[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021125007A1 - 光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器 - Google Patents

光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器 Download PDF

Info

Publication number
WO2021125007A1
WO2021125007A1 PCT/JP2020/045819 JP2020045819W WO2021125007A1 WO 2021125007 A1 WO2021125007 A1 WO 2021125007A1 JP 2020045819 W JP2020045819 W JP 2020045819W WO 2021125007 A1 WO2021125007 A1 WO 2021125007A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
face
optical
reflective film
light
Prior art date
Application number
PCT/JP2020/045819
Other languages
English (en)
French (fr)
Inventor
一宏 今井
元伸 興梠
マーク ジャボロンスキー
Original Assignee
株式会社Xtia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019227630A external-priority patent/JP6745395B1/ja
Priority claimed from JP2020099226A external-priority patent/JP7100906B2/ja
Application filed by 株式会社Xtia filed Critical 株式会社Xtia
Priority to EP20902250.8A priority Critical patent/EP4080273A4/en
Priority to US17/787,215 priority patent/US11726254B2/en
Priority to CN202080088156.3A priority patent/CN114830018A/zh
Publication of WO2021125007A1 publication Critical patent/WO2021125007A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix

Definitions

  • the present invention is an optical resonator and an optical resonator applied to a field that requires a standard light source having high coherence at multiple wavelengths such as optical communication, optical CT, and optical frequency standard, or a light source that can also utilize coherence between each wavelength.
  • the present invention relates to a method for manufacturing an optical modulator, an optical resonator, an optical modulator, an optical frequency comb generator, and an optical oscillator. This application is prioritized on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-227630 filed on December 17, 2019 and Japanese Patent Application No. Japanese Patent Application No. 2020-099226 filed on June 8, 2020 in Japan. It claims the right and is incorporated into this application by reference to this application.
  • heterodyne detection is performed to detect the electric signal of the generated optical beat frequency by interfering the measured light with other light.
  • the band of light that can be measured in this heterodyne detection is limited to the band of the light receiving element used in the detection system, and is about several tens of GHz.
  • FIG. 1 shows the principle structure of this conventional optical frequency comb generator 1003.
  • an optical resonator 1000 including an optical phase modulator 1031 and reflectors 1032 and 1033 installed so as to face each other via the optical phase modulator 1031 is used.
  • the optical cavity 1000 a light L in incident at a small transmittance through the reflecting mirror 1032, resonate between the reflecting mirror 1032 and 1033, emitting a part of the light L out via the reflecting mirror 1033 Let me.
  • the optical phase modulator 1031 is composed of an electro-optical crystal for optical phase modulation whose refractive index changes by applying an electric field, and the frequency applied to the electrode 1036 with respect to the light passing through the optical resonator 1000. multiplying the phase-modulated in response to an electrical signal of f m.
  • the optical phase modulator 1031 is operated only once by driving and inputting an electric signal synchronized with the time when light reciprocates in the optical resonator 1000 from the electrode 1036 to the optical phase modulator 31. It is possible to apply a deep phase modulation that is several tens of times or more deeper than when passing through. Thus, it is possible to generate hundreds of higher order sidebands, becomes equal to the frequency f m of the frequency interval f m are all input electric signals of adjacent sidebands.
  • the conventional optical frequency comb generator is not limited to the bulk type described above.
  • it can also be applied to a waveguide type optical frequency comb generator 1020 using an optical waveguide.
  • This waveguide type optical frequency comb generator 1020 is composed of a waveguide type optical modulator 1200.
  • the waveguide type optical modulator 1200 includes a substrate 1201, an optical waveguide 1202, an electrode 1203, an incident side reflecting film 1204, an emitting side reflecting film 1205, and an oscillator 1206.
  • the substrate 1201 is obtained by cutting out a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method into a wafer shape.
  • the cut-out substrate 1201 is subjected to treatments such as mechanical polishing and chemical polishing.
  • the optical waveguide 1202 is arranged to propagate light, and the refractive index of the layers constituting the optical waveguide 1202 is set higher than that of other layers such as the substrate 1201.
  • the light incident on the optical waveguide 1202 propagates while being totally reflected at the boundary surface of the optical waveguide 1202.
  • the optical waveguide 1202 can be manufactured by diffusing Ti atoms in the substrate 1201 or by epitaxially growing it on the substrate 1201.
  • a LiNbO 3 crystal optical waveguide may be applied as the optical waveguide 1202.
  • This LiNbO 3 crystal optical waveguide can be formed by diffusing Ti on the surface of the substrate 1201 made of LiNbO 3 or the like.
  • a photoresist pattern is first produced on the surface of the substrate 1201, Ti is vapor-deposited on the pattern, and then the photoresist is removed to obtain a micron-sized pattern.
  • a thin Ti wire composed of width is produced. Next, by heating this thin wire of Ti, it is thermally diffused in the substrate 1201.
  • this Ti when this Ti is thermally diffused into the substrate 1201 made of LiNbO 3 , light can be confined in the region where the Ti is diffused where the refractive index is higher than in other regions. That is, an optical waveguide 1202 capable of propagating light in the region where such Ti is diffused is formed. Since the LiNbO 3 crystal type optical waveguide 1202 produced based on such a method has an electro-optical effect, the refractive index can be changed by applying an electric field to the optical waveguide 1202.
  • Electrode 1203 for example, Al and Cu, Pt, a metal material such as Au, and drives the input electrical signals supplied frequency f m from the outside to the optical waveguide 1202. Further, the light propagation direction in the optical waveguide 1202 and the traveling direction of the modulated electric field are the same. By adjusting the width and thickness of the electrode 1203, the speed of light propagating through the optical waveguide 1202 and the speed of the electric signal propagating on the electrode 1203 may be matched. This makes it possible to keep the phase of the electric signal felt by the light propagating in the optical waveguide 1202 constant.
  • the incident-side reflective film 1204 and the outgoing-side reflective film 1205 are provided to resonate the light incident on the optical waveguide 1202, and resonate by reciprocating the light passing through the optical waveguide 1202.
  • Oscillator 1206 is connected to the electrode 1203, and supplies the electrical signal of frequency f m.
  • the incident side reflective film 1204 is arranged on the light incident side of the waveguide type optical modulator 1200, and light having a frequency ⁇ 1 is incident from a light source (not shown). Further, the incident side reflective film 1204 reflects light that is reflected by the outgoing side reflective film 1205 and has passed through the optical waveguide 1202.
  • the light emitting side reflecting film 1205 is arranged on the light emitting side of the waveguide type optical modulator 1200, and reflects the light that has passed through the optical waveguide 1202. Further, the exit-side reflective film 1205 emits light that has passed through the optical waveguide 1202 to the outside at a constant rate.
  • an electric signal synchronized with the time when light reciprocates in the optical waveguide 1202 is used as a drive input from the electrode 1203 to the waveguide type optical modulator 1200.
  • the light phase modulator is passed only once, it is possible to apply a deep phase modulation several tens of times or more.
  • this waveguide type optical frequency comb generator 1020 is that the interaction region between light and electric signal is smaller. Since light is confined and propagated in the optical waveguide 1202 on the order of micron, which has a higher refractive index than the surroundings, the electric field strength in the optical waveguide 1202 can be locally adjusted by attaching the electrode 1203 in the very vicinity of the optical waveguide 1202. It becomes possible to increase. Therefore, the electro-optical effect generated in the optical waveguide 1202 is larger than that of the bulk type optical frequency comb generator 1003, and it is possible to obtain a large modulation with a small amount of electric power.
  • FIG. 3 shows the end face of the waveguide type optical frequency comb generator 1020 on which the incident side reflective film 1204 is formed.
  • an optical waveguide 1202 is formed on the upper end of the substrate 1201, a thin buffer layer is laminated on the optical waveguide 1202, and an electrode 1203 is further formed on the thin buffer layer. That is, the optical waveguide 1202 is located at the uppermost corner of the end face of the waveguide type optical frequency comb generator 1020. Since the uppermost corner of the end face is sharp, a chip is often generated as shown in FIG. 3 during polishing. When the uppermost part of the end face is chipped, the light to be resonated is scattered and a loss occurs.
  • the corners may be rounded even if the corners are not chipped at the top of the end face.
  • the corners are rounded, a part of the reflected light deviates from the waveguide mode of the optical waveguide 1202, resulting in loss.
  • a highly reflective film such as the anti-reflective film 1204 on the incident side is usually produced by alternately depositing a film having a high refractive index and a film having a low refractive index.
  • the film thickness changing as the material of the highly reflective film wraps around from the end face to the side surface, there is also a problem that the film thickness cannot be controlled as designed.
  • an optical waveguide in which a core is formed in a substrate by diffusion or the like, since the core is formed on the surface of the substrate, at least one side of the outer circumference of the core is located on the outer periphery of the substrate on the end surface.
  • an optical thin film such as a reflective film is formed on the end face of such an optical waveguide by a vapor deposition method, a sputtering method, a chemical vapor deposition method, or the like
  • the film-forming particles wrap around to the side surface of the end face of the substrate, and Since the film-formed particles flying from the side surface wrap around to the end face, it is difficult to obtain a uniform film thickness on the outer peripheral portion of the end face of the substrate. Therefore, it is very difficult to form a film thin enough to act as a reflective film or the like and having a small film thickness distribution on the end face of the core located on the outer peripheral portion of the end face of the substrate.
  • the applicant of the present invention suppresses chipping and rounding during processing of the corners of the end face of the optical waveguide, and stably adheres each reflective film to the uppermost corner of the end face without peeling.
  • optical resonators, optical modulators, optical comb generators, and optical oscillators that have improved reflectance and finesse of the optical resonator and enhanced the functions of the device itself. (See, for example, Patent Document 3).
  • An incident-side reflecting film and an emitting-side reflecting film constituting the resonance means are covered on the plane formed by polishing the end face of the member and the end face of the substrate. Since it is attached, chipping and rounding during processing of the corners of the optical waveguide end face can be suppressed, and each reflective film can be stably applied without peeling off at the uppermost corner of the end face, and the reflectance of the reflective film can be increased. It is possible to improve the finesse of the optical resonator and enhance the function of the device itself.
  • the optical of the reflective film or the like is obtained by a vapor deposition method, a sputtering method, a chemical vapor deposition method or the like.
  • the corners of the end face of the optical waveguide 1202 are likely to be chipped during processing, and the corners of the end face of the optical waveguide 1202 may be rounded during processing. There is a problem that the formed reflective film is easily peeled off at the uppermost corner of the end face.
  • an optical waveguide that transmits a polarization component in which orthogonal modes are mixed is used, and an optical modulator or an optical frequency comb generator is constructed.
  • the light output obtained in this case also contained a polarization component in which orthogonal modes were mixed.
  • the optical frequency comb generator when the optical frequency comb is used for measurement, a part of the light emitted from the optical resonator is detected by an optical detector in order to obtain a stable output, and a predetermined value is obtained.
  • the resonance length of the optical cavity was controlled by feedback so that it would be the resonance length, but since an optical waveguide that transmits polarized light components in which orthogonal modes are mixed was used, a circle is added to FIG. As shown in the above, the transmission mode waveform due to the orthogonally polarized light component may be deformed. Moreover, since the locations where the transmission mode waveform due to the orthogonally polarized light component is deformed (relative positions with respect to the main mode) are scattered and have a plurality of minimum portions, it becomes an unstable factor when controlling the resonance length.
  • the orthogonal polarization components match the resonance frequency of the optical frequency comb generator with the laser frequency.
  • the optical frequency comb is used as a measuring device for measuring the distance or height to the measurement target, for example, it may cause the control to be unstable, causing the control point to shift or the control to oscillate.
  • the orthogonal polarization components were a factor in the measurement error.
  • a protective member having the same hardness as the substrate for forming the optical waveguide from the upper surface is provided with at least one end face of the substrate including the light incident end or the light emitting end of the optical waveguide.
  • Thermo-curable optical adhesives such as acrylic or photo-curable optical adhesives may dissipate gas components when heated even after curing, and the incident side reflective film and the outgoing side reflective film may be emitted. There is a problem that the amount of emitted gas increases as the vapor deposition temperature rises, and the emitted gas deteriorates the optical characteristics of the vapor deposition film.
  • the optical adhesive has a problem that the adhesive itself deteriorates when the glass transition temperature is exceeded, and the strength of the adhesive portion is lowered or the deformation causes physical deformation of the vapor deposition film.
  • the present invention has been devised in view of the above-mentioned conventional problems, and an object of the present invention is to suppress chipping and rounding at the time of processing the corners of the end face of the optical waveguide, and to use each reflective film.
  • Another object of the present invention is to make it possible to stabilize the resonator control without deforming the transmission mode waveform of the optical waveguide.
  • Another object of the present invention is to suppress the output of an orthogonal polarization component that does not contribute to the generation of an optical frequency comb, improve the polarization extinction ratio, and obtain an optical frequency comb output with an increased single polarization degree. To do.
  • Another object of the present invention is to make it possible to stabilize the optical frequency comb generator, improve the accuracy of the measuring device including the optical frequency comb, reduce the error, and the like.
  • Another object of the present invention is to provide a vapor-deposited film made of vaporized gas by heating an optical adhesive for adhesively fixing a protective member that suppresses chipping or rounding at the corner of the end face of the optical waveguide to the upper part of the optical waveguide.
  • an optical modulator, an optical frequency comb generator, and an optical oscillator that improve the reflectance of the reflective film and the finesse of the resonator and enhance the function of the device itself. It is an object of the present invention to provide a method for manufacturing an optical resonator and an optical modulator having such a function.
  • the present invention relates to a method for manufacturing an optical resonator in which light incident through the incident side reflective film is propagated and resonated by an optical waveguide formed so as to penetrate from the incident side reflective film to the outgoing side reflective film.
  • the emission-side reflective film has a reflective film attachment step of adhering a single-layer or multi-layer vapor deposition film, and in the disposition step, the protective member is attached to the upper part of the optical waveguide with an adhesive and disposed. Then, in the reflective film adhesion step, a single-layer or multi-layer vapor deposition film is adhered to all of the planes formed by the end face of the protective member attached with the adhesive and the end face of the substrate. Therefore, the incident side reflective film or the outgoing side reflective film is formed in a plane perpendicular to the optical waveguide.
  • the adhesion is made over all the planes formed by the end face of the protective member attached with the adhesive and the end face of the substrate.
  • a single-layer or multi-layer vapor-deposited film can be adhered under a temperature condition lower than the heat-resistant temperature of the agent.
  • the present invention relates to the above-mentioned optical waveguide in a method for manufacturing an optical modulator that propagates and modulates light incident through the incident-side reflective film by an optical waveguide in which an incident-side reflective film and an outgoing-side reflective film are formed.
  • the arrangement step of arranging the upper part of the optical waveguide so as to form the same plane as the end surface of the substrate including the emission end, and the end surface of the protective member arranged in the arrangement step and the end surface of the substrate are polished. By doing so, as a flat polishing surface including the light incident end or the light emitting end of the optical waveguide, a polishing step of forming a plane perpendicular to the optical waveguide and the polishing step formed in the polishing step on the flat surface.
  • It has a reflective film coating step of adhering a single-layer or multilayer vapor-deposited film as the incident-side reflective film or the outgoing-side reflective film, and in the disposing step, the protective member is attached to the upper part of the optical waveguide with an adhesive.
  • a single layer or a plurality of layers are vapor-deposited over the entire plane formed by the end face of the protective member and the end face of the substrate attached with the adhesive.
  • the adhesion is made over all the planes formed by the end face of the protective member attached with the adhesive and the end face of the substrate.
  • a single-layer or multilayer vapor-deposited film can be adhered under a temperature condition lower than the heat-resistant temperature of the agent.
  • a waveguide mode exists only for a single polarization component by proton exchange from the upper surface of the substrate having at least an electro-optical effect.
  • the optical waveguide can be formed as the region.
  • the method for manufacturing an optical modulator according to the present invention includes a ridge structure forming step of forming a ridge structure on the substrate, and is laminated on the substrate on which the ridge structure is formed in the laminating step in the electrode forming step.
  • An electrode having a ridge structure can be formed on the buffer layer as an electrode for applying an electric field to the optical waveguide.
  • the present invention is an optical resonator, which is composed of an incident-side reflective film and an outgoing-side reflective film, and has a resonance means for resonating light incident through the incident-side reflective film and the above-mentioned emission from the incident-side reflective film. It is composed of an optical waveguide that is formed so as to penetrate through the side reflective film and propagates light resonated by the resonance means, a substrate on which the optical waveguide is formed from the upper surface, and a protective member having the same hardness as the substrate. The protective member is attached to the upper part of the optical waveguide with an adhesive so that at least one end surface of the protective member forms the same plane as the end surface of the substrate including the light incident end or the light emitting end of the optical waveguide.
  • the incident side reflective film and the outgoing side reflective film are provided with an end face protecting means attached and arranged, and the incident side reflective film and the outgoing side reflective film are flat surfaces formed by the end face of the protective member attached with the adhesive and the end face of the substrate.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident side reflective film and the outgoing side reflective film are heat-resistant to the adhesive over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layered vapor-deposited film adhered under temperature conditions lower than the temperature.
  • the protective member constituting the end face protecting means is made of the same material as the substrate, and the end face of the protective member forming the plane and the end face of the substrate are the same as each other.
