO groups, the same applies hereinafter) and 2 or more and 18 or less carbon atoms. Aliphatic diisocyanates, alicyclic diisocyanates having 4 to 15 carbon atoms, aromatic aliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide modified products, urethane modified products, uretdione modified products, etc.). ) And a mixture of two or more of these.
  • aromatic diisocyanate having 6 or more and 20 or less carbon atoms include 1,3- and / or 1,4-phenylenediocyanate, 2,4- and / 2,6-tolylene diisocyanate, and 2,4'. -And / or 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'- Examples thereof include dimethyl-4,4'-diisocyanatodiphenylmethane, and 1,5-naphthylene diisocyanate.
  • MDI 4,4'-diisocyanatobiphenyl
  • 3,3'-dimethyl-4,4'-diisocyanatobiphenyl 3,3'- Examples thereof include dimethyl-4,4'-diisocyanatodiphenylmethane, and 1,5-na
  • aliphatic diisocyanate having 2 or more and 18 or less carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and 2,6.
  • -Diisocyanatomethyl caproate bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexaate and the like.
  • alicyclic diisocyanate having 4 or more and 15 or less carbon atoms include isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl)-. Included are 4-cyclohexylene-1,2-dicarboxylate, and 2,5- and / or 2,6-norbornane diisocyanate.
  • aromatic aliphatic diisocyanate having 8 or more and 15 or less carbon atoms include m- and / or p-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', and ⁇ '-tetramethylxylylene diisocyanate. ..
  • the preferred organic diisocyanate is an alicyclic diisocyanate.
  • a particularly preferable organic diisocyanate is dicyclohexylmethane-4,4'-diisocyanate.
  • Chain extender examples include water, "ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, and diethylene glycol.” And neopentyl glycol, etc., low molecular weight diols, 1,4-bis (hydroxymethyl) cyclohexane, etc., alicyclic diols, 1,4-bis (hydroxyethyl) benzene, etc., aromatic diols, ethylenediamine, etc.
  • Aliphatic diamines such as “isofolone diamines”, alicyclic diamines such as “isophorone diamines”, aromatic diamines “4,4-diaminodiphenylmethane", aromatic aliphatic diamines “xylene diamines”, alkanols “ethanolamine etc.”
  • examples include amines, hydrazines, dihydrazides such as “dihydrazide adipate", and mixtures of two or more of these.
  • preferred chain extenders are water, low molecular weight diols, aromatic diamines, more preferably water, ethylene glycol, 1,4-butanediol, 4,4'-diaminodiphenylmethane and two or more of these. Examples include mixtures.
  • additives for water-dispersed polyurethane resin it is important to add a monovalent cation-containing inorganic salt to a solution containing water-dispersed polyurethane for the reason described later.
  • colorants such as titanium oxide, UV absorbers (benzophenone-based, benzotriazole-based, etc.) and antioxidants [4,5-butylidene-bis (3-methyl-6-1-butylphenol), etc.
  • organic phosphite such as triphenyl phosphite, trichloroethyl phosphite, etc.] and other stabilizers, inorganic fillers (calcium carbonate, etc.) and the like can be contained.
  • examples of the component that causes the polyurethane to contain a hydrophilic group include a hydrophilic group-containing active hydrogen component.
  • examples of the hydrophilic group-containing active hydrogen component include compounds containing a nonionic group and / or an anionic group and / or a cationic group and active hydrogen.
  • the compound having a nonionic group and active hydrogen contains two or more active hydrogen components or two or more isocyanate groups, and has a polyoxyethylene glycol group having a molecular weight of 250 to 9,000 in the side chain.
  • examples thereof include compounds and triols such as trimethylolpropane and trimethylolbutane.
  • Examples of the compound having an anionic group and active hydrogen include carboxyl group-containing compounds such as 2,2-dimethylol propionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylol valerate and their derivatives, and 1 , 3-Phenylenediamine-4,6-disulfonic acid, 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and other compounds containing sulfonic acid groups and their derivatives, and neutralizing these compounds. Examples include salts neutralized with an agent.
  • Examples of the compound containing a cationic group and active hydrogen include a tertiary amino group-containing compound such as 3-dimethylaminopropanol, N-methyldiethanolamine, and N-propyldiethanolamine, and derivatives thereof.
  • the hydrophilic group-containing active hydrogen component can also be used in the state of a salt neutralized with a neutralizing agent.
  • the hydrophilic group-containing active hydrogen component used in the polyurethane molecule is 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid and from the viewpoint of mechanical strength and dispersion stability of the water-dispersed polyurethane resin. It is preferable to use these neutralizing salts.
  • the hydrophilic group in the polymer elastic body is a group having active hydrogen.
  • Specific examples of the hydrophilic group include a hydroxyl group, a carboxyl group, a sulfonic acid group, an amino group and the like.
  • the polymer elastic body has an N-acylurea bond and / or an isourea bond.
  • having an N-acylurea bond and / or an isourea bond inside the polymer elastic body means that the polymer elastic body has an N-acylurea bond and / or an isourea bond.
  • the N-acylurea bond and / or isourea bond is, for example, a carbodiimide-based crosslink with a hydroxyl group and / or a carboxyl group existing as the above-mentioned hydrophilic group-containing active hydrogen component. It can be formed by reacting with an agent.
  • the presence of the above N-acylurea group and isourea group in the polymer elastic body means that the cross section of the sheet-like material is mapped by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS analysis).
  • TOF-SIMS analysis time-of-flight secondary ion mass spectrometry
  • Processing for example, "TOF.SIMS 5" manufactured by ION-TOF as an analytical instrument
  • infrared spectroscopic analysis for example, "FT / IR 4000 series” manufactured by Nippon Spectroscopy Co., Ltd. as an analytical instrument
  • the number average molecular weight of the polymer elastic body used in the present invention is preferably 20,000 or more from the viewpoint of resin strength, and preferably 500,000 or less from the viewpoint of viscosity stability and workability. ..
  • the number average molecular weight is more preferably 30,000 or more and 150,000 or less.
  • the number average molecular weight of the polymer elastic body can be determined by gel permeation chromatography, and is measured, for example, under the following conditions.
  • the polymer elastic material used in the present invention appropriately grips fibers in a sheet-like material, and preferably is a fibrous base material from the viewpoint of having fluff on at least one side of the sheet-like material. It is a preferred embodiment that it exists inside.
  • the sheet-like material of the present invention has a longitudinal rigidity of 40 mm or more and 140 mm or less specified by the method A (45 ° cantilever method) described in JIS L 1096: 2010 “Fabric test method for woven fabrics and knitted fabrics”. It is important to be. By setting the rigidity and softness in the above range, it is possible to have appropriate flexibility and resilience.
  • the rigidity is preferably 50 mm or more, more preferably 55 mm or more from the viewpoint of obtaining a repulsive sheet-like material, and preferably 120 mm or less from the viewpoint of obtaining a flexible sheet-like material. , More preferably 110 mm or less.
  • the vertical direction in the sheet-like material of the present invention means the direction in which the sheet-like material is brushed.
  • a method of searching for the direction in which the brushing treatment is performed it can be appropriately adopted depending on the constituent components of the sheet-like material such as visual confirmation when tracing with a finger and SEM photography. That is, when traced with a finger, the direction in which the fluffy fibers can be laid down or erected is the vertical direction. Further, by SEM-imaging the surface of the sheet-like object traced with a finger, the direction in which the lying nap fibers are most oriented becomes the vertical direction.
  • the horizontal direction in the sheet-like object of the present invention is the direction perpendicular to the vertical direction as the horizontal direction.
  • the sheet-like material of the present invention is a Martindale wear test specified by JIS L 1096: 2005 after the light resistance test in which the xenon arc amount of the JIS L 0843: 2006 light fastness measurement method is measured under the condition of 110 MJ / m 2. It is important that the wear loss at 20,000 times is 25 mg or less. By setting the wear weight loss after the light resistance test within the above range, deterioration of the polymer elastic body can be suppressed even when used for a long period of time in a harsh environment exposed to sunlight, and the appearance of the sheet-like material can be maintained. Can be done.
  • the wear weight loss is preferably 23 mg or less, and more preferably 20 mg or less, from the viewpoint of suppressing deterioration of the appearance of the sheet-like material.
  • the sheet-like material of the present invention preferably has a wear weight loss of 20 mg or less in the Martindale wear test 20,000 times specified in JIS L 1096: 2010 in the sheet-like material before the light resistance test.
  • the wear weight loss is preferably 18 mg or less, more preferably 15 mg or less, from the viewpoint of further suppressing fluffing in actual use.
  • the sheet-like material of the present invention preferably contains a polymer elastic body in an amount of 10% by mass or more. From the viewpoint of suppressing breakage due to tension in the manufacturing process and fluffing in actual use, the content is more preferably 12% by mass or more, and further preferably 15% by mass or more.
  • the upper limit of the content is not particularly limited, but is usually 50% by mass or less, preferably 40% by mass or less, and more preferably 35% by mass or less.
  • the sheet-like material of the present invention further satisfies the following condition 3.
  • Condition 3 The L value retention rate when the raised surface of the sheet-like material is placed on a hot plate heated to 150 ° C. and pressed for 10 seconds with a pressing load of 2.5 kPa (hereinafter, simply abbreviated as L value retention rate). Is 90% or more and 100% or less.
  • the sheet-like material has high heat resistance.
  • the "brushed surface of the sheet-like material” refers to the surface of the sheet-like material that has been brushed.
  • the L value is an L value defined by the Commission International on Illumination (CIE), but the L value retention rate in the present invention is a change in brightness under heating / pressing conditions. Is a small ratio, that is, it is an index indicating how much a sheet-like material having a dark color before heating / pressing does not become bright after heating / pressing.
  • the L value retention rate refers to a value measured and calculated by the procedure as follows.
  • the sheet-like material is cut, and the L value of the cut test piece is measured using a color difference meter (for example, "CR-410" manufactured by Konica Minolta Co., Ltd.).
  • the test piece is placed on a hot plate heated to 150 ° C. (for example, "CHP-250DN” manufactured by AS ONE Corporation) with the raised surface of the test piece facing down.
  • An indenter adjusted so that the pressing load is 2.5 kPa is placed on the test piece and held for 10 seconds.
  • the L value retention rate is calculated from the following formula.
  • L value retention rate (%) (L value measured in (1)) / (L value measured in (4)) ⁇ 100
  • a polymer elastic body impregnation step, an ultrafine fiber expression step, and a drying step described later are performed. It is possible to manufacture a sheet-like product through the process. By impregnating the polymer elastic body and then passing through the process of expressing the ultrafine fibers, it can be formed in the gap between the ultrafine fibers and the polymer elastic body, and a flexible texture can be easily obtained.
  • heat treatment is performed at a temperature of 120 ° C. or higher and 180 ° C. or lower to agglomerate the particles of the polymer elastic body, and it is easy to improve light resistance, abrasion resistance, and heat resistance. Can be done. Further, by setting the heat-sensitive coagulation temperature of the aqueous dispersion in the range described later, uneven distribution (migration) of polyurethane on the surface of the sheet-like material due to water evaporation can be suppressed, and the L value retention rate can be increased.
  • the method for producing a sheet-like product of the present invention includes the following steps (1) to (4) in this order.
  • a fibrous base material made of ultrafine fiber-expressing fibers is impregnated with an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent, and then at 120 ° C. or higher and 180 ° C. or lower.
  • Polymer elastic body impregnation step in which the content of the inorganic salt is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body (2)
  • the ultrafine fiber-expressing fiber is alkali-treated and the ultrafine fiber is treated.
  • the "unraised sheet-like material” refers to a sheet-like material before the raising treatment obtained by a method including at least the above steps (1) to (3) in this order.
  • ultrafine fiber-expressing fibers As a means for obtaining ultrafine fibers, it is a preferable embodiment to use ultrafine fiber-expressing fibers. By entwining the ultrafine fiber-expressing fibers in advance to form a non-woven fabric and then ultrafine the fibers, a non-woven fabric in which the ultrafine fiber bundles are entangled can be obtained.
  • the ultrafine fiber-expressing fiber a thermoplastic resin having two components (two or three components when the island fiber is a core-sheath composite fiber) having different solvent solubility is used as a sea component and an island component, and the above sea component is used as a solvent.
  • a sea-island type composite fiber in which the island component is an ultrafine fiber by dissolving and removing the sea component an appropriate void is provided between the island components, that is, between the ultrafine fibers inside the fiber bundle when the sea component is removed. Therefore, it is preferable from the viewpoint of the texture and surface quality of the sheet-like material.
  • sea-island type composite fiber a polymer mutual arrangement in which two components of the sea component and the island component (three components when the island fiber is a core-sheath composite fiber) are reciprocally arranged and spun using a sea-island type composite base is used.
  • the method used is preferable from the viewpoint of obtaining ultrafine fibers having a uniform single fiber diameter.
  • polyethylene, polypropylene, polystyrene, copolymerized polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, etc., polylactic acid, etc. can be used. From this point of view, polystyrene and copolymerized polyester are preferably used.
  • the sea component is dissolved and removed after the polymer elastic body is applied. As will be described later.
  • the mass ratio of the sea component is 10% by mass or more, the island component is likely to be sufficiently refined. Further, when the mass ratio of the sea component is 80 mass or less, the ratio of the eluted component is small, so that the productivity is improved.
  • the fiber entanglement preferably takes the form of a non-woven fabric, and as described above, either a short-fiber non-woven fabric or a long-fiber non-woven fabric can be used, but the short-fiber non-woven fabric faces the thickness direction of the fibrous base material. This is preferable because the number of fibers is larger than that of the long-fiber non-woven fabric, and a high degree of denseness can be obtained on the surface of the fibrous base material when raised.
  • the obtained ultrafine fiber phenotype fiber is preferably crimped and cut to a predetermined length to obtain raw cotton.
  • a known method can be used for the crimping process and the cutting process.
  • the obtained raw cotton is made into a fiber web by a cloth wrapper or the like, and entangled to obtain a short fiber non-woven fabric.
  • a needle punching process, a water jet punching process, or the like can be used as a method of entwining the fiber webs to obtain a short fiber non-woven fabric.
  • the obtained short fiber non-woven fabric and woven fabric are laminated and entangled and integrated.
  • the woven fabric is laminated on one or both sides of the short-fiber non-woven fabric, or the woven fabric is sandwiched between multiple short-fiber non-woven fabric webs, and then needle punching or water jet is performed.
  • the short fiber non-woven fabric and the fibers of the woven fabric can be entangled with each other by punching or the like.
  • Apparent density of the short-fiber nonwoven fabric composed of the composite fiber after needle punching or water jet punching is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less.
  • the fibrous substrate can obtain sufficient morphological stability and dimensional stability.
  • the apparent density is preferably 0.45 g / cm 3 or less, it is possible to maintain a sufficient space for imparting the polymer elastic body.
  • the non-woven fabric thus obtained is preferably shrunk by dry heat, moist heat, or both to further increase the density.
  • the non-woven fabric can be compressed in the thickness direction by calendar processing or the like.
  • an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent is applied to a fibrous base material made of ultrafine fiber-expressing fibers.
  • the polymer elastic body impregnation step is included in which the content of the monovalent cation-containing inorganic salt in the aqueous dispersion is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body.
  • a polymer elastic body having a hydrophilic group and containing a polyether diol as a constituent component is imparted to a fibrous base material.
  • the polymer elastic body can be applied to either the non-woven fabric made of composite fibers or the non-woven fabric made into ultrafine fibers.
  • the polymer elastic body contains a polyether diol as a constituent component.
  • the reason is as described in the above-mentioned item (1-1) Polymer polyol.
  • a dry heat solidification method in which heat treatment is performed at a temperature of 120 ° C. or higher and 180 ° C. or lower for solidification after the polymer elastic body is applied.
  • a hot water coagulation method in which a polymer elastic body is coagulated in hot water, the polymer elastic body diffuses in hot water and partly falls off, so that there is a concern about workability.
  • the acid coagulation method in which the polymer elastic body is coagulated with an acid, it is necessary to neutralize the acidic solution remaining in the sheet, which is not preferable in terms of processing operability.
  • the dry heat coagulation method applied in the present invention is a very simple method of heat-treating a sheet impregnated with a polymer elastic body with a hot air dryer or the like, and there is no concern that the polymer elastic body may fall off. , It is a method with excellent workability.
  • the heating temperature in dry heat coagulation is 120 ° C. or higher and 180 ° C. or lower. It is more preferable that the heating temperature is 140 ° C. or higher. This is because the polymer elastic body can be rapidly solidified and the uneven distribution of the polymer elastic body on the lower surface of the sheet due to its own weight can be suppressed.
  • the above-mentioned temperature is used to sufficiently promote the cross-linking reaction, form a three-dimensional network structure, and improve physical properties, light resistance, and heat resistance. Can be done. More preferably, the heating temperature is 175 ° C. or lower. This is because the thermal deterioration of the polymer elastic body can be suppressed.
  • the concentration of the polymer elastic body in the aqueous dispersion (content of the polymer elastic in 100% by mass of the aqueous dispersion) is 10% by mass or more and 50% by mass or less from the viewpoint of storage stability of the aqueous dispersion. It is preferable, more preferably 15% by mass or more and 40% by mass or less.
  • the aqueous dispersion used in the present invention may contain a water-soluble organic solvent in an amount of 40% by mass or less in 100% by mass of the aqueous dispersion in order to improve storage stability and film-forming property.
  • the content of the organic solvent is preferably 1% by mass or less.
  • a monovalent cation-containing inorganic salt is contained in the aqueous dispersion.
  • a monovalent cation-containing inorganic salt By containing a monovalent cation-containing inorganic salt, it is possible to impart heat-sensitive coagulation to the aqueous dispersion.
  • the heat-sensitive coagulation property refers to the property that when the aqueous dispersion is heated, the fluidity of the aqueous dispersion decreases and solidifies when a certain temperature (heat-sensitive coagulation temperature) is reached.
  • an aqueous dispersion is applied to a fibrous substrate, then heat-treated at a temperature of 120 ° C. or higher and 180 ° C. or lower to dry heat coagulate, thereby increasing the content of the fibrous substrate.
  • a temperature of 120 ° C. or higher and 180 ° C. or lower to dry heat coagulate, thereby increasing the content of the fibrous substrate.
  • the polymer elastic body does not have thermal coagulation properties, migration occurs in which the polymer elastic body migrates to the sheet surface as the water evaporates. Further, since the solidification proceeds in a state where the polymer elastic body is unevenly distributed around the fiber as the water evaporates, the polymer elastic body covers the circumference of the fiber, and the structure is such that the movement is strongly restrained. As a result, the texture of the sheet-like material is remarkably hardened.
  • the heat-sensitive coagulation temperature of the aqueous dispersion is preferably 55 ° C. or higher and 80 ° C. or lower.
  • the heat-sensitive temperature is more preferably 60 ° C. or higher because the stability of the aqueous dispersion during storage is improved and the adhesion of the polymer elastic body to the machine during operation can be suppressed.
  • the heat-sensitive solidification temperature is 70 ° C. or lower.
  • a monovalent cation-containing inorganic salt as the inorganic salt used as the heat-sensitive coagulant.
  • the monovalent cation-containing inorganic salt is preferably sodium chloride and / or sodium sulfate.
  • inorganic salts having divalent cations such as magnesium sulfate and calcium chloride have been preferably used as the heat-sensitive coagulant, but these inorganic salts can improve the stability of the aqueous dispersion even when added in a small amount.
  • the monovalent cation-containing inorganic salt having a small ionic valence has a small effect on the stability of the aqueous dispersion, and heat-sensing while ensuring the stability of the aqueous dispersion by adjusting the addition amount.
  • the solidification temperature can be strictly controlled.
  • the content of the monovalent cation-containing inorganic salt in the aqueous dispersion is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body.
  • the inorganic salt acts as an inhibitor in the fusion of the polymer elastic particles, and the curing of the polymer elastic body due to the formation of a continuous film can be suppressed.
  • the content is 50 parts by mass or less, an appropriate continuous coating structure of the polymer elastic body can be left, and deterioration of physical properties can be suppressed.
  • the stability of the aqueous dispersion can be maintained.
  • the aqueous dispersion contains a cross-linking agent.
  • a cross-linking agent By introducing a three-dimensional network structure into the polymer elastic body with a cross-linking agent, physical properties such as wear resistance can be improved.
  • the coagulation of the polymer elastic body and the reaction between the polymer elastic body and the cross-linking agent proceed simultaneously, thereby forming a dense three-dimensional network structure and forming a fiber.
  • the cross-linking agent is a carbodiimide-based cross-linking agent.
  • the method for producing a sheet-like product of the present invention includes (2) an ultrafine fiber expression step of treating ultrafine fiber-expressing fibers with an alkali to express the ultrafine fibers.
  • the fiber ultrafine treatment can be performed, for example, by immersing the sea-island type composite fiber in a solvent and squeezing the liquid.
  • a solvent for dissolving the sea component an alkaline aqueous solution such as sodium hydroxide or hot water can be used.
  • devices such as a continuous dyeing machine, a vibro washer type dewatering machine, a liquid flow dyeing machine, a Wins dyeing machine and a Jigger dyeing machine can be used.
  • the ultrafine fiber expression step it is preferable to perform a sufficient washing step after the alkali treatment.
  • a sufficient washing step By going through the cleaning process, it is possible to process the sheet without leaving alkali or monovalent cation-containing inorganic salt adhering to the sheet on the sheet, and it can be processed without affecting the production equipment. It is preferable to use water as the cleaning liquid in consideration of the environment and safety.
  • the method for producing a sheet-like product of the present invention includes (3) a drying step of performing heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower.
  • a drying step of performing heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower.
  • the bonds of the polymer elastic body are partially decomposed by the solvent that dissolves the components other than the ultrafine fibers in the ultrafine fiber expression type fiber. Therefore, the polymer elastic body is cured by drying. It is possible to further improve physical properties such as light resistance, abrasion resistance, and heat resistance by aggregating the particles of the above.
  • the heating temperature in the curing treatment by drying is 120 ° C. or higher and 180 ° C. or lower.
  • the temperature is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, in order to enhance the effect of the cure treatment and to improve the physical properties such as light resistance, abrasion resistance, and heat resistance.
  • the temperature is preferably 175 ° C. or lower, more preferably 170 ° C. or lower.
  • the method for producing a sheet-like material of the present invention preferably includes a dyeing step of dyeing the unbrushed sheet-like material or the sheet-like material after the drying step.
  • this dyeing treatment various methods usually used in the art can be adopted, for example, a liquid flow dyeing treatment using a jigger dyeing machine or a liquid flow dyeing machine, a thermosol dyeing treatment using a continuous dyeing machine, and the like.
  • Dyeing treatment, roller printing, screen printing, inkjet printing, sublimation printing, vacuum sublimation printing, or the like can be used.
  • liquid flow dyeing machine because it is possible to soften the unbrushed sheet-like material or the sheet-like material by giving a kneading effect at the same time as dyeing the unbrushed sheet-like material or the sheet-like material. Further, if necessary, various resin finishing processes can be applied after dyeing.
  • the dyeing temperature is preferably 80 ° C. or higher and 150 ° C. or lower, although it depends on the type of fiber. By setting the dyeing temperature to 80 ° C. or higher, more preferably 110 ° C. or higher, dyeing to the fibers can be efficiently performed. On the other hand, by setting the dyeing temperature to 150 ° C. or lower, more preferably 130 ° C. or lower, deterioration of the polymer elastic body can be prevented.
  • the dye used in the present invention may be selected according to the type of fiber constituting the fibrous base material and is not particularly limited. For example, if it is a polyester fiber, a disperse dye can be used, and a polyamide fiber can be used. If so, acid dyes and gold-containing dyes can be used, and combinations thereof can be used. When dyed with a disperse dye, reduction cleaning may be performed after dyeing.
  • a dyeing aid at the time of dyeing.
  • a dyeing aid By using a dyeing aid, the uniformity and reproducibility of dyeing can be improved.
  • a finishing agent treatment using, for example, a softener such as silicone, an antistatic agent, a water repellent agent, a flame retardant, a light resistant agent, an antibacterial agent, or the like can be applied in the same bath as the dyeing or after the dyeing.
  • the method for producing a sheet-like material of the present invention includes (4) a brushing step of raising at least one surface of the unbrushed sheet-like material to form naps on the surface regardless of before and after the dyeing step.
  • the method for forming the naps is not particularly limited, and various methods usually used in the art such as buffing with sandpaper or the like can be used. If the fluff length is too short, it is difficult to obtain an elegant appearance, and if it is too long, pilling tends to occur. Therefore, the fluff length is preferably 0.2 mm or more and 1.0 mm or less.
  • silicone or the like may be applied as a lubricant to the unbrushed sheet-like material before the raising treatment.
  • a lubricant By applying a lubricant, raising by surface grinding becomes possible easily, and the surface quality becomes very good, which is preferable.
  • an antistatic agent may be applied before the raising treatment. This is a preferable embodiment because the application of the antistatic agent makes it difficult for the grinding powder generated from the sheet-like material to be deposited on the sandpaper.
  • the surface thereof can be designed as needed.
  • post-processing such as perforation and other drilling, embossing, laser processing, pinsonic processing, and printing can be performed.
  • Average single fiber diameter of sheet-like material A cross section perpendicular to the thickness direction containing the fibers of the sheet-like material was observed at 3000 times using a scanning electron microscope (SEM, VE-7800 type manufactured by KEYENCE CORPORATION), and was randomly observed within a field of view of 30 ⁇ m ⁇ 30 ⁇ m. The diameters of the 50 single fibers extracted in 1 were measured in ⁇ m units up to the first fraction.
  • the diameters of a total of 150 single fibers were measured, and the average value was calculated up to the first decimal place.
  • the fibers are excluded from the measurement target of the average fiber diameter because they do not correspond to ultrafine fibers.
  • the diameter of the single fiber is obtained by first measuring the cross-sectional area of the single fiber and calculating the diameter when the cross section is regarded as a circle. The average value using this as the population was calculated and used as the average single fiber diameter.
  • Wear loss (mg) mass before wear (mg) -mass after wear (mg)
  • Wear loss the value obtained by rounding off the value at the first decimal place was taken as the wear loss.
  • the type of inorganic salt was identified by using an ion chromatograph device of "ICS-3000 type" manufactured by Dionex Co., Ltd. for the aqueous solution containing the inorganic salt.
  • the obtained sea-island type composite fiber is cut into a fiber length of 51 mm to make a staple, a fiber web is formed through a curd and a cross wrapper, and a non-woven fabric having a basis weight of 700 g / m 2 and a thickness of 3.0 mm is processed by needle punching. Manufactured.
  • the non-woven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink, and dried at a temperature of 100 ° C. for 5 minutes to obtain a non-woven fabric A for a fibrous base material.
  • the obtained sea-island type composite fiber is cut into a fiber length of 51 mm to make a staple, a fiber web is formed through a curd and a cross wrapper, and a non-woven fabric having a basis weight of 550 g / m 2 and a thickness of 2.9 mm is formed by needle punching. Manufactured.
  • the non-woven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink, and dried at a temperature of 100 ° C. for 5 minutes to obtain a non-woven fabric B for a fibrous base material.
  • Polytetramethylene ether glycol (denoted as PTMG in the table) having a number average molecular weight (Mn) of 2,000 was used as the polyol, MDI was used as the isocyanate, and 2,2-dimethylolpropionic acid was used as a component containing a hydrophilic group.
  • Prepolymers were made in toluene solvent. Ethylene glycol and ethylenediamine were added as chain extenders, and polyoxyethylene nonylphenyl ether and water were added as external emulsifiers, and the mixture was stirred. Toluene was removed by reducing the pressure to obtain an aqueous dispersion of a polymer elastic body.
  • Example 1 (Non-woven fabric) As the non-woven fabric, the non-woven fabric A for a fibrous base material was used.
  • a non-woven fabric with a polymer elastic material having a thickness of 2.10 mm was obtained, to which the polymer elastic material was added so that the polymer elastic material was 20% by mass.
  • the obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 5 minutes to remove the sea component of the sea-island type composite fiber. Then, the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 160 ° C. for 30 minutes to obtain a sheet made of ultrafine fibers (polymer elastic body-imparting sheet).
  • the obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, it was dried with a drier to obtain a sheet-like material having an average single fiber diameter of 4.4 ⁇ m.
  • the obtained sheet-like material had a rigidity of 80 mm, a wear loss before the light resistance test of 7 mg, and a wear loss after the light resistance test of 9 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 93%, the heat resistance was excellent, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 2 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 1 (Giving a polymer elastic body) The thermal coagulant was changed to sodium chloride (denoted as "NaCl" in Table 1). Further, the same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added, the heating temperature by hot air, and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
  • Example 2 This was done in the same manner as in Example 1.
  • the obtained sheet-like material had a rigidity of 90 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 8 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 91%, and it had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 3 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added, the heating temperature by hot air, and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
  • Example 2 This was done in the same manner as in Example 1.
  • the obtained sheet-like material had a rigidity of 55 mm, a wear loss before the light resistance test of 12 mg, and a wear loss after the light resistance test of 18 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 97%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 4 (Non-woven fabric) As the non-woven fabric, the non-woven fabric B for a fibrous base material was used.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 2 was carried out except that the heating temperature by hot air and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric having a thickness of 2.05 mm.
  • the obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 10 minutes to remove the sea component of the sea-island type composite fiber. Then, the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 170 ° C. for 30 minutes to obtain a sheet made of ultrafine fibers (polymer elastic body-imparting sheet).
  • the obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, it was dried with a drier to obtain a sheet-like material having an average single fiber diameter of 3.0 ⁇ m.
  • the obtained sheet-like material had a rigidity of 75 mm, a wear loss before the light resistance test of 7 mg, and a wear loss after the light resistance test of 10 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 96%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 5 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant and the heat-sensitive coagulant added and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
  • Example 2 This was done in the same manner as in Example 1.
  • the obtained sheet-like material had a rigidity of 100 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 8 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 94%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 6 (Non-woven fabric) As in Example 4, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
  • Example 4 (Giving a polymer elastic body) The same procedure as in Example 4 was carried out to obtain a non-woven fabric with a polymer elastic body.
  • the obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, after drying with a dryer, it was cut in half perpendicular to the thickness direction to obtain a sheet-like material having an average single fiber diameter of 3.0 ⁇ m.
  • the obtained sheet-like material had a rigidity of 80 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 9 mg, and had a flexible texture and excellent light resistance and wear resistance. ..
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 96%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 1 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added was changed to obtain a non-woven fabric with a polymer elastic body.
  • Example 3 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added was changed to obtain a non-woven fabric with a polymer elastic body.
  • Non-woven fabric Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 2 was carried out except that no cross-linking agent was applied, to obtain a non-woven fabric with a polymer elastic body.
  • Example 5 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) A non-woven fabric with a polymer elastic body was obtained in the same manner as in Example 1 except that the heating temperature was changed.
  • Example 2 This was done in the same manner as in Example 1.
  • the hardness and softness of the obtained sheet-like material was 120 mm, the wear loss before the light resistance test was 13 mg, and the wear loss after the light resistance test was 29 mg, and the light resistance was inferior.
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 88%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Non-woven fabric Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 1 was carried out to obtain a non-woven fabric with a polymer elastic body.
  • Example 2 This was done in the same manner as in Example 1.
  • the obtained sheet-like material had a rigidity of 130 mm, a wear loss before the light resistance test was 16 mg, and a wear loss after the light resistance test was 30 mg, and the light resistance was inferior.
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 88%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 7 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • a polymer elastic body To 100 parts by mass of the polymer elastic body, 3 parts by mass of a carbodiimide-based cross-linking agent is added, and a nonionic thickener (guar gum) [“Neosoft G” manufactured by Taiyo Kagaku Co., Ltd.] is used as an active ingredient. It was added so as to be 1 part by mass with respect to 100 parts by mass, and the whole was adjusted to 13% by mass with water to obtain an aqueous dispersion containing a polymer elastic body. The obtained polymer is immersed in the aqueous dispersion, then treated in hot water at a temperature of 90 ° C. for 3 minutes, and then dried with hot air at a drying temperature of 160 ° C. for 30 minutes to form a sheet-like material 100. A polymer elastic body-imparted non-woven fabric having a thickness of 2.10 mm was obtained, in which the polymer elastic body was added so that the polymer elastic body was 20% by mass in mass%.
  • guar gum
  • Example 2 This was done in the same manner as in Example 1.
  • the obtained sheet-like material had a rigidity of 90 mm, a wear loss before the light resistance test was 20 mg, and a wear loss after the light resistance test was 33 mg, and the light resistance and the wear resistance were inferior.
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 87%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • Example 8 (Non-woven fabric) Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
  • Example 2 (Giving a polymer elastic body) The same procedure as in Example 2 was carried out except that no cross-linking agent was applied, to obtain a non-woven fabric with a polymer elastic body.
  • the obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 5 minutes to remove the sea component of the sea-island type composite fiber.
  • the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 120 ° C. for 30 minutes.
  • water is added to the carbodiimide-based cross-linking agent, the sheet is impregnated with the cross-linking agent prepared to have a solid content of 2% by mass, and dried in a dryer at 160 ° C. for 30 minutes to form a sheet (polymer) made of ultrafine fibers.
  • An elastic body imparting sheet) was obtained.
  • Example 9 (Non-woven fabric) As in Example 4, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
  • the non-woven fabric is impregnated with a 10% by mass aqueous solution of PVA (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) having a degree of saponification of 99% and a degree of polymerization of 1400, and heated and dried at a temperature of 140 ° C. for 10 minutes to obtain a fibrous substrate.
  • PVA NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.
  • a PVA-imparting sheet having a PVA adhering amount of 30 parts by mass with respect to 100 parts by mass of fibers of the non-woven fabric for use was obtained.
  • the obtained PVA-imparting sheet was immersed in an aqueous solution of sodium hydroxide having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 30 minutes to remove the sea component of the sea-island type composite fiber. PVA-imparted ultrafine fiber non-woven fabric) was obtained.
  • the obtained polymer elastic body-imparting sheet was immersed in water heated to 95 ° C. for 10 minutes, and dried in a dryer at 120 ° C. for 30 minutes to obtain a sheet from which the applied PVA had been removed. ..
  • Example 2 This was done in the same manner as in Example 1.
  • the hardness and softness of the obtained sheet-like material was 90 mm, the wear loss before the light resistance test was 11 mg, and the wear loss after the light resistance test was 26 mg, and the light resistance was inferior.
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 91%, the heat resistance was excellent, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was 1.2% by mass.
  • Example 10 (Non-woven fabric) As in Example 6, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
  • Example 6 This was done in the same manner as in Example 6.
  • the obtained sheet-like material had a rigidity of 85 mm, a wear loss before the light resistance test was 21 mg, and a wear loss after the light resistance test was 31 mg, and the light resistance and the wear resistance were inferior.
  • N-acylurea bond and isourea bond were present inside the polymer elastic body.
  • the L value retention rate was 85%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
  • the sheet-like material obtained by the present invention includes furniture, chairs and wall materials, interior materials and shirts having a very elegant appearance as skin materials such as seats, ceilings and interiors in vehicle interiors such as automobiles, trains and aircraft.
  • Uppers, trims, bags, belts, wallets, etc. of shoes such as jackets, casual shoes, sports shoes, men's shoes and women's shoes, and clothing materials used for some of them, wiping cloth, polishing cloth, CD curtains, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