  • the end face protection means has a crystal orientation so that one end face of the protection member forms the same plane as the end face of the substrate including the light incident end of the optical waveguide, and the other end face protection means of the protection member. It may be arranged on the upper part of the optical waveguide so that the end surface forms the same plane as the end surface of the substrate including the light emitting end in the optical waveguide.
  • the present invention is an optical modulator, which is composed of an oscillating means for oscillating a modulated signal of a predetermined frequency, an incident side reflective film and an outgoing side reflective film, and resonates light incident through the incident side reflective film.
  • the resonance means is formed so as to penetrate from the incident side reflective film to the outgoing side reflective film, and the phase of the light resonated by the resonance means is modulated according to the modulation signal supplied from the oscillating means.
  • It is composed of an optical waveguide, a substrate on which the optical waveguide is formed from the upper surface, and a protective member having the same hardness as the substrate, and at least one end surface of the protective member is a light incident end or a light emitting end of the optical waveguide.
  • An end face protecting means in which the protective member is attached with an adhesive to the upper part of the optical waveguide so as to form the same plane as the end face of the substrate including the above, and the incident side reflective film and the outgoing side are provided.
  • the reflective film includes the light incident end or the light emitting end of the optical waveguide by polishing over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It is characterized by being a single-layer or multi-layer vapor-deposited film adhered to a plane perpendicular to the optical waveguide formed as a flat polished surface.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident side reflective film and the outgoing side reflective film are heat-resistant to the adhesive over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layered vapor-deposited film adhered under temperature conditions lower than the temperature.
  • the present invention is an optical modulator, which is composed of an incident side reflecting film and an emitting side reflecting film, and comprises a resonance means for resonating light incident through the incident side reflecting film and the incident side reflecting film. From an optical waveguide formed so as to penetrate through the light emitting side reflective film, a substrate formed from the upper surface of the optical waveguide, and an electrode formed on the substrate for propagating a modulation signal in the outward path direction or the return path direction. It is composed of an optical modulation means that modulates the phase of light propagating in the optical waveguide according to the wavelength of the electric signal supplied to the electrode, and a protective member having the same hardness as the substrate, and the protection.
  • the protective member is attached to the upper part of the optical waveguide with an adhesive so that at least one end face of the member forms the same plane as the end face of the substrate including the light incident end or the light emitting end of the optical waveguide.
  • the incident-side reflective film and the outgoing-side reflective film are provided with end face protecting means, and cover the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate.
  • a single-layer or multi-layered vapor-deposited film adhered to a plane perpendicular to the optical waveguide, which is formed as a flat polished surface including a light incident end or a light emitting end of the optical waveguide by polishing. It is characterized by.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident side reflective film and the outgoing side reflective film are heat-resistant to the adhesive over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layered vapor-deposited film adhered under temperature conditions lower than the temperature.
  • the optical waveguide is formed on the substrate having at least an electro-optical effect as a region in which a waveguide mode exists only for a single polarization component. Can be.
  • the electrodes of the light modulation means may have a ridge structure.
  • the present invention is an optical frequency comb generator, which is composed of an oscillating means for oscillating a modulated signal of a predetermined frequency, an incident side reflective film and an outgoing side reflective film, and is light incident through the incident side reflective film. And the phase of light that is formed so as to penetrate from the incident side reflective film to the outgoing side reflective film and resonated by the resonance means according to the modulation signal supplied from the oscillating means.
  • An optical waveguide that modulates and generates a side band centered on the frequency of the incident light at intervals of the frequency of the modulated signal, a substrate on which the optical waveguide is formed from the upper surface, and a substrate formed on the substrate for modulation.
  • An optical modulation means that comprises electrodes for propagating a signal in the outward or return direction and modulates the phase of light propagating in the optical waveguide according to the wavelength of an electric signal supplied to the electrodes, and a substrate.
  • the optical waveguide is composed of a protective member having the same hardness as that of the above optical waveguide so that at least one end face of the protective member forms the same plane as the end face of the substrate including the light incident end or the light emitting end of the optical waveguide.
  • the protective member is provided with an end face protecting means attached to the upper part of the above with an adhesive, and the incident side reflective film and the outgoing side reflective film are attached to the end face of the protective member attached with the adhesive.
  • the planes perpendicular to the optical waveguide formed as a flat polished surface including the light incident end or the light emitting end of the optical waveguide can be obtained. It is characterized by being an adhered single-layer or multi-layer vapor-deposited film.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident-side reflective film and the outgoing-side reflective film are arranged so as to cover the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layer vapor-deposited film adhered under a temperature condition lower than the heat-resistant temperature of the above.
  • the optical frequency comb generator according to the present invention may further include a reflecting mirror that reflects the light resonated by the resonance means and transmitted to the outside through the incident side reflecting film. ..
  • the present invention is an optical oscillator, which is composed of an incident side reflective film and an outgoing side reflective film, and has a resonance means for resonating light incident through the incident side reflective film or light generated by laser amplification.
  • An optical waveguide formed so as to penetrate from the incident side reflective film to the outgoing side reflective film, amplify the light resonated by the resonance means, and emit the light to the outside through the outgoing side reflective film, and the above.
  • the optical waveguide is composed of a substrate formed from the upper surface and an electrode formed on the substrate for propagating a modulation signal in the outward path direction or the return path direction, and the optical waveguide is formed according to the wavelength of an electric signal supplied to the electrode.
  • the reflective film includes a light incident end or a light emitting end of the optical waveguide by polishing over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It is characterized by being a single-layer or multi-layer vapor-deposited film adhered to a plane perpendicular to the optical waveguide formed as a flat polished surface.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident-side reflective film and the outgoing-side reflective film are arranged, and the heat-resistant temperature of the adhesive covers the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layered vapor-deposited film adhered under lower temperature conditions.
  • the optical waveguide absorbs light incident through the incident-side reflective film and diffuses a medium having amplification characteristics with respect to the wavelength of light peculiar to the medium. Can be.
  • the optical waveguide can be made of a nonlinear optical crystal.
  • the present invention is an optical oscillator, which is composed of an oscillating means that oscillates a modulated signal of a predetermined frequency, an incident side reflective film, and an outgoing side reflective film, and is a light or a laser that is incident through the incident side reflective film.
  • a resonance means that resonates the light generated by amplification and a resonance means that is formed so as to penetrate from the incident side reflection film to the emission side reflection film and resonates by the resonance means according to the modulation signal supplied from the oscillation means.
  • An optical waveguide that amplifies the generated light and emits it to the outside through a reflective film on the exit side, a substrate on which the optical waveguide is formed from the upper surface, and a modulation signal formed on the substrate in the outward path direction or the return path.
  • the protective member is formed on the upper part of the optical waveguide so that at least one end surface of the protective member forms the same plane as the end surface of the substrate including the light incident end or the light emitting end of the optical waveguide.
  • the incident side reflective film and the outgoing side reflective film are provided by the end face of the protective member attached with the adhesive and the end face of the substrate.
  • it is a multi-layered vapor-deposited film, and is characterized in that phase synchronization is performed between multiple modes of laser oscillation.
  • the light incident end or the light emitting end in the optical waveguide is located substantially at the center of a plane formed by the end face of the protective member and the end face of the substrate.
  • the incident-side reflective film and the outgoing-side reflective film are arranged, and the heat-resistant temperature of the adhesive covers the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate. It can be a single-layer or multi-layered vapor-deposited film adhered under lower temperature conditions.
  • the protective member having the same hardness as the substrate for forming the optical waveguide from the upper surface is the same as the end surface of the substrate including the light incident end or the light emitting end in the optical waveguide at least one end surface thereof.
  • An adhesive is attached to the upper part of the optical waveguide so as to form a flat surface, and the end face of the protective member and the end face of the substrate are polished to include the light incident end or the light emitting end of the optical waveguide.
  • An incident-side reflecting film forming a resonance means and a single-layer or multi-layered vapor-deposited film as an emitting-side reflecting film on a plane perpendicular to the optical waveguide formed as a flat polished surface are used as the end face of the protective member and the substrate.
  • each reflective film is stable without peeling at the uppermost corner part of the end face. It can be adhered, the reflectance of the reflective film and the finesse of the resonator can be improved, and the function of the device itself can be enhanced.
  • a single-layer or multi-layered vapor-deposited film is coated over the entire plane formed by the end face of the protective member attached with the adhesive and the end face of the substrate under temperature conditions lower than the heat-resistant temperature of the adhesive.
  • each reflective film is a single layer without adverse effects such as deterioration of the optical characteristics of the vapor-deposited film due to the emitted gas due to heating of the adhesive and physical deformation of the thin-film film due to a decrease in the strength of the adhesive portion.
  • the multi-layered thin-film deposition film can be stably adhered without peeling off at the uppermost corner of the end face.
  • an optical waveguide formed as a region in which a waveguide mode exists only for a single polarization component on a substrate having at least an electro-optical effect so as to penetrate from the incident end to the outgoing end. Therefore, only a single polarization component of the light incident through the incident side reflective film is propagated through the optical waveguide, phase-modulated, and emitted from the exit end.
  • the emission side reflection film from the incident side reflection film constituting the resonance means it is possible to generate an optical comb as an optical modulation output of only a single polarization component via the emission side reflection film.
  • the present invention depending on the modulation signal supplied to the electrode having a ridge structure formed on the optical waveguide path formed of a substrate having at least an electro-optical effect and for propagating the modulation signal in the outward path direction or the return path direction.
  • the optical modulation means for modulating the phase of the light propagating in the optical waveguide the power of the microwave used as the modulation signal required for driving can be reduced.
  • the corners of the optical waveguide end face are chipped or rounded during processing.
  • Low power consumption by using an optical waveguide having a single-layer or multilayer vapor-deposited film as a light incident end face and a light emitting end face formed in a plane perpendicular to the optical waveguide, and having an electrode having a ridge structure. It is possible to provide an optical modulator or an optical comb generator that realizes driving, saves energy, reduces heat generation, is compact and lightweight, improves reliability, and reduces cost.
  • FIG. 1 is a diagram showing a principle structure of a conventional optical frequency comb generator.
  • FIG. 2 is a diagram showing a principle structure of a conventional waveguide type optical frequency comb generator.
  • FIG. 3 is a diagram showing an end face on which an incident side reflective film is formed in a conventional waveguide type optical frequency comb generator.
  • FIG. 4 shows deformation of the transmission mode waveform due to the orthogonal polarization component generated when the resonance length of the optical resonator is feedback-controlled in a conventional optical comb generator using an optical waveguide that transmits a polarization component in which orthogonal modes are mixed. It is a characteristic diagram which shows.
  • FIG. 5 is a diagram showing a configuration of an optical modulator to which the present invention is applied.
  • FIG. 5 is a diagram showing a configuration of an optical modulator to which the present invention is applied.
  • FIG. 6 is a side view of an optical modulator to which the present invention is applied.
  • FIG. 7 is a diagram showing a plane on which an incident side reflective film is formed in an optical modulator to which the present invention is applied.
  • 8 (A), 8 (B), 8 (C), 8 (D), 8 (E), and 8 (F) describe a method for manufacturing an optical modulator to which the present invention is applied. It is a vertical sectional view of a main part in each process for this.
  • FIG. 9 is a diagram for explaining the experimental results of the loss characteristics of the optical modulator to which the present invention is applied.
  • FIG. 10 is a diagram showing a configuration of an optical modulator having a wafer having both a role of a protective member and a buffer layer.
  • FIG. 11 (A), 11 (B), and 11 (C) are diagrams showing a configuration example of a reciprocating modulation type optical modulator to which the present invention is applied.
  • FIG. 12 is a diagram showing an intensity distribution at each frequency (wavelength) of the side band when the present invention is applied to an optical frequency comb generator.
  • FIG. 13 is a diagram showing a configuration of an optical waveguide type laser oscillator to which the present invention is applied.
  • 14 (A) and 14 (B) are views showing the configuration of a laser oscillator to which the present invention is applied.
  • FIG. 15 is a diagram showing a configuration example of a modified FP electro-optical modulator to which the present invention is applied.
  • 16 (A) and 16 (B) are diagrams for explaining an example of a communication system in which an optical modulator to which the present invention is applied is mounted on a base station.
  • 17 (A) and 17 (B) are diagrams for explaining a case where the length of the optical modulator to which the present invention is applied is limited.
  • FIG. 18 is another diagram for explaining a case where the length of the light modulator to which the present invention is applied is limited.
  • FIG. 19 is a perspective view showing another configuration example of the optical modulator to which the present invention is applied.
  • FIG. 20 is a side view of the light modulator.
  • 21 (A), 21 (B), 21 (C), 21 (D), 21 (E), and 21 (F) are for explaining the method for manufacturing the optical modulator.
  • FIG. 22 is a perspective view of a substrate provided with three optical waveguides produced for measuring the end face reflectance of an optical modulator to which the present invention is applied.
  • FIG. 23 is a front view showing the incident side end surface of the substrate.
  • FIG. 24 is a plan view of the substrate.
  • FIG. 25 is a perspective view showing the configuration of an optical modulator (optical comb generator) including an electrode having a ridge structure to which the present invention is applied.
  • 26 (A), 26 (B), 26 (C), 26 (D), 26 (E), 26 (F), 26 (G) are the optical modulators (optical combs).
  • FIG. 27 is a perspective view showing a substrate forming an electrode having a ridge structure of the optical modulator (optical comb generator).
  • FIG. 28 is a longitudinal front view of a main part showing an electrode having a ridge structure of the optical modulator (optical comb generator).
  • FIG. 29 is a diagram for explaining the results of actual measurement of changes in the drive voltage (AC Vpi) at 25 GHz depending on the presence or absence of the ridge structure of the electrodes of the optical modulator to which the present invention is applied.
  • FIG. AC Vpi drive voltage
  • FIG. 30 is a diagram for explaining the results of actual measurement of changes in the DC drive voltage (DCVpi) depending on the presence or absence of the ridge structure of the electrodes of the optical modulator to which the present invention is applied.
  • FIG. 31 is a block diagram showing a configuration example of an optical comb generator using a low power type optical comb module to which the present invention is applied.
  • FIG. 32 is a block diagram showing another configuration example of an optical comb generator using a low power type optical comb module to which the present invention is applied.
  • FIG. 33 is a block diagram showing a configuration example of an optical comb light source constructed by using a low power type optical comb module to which the present invention is applied.
  • FIG. 34 is a block diagram showing a configuration of an optical comb range finder configured by using the optical comb light source.
  • FIG. 35 shows a characteristic showing a transmission mode waveform without deformation obtained when the resonance length of the optical resonator is feedback-controlled in an optical comb generator using an optical waveguide through which only a single polarizing component is applied to which the present invention is applied. It is a figure.
  • the present invention applies to the light modulators 8 shown in FIGS. 5 and 6.
  • the light modulator 8 includes a substrate 11, an optical waveguide 12 formed on the substrate 11 and modulating the phase of propagating light, and a buffer layer 14 laminated so as to cover the optical waveguide 12 on the substrate 11.
  • the electrode 83 provided on the upper surface of the optical waveguide 12 so that the direction of the modulation electric field is substantially perpendicular to the light propagation direction, and the first provided so as to face each other via the optical waveguide 12.
  • an oscillator 16 for oscillating a modulation signal of a frequency f m is arranged at one end of the electrode 83, end disposed on the other end side of the electrode 83 It has a resistor 18.
  • the substrate 11 is obtained by cutting out a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method into a wafer shape.
  • the cut out substrate 11 is subjected to treatments such as mechanical polishing and chemical polishing.
  • the optical waveguide 12 is formed so as to penetrate from the incident side reflective film 93 to the outgoing side reflective film 94, and is formed to propagate the resonated light.
  • the refractive index of the layers constituting the optical waveguide 12 is set higher than that of other layers such as the substrate 11.
  • the light incident on the optical waveguide 12 propagates while being totally reflected at the boundary surface of the optical waveguide 12.
  • the optical waveguide 12 can be manufactured by diffusing Ti atoms in the substrate 11 or by epitaxially growing it on the substrate 11.
  • the optical waveguide 12 may be applied to LiNbO 3 crystal optical waveguide.
  • This LiNbO 3 crystal optical waveguide can be formed by diffusing Ti on the surface of the substrate 11 made of LiNbO 3 or the like. In the region where Ti is diffused, where the refractive index is higher than in other regions, light can be confined, so that an optical waveguide 12 capable of propagating light can be formed.
  • the LiNbO 3 crystal type optical waveguide 12 produced based on such a method has electricity such as the Pockels effect in which the refractive index changes in proportion to the electric field and the Kerr effect in which the refractive index changes in proportion to the self-power of the electric field. Since it has an optical effect, it is possible to modulate light by utilizing such a physical phenomenon.
  • the buffer layer 14 covers the optical waveguide 12 in order to suppress light propagation loss.
  • the film thickness of the buffer layer 14 is made too thick, the electric field strength is lowered and the modulation efficiency is lowered. Therefore, the film thickness may be set as thin as possible within a range in which the light propagation loss does not increase.
  • Electrodes 83 for example, Ti and Pt, a metal material such as Au, by driving the input of the modulation signal supplied frequency f m to the optical waveguide 12 from the oscillator 16, the phase in the light propagating in the optical waveguide 12 Modulate.