The purpose of the present invention is to provide: a sheet-like article which has a good balance between soft texture and excellent light resistance; and a method for producing this sheet-like article. In order to achieve this purpose, a sheet-like article according to the present invention has the following configuration. Specifically, a sheet-like article which contains a polymer elastic body in a fibrous base material, wherein: the fibrous base material is composed of ultrafine fibers that have an average single fiber diameter of from 0.1 μm to 10 μm; the polymer elastic body has a hydrophilic group, while containing a polyether diol as a constituent; the polymer elastic body internally has an N-acylurea bond and/or an isourea bond; and the condition 1 and the condition 2 described below are satisfied. Condition 1: The bending resistance in the lengthwise direction as determined in accordance with specific standards is from 40 mm to 140 mm. Condition 2: The abrasion weight loss after 20,000 cycles of a Martindale abrasion test set forth in JIS L 1096 (2005) after a light resistance test as performed under the conditions defined in accordance with specific standards is 25 mg or less.

Description

シート状物およびその製造方法Sheet-shaped material and its manufacturing method
 本発明は、シート状物およびその製造方法、特に、柔軟性および耐光性に優れるシート状物およびその製造方法に関するものである。 The present invention relates to a sheet-like material and a method for producing the same, particularly a sheet-like material having excellent flexibility and light resistance and a method for producing the same.
 主として不織布等の繊維質基材とポリウレタンからなるシート状物は、天然皮革にない優れた特徴を有しており、人工皮革等の種々の用途に広く利用されている。とりわけ、ポリエステル系繊維質基材を用いたシート状物は、成型性に優れているため、衣料や椅子張りおよび自動車内装材用途等に年々広がっている。 Sheet-like materials mainly composed of fibrous base materials such as non-woven fabrics and polyurethane have excellent characteristics not found in natural leather, and are widely used in various applications such as artificial leather. In particular, sheet-like materials using a polyester-based fibrous base material have excellent moldability, and are therefore expanding year by year to applications such as clothing, upholstery, and automobile interior materials.
 このようなシート状物を製造するにあたっては、繊維質基材にポリウレタンの有機溶剤溶液を含浸せしめた後、得られた繊維質基材をポリウレタンの非溶媒である水または有機溶剤水溶液中に浸漬してポリウレタンを湿式凝固せしめる工程の組み合わせが一般的に採用されている。この場合、ポリウレタンの溶媒である有機溶剤としては、N,N-ジメチルホルムアミド等の水混和性有機溶剤が用いられるが、一般的に有機溶剤は環境への有害性が高いことから、シート状物の製造に際しては、有機溶剤を使用しない手法が強く求められている。 In producing such a sheet, the fibrous base material is impregnated with an organic solvent solution of polyurethane, and then the obtained fibrous base material is immersed in water or an aqueous solution of an organic solvent which is a non-solvent of polyurethane. A combination of steps of wet-solidifying polyurethane is generally adopted. In this case, as the organic solvent which is the solvent of polyurethane, a water-miscible organic solvent such as N, N-dimethylformamide is used, but since the organic solvent is generally highly harmful to the environment, it is in the form of a sheet. There is a strong demand for a method that does not use an organic solvent in the production of.
 具体的な解決手段として、従来の有機溶剤系のポリウレタンに代えて、水中にポリウレタン樹脂を分散させた水分散型ポリウレタンを用いる方法が検討されているが、一般的に水分散型ポリウレタンを用いて凝固したシート状物は風合いが固くなりやすいという問題がある。 As a specific solution, a method of using a water-dispersed polyurethane in which a polyurethane resin is dispersed in water is being studied instead of the conventional organic solvent-based polyurethane, but generally, a water-dispersed polyurethane is used. The solidified sheet-like material has a problem that the texture tends to be hard.
 その主な理由の一つとして、両者の凝固方式の違いがある。すなわち、有機溶剤適用ポリウレタンの凝固方式は、有機溶剤に溶解しているポリウレタン分子を、水で溶媒置換して凝固する、いわゆる湿式凝固方式であり、ポリウレタン膜で見ると、密度が低い多孔膜が形成される。そのため、ポリウレタンが繊維質基材内に含浸され、凝固された場合も繊維とポリウレタンの接着面積が少なくなり、柔らかいシート状物となると考えられる。 One of the main reasons is the difference between the two coagulation methods. That is, the coagulation method of polyurethane to which an organic solvent is applied is a so-called wet coagulation method in which polyurethane molecules dissolved in an organic solvent are solvent-substituted with water to coagulate. It is formed. Therefore, even when polyurethane is impregnated in the fibrous base material and solidified, the adhesive area between the fiber and polyurethane is reduced, and it is considered that a soft sheet-like material is formed.
 一方、水分散型ポリウレタンは、主に加熱することにより、水分散型ポリウレタン分散液の水和状態を崩壊させ、ポリウレタンエマルジョン同士を凝集させることにより凝固する、いわゆる湿熱凝固方式が主流であり、得られるポリウレタン膜構造は密度が高い無孔膜となる。そのため、繊維質基材とポリウレタンの接着は密になり、繊維の交絡部分が強く把持されるため、風合いが硬くなると考えられる。 On the other hand, the mainstream of water-dispersed polyurethane is a so-called moist heat coagulation method in which the hydrated state of the water-dispersed polyurethane dispersion is disrupted by heating and the polyurethane emulsions are coagulated to coagulate. The polyurethane film structure to be obtained is a dense non-porous film. Therefore, it is considered that the fibrous base material and the polyurethane are closely adhered to each other, and the entangled portion of the fibers is strongly gripped, so that the texture becomes hard.
 これまでに、水分散型ポリウレタンを用いて柔軟な風合いのシート状物を得るため、例えば水分散型ポリウレタンを含む溶液中に増粘剤を添加し、その溶液を含浸した繊維質基材を熱水で処理することで、繊維質基材を覆うポリウレタンの被膜を小さくし、柔軟な風合いを得る方法が提案されている(特許文献1)。 So far, in order to obtain a sheet-like material having a soft texture using water-dispersible polyurethane, for example, a thickener has been added to a solution containing water-dispersible polyurethane, and the fibrous substrate impregnated with the solution has been heated. A method has been proposed in which a polyurethane film covering a fibrous base material is reduced in size by treatment with water to obtain a flexible texture (Patent Document 1).
 同じ熱水処理による凝固法を利用したものとしては、染色後にキュア処理を施すことで、染色時のポリウレタン膨潤による物性低下を防止し、耐湿熱性に優れたシート状物を得る方法(特許文献2)やヒンダードアミン化合物が含まれた水分散型ポリウレタンを適用し、耐光黄変性、耐光染色堅牢性などの耐光性および柔軟性に優れるシート状物を得る方法が提案されている(特許文献3)。 As a method using the same coagulation method by hot water treatment, a method of obtaining a sheet-like material having excellent moisture and heat resistance by preventing deterioration of physical properties due to polyurethane swelling during dyeing by performing a cure treatment after dyeing (Patent Document 2). ) And water-dispersed polyurethane containing a hindered amine compound have been applied to obtain a sheet-like material having excellent light resistance and flexibility such as light yellowing resistance and light dyeing fastness (Patent Document 3).
 また、強制乳化させた非イオン性の水分散型ポリウレタンに無機塩類を溶解、混合させることで、水分散型ポリウレタンがゲル化する温度である感熱ゲル化温度を調整し、水中に分散していた高分子エマルジョンの粒子が、水の移動に引き連られてシート状物の表面層に集中的に付着する現象、所謂マイグレーション現象を抑制することにより、柔軟な風合いを得る方法が提案されている(特許文献4)。 In addition, by dissolving and mixing inorganic salts in the forcibly emulsified nonionic water-dispersed polyurethane, the heat-sensitive gelation temperature, which is the temperature at which the water-dispersed polyurethane gels, was adjusted and dispersed in water. A method has been proposed in which particles of a polymer emulsion are attracted by the movement of water and intensively adhere to the surface layer of a sheet-like material, that is, a so-called migration phenomenon is suppressed to obtain a flexible texture (a method for obtaining a flexible texture). Patent Document 4).
 さらに、多糖類を添加した水分散型ポリウレタンをシート状物に含浸し、2段階の温度にて加熱乾燥することで高分子弾性体を多孔構造化し、風合いを柔軟化させる方法が提案されている(特許文献5)。この方法では、1段階目の乾燥において多糖類が水分を把持した状態で、高分子弾性体を完全に凝固させ、2段階目の乾燥において高分子弾性体が完全に凝固した状態で、高分子弾性体中に内包される多糖類が把持した水分を蒸発させることで、多糖類が把持した水分が存在していた部位が空隙となり、多孔構造を形成させることができる。 Further, a method has been proposed in which a sheet-like material is impregnated with water-dispersible polyurethane to which a polysaccharide is added, and the polymer elastic body is made into a porous structure by heating and drying at a two-step temperature to soften the texture. (Patent Document 5). In this method, the polymer elastic body is completely coagulated in the state where the polysaccharide grips the water in the first step drying, and the polymer is in the state where the polymer elastic body is completely coagulated in the second step drying. By evaporating the water held by the polysaccharide contained in the elastic body, the portion where the water held by the polysaccharide was present becomes a void, and a porous structure can be formed.
 あるいは、水分散型ポリウレタンを凝固させたシート状物に、架橋剤を付与・加熱を行い、反応させ、架橋剤添加前の風合いを維持する方法が提案されている(特許文献6)。この方法では、ポリウレタンの凝固方法に関係なく、水分散型ポリウレタンと架橋剤を反応させることができ、本来のポリウレタンの凝集構造に近い状態を維持することができる。 Alternatively, a method has been proposed in which a cross-linking agent is applied and heated to a sheet-like material obtained by coagulating water-dispersible polyurethane to cause a reaction to maintain the texture before the addition of the cross-linking agent (Patent Document 6). In this method, the water-dispersible polyurethane can be reacted with the cross-linking agent regardless of the method for coagulating the polyurethane, and a state close to the original coagulated structure of polyurethane can be maintained.
国際公開第2015/129602号International Publication No. 2015/129602 特開2017-172074号公報JP-A-2017-172074 特開2000-265052号公報Japanese Unexamined Patent Publication No. 2000-265052 特開平6-316877号公報Japanese Unexamined Patent Publication No. 6-316877 特開2019-112742号公報Japanese Unexamined Patent Publication No. 2019-11274 国際公開第2016/052189号International Publication No. 2016/052189
 しかしながら、自動車内装材用途などの屋外でシート状物を利用する場合、太陽光に含まれる紫外線によりシート状物中の繊維を把持するポリウレタンが分解され、シート状物が劣化するという課題がある。 However, when the sheet-like material is used outdoors for automobile interior materials, there is a problem that the polyurethane that grips the fibers in the sheet-like material is decomposed by the ultraviolet rays contained in sunlight, and the sheet-like material deteriorates.
 通常、水分散型ポリウレタンは、高分子ポリオールと、有機ポリイソシアネートと、鎖伸長剤との反応により得られ、高分子ポリオールの成分により様々な性質を示す。代表的な高分子ポリオールとして、ポリエーテル系ポリオール、ポリカーボネート系ポリオールの2種類があるが、ポリエーテル系適用ポリウレタンを用いたシート状物は、ポリカーボネート系適用ポリウレタン対比で柔軟な風合いを得られるが、耐光性に劣っている。柔軟な風合いと耐光性を両立させるためには、ポリエーテル系適用ポリウレタンを用いて耐光性を向上させることが実使用に耐えうるために必要である。 Normally, water-dispersible polyurethane is obtained by reacting a polymer polyol, an organic polyisocyanate, and a chain extender, and exhibits various properties depending on the components of the polymer polyol. There are two types of typical high molecular weight polyols, a polyether-based polyol and a polycarbonate-based polyol. A sheet-like product using a polyether-based applicable polyurethane can obtain a softer texture than a polycarbonate-based applicable polyurethane. It is inferior in light resistance. In order to achieve both a flexible texture and light resistance, it is necessary to improve the light resistance by using a polyether-based polyurethane in order to withstand actual use.
 特許文献1~3に開示された方法においては、熱水凝固により風合いの硬さを改善してある程度柔軟な風合いを得ることは出来るものの、ポリウレタンがバインダーとしての機能を十分に果たせず、耐摩耗性が不十分となる。特許文献2に開示された方法においては、染色後に高温で加熱するため、染料が昇華することから、実使用における色落ち懸念があり、耐光性が不十分となる。また、特許文献3に開示された方法においてはヒンダードアミン化合物を含むことにより耐光性は向上するものの、該化合物を高分子ポリオール中に含むため膜物性が低下し、繊維に対する把持力が弱く、シート状物の耐摩耗性が不十分である。また、柔軟性についても十分とはいえない。 In the methods disclosed in Patent Documents 1 to 3, although the hardness of the texture can be improved by hot water coagulation to obtain a flexible texture to some extent, polyurethane does not sufficiently function as a binder and wear resistance. Insufficient sex. In the method disclosed in Patent Document 2, since the dye is heated at a high temperature after dyeing, the dye sublimates, so that there is a concern about discoloration in actual use, and the light resistance becomes insufficient. Further, in the method disclosed in Patent Document 3, although the light resistance is improved by containing the hindered amine compound, since the compound is contained in the polymer polyol, the physical characteristics of the film are deteriorated, the gripping force on the fiber is weak, and the material is in the form of a sheet. The wear resistance of the object is insufficient. Moreover, the flexibility is not sufficient.
 さらに、特許文献4に開示された方法においては、マイグレーション抑制により柔軟な風合いを達成することができるものの、3次元的にポリウレタン樹脂を架橋していないため繊維を十分に把持することができず、耐摩耗性および耐光性が不十分となる。 Further, in the method disclosed in Patent Document 4, although a flexible texture can be achieved by suppressing migration, the fibers cannot be sufficiently gripped because the polyurethane resin is not three-dimensionally crosslinked. Insufficient wear resistance and light resistance.
 一方、特許文献5に開示された方法においては、二段階の乾燥を経ることで多孔構造を得ることができるが、完全にマイグレーション現象を抑制できず、風合いについて不十分である。また、3次元的にポリウレタン樹脂を架橋していないため繊維を十分に把持することができず、耐摩耗性および耐光性が不十分となる。 On the other hand, in the method disclosed in Patent Document 5, a porous structure can be obtained by undergoing two-step drying, but the migration phenomenon cannot be completely suppressed and the texture is insufficient. Further, since the polyurethane resin is not three-dimensionally crosslinked, the fibers cannot be sufficiently gripped, resulting in insufficient wear resistance and light resistance.
 あるいは、特許文献6に開示された方法においては、架橋剤をポリウレタン凝固後に含浸させているが、ポリウレタンと架橋剤の反応があまり進行しないため、ポリウレタンと架橋剤による三次元的な構造が十分に形成することができず、耐摩耗性および耐光性が不十分となる。 Alternatively, in the method disclosed in Patent Document 6, the cross-linking agent is impregnated after the polyurethane is solidified, but the reaction between the polyurethane and the cross-linking agent does not proceed so much, so that the three-dimensional structure of the polyurethane and the cross-linking agent is sufficiently sufficient. It cannot be formed, resulting in insufficient wear resistance and light resistance.
 そこで、本発明の目的は、上記の従来技術の背景に鑑み、柔軟な風合いと優れた耐光性を両立したシート状物およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a sheet-like material having both a flexible texture and excellent light resistance and a method for producing the same, in view of the background of the above-mentioned prior art.
 上記の目的を達成すべく本発明者らが検討を重ねた結果、構成成分としてポリエーテルジオールを含み、特定量の1価陽イオン含有無機塩と、架橋剤とを併用した高分子弾性体の凝固において、乾燥温度を調整することで、環境に配慮してシート状物を製造できるだけでなく、従来のシート状物と比較して、風合い、耐光性に優れたシート状物が得られることを見出し、本発明に至った。 As a result of repeated studies by the present inventors to achieve the above object, a polymer elastic material containing a polyether diol as a constituent component and a specific amount of a monovalent cation-containing inorganic salt and a cross-linking agent in combination is used. By adjusting the drying temperature in solidification, not only can a sheet-like material be manufactured in consideration of the environment, but also a sheet-like material having excellent texture and light resistance can be obtained as compared with a conventional sheet-like material. The heading led to the present invention.
 すなわち、本発明は前記課題を解決せんとするものであって、本発明のシート状物は、繊維質基材に高分子弾性体を含有するシート状物であって、繊維質基材が平均単繊維直径0.1μm以上10μm以下の極細繊維からなり、高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記高分子弾性体内部にN-アシルウレア結合および/またはイソウレア結合を有し、以下の条件1及び条件2を満たすシート状物である。
条件1:JIS L 1096:2010「織物及び編物の生地試験法」に記載のA法(45°カンチレバー法)にて規定される縦方向の剛軟度が40mm以上140mm以下である
条件2:JIS L 0843:2006耐光堅牢度測定法のキセノンアーク量が110MJ/m条件で測定した耐光試験後のJIS L 1096:2005で規定されるマーチンデール摩耗試験2万回における摩耗減量が25mg以下である
 本発明のシート状物の好ましい態様によれば、耐光試験前のシート状物において、JIS L 1096:2010で規定されるマーチンデール摩耗試験2万回における摩耗減量が20mg以下である。
That is, the present invention is intended to solve the above problems, and the sheet-like material of the present invention is a sheet-like material containing a polymer elastic body in a fibrous base material, and the fibrous base material is an average. It is composed of ultrafine fibers having a single fiber diameter of 0.1 μm or more and 10 μm or less, the polymer elastic body has a hydrophilic group, contains a polyether diol as a constituent component, and has an N-acylurea bond and an N-acylurea bond inside the polymer elastic body. / Or a sheet-like substance having an isourea bond and satisfying the following conditions 1 and 2.
Condition 1: JIS L 1096: 2010 The longitudinal stiffness specified by method A (45 ° cantilever method) described in "Fabric test method for woven fabrics and knitted fabrics" is 40 mm or more and 140 mm or less Condition 2: JIS L 0843: 2006 lightfastness measurement of xenon arc amount 110 mJ / m 2 conditions after light resistance test was measured by JIS L 1096: abrasion loss in Martindale abrasion test 20,000 times defined by 2005 is less than 25mg According to a preferred embodiment of the sheet-like material of the present invention, the wear loss in the sheet-like material before the light resistance test in the Martindale wear test 20,000 times defined by JIS L 1096: 2010 is 20 mg or less.
 本発明のシート状物の好ましい態様によれば、前記高分子弾性体を10質量%以上含有する。 According to a preferred embodiment of the sheet-like material of the present invention, the polymer elastic body is contained in an amount of 10% by mass or more.
 本発明のシート状物の好ましい態様によれば、前記シート状物において、さらに以下の条件3を満たす。
条件3:前記シート状物の起毛面を150℃に加熱したホットプレート上に載置し、押圧荷重2.5kPaで10秒間押圧した際のL値の保持率が90%以上100%以下である
 本発明のシート状物の製造方法は、下記(1)~(4)の工程をこの順に含む、シート状物の製造方法である。
(1)極細繊維発現型繊維からなる繊維質基材に、高分子弾性体、1価陽イオン含有無機塩、および架橋剤を含有する水分散液を含浸せしめ、次いで120℃以上180℃以下の温度で加熱処理を行う高分子弾性体含浸工程であって、前記高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記水分散液における1価陽イオン含有無機塩の含有量が前記高分子弾性体100質量部に対して10質量部以上50質量部以下である、高分子弾性体含浸工程
(2)前記極細繊維発現型繊維をアルカリ処理し、極細繊維を発現させる、極細繊維発現工程
(3)120℃以上180℃以下の温度で熱処理を施す、乾燥工程
(4)未起毛シート状物の少なくとも一面を起毛処理して表面に立毛を形成させる、起毛工程
 本発明のシート状物の製造方法の好ましい態様によれば、前記乾燥工程より後に未起毛シート状物またはシート状物を染色する染色工程を含む。
According to a preferred embodiment of the sheet-like material of the present invention, the sheet-like material further satisfies the following condition 3.
Condition 3: The retention rate of the L value when the raised surface of the sheet-like material is placed on a hot plate heated to 150 ° C. and pressed for 10 seconds with a pressing load of 2.5 kPa is 90% or more and 100% or less. The method for producing a sheet-like material of the present invention is a method for producing a sheet-like material, which comprises the following steps (1) to (4) in this order.
(1) A fibrous base material made of ultrafine fiber-expressing fibers is impregnated with an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent, and then at 120 ° C. or higher and 180 ° C. or lower. A polymer elastic body impregnation step in which heat treatment is performed at a temperature, wherein the polymer elastic body has a hydrophilic group, contains polyetherdiol as a constituent component, and contains monovalent cations in the aqueous dispersion. Polymer elastic body impregnation step in which the content of the inorganic salt is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body (2) The ultrafine fiber-expressing type fiber is alkali-treated to be an ultrafine fiber. (3) Heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower, drying step (4) Raising at least one surface of the unraised sheet-like material to form naps on the surface. Step According to a preferred embodiment of the method for producing a sheet-like material of the present invention, a dyeing step of dyeing an unbrushed sheet-like material or a sheet-like material after the drying step is included.
 本発明のシート状物の製造方法の好ましい態様によれば、前記1価陽イオン含有無機塩が塩化ナトリウムおよび/または硫酸ナトリウムである。 According to a preferred embodiment of the method for producing a sheet-like product of the present invention, the monovalent cation-containing inorganic salt is sodium chloride and / or sodium sulfate.
 本発明のシート状物の製造方法の好ましい態様によれば、前記架橋剤がカルボジイミド系架橋剤である。 According to a preferred embodiment of the method for producing a sheet-like product of the present invention, the cross-linking agent is a carbodiimide-based cross-linking agent.
 本発明によれば、柔軟な風合いと優れた耐光性を両立したシート状物が得られる。 According to the present invention, a sheet-like material having both a flexible texture and excellent light resistance can be obtained.
 本発明のシート状物は、繊維質基材に高分子弾性体を含有するシート状物であって、繊維質基材が平均単繊維直径0.1μm以上10μm以下の極細繊維からなり、高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記高分子弾性体内部にN-アシルウレア結合および/またはイソウレア結合を有し、以下の条件1及び条件2を満たすシート状物である。
条件1:JIS L 1096:2010「織物及び編物の生地試験法」に記載のA法(45°カンチレバー法)にて規定される縦方向の剛軟度が40mm以上140mm以下である。
条件2:JIS L 0843:2006耐光堅牢度測定法のキセノンアーク量が110MJ/m条件で測定した耐光試験後のJIS L 1096:2005で規定されるマーチンデール摩耗試験2万回における摩耗減量が25mg以下である。
The sheet-like material of the present invention is a sheet-like material containing a polymer elastic body in a fibrous base material, and the fibrous base material is composed of ultrafine fibers having an average single fiber diameter of 0.1 μm or more and 10 μm or less, and is a polymer. The elastic body has a hydrophilic group, contains a polyether diol as a constituent component, has an N-acylurea bond and / or an isourea bond inside the polymer elastic body, and satisfies the following conditions 1 and 2. It is a sheet-like material.
Condition 1: The rigidity in the vertical direction defined by the method A (45 ° cantilever method) described in JIS L 1096: 2010 “Fabric test method for woven fabrics and knitted fabrics” is 40 mm or more and 140 mm or less.
Condition 2: JIS L 0843: 2006 The xenon arc amount of the light fastness measurement method is 110 MJ / m. The wear loss in the Martindale wear test 20,000 times specified in JIS L 1096: 2005 after the light resistance test measured under 2 conditions is It is 25 mg or less.
 以下にこの構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 This component will be described in detail below, but the present invention is not limited to the scope described below as long as the gist of the present invention is not exceeded.
 [極細繊維]
 本発明に用いられる極細繊維に用いることができる樹脂としては、優れた耐久性、特には機械的強度、耐熱性および耐光性の観点から、例えば、ポリエステル系樹脂やポリアミド系樹脂などが挙げられる。ポリエステル系樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどが挙げられる。ポリエステル系樹脂は、例えば、ジカルボン酸および/またはそのエステル形成性誘導体とジオールとから得ることができる。
[Ultrafine fiber]
Examples of the resin that can be used for the ultrafine fibers used in the present invention include polyester resins and polyamide resins from the viewpoints of excellent durability, particularly mechanical strength, heat resistance and light resistance. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and the like. The polyester resin can be obtained from, for example, a dicarboxylic acid and / or an ester-forming derivative thereof and a diol.
 前記ポリエステル系樹脂に用いられるジカルボン酸および/またはそのエステル形成性誘導体としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸およびそのエステル形成性誘導体などが挙げられる。なお、本発明でいうエステル形成性誘導体とは、ジカルボン酸の低級アルキルエステル、酸無水物、アシル塩化物などである。具体的には、メチルエステル、エチルエステル、ヒドロキシエチルエステルなどが好ましく用いられる。本発明で用いられるジカルボン酸および/またはそのエステル形成性誘導体としてより好ましい態様は、テレフタル酸および/またはそのジメチルエステルである。 Examples of the dicarboxylic acid and / or its ester-forming derivative used in the polyester resin include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid and its ester-forming derivative. Can be mentioned. The ester-forming derivative referred to in the present invention is a lower alkyl ester of a dicarboxylic acid, an acid anhydride, an acyl chloride or the like. Specifically, methyl ester, ethyl ester, hydroxy ethyl ester and the like are preferably used. A more preferred embodiment of the dicarboxylic acid and / or ester-forming derivative thereof used in the present invention is terephthalic acid and / or a dimethyl ester thereof.
 前記ポリエステル系樹脂に用いられるジオールとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、シクロヘキサンジメタノールなどが挙げられる。中でもエチレングリコールが好ましく用いられる。 Examples of the diol used in the polyester resin include ethylene glycol, 1,3-propanediol, 1,4-butanediol, cyclohexanedimethanol and the like. Of these, ethylene glycol is preferably used.
 極細繊維に用いられる樹脂としてポリアミド系樹脂を用いる場合には、ポリアミド6、ポリアミド66、ポリアミド56、ポリアミド610、ポリアミド11、ポリアミド12、共重合ポリアミド等を用いることができる。 When a polyamide-based resin is used as the resin used for the ultrafine fibers, polyamide 6, polyamide 66, polyamide 56, polyamide 610, polyamide 11, polyamide 12, copolymerized polyamide and the like can be used.
 極細繊維に用いられる樹脂には、種々の目的に応じて、酸化チタン粒子等の無機粒子、潤滑剤、顔料、熱安定剤、紫外線吸収剤、導電剤、蓄熱剤および抗菌剤等を含有することができる。 The resin used for the ultrafine fibers contains inorganic particles such as titanium oxide particles, a lubricant, a pigment, a heat stabilizer, an ultraviolet absorber, a conductive agent, a heat storage agent, an antibacterial agent, and the like, depending on various purposes. Can be done.
 また、極細繊維に用いられる樹脂がバイオマス資源由来の成分を含有することが好ましい。 Further, it is preferable that the resin used for the ultrafine fiber contains a component derived from a biomass resource.
 極細繊維に用いられる樹脂としてポリエステル系樹脂を用いた場合のバイオマス資源由来の成分としては、その構成成分であるジカルボン酸またはそのエステル形成性誘導体としてバイオマス資源由来の成分を用いてもよいし、ジオールとしてバイオマス資源由来の成分を用いてもよいが、環境負荷低減の観点からは、ジカルボン酸またはそのエステル形成性誘導体とジオールの両方にバイオマス資源由来の成分を用いることが好ましい。 When a polyester-based resin is used as the resin used for the ultrafine fibers, the component derived from the biomass resource may be a component derived from the biomass resource as a component dicarboxylic acid or an ester-forming derivative thereof, or a diol. However, from the viewpoint of reducing the environmental load, it is preferable to use the component derived from the biomass resource for both the dicarboxylic acid or its ester-forming derivative and the diol.
 極細繊維に用いられる樹脂としてポリアミド樹脂を用いた場合のバイオマス資源由来の成分としては、バイオマス資源由来の原料を経済的に有利に得られることや繊維の物性の点から、ポリアミド56、ポリアミド610、ポリアミド11が好ましく用いられる。 When a polyamide resin is used as the resin used for the ultrafine fibers, the components derived from the biomass resource include polyamide 56, polyamide 610, and polyamide 56, polyamide 610, from the viewpoint of economically advantageous availability of a raw material derived from the biomass resource and the physical characteristics of the fiber. Polyamide 11 is preferably used.
 極細繊維の断面形状としては、丸断面、異形断面のいずれでも採用することができる。異形断面の具体例としては、楕円、扁平、三角などの多角形、扇形、十字型などが挙げられる。 As the cross-sectional shape of the ultrafine fiber, either a round cross section or a deformed cross section can be adopted. Specific examples of the irregular cross section include polygons such as ellipses, flats, and triangles, sectors, and crosses.
 本発明において、極細繊維の平均単繊維直径は、0.1μm以上10μm以下であることが重要である。極細繊維の平均単繊維直径が10μm以下、好ましくは7μm以下、より好ましくは5μm以下であることによって、シート状物をより柔軟なものとすることができる。また、立毛の品位を向上させることができる。一方、極細繊維の平均単繊維直径が0.1μm以上、好ましくは0.3μm以上、より好ましくは0.7μm以上であることによって、染色を行う場合に染色後の発色性に優れたシート状物とすることができる。また、バフィングによる起毛処理を行う際に、束状に存在する極細繊維の分散しやすさ、さばけやすさを向上させることができる。 In the present invention, it is important that the average single fiber diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less. When the average single fiber diameter of the ultrafine fibers is 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less, the sheet-like material can be made more flexible. In addition, the quality of standing hair can be improved. On the other hand, when the average single fiber diameter of the ultrafine fibers is 0.1 μm or more, preferably 0.3 μm or more, more preferably 0.7 μm or more, a sheet-like material having excellent color development after dyeing is performed. Can be. Further, when the raising treatment by buffing is performed, it is possible to improve the ease of dispersing and the ease of handling of the ultrafine fibers existing in a bundle.
 本発明でいう平均単繊維直径とは、以下の方法で測定されるものである。すなわち、
(1)シート状物を厚み方向に切断した断面を走査型電子顕微鏡(SEM)により観察する。
(2)観察面内の任意の50本の極細繊維の繊維直径をそれぞれの極細繊維断面において3方向で測定する。ただし、異型断面の極細繊維を採用した場合には、まず単繊維の断面積を測定し、当該断面積となる円の直径を以下の式で算出する。これより得られた直径をその単繊維の単繊維直径とする。
・単繊維直径(μm)=(4×(単繊維の断面積(μm))/π)1/2
(3)得られた合計150点の算術平均値(μm)を算出し、小数点以下第二位で四捨五入する。
The average single fiber diameter referred to in the present invention is measured by the following method. That is,
(1) The cross section of the sheet-like material cut in the thickness direction is observed with a scanning electron microscope (SEM).
(2) The fiber diameters of any 50 ultrafine fibers in the observation surface are measured in three directions in each ultrafine fiber cross section. However, when ultrafine fibers having a modified cross section are used, the cross-sectional area of the single fiber is first measured, and the diameter of the circle having the cross-sectional area is calculated by the following formula. The diameter obtained from this is taken as the single fiber diameter of the single fiber.
-Single fiber diameter (μm) = (4 x (single fiber cross-sectional area (μm 2 )) / π) 1/2
(3) Calculate the arithmetic mean value (μm) of the total of 150 points obtained, and round off to the second decimal place.
 [繊維質基材]
 本発明で用いられる繊維質基材は、前記極細繊維からなる。なお、繊維質基材には、異なる原料の極細繊維が混合されていることが許容される。
[Fibrous base material]
The fibrous base material used in the present invention comprises the ultrafine fibers. It is permissible for the fibrous base material to be a mixture of ultrafine fibers made of different raw materials.
 前記繊維質基材の具体的な形態としては、前記極細繊維それぞれが絡合してなる不織布や極細繊維の繊維束が絡合してなる不織布を用いることができる。中でも、極細繊維の繊維束が絡合してなる不織布が、シート状物の強度や風合いの観点から好ましく用いられる。柔軟性や風合いの観点から、特に好ましくは、極細繊維の繊維束を構成する極細繊維同士が適度に離間して空隙を有する不織布が好ましく用いられる。このように、極細繊維の繊維束が絡合してなる不織布は、例えば、極細繊維発現型繊維をあらかじめ絡合した後に極細繊維を発現させることによって得ることができる。また、極細繊維の繊維束を構成する極細繊維同士が適度に離間して空隙を有する不織布は、例えば、海成分を除去することによって島成分の間を空隙とすることができる海島型複合繊維を用いることによって得ることができる。 As a specific form of the fibrous base material, a non-woven fabric formed by entwining each of the ultrafine fibers or a non-woven fabric formed by entwining fiber bundles of ultrafine fibers can be used. Among them, a non-woven fabric formed by entwining fiber bundles of ultrafine fibers is preferably used from the viewpoint of strength and texture of a sheet-like material. From the viewpoint of flexibility and texture, a non-woven fabric in which the ultrafine fibers constituting the fiber bundle of the ultrafine fibers are appropriately separated from each other and has voids is preferably used. As described above, the non-woven fabric in which the fiber bundles of the ultrafine fibers are entangled can be obtained, for example, by entwining the ultrafine fiber-expressing fibers in advance and then expressing the ultrafine fibers. Further, the non-woven fabric in which the ultrafine fibers constituting the fiber bundle of the ultrafine fibers are appropriately separated from each other and have voids is, for example, a sea-island type composite fiber capable of forming voids between the island components by removing the sea component. It can be obtained by using it.
 前記不織布としては、短繊維不織布、長繊維不織布のいずれでもよいが、シート状物の風合いや品位の観点から短繊維不織布がより好ましく用いられる。 The non-woven fabric may be either a short-fiber non-woven fabric or a long-fiber non-woven fabric, but the short-fiber non-woven fabric is more preferably used from the viewpoint of the texture and quality of the sheet-like material.
 短繊維不織布を用いた場合における短繊維の繊維長は、25mm以上90mm以下の範囲であることが好ましい。繊維長を25mm以上、より好ましくは35mm以上、さらに好ましくは40mm以上とすることにより、絡合により耐摩耗性に優れたシート状物が得られやすくなる。また、繊維長を90mm以下、より好ましくは80mm以下、さらに好ましくは70mm以下とすることにより、より風合いや品位に優れたシート状物を得ることができる。 When a short fiber non-woven fabric is used, the fiber length of the short fiber is preferably in the range of 25 mm or more and 90 mm or less. By setting the fiber length to 25 mm or more, more preferably 35 mm or more, still more preferably 40 mm or more, it becomes easy to obtain a sheet-like material having excellent wear resistance due to entanglement. Further, by setting the fiber length to 90 mm or less, more preferably 80 mm or less, still more preferably 70 mm or less, a sheet-like material having more excellent texture and quality can be obtained.
 本発明において、繊維質基材として不織布を用いる場合、強度を向上させるなどの目的で、不織布の内部に織物や編物を挿入し、または積層し、または裏張りすることもできる。かかる織物や編物を構成する繊維の平均単繊維直径は、ニードルパンチ時における損傷を抑制し、強度を維持することができるため、0.3μm以上10μm以下であることがより好ましい。 In the present invention, when a non-woven fabric is used as the fibrous base material, the non-woven fabric or knitted fabric can be inserted, laminated, or lined inside the non-woven fabric for the purpose of improving the strength. The average single fiber diameter of the fibers constituting such a woven fabric or knitted fabric is more preferably 0.3 μm or more and 10 μm or less because damage at the time of needle punching can be suppressed and strength can be maintained.
 前記織物や編物を構成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸などのポリエステルや、6-ナイロンや66-ナイロンなどのポリアミド等の合成繊維、セルロース系ポリマー等の再生繊維、綿や麻等の天然繊維などを用いることができる。 The fibers constituting the woven fabric or knitted fabric include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, synthetic fibers such as polyamides such as 6-nylon and 66-nylon, and cellulose-based polymers. Recycled fibers, natural fibers such as cotton and linen can be used.
 [高分子弾性体]
 本発明のシート状物において、高分子弾性体としては、水分散型シリコーン樹脂、水分散型アクリル樹脂、水分散型ウレタン樹脂やそれらの共重合体などが挙げられる。それらの中でも風合いの面から、水分散型ポリウレタン樹脂が好ましく用いられる。
[Polymer elastic body]
In the sheet-like material of the present invention, examples of the polymer elastic body include an aqueous dispersion type silicone resin, an aqueous dispersion type acrylic resin, an aqueous dispersion type urethane resin, and a copolymer thereof. Among them, a water-dispersible polyurethane resin is preferably used from the viewpoint of texture.
 水分散型ポリウレタン樹脂としては、数平均分子量が好ましくは500以上5,000以下の高分子ポリオールと、有機ポリイソシアネートと、鎖伸長剤との反応により得られる樹脂が好ましく用いられる。また、水分散型ポリウレタン分散液の安定性を高めるために、親水性基含有活性水素成分を併用することが好ましい。高分子ポリオールの数平均分子量を500以上、より好ましくは1,500以上とすることにより、風合いが硬くなるのを防ぎやすくすることができる。また、数平均分子量を5,000以下、より好ましくは4,000以下とすることにより、バインダーとしてのポリウレタンの強度を維持しやすくすることができる。以下に高分子弾性体として、水分散型ポリウレタン樹脂を用いた場合について説明する。 As the water-dispersible polyurethane resin, a resin obtained by reacting a polymer polyol having a number average molecular weight of preferably 500 or more and 5,000 or less, an organic polyisocyanate, and a chain extender is preferably used. Further, in order to improve the stability of the water-dispersed polyurethane dispersion, it is preferable to use a hydrophilic group-containing active hydrogen component in combination. By setting the number average molecular weight of the polymer polyol to 500 or more, more preferably 1,500 or more, it is possible to easily prevent the texture from becoming hard. Further, by setting the number average molecular weight to 5,000 or less, more preferably 4,000 or less, it is possible to easily maintain the strength of polyurethane as a binder. The case where a water-dispersible polyurethane resin is used as the polymer elastic body will be described below.
 (1)水分散型ポリウレタン樹脂の各反応成分
 まず、水分散型ポリウレタン樹脂の各反応成分について説明する。
(1) Each reaction component of the water-dispersible polyurethane resin First, each reaction component of the water-dispersible polyurethane resin will be described.
 (1-1)高分子ポリオール
 本発明のシート状物において、前記高分子弾性体は、構成成分としてポリエーテルジオールを含む。高分子ポリオール中のポリエーテルジオールの含有量は、好ましくは高分子ポリオール全体の50質量%以上、より好ましくは70質量%以上、さらに好ましくは90%質量以上である。ポリエーテルジオールの具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等およびそれらを組み合わせた共重合ポリエーテルジオールが挙げられる。なお、本明細書において、「構成成分として含む」とは、高分子弾性体を構成するモノマー成分、オリゴマー成分として含有することをいう。ポリエーテルジオールは、そのエーテル結合の自由度が高いことでガラス転移温度が低く、且つ凝集力も弱い為に柔軟性に優れるポリウレタンが得られやすくなる。
(1-1) Polymer Polyol In the sheet-like material of the present invention, the polymer elastic body contains a polyether diol as a constituent component. The content of the polyether diol in the polymer polyol is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more of the total polymer polyol. Specific examples of the polyether diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like, and copolymerized polyether diols in combination thereof. In addition, in this specification, "included as a constituent component" means that it is contained as a monomer component and an oligomer component constituting a polymer elastic body. Since the degree of freedom of the ether bond of the polyether diol is high, the glass transition temperature is low and the cohesive force is weak, so that polyurethane having excellent flexibility can be easily obtained.
 (1-2)有機ジイソシアネート
 本発明で用いられる有機ジイソシアネートとしては、炭素数(NCO基中の炭素を除く、以下同様。)が6以上20以下の芳香族ジイソシアネート、炭素数が2以上18以下の脂肪族ジイソシアネート、炭素数が4以上15以下の脂環式ジイソシアネート、炭素数が8以上15以下の芳香脂肪族ジイソシアネート、これらのジイソシアネートの変性体(カーボジイミド変性体、ウレタン変性体、ウレトジオン変性体など。)およびこれらの2種以上の混合物等が含まれる。
(1-2) Organic diisocyanates The organic diisocyanates used in the present invention include aromatic diisocyanates having 6 or more and 20 or less carbon atoms (excluding carbons in NCO groups, the same applies hereinafter) and 2 or more and 18 or less carbon atoms. Aliphatic diisocyanates, alicyclic diisocyanates having 4 to 15 carbon atoms, aromatic aliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide modified products, urethane modified products, uretdione modified products, etc.). ) And a mixture of two or more of these.
 前記炭素数が6以上20以下の芳香族ジイソシアネートの具体例としては、1,3-および/または1,4-フェニレンジイソシアネート、2,4-および/2,6-トリレンジイソシアネート、2,4’-および/または4,4’-ジフェニルメタンジイソシアネート(以下MDIと略記)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、および1,5-ナフチレンジイソシアネートなどが挙げられる。 Specific examples of the aromatic diisocyanate having 6 or more and 20 or less carbon atoms include 1,3- and / or 1,4-phenylenediocyanate, 2,4- and / 2,6-tolylene diisocyanate, and 2,4'. -And / or 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'- Examples thereof include dimethyl-4,4'-diisocyanatodiphenylmethane, and 1,5-naphthylene diisocyanate.
 前記炭素数が2以上18以下の脂肪族ジイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)カーボネート、および2-イソシアナトエチル-2,6-ジイソシアナトヘキサエートなどが挙げられる。 Specific examples of the aliphatic diisocyanate having 2 or more and 18 or less carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and 2,6. -Diisocyanatomethyl caproate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexaate and the like.
 前記炭素数が4以上15以下の脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレート、および2,5-および/または2,6-ノルボルナンジイソシアネートなどが挙げられる。 Specific examples of the alicyclic diisocyanate having 4 or more and 15 or less carbon atoms include isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl)-. Included are 4-cyclohexylene-1,2-dicarboxylate, and 2,5- and / or 2,6-norbornane diisocyanate.
 前記炭素数が8以上15以下の芳香脂肪族ジイソシアネートの具体例としては、m-および/またはp-キシリレンジイソシアネートや、α、α、α’、α’-テトラメチルキシリレンジイソシアネートなどが挙げられる。 Specific examples of the aromatic aliphatic diisocyanate having 8 or more and 15 or less carbon atoms include m- and / or p-xylylene diisocyanate, α, α, α', and α'-tetramethylxylylene diisocyanate. ..
 これらのうち、好ましい有機ジイソシアネートは、脂環式ジイソシアネートである。また、特に好ましい有機ジイソシアネートは、ジシクロヘキシルメタン-4,4’-ジイソシアネートである。 Of these, the preferred organic diisocyanate is an alicyclic diisocyanate. A particularly preferable organic diisocyanate is dicyclohexylmethane-4,4'-diisocyanate.
 (1-3)鎖伸長剤
 本発明に用いられる鎖伸長剤としては、水、「エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコールおよびネオペンチルグリコールなど」の低分子ジオール、「1,4-ビス(ヒドロキシメチル)シクロヘキサンなど」の脂環式ジオール、「1,4-ビス(ヒドロキシエチル)ベンゼンなど」の芳香族ジオール、「エチレンジアミンなど」の脂肪族ジアミン、「イソホロンジアミンなど」の脂環式ジアミン、「4,4-ジアミノジフェニルメタンなど」の芳香族ジアミン、「キシレンジアミンなど」の芳香脂肪族ジアミン、「エタノールアミンなど」のアルカノールアミン、ヒドラジン、「アジピン酸ジヒドラジドなど」のジヒドラジド、および、これらの2種以上の混合物が挙げられる。
(1-3) Chain extender Examples of the chain extender used in the present invention include water, "ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, and diethylene glycol." And neopentyl glycol, etc., low molecular weight diols, 1,4-bis (hydroxymethyl) cyclohexane, etc., alicyclic diols, 1,4-bis (hydroxyethyl) benzene, etc., aromatic diols, ethylenediamine, etc. Aliphatic diamines such as "isofolone diamines", alicyclic diamines such as "isophorone diamines", aromatic diamines "4,4-diaminodiphenylmethane", aromatic aliphatic diamines "xylene diamines", alkanols "ethanolamine etc." Examples include amines, hydrazines, dihydrazides such as "dihydrazide adipate", and mixtures of two or more of these.
 これらのうち好ましい鎖伸長剤は、水、低分子ジオール、芳香族ジアミンであり、更に好ましくは水、エチレングリコール、1,4-ブタンジオール、4,4’-ジアミノジフェニルメタンおよびこれらの2種以上の混合物が挙げられる。 Of these, preferred chain extenders are water, low molecular weight diols, aromatic diamines, more preferably water, ethylene glycol, 1,4-butanediol, 4,4'-diaminodiphenylmethane and two or more of these. Examples include mixtures.
 (2)水分散型ポリウレタン樹脂の添加剤
 本発明では後述する理由により、水分散型ポリウレタンを含む溶液中に、1価陽イオン含有無機塩を添加することが重要である。またその他にも、必要により酸化チタンなどの着色剤、紫外線吸収剤(ベンゾフェノン系、ベンゾトリアゾール系など)や酸化防止剤[4,4-ブチリデンービス(3-メチル-6-1-ブチルフェノール)などのヒンダードフェノール;トリフェニルホスファイト、トリクロルエチルホスファイトなどの有機ホスファイトなど]などの各種安定剤、無機充填剤(炭酸カルシウムなど)などを含有させることができる。
(2) Additives for water-dispersed polyurethane resin In the present invention, it is important to add a monovalent cation-containing inorganic salt to a solution containing water-dispersed polyurethane for the reason described later. In addition, if necessary, colorants such as titanium oxide, UV absorbers (benzophenone-based, benzotriazole-based, etc.) and antioxidants [4,5-butylidene-bis (3-methyl-6-1-butylphenol), etc. Dophenol; organic phosphite such as triphenyl phosphite, trichloroethyl phosphite, etc.] and other stabilizers, inorganic fillers (calcium carbonate, etc.) and the like can be contained.
 (3)水分散型ポリウレタン樹脂の構成
 本発明で用いられる水分散型ポリウレタンにおいて、ポリウレタンに親水性基を含有させる成分として、例えば、親水性基含有活性水素成分が挙げられる。親水性基含有活性水素成分としては、ノニオン性基および/またはアニオン性基および/またはカチオン性基と活性水素とを含有する化合物等が挙げられる。
(3) Composition of Water-Dispersible Polyurethane Resin In the water-dispersible polyurethane used in the present invention, examples of the component that causes the polyurethane to contain a hydrophilic group include a hydrophilic group-containing active hydrogen component. Examples of the hydrophilic group-containing active hydrogen component include compounds containing a nonionic group and / or an anionic group and / or a cationic group and active hydrogen.
 ノニオン性基と活性水素を有する化合物としては、2つ以上の活性水素成分または2つ以上のイソシアネート基を含み、側鎖に分子量250~9,000のポリオキシエチレングリコール基等を有している化合物、および、トリメチロールプロパンやトリメチロールブタン等のトリオール等が挙げられる。 The compound having a nonionic group and active hydrogen contains two or more active hydrogen components or two or more isocyanate groups, and has a polyoxyethylene glycol group having a molecular weight of 250 to 9,000 in the side chain. Examples thereof include compounds and triols such as trimethylolpropane and trimethylolbutane.
 アニオン性基と活性水素を有する化合物としては、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等のカルボキシル基含有化合物およびそれらの誘導体や、1,3-フェニレンジアミン-4,6-ジスルホン酸、3-(2,3-ジヒドロキシプロポキシ)-1-プロパンスルホン酸等のスルホン酸基を含有する化合物およびそれらの誘導体、並びにこれらの化合物を中和剤で中和した塩が挙げられる。 Examples of the compound having an anionic group and active hydrogen include carboxyl group-containing compounds such as 2,2-dimethylol propionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylol valerate and their derivatives, and 1 , 3-Phenylenediamine-4,6-disulfonic acid, 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and other compounds containing sulfonic acid groups and their derivatives, and neutralizing these compounds. Examples include salts neutralized with an agent.
 カチオン性基と活性水素を含有する化合物としては、3-ジメチルアミノプロパノール、N-メチルジエタノールアミン、N-プロピルジエタノールアミン等の3級アミノ基含有化合物およびそれらの誘導体が挙げられる。 Examples of the compound containing a cationic group and active hydrogen include a tertiary amino group-containing compound such as 3-dimethylaminopropanol, N-methyldiethanolamine, and N-propyldiethanolamine, and derivatives thereof.
 前記親水性基含有活性水素成分は、中和剤で中和した塩の状態でも用いることができる。 The hydrophilic group-containing active hydrogen component can also be used in the state of a salt neutralized with a neutralizing agent.
 ポリウレタン分子内に用いられる親水性基含有活性水素成分は、水分散型ポリウレタン樹脂の機械的強度および分散安定性の観点から、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸およびこれらの中和塩を用いることが好ましい。 The hydrophilic group-containing active hydrogen component used in the polyurethane molecule is 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid and from the viewpoint of mechanical strength and dispersion stability of the water-dispersed polyurethane resin. It is preferable to use these neutralizing salts.
 本発明において、高分子弾性体における親水性基とは、活性水素を有する基である。親水性基の具体例としては、水酸基やカルボキシル基、スルホン酸基、アミノ基等が挙げられる。 In the present invention, the hydrophilic group in the polymer elastic body is a group having active hydrogen. Specific examples of the hydrophilic group include a hydroxyl group, a carboxyl group, a sulfonic acid group, an amino group and the like.
 本発明では高分子弾性体内部に、N-アシルウレア結合および/またはイソウレア結合を有する。ここで、高分子弾性体内部にN―アシルウレア結合および/またはイソウレア結合を有するとは、高分子弾性体がN―アシルウレア結合および/またはイソウレア結合を有することを表す。高分子弾性体として、水分散型ポリウレタン樹脂を用いる場合、N-アシルウレア結合および/またはイソウレア結合は、例えば、前述の親水性基含有活性水素成分として存在する水酸基および/またはカルボキシル基とカルボジイミド系架橋剤とを反応させて形成することができる。これにより高分子弾性体の分子内に、耐光性や耐熱性、耐摩耗性等の物性、および柔軟性に優れるN-アシルウレア結合および/またはイソウレア結合による3次元架橋構造を付与し、シート状物の柔軟性を保持しながら、耐摩耗性等の物性を飛躍的に向上させることが出来る。 In the present invention, the polymer elastic body has an N-acylurea bond and / or an isourea bond. Here, having an N-acylurea bond and / or an isourea bond inside the polymer elastic body means that the polymer elastic body has an N-acylurea bond and / or an isourea bond. When an aqueous dispersion type polyurethane resin is used as the polymer elastic body, the N-acylurea bond and / or isourea bond is, for example, a carbodiimide-based crosslink with a hydroxyl group and / or a carboxyl group existing as the above-mentioned hydrophilic group-containing active hydrogen component. It can be formed by reacting with an agent. As a result, a three-dimensional crosslinked structure by N-acylurea bond and / or isourea bond, which is excellent in physical properties such as light resistance, heat resistance, and abrasion resistance, and / or isourea bond, is imparted into the molecule of the polymer elastic body, and the sheet-like material is formed. It is possible to dramatically improve physical properties such as wear resistance while maintaining the flexibility of the above.
 なお、高分子弾性体に上記のN-アシルウレア基やイソウレア基が存在することは、シート状物の断面に対して、例えば、飛行時間型二次イオン質量分析(TOF-SIMS分析)等のマッピング処理(分析機器としては、例えば、ION-TOF社製「TOF.SIMS 5」など)や赤外分光分析(分析機器としては、例えば、日本分光株式会社製「FT/IR 4000 series」など)を行えば分析可能である。 The presence of the above N-acylurea group and isourea group in the polymer elastic body means that the cross section of the sheet-like material is mapped by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS analysis). Processing (for example, "TOF.SIMS 5" manufactured by ION-TOF as an analytical instrument) and infrared spectroscopic analysis (for example, "FT / IR 4000 series" manufactured by Nippon Spectroscopy Co., Ltd. as an analytical instrument) It can be analyzed if done.
 本発明に用いられる高分子弾性体の数平均分子量は、樹脂強度の観点から20,000以上であることが好ましく、また、粘度安定性と作業性の観点から500,000以下であることが好ましい。数平均分子量は、更に好ましくは30,000以上150,000以下である。 The number average molecular weight of the polymer elastic body used in the present invention is preferably 20,000 or more from the viewpoint of resin strength, and preferably 500,000 or less from the viewpoint of viscosity stability and workability. .. The number average molecular weight is more preferably 30,000 or more and 150,000 or less.
 前記高分子弾性体の数平均分子量は、ゲルパーミエーションクロマトグラフィーにより求めることができ、例えば次の条件で測定される。
・機器:東ソー株式会社製HLC-8220
・カラム:東ソーTSKgel α-M
・溶媒:N,N-ジメチルホルムアミド(DMF)
・温度:40℃
・校正:ポリスチレン
 本発明で用いられる高分子弾性体は、シート状物中で繊維同士を適度に把持しており、好ましくはシート状物の少なくとも片面に立毛を有する観点から、繊維質基材の内部に存在していることが好ましい態様である。
The number average molecular weight of the polymer elastic body can be determined by gel permeation chromatography, and is measured, for example, under the following conditions.
・ Equipment: HLC-8220 manufactured by Tosoh Corporation
-Column: Tosoh TSKgel α-M
-Solvent: N, N-dimethylformamide (DMF)
・ Temperature: 40 ℃
-Calibration: Polystyrene The polymer elastic material used in the present invention appropriately grips fibers in a sheet-like material, and preferably is a fibrous base material from the viewpoint of having fluff on at least one side of the sheet-like material. It is a preferred embodiment that it exists inside.
 [シート状物]
 本発明のシート状物は、JIS L 1096:2010「織物及び編物の生地試験法」に記載のA法(45°カンチレバー法)にて規定される縦方向の剛軟度が40mm以上140mm以下であることが重要である。剛軟度を上記範囲とすることで、適度な柔軟性と反発性を有することができる。剛軟度について、反発性のあるシート状物を得ることができる点から好ましくは、50mm以上、より好ましくは、55mm以上であり、柔軟性のあるシート状物を得る点から好ましくは、120mm以下、より好ましくは、110mm以下である。
[Sheet-like material]
The sheet-like material of the present invention has a longitudinal rigidity of 40 mm or more and 140 mm or less specified by the method A (45 ° cantilever method) described in JIS L 1096: 2010 “Fabric test method for woven fabrics and knitted fabrics”. It is important to be. By setting the rigidity and softness in the above range, it is possible to have appropriate flexibility and resilience. The rigidity is preferably 50 mm or more, more preferably 55 mm or more from the viewpoint of obtaining a repulsive sheet-like material, and preferably 120 mm or less from the viewpoint of obtaining a flexible sheet-like material. , More preferably 110 mm or less.
 本発明のシート状物における縦方向とは、シート状物に対して起毛処理を行った方向のことをいう。起毛処理を行った方向の探索方法としては、指でなぞった時の目視確認やSEM撮影などシート状物の構成成分に応じて適宜採用することができる。すなわち、指でなぞった際、立毛繊維を寝かせたり、立たせたりすることができる方向が縦方向となる。また、指でなぞったシート状物の表面をSEM撮影することで寝た立毛繊維の向きが最も多い方向が縦方向となる。一方で、本発明のシート状物における横方向とは、縦方向に対して垂直の方向のことを横方向という。 The vertical direction in the sheet-like material of the present invention means the direction in which the sheet-like material is brushed. As a method of searching for the direction in which the brushing treatment is performed, it can be appropriately adopted depending on the constituent components of the sheet-like material such as visual confirmation when tracing with a finger and SEM photography. That is, when traced with a finger, the direction in which the fluffy fibers can be laid down or erected is the vertical direction. Further, by SEM-imaging the surface of the sheet-like object traced with a finger, the direction in which the lying nap fibers are most oriented becomes the vertical direction. On the other hand, the horizontal direction in the sheet-like object of the present invention is the direction perpendicular to the vertical direction as the horizontal direction.