  • the first protective member 86 and the second protective member 87 are each composed of members corresponding to the material of the substrate 11.
  • the first protective member 86 and the second protective member 87 may be made of the same material as the substrate 11.
  • the end face 86a and the first end face 84 of the first protective member 86 forming the plane 91 may be processed so as to have the same crystal orientation as each other, and similarly, the plane 92 is formed.
  • the end face 87a of the protective member 87 and the second end face 85 may be processed so as to have the same crystal orientation as each other.
  • the incident-side reflective film 93 and the outgoing-side reflective film 94 are provided so as to be parallel to each other in order to resonate the light incident on the optical waveguide 12, and reciprocally reflect the light passing through the optical waveguide 12. Configures an optical resonator 5 that resonates with.
  • Light having a frequency ⁇ 1 is incident on the incident side reflective film 93 from a light source (not shown). Further, the incident side reflective film 93 reflects light that is reflected by the outgoing side reflective film 94 and has passed through the optical waveguide 12. The exit-side reflective film 94 reflects the light that has passed through the optical waveguide 12. Further, the exit-side reflective film 94 emits light that has passed through the optical waveguide 12 to the outside at a constant rate.
  • the incident side reflective film 93 and / or the outgoing side reflective film 94 may be formed over one plane 91 and 92, respectively, but are formed so as to cover only the end portion of the optical waveguide 12 at a minimum. It suffices if it is done.
  • the terminating resistor 18 is a resistor attached to the end of the electrode 83, and prevents the waveform from being disturbed by preventing the reflection of the electric signal at the end.
  • FIG. 7 shows the plane 91 on which the incident side reflective film 93 is formed from the direction A in FIG.
  • the same plane 91 is formed by the first end surface 84 including the light incident end of the optical waveguide 12 and the end surface 86a of the protective member 86.
  • the formed plane 91 has an inclination of 0.05 ° or less.
  • the loss when light with a 1 / e 2 beam diameter of 10 ⁇ m is reflected by the end face with a slope of 0.05 ° with respect to the plane 91 with a slope of 0.05 ° is 4 ⁇ 10 -4, which is incidental. It is negligibly small compared to the reflectance of the side reflective film 93.
  • the incident side reflective film 93 and the emission side which are adhered to the first end face 91 and the second end face 92 as a single-layer or multi-layer vapor deposition film.
  • Light can be efficiently resonated by the side reflective film 94.
  • the light incident from the outside through the incident side reflective film 93 propagates in the optical waveguide 12 in the outward path direction, is reflected by the outgoing side reflective film 94, and is partially external. Transparent to.
  • the light reflected by the exit-side reflective film 94 propagates in the optical waveguide 12 in the return direction and is reflected by the incident-side reflective film 93. By repeating this, the light resonates in the optical waveguide 12.
  • the light passes through the optical modulator 8 only once, as compared with the case where the light passes through the optical modulator 8 only once. It is possible to apply deep phase modulation of several tens of times or more. In addition, hundreds of side bands can be generated over a wide band centering on the frequency ⁇ 1 of the incident light. Incidentally, the frequency spacing of the side bands this generated is equal to the frequency f m of all the input electric signals. Therefore, the light modulator 8 can also be applied as an optical frequency comb generator composed of a large number of side bands.
  • step S11 as shown in FIG. 8 (A), to produce a pattern of photoresist on the surface of the substrate 11 made of LiNbO 3 crystal, there is deposited a Ti. Next, by removing this photoresist, a thin wire of Ti having a width of micron size is produced.
  • step S12 the process proceeds to step S12, and as shown in FIG. 8B, by heating the substrate 11 on which the thin lines of Ti are formed, Ti atoms are thermally diffused into the substrate 11 to form the optical waveguide 12. To do.
  • the process proceeds to step S13, and as shown in FIG. 8C, a SiO 2 thin film as the buffer layer 14 is deposited on the surface of the substrate 11.
  • the buffer layer 14 may be formed by a method of attaching the SiO 2 wafer to the surface of the substrate 11.
  • the film thickness may be controlled to an appropriate level by polishing the vapor-deposited buffer layer 14 in consideration of the electrode mounting region in step S14 described later.
  • step S14 the process proceeds to step S14, and as shown in FIG. 8D, the electrode 83 is formed on the buffer layer 14.
  • step S15 the protective members 86 and 87 are adhered to the upper part of the optical waveguide 12 as shown in FIG. 8 (E).
  • the protective members 86 and 87 may be attached with an adhesive or may be directly bonded based on another method.
  • the substrate 11 is made of LiNbO 3 crystals
  • the protective members 86 and 87 may be made of LiNbO 3 as the same material.
  • step S15 the end faces 86a and 87a of the attached protective members 86 and 87 can form planes 91 and 92 between the first end face 84 and the second end face 85, respectively. And trim it.
  • thermosetting optical adhesive such as an epoxy or acrylic adhesive or a photocurable optical adhesive is used.
  • step S16 the process proceeds to step S16, and as shown in FIG. 8 (F), the obtained planes 91 and 92 are polished to a plane perpendicular to the optical waveguide 12. Then, the incident side reflective film 93 and the outgoing side reflective film 94 are formed over one surface on the planes 91 and 92 perpendicular to the polished optical waveguide 12.
  • the incident side reflective film 93 and the outgoing side reflective film 94 are adhered and formed on the flat surfaces 91 and 92 as a single-layer or multi-layer vapor deposition film by a vapor deposition method, a sputtering method, a chemical vapor deposition method, or the like.
  • the vapor deposition treatment is performed under temperature conditions lower than the temperature Tg.
  • the end surface of the optical waveguide 12 conventionally located at the uppermost corner of the end surface is formed. Moves to a substantially central portion of the plane 91 (92) as shown in FIG. As a result, even when the corner of the plane 91 (92) is chipped during polishing in step S16, the end face of the optical waveguide 12 is not chipped. That is, it is possible to configure the optical waveguide 12 so that the end face itself is less likely to be chipped. This makes it possible to suppress the light loss from each end face of the optical waveguide 12 as much as possible.
  • the polishing speed in step S16 is set to the first end face 84 and the second end face 85 to the end face 86a of the substrate 11. It can be made uniform over 87a. As a result, the end face of the optical waveguide 12 is not rounded during processing, and planes 91 and 92 perpendicular to the optical waveguide 12 made of a flat polished surface can be obtained, and the reflection loss on the end face of the optical waveguide 12 is minimized. It is possible to limit it to the limit. Further, by making the crystal orientations of the end faces constituting the planes 91 and 92 the same, it is possible to further suppress the reflection loss.
  • step S16 by intentionally providing the protective members 86 and 87, the accuracy of polishing in step S16 is improved, and the verticality of the obtained flat surface 91 (92) with respect to the optical waveguide 12 is also improved. As a result, it is possible to minimize the light loss due to the deviation of the verticality.
  • the protective members 86 and 87 by providing the protective members 86 and 87, the incident side reflective film 93 and the outgoing side reflective film 94 to be adhered as a single-layer or multi-layer vapor deposition film are formed on the planes 91 and 92 to other side surfaces of the film-forming particles. It is possible to suppress the change in the film thickness due to the wraparound to the side surface and the wraparound to the end face of the film-formed particles flying from the side surface direction. Therefore, the film thickness in the vicinity of the end face of the optical waveguide 12, which is important for ensuring the reflectance, can be optimized, and the reflectance can be further improved.
  • the incident side reflective film 93 and the outgoing side reflective film 94 are very stable because they are formed over a wide range from the first end face 84 and the second end face 85 to the end faces 86a and 87a of the substrate 11. It is difficult to peel off, and it is possible to improve the reproducibility of film formation.
  • first protective member 86 and the second protective member 87 are made of the same material as the substrate 11, and the end faces 86a, 87a and the first end face 84 of the protective members 86, 87 forming the planes 91, 92.
  • the hardness of the crystals becomes the same between the two, so that the planes 91 and 92 are not tilted due to the difference in polishing speed.
  • the end face of the optical waveguide 12 can be moved to a substantially central portion of the plane 91 (92) by attaching the protective members 86 and 87 at each end portion. Therefore, the end faces of the optical waveguide 12 are chipped or rounded, the verticality between the optical waveguide 12 and the planes 91 and 92 is ensured, the polishing accuracy on the planes 91 and 92 is improved, and the incident side reflective film 93 and the outgoing side reflective film 94 are formed. It is possible to suppress peeling and wraparound, improve the reflectance of the incident side reflective film 93 and the outgoing side reflective film 94, realize the designed reflection characteristics, and improve the performance reproducibility of the reflective film.
  • the finesse of the optical resonator 5 composed of the incident side reflective film 93 and the outgoing side reflective film 94 can be improved, and a high-performance optical modulator and optical frequency comb generator can be manufactured with good reproducibility. It is also possible to improve the yield.
  • An optical modulator 8 having the above-described configuration was actually produced by adhering reflective films 93 and 94 having a reflectance of 97% on polished flat surfaces 91 and 92 as a single-layer or multi-layer vapor deposition film.
  • a short resonator when the crystal length of the optical waveguide 12 is 27.4 mm (hereinafter referred to as a short resonator), a maximum of 61 finesse can be obtained, and the crystal length of the optical waveguide 12 is 54.7 mm.
  • a maximum of 38 finesse could be obtained.
  • the finesse of the conventional waveguide type optical resonator (IEEE Photonics Technology Letters, Vol.8, No.10, 1996) was the highest at 30, the light with improved end face polishing and coating accuracy. It can be seen that the modulator 8 can significantly improve finesse. In particular, it has been shown that finesse of 30 or more can be obtained for all six samples of the light modulator 8 produced, and the reproducibility of the production process is high.
  • the substrate 11 having at least one end surface of the protective members 86, 87 having the same hardness as the substrate 11 for forming the optical waveguide 12 from the upper surface includes a light incident end or a light emitting end in the optical waveguide 12.
  • the end faces of the protective members 86 and 87 and the end faces of the substrate 11 are polished by attaching them to the upper part of the optical waveguide 12 with an optical adhesive so as to form the same planes 91 and 92 as the end faces of the above.
  • planes 91 and 92 perpendicular to the optical waveguide 12 can be formed as a flat polished surface including the light incident end or the light emitting end of the optical waveguide 12.
  • all of the flat surfaces 91 and 92 formed by the end faces of the protective members 86 and 87 attached with the adhesive and the end faces of the substrate 11 are under temperature conditions lower than the heat resistant temperature of the adhesive.
  • the reflective film By adhering the reflective film as a single-layer or multi-layer vapor-deposited film, the optical characteristics of the vapor-deposited film due to the emitted gas due to the heating of the adhesive are deteriorated, and the physical deformation of the vapor-film film due to the decrease in the strength of the adhesive portion is adversely affected.
  • the reflective films 93 and 94 a single-layer or multi-layered vapor-deposited film can be stably adhered without being peeled off at the uppermost corner of the end face.
  • FIG. 9 shows the internal loss of the optical resonator 5 in the propagation direction of either the outward path direction or the return path direction in the optical waveguide 12.
  • the loss per propagation direction for the optical modulator 8 composed of the above-mentioned long resonator is measured and plotted over three samples (indicated by ⁇ in the figure), and the short resonator is used.
  • the loss per propagation direction for the constituent optical modulators 8 is measured and plotted over three samples (indicated by ⁇ in the figure), and each obtained plot is approximated by a straight line.
  • the internal loss Ls per propagation direction of the optical waveguide 12 of the optical cavity 5 having a length l is the reflectance of the reflective films 93 and 94 R, and the loss per unit length of the optical waveguide 12.
  • ⁇ l ⁇ lnR when the loss itself is small.
  • the internal loss when the length of the optical resonator 5 is 0 in FIG. 9 is based on the loss generated at the crystal end face. That is, since the reflective films 93 and 94 having a reflectance of 97% (transmittance of 3%) are coated, a loss of at least 3% occurs. However, from FIG. 9, it can be seen that there is no noticeable loss other than the transmission through the reflective films 93 and 94 on the planes 91 and 92.
  • the loss rate of the optical waveguide that can be used as an optical comb generator is generally in the range of 1% to 5% per one way, the reflective films 93 and 94 having a reflectance in the range of 95% to 99% are adhered. Then, a high-performance optical resonator can be manufactured.
  • this light modulator 8 when this light modulator 8 is applied to an optical frequency comb generator, the flat surfaces 91 and 92 are polished and the incident side reflective film 93 and the outgoing side reflective film 94 are attached with the protective members 86 and 87 attached. Therefore, it is possible to improve the reflectance of these reflective films 93 and 94. As a result, the finesse of the optical resonator 5 can be improved, and the generation frequency band of the side band can be expanded.
  • the incident side reflecting film 93 transmits only the light incident on the optical waveguide 12, and the side band generated in the optical waveguide 12 is transmitted. It may be replaced with a reflecting narrow band filter. By substituting with such a narrow band filter, it is possible to improve the conversion efficiency from the incident light to the side band.
  • the emission side reflection film 94 may be replaced with a filter for flattening the output spectrum.
  • the resulting sideband light intensity decreases exponentially with increasing order. Therefore, by substituting the light emitting side reflective film 94 with a filter having a characteristic of canceling the decrease in light intensity according to the order, it is possible to flatten the light intensity of each obtained side band.
  • the incident side reflective film 93 and the outgoing side reflective film 94 may be replaced with the above-mentioned filters, or any one of the reflective films 93 and 94 may be replaced with the above-mentioned filters.
  • the light modulator 8 to which the present invention is applied and the optical frequency comb generator to which the present invention is applied are monolithic type in which the incident side reflective film 93 and the outgoing side reflective film 94 are directly formed on the planes 91 and 92. It is configured.
  • the FSR FreeSpectral Range
  • the optical modulator 8 is not configured to provide the reflecting films 93 and 94 at positions spatially separated from the planes 91 and 92, the FSR (FreeSpectral Range) of the optical resonator 5 is set to step S16. It is dominated by the crystal length from the plane 91 to the plane 92 of the crystal constituting the optical waveguide 12 after polishing. Therefore, the optical modulator 8 is required to control the crystal length extremely precisely so that an integral multiple of the FSR of the optical resonator 5 becomes a desired modulation frequency.
  • the present invention is not limited to the above-described embodiment.
  • it can be applied to the light modulator 9 as shown in FIG.
  • the explanations in FIGS. 5 and 6 will be cited, and the description thereof will be omitted here.
  • the light modulator 9 has a substrate 11, an optical waveguide 12 formed on the substrate 11 that modulates the phase of propagating light, a wafer 95 provided on the upper surface of the optical waveguide 12, and the direction of the modulation electric field is light.
  • An electrode 83 provided on the upper surface of the wafer 95 so as to be substantially perpendicular to the propagation direction of the wafer, and a first end face 84 and a second end face 85 provided so as to face each other via an optical waveguide 12.
  • the incident side reflective film 93 made of a single-layer or multi-layered vapor-deposited film adhered on the plane 101 formed between the first end face 84 and the end face 96a of the wafer 95, and the second end face 85 and the wafer. It includes an exit-side reflective film 94 made of a single-layer or multi-layer vapor-deposited film adhered on a flat surface 102 formed between the end faces 97a of 95.
  • an oscillator (not shown) oscillates a modulating signal of a frequency f m, is connected terminating resistor (not shown).
  • the wafer 95 is made of SiO 2, etc., and is configured to have a length substantially the same as that of the optical waveguide 12 and to be U-shaped.
  • the wafer 95 is configured to be thick only at the end portion and thin only at the central portion where the electrode 83 is arranged. As a result, a modulated electric field can be efficiently applied from the electrode 83 to the light propagating in the optical waveguide 12.
  • the wafer 95 plays a role as the buffer layer 14 described above, and suppresses light loss by covering the optical waveguide 12 formed directly under the surface of the substrate 11.
  • the wafer 95 also serves as a first protective member 86 and a second protective member 87 in the above-mentioned optical modulator 8, and the end faces 96a and 97a are the first end face 84 and the second end face 85, respectively. It is trimmed so that planes 101 and 102 can be formed between them, respectively.
  • a wafer of SiO 2 corresponding to the thickness of the end portion is attached on the substrate 11, and then the portion where the electrode 83 is provided is cut, as shown in FIG. It is possible to finish it in a U-shape.
  • this light modulator 9 has an advantage that the same effect as that of the light modulator 8 can be obtained and the trouble of attaching a protective member can be saved.
  • the present invention is not limited to the above-described embodiment.
  • it can be applied to the reciprocating modulation type optical modulator 51 as shown in FIG.
  • the explanations in FIGS. 5 and 6 will be cited, and the description thereof will be omitted here.
  • the light modulator 51 is provided with an exit-side reflective film 94 made of a single-layer or multi-layer vapor-deposited film as a high-reflection film at one end of the optical waveguide 12, and the other end is provided with a single-layer or multi-layer.
  • the antireflection film 63 made of a thin film, it can be operated as a so-called reciprocating modulation type optical modulator 51 as shown in FIG.
  • the light modulator 51 covers the substrate 11, the optical waveguide 12 formed on the substrate 11 and modulating the phase of propagating light, and the optical waveguide 12 on the substrate 11.