 また、本発明のシート状物は、JIS L 0843:2006耐光堅牢度測定法のキセノンアーク量が110MJ/m条件で測定した耐光試験後のJIS L 1096:2005で規定されるマーチンデール摩耗試験2万回における摩耗減量が25mg以下であることが重要である。耐光試験後の摩耗減量を上記範囲とすることで、太陽光に晒されるような過酷な環境で長期間使用しても高分子弾性体の劣化を抑制でき、シート状物の外観を維持することが出来る。摩耗減量は、シート状物の外観の劣化を抑制できる観点から23mg以下であることが好ましく、20mg以下であることがより好ましい。 Further, the sheet-like material of the present invention is a Martindale wear test specified by JIS L 1096: 2005 after the light resistance test in which the xenon arc amount of the JIS L 0843: 2006 light fastness measurement method is measured under the condition of 110 MJ / m 2. It is important that the wear loss at 20,000 times is 25 mg or less. By setting the wear weight loss after the light resistance test within the above range, deterioration of the polymer elastic body can be suppressed even when used for a long period of time in a harsh environment exposed to sunlight, and the appearance of the sheet-like material can be maintained. Can be done. The wear weight loss is preferably 23 mg or less, and more preferably 20 mg or less, from the viewpoint of suppressing deterioration of the appearance of the sheet-like material.
 本発明のシート状物は、耐光試験前のシート状物において、JIS L 1096:2010で規定されるマーチンデール摩耗試験2万回における摩耗減量が20mg以下であることが好ましい。耐光試験前の摩耗減量を上記範囲とすることで、実使用における毛羽落ちや、外観の劣化等を抑制しやすくなる。摩耗減量は、実使用における毛羽落ちをより抑制できる観点から18mg以下であることが好ましく、15mg以下であることがより好ましい。 The sheet-like material of the present invention preferably has a wear weight loss of 20 mg or less in the Martindale wear test 20,000 times specified in JIS L 1096: 2010 in the sheet-like material before the light resistance test. By setting the wear weight loss before the light resistance test within the above range, it becomes easy to suppress fluffing and deterioration of the appearance in actual use. The wear weight loss is preferably 18 mg or less, more preferably 15 mg or less, from the viewpoint of further suppressing fluffing in actual use.
 本発明のシート状物は、高分子弾性体を10質量%以上含有することが好ましい。製造工程内での張力による破断や実使用における毛羽落ち等を抑制できる観点から12質量%以上含有していることがより好ましく、15質量%以上含有していることがさらに好ましい。含有量の上限は特に限定されないが、通常、50質量%以下であり、40質量以下%が好ましく、35質量%以下がより好ましい。 The sheet-like material of the present invention preferably contains a polymer elastic body in an amount of 10% by mass or more. From the viewpoint of suppressing breakage due to tension in the manufacturing process and fluffing in actual use, the content is more preferably 12% by mass or more, and further preferably 15% by mass or more. The upper limit of the content is not particularly limited, but is usually 50% by mass or less, preferably 40% by mass or less, and more preferably 35% by mass or less.
 本発明のシート状物は、さらに、以下の条件3を満たすことが好ましい。
条件3:シート状物の起毛面を150℃に加熱したホットプレート上に載置し、押圧荷重2.5kPaで10秒間押圧した際のL値の保持率(以下、単にL値保持率と略することがある)が90%以上100%以下である。
It is preferable that the sheet-like material of the present invention further satisfies the following condition 3.
Condition 3: The L value retention rate when the raised surface of the sheet-like material is placed on a hot plate heated to 150 ° C. and pressed for 10 seconds with a pressing load of 2.5 kPa (hereinafter, simply abbreviated as L value retention rate). Is 90% or more and 100% or less.
 中でも、L値保持率が90%以上、より好ましくは92%以上、さらに好ましくは95%以上であることによって、シート状物が高い耐熱性を有するものとなる。 Among them, when the L value retention rate is 90% or more, more preferably 92% or more, still more preferably 95% or more, the sheet-like material has high heat resistance.
 なお、本発明において「シート状物の起毛面」とは、シート状物に対して起毛処理を行った表面のことを指す。また、L値とは、国際照明委員会(Commission International on Illumination、CIE)が定義したL値のことであるが、本発明におけるL値保持率とは、加熱・押圧条件下での明度の変化の割合が小さい、すなわち、加熱・押圧前に暗い色彩を有するシート状物が、加熱・押圧後にどの程度明るくならないかを指す指標である。 In the present invention, the "brushed surface of the sheet-like material" refers to the surface of the sheet-like material that has been brushed. The L value is an L value defined by the Commission International on Illumination (CIE), but the L value retention rate in the present invention is a change in brightness under heating / pressing conditions. Is a small ratio, that is, it is an index indicating how much a sheet-like material having a dark color before heating / pressing does not become bright after heating / pressing.
 なお、本発明において、L値保持率は、以下のように手順で測定し、算出される値を指す。
(1) シート状物を裁断し、裁断した試験片のL値を色差計(例えば、コニカミノルタ株式会社製「CR-410」など)を用いて測定する。
(2) 試験片の起毛面を下にして、試験片を150℃に熱したホットプレート(例えば、アズワン株式会社製「CHP-250DN」など)上に載置する。
(3) 試験片上に、押圧荷重が2.5kPaとなるように調整した圧子を載置し、10秒間保持する。
(4) 試験片上の圧子を外し、試験片の起毛面のL値を前記の色差計で測定する。
(5) L値保持率を以下の式より算出する。
In the present invention, the L value retention rate refers to a value measured and calculated by the procedure as follows.
(1) The sheet-like material is cut, and the L value of the cut test piece is measured using a color difference meter (for example, "CR-410" manufactured by Konica Minolta Co., Ltd.).
(2) The test piece is placed on a hot plate heated to 150 ° C. (for example, "CHP-250DN" manufactured by AS ONE Corporation) with the raised surface of the test piece facing down.
(3) An indenter adjusted so that the pressing load is 2.5 kPa is placed on the test piece and held for 10 seconds.
(4) Remove the indenter on the test piece, and measure the L value of the raised surface of the test piece with the above-mentioned color difference meter.
(5) The L value retention rate is calculated from the following formula.
   L値保持率(%)=((1)で測定されるL値)/((4)で測定されるL値)×100
 剛軟度や耐光試験前、耐光試験後の摩耗減量、L値保持率を上記範囲になるようにするためには、例えば、後述する高分子弾性体含浸工程、極細繊維発現工程、乾燥工程を経てシート状物を製造することが挙げられる。高分子弾性体を含浸させた後に、極細繊維発現工程を経ることで、極細繊維と高分子弾性体の間隙に作ることができ、柔軟な風合いが得られやすくなる。また、例えば、乾燥工程において、120℃以上180℃以下の温度で熱処理(キュア処理)することで、高分子弾性体の粒子同士を凝集させ、耐光性や耐摩耗性、耐熱性を向上させやすくすることが出来る。さらに、水分散液の感熱凝固温度を後述の範囲とすることで水分蒸発に伴うポリウレタンのシート状物表面への偏在(マイグレーション)を抑制し、L値保持率を高くすることが出来る。
L value retention rate (%) = (L value measured in (1)) / (L value measured in (4)) × 100
In order to keep the abrasion weight loss and the L value retention rate within the above ranges before the rigidity and light resistance test and after the light resistance test, for example, a polymer elastic body impregnation step, an ultrafine fiber expression step, and a drying step described later are performed. It is possible to manufacture a sheet-like product through the process. By impregnating the polymer elastic body and then passing through the process of expressing the ultrafine fibers, it can be formed in the gap between the ultrafine fibers and the polymer elastic body, and a flexible texture can be easily obtained. Further, for example, in the drying step, heat treatment (cure treatment) is performed at a temperature of 120 ° C. or higher and 180 ° C. or lower to agglomerate the particles of the polymer elastic body, and it is easy to improve light resistance, abrasion resistance, and heat resistance. Can be done. Further, by setting the heat-sensitive coagulation temperature of the aqueous dispersion in the range described later, uneven distribution (migration) of polyurethane on the surface of the sheet-like material due to water evaporation can be suppressed, and the L value retention rate can be increased.
 [シート状物の製造方法]
 次に、本発明のシート状物の製造方法について述べる。
[Manufacturing method of sheet-like material]
Next, the method for producing the sheet-like material of the present invention will be described.
 本発明のシート状物の製造方法は、下記(1)~(4)の工程をこの順に含む。
(1)極細繊維発現型繊維からなる繊維質基材に、高分子弾性体、1価陽イオン含有無機塩、および架橋剤を含有する水分散液を含浸せしめ、次いで120℃以上180℃以下の温度で加熱処理を行う高分子弾性体含浸工程であって、前記高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記水分散液における1価陽イオン含有無機塩の含有量が前記高分子弾性体100質量部に対して10質量部以上50質量部以下である、高分子弾性体含浸工程
(2)前記極細繊維発現型繊維をアルカリ処理し、極細繊維を発現させる、極細繊維発現工程
(3)120℃以上180℃以下の温度で熱処理を施す、乾燥工程
(4)未起毛シート状物の少なくとも一面を起毛処理して表面に立毛を形成させる、起毛工程。
The method for producing a sheet-like product of the present invention includes the following steps (1) to (4) in this order.
(1) A fibrous base material made of ultrafine fiber-expressing fibers is impregnated with an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent, and then at 120 ° C. or higher and 180 ° C. or lower. A polymer elastic body impregnation step in which heat treatment is performed at a temperature, wherein the polymer elastic body has a hydrophilic group, contains a polyether diol as a constituent component, and contains monovalent cations in the aqueous dispersion. Polymer elastic body impregnation step in which the content of the inorganic salt is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body (2) The ultrafine fiber-expressing fiber is alkali-treated and the ultrafine fiber is treated. (3) Heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower, drying step (4) Raising at least one surface of the unraised sheet-like material to form naps on the surface. Process.
 本発明において、「未起毛シート状物」とは、少なくとも上記(1)~(3)の工程をこの順に含む方法により得られた起毛処理前のシート状物をいう。 In the present invention, the "unraised sheet-like material" refers to a sheet-like material before the raising treatment obtained by a method including at least the above steps (1) to (3) in this order.
 本発明において、極細繊維を得る手段としては、極細繊維発現型繊維を用いることが好ましい態様である。極細繊維発現型繊維をあらかじめ絡合し不織布とした後に、繊維の極細化を行うことによって、極細繊維束が絡合してなる不織布を得ることができる。 In the present invention, as a means for obtaining ultrafine fibers, it is a preferable embodiment to use ultrafine fiber-expressing fibers. By entwining the ultrafine fiber-expressing fibers in advance to form a non-woven fabric and then ultrafine the fibers, a non-woven fabric in which the ultrafine fiber bundles are entangled can be obtained.
 極細繊維発現型繊維としては、溶剤溶解性の異なる2成分(島繊維が芯鞘複合繊維の場合は2または3成分)の熱可塑性樹脂を海成分と島成分とし、前記の海成分を、溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維を用いることが、海成分を除去する際に島成分間、すなわち繊維束内部の極細繊維間に適度な空隙を付与することができるため、シート状物の風合いや表面品位の観点から好ましい。 As the ultrafine fiber-expressing fiber, a thermoplastic resin having two components (two or three components when the island fiber is a core-sheath composite fiber) having different solvent solubility is used as a sea component and an island component, and the above sea component is used as a solvent. By using a sea-island type composite fiber in which the island component is an ultrafine fiber by dissolving and removing the sea component, an appropriate void is provided between the island components, that is, between the ultrafine fibers inside the fiber bundle when the sea component is removed. Therefore, it is preferable from the viewpoint of the texture and surface quality of the sheet-like material.
 海島型複合繊維としては、海島型複合用口金を用い、海成分と島成分の2成分(島繊維が芯鞘複合繊維の場合は3成分)を相互配列して紡糸する高分子相互配列体を用いる方式が、均一な単繊維直径の極細繊維が得られるという観点から好ましい。 As the sea-island type composite fiber, a polymer mutual arrangement in which two components of the sea component and the island component (three components when the island fiber is a core-sheath composite fiber) are reciprocally arranged and spun using a sea-island type composite base is used. The method used is preferable from the viewpoint of obtaining ultrafine fibers having a uniform single fiber diameter.
 海島型複合繊維の海成分としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステル、およびポリ乳酸などを用いることができるが、製糸性や易溶出性等の観点から、ポリスチレンや共重合ポリエステルが好ましく用いられる。 As the sea component of the sea-island type composite fiber, polyethylene, polypropylene, polystyrene, copolymerized polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, etc., polylactic acid, etc. can be used. From this point of view, polystyrene and copolymerized polyester are preferably used.
 海成分の溶解除去は、高分子弾性体の付与後に行うことが好ましい様態である。後述するとおりである。 It is preferable that the sea component is dissolved and removed after the polymer elastic body is applied. As will be described later.
 本発明で用いられる海島型複合繊維における海成分と島成分の質量割合は、海成分:島成分=10:90~80:20の範囲であることが好ましい。海成分の質量割合が10質量%以上であると、島成分が十分に極細化されやすくなる。また、海成分の質量割合が80質量以下であると、溶出成分の割合が少ないため生産性が向上する。海成分と島成分の質量割合は、より好ましくは、海成分:島成分=20:80~70:30の範囲である。 The mass ratio of the sea component to the island component in the sea-island type composite fiber used in the present invention is preferably in the range of sea component: island component = 10:90 to 80:20. When the mass ratio of the sea component is 10% by mass or more, the island component is likely to be sufficiently refined. Further, when the mass ratio of the sea component is 80 mass or less, the ratio of the eluted component is small, so that the productivity is improved. The mass ratio of the sea component and the island component is more preferably in the range of sea component: island component = 20:80 to 70:30.
 また、繊維絡合体は不織布の形態をとることが好ましく、前述のように短繊維不織布でも長繊維不織布でも用いることができるが、短繊維不織布であると、繊維質基材の厚さ方向を向く繊維が長繊維不織布に比べて多くなり、起毛した際の繊維質基材の表面に高い緻密感を得ることができるため好ましい。 Further, the fiber entanglement preferably takes the form of a non-woven fabric, and as described above, either a short-fiber non-woven fabric or a long-fiber non-woven fabric can be used, but the short-fiber non-woven fabric faces the thickness direction of the fibrous base material. This is preferable because the number of fibers is larger than that of the long-fiber non-woven fabric, and a high degree of denseness can be obtained on the surface of the fibrous base material when raised.
 繊維絡合体として短繊維不織布を用いる場合には、得られた極細繊維発現型繊維に、好ましくは捲縮加工を施し、所定長にカット加工して原綿を得る。捲縮加工やカット加工は、公知の方法を用いることができる。 When a short fiber non-woven fabric is used as the fiber entanglement, the obtained ultrafine fiber phenotype fiber is preferably crimped and cut to a predetermined length to obtain raw cotton. A known method can be used for the crimping process and the cutting process.
 次に、得られた原綿を、クロスラッパー等により繊維ウェブとし、絡合させることにより短繊維不織布を得る。繊維ウェブを絡合させ短繊維不織布を得る方法としては、ニードルパンチ処理やウォータージェットパンチ処理等を用いることができる。 Next, the obtained raw cotton is made into a fiber web by a cloth wrapper or the like, and entangled to obtain a short fiber non-woven fabric. As a method of entwining the fiber webs to obtain a short fiber non-woven fabric, a needle punching process, a water jet punching process, or the like can be used.
 さらに、得られた短繊維不織布と織物を積層し、そして絡合一体化させる。短繊維不織布と織物の絡合一体化には、短繊維不織布の片面もしくは両面に織物を積層するか、あるいは複数枚の短繊維不織布ウェブの間に織物を挟んだ後に、ニードルパンチ処理やウォータージェットパンチ処理等によって短繊維不織布と織物の繊維同士を絡ませることができる。 Furthermore, the obtained short fiber non-woven fabric and woven fabric are laminated and entangled and integrated. To entangle and integrate the short-fiber non-woven fabric and the woven fabric, the woven fabric is laminated on one or both sides of the short-fiber non-woven fabric, or the woven fabric is sandwiched between multiple short-fiber non-woven fabric webs, and then needle punching or water jet is performed. The short fiber non-woven fabric and the fibers of the woven fabric can be entangled with each other by punching or the like.
 ニードルパンチ処理あるいはウォータージェットパンチ処理後の複合繊維(極細繊維発現型繊維)からなる短繊維不織布の見掛け密度は、0.15g/cm以上0.45g/cm以下であることが好ましい。見掛け密度を好ましくは0.15g/cm以上とすることにより、繊維質基材が十分な形態安定性と寸法安定性が得られる。一方、見掛け密度を好ましくは0.45g/cm以下とすることにより、高分子弾性体を付与するための十分な空間を維持することができる。 Apparent density of the short-fiber nonwoven fabric composed of the composite fiber after needle punching or water jet punching (microfine fiber phenotype fibers) is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less. By setting the apparent density to preferably 0.15 g / cm 3 or more, the fibrous substrate can obtain sufficient morphological stability and dimensional stability. On the other hand, by setting the apparent density to preferably 0.45 g / cm 3 or less, it is possible to maintain a sufficient space for imparting the polymer elastic body.
 このようにして得られた不織布は、緻密化の観点から、乾熱もしくは湿熱またはその両者によって収縮させ、さらに高密度化することが好ましい態様である。また、不織布はカレンダー処理等により、厚み方向に圧縮することもできる。 From the viewpoint of densification, the non-woven fabric thus obtained is preferably shrunk by dry heat, moist heat, or both to further increase the density. In addition, the non-woven fabric can be compressed in the thickness direction by calendar processing or the like.
 本発明のシート状物の製造方法では、(1)極細繊維発現型繊維からなる繊維質基材に、高分子弾性体、1価陽イオン含有無機塩、および架橋剤を含有する水分散液を含浸せしめ、次いで120℃以上180℃以下の温度で加熱処理を行う高分子弾性体含浸工程であって、前記高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記水分散液における1価陽イオン含有無機塩の含有量が前記高分子弾性体100質量部に対して10質量部以上50質量部以下である、高分子弾性体含浸工程を含む。 In the method for producing a sheet-like product of the present invention, (1) an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent is applied to a fibrous base material made of ultrafine fiber-expressing fibers. A polymer elastic body impregnation step in which impregnation is performed and then heat treatment is performed at a temperature of 120 ° C. or higher and 180 ° C. or lower, wherein the polymer elastic body has a hydrophilic group and contains a polyether diol as a constituent component. The polymer elastic body impregnation step is included in which the content of the monovalent cation-containing inorganic salt in the aqueous dispersion is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body.
 本発明のシート状物の製造方法では、親水性基を有し、かつ、構成成分としてポリエーテルジオールを含む高分子弾性体を繊維質基材に付与する。繊維質基材として不織布を用いる場合の高分子弾性体の付与は、複合繊維からなる不織布でも、極細繊維化された不織布でもどちらに対しても行うことができる。 In the method for producing a sheet-like product of the present invention, a polymer elastic body having a hydrophilic group and containing a polyether diol as a constituent component is imparted to a fibrous base material. When a non-woven fabric is used as the fibrous base material, the polymer elastic body can be applied to either the non-woven fabric made of composite fibers or the non-woven fabric made into ultrafine fibers.
 本発明のシート状物の製造方法では、前記高分子弾性体がポリエーテルジオールを構成成分として含有する。理由は前述の(1-1)高分子ポリオールの項目にて述べたとおりである。 In the method for producing a sheet-like product of the present invention, the polymer elastic body contains a polyether diol as a constituent component. The reason is as described in the above-mentioned item (1-1) Polymer polyol.
 本発明のシート状物の製造方法では、高分子弾性体付与後の凝固は、120℃以上180℃以下の温度で加熱処理を行う乾熱凝固法を用いる。他の凝固方法、例えば熱水中で高分子弾性体を凝固させる熱水凝固法では、高分子弾性体が熱水中に拡散し、一部脱落するため、加工性に懸念がある。また、酸により高分子弾性体を凝固させる酸凝固法では、シート内に残存する酸性溶液を中和する必要があり、加工操業性において好ましくない。一方で、本発明で適用する乾熱凝固法は、高分子弾性体を含浸したシートを熱風乾燥機等で加熱処理するという非常に簡易な手法であり、高分子弾性体の脱落の懸念もなく、加工性に優れる手法である。 In the method for producing a sheet-like product of the present invention, a dry heat solidification method is used in which heat treatment is performed at a temperature of 120 ° C. or higher and 180 ° C. or lower for solidification after the polymer elastic body is applied. In another coagulation method, for example, a hot water coagulation method in which a polymer elastic body is coagulated in hot water, the polymer elastic body diffuses in hot water and partly falls off, so that there is a concern about workability. Further, in the acid coagulation method in which the polymer elastic body is coagulated with an acid, it is necessary to neutralize the acidic solution remaining in the sheet, which is not preferable in terms of processing operability. On the other hand, the dry heat coagulation method applied in the present invention is a very simple method of heat-treating a sheet impregnated with a polymer elastic body with a hot air dryer or the like, and there is no concern that the polymer elastic body may fall off. , It is a method with excellent workability.
 本発明のシート状物の製造方法では、乾熱凝固における加熱温度は120℃以上180℃以下である。加熱温度が140℃以上であることがより好ましい。これは、高分子弾性体を速やかに凝固させ、自重によるシート下面への高分子弾性体の偏在を抑えることが出来るためである。さらに、本発明では架橋剤との併用が必要であるが、上記温度とすることで、架橋反応を十分に促進し、3次元網目構造を形成させ、物性や耐光性、耐熱性を向上させることが出来る。加熱温度が175℃以下であることがより好ましい。これは、高分子弾性体の熱劣化を抑制することが出来るためである。 In the method for producing a sheet-like product of the present invention, the heating temperature in dry heat coagulation is 120 ° C. or higher and 180 ° C. or lower. It is more preferable that the heating temperature is 140 ° C. or higher. This is because the polymer elastic body can be rapidly solidified and the uneven distribution of the polymer elastic body on the lower surface of the sheet due to its own weight can be suppressed. Further, although it is necessary to use it in combination with a cross-linking agent in the present invention, the above-mentioned temperature is used to sufficiently promote the cross-linking reaction, form a three-dimensional network structure, and improve physical properties, light resistance, and heat resistance. Can be done. More preferably, the heating temperature is 175 ° C. or lower. This is because the thermal deterioration of the polymer elastic body can be suppressed.
 水分散液中の高分子弾性体の濃度(水分散液100質量%中の高分子弾性体の含有量)は、水分散液の貯蔵安定性の観点から、10質量%以上50質量%以下が好ましく、より好ましくは15質量%以上40質量%以下である。 The concentration of the polymer elastic body in the aqueous dispersion (content of the polymer elastic in 100% by mass of the aqueous dispersion) is 10% by mass or more and 50% by mass or less from the viewpoint of storage stability of the aqueous dispersion. It is preferable, more preferably 15% by mass or more and 40% by mass or less.
 本発明に用いる水分散液は、貯蔵安定性や製膜性向上のために、水溶性有機溶剤を水分散液100質量%中に40質量%以下含有していてもよいが、製膜環境の保全等の点から、有機溶剤の含有量は1質量%以下とすることが好ましい。 The aqueous dispersion used in the present invention may contain a water-soluble organic solvent in an amount of 40% by mass or less in 100% by mass of the aqueous dispersion in order to improve storage stability and film-forming property. From the viewpoint of maintenance and the like, the content of the organic solvent is preferably 1% by mass or less.
 本発明のシート状物の製造方法では、水分散液中に1価陽イオン含有無機塩を含有する。1価陽イオン含有無機塩を含有することで、水分散液に感熱凝固性を付与することが出来る。本発明において、感熱凝固性とは、水分散液を加熱した際に、ある温度(感熱凝固温度)に達すると水分散液の流動性が減少し、凝固する性質のことをいう。 In the method for producing a sheet-like product of the present invention, a monovalent cation-containing inorganic salt is contained in the aqueous dispersion. By containing a monovalent cation-containing inorganic salt, it is possible to impart heat-sensitive coagulation to the aqueous dispersion. In the present invention, the heat-sensitive coagulation property refers to the property that when the aqueous dispersion is heated, the fluidity of the aqueous dispersion decreases and solidifies when a certain temperature (heat-sensitive coagulation temperature) is reached.
 本発明のシート状物の製造方法においては、水分散液を繊維質基材に付与後、120℃以上180℃以下の温度で加熱処理し、乾熱凝固させることで、繊維質基材に高分子弾性体を付与する。 In the method for producing a sheet-like material of the present invention, an aqueous dispersion is applied to a fibrous substrate, then heat-treated at a temperature of 120 ° C. or higher and 180 ° C. or lower to dry heat coagulate, thereby increasing the content of the fibrous substrate. Gives a molecular elastic body.
 高分子弾性体が感熱凝固性を有していない場合、高分子弾性体が水分の蒸発とともにシート表面に移行する、マイグレーションが発生する。さらに、水分の蒸発とともに繊維の周囲に高分子弾性体が偏在した状態で凝固が進行するため、高分子弾性体が繊維周囲を覆い、その動きを強く拘束した構造となる。これらによって、シート状物の風合いは著しく硬化する。 If the polymer elastic body does not have thermal coagulation properties, migration occurs in which the polymer elastic body migrates to the sheet surface as the water evaporates. Further, since the solidification proceeds in a state where the polymer elastic body is unevenly distributed around the fiber as the water evaporates, the polymer elastic body covers the circumference of the fiber, and the structure is such that the movement is strongly restrained. As a result, the texture of the sheet-like material is remarkably hardened.
 水分散液の感熱凝固温度は、55℃以上80℃以下であることが好ましい。水分散液の貯蔵時の安定性が良好となり、操業時のマシンへの高分子弾性体の付着等を抑制することができるため、感熱温度を60℃以上であることがより好ましい。繊維質基材の表層への高分子弾性体のマイグレーション現象を抑制することができ、さらに繊維質基材からの水分蒸発前に高分子弾性体の凝固が進行することで、溶剤系高分子弾性体を湿式凝固させて得られる場合に類似した構造、すなわち高分子弾性体が強く繊維を拘束しない構造を形成することが出来、良好な柔軟性、反発感を達成することが可能であるため、感熱凝固温度を70℃以下であることがより好ましい。 The heat-sensitive coagulation temperature of the aqueous dispersion is preferably 55 ° C. or higher and 80 ° C. or lower. The heat-sensitive temperature is more preferably 60 ° C. or higher because the stability of the aqueous dispersion during storage is improved and the adhesion of the polymer elastic body to the machine during operation can be suppressed. It is possible to suppress the migration phenomenon of the polymer elastic body to the surface layer of the fibrous base material, and further, the solidification of the polymer elastic body proceeds before the water evaporates from the fibrous base material, so that the solvent-based polymer elasticity Since it is possible to form a structure similar to that obtained by wet-coagulating the body, that is, a structure in which the polymer elastic body strongly does not restrain the fibers, and it is possible to achieve good flexibility and a feeling of repulsion. It is more preferable that the heat-sensitive solidification temperature is 70 ° C. or lower.
 本発明では、感熱凝固剤として用いる無機塩において、1価陽イオン含有無機塩を用いることが重要である。前記1価陽イオン含有無機塩は、好ましくは塩化ナトリウムおよび/または硫酸ナトリウムである。従来手法においては、感熱凝固剤としては硫酸マグネシウムや塩化カルシウムといった2価陽イオンを有する無機塩が好適に用いられてきたが、これらの無機塩は少量の添加によっても水分散液の安定性に大きく影響するため、高分子弾性体種によっては、その添加量調整による感熱ゲル化温度の厳密な制御が困難であり、また、水分散液の調整時や貯蔵時におけるゲル化の懸念など課題があった。一方で、イオン価数が小さい1価陽イオン含有無機塩は、水分散液の安定性への影響が小さく、添加量を調整することで水分散液の安定性を担保しながらにして、感熱凝固温度を厳密に制御することが出来る。 In the present invention, it is important to use a monovalent cation-containing inorganic salt as the inorganic salt used as the heat-sensitive coagulant. The monovalent cation-containing inorganic salt is preferably sodium chloride and / or sodium sulfate. In the conventional method, inorganic salts having divalent cations such as magnesium sulfate and calcium chloride have been preferably used as the heat-sensitive coagulant, but these inorganic salts can improve the stability of the aqueous dispersion even when added in a small amount. Since it has a large effect, it is difficult to strictly control the heat-sensitive gelation temperature by adjusting the amount of the polymer elastic material added, and there are problems such as concerns about gelation during preparation and storage of the aqueous dispersion. there were. On the other hand, the monovalent cation-containing inorganic salt having a small ionic valence has a small effect on the stability of the aqueous dispersion, and heat-sensing while ensuring the stability of the aqueous dispersion by adjusting the addition amount. The solidification temperature can be strictly controlled.