  • the buffer layers 14 are laminated so as to be laminated, the electrodes 83 provided on the upper surface of the optical waveguide 12 so that the direction of the modulation electric field is substantially perpendicular to the light propagation direction, and the upper part of the optical waveguide 12 are arranged.
  • it includes an exit-side reflective film 94 made of a multi-layered vapor-deposited film.
  • the input light from a light source (not shown) is transmitted or the output light output from the light modulator 51 is externally transmitted.
  • An optical system including an optical transmission path 23 composed of an optical fiber or the like for transmitting to the optical transmission line 23, an optical circulator 21 for separating the input light and the output light, and a focuser 22 optically connected to the optical circulator 21. is implemented, an oscillator 16 for oscillating a modulation signal of one end disposed on the side frequency f m of the electrode 83, the phase shifter 19a to the other end of the electrode 83, a reflector 19b is further disposed.
  • the antireflection film 63 is adhered on a flat surface 91 formed between the first end surface 84 and the end surface 86a of the first protective member 86.
  • the antireflection film 63 may be made of a low-reflection film, or may be made of an uncoated film so as to obtain the same effect as that of a low-reflection film.
  • the focuser 22 focuses the input light that has passed through the optical circulator 21 to the end of the optical waveguide 12, and also collects the output light that has passed through the antireflection film 63 from the end of the optical waveguide 12, and collects the output light that has passed through the antireflection film 63.
  • the focuser 22 may be composed of a lens or the like for optical coupling of input light so that the spot diameter corresponds to the diameter of the optical waveguide 12.
  • the light modulator 51 having such a configuration is provided with an emission-side reflective film 94 as a high-reflection film at one end of the optical waveguide 12, and an antireflection film 63 at the other end, so that it is so-called reciprocating. It operates as a modulation type optical modulator.
  • the input light incident on the optical waveguide 12 is modulated while propagating through the optical waveguide 12, reflected by the light emitting side reflective film 94 on the end face, and then propagates through the optical waveguide 12 again and passes through the antireflection film 63. It is emitted to the focuser 22 side and becomes output light.
  • an electric signal of a frequency f m supplied from the oscillator 16 after propagating through the upper electrode 83 while modulating the input light will be reflected by the reflector 19b.
  • the modulation signal In this optical modulator 51, is supplied to the modulation signal of the oscillation frequency f m from the oscillator 16 relative to the electrode 83, the modulation signal will be propagated through the electrode 83 to the forward direction, the optical waveguide 12
  • the phase can be modulated by the light propagating in the outward direction.
  • the modulated signal propagating in the outward direction on the electrode 83 is reflected as it is by the antireflector 19b, the phase is adjusted by the phase shifter 19a, and then the electrode 83 is propagated in the return direction.
  • the light propagating in the optical waveguide 12 in the return direction can be phase-modulated.
  • the phase adjusted by the phase shifter 19a is such that the phase modulation applied to the light propagating in the optical waveguide 12 in the return direction is the same as the phase modulation for the light propagating in the outward direction. May be good.
  • the light modulator 51 not only the light propagating in the optical waveguide 12 in the outward path direction but also the light propagating in the return path direction can be phase-modulated, so that the modulation efficiency can be increased.
  • this light modulator 51 by using an electric signal synchronized with the time when light reciprocates in the optical waveguide 12 as a drive input from the electrode 83, several tens of times as compared with the case where the light passes through the optical waveguide 12 only once. It is possible to apply more than double the deep phase modulation. This makes it possible to generate an optical frequency comb having a sideband over broadband, the frequency spacing of adjacent sidebands becomes equal to the frequency f m of all the input electric signals.
  • the light modulator 51 can push light into a narrow optical waveguide 12 to modulate it, the modulation index can be increased, and it functions as an optical frequency comb generator 1 to function as a bulk type light.
  • the number of side bands generated and the amount of light in the side bands can be increased as compared with the frequency comb generator.
  • the phase of the modulation signal is adjusted by has been phase shifter 19a reflected by the reflector 19b, the shape of the electrode 83, the frequency f m of the modulation signal
  • the light propagates in the optical waveguide 12 not only in the outward direction but also in the return direction by adjusting to the phase of the light with high accuracy.
  • Phase modulation can be applied to light with high efficiency, and the modulation efficiency can be increased up to nearly twice.
  • the modulation efficiency can be effectively improved without increasing the voltage applied to the electrode 83, the power consumption can be reduced and the heterodyne detection system itself in which the optical frequency comb generator 1 is arranged is slimmed down. It can be done and the cost can be significantly reduced.
  • the light modulator 51 is provided with an oscillator 25 and a terminating resistor 27 on one end side of the electrode 83, and an electric signal supplied from the oscillator 25 is propagated on the electrode 83. Above, this may be reflected on the other end side of the electrode 83. At this time, an isolator 26 for separating the electric signal supplied from the oscillator 25 and the electric signal reflected by the other end side of the electrode 83 may be provided. Further, in the light modulator 51, an incident side reflective film 93 made of a single-layer or multi-layer vapor-deposited film having high reflectance is adhered. As a result, light can be resonated inside the optical waveguide 12. Further, as an alternative to the incident side reflective film 93, the above-mentioned low reflectance antireflection film 63 may be adhered. This makes it possible to perform phase modulation while reciprocating light only once in the optical waveguide 12.
  • the phase of light can be modulated by each of the electric signals reciprocating in the electrode 83 by adjusting the reflection phase of the electric signal according to the phase of the light reflected by the light emitting side reflecting film 94. Therefore, the modulation efficiency can be increased.
  • the light modulator 51 in which the peeling and chipping of the films 63, 93 and 94 are suppressed and the finesse is further improved by attaching the protective members 86 and 87 as described above the light modulation efficiency is further increased. Is possible.
  • the intensity distribution at each frequency (wavelength) of the generated sideband is when the modulation frequency of the electric signal applied to the electrode 83 is 25 GHz and the power is 0.5 W, as shown in FIG.
  • the modulation index expressed as the magnitude of the modulation applied in the optical waveguide 12 is ⁇ -radian per propagation direction. From this result, it can be seen that the half-wave voltage V ⁇ defined as the voltage required to move the phase by half a wavelength is 7.1 V.
  • the optical modulator 8 composed of a short resonator has a higher finesse as described above, so that the efficiency of sideband generation is higher, and the sideband The generated frequency bandwidth ⁇ f reaches 11 THz.
  • the length of the electrode 83 of the optical modulator 8 composed of the short resonator is only 20 mm, a modulation efficiency comparable to that of the optical modulator 8 composed of the long resonator can be obtained. .. That is, it can be seen that the reciprocating modulation is working effectively.
  • the light modulator 51 may divide the output of the oscillator 16 as a signal source to separately drive and input the electric signal from both ends of the electrode 83. , This may be performed by connecting different oscillators 16 to both ends of the electrode 83.
  • the present invention can also be applied to, for example, an optical waveguide type laser oscillator 52 as shown in FIG. Regarding the same components as the above-mentioned optical modulator 8 in the laser oscillator 52, the description in FIGS. 5 and 6 will be cited, and the description thereof will be omitted here.
  • the laser oscillator 52 includes a substrate 11, an optical waveguide 12 formed on the substrate 11, a buffer layer 14 laminated so as to cover the optical waveguide 12 on the substrate 11, and an optical waveguide.
  • An exit-side reflective film 94 made of a single-layer or multi-layer vapor-deposited film adhered onto the coating is provided, and an optical resonator 5 is formed between the incident-side reflective film 93 and the exit-side reflective film 94.
  • an excitation light source 28 that emits light having a wavelength of ⁇ 0 is mounted.
  • an amplification medium such as an erbium ion that absorbs light incident through the incident side reflection film 93 and has amplification characteristics with respect to the wavelength of light peculiar to the medium. To spread. This makes it possible to use the optical waveguide 12 as a light amplification medium. Further, when light having an appropriate wavelength is incident on the optical waveguide 12 as such an amplification medium, it acts as an amplifier of light for a specific wavelength determined by an energy level. It also acts as an oscillator that amplifies and oscillates the light generated by the spontaneous emission transition. Laser oscillation occurs when the amplification factor in the optical resonator 5 exceeds the loss rate.
  • protective members 86 and 87 are attached to prevent peeling and chipping of the reflective films 93 and 94, and an optical waveguide.
  • the loss rate in the optical resonator 5 is also lowered, so that the threshold value of laser oscillation can be lowered.
  • Non-linearity induced by light incident in the optical waveguide 12 by forming the optical waveguide 12 with a non-linear optical crystal such as a LiNbO 3 crystal without introducing a special amplification medium into the optical waveguide 12.
  • Polarization makes it possible to have an amplification gain at a wavelength different from the incident light.
  • the optical waveguide 12 may be configured by using a nonlinear optical crystal having a periodic polarization inversion structure.
  • the incident side reflecting film 93 constituting the optical resonator 5 in the laser oscillator 52 has low reflectance with respect to the light from the excitation light source 28 and high reflection with respect to the wavelength of the light oscillated by the optical waveguide 12.
  • a rate film may be used.
  • the emission side reflective film 94 constituting the optical resonator 5 a film having a reflectance capable of optimal output coupling with respect to the wavelength of light oscillated by the optical waveguide 12 may be used.
  • this laser oscillator 52 may be applied as an optical parametric oscillator.
  • oscillation occurs when the amplification factor in the optical resonator 5 exceeds the loss rate, so that the reflective films 93 and 94 to which the protective members 86 and 87 are attached are not peeled off or chipped.
  • the oscillation threshold can be lowered.
  • the advantages of using the optical waveguide 12 in the laser oscillator 52 and the optical parametric oscillator to which it is applied are the improvement of the amplification factor by being able to confine the light in a narrow region and increasing the electric field strength.
  • this laser oscillator 52 or the like higher finesse can be obtained as compared with a conventional oscillator, so that the advantage of using the optical waveguide 12 is further promoted.
  • the present invention can also be applied to a laser oscillator 53 that oscillates light whose modes are synchronized as shown in FIG. 14, for example.
  • Light that is synchronized with this mode is one in which the phases of a number of modes oscillating at equal frequency intervals are aligned.
  • the same configurations and elements as those of the light modulator 8 and the laser oscillator 52 described above will be described with reference to FIGS. 5, 6 and 13, and the description thereof will be omitted here.
  • the laser oscillator 53 includes a substrate 11, an optical waveguide 12 formed on the substrate 11 and modulating the phase of propagating light, and the substrate 11.
  • An exit-side reflective film 94 made of a single-layer or multi-layered vapor-film-deposited film to be adhered is provided, and an optical resonator 5 is formed between the incident-side reflective film 93 and the outgoing-side reflective film 94.
  • this laser oscillator 53 actually includes oscillator excitation light source 28 for emitting light having a wavelength lambda 0 is implemented, further oscillates a modulation signal of one end disposed on the side frequency f m of the electrode 83 16 and a terminal resistor 18 arranged on the other end side of the electrode 83 are arranged.
  • the incident-side reflective film 93 and the outgoing-side reflective film 94 each have a function of achieving phase synchronization between multiple modes of laser oscillation.
  • the laser oscillator 53 having such a configuration, by arranging the electrode 83 on the upper part of the optical waveguide 12 in the above-mentioned laser oscillator 52, it is possible to oscillate a mode-locked laser in which each mode is synchronized.
  • the phase of each mode is based on the electro-optical effect of the optical waveguide 12 that oscillates multi-mode light by driving and inputting a modulated signal having a frequency corresponding to an integral multiple of the FSR of the optical resonator 5 from the oscillator 16.
  • it operates as a laser oscillator that oscillates a mode-locked laser.
  • the time waveform of the light oscillated from the laser oscillator 53 becomes a short pulse having a time width of about the reciprocal of the amplification frequency bandwidth. Further, the waveform of the frequency axis becomes an optical frequency comb in which side bands are arranged at regular frequency intervals. Therefore, by optimizing the control for the laser oscillator 53, it can be applied to the frequency measurement of light and the multi-wavelength light source.
  • the laser oscillator 53 may be applied as an optical parametric oscillator in the same manner as the laser oscillator 52 described above.
  • the protective members 86 and 87 are attached to the laser oscillator 53, the reflective films 93 and 94 are not peeled off or chipped, the finesse of the entire optical resonator 5 can be improved, and the mode-locked laser is made efficient. It is possible to oscillate well.
  • the mode-locking in the laser oscillator 53 is not limited to the one utilizing the above-mentioned electro-optical effect, but is based on any phenomenon as long as it utilizes the non-linear effect of the optical element in the optical resonator 5. It may be. For example, by using a LiNbO 3 crystal for the optical waveguide 12, it is possible to further emphasize the effect.
  • the present invention can also be applied to, for example, the modified Fabry-Perot (FP) electro-optical modulator 54 as shown in FIG.
  • FP electro-optical modulator 54 the same configurations and elements as those of the above-mentioned optical modulator 8 and the laser oscillator 52 are referred to in FIGS. 5, 6, and 13, and the description thereof will be omitted here. ..
  • the modified FP electro-optical modulator 54 covers the substrate 11, the optical waveguide 12 formed on the substrate 11 and modulating the phase of propagating light, and the optical waveguide 12 on the substrate 11.
  • the buffer layer 14 is laminated so as to be laminated, an electrode 83 provided on the upper surface of the optical waveguide 12 so that the direction of the modulated electric field is substantially perpendicular to the light propagation direction, and an arrangement on the upper part of the optical waveguide 12.
  • An exit-side reflective film 94 made of a layered or multi-layered vapor-film-deposited film is provided, and an optical resonator 5 is formed between the incident-side reflective film 93 and the emitted-side reflective film 94.
  • the reflecting mirror 31 is mounted, if necessary, is further disposed at one end of the electrode oscillates a modulating signal of a frequency f m
  • An oscillator (not shown) and a terminating resistor (not shown) arranged on the other end side of the electrode are arranged.
  • the reflector 31 transmits light supplied from the outside and guides it to the end of the optical waveguide 12 on the modified FP electro-optical modulator 54 side, and reflects the light emitted from the end of the optical waveguide 12. That is, by providing the reflector 31, only the light incident on the optical waveguide 12 can be transmitted and the sideband generated in the optical waveguide 12 can be reflected. Therefore, the incident light is converted into the sideband. Efficiency can be improved. That is, in the modified FP electro-optical modulator 54 having such a configuration, when the incident side reflective film 93 is replaced with a narrow band filter that transmits only the light incident on the optical waveguide 12 and reflects the generated side band.
  • optical modulator 8 to which the present invention is applied can also be further applied to the communication system 55 described below.
  • the communication system 55 for example, a system that performs code division multiple access based on the WDM communication method is applied, and as shown in FIG. 16A, the communication device 55 and the mobile communication device 57 as a mobile terminal that can be carried by a pedestrian.
  • a network including a plurality of base stations 58 for relaying communication by transmitting and receiving wireless signals to and from the mobile communication device 57, and the base stations 58 via connected optical fiber communication networks 35 and 38. It is provided with a host control device 59 that controls communication as a whole.
  • the mobile communication device 57 is configured to be in-vehicle or portable so as to transmit and receive wireless signals to and from base stations 58 provided in each district. That is, the mobile communication device 57 includes, for example, a device mounted on a facsimile communication, a personal computer, or the like for performing data communication, but generally, a mobile phone or a PHS (Personal Handyphone System) for performing a voice call. ) Etc., and is configured as a device that is particularly compact and lightweight and specializes in portability.
  • Each base station 58 is equipped with an optical modulator 8 as shown in FIG. 16 (A).
  • An antenna 33 for transmitting and receiving microwaves to and from the mobile communication device 57 is connected to the electrode 83 of the light modulator 8.
  • a part of the light transmitted from the host control device 59 via the optical fiber communication network 35 is incident on the optical waveguide 12 via the incident side reflection film 93.
  • the light incident on the optical waveguide 12 is resonated by the incident side reflecting film 93 and the emitting side reflecting film 94 arranged substantially in parallel.
  • the microwave supplied from the mobile communication device 57 is received via the antenna 33, and the modulation signal corresponding to the microwave is converted into light propagating in the optical waveguide 12 via the electrode 83.
  • the light modulator 8 emits phase-modulated light via the emission-side reflective film 94.
  • the emitted light will be transmitted to the host control device 59 via the optical fiber communication network 38.
  • the host control device 59 generates light for transmission to the base station 58, and photoelectrically converts the light modulated in the base station 58 to obtain a detection output. That is, the host control device 59 can collectively manage the detection outputs from various base stations.
  • the light output from the host control device 59 is transmitted to the base station 58 via the optical fiber communication network 35.
  • the base station 58 propagates the transmitted light in the optical waveguide 12 in the optical modulator 8, further performs phase modulation according to microwaves, and hosts the transmitted light via the optical fiber communication network 38. It is transmitted to the control device 59.
  • the light transmitted to the base station 58 is called from the mobile communication device 57 around the base station 58, the light is phase-modulated according to the content of the call included in the microwave described above. become.
  • the above-mentioned phase modulation is not performed.
  • the host control device 59 when the light transmitted from the base station 58 via the optical fiber communication network 38 is phase-modulated, it is photoelectrically converted to generate a detection output according to the content of the call. It becomes possible to acquire.
  • the optical modulator 8 having a high finesse resonator to which the protective members 86 and 87 are attached is mounted on the base station 58, the number of round trips of light propagating in the optical waveguide 12 can be increased. This makes it possible to improve the sensitivity of the optical modulator 8 itself.
  • optical transmission may be performed in a single-core bidirectional manner.
  • the crystal length LC 1 in the outward direction (return direction) of the optical waveguide 12 is adjusted to be about 27 mm (or 54 mm) as shown in FIG. Good.
  • the effect of having such a crystal length will be described below.
  • FIG. 17B shows the finesse relationship with respect to the crystal length LC 1.
  • the finesse is generally represented by ⁇ / Lo 1 , but it can be seen that the smaller the crystal length LC 1, the higher the finesse.
  • the figure of merit of the light modulator 8 can be expressed by V ⁇ / (finesse) (V ⁇ is the voltage required to ⁇ -radian the optical phase). The smaller the figure of merit, the better the performance as the optical modulator 8 and as the optical frequency comb generator using the optical modulator 8.
  • FIG. 18 shows the figure of merit calculated based on these finesse and loss rate Lo 1 in relation to the crystal length LC 1.
  • lm represents the difference in length of the electrode 83 with respect to the crystal length LC 1.
  • electrodes cannot be provided several mm from both ends of the optical waveguide 12, so the calculation is performed by taking the case where the lm is 6 mm and the case where the lm is 1 mm as an example.
  • the light transmission loss ⁇ is -0.0106 / cm. It is assumed that there is a case. Further, the reflectance of the mirror is optimized for the loss rate according to the crystal length.
  • the performance of the optical modulator 8 can be further improved by setting the crystal length LC 1 of the optical waveguide 12 to about 27 mm.
  • the crystal length LC 1 is not limited to the case where it is 27 mm, and may be configured with any length as long as it is in the range of 24 ⁇ 6 mm.
  • the practical crystal length LC 1 is the maximum commitment of 10 GHz in time division multiplexing (TDM) optical communication and 25 GHz in wavelength division multiplexing (WDM) optical communication in the field of optical communication. It is preferable to set it to 1 / integer of 5 GHz, and 27 mm corresponds to 2.5 GHz.
  • the crystal length LC 1 corresponding to this may be configured to be about 54 mm because the same excellent performance is shown. ..
  • the orthogonal polarization components make the resonance frequency of the optical comb generator match the laser frequency. This may make the control unstable, causing deviation of the control point, vibration of the control, etc., and when the optical comb is used as a measuring device for measuring the distance or height to the measurement target, for example, it is orthogonal.
  • the polarization component has been a cause of measurement error, but it has an optical waveguide 12A formed as a region in which a waveguide mode exists only for a single polarization component having a configuration as shown in FIG. 5, for example.
  • the waveguide type optical modulator 8A By adopting the waveguide type optical modulator 8A, the output of the orthogonally polarized light component that does not contribute to the generation of the optical comb is suppressed, the polarization extinction ratio is improved, and the optical comb output with the increased single polarization degree can be obtained.
  • the frequency By setting the frequency, the transmission mode waveform of the optical waveguide is not deformed, the cavity control can be stabilized, the stabilization as an optical comb generator, the accuracy improvement of the measuring device including the optical comb, and the error. Can be reduced.
  • the waveguide type optical modulator 8A shown in FIG. 19 has a configuration other than the optical waveguide 12A formed as a region in which a waveguide mode exists only for a single polarization component. Since it is the same as the type optical modulator 8, the same components are designated by the same reference numerals, so that detailed description thereof will be omitted.
  • FIG. 20 is a side view of the waveguide type optical modulator 8A.
  • the optical waveguide 12A has a single polarization component on the substrate 11 having at least an electro-optical effect so as to penetrate from the incident side antireflection film 63 to the exit side antireflection film 64. It is formed as a region where the waveguide mode exists only with respect to it.
  • the light incident on the optical waveguide 12A via the antireflection film 63 on the incident side propagates while only a single polarization component is totally reflected at the boundary surface of the optical waveguide 12A.
  • the optical waveguide 12A that allows only a single polarizing component to pass through is single on the substrate 11 having an electro-optical effect by an optical waveguide forming method that causes a change in the refractive index only for a specific polarizing component, for example, a proton exchange method. It can be formed as a region having a high refractive index only with respect to the polarization component of.
  • the optical waveguide 12A can be formed, for example, on a substrate 11 made of LiNbO 3 or the like as a region in which a waveguide mode exists only for a single polarization component by a proton exchange method.
  • the waveguide mode is changed to single polarized light by devising the refractive index distribution. It can be formed as a limited area.
  • a LiNbO 3 crystal optical waveguide can be used, and it can be formed by diffusing Ti on the surface of a substrate 11 made of LiNbO 3 or the like. This region where Ti is diffused has a higher refractive index than the other regions and can confine the light of a single polarization component, so that the light of a single polarization component can be propagated.
  • Waveguide 12A can be formed. The refractive index is high for both orthogonal polarization components, but there is also a condition that the waveguide mode is established only for a single polarization component.
  • the LiNbO 3 crystal type optical waveguide 12A produced based on such a method has electricity such as the Pockels effect in which the refractive index changes in proportion to the electric field and the Kerr effect in which the refractive index changes in proportion to the self-power of the electric field. Since it has an optical effect, it is possible to modulate the light of a single polarized component by utilizing such a physical phenomenon.
  • the buffer layer 14 covers the optical waveguide 12A in order to suppress the light propagation loss of a single polarization component.
  • the film thickness of the buffer layer 14 is made too thick, the electric field strength is lowered and the modulation efficiency is lowered. Therefore, the film thickness is set as thin as possible within a range in which the light propagation loss of a single polarization component does not increase. You may try to do it.
  • Electrodes 83 for example, Ti and Pt, a metal material such as Au, by driving the input of the modulation signal supplied frequency f m to the optical waveguide 12A from the oscillator 16, the phase in the light propagating through the optical waveguide 12A Modulate.
  • the first protective member 86 and the second protective member 87 are each composed of members corresponding to the material of the substrate 11.
  • the first protective member 86 and the second protective member 87 may be made of the same material as the substrate 11.
  • the end face 86a and the first end face 84 of the first protective member 86 forming the plane 91 may be processed so as to have the same crystal orientation as each other, and similarly, the plane 92 is formed.
  • the end face 87a of the protective member 87 and the second end face 85 may be processed so as to have the same crystal orientation as each other.
  • the antireflection film 63 on the incident side is formed as a single-layer or multilayer vapor-deposited film on a plane 91 perpendicular to the optical waveguide 12A formed between the first end surface 84 and the end surface 86a of the first protective member 86. Adhesion is formed.
  • the emission-side antireflection film 64 is formed as a single-layer or multi-layer vapor-deposited film on a plane 92 perpendicular to the optical waveguide 12A formed between the second end surface 85 and the end surface 87a of the second protective member 87. Adhesion is formed.
  • These antireflection films 63 and 64 may be made of a low reflection film, or may be made of an uncoated film so as to obtain the same effect as that of a low reflection film. ..
  • the terminating resistor 18 is a resistor attached to the end of the electrode 83, and prevents the waveform from being disturbed by preventing the reflection of the electric signal at the end.
  • step S21 as shown in FIG. 21 (A), to produce the pattern 13 of the photoresist on the surface of the substrate 11 made of LiNbO 3 crystal.
  • the process proceeds to step S22, and as shown in FIG. 21 (B), the substrate 11 of the LiNbO 3 crystal having the photoresist pattern 13 formed on the surface is heated in a state of being immersed in a proton exchange solution such as benzoic acid.
  • the optical waveguide 12A is formed as a region in which the waveguide mode exists only for a single polarization component by a proton exchange method in which Li in the surface layer portion of the substrate 11 is replaced with H +.
  • the process of manufacturing the optical waveguide 12A in steps S21 and S22 is not limited to the proton exchange method.
  • the photoresist pattern 13 is formed on the surface of the substrate 11 made of LiNbO 3 crystals.
  • Ti is vapor-deposited on the surface of the substrate 11 made of LiNbO 3 crystals, and the photoresist is removed to prepare a thin wire of Ti having a width of a micron size.
  • this is prepared.
  • the Ti atom is thermally diffused in the substrate 11, and the optical waveguide 12A is used as a region in which the waveguide mode exists only for a single polarization component. This may be replaced by the Ti diffusion method to be formed.
  • the process proceeds to step S23, and as shown in FIG. 21C, the resist pattern 13 is removed to deposit a SiO 2 thin film as the buffer layer 14 on the surface of the substrate 11.
  • the buffer layer 14 may be formed by a method of attaching the SiO 2 wafer to the surface of the substrate 11.
  • the film thickness may be controlled to an appropriate level by polishing the vapor-deposited buffer layer 24 in consideration of the electrode mounting area in the next step S24.
  • step S24 the process proceeds to step S24, and the electrode 83 is formed on the buffer layer 14.
  • the process proceeds to step S25, and the protective members 86 and 87 are adhered to the upper part of the optical waveguide 12A as shown in FIG. 21 (E).
  • the protective members 86 and 87 may be attached with an adhesive or may be directly bonded based on another method.
  • the substrate 11 is made of LiNbO 3 crystals
  • the protective members 86 and 87 may be made of LiNbO 3 as the same material.
  • the end faces 86a and 87a of the attached protective members 86 and 87 can form planes 91 and 92 between the first end face 84 and the second end face 85, respectively. To cut and align.
  • step S26 the process proceeds to step S26, and as shown in FIG. 21 (F), the obtained planes 91 and 92 are polished to a plane perpendicular to the optical waveguide 12A. Then, the incident side antireflection film 63 and the exit side antireflection film 64 are formed on one surface of the planes 91 and 92 perpendicular to the polished optical waveguide 12A, respectively.
  • the end surface of the optical waveguide 12A conventionally located at the uppermost corner of the end surface is formed. Moves to a substantially central portion of the plane 91 (92). As a result, even when the corner of the plane 91 (92) is chipped during polishing in step S26, the end face of the optical waveguide 12A is not chipped. That is, it is possible to configure the optical waveguide 12A so that the end face itself is less likely to be chipped. This makes it possible to suppress the light loss from each end face of the optical waveguide 12A as much as possible.
  • the polishing speed in step S26 is set to the first end face 84 and the second end face 85 to the end face 86a of the substrate 11. It can be made uniform over 87a. As a result, the end face of the optical waveguide 12A is not rounded during processing, flat surfaces 91 and 92 made of flat polished surfaces can be obtained, and the reflection loss on the end face of the optical waveguide 12A can be minimized. Become. Further, by making the crystal orientations of the end faces constituting the planes 91 and 92 the same, it is possible to further suppress the reflection loss.
  • step S26 the accuracy of polishing in step S26 is improved, and the verticality of the obtained flat surface 91 (92) with respect to the optical waveguide 12A is also improved. As a result, it is possible to minimize the light loss due to the deviation of the verticality.
  • the incident side antireflection film 63 and the exit side antireflection film 64 are very stable because they are formed over a wide range from the first end face 84 and the second end face 85 to the end faces 86a and 87a of the substrate 11. Therefore, it is difficult to peel off, and it is possible to improve the reproducibility of the film formation.
  • first protective member 86 and the second protective member 87 are made of the same material as the substrate 11, and the end faces 86a, 87a and the first end face 84 of the protective members 86, 87 forming the planes 91, 92.
  • the hardness of the crystals becomes the same between the two, so that the planes 91 and 92 are not tilted due to the difference in polishing speed.
  • the optical modulator 8A In such a configuration of the optical modulator 8A, light only a single polarization component propagated through the optical waveguide 12A is incident through the incident side reflection preventing film 63, the modulation of the supply frequency f m from the oscillator 16 It is phase-modulated by the signal and is emitted via the emission-side antireflection film 64. Moreover, in the optical modulator 8A to which the present invention is applied, the end face of the optical waveguide 12A can be moved to a substantially central portion of the plane 91 (92) by attaching the protective members 86 and 87 at each end.
  • the end face of the optical waveguide 12A is chipped or rounded, the verticality between the optical waveguide 12A and the planes 91 and 92 can be ensured, the polishing accuracy on the planes 91 and 92 can be improved, and the yield can be improved.
  • the reflectances of the three optical waveguides 112A, 112B, and 112C at the entrance surfaces A 1 , B 1 , C 1 and the exit surfaces A 2 , B 2 , and C 2 are measured, and the finesse and transmission of each sample are measured.
  • the following results were obtained.
  • the finesse of the orthogonally polarized optical waveguide was about 30 to 45, whereas the finesse of the single polarized optical waveguide was about 50 to 65. Further, the transmittance of the orthogonally polarized optical waveguide was about 12.5 to 25 [%], whereas the transmittance of the single polarized optical waveguide was about 20 to 32.5 [%]. Has been done.
  • the light modulator 8A has an exit-side reflective film as a high-reflection film at one end of the optical waveguide 12A formed as a region in which a waveguide mode exists only for a single polarization component.
  • the configurations shown in FIGS. 11 (A), 11 (B), and 11 (C) described above are similarly provided with the light modulator 8. It can also be operated as a so-called reciprocating modulation type optical modulator.
  • step S26 the optical modulator 8A polishes the flat surfaces 91 and 92 in parallel with each other, and on the polished flat surfaces 91 and 92, the incident side antireflection film 63 and the exit side antireflection film 64 Instead, the incident side reflective film 93 and the outgoing side reflective film 94 are formed over one surface thereof, thereby functioning as the optical comb generator 1A.
  • the incident side reflecting film 93 and the emitting side reflecting film 94 are provided so as to be parallel to each other in order to resonate the light incident on the optical waveguide 12A, and the optical waveguide 12A.
  • the optical resonator 5 is configured to resonate by reciprocating the light passing through the light.
  • the incident side reflective film 93 and the outgoing side reflection made of a single-layer or multi-layered vapor-deposited film adhered thereto.
  • the film 94 can efficiently resonate light having a single polarization component.
  • the light incident from the outside through the incident-side reflecting film 93 is such that the light of a single polarization component propagates in the optical waveguide 12A in the outward path direction and is emitted. It is reflected by the reflective film 94 and partially penetrates to the outside.
  • the light of a single polarization component reflected by the exit side reflection film 94 propagates in the optical waveguide 12A in the return direction and is reflected by the incident side reflection film 93. By repeating this, the light of a single polarized wave component resonates in the optical waveguide 12A.
  • the light of a single polarization component becomes this light modulator.
  • the frequency spacing of the side bands is equal to the frequency f m of all the input electric signals.
  • the optical modulator 8A has a single bias composed of a large number of side bands by replacing the incident side antireflection film 63 and the exit side antireflection film 64 with the incident side antireflection film 93 and the exit side antireflection film 94. It functions as an optical comb generator 1A that generates optical combs of wave components.
  • the optical comb generator 1A is applied only to a single polarization component on the substrate 11 having at least an electro-optical effect so as to penetrate from the incident-side reflecting film 93 constituting the resonance means to the emitting-side reflecting film 94. Since the optical waveguide 12A formed as a region where the waveguide mode exists is provided, only a single polarization component of the light incident through the incident side reflection film 93 is propagated through the optical waveguide 12A. Therefore, an optical comb can be generated as an optical modulation output of only a single polarization component via the light emitting side reflective film 94.
  • the electrode 83 provided on the upper surface of the optical waveguide 12A to which the modulation signal is supplied is, for example, a waveguide type optical modulation having a configuration as shown in FIG.
  • the optical modulation efficiency can be further improved by having a ridge structure as in the device 8B (optical comb generator 1B).
  • the electrode 83 in the waveguide type optical modulator 8A (optical comb generator 1A) shown in FIGS. 19 and 20 has a ridge structure.
  • the description in FIGS. 19 and 20 will be cited, and the description thereof will be omitted here.
  • the substrate 11 is formed by cutting out a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method into a wafer shape. is there.
  • a ridge portion 20 for forming an electrode 83A having a ridge structure is provided on the cut-out substrate 11 by subjecting it to treatments such as mechanical polishing and chemical polishing.
  • the optical waveguide 12A is formed by a proton exchange method or a Ti diffusion method so as to penetrate from an incident end to an emitted end, and guides light of a single polarized component only to a single polarized component in order to propagate light. It is formed as a region where the wave mode exists.
  • the refractive index of the layers constituting the optical waveguide 12A is set higher than that of other layers such as the substrate 11 only for a single polarization component.
  • the light incident on the optical waveguide 12A propagates while only a single polarization component is totally reflected at the boundary surface of the optical waveguide 12A.
  • the LiNbO 3 crystal type optical waveguide 12A produced based on such a method has electricity such as the Pockels effect in which the refractive index changes in proportion to the electric field and the Kerr effect in which the refractive index changes in proportion to the self-power of the electric field. Since it has an optical effect, it is possible to modulate the light of a single polarized component by utilizing such a physical phenomenon.
  • the electrode 83A having a ridge structure has a main electrode formed on the ridge portion 20, and is made of a metal material such as Ti, Pt, or Au. Electrode 83A having a ridge structure main electrode is formed on the ridge 20, by a drive input a modulation signal supplied frequency f m to the optical waveguide 12A from the oscillator 16, propagates in the optical waveguide 12A Phase modulation is applied to the light to be generated.
  • step S31 first in step S31, as shown in FIG. 26 (A), to produce the pattern 13 of the photoresist on the surface of the substrate 11 made of LiNbO 3 crystal.