 さらに本発明では、水分散液中の1価陽イオン含有無機塩の含有量が、高分子弾性体100質量部に対して10質量部以上50質量部以下であることが重要である。含有量を10質量部以上とすることで、水分散液中に多量に存在するイオンが、高分子弾性体粒子に均一に作用することで、特定の感熱凝固温度において速やかに凝固を完了させることが出来る。これにより、前述のような、繊維質基材中に多量の水分を含有した状態で高分子弾性体凝固を進行させることにおいて、より顕著な効果を得ることが出来る。結果、溶剤系高分子弾性体を湿式凝固させて得られる場合に非常に類似した構造を形成し、良好な柔軟性、反発感を達成することが可能である。さらに、添加量を上記とすることで、無機塩が高分子弾性体粒子の融着における阻害剤となり、連続被膜形成による高分子弾性体の硬化を抑制することも出来る。一方で、含有量を50質量部以下とすることで、適度な高分子弾性体の連続被膜構造を残存させ、物性の低下を抑えることが出来る。また水分散液の安定性も保持することが出来る。 Further, in the present invention, it is important that the content of the monovalent cation-containing inorganic salt in the aqueous dispersion is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body. By setting the content to 10 parts by mass or more, a large amount of ions present in the aqueous dispersion act uniformly on the polymer elastic particles, so that coagulation can be completed quickly at a specific heat-sensitive coagulation temperature. Can be done. As a result, a more remarkable effect can be obtained in advancing the coagulation of the polymer elastic body in a state where the fibrous base material contains a large amount of water as described above. As a result, it is possible to form a structure very similar to that obtained by wet-solidifying a solvent-based polymer elastic body, and to achieve good flexibility and a feeling of repulsion. Further, by setting the addition amount as described above, the inorganic salt acts as an inhibitor in the fusion of the polymer elastic particles, and the curing of the polymer elastic body due to the formation of a continuous film can be suppressed. On the other hand, when the content is 50 parts by mass or less, an appropriate continuous coating structure of the polymer elastic body can be left, and deterioration of physical properties can be suppressed. In addition, the stability of the aqueous dispersion can be maintained.
 本発明のシート状物の製造方法では、水分散液に架橋剤を含有することが重要である。架橋剤によって高分子弾性体に3次元網目構造を導入することで、耐摩耗性等の物性を向上させることが出来る。さらに前述の1価陽イオン含有無機塩と併用することで、高分子弾性体の凝固と高分子弾性体と架橋剤の反応を同時に進行させることで、密な3次元網目構造の形成と繊維の接着構造制御によってシート状物を柔軟化すると同時に、シート状物の高物性化や高耐光性、高耐熱性も達成可能となる。すなわち、シート状物の物性や耐光性、耐熱性を向上させるうえで1価陽イオン含有無機塩および架橋剤、乾熱凝固における加熱温度の制御を併用することが必要不可欠である。 In the method for producing a sheet-like product of the present invention, it is important that the aqueous dispersion contains a cross-linking agent. By introducing a three-dimensional network structure into the polymer elastic body with a cross-linking agent, physical properties such as wear resistance can be improved. Furthermore, by using in combination with the above-mentioned monovalent cation-containing inorganic salt, the coagulation of the polymer elastic body and the reaction between the polymer elastic body and the cross-linking agent proceed simultaneously, thereby forming a dense three-dimensional network structure and forming a fiber. At the same time as making the sheet-like material flexible by controlling the adhesive structure, it is possible to achieve high physical properties, high light resistance, and high heat resistance of the sheet-like material. That is, in order to improve the physical characteristics, light resistance, and heat resistance of the sheet-like material, it is indispensable to use a monovalent cation-containing inorganic salt, a cross-linking agent, and control of the heating temperature in dry heat coagulation together.
 反応後に得られる高分子弾性体が耐光性や耐熱性、耐摩耗性に優れ、かつ柔軟性も良好であることから、前記架橋剤がカルボジイミド系架橋剤であることが好ましい。 Since the polymer elastic body obtained after the reaction has excellent light resistance, heat resistance, and abrasion resistance, and also has good flexibility, it is preferable that the cross-linking agent is a carbodiimide-based cross-linking agent.
 本発明のシート状物の製造方法は、(2)極細繊維発現型繊維をアルカリ処理し、極細繊維を発現させる、極細繊維発現工程を含む。高分子弾性体付与後にアルカリ処理を行うことで、高分子弾性体と極細繊維間に、アルカリ処理により溶解する成分に起因する空隙が生成することから、極細繊維を直接高分子弾性体が把持せずにシート状物の風合いはより柔軟となる。 The method for producing a sheet-like product of the present invention includes (2) an ultrafine fiber expression step of treating ultrafine fiber-expressing fibers with an alkali to express the ultrafine fibers. By performing the alkali treatment after applying the polymer elastic body, voids due to the components dissolved by the alkali treatment are generated between the polymer elastic body and the ultrafine fibers, so that the polymer elastic body can directly grip the ultrafine fibers. The texture of the sheet-like material becomes more flexible without it.
 極細繊維発現型繊維として海島型複合繊維を用いる場合の繊維極細化処理(脱海処理)は、例えば、溶剤中に海島型複合繊維を浸漬し、搾液することによって行うことができる。海成分を溶解する溶剤としては、水酸化ナトリウムなどのアルカリ水溶液や熱水を用いることができる。 When a sea-island type composite fiber is used as the ultra-fine fiber-expressing type fiber, the fiber ultrafine treatment (desealing treatment) can be performed, for example, by immersing the sea-island type composite fiber in a solvent and squeezing the liquid. As the solvent for dissolving the sea component, an alkaline aqueous solution such as sodium hydroxide or hot water can be used.
 極細繊維発現工程では、連続染色機、バイブロウォッシャー型脱海機、液流染色機、ウィンス染色機およびジッガー染色機等の装置を用いることができる。 In the ultrafine fiber expression step, devices such as a continuous dyeing machine, a vibro washer type dewatering machine, a liquid flow dyeing machine, a Wins dyeing machine and a Jigger dyeing machine can be used.
 極細繊維発現工程後において、アルカリ処理後に十分な洗浄工程を行うことが好ましい。洗浄工程を経ることでシート状物に付着したアルカリや1価陽イオン含有無機塩をシートに残存させることなく、加工でき、生産設備への影響を与えず加工できる。洗浄液は環境面や安全性を考慮すると水を用いることが好ましい。 After the ultrafine fiber expression step, it is preferable to perform a sufficient washing step after the alkali treatment. By going through the cleaning process, it is possible to process the sheet without leaving alkali or monovalent cation-containing inorganic salt adhering to the sheet on the sheet, and it can be processed without affecting the production equipment. It is preferable to use water as the cleaning liquid in consideration of the environment and safety.
 本発明のシート状物の製造方法は、(3)120℃以上180℃以下の温度で熱処理を施す、乾燥工程を含む。極細繊維発現工程の際に、極細繊維発現型繊維における極細繊維以外の成分を溶解する溶剤により高分子弾性体の結合が一部分解してしまうため、乾燥によるキュア処理を行うことで高分子弾性体の粒子同士を凝集させ、耐光性や耐摩耗性、耐熱性等の物性をさらに向上させることが出来る。 The method for producing a sheet-like product of the present invention includes (3) a drying step of performing heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower. During the process of expressing ultrafine fibers, the bonds of the polymer elastic body are partially decomposed by the solvent that dissolves the components other than the ultrafine fibers in the ultrafine fiber expression type fiber. Therefore, the polymer elastic body is cured by drying. It is possible to further improve physical properties such as light resistance, abrasion resistance, and heat resistance by aggregating the particles of the above.
 本発明のシート状物の製造方法では、乾燥によるキュア処理での加熱温度は120℃以上180℃以下である。キュア処理の効果を高め、耐光性や耐摩耗性、耐熱性等の高物性化を行うために、好ましくは140℃以上、より好ましくは150℃以上である。高分子弾性体の熱劣化を抑制することために、好ましくは175℃以下、より好ましくは170℃以下である。 In the method for producing a sheet-like product of the present invention, the heating temperature in the curing treatment by drying is 120 ° C. or higher and 180 ° C. or lower. The temperature is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, in order to enhance the effect of the cure treatment and to improve the physical properties such as light resistance, abrasion resistance, and heat resistance. In order to suppress thermal deterioration of the polymer elastic body, the temperature is preferably 175 ° C. or lower, more preferably 170 ° C. or lower.
 本発明のシート状物の製造方法は、前記乾燥工程より後に未起毛シート状物またはシート状物を染色する染色工程を含むことが好ましい。この染色処理としては、当分野で通常用いられる各種方法を採用することができ、例えば、ジッガー染色機や液流染色機を用いた液流染色処理、連続染色機を用いたサーモゾル染色処理等の浸染処理、あるいはローラー捺染、スクリーン捺染、インクジェット方式捺染、昇華捺染および真空昇華捺染等による立毛面への捺染処理等を用いることができる。中でも、未起毛シート状物またはシート状物の染色と同時に揉み効果を与えて未起毛シート状物またはシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。また、必要に応じて、染色後に各種の樹脂仕上げ加工を施すことができる。 The method for producing a sheet-like material of the present invention preferably includes a dyeing step of dyeing the unbrushed sheet-like material or the sheet-like material after the drying step. As this dyeing treatment, various methods usually used in the art can be adopted, for example, a liquid flow dyeing treatment using a jigger dyeing machine or a liquid flow dyeing machine, a thermosol dyeing treatment using a continuous dyeing machine, and the like. Dyeing treatment, roller printing, screen printing, inkjet printing, sublimation printing, vacuum sublimation printing, or the like can be used. Above all, it is preferable to use a liquid flow dyeing machine because it is possible to soften the unbrushed sheet-like material or the sheet-like material by giving a kneading effect at the same time as dyeing the unbrushed sheet-like material or the sheet-like material. Further, if necessary, various resin finishing processes can be applied after dyeing.
 染色温度は、繊維の種類にもよるが、80℃以上150℃以下とすることが好ましい。染色温度を80℃以上、より好ましくは110℃以上とすることにより、繊維への染着を効率良く行わせることができる。一方、染色温度を150℃以下、より好ましくは130℃以下とすることにより、高分子弾性体の劣化を防ぐことができる。 The dyeing temperature is preferably 80 ° C. or higher and 150 ° C. or lower, although it depends on the type of fiber. By setting the dyeing temperature to 80 ° C. or higher, more preferably 110 ° C. or higher, dyeing to the fibers can be efficiently performed. On the other hand, by setting the dyeing temperature to 150 ° C. or lower, more preferably 130 ° C. or lower, deterioration of the polymer elastic body can be prevented.
 本発明で用いられる染料は、繊維質基材を構成する繊維の種類にあわせて選択すればよく、特に限定されないが、例えば、ポリエステル系繊維であれば分散染料を用いることができ、ポリアミド系繊維であれば酸性染料や含金染料を用いることができ、更にそれらの組み合わせを用いることができる。分散染料で染色した場合は、染色後に還元洗浄を行ってもよい。 The dye used in the present invention may be selected according to the type of fiber constituting the fibrous base material and is not particularly limited. For example, if it is a polyester fiber, a disperse dye can be used, and a polyamide fiber can be used. If so, acid dyes and gold-containing dyes can be used, and combinations thereof can be used. When dyed with a disperse dye, reduction cleaning may be performed after dyeing.
 染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、例えば、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。 It is also a preferable aspect to use a dyeing aid at the time of dyeing. By using a dyeing aid, the uniformity and reproducibility of dyeing can be improved. In addition, a finishing agent treatment using, for example, a softener such as silicone, an antistatic agent, a water repellent agent, a flame retardant, a light resistant agent, an antibacterial agent, or the like can be applied in the same bath as the dyeing or after the dyeing.
 本発明では、染色工程の前後に問わず、製造効率の観点から、厚み方向に半裁することも好ましい態様である。 In the present invention, it is also a preferable aspect to cut in half in the thickness direction from the viewpoint of manufacturing efficiency regardless of before or after the dyeing step.
 本発明のシート状物の製造方法は、染色工程の前後に問わず、(4)未起毛シート状物の少なくとも一面を起毛処理して表面に立毛を形成させる、起毛工程を含む。立毛を形成する方法は、特に限定されず、サンドペーパー等によるバフィング等、当分野で通常行われる各種方法を用いることができる。立毛長は短すぎると優美な外観が得られにくく、長すぎると、ピリングが発生しやすくなる傾向にあることから、立毛長は0.2mm以上1.0mm以下とすることが好ましい。 The method for producing a sheet-like material of the present invention includes (4) a brushing step of raising at least one surface of the unbrushed sheet-like material to form naps on the surface regardless of before and after the dyeing step. The method for forming the naps is not particularly limited, and various methods usually used in the art such as buffing with sandpaper or the like can be used. If the fluff length is too short, it is difficult to obtain an elegant appearance, and if it is too long, pilling tends to occur. Therefore, the fluff length is preferably 0.2 mm or more and 1.0 mm or less.
 また、本発明のひとつの態様において、起毛処理の前に、未起毛シート状物に滑剤としてシリコーン等を付与してもよい。滑剤を付与することにより、表面研削による起毛が容易に可能となり、表面品位が非常に良好となるため好ましい。また、起毛処理の前に帯電防止剤を付与してもよい。帯電防止剤の付与により、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなるため好ましい態様である。 Further, in one aspect of the present invention, silicone or the like may be applied as a lubricant to the unbrushed sheet-like material before the raising treatment. By applying a lubricant, raising by surface grinding becomes possible easily, and the surface quality becomes very good, which is preferable. Further, an antistatic agent may be applied before the raising treatment. This is a preferable embodiment because the application of the antistatic agent makes it difficult for the grinding powder generated from the sheet-like material to be deposited on the sandpaper.
 さらに、本発明のひとつの態様において、必要に応じてその表面に意匠性を施すことができる。例えば、パーフォレーション等の穴開け加工、エンボス加工、レーザー加工、ピンソニック加工、およびプリント加工等の後加工処理を施すことができる。 Further, in one aspect of the present invention, the surface thereof can be designed as needed. For example, post-processing such as perforation and other drilling, embossing, laser processing, pinsonic processing, and printing can be performed.
 次に、実施例を用いて本発明のシート状物について、さらに具体的に説明するが、本発明はこれらの実施例に限定されない。 Next, the sheet-like material of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 [評価方法]
 (1)シート状物の平均単繊維直径:
 シート状物の繊維を含む厚さ方向に垂直な断面を、走査型電子顕微鏡(SEM、株式会社キーエンス製VE-7800型)を用いて3000倍で観察し、30μm×30μmの視野内で無作為に抽出した50本の単繊維直径をμm単位で、小数第1位まで測定した。
[Evaluation method]
(1) Average single fiber diameter of sheet-like material:
A cross section perpendicular to the thickness direction containing the fibers of the sheet-like material was observed at 3000 times using a scanning electron microscope (SEM, VE-7800 type manufactured by KEYENCE CORPORATION), and was randomly observed within a field of view of 30 μm × 30 μm. The diameters of the 50 single fibers extracted in 1 were measured in μm units up to the first fraction.
 これを3ヶ所で行い、合計150本の単繊維の直径を測定し、平均値を小数第1位までで算出した。繊維直径が50μmを超える繊維が混在している場合には、当該繊維は極細繊維に該当しないものとして平均繊維直径の測定対象から除外するものとする。また、極細繊維が異形断面の場合、前記したように、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めた。これを母集団とした平均値を算出し、平均単繊維直径とした。 This was done at 3 locations, the diameters of a total of 150 single fibers were measured, and the average value was calculated up to the first decimal place. When fibers having a fiber diameter of more than 50 μm are mixed, the fibers are excluded from the measurement target of the average fiber diameter because they do not correspond to ultrafine fibers. Further, when the ultrafine fiber has a deformed cross section, as described above, the diameter of the single fiber is obtained by first measuring the cross-sectional area of the single fiber and calculating the diameter when the cross section is regarded as a circle. The average value using this as the population was calculated and used as the average single fiber diameter.
 (2)水分散液の凝固温度
 各実施例、比較例で調製される、高分子弾性体を含む水分散液20gを内径12mmの試験管に入れ、温度計を先端が液面よりも下になるように差し込んだ後、試験管を封止し、95℃の温度の温水浴に水分散液の液面が温水浴の液面よりも下になるように浸漬した。温度計により試験管内の温度の上昇を確認しつつ、適宜1回あたり5秒以内の時間、試験管を引き上げて水分散液の液面の流動性の有無を確認できる程度に揺すり、水分散液の液面が流動性を失った温度を凝固温度とした。この測定を水分散液1種につき3回ずつ行い、平均値を算出した。
(2) Coagulation temperature of the aqueous dispersion Put 20 g of the aqueous dispersion containing the polymer elastic body prepared in each Example and Comparative Example into a test tube having an inner diameter of 12 mm, and place the thermometer at the tip below the liquid surface. After inserting the test tube so as to be, the test tube was sealed and immersed in a hot water bath having a temperature of 95 ° C. so that the liquid level of the water dispersion was lower than the liquid level of the hot water bath. While checking the temperature rise in the test tube with a thermometer, pull up the test tube for a time of 5 seconds or less each time and shake it to the extent that the presence or absence of fluidity of the liquid level of the water dispersion can be confirmed. The temperature at which the liquid level of No. 1 lost its fluidity was defined as the solidification temperature. This measurement was performed three times for each type of aqueous dispersion, and the average value was calculated.
 (3)シート状物の柔軟性評価:
 JIS L 1096:2010「織物および編物の生地試験方法」の8.21「剛軟度」の、8.21.1に記載のA法(45°カンチレバー法)に基づき、縦方向へ2×15cmの試験片を5枚作成し、45°の角度の斜面を有する水平台へ置き、試験片を滑らせて試験片の一端の中央点が斜面と接したときのスケールを読み、5枚の平均値を求めた。
(3) Evaluation of flexibility of sheet-like material:
2 x 15 cm in the vertical direction based on the A method (45 ° cantilever method) described in 8.21.1 of 8.21 "Stiffness and softness" of JIS L 1096: 2010 "Fabric test method for woven fabrics and knitted fabrics". Create 5 test pieces, place them on a horizontal table with a slope at an angle of 45 °, slide the test pieces, read the scale when the center point of one end of the test piece touches the slope, and read the average of the 5 pieces. The value was calculated.
 (4)シート状物の摩耗評価
 JIS L 1096:2010に基づき、摩耗評価を行った。マーチンデール摩耗試験機として、James H.Heal&Co.製のModel 406を用い、標準摩擦布として同社のABRASTIVE CLOTH SM25を用いた。後述する耐光試験前後のシート状物に12kPaの荷重をかけ、摩耗回数は20,000回とした。摩耗前後のシート状物の質量を用いて、下記の式により、摩耗減量を算出した。
(4) Wear evaluation of sheet-like material Wear evaluation was performed based on JIS L 1096: 2010. As a Martindale wear tester, James H.M. Heal & Co. Model 406 manufactured by the same company was used, and the company's ABRASTIVE CLOTH SM25 was used as a standard friction cloth. A load of 12 kPa was applied to the sheet-like material before and after the light resistance test described later, and the number of times of wear was 20,000 times. Using the mass of the sheet-like material before and after wear, the wear loss was calculated by the following formula.
 摩耗減量(mg)= 摩耗前の質量(mg) - 摩耗後の質量(mg)
なお、摩耗減量は小数点第一位の値を四捨五入した値を摩耗減量とした。
Wear loss (mg) = mass before wear (mg) -mass after wear (mg)
For the wear loss, the value obtained by rounding off the value at the first decimal place was taken as the wear loss.
 (5)シート状物の耐光試験
 JIS L 0843:2006耐光堅牢度測定法(B法、第5露光法)に則り、キセノンアーク照射量が110MJ/mになるように測定時間を調整した条件で照射を行った。
(5) Light resistance test of sheet-like material Conditions in which the measurement time is adjusted so that the xenon arc irradiation amount is 110 MJ / m 2 according to the JIS L 0843: 2006 light fastness measurement method (B method, 5th exposure method). Irradiation was performed with.
 (6)高分子弾性体中の結合種の同定
 上記シート状物より分離した高分子弾性体について、日本分光株式会社製FT/IR 4000 seriesを用いて、赤外分光分析により結合種を同定した。
(6) Identification of Bonded Species in Polymer Elastic Body The polymer elastic body separated from the above sheet-like material was identified by infrared spectroscopic analysis using FT / IR 4000 series manufactured by Nippon Spectroscopy Co., Ltd. ..
 (7)L値保持率
 ホットプレートとして、アズワン株式会社製「CHP-250DN」を用い、色差計として、コニカミノルタ株式会社製「CR-410」を用い、前記の方法によって測定、算出を行った。
(7) L value retention rate Using "CHP-250DN" manufactured by AS ONE Corporation as a hot plate and "CR-410" manufactured by Konica Minolta Co., Ltd. as a color difference meter, measurement and calculation were performed by the above method. ..
 (8)シート状物中に含まれる無機塩種および含有量の測定:
 シート状物をN,N-ジメチルホルムアミドに一晩浸漬させ、高分子弾性体および無機塩を溶出させた溶液を140℃での加熱乾燥により濃縮し、固形化させた。得られた固形物に対し、蒸留水を加え、無機塩のみを溶出させた。この無機塩を含む水溶液を加熱乾燥した上で、シート状物中に含まれる無機塩の量を測定した。また、固形化した高分子弾性体についても加熱乾燥の上、質量を測定し、高分子弾性体質量対比での無機塩質量を算出した。ただし、数値の有効性の観点から高分子弾性体対比で0.1質量%未満は、検出下限未満とする。
(8) Measurement of inorganic salt species and content contained in the sheet-like material:
The sheet was immersed in N, N-dimethylformamide overnight, and the solution in which the polymer elastic and the inorganic salt were eluted was concentrated by heating and drying at 140 ° C. and solidified. Distilled water was added to the obtained solid material to elute only the inorganic salt. After heating and drying the aqueous solution containing the inorganic salt, the amount of the inorganic salt contained in the sheet was measured. Further, the solidified polymer elastic body was also heated and dried, and the mass was measured to calculate the mass of the inorganic salt as compared with the mass of the polymer elastic body. However, from the viewpoint of the effectiveness of the numerical value, less than 0.1% by mass with respect to the polymer elastic body is less than the lower limit of detection.
 無機塩の種類については、上記無機塩を含む水溶液に対して、ダイオネクス社製「ICS-3000型」のイオンクロマトグラフ装置を用いて同定した。 The type of inorganic salt was identified by using an ion chromatograph device of "ICS-3000 type" manufactured by Dionex Co., Ltd. for the aqueous solution containing the inorganic salt.
 [繊維質基材用不織布Aの製造方法]
 海成分としてSSIA(5-スルホイソフタル酸ナトリウム)8モル%共重合ポリエステルを用い、島成分としてポリエチレンテレフタレートを用いて、海成分が20質量%、島成分が80質量%の複合比率で、島数が16島/1フィラメント、平均単繊維直径が20μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、目付が700g/mで、厚みが3.0mmの不織布を製造した。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布Aとした。
[Manufacturing method of non-woven fabric A for fibrous base material]
Using 8 mol% copolymerized polyester of SSIA (sodium 5-sulfoisophthalate) as the sea component and polyethylene terephthalate as the island component, the number of islands is a composite ratio of 20% by mass of the sea component and 80% by mass of the island component. A sea-island type composite fiber having 16 islands / 1 filament and an average single fiber diameter of 20 μm was obtained. The obtained sea-island type composite fiber is cut into a fiber length of 51 mm to make a staple, a fiber web is formed through a curd and a cross wrapper, and a non-woven fabric having a basis weight of 700 g / m 2 and a thickness of 3.0 mm is processed by needle punching. Manufactured. The non-woven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink, and dried at a temperature of 100 ° C. for 5 minutes to obtain a non-woven fabric A for a fibrous base material.
 [繊維質基材用不織布Bの製造方法]
 海成分としてSSIA(5-スルホイソフタル酸ナトリウム)8モル%共重合ポリエステルを用い、島成分としてポリエチレンテレフタレートを用いて、海成分が43質量%、島成分が57質量%の複合比率で、島数が16島/1フィラメント、平均単繊維直径が20μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、目付が550g/mで、厚みが2.9mmの不織布を製造した。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布Bとした。
[Manufacturing method of non-woven fabric B for fibrous base material]
Using 8 mol% copolymerized polyester of SSIA (sodium 5-sulfoisophthalate) as the sea component and polyethylene terephthalate as the island component, the number of islands is a composite ratio of 43% by mass of the sea component and 57% by mass of the island component. A sea-island type composite fiber having 16 islands / 1 filament and an average single fiber diameter of 20 μm was obtained. The obtained sea-island type composite fiber is cut into a fiber length of 51 mm to make a staple, a fiber web is formed through a curd and a cross wrapper, and a non-woven fabric having a basis weight of 550 g / m 2 and a thickness of 2.9 mm is formed by needle punching. Manufactured. The non-woven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink, and dried at a temperature of 100 ° C. for 5 minutes to obtain a non-woven fabric B for a fibrous base material.
 [高分子弾性体の製造方法]
 ポリオールに数平均分子量(Mn)が2,000のポリテトラメチレンエーテルグリコール(表ではPTMGと記載)、イソシアネートにMDI、親水性基を含有させる成分として、2,2-ジメチロールプロピオン酸を用い、トルエン溶媒中でプレポリマーを作成した。鎖伸長剤としてエチレングリコールとエチレンジアミン、外部乳化剤としてポリオキシエチレンノニルフェニルエーテルと水を添加して、攪拌した。減圧化でトルエンを除去して高分子弾性体の水分散液を得た。
[Manufacturing method of polymer elastic body]
Polytetramethylene ether glycol (denoted as PTMG in the table) having a number average molecular weight (Mn) of 2,000 was used as the polyol, MDI was used as the isocyanate, and 2,2-dimethylolpropionic acid was used as a component containing a hydrophilic group. Prepolymers were made in toluene solvent. Ethylene glycol and ethylenediamine were added as chain extenders, and polyoxyethylene nonylphenyl ether and water were added as external emulsifiers, and the mixture was stirred. Toluene was removed by reducing the pressure to obtain an aqueous dispersion of a polymer elastic body.
 [実施例1]
 (不織布)
 不織布として繊維質基材用不織布Aを用いた。
[Example 1]
(Non-woven fabric)
As the non-woven fabric, the non-woven fabric A for a fibrous base material was used.
 (高分子弾性体の付与)
 高分子弾性体100質量部に対して、感熱凝固剤として硫酸ナトリウム(表1では「NaSO」と記載)を20質量部添加し、カルボジイミド系架橋剤3質量部加え、水によって全体を固形分12質量%に調製し、高分子弾性体を含む水分散液を得た。感熱凝固温度は、70℃であった。得られた繊維質基材用不織布Aを、前記水分散液に浸漬し、次いで160℃の温度の熱風で20分間乾燥することにより、シート状物としたときにシート状物100質量%中に高分子弾性体が20質量%となるように高分子弾性体が付与された、厚みが2.10mmの高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