  • the process proceeds to step S32, and as shown in FIG. 26 (B), the substrate 11 of the LiNbO3 crystal having the photoresist pattern 13 formed on the surface is heated in a state of being immersed in a proton exchange solution such as benzoic acid.
  • the optical waveguide 12A is formed as a region in which the waveguide mode exists only for a single polarization component by a proton exchange method in which Li in the surface layer portion of the substrate 11 is replaced with H +.
  • the process of manufacturing the optical waveguide 12A in steps S31 and S32 is not limited to the proton exchange method.
  • the photoresist pattern 13 is formed on the surface of the substrate 11 made of LiNbO 3 crystals.
  • Ti is vapor-deposited on the surface of the substrate 11 made of LiNbO 3 crystals, and the photoresist is removed to prepare a thin wire of Ti having a width of a micron size.
  • this is prepared.
  • the Ti atom is thermally diffused in the substrate 11, and the optical waveguide 12A is used as a region in which the waveguide mode exists only for a single polarization component. This may be replaced by the Ti diffusion method to be formed.
  • step S33 the process proceeds to step S33, and as shown in FIG. 26C, the resist pattern 13 of the substrate 11 on which the optical waveguide 12A is formed is removed, and further, by processing such as mechanical polishing and chemical polishing, FIG. 27 shows. As shown, a ridge 20 for forming the electrode 83A having a ridge structure is provided.
  • step S34 a SiO 2 thin film as the buffer layer 14 is vapor-deposited on the surface of the substrate 11.
  • the buffer layer 14 may be formed by a method of attaching the SiO 2 wafer to the surface of the substrate 11.
  • the film thickness may be controlled to an appropriate level by polishing the vapor-deposited buffer layer 14 in consideration of the electrode mounting region in step S35 described later.
  • step S35 an electrode 83A having a ridge structure is formed on the buffer layer 14 of the substrate 11.
  • An electrode having a ridge structure is shown in a vertical cross section of a main part in FIG. 28.
  • step S36 the protective members 86 and 87 are adhered to the upper part of the optical waveguide 12A as shown in FIG. 26 (F).
  • the protective members 86 and 87 may be attached with an adhesive or may be directly bonded based on another method.
  • the substrate 11 is made of LiNbO 3 crystals
  • the protective members 86 and 87 may be made of LiNbO 3 as the same material.
  • the end faces 86a and 87a of the attached protective members 86 and 87 can form planes 91 and 92 between the first end face 84 and the second end face 85, respectively. To cut and align.
  • the obtained planes 91 and 92 are polished to a plane perpendicular to the optical waveguide 12A.
  • An incident side antireflection film 63 and an exit side antireflection film 64 are formed on the polished flat surfaces 91 and 92, respectively, over one surface thereof.
  • step S37 the planes 91 and 92 are polished in parallel with each other, and on the planes 91 and 92 perpendicular to the polished optical waveguide 12A, the above.
  • the incident side antireflection film 63 and the exit side antireflection film 64 the incident side antireflection film 93 and the exit side antireflection film 94 are formed over one surface of each.
  • the oscillator 16 is connected to the electrode 83A having a ridge structure with respect to light of only a single polarization component incident from the incident end and propagating through the optical waveguide 12A.
  • the modulated signal supplied frequency f m from it is possible to apply efficient phase modulation.
  • the end faces of the optical waveguide 12A are placed on the substantially central portion of the plane 91 (92) by attaching the protective members 86 and 87 at the respective ends. Since it can be moved, the end face of the optical waveguide 12A can be chipped or rounded, the verticality between the optical waveguide 12A and the planes 91 and 92 can be ensured, and the polishing accuracy on the planes 91 and 92 can be improved, thereby improving the yield. Is also possible.
  • the light incident from the outside through the incident side reflective film 93 propagates only a single polarization component in the outward path direction in the optical waveguide 12A and is reflected by the outgoing side reflective film 94. At the same time, it partially penetrates to the outside.
  • the light of a single polarization component reflected by the exit side reflection film 94 propagates in the optical waveguide 12A in the return direction and is reflected by the incident side reflection film 93. By repeating this, the light of a single polarized wave component resonates in the optical waveguide 12A.
  • the light modulator 8B functions as an optical comb generator 1B that generates an optical comb of a single polarization component composed of a large number of side bands.
  • a single polarization is formed on a substrate having at least an electro-optical effect so as to penetrate from the incident side reflective film 93 constituting the resonance means to the outgoing side reflective film 94. Since the optical waveguide 12A formed as a region where the waveguide mode exists only for the wave component, only a single polarization component of the light incident through the incident side reflection film 93 is provided. An optical comb can be generated as an optical modulation output of only a single polarization component through the light emitting side reflective film 94 by propagating through the optical waveguide 12A, and protective members 86 and 87 are attached at each end.
  • the end face of the optical waveguide 12A which was conventionally located at the uppermost corner of the end face, moves to the substantially central portion of the plane 91 (92).
  • the end face of the optical waveguide 12A is not chipped. That is, it is possible to configure the optical waveguide 12A so that the end face itself is less likely to be chipped. This makes it possible to suppress the light loss from each end face of the optical waveguide 12A as much as possible.
  • the optical modulator 8B includes an electrode 83A having a ridge structure formed on the buffer layer 14 of the substrate 11, as shown in the vertical cross section of the main part of FIG. 28, the modulation efficiency is further improved. Can be made to.
  • the ridge width RW of the electrode 83A having a ridge structure formed on the buffer layer 14 of the substrate 11 is 10, 12, 14, 16, and 18 [ ⁇ m], and the average of the ridge grooves.
  • Samples of the light modulator 8A with depths AVD (Average depths) of 3.3, 2.96, 4.79, and 4.72 [ ⁇ m] were prepared, and the drive voltage (AC Vpi) and direct current at 25 GHz were prepared.
  • the driving voltage (DC Vpi) is actually measured and the results are shown in FIGS. 29 and 30.
  • Vpi is the voltage required to ⁇ -radian the phase.
  • the drive voltage (ACVpi) at 25 GHz is about 8 to 10 V
  • the DC drive voltage (DC Vpi) is about 6 to 6.5 V
  • the drive voltage (AC Vpi) at 25 GHz is about 3.5 to 7.5 V
  • the DC drive voltage (DC Vpi) is 5 to 6 V. It has become a degree.
  • the average voltage of the drive voltage (ACVpi) at 25 GHz is reduced to about 70% of the original voltage compared to the case without the ridge structure, and the power is about 50%. Corresponds to a decrease in. Further, as for the DC drive voltage (DCVpi), the average voltage is reduced to about 80% of the original voltage as compared with the case without the ridge structure, which corresponds to a decrease of about 50% in electric power.
  • the optical modulator 8B and the optical comb generator 1B are composed of members having the same hardness as the substrate 11 of the optical waveguide 12A, and at least one end face of the member is the light incident end or light in the optical waveguide 12A.
  • a first protective member 86 and a second protective member 87 arranged on the upper portion of the optical waveguide 12A so as to form the same plane as the end surface of the substrate 11 including the emission end are provided, and the end surface of the member
  • the incident side antireflection film 63 or the incident side antireflection film 93 and the emission side antireflection film 64 or the emission side antireflection film 94 are each on a plane perpendicular to the optical waveguide 12A formed by polishing the end surface of the substrate.
  • the finesse of the optical resonator 5 to be formed can be improved, and the driving power can be reduced by providing the electrode 83A having a ridge structure.
  • At least one end face of the members 86 and 87 having the same hardness as the substrate 11 for forming the optical waveguide 12A from the upper surface is provided.
  • the end faces of the members 86 and 87 and the substrate 11 are adhered on a plane perpendicular to the optical waveguide 12A formed by polishing the end face of the light waveguide.
  • each reflective film can be stably adhered without peeling off at the uppermost corner of the end face, and the reflectance and light of the reflective film can be obtained.
  • the finesse of the resonator can be improved, the function of the device itself can be enhanced, and the substrate 11 having at least an optical optical effect so as to penetrate from the incident side reflective film 93 constituting the resonance means to the outgoing side reflective film 94 is simply used.
  • optical combs that are propagated through the optical waveguide 12A and can generate a stable optical comb as an optical modulation output of only a single polarization component via the light emitting side reflective film 94 function as generators 1 and 1A. To do.
  • the optical waveguide 12A in the light modulator 8B and the light modulator 51 as described above has a single polarization component on the substrate 11 having at least an electro-optical effect so as to penetrate from the incident side reflective film 93 to the outgoing side reflective film 94.
  • a low-power type that can output laser light or optical comb with only a single polarization component by providing an electrode 83A having a ridge structure, which is formed as a region where a waveguide mode exists only for.
  • Laser light source and optical com generator can be constructed.
  • the waveguide of the optical waveguide 12A is made by adhering the reflective films 93 and 94 having a reflectance in the range of 95% to 99%.
  • the loss rate and the transmittance of the reflecting films 93 and 94 can be matched to increase the finesse and transmittance of the resonator and improve the performance of the resonator.
  • the optical comb generator 210 has an optical coupler 211 that branches a part of the optical comb output from the low power optical comb module 200A to which the present invention is applied, and a photodetector that detects light branched by the optical coupler 211. It includes a device 212 and a control circuit 213 to which a light detection signal obtained by the photodetector 212 is supplied.
  • a laser beam is incident from a laser light source (not shown) and an RF modulation signal is input via a bias tee 214, so that the incident laser beam has a single polarization component.
  • an optical comb is generated and output.
  • the resonance length of the resonance means by the incident side reflective film and the outgoing side reflective film provided in the optical waveguide is controlled by the temperature control by the temperature control circuit 219.
  • the control circuit 213 obtains an error with respect to the control target from the photodetection signal, generates a control signal such that the error becomes zero, and supplies the control signal to the bias tee 214.
  • the resonance frequency of the optical comb module 200A can be made to follow the input laser frequency.
  • the control circuit 213 may be a single printed circuit board or a combination of an RF mixer or an isolator and a printed circuit board. By mixing the photodetector signal of the photodetector 212 and the synchronization signal, a control signal corresponding to the amount of error from the control target is created.
  • a part of the output of the RF modulation signal source can be used as the synchronization signal.
  • the operating band of the photodetector 212 needs to be equal to or higher than the RF drive frequency.
  • the low frequency component of the signal obtained by inputting the photodetector signal and the synchronization signal to the mixer via the phase adjuster is taken as an error signal.
  • another modulated signal can be used for the RF drive signal as the synchronization signal.
  • the laser frequency or the resonance frequency of the optical comb module 200A is modulated with a smaller amplitude than the FSR in the resonance mode, and the output signal of the photodetector 212 and the synchronization signal are mixed. If the dither signal frequency is low, it is also possible to generate an error signal by the product-sum calculation of digital signal processing after converting the optical detection signal into a digital signal by an analog-digital converter.
  • the frequency characteristic of the error signal is adjusted and added to the DC bias of the optical comb module 200A as a control signal via the bias tee 214.
  • the error signal is input to a circuit having proportional, integral, and differential functions, the frequency characteristics of the control loop are determined by adjusting the amplitude of those components, and the resonance frequency of the optical comb module 200A is the input laser. It is controlled to follow the oscillation frequency.
  • the configuration of the optical comb generator 220 using the low power type optical comb module to which the present invention is applied is shown in the block diagram of FIG. 32.
  • the optical comb generator 220 controls the resonator by using the reflected light of the low power optical comb module 200A to which the present invention is applied, and a part of the reflected light of the low power optical comb module 100A is light. It is branched by the coupler 211 so that it is incident on the photodetector 212.
  • Each component of the optical comb generator 220 is the same as the component of the optical comb generator 210 shown in FIG. 31, and the corresponding components are designated by the same reference numerals in FIG. 32 and detailed description thereof will be omitted. To do.
  • the control circuit 213 obtains an error with respect to the control target from the photodetector signal obtained by the photodetector 212, and outputs a control signal such that the error becomes zero.
  • the control signal By applying the control signal to the DC bias of the optical comb module, the resonance frequency of the optical comb module 200A can be made to follow the input laser frequency.
  • an optical comb light source 300 having a configuration as shown in FIG. 33 can be constructed.
  • the optical comb light source 300 includes a laser light source 301 that oscillates at a single frequency, and a separation optical system 302 such as an optical coupler or an optical beam splitter that separates a single frequency laser light emitted from the laser light source 301 into two laser lights. It is provided with a frequency shifter 305 that shifts the frequency of one of the laser beams separated by the separation optical system 302, two optical comb generators (OFCG1, OFCG2) 320A, 320B, etc. using low-power optical comb modules, respectively.
  • a separation optical system 302 such as an optical coupler or an optical beam splitter that separates a single frequency laser light emitted from the laser light source 301 into two laser lights. It is provided with a frequency shifter 305 that shifts the frequency of one of the laser beams separated by the separation optical system 302, two optical comb generators (OFCG1, OFCG2) 320A, 320B, etc. using low-power optical comb modules, respectively.
  • this optical comb light source 300 the laser light emitted from one single frequency oscillation laser light source 301 is separated into two laser lights by the separation optical system 302, and two optical comb generators (OFCG1 and OFCG2) are used. It is designed to be input to 320A and 320B.
  • Two optical comb generator 320A, 320B includes an oscillator 303A which oscillates at a different frequency f m and the frequency f m + Delta] f m from each other, driven by 303B.
  • Each oscillator 303A, 303B by being phase-synchronized by a common reference oscillator 304, the relative frequency of f m and f m + Delta] f m is stabilized.
  • a frequency shifter 305 such as an acoustic optical frequency shifter (AOFS) is provided so that the input laser light is given an optical frequency shift of frequency fa by this frequency shifter 305. It has become.
  • the beat frequency between the carrier frequencies becomes an AC signal having a frequency fa instead of a DC signal.
  • the beat signal of the high frequency side band of the carrier frequency and the beat signal of the low frequency side side band are generated in the frequency regions opposite to each other with the beat frequency fa between the carrier frequencies of the beat signal, which is convenient for phase comparison. ..
  • the two optical comb generators (OFCG1 and OFCG2) 320A and 320B are each composed of a low-power optical comb module to which the present invention is applied, and phase only a single polarization component of the input laser light. By modulation, it is possible to output an optical comb having a single polarization component.
  • the optical comb light source 300 shares one single frequency oscillating laser light source 301, and uses two optical comb generators (OFCG1 and OFCG2) 320A and 320B having different center frequencies and frequency intervals. It is generated, for example, the first and second light sources in the distance meter and the optical three-dimensional shape measuring machine according to the patent No. 5231883 proposed by the present inventor, that is, the intensity or the phase, respectively.
  • Two optical comb generators (OFCG1, OFCG2) by using the optical comb light source 300 as the first and second light sources that are modulated and emit interfering reference light and measurement light having different modulation periods from each other.
  • the optical comb output for measuring the polarization components of 320A and 320B is irradiated while scanning the surface of the measurement target, and the reflected light from the surface is detected for each irradiation point to calculate the distance (height). By doing so, it is possible to construct a measurement system of a distance meter or an optical three-dimensional shape measuring machine that performs stable measurement operation.
  • FIG. 34 is a block diagram showing the configuration of the optical comb distance meter 400 configured by using the optical comb light source 300.
  • the optical comb distance meter 400 shown in the block diagram of FIG. 34 measures the distance using an optical frequency comb interferometer, and has a center frequency emitted from the first and second optical comb light sources 401 and 402.
  • Two optical frequency combs with different frequency intervals are periodically modulated in intensity or phase, and measured with the reference plane 404 via the interference optical system 410 as interfering reference light S1 and measurement light S2 having different modulation periods.
  • the reference light detector 403 detects the interference light S3 between the reference light S1 and the measurement light S2 that irradiates the surface 405 and irradiates the reference surface 404 and the measurement surface 405, and the reference light reflected by the reference surface 404.
  • Interference light S4 between S1'and the measurement light S2'reflected by the measurement surface 305 is detected by the measurement light detector 406, and interference light S3 is detected by the signal processing unit 407 by the reference light detector 403. From the time difference between the signal and the interference signal obtained by detecting the interference light S4 by the measurement light detector 406, the difference between the distance L1 to the reference surface 404 and the distance L2 to the measurement surface 405 from the refractive index at the light speed and the measurement wavelength is obtained. be able to. There are multiple forms of interferometers and detectors.
  • the measurement light S2 is irradiated while scanning the surface of the measurement target, and the reflected light from the surface is detected for each irradiation point and the distance ( It is possible to construct an optical comb shape measuring instrument that can obtain the surface shape of an object from the distribution of scan coordinates and distance (height) by performing a height) calculation.
  • an optical comb shape measuring instrument that can obtain the surface shape of an object from the distribution of scan coordinates and distance (height) by performing a height
  • Telecentric optics can be used to ensure that light is incident almost perpendicular to the object within the measurement range.
  • the vibration measuring device is a light source in the vibration measuring device according to Patent No. 5336921 and Patent No. 5363231 proposed by the present inventor, that is, a spectrum having a predetermined frequency interval, and the modulation frequencies and center frequencies are different from each other.
  • the optical comb light source 300 as a light source unit that emits phase-synchronized and coherent reference light and measurement light, a single light source emitted from two optical comb generators (OFCG1 and OFCG2) 320A and 320B is used. It is possible to construct a measurement system of a vibration measuring device that performs stable multipoint vibration measurement operation by irradiating different places depending on the wavelength through an element that divides the optical comb of the polarization component for each frequency.