To 100 parts by mass of the polymer elastic body , 20 parts by mass of sodium sulfate (described as "Na 2 SO 4 " in Table 1) was added as a heat-sensitive coagulant, 3 parts by mass of a carbodiimide-based cross-linking agent was added, and the whole was added with water. The solid content was adjusted to 12% by mass, and an aqueous dispersion containing a polymer elastic body was obtained. The heat-sensitive solidification temperature was 70 ° C. The obtained non-woven fabric A for a fibrous base material is immersed in the aqueous dispersion and then dried with hot air at a temperature of 160 ° C. for 20 minutes to form a sheet-like material in 100% by mass of the sheet-like material. A non-woven fabric with a polymer elastic material having a thickness of 2.10 mm was obtained, to which the polymer elastic material was added so that the polymer elastic material was 20% by mass.
 (極細繊維発現処理)
 得られた高分子弾性体付与不織布を、95℃の温度に加熱した濃度8g/Lの水酸化ナトリウム水溶液に浸漬して5分間処理を行い、海島型複合繊維の海成分を除去した。その後、不織布に付着した水酸化ナトリウム水溶液を水に浸漬して30分間洗浄し、160℃の乾燥機で30分間乾燥させ、極細繊維からなるシート(高分子弾性体付与シート)を得た。
(Ultrafine fiber expression treatment)
The obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 5 minutes to remove the sea component of the sea-island type composite fiber. Then, the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 160 ° C. for 30 minutes to obtain a sheet made of ultrafine fibers (polymer elastic body-imparting sheet).
 (染色・仕上げ)
 得られた脱海後の高分子弾性体付与シートを厚さ方向に垂直に半裁し、半裁面の反対側をサンドペーパー番手180番のエンドレスサンドペーパーで研削することにより、厚みが0.75mmの立毛を有するシート状物を得た。
(Dyeing / finishing)
The obtained polymer elastic body-imparting sheet after desealing was cut in half perpendicular to the thickness direction, and the opposite side of the half-cut surface was ground with sandpaper count 180 endless sandpaper to obtain a thickness of 0.75 mm. A sheet-like material having fluff was obtained.
 得られた立毛を有するシート状物を、液流染色機を用いて120℃の温度条件下で黒色染料を用いて染色を行った。次いで乾燥機で乾燥を行い、極細繊維の平均単繊維直径が4.4μmのシート状物を得た。得られたシート状物の剛軟度は80mm、耐光試験前の摩耗減量は7mg、耐光試験後の摩耗減量は9mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は93%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。 The obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, it was dried with a drier to obtain a sheet-like material having an average single fiber diameter of 4.4 μm. The obtained sheet-like material had a rigidity of 80 mm, a wear loss before the light resistance test of 7 mg, and a wear loss after the light resistance test of 9 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 93%, the heat resistance was excellent, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [実施例2]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Example 2]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 感熱凝固剤を塩化ナトリウム(表1では「NaCl」と記載)に変更した。また、感熱凝固剤の添加量および熱風による加熱温度、高分子弾性体の付与量を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The thermal coagulant was changed to sodium chloride (denoted as "NaCl" in Table 1). Further, the same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added, the heating temperature by hot air, and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
 (極細繊維発現処理)
 乾燥温度を変更した以外は実施例1と同様に行った。
(Ultrafine fiber expression treatment)
The procedure was the same as in Example 1 except that the drying temperature was changed.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は90mm、耐光試験前の摩耗減量は6mg、耐光試験後の摩耗減量は8mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は91%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The obtained sheet-like material had a rigidity of 90 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 8 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 91%, and it had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [実施例3]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Example 3]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 感熱凝固剤の添加量、熱風による加熱温度、高分子弾性体の付与量を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added, the heating temperature by hot air, and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
 (極細繊維発現処理)
 乾燥温度を変更した以外は実施例1と同様に行った。
(Ultrafine fiber expression treatment)
The procedure was the same as in Example 1 except that the drying temperature was changed.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は55mm、耐光試験前の摩耗減量は12mg、耐光試験後の摩耗減量は18mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は97%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The obtained sheet-like material had a rigidity of 55 mm, a wear loss before the light resistance test of 12 mg, and a wear loss after the light resistance test of 18 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 97%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [実施例4]
 (不織布)
 不織布として繊維質基材用不織布Bを用いた。
[Example 4]
(Non-woven fabric)
As the non-woven fabric, the non-woven fabric B for a fibrous base material was used.
 (高分子弾性体の付与)
 熱風による加熱温度、高分子弾性体の付与量を変更した以外は実施例2と同様に行い、厚みが2.05mmの高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 2 was carried out except that the heating temperature by hot air and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric having a thickness of 2.05 mm.
 (極細繊維発現処理)
 得られた高分子弾性体付与不織布を、95℃の温度に加熱した濃度8g/Lの水酸化ナトリウム水溶液に浸漬して10分間処理を行い、海島型複合繊維の海成分を除去した。その後、不織布に付着した水酸化ナトリウム水溶液を水に浸漬して30分間洗浄し、170℃の乾燥機で30分間乾燥させ、極細繊維からなるシート(高分子弾性体付与シート)を得た。
(Ultrafine fiber expression treatment)
The obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 10 minutes to remove the sea component of the sea-island type composite fiber. Then, the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 170 ° C. for 30 minutes to obtain a sheet made of ultrafine fibers (polymer elastic body-imparting sheet).
 (染色・仕上げ)
 得られた脱海後の高分子弾性体付与シートを厚さ方向に垂直に半裁し、半裁面の反対側をサンドペーパー番手120番のエンドレスサンドペーパーで研削することにより、厚みが0.75mmの立毛を有するシート状物を得た。
(Dyeing / finishing)
The obtained polymer elastic body-imparting sheet after desealing was cut in half perpendicular to the thickness direction, and the opposite side of the half-cut surface was ground with sandpaper count 120 endless sandpaper to obtain a thickness of 0.75 mm. A sheet-like material having fluff was obtained.
 得られた立毛を有するシート状物を、液流染色機を用いて120℃の温度条件下で黒色染料を用いて染色を行った。次いで乾燥機で乾燥を行い、極細繊維の平均単繊維直径が3.0μmのシート状物を得た。得られたシート状物の剛軟度は75mm、耐光試験前の摩耗減量は7mg、耐光試験後の摩耗減量は10mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は96%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。 The obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, it was dried with a drier to obtain a sheet-like material having an average single fiber diameter of 3.0 μm. The obtained sheet-like material had a rigidity of 75 mm, a wear loss before the light resistance test of 7 mg, and a wear loss after the light resistance test of 10 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 96%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [実施例5]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Example 5]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 感熱凝固剤および感熱凝固剤の添加量、高分子弾性体の付与量を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant and the heat-sensitive coagulant added and the amount of the polymer elastic body applied were changed to obtain a polymer elastic body-imparted non-woven fabric.
 (極細繊維発現処理)
 実施例1と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 1.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は100mm、耐光試験前の摩耗減量は6mg、耐光試験後の摩耗減量は8mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は94%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The obtained sheet-like material had a rigidity of 100 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 8 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 94%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [実施例6]
 (不織布)
 実施例4と同様、不織布として繊維質基材用不織布Bを用いた。
[Example 6]
(Non-woven fabric)
As in Example 4, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 実施例4と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 4 was carried out to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 実施例4と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 4.
 (染色・仕上げ)
 得られた脱海後の高分子弾性体付与シートを両面ともサンドペーパー番手180番のエンドレスサンドペーパーで研削することにより、厚みが1.50mmの立毛を有するシート状物を得た。
(Dyeing / finishing)
The obtained polymer elastic body-imparting sheet after desealing was ground on both sides with sandpaper count 180 endless sandpaper to obtain a sheet-like material having fluff with a thickness of 1.50 mm.
 得られた立毛を有するシート状物を、液流染色機を用いて120℃の温度条件下で黒色染料を用いて染色を行った。次いで乾燥機で乾燥を行った後、厚み方向に垂直に半裁し、極細繊維の平均単繊維直径が3.0μmのシート状物を得た。 The obtained sheet-like material having fluff was dyed with a black dye using a liquid flow dyeing machine under a temperature condition of 120 ° C. Then, after drying with a dryer, it was cut in half perpendicular to the thickness direction to obtain a sheet-like material having an average single fiber diameter of 3.0 μm.
 得られたシート状物の剛軟度は80mm、耐光試験前の摩耗減量は6mg、耐光試験後の摩耗減量は9mgであり、柔軟な風合いと優れた耐光性および耐摩耗性を有していた。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は96%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。 The obtained sheet-like material had a rigidity of 80 mm, a wear loss before the light resistance test of 6 mg, and a wear loss after the light resistance test of 9 mg, and had a flexible texture and excellent light resistance and wear resistance. .. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 96%, and the polymer had excellent heat resistance, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例1]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 1]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 高分子弾性体100質量部に対して、感熱凝固剤として硫酸マグネシウム(表1では「MgSO」と記載)を10質量部添加し、カルボジイミド系架橋剤3質量部加え、水によって全体を固形分12質量%に調製し、高分子弾性体を含む水分散液を得たが、加工中に不織布表面でゲル化し、不織布に高分子弾性体を付与することができなかった。
(Giving a polymer elastic body)
To 100 parts by mass of the polymer elastic body, 10 parts by mass of magnesium sulfate (described as "0054 4 " in Table 1) was added as a heat-sensitive coagulant, 3 parts by mass of a carbodiimide-based cross-linking agent was added, and the whole was solidified by water. It was adjusted to 12% by mass to obtain an aqueous dispersion containing a polymer elastic body, but gelation occurred on the surface of the non-woven fabric during processing, and the polymer elastic body could not be imparted to the non-woven fabric.
 [比較例2]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 2]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 感熱凝固剤の添加量を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added was changed to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 実施例1と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 1.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は150mmより大きいため測定不能であり、硬い風合いとなった。耐光試験前の摩耗減量は15mg、耐光試験後の摩耗減量は25mgであった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は87%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. Since the rigidity and softness of the obtained sheet-like material was larger than 150 mm, it could not be measured, and the texture was hard. The wear weight loss before the light resistance test was 15 mg, and the wear weight loss after the light resistance test was 25 mg. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 87%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例3]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 3]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 感熱凝固剤の添加量を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 1 was carried out except that the amount of the heat-sensitive coagulant added was changed to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 実施例1と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 1.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は150mmより大きいため測定不能であり、硬い風合いとなった。耐光試験前の摩耗減量は16mg、耐光試験後の摩耗減量は28mgであり、耐光性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は89%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. Since the rigidity and softness of the obtained sheet-like material was larger than 150 mm, it could not be measured, and the texture was hard. The wear weight loss before the light resistance test was 16 mg, and the wear weight loss after the light resistance test was 28 mg, which were inferior in light resistance. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 89%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例4]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 4]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 架橋剤を付与しない以外は実施例2と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 2 was carried out except that no cross-linking agent was applied, to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 実施例2と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 2.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は150mmより大きいため測定不能であり、硬い風合いとなった。耐光試験前の摩耗減量は21mg、耐光試験後の摩耗減量は32mgであり、耐光性および耐摩耗性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在しなかった。さらに、L値保持率は88%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. Since the rigidity and softness of the obtained sheet-like material was larger than 150 mm, it could not be measured, and the texture was hard. The wear weight loss before the light resistance test was 21 mg, and the wear weight loss after the light resistance test was 32 mg, which were inferior in light resistance and wear resistance. In addition, the N-acylurea bond and the isourea bond did not exist inside the polymer elastic body. Further, the L value retention rate was 88%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例5]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 5]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 加熱温度を変更した以外は実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
A non-woven fabric with a polymer elastic body was obtained in the same manner as in Example 1 except that the heating temperature was changed.
 (極細繊維発現処理)
 実施例1と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 1.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は120mm、耐光試験前の摩耗減量は13mg、耐光試験後の摩耗減量は29mgであり、耐光性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は88%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The hardness and softness of the obtained sheet-like material was 120 mm, the wear loss before the light resistance test was 13 mg, and the wear loss after the light resistance test was 29 mg, and the light resistance was inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 88%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例6]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 6]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 実施例1と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 1 was carried out to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 乾燥温度を変更した以外は実施例1と同様に行った。
(Ultrafine fiber expression treatment)
The procedure was the same as in Example 1 except that the drying temperature was changed.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は130mm、耐光試験前の摩耗減量は16mg、耐光試験後の摩耗減量は30mgであり、耐光性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は88%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The obtained sheet-like material had a rigidity of 130 mm, a wear loss before the light resistance test was 16 mg, and a wear loss after the light resistance test was 30 mg, and the light resistance was inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 88%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例7]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 7]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 高分子弾性体100質量部に対して、カルボジイミド系架橋剤3質量部を加え、ノニオン性増粘剤(グアーガム)[太陽化学(株)製「ネオソフトG」]を有効成分が高分子弾性体100質量部に対して1質量部となるように加え、水によって全体を固形分13質量%に調製し、高分子弾性体を含む水分散液を得た。得られた不織布を、前記水分散液に浸漬し、次いで温度90℃の熱水中で3分間処理後、乾燥温度160℃で30分間熱風乾燥させ、シート状物としたときにシート状物100質量%中に高分子弾性体が20質量%となるように高分子弾性体が付与された、厚みが2.10mmの高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
To 100 parts by mass of the polymer elastic body, 3 parts by mass of a carbodiimide-based cross-linking agent is added, and a nonionic thickener (guar gum) [“Neosoft G” manufactured by Taiyo Kagaku Co., Ltd.] is used as an active ingredient. It was added so as to be 1 part by mass with respect to 100 parts by mass, and the whole was adjusted to 13% by mass with water to obtain an aqueous dispersion containing a polymer elastic body. The obtained polymer is immersed in the aqueous dispersion, then treated in hot water at a temperature of 90 ° C. for 3 minutes, and then dried with hot air at a drying temperature of 160 ° C. for 30 minutes to form a sheet-like material 100. A polymer elastic body-imparted non-woven fabric having a thickness of 2.10 mm was obtained, in which the polymer elastic body was added so that the polymer elastic body was 20% by mass in mass%.
 (極細繊維発現処理)
 実施例1と同様に行った。
(Ultrafine fiber expression treatment)
This was done in the same manner as in Example 1.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は90mm、耐光試験前の摩耗減量は20mg、耐光試験後の摩耗減量は33mgであり、耐光性および耐摩耗性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は87%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The obtained sheet-like material had a rigidity of 90 mm, a wear loss before the light resistance test was 20 mg, and a wear loss after the light resistance test was 33 mg, and the light resistance and the wear resistance were inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 87%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例8]
 (不織布)
 実施例1と同様、不織布として繊維質基材用不織布Aを用いた。
[Comparative Example 8]
(Non-woven fabric)
Similar to Example 1, the non-woven fabric A for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 架橋剤を付与しない以外は実施例2と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
The same procedure as in Example 2 was carried out except that no cross-linking agent was applied, to obtain a non-woven fabric with a polymer elastic body.
 (極細繊維発現処理)
 得られた高分子弾性体付与不織布を、95℃の温度に加熱した濃度8g/Lの水酸化ナトリウム水溶液に浸漬して5分間処理を行い、海島型複合繊維の海成分を除去した。次に、不織布に付着した水酸化ナトリウム水溶液を水に浸漬して30分間洗浄し、120℃の乾燥機で30分間乾燥させた。その後、カルボジイミド系架橋剤に水を加え、全体を固形分2質量%に調製した架橋剤をシートに含浸・付与し、160℃の乾燥機で30分間乾燥させ、極細繊維からなるシート(高分子弾性体付与シート)を得た。
(Ultrafine fiber expression treatment)
The obtained polymer elastic-imparted non-woven fabric was immersed in an aqueous sodium hydroxide solution having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 5 minutes to remove the sea component of the sea-island type composite fiber. Next, the aqueous sodium hydroxide solution adhering to the non-woven fabric was immersed in water, washed for 30 minutes, and dried in a dryer at 120 ° C. for 30 minutes. Then, water is added to the carbodiimide-based cross-linking agent, the sheet is impregnated with the cross-linking agent prepared to have a solid content of 2% by mass, and dried in a dryer at 160 ° C. for 30 minutes to form a sheet (polymer) made of ultrafine fibers. An elastic body imparting sheet) was obtained.
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は150mmより大きいため測定不能であり、硬い風合いとなった。耐光試験前の摩耗減量は20mg、耐光試験後の摩耗減量は30mgであり、耐光性および耐摩耗性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は86%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. Since the rigidity and softness of the obtained sheet-like material was larger than 150 mm, it could not be measured, and the texture was hard. The wear weight loss before the light resistance test was 20 mg, and the wear weight loss after the light resistance test was 30 mg, and the light resistance and the wear resistance were inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 86%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
 [比較例9]
 (不織布)
 実施例4と同様、不織布として繊維質基材用不織布Bを用いた。
[Comparative Example 9]
(Non-woven fabric)
As in Example 4, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 上記不織布にケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)の10質量%水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量100質量部に対するPVAの付着量が30質量部のPVA付与シートを得た。
(Giving a polymer elastic body)
The non-woven fabric is impregnated with a 10% by mass aqueous solution of PVA (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) having a degree of saponification of 99% and a degree of polymerization of 1400, and heated and dried at a temperature of 140 ° C. for 10 minutes to obtain a fibrous substrate. A PVA-imparting sheet having a PVA adhering amount of 30 parts by mass with respect to 100 parts by mass of fibers of the non-woven fabric for use was obtained.
 得られたPVA付与シートを、95℃の温度に加熱した濃度8g/Lの水酸化ナトリウム水溶液に浸漬して30分間処理を行い、海島型複合繊維の海成分を除去した極細繊維からなるシート(PVA付与極細繊維不織布)を得た。 The obtained PVA-imparting sheet was immersed in an aqueous solution of sodium hydroxide having a concentration of 8 g / L heated to a temperature of 95 ° C. and treated for 30 minutes to remove the sea component of the sea-island type composite fiber. PVA-imparted ultrafine fiber non-woven fabric) was obtained.
 高分子弾性体100質量部に対して、感熱凝固剤として塩化ナトリウム(表1では「NaCl」と記載)を15質量部添加し、カルボジイミド系架橋剤3質量部加え、水によって全体を固形分12質量%に調製し、高分子弾性体を含む水分散液を得た。感熱凝固温度は、68℃であった。得られた繊維質基材用不織布Aを、前記水分散液に浸漬し、次いで160℃の温度の熱風で20分間乾燥することにより、シート状物としたときにシート状物100質量%中に高分子弾性体が38質量%となるように高分子弾性体が付与された、厚みが2.05mmの高分子弾性体付与シートを得た。 To 100 parts by mass of the polymer elastic body, 15 parts by mass of sodium chloride (described as "NaCl" in Table 1) was added as a heat-sensitive coagulant, 3 parts by mass of a carbodiimide-based cross-linking agent was added, and the whole was solidified by water. The mass was adjusted to a mass%, and an aqueous dispersion containing a polymer elastic body was obtained. The thermal solidification temperature was 68 ° C. The obtained non-woven fabric A for a fibrous base material was immersed in the aqueous dispersion and then dried with hot air at a temperature of 160 ° C. for 20 minutes to form a sheet-like material in 100% by mass of the sheet-like material. A polymer elastic body-imparting sheet having a thickness of 2.05 mm, to which the polymer elastic body was added so that the polymer elastic body was 38% by mass, was obtained.
 得られた高分子弾性体付与シートを、95℃に加熱した水中に浸漬して10分処理を行い、120℃の乾燥機で30分間乾燥させることで、付与したPVAを除去したシートを得た。 The obtained polymer elastic body-imparting sheet was immersed in water heated to 95 ° C. for 10 minutes, and dried in a dryer at 120 ° C. for 30 minutes to obtain a sheet from which the applied PVA had been removed. ..
 (染色・仕上げ)
 実施例1と同様に行った。得られたシート状物の剛軟度は90mm、耐光試験前の摩耗減量は11mg、耐光試験後の摩耗減量は26mgであり、耐光性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は91%であり、優れた耐熱性を有しており、高分子弾性体内部の1価陽イオン含有無機塩量は1.2質量%であった。
(Dyeing / finishing)
This was done in the same manner as in Example 1. The hardness and softness of the obtained sheet-like material was 90 mm, the wear loss before the light resistance test was 11 mg, and the wear loss after the light resistance test was 26 mg, and the light resistance was inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 91%, the heat resistance was excellent, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was 1.2% by mass.
 [比較例10]
 (不織布)
 実施例6と同様、不織布として繊維質基材用不織布Bを用いた。
[Comparative Example 10]
(Non-woven fabric)
As in Example 6, the non-woven fabric B for a fibrous base material was used as the non-woven fabric.
 (高分子弾性体の付与)
 加熱温度を変更した以外は実施例6と同様に行い、高分子弾性体付与不織布を得た。
(Giving a polymer elastic body)
A non-woven fabric with a polymer elastic body was obtained in the same manner as in Example 6 except that the heating temperature was changed.
 (極細繊維発現処理)
 乾燥温度を変更した以外は実施例6と同様に行った。
(Ultrafine fiber expression treatment)
The procedure was the same as in Example 6 except that the drying temperature was changed.
 (染色・仕上げ)
 実施例6と同様に行った。得られたシート状物の剛軟度は85mm、耐光試験前の摩耗減量は21mg、耐光試験後の摩耗減量は31mgであり、耐光性および耐摩耗性が劣位であった。また、高分子弾性体内部にN-アシルウレア結合とイソウレア結合が存在した。さらに、L値保持率は85%であり、耐熱性は十分なものではなく、高分子弾性体内部の1価陽イオン含有無機塩量は検出下限未満であった。
(Dyeing / finishing)
This was done in the same manner as in Example 6. The obtained sheet-like material had a rigidity of 85 mm, a wear loss before the light resistance test was 21 mg, and a wear loss after the light resistance test was 31 mg, and the light resistance and the wear resistance were inferior. In addition, N-acylurea bond and isourea bond were present inside the polymer elastic body. Further, the L value retention rate was 85%, the heat resistance was not sufficient, and the amount of monovalent cation-containing inorganic salt inside the polymer elastic body was less than the lower limit of detection.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2中の「PU」はポリウレタンを表す。 Note that "PU" in Table 2 represents polyurethane.
 本発明により得られるシート状物は、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、研磨布およびCDカーテン等の工業用資材として好適に用いることができる。 The sheet-like material obtained by the present invention includes furniture, chairs and wall materials, interior materials and shirts having a very elegant appearance as skin materials such as seats, ceilings and interiors in vehicle interiors such as automobiles, trains and aircraft. Uppers, trims, bags, belts, wallets, etc. of shoes such as jackets, casual shoes, sports shoes, men's shoes and women's shoes, and clothing materials used for some of them, wiping cloth, polishing cloth, CD curtains, etc. Can be suitably used as an industrial material of.

Claims (8)

  1.  繊維質基材に高分子弾性体を含有するシート状物であって、繊維質基材が平均単繊維直径0.1μm以上10μm以下の極細繊維からなり、高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記高分子弾性体内部にN-アシルウレア結合および/またはイソウレア結合を有し、以下の条件1及び条件2を満たすシート状物。
    条件1:JIS L 1096:2010「織物及び編物の生地試験法」に記載のA法(45°カンチレバー法)にて規定される縦方向の剛軟度が40mm以上140mm以下である
    条件2:JIS L 0843:2006耐光堅牢度測定法のキセノンアーク量が110MJ/m条件で測定した耐光試験後のJIS L 1096:2005で規定されるマーチンデール摩耗試験2万回における摩耗減量が25mg以下である
    A sheet-like material containing a polymer elastic body in a fibrous base material, the fibrous base material is composed of ultrafine fibers having an average single fiber diameter of 0.1 μm or more and 10 μm or less, and the polymer elastic body has a hydrophilic group. A sheet-like material containing a polyether diol as a constituent component, having an N-acylurea bond and / or an isourea bond inside the polymer elastic body, and satisfying the following conditions 1 and 2.
    Condition 1: JIS L 1096: 2010 The longitudinal stiffness specified by method A (45 ° cantilever method) described in "Fabric test method for woven fabrics and knitted fabrics" is 40 mm or more and 140 mm or less Condition 2: JIS L 0843: 2006 The amount of xenon arc in the light fastness measurement method is 110 MJ / m. The wear loss in the Martindale wear test 20,000 times specified by JIS L 1096: 2005 after the light resistance test measured under 2 conditions is 25 mg or less.
  2.  耐光試験前のシート状物において、JIS L 1096:2010で規定されるマーチンデール摩耗試験2万回における摩耗減量が20mg以下である、請求項1記載のシート状物。 The sheet-like material according to claim 1, wherein the wear loss in the Martindale wear test 20,000 times specified in JIS L 1096: 2010 is 20 mg or less in the sheet-like material before the light resistance test.
  3.  前記高分子弾性体を10質量%以上含有する、請求項1または2に記載のシート状物。 The sheet-like material according to claim 1 or 2, which contains 10% by mass or more of the polymer elastic body.
  4.  前記シート状物において、さらに以下の条件3を満たす、請求項1~3のいずれかに記載のシート状物。
    条件3:前記シート状物の起毛面を150℃に加熱したホットプレート上に載置し、押圧荷重2.5kPaで10秒間押圧した際のL値の保持率が90%以上100%以下である
    The sheet-like material according to any one of claims 1 to 3, further satisfying the following condition 3 in the sheet-like material.
    Condition 3: The retention rate of the L value when the raised surface of the sheet-like material is placed on a hot plate heated to 150 ° C. and pressed for 10 seconds with a pressing load of 2.5 kPa is 90% or more and 100% or less.
  5.  下記(1)~(4)の工程をこの順に含む、シート状物の製造方法。
    (1)極細繊維発現型繊維からなる繊維質基材に、高分子弾性体、1価陽イオン含有無機塩、および架橋剤を含有する水分散液を含浸せしめ、次いで120℃以上180℃以下の温度で加熱処理を行う高分子弾性体含浸工程であって、前記高分子弾性体が親水性基を有し、かつ、構成成分としてポリエーテルジオールを含み、前記水分散液における1価陽イオン含有無機塩の含有量が前記高分子弾性体100質量部に対して10質量部以上50質量部以下である、高分子弾性体含浸工程
    (2)前記極細繊維発現型繊維をアルカリ処理し、極細繊維を発現させる、極細繊維発現工程
    (3)120℃以上180℃以下の温度で熱処理を施す、乾燥工程
    (4)未起毛シート状物の少なくとも一面を起毛処理して表面に立毛を形成させる、起毛工程
    A method for producing a sheet-like material, which comprises the following steps (1) to (4) in this order.
    (1) A fibrous base material made of ultrafine fiber-expressing fibers is impregnated with an aqueous dispersion containing a polymer elastic body, a monovalent cation-containing inorganic salt, and a cross-linking agent, and then at 120 ° C. or higher and 180 ° C. or lower. A polymer elastic body impregnation step in which heat treatment is performed at a temperature, wherein the polymer elastic body has a hydrophilic group, contains a polyether diol as a constituent component, and contains monovalent cations in the aqueous dispersion. Polymer elastic body impregnation step in which the content of the inorganic salt is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer elastic body (2) The ultrafine fiber-expressing fiber is alkali-treated and the ultrafine fiber is treated. (3) Heat treatment at a temperature of 120 ° C. or higher and 180 ° C. or lower, drying step (4) Raising at least one surface of the unraised sheet-like material to form naps on the surface. Process
  6.  前記乾燥工程より後に未起毛シート状物またはシート状物を染色する染色工程を含む、請求項5に記載のシート状物の製造方法。 The method for producing a sheet-like material according to claim 5, further comprising a dyeing step of dyeing the unbrushed sheet-like material or the sheet-like material after the drying step.
  7.  前記1価陽イオン含有無機塩が塩化ナトリウムおよび/または硫酸ナトリウムである、請求項5または6に記載のシート状物の製造方法。 The method for producing a sheet-like product according to claim 5 or 6, wherein the monovalent cation-containing inorganic salt is sodium chloride and / or sodium sulfate.
  8.  前記架橋剤がカルボジイミド系架橋剤である、請求項5~7のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like product according to any one of claims 5 to 7, wherein the cross-linking agent is a carbodiimide-based cross-linking agent.
PCT/JP2020/046009 2019-12-20 2020-12-10 Sheet-like article and method for producing same WO2021125032A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080078176.2A CN114729501B (en) 2019-12-20 2020-12-10 Sheet and method for producing same
JP2020569210A JP6904493B1 (en) 2019-12-20 2020-12-10 Sheet-shaped material and its manufacturing method
EP20903475.0A EP4079962A4 (en) 2019-12-20 2020-12-10 Sheet-like article and method for producing same
US17/773,915 US20220380976A1 (en) 2019-12-20 2020-12-10 Sheet material and method for producing same
KR1020227018399A KR20220113689A (en) 2019-12-20 2020-12-10 Sheet-like article and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019230227 2019-12-20
JP2019-230227 2019-12-20
JP2020-049010 2020-03-19
JP2020049010 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021125032A1 true WO2021125032A1 (en) 2021-06-24