  • the measurement device using the optical comb is based on the orthogonal polarization component as shown by a circle in FIG.
  • the transmission mode waveform may be deformed, and the locations where it occurs (relative to the main mode) are different, and there are multiple minimum parts, which causes instability in control, but only a single polarization component.
  • the transmission mode waveform is not deformed, the stabilization as an optical comb generator, the accuracy improvement of the measuring device including the optical comb, the reduction of error, and the like. Can be planned.
  • the polarization component orthogonal to the generation of the optical comb becomes a factor of measurement error of the distance and height when the optical comb is used for measurement
  • the polarization component orthogonal to the generation of the optical comb is the polarization component of the optical comb generator.
  • Control to match the resonance frequency with the laser frequency may become unstable, causing deviation of the control point and oscillation of control, and when using an optical comb for measurement, distance and height measurement
  • it was a factor of error by generating an optical comb using an optical waveguide that allows only a single polarization component to pass through, the output of the orthogonal polarization component that does not contribute to the generation of the optical comb is suppressed, and the polarized light of the optical comb output is polarized.
  • the extinction ratio can be improved, the degree of single polarization can be increased, the resonator control is stabilized, unnecessary interference signals are eliminated, and measurement errors in distance measurement and shape measurement using an optical comb are eliminated. It is possible to improve the measurement accuracy and the reliability of the entire system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることにより、反射膜の反射率や共振器のフィネスを向上させる。入射側反射膜93及び出射側反射膜94より構成され、入射側反射膜93を介して入射された光を共振させ、入射側反射膜93から出射側反射膜94にかけて貫通するように形成され共振された光を伝搬させる導波路12と、導波路12を上面から形成させるための基板11と、基板11の材質に対応する第1の保護部材86並びに第2の保護部材87を、少なくともその一の端面が導波路12における光入射端又は光出射端を含む基板11の第1の端面84並びに第2の端面85と同一の平面91、92を形成するように導波路12の上部に配設させ、入射側反射膜93並びに出射側反射膜94は、形成される光導波路12に対して垂直な平面91、92にそれぞれ単層又は多層の蒸着膜として被着されてなる。

Description

光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器
 本発明は、光通信、光CT、光周波数標準器など多波長でコヒーレンス性の高い標準光源、又は、各波長間のコヒーレンス性も利用できる光源を必要とする分野に適用される光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器に関する。本出願は、日本国において2019年12月17日に出願された日本特許出願番号特願2019-227630及び2020年6月8日に出願された日本特許出願番号特願2020-099226を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年の光エレクトロニクスの発展に伴い、周波数多重通信のためのレーザー光制御や、広範囲に分布する吸収線の周波数測定の要請に応えるべく、光導波路に閉じ込めた光を共振させる導波路型光共振器が多用されるようになっている。
 光周波数を高精度に測定する場合には、測定する光を他の光と干渉させ、発生する光ビート周波数の電気信号を検出するヘテロダイン検波を行う。このヘテロダイン検波において測定可能な光の帯域は、検波系に使用される受光素子の帯域に制限され、概ね数十GHz程度である。
 一方、近年の光エレクトロニクスの発展に伴い、周波数多重通信のための光制御や、広範囲に分布する吸収線の周波数測定を行うため、光の測定可能帯域を更に拡大する必要がある。
 かかる測定可能帯域の拡大化の要請に応えるべく、従来において光周波数コム発生器(例えば、特許文献1参照。)を用いた広帯域なヘテロダイン検波系が提案されている。この光周波数コム発生器は、周波数軸上で等間隔に配置された櫛状のサイドバンドを広帯域にわたり発生させるものであり、このサイドバンドの周波数安定度は、入射光の周波数安定度とほぼ同等である。この生成したサイドバンドと被測定光をヘテロダイン検波することにより、数THzに亘る広帯域なヘテロダイン検波系を構築することが可能となる。
 図1は、この従来における光周波数コム発生器1003の原理的な構造を示している。
 この光周波数コム発生器1003は、光位相変調器1031と、この光位相変調器1031を介して互いに対向するように設置された反射鏡1032、1033を備える光共振器1000が使用されている。
 この光共振器1000は、反射鏡1032を介して僅かな透過率で入射した光Linを、反射鏡1032、1033間で共振させ、その一部の光Loutを反射鏡1033を介して出射させる。光位相変調器1031は、電界を印加することにより屈折率が変化する光位相変調のための電気光学結晶からなり、この光共振器1000を通過する光に対して、電極1036に印加される周波数fの電気信号に応じて位相変調をかける。
 この光周波数コム発生器1003において、光が光共振器1000内を往復する時間に同期した電気信号を電極1036から光位相変調器31へ駆動入力することにより、光位相変調器1031を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、高次のサイドバンドを数百本生成することができ、隣接したサイドバンドの周波数間隔fは全て入力された電気信号の周波数fと同等になる。
 また、従来における光周波数コム発生器は、上述のバルク型に限定されるものではない。例えば図2に示すように、光導波路を用いた導波路型光周波数コム発生器1020にも適用可能である。
 この導波路型光周波数コム発生器1020は、導波路型光変調器1200から構成される。導波路型光変調器1200は、基板1201と、光導波路1202と、電極1203と、入射側反射膜1204と、出射側反射膜1205と、発振器1206とを備える。
 基板1201は、例えば引き上げ法により育成された3~4インチ径のLiNbOやGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板1201上には、機械研磨や化学研磨等の処理を施す。
 光導波路1202は、光を伝搬させるために配されたものであり、光導波路1202を構成する層の屈折率は、基板1201等の他層よりも高く設定されている。光導波路1202に入射した光は、光導波路1202の境界面で全反射しながら伝搬する。一般に、この光導波路1202は、基板1201中においてTi原子を拡散させることにより、或いは基板1201上へのエピタキシャル成長させることにより作製することができる。
 なお、この光導波路1202として、LiNbO結晶光導波路を適用してもよい。このLiNbO結晶光導波路は、LiNbO等からなる基板1201表面にTiを拡散させることにより形成することができる。このLiNbO結晶光導波路を実際に作製する場合には、先ずこの基板1201の表面にフォトレジストのパターンを作製し、そこにTiを蒸着させ、さらにこのフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製する。次に、このTiの細線を加熱することにより、これを基板1201中に熱拡散させる。
 ちなみに、このTiがLiNbOからなる基板1201中に熱拡散されると、かかるTiが拡散された領域については他の領域よりも屈折率が高くなるところ、光を閉じ込めることができることになる。即ち、かかるTiが拡散された領域につき光を伝搬させることができる光導波路1202が形成されることになる。このような方法に基づいて作製したLiNbO結晶型の光導波路1202は電気光学効果を有するため、これに対して電界を印加することにより屈折率を変化させることができる。
 電極1203は、例えばAlやCu、Pt、Au等の金属材料からなり、外部から供給された周波数fの電気信号を光導波路1202に駆動入力する。また、光導波路1202における光の伝搬方向と変調電界の進行方向は同一となる。この電極1203の幅や厚さを調整することにより、光導波路1202を伝搬する光の速度と電極1203上を伝搬する電気信号の速度を一致させるようにしてもよい。これにより、光導波路1202を伝搬する光が感じる電気信号の位相を一定に保つことが可能となる。
 入射側反射膜1204及び出射側反射膜1205は、光導波路1202に入射した光を共振させるため設けられたものであり、光導波路1202を通過する光を往復反射させることにより共振させる。発振器1206は、電極1203に接続され、周波数fの電気信号を供給する。
 入射側反射膜1204は、導波路型光変調器1200の光入射側に配され、図示しない光源から周波数νの光が入射される。また、この入射側反射膜1204は、出射側反射膜1205により反射されて、かつ光導波路1202を通過した光を反射する。
 出射側反射膜1205は、導波路型光変調器1200の光出射側に配され、光導波路1202を通過した光を反射する。またこの出射側反射膜1205は、光導波路1202を通過した光を一定の割合で外部に出射する。
 上述の構成からなる導波路型光周波数コム発生器1020において、光が光導波路1202内を往復する時間に同期した電気信号を電極1203から導波路型光変調器1200へ駆動入力とすることにより、光位相変調器を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、バルク型光周波数コム発生器1003と同様に、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fと同等になる。
 この導波路型光周波数コム発生器1020の特徴は、光と電気信号の相互作用領域がより小さいことにある。光は周囲より屈折率が高いミクロンオーダの光導波路1202に閉じ込められて伝搬することになるため、光導波路1202の極近傍に電極1203を取り付けることにより、光導波路1202中の電界強度を局所的に高めることが可能となる。従って、バルク型の光周波数コム発生器1003と比較して光導波路1202に生じる電気光学効果が大きくなり、少ない電力で大きな変調を得ることが可能となる。
 しかしながら、上述した従来の導波路型光周波数コム発生器1020は、光導波路1202の構造上、入射側反射膜1204及び出射側反射膜1205の被着並びにこれらが被着される端面の研磨が困難であり、高いフィネスの共振器を再現性良く作ることが難しかった。導波路型光周波数コム発生器1020の性能を高めるためには、これら入射側反射膜1204及び出射側反射膜1205で構成される共振器のフィネスを高めることが不可欠となる。光導波路1202における往路方向又は復路方向のみの変調指数が高くても、フィネスそのものが低い場合には、光の往復回数を増加させることができないため、広帯域に亘り高強度のサイドバンドを発生させることができないからである。
 また、光導波路を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても位相変調を施すようにした光コム発生器並びに光変調器が提案されている(例えば、特許文献2参照)。
 また、図3は、導波路型光周波数コム発生器1020における、入射側反射膜1204が形成されている端面を示している。この図3によれば、基板1201の上端に光導波路1202が形成され、その上に薄いバッファ層が積層されてなり、その上において更に電極1203が形成されている。即ち、この光導波路1202は、導波路型光周波数コム発生器1020の端面最上部の角に位置している。この端面最上部の角は、尖っているため研磨時に図3に示すように欠けが生じてしまう場合が多い。端面最上部に欠けが生じると、共振すべき光が散乱されて損失となる。
 また、端面研磨の状態によっては、端面最上部における角の欠けに至らなくても、角が丸くなる場合がある。角が丸くなると反射された光の一部が光導波路1202の導波モードから外れ、損失となる。
 また、ごく稀に端面最上部における角の欠けが発生せず、また角が丸くならない状態で研磨することができる場合もあるが、かかる場合においても、端面に入射側反射膜1204を形成させる際に問題が発生する。入射側反射膜1204等の高反射膜は、通常、屈折率の高い膜と低い膜を交互に堆積することによって作製されるが、端面最上部における角の部分は、膜そのものが剥がれやすく、また高反射膜の材料が端面から側面へ回り込むことにより膜厚が変化する結果、設計通りの膜厚に制御することができないという問題点もある。
 すなわち、基板中に拡散等によってコアを形成する光導波路では、コアが基板の表面に形成されるため、端面においては、コアの外周のうち少なくとも一辺が基板の外周に位置することとなる。このような光導波路の端面に、蒸着法、スパッタ法、化学気相成長法等により反射膜等の光学薄膜を形成すると、基板の端面の外周部において、成膜粒子の側面への回り込み、ならびに、側面方向から飛来した成膜粒子の端面への回り込みが生じるため、基板の端面の外周部で一様な膜厚が得られにくい。そのため、基板の端面の外周部に位置するコアの端面上に、反射膜等として作用する程度に薄く、しかも、膜厚分布の少ない膜を形成することは非常に困難であった。
 ここで、本件出願人は、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることにより、反射膜の反射率や光共振器のフィネスを向上させ、デバイスそのものの機能を高めた光共振器、光変調器、光コム発生器、光発振器を先に提案している。(例えば、特許文献3参照)。
 すなわち、光導波路を上面から形成させるための基板と同じ硬さを持つ部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設し、上記部材の端面と上記基板の端面を研磨することにより形成された上記平面上に共振手段を構成する入射側反射膜並びに出射側反射膜を被着させるので、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜の反射率や光共振器のフィネスを向上させ、デバイスそのものの機能を高めることが可能となる。
特開2003-202609号公報 特許第3891977号公報 特許第4781648号公報
  ところで、従来の導波路型光周波数コム発生器1020では、光導波路1202の端面が端面最上部の角に位置することから、蒸着法、スパッタ法、化学気相成長法等により反射膜等の光学薄膜として単層又は多層の蒸着膜を端面に形成すると、基板の端面の外周部において、成膜粒子の側面への回り込み、ならびに、側面方向から飛来した成膜粒子の端面への回り込みが生じるため、基板の端面の外周部で一様な膜厚が得られにくく、基板の端面の外周部に位置するコアの端面上に、反射膜等として作用する程度に薄く、しかも、膜厚分布の少ない膜を形成することは非常に困難であるという問題点があった。
 また、光導波路1202の端面を研磨する加工時に、光導波路1202の端面の角が加工時に欠けやすく、また、光導波路1202の端面の角が加工時に丸くなることがあり、光導波路1202の端面に形成された反射膜が、端面最上部の角の部分で剥がれやすくなるという問題点があった。
  これらの問題点は、光導波路1202の端面に被着される反射膜の反射率低下、入射側反射膜204及び出射側反射膜1205で構成される共振器のフィネス低下、導波路型光周波数コム発生器1020自身の機能の低下等を招くことになり、また、作製環境に依存するため、導波路型光周波数コム発生器20や、これを適用した導波路型のファブリペロー共振器の性能における再現性を担保することができず、歩留まりを低下させる要因になっていた。
 また、従来、光導波路に閉じ込めた光を共振させる導波路型光共振器では、直交モードが混在する偏光成分を透過する光導波路が用いられており、光変調器や光周波数コム発生器を構築した場合に得られる光出力も、直交モードが混在する偏光成分を含むものであった。
 従来の光周波数コム発生器では、光周波数コムを計測に利用する場合に、安定した出力を得るために、光共振器から出射された光の一部を光検出器により検出して、所定の共振長となるように上記光共振器の共振長を帰還制御するようにしていたが、直交モードが混在する偏光成分を透過する光導波路が用いられていたために、図4に○印を付して示すように、直交偏光成分による透過モード波形に変形が生じることがある。しかも、直交偏光成分による透過モード波形に変形が発生する場所(主モードに対する相対位置)は、ばらばらであり極小部が複数になるため、共振長を制御する際の不安定要因になる。
 すなわち、光導波路に閉じ込めた光を共振させる導波路型光共振器を用いた光コム発生器における光周波数コム発生において、直交する偏光成分は、光周波数コム発生器の共振周波数をレーザー周波数に一致させるための制御を不安定にすることがあり、制御点のずれ、制御の発振等の原因となり、光周波数コムを例えば測定対象までの距離や高さを測定する計測装置に利用する場合に、直交する偏光成分が計測誤差の要因になっていた。
 また、上述の如く、光導波路を上面から形成させるための基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設し、上記保護部材の端面と上記基板の端面を研磨することにより形成された上記平面上に共振手段を構成する入射側反射膜並びに出射側反射膜を被着させことにより、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜の反射率や光共振器のフィネスを向上させ、デバイスそのものの機能を高めることが可能となるのであるが、上記光導波路の上部に保護部材を接着固定するために用いられるエポキシ系やアクリル系等の熱硬化型光学用接着剤又は光硬化型光学用接着剤は、硬化後であっても、加熱した際にガス成分を放散することがあり、入射側反射膜並びに出射側反射膜を蒸着膜として形成する際に、蒸着温度の温度上昇とともに放散ガスの量が増え、放散ガスが蒸着膜の光学特性を劣化させるという問題がある。
 また、光学用接着剤は、ガラス転移温度を超えることで接着剤そのものが劣化させ、接着部の強度低下、変形などが蒸着膜に物理的な変形を及ぼすなどの問題がある。
 そこで、本発明は、上述の如き従来の問題点に鑑みて案出されたものであり、その目的とするところは、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜として単層又は多層の蒸着膜を端面最上部の角の部分で剥がれることなく安定して被着させることにより、反射膜の反射率や共振器のフィネスを向上させ、デバイスそのものの機能を高めた光共振器、光変調器、光周波数コム発生器、光発振器を提供することにあり、またかかる機能を有する光共振器及び光変調器の作製方法を提供することにある。
 また、本発明の他の目的は、光導波路の透過モード波形に変形が生じることがなく、共振器制御を安定化することができるようにすることにある。
 また、本発明の他の目的は、光周波数コム発生に寄与しない直交偏光成分の出力を抑制して、偏光消光比の向上をはかり、単一偏光度を高めた光周波数コム出力を得られるようにすることにある。
 さらに、本発明の他の目的は、光周波数コム発生器としての安定化、光周波数コムを含む計測装置の精度向上、誤差の低減などを図ることができるようにすることにある。
 また、本発明の他の目的は、光導波路端面の角の加工時における欠けや丸まりを抑える保護部材を光導波路の上部に接着固定するための光学用接着剤の加熱による放散ガスによる蒸着膜の光学特性を劣化や接着部の強度低下による蒸着膜の物理的な変形などの悪影響を被ることなく、各反射膜として単層又は多層の蒸着膜を端面最上部の角の部分で剥がれることなく安定して被着させることにより、反射膜の反射率や共振器のフィネスを向上させ、デバイスそのものの機能を高めた光共振器、光変調器、光周波数コム発生器、光発振器を提供することにあり、またかかる機能を有する光共振器及び光変調器の作製方法を提供することにある。
 本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