Family

ID=76476575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046009 WO2021125032A1 (en) 2019-12-20 2020-12-10 Sheet-like article and method for producing same

Country Status (7)

Country Link
US (1) US20220380976A1 (en)
EP (1) EP4079962A4 (en)
JP (1) JP6904493B1 (en)
KR (1) KR20220113689A (en)
CN (1) CN114729501B (en)
TW (1) TW202129118A (en)
WO (1) WO2021125032A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230009350A1 (en) * 2019-12-20 2023-01-12 Toray Industries, Inc. Sheet material and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316877A (en) 1993-04-30 1994-11-15 Asahi Chem Ind Co Ltd Production of flexible artificial leather having high abrasion resistance
JP2000265052A (en) 1999-03-17 2000-09-26 Kuraray Co Ltd Polyurethane emulsion and leather-like sheet material prepared by using the same
JP2013112905A (en) * 2011-11-28 2013-06-10 Toray Ind Inc Sheet-like material
WO2015129602A1 (en) 2014-02-27 2015-09-03 東レ株式会社 Sheet-like material and method for producing same
WO2016052189A1 (en) 2014-09-30 2016-04-07 東レ株式会社 Method for manufacturing sheet-like product
WO2016063761A1 (en) * 2014-10-24 2016-04-28 東レ株式会社 Sheet-like article
JP2017172074A (en) 2016-03-24 2017-09-28 東レ株式会社 Sheet-like article and manufacturing method therefor
JP2019112742A (en) 2017-12-25 2019-07-11 東レ株式会社 Sheet-like article, and production method of the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2436740A1 (en) * 1974-07-30 1976-02-12 Bayer Ag PROCESS FOR THE MANUFACTURING OF POLYURN FABRICS
KR100601767B1 (en) * 2003-08-28 2006-07-19 가부시키가이샤 구라레 Leather-like sheets and method for producing them
JP2008106415A (en) * 2006-09-28 2008-05-08 Toray Ind Inc Sheet body
WO2014125797A1 (en) * 2013-02-12 2014-08-21 株式会社クラレ Rigid sheet and process for manufacturing rigid sheet
KR20160088330A (en) * 2013-11-21 2016-07-25 도레이 카부시키가이샤 Sheet-like article
JP6752579B2 (en) * 2016-01-25 2020-09-09 株式会社クラレ Artificial leather base material and its manufacturing method, and oil-like, brushed, or grain-like artificial leather
KR20200142502A (en) * 2018-04-12 2020-12-22 도레이 카부시키가이샤 Sheet-like material and its manufacturing method
JP7322573B2 (en) * 2019-07-30 2023-08-08 東レ株式会社 Sheet-shaped article and method for producing the same
US20230009350A1 (en) * 2019-12-20 2023-01-12 Toray Industries, Inc. Sheet material and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316877A (en) 1993-04-30 1994-11-15 Asahi Chem Ind Co Ltd Production of flexible artificial leather having high abrasion resistance
JP2000265052A (en) 1999-03-17 2000-09-26 Kuraray Co Ltd Polyurethane emulsion and leather-like sheet material prepared by using the same
JP2013112905A (en) * 2011-11-28 2013-06-10 Toray Ind Inc Sheet-like material
WO2015129602A1 (en) 2014-02-27 2015-09-03 東レ株式会社 Sheet-like material and method for producing same
WO2016052189A1 (en) 2014-09-30 2016-04-07 東レ株式会社 Method for manufacturing sheet-like product
WO2016063761A1 (en) * 2014-10-24 2016-04-28 東レ株式会社 Sheet-like article
JP2017172074A (en) 2016-03-24 2017-09-28 東レ株式会社 Sheet-like article and manufacturing method therefor
JP2019112742A (en) 2017-12-25 2019-07-11 東レ株式会社 Sheet-like article, and production method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079962A4

Also Published As

Publication number Publication date
CN114729501B (en) 2024-03-26
CN114729501A (en) 2022-07-08
JPWO2021125032A1 (en) 2021-12-16
JP6904493B1 (en) 2021-07-14
TW202129118A (en) 2021-08-01
EP4079962A4 (en) 2024-01-24
EP4079962A1 (en) 2022-10-26
KR20220113689A (en) 2022-08-16
US20220380976A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6786800B2 (en) Manufacturing method of sheet
JP6904494B1 (en) Sheet-shaped material and its manufacturing method
JP7226435B2 (en) Sheet-shaped article and method for producing the same
JP7322573B2 (en) Sheet-shaped article and method for producing the same
CN104619909A (en) Method for manufacturing sheet-shaped object and sheet-shaped object obtained via said method
JP6904493B1 (en) Sheet-shaped material and its manufacturing method
JP7375760B2 (en) Sheet-like product and its manufacturing method
WO2022114041A1 (en) Artificial leather and method for manufacturing same
JP2022101943A (en) Artificial leather
JP5678444B2 (en) Leather-like sheet and manufacturing method thereof
JP2008174868A (en) Method for producing sheet-formed article, and sheet-formed article
TW201615704A (en) Sheet-shaped material and method for producing same
JP7404709B2 (en) Artificial leather for light-transmissive display equipment
WO2024095846A1 (en) Artificial leather and method for manufacturing same
JP2022027451A (en) Artificial leather and production method thereof
JP2023140491A (en) Artificial leather and manufacturing method thereof
JP2024051372A (en) Artificial leather and manufacturing method thereof
JP2007119936A (en) Substrate for leather-like sheet material and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020569210

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022115202

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020903475

Country of ref document: EP

Effective date: 20220720