 本発明は、入射側反射膜から出射側反射膜にかけて貫通するように形成された光導波路により、上記入射側反射膜を介して入射された光を伝搬して共振させる光共振器の作製方法において、上記光導波路を基板の上面から形成する光導波路形成工程と、上記基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設する配設工程と、上記配設工程において配置した上記保護部材の端面と上記基板の端面を研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路に対して垂直な平面を形成する研磨工程と、上記研磨工程において形成された上記平面上に上記入射側反射膜又は上記出射側反射膜として単層又は多層の蒸着膜を被着させる反射膜被着工程とを有し、上記配設工程では上記保護部材を上記光導波路の上部に接着剤で貼り付けて配設し、上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り単層又は多層の蒸着膜を被着させることにより、上記入射側反射膜又は上記出射側反射膜を上記光導波路に対して垂直な平面に形成することを特徴とする。
 本発明に係る光共振器の作製方法において、上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜を被着させるものとすることができる。
 本発明は、入射側反射膜及び出射側反射膜が形成された光導波路により、上記入射側反射膜を介して入射された光を伝搬して変調する光変調器の作製方法において、上記光導波路を基板の上面から形成する光導波路形成工程と、少なくとも上記光導波路形成工程において形成した光導波路を被覆するように上記基板上にバッファ層を積層する積層工程と、上記光導波路に対して電界を印加するための電極を上記積層工程において積層したバッファ層上に形成する電極形成工程と、上記基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設する配設工程と、上記配設工程において配置した上記保護部材の端面と上記基板の端面を研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路に対して垂直な平面を形成する研磨工程と、上記研磨工程において形成された上記平面上に上記入射側反射膜又は上記出射側反射膜として単層又は多層の蒸着膜を被着させる反射膜被着工程とを有し、上記配設工程では上記保護部材を上記光導波路の上部に接着剤で貼り付けて配設し、上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り単層又は多層の蒸着膜を被着させることにより、上記入射側反射膜又は上記出射側反射膜を上記光導波路に対して垂直な平面に形成することを特徴とする。
 本発明に係る光変調器の作製方法において、上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜を被着させるものとすることができる。
 また、本発明に係る光変調器の作製方法において、上記光導波路形成工程では、少なくとも電気光学効果を有する上記基板の上面からプロトン交換により単一の偏波成分に対してのみ導波モードが存在している領域として上記光導波路を形成するものとすることができる。
 さらに、本発明に係る光変調器の作製方法では、上記基板にリッジ構造を形成するリッジ構造形成工程を有し、上記電極形成工程において、リッジ構造が形成された上記基板に上記積層工程において積層したバッファ層上に、上記光導波路に対して電界を印加するための電極として、リッジ構造を有する電極を形成するものとすることができる。
 本発明は、光共振器であって、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記共振手段により共振された光を伝搬させる光導波路と、上記光導波路が上面から形成された基板と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする。
 本発明に係る光共振器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 さらに、本発明に係る光共振において、上記端面保護手段を構成する保護部材は上記基板と同じ材質からなり、また、上記平面を形成する上記保護部材の端面並びに上記基板の端面は、互いに同一の結晶方位を有し、上記端面保護手段は、上記保護部材における一の端面が上記光導波路における光入射端を含む上記基板の端面と同一の平面を形成するように、また上記保護部材における他の端面が上記光導波路における光出射端を含む上記基板の端面と同一の平面を形成するように、上記光導波路の上部に配設されるものとすることができる。
 本発明は、光変調器であって、所定の周波数の変調信号を発振する発振手段と、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光の位相を変調する光導波路と、上記光導波路が上面から形成された基板と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする。
 本発明に係る光変調器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 また、本発明は、光変調器であって、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成された光導波路と、上記光導波路が上面から形成された基板と、上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする。
 本発明に係る光変調器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 また、本発明に係る光変調器において、上記光導波路は、単一の偏波成分に対してのみ導波モードが存在している領域として少なくとも電気光学効果を有する上記基板に形成されているものとすることができる。
 さらに、本発明に係る光変調器において、上記光変調手段の電極は、リッジ構造を有するものとすることができる。
 本発明は、光周波数コム発生器であって、所定の周波数の変調信号を発振する発振手段と、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光の位相を変調し、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光導波路と、上記光導波路が上面から形成された基板と、上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする。
 本発明に係る光周波数コム発生器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 さらに、本発明に係る光周波数コム発生器において、上記共振手段により共振された光のうち上記入射側反射膜を介して外部へ透過した光を反射させる反射鏡をさらに備えるものとすることができる。
 本発明は、光発振器であって、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光、又はレーザー増幅により発生された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記共振手段により共振された光を増幅させるとともに、これを出射側反射膜を介して外部へ出射させる光導波路と、上記光導波路が上面から形成された基板と、上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする。
 本発明に係る光発振器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 また、本発明に係る光発振器において、上記光導波路は、上記入射側反射膜を介して入射された光を吸収して媒質固有の光の波長に対して増幅特性を有する媒質が拡散されてなるものとすることができる。
 さらに、本発明に係る光発振器において、上記光導波路は、非線形光学結晶からなるものとすることができる。
 本発明は、光発振器であって、所定の周波数の変調信号を発振する発振手段と、入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光、又はレーザー増幅により発生された光を共振させる共振手段と、上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光を増幅させるとともに、これを出射側反射膜を介して外部へ出射させる光導波路と、上記光導波路が上面から形成された基板と、上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であり、レーザー発振する多モード間の位相同期をとることを特徴とする。
 本発明に係る光発振器において、上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であるものとすることができる。
 本発明では、光導波路を上面から形成させるための基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に接着剤で貼り付けて配設し、上記保護部材の端面と上記基板の端面を研磨することにより上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面上に共振手段を構成する入射側反射膜並びに出射側反射膜として単層又は多層の蒸着膜を上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り被着させるので、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜の反射率や共振器のフィネスを向上させ、デバイスそのものの機能を高めることが可能となる。上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜を被着させることにより、上記接着剤の加熱による放散ガスによる蒸着膜の光学特性を劣化や接着部の強度低下による蒸着膜の物理的な変形などの悪影響をを被ることなく、各反射膜として単層又は多層の蒸着膜を端面最上部の角の部分で剥がれることなく安定して被着させることができる。
 また、本発明では、入射端から出射端にかけて貫通するように少なくとも電気光学効果を有する基板にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路を備えているので、入射側反射膜を介して入射された光の単一の偏波成分のみが光導波路を伝搬され、位相変調されて出射端から出射される。共振手段を構成する入射側反射膜から出射側反射膜を備えることにより、出射側反射膜を介して単一の偏波成分のみの光変調出力として光コムを発生することができる。
 また、本発明では、少なくとも電気光学効果を有する基板にて形成された光導波路路上に形成され変調信号を往路方向又は復路方向へ伝搬させるためのリッジ構造を有する電極に供給される変調信号に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段を備えることにより、駆動に必要な変調信号として用いられるマイクロ波の電力を下げることができる。
 すなわち、本発明によれば、光導波路を形成させるための基板と同じ硬さを持つ保護部材の端面と上記基板の端面を研磨することにより、光導波路端面の角の加工時における欠けや丸まりを抑えて上記光導波路に対して垂直な平面に形成された光入射端面と光出射端面として単層又は多層の蒸着膜を有するとともに、リッジ構造を有する電極を備える光導波路を用いることにより、低電力駆動を実現し、省エネルギー化、低発熱化、小型・軽量化、信頼性の向上、低コスト化を可能にした光変調器や光コム発生器を提供することができる。
図1は、従来の光周波数コム発生器の原理的な構造を示す図である。 図2は、従来の導波路型光周波数コム発生器の原理的な構造を示す図である。 図3は、従来の導波路型光周波数コム発生器における入射側反射膜が形成されている端面を示す図である。 図4は、直交モードが混在する偏光成分を透過する光導波路を用いた従来の光コム発生器において、光共振器の共振長を帰還制御する場合に発生する直交偏光成分による透過モード波形の変形を示す特性図である。 図5は、本発明を適用した光変調器の構成を示す図である。 図6は、本発明を適用した光変調器の側面図である。 図7は、本発明を適用した光変調器における入射側反射膜が形成される平面を示す図である。 図8(A)、図8(B)、図8(C)、図8(D)、図8(E)、図8(F)は、本発明を適用した光変調器の作製方法につき説明するための各工程における要部縦断図である。 図9は、本発明を適用した光変調器の損失特性の実験結果につき説明するための図である。 図10は、保護部材とバッファ層の役割を共に担わせたウェハを有する光変調器の構成を示す図である。 図11(A)、図11(B)、図11(C)は、本発明を適用した往復変調型の光変調器の構成例を示す図である。 図12は、本発明を光周波数コム発生器に適用した場合における、サイドバンドの各周波数(波長)における強度分布を示す図である。 図13は、本発明を適用した光導波路型のレーザー発振器の構成を示す図である。 図14(A)、図14(B)は、本発明を適用したレーザー発振器の構成を示す図である。 図15は、本発明を適用した変形FP電気光学変調器の構成例を示す図である。 図16(A)、図16(B)は、本発明を適用した光変調器を基地局に搭載した通信システムの例につき説明するための図である。 図17(A)、図17(B)は、本発明を適用した光変調器の長さを限定する場合につき説明するための図である。 図18は、本発明を適用した光変調器の長さを限定する場合につき説明するための他の図である。 図19は、本発明を適用した光変調器の他の構成例を示す斜視図である。 図20は、上記光変調器の側面図である。 図21(A)、図21(B)、図21(C)、図21(D)、図21(E)、図21(F)は、上記光変調器の作製方法につき説明するための各工程における要部縦断図である。 図22は、本発明を適用した光変調器の端面反射率を計測するために作製した3本の光導波路を設けた基板の斜視図である。 図23は、上記基板の入射側端面を示す正面図である。 図24は、上記基板の平面図である。 図25は、本発明を適用したリッジ構造を有する電極を備える光変調器(光コム発生器)の構成を示す斜視図である。 図26(A)、図26(B)、図26(C)、図26(D)、図26(E)、図26(F)、図26(G)は、上記光変調器(光コム発生器)の作製方法につき説明するための各工程における要部縦断図である。 図27は、上記光変調器(光コム発生器)のリッジ構造を有する電極を形成する基板を示す斜視図である。 図28は、上記光変調器(光コム発生器)のリッジ構造を有する電極を示す要部縦断正面図である。 図29は、本発明を適用した光変調器について、電極のリッジ構造の有無による25GHzにおける駆動電圧(AC Vpi)の変化を実測した結果につき説明するための図である。 図30は、本発明を適用した光変調器について、電極のリッジ構造の有無による直流駆動電圧(DC Vpi)の変化を実測した結果につき説明するための図である。 図31は、本発明を適用した低電力型光コムモジュールを利用した光コム発生器の構成例を示すブロック図である。 図32は、本発明を適用した低電力型光コムモジュールを利用した光コム発生器の他の構成例を示すブロック図である。 図33は、本発明を適用した低電力型光コムモジュールを用いて構築した光コム光源の構成例を示すブロック図である。 図34は、上記光コム光源を用いて構成した光コム距離計の構成を示すブロック図である。 図35は、本発明を適用した単一の偏光成分のみ通す光導波路を用いた光コム発生器において、光共振器の共振長を帰還制御する場合に得られる変形のない透過モード波形を示す特性図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、共通の構成要素については、共通の指示符号を図中に付して説明する。また、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
 本発明は、図5、図6に示す光変調器8に適用される。この光変調器8は、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12を介して互いに対向するように設けられた第1の端面84並びに第2の端面85と、第1の端面84と同一の平面を形成するように光導波路12の上部に配設される第1の保護部材86と、第2の端面85と同一の平面を形成するように光導波路12の上部に配設される第2の保護部材87と、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される平面91上に被着される単層又は多層の蒸着膜からなる入射側反射膜93と、第2の端面85並びに第2の保護部材87の端面87aとの間で形成される平面92上に被着される単層又は多層の蒸着膜からなる出射側反射膜94と、電極83の一端側に配設され周波数fの変調信号を発振する発振器16と、電極83の他端側に配設される終端抵抗18とを備えている。
 基板11は、例えば引き上げ法により育成された3~4インチ径のLiNbOやGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板11上には、機械研磨や化学研磨等の処理を施す。
 光導波路12は、入射側反射膜93から出射側反射膜94にかけて貫通するように形成され、共振された光を伝搬させるべく形成されている。この光導波路12を構成する層の屈折率は、基板11等の他層よりも高く設定されている。光導波路12に入射した光は、光導波路12の境界面で全反射しながら伝搬する。一般に、この光導波路12は、基板11中においてTi原子を拡散させることにより、或いは基板11上へのエピタキシャル成長させることにより作製することができる。
 なお、この光導波路12として、LiNbO結晶光導波路を適用してもよい。このLiNbO結晶光導波路は、LiNbO等からなる基板11表面にTiを拡散させることにより形成することができる。このTiが拡散された領域については他の領域よりも屈折率が高くなるところ、光を閉じ込めることができるため、光を伝搬させることができる光導波路12を形成することができる。このような方法に基づいて作製したLiNbO結晶型の光導波路12は、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して光の変調を行うことができる。
 バッファ層14は、光導波路12における光の伝搬損失を抑えるべくこれを被覆するものである。ちなみに、このバッファ層14の膜厚をあまりに厚くし過ぎると、電界強度が下がり、変調効率が低下するため、光の伝搬損失が大きくならない範囲においてなるべく膜厚を薄く設定するようにしてもよい。
 電極83は、例えばTiやPt、Au等の金属材料からなり、発振器16から供給された周波数fの変調信号を光導波路12に駆動入力することにより、光導波路12内を伝搬する光に位相変調をかける。
 第1の保護部材86並びに第2の保護部材87は、それぞれ基板11の材質に対応する部材から構成される。第1の保護部材86並びに第2の保護部材87は、基板11と同一の材質から構成してもよい。また上記平面91を形成する第1の保護部材86の端面86aと第1の端面84とが、互いに同一の結晶方位を有するように加工されていてもよく、同様に上記平面92を形成する第2の保護部材87の端面87aと第2の端面85とが、互いに同一の結晶方位を有するように加工されていてもよい。
 入射側反射膜93及び出射側反射膜94は、光導波路12に入射した光を共振させるために互いに平行となるように設けられたものであり、光導波路12を通過する光を往復反射させることにより共振させる光共振器5を構成する。
 入射側反射膜93は、図示しない光源から周波数νの光が入射される。また、この入射側反射膜93は、出射側反射膜94により反射されて、かつ光導波路12を通過した光を反射する。出射側反射膜94は、光導波路12を通過した光を反射する。またこの出射側反射膜94は、光導波路12を通過した光を一定の割合で外部に出射する。
 なお、これら入射側反射膜93及び/又は出射側反射膜94は、それぞれ平面91、92一面に亘って形成されていてもよいが、光導波路12の端部のみを最低限被覆するように形成されていればよい。
 終端抵抗18は、電極83の終端に取り付けられる抵抗器であり、終端における電気信号の反射を防止することにより、その波形の乱れを防ぐ。
 図7は、入射側反射膜93が形成される平面91上を図6中A方向から示している。
 光導波路12の光入射端を含む第1の端面84と保護部材86の端面86aとにより、同一の平面91が形成されている。この形成される平面91は、傾き0.05°以下である。この傾き0.05°の平面91に対して、1/eビーム径10μmの光が傾き0.05°の端面で反射される場合における損失を計算すると、4×10-4であり、入射側反射膜93の反射率と比較して無視できるほど小さい。
 このように第1の端面91並びに第2の端面92を光導波路12に対して略垂直に形成させることにより、これに単層又は多層の蒸着膜として被着される入射側反射膜93並びに出射側反射膜94により光を効率よく共振させることができる。
 上述の如き構成からなる光変調器8において、入射側反射膜93を介して外部から入射された光は光導波路12内を往路方向へ伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した光は光導波路12内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、光は光導波路12内を共振することになる。
 また、光が光導波路12内を往復する時間に同期した電気信号を電極83を介して駆動入力とすることにより、光がこの光変調器8内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数νを中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fと同等である。このため、光変調器8は、多数のサイドバンドにより構成される光周波数コム発生器としても適用可能となる。
 次に、本発明を適用した光変調器8の作製方法につき図8を用いて説明をする。
 先ずステップS11において、図8(A)に示すように、LiNbO結晶からなる基板11の表面にフォトレジストのパターンを作製し、そこにTiを蒸着させる。次にこのフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製する。
 次にステップS12へ移行し、図8(B)に示すように、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて光導波路12を形成する。
 次にステップS13へ移行し、図8(C)に示すように、バッファ層14としてのSiO薄膜を基板11表面に蒸着させる。このステップS13では、SiOウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、後述するステップS14における電極の取り付け領域を考慮して、この蒸着させたバッファ層14を研磨することにより適当な膜厚に制御するようにしてもよい。
 次にステップS14へ移行し、図8(D)に示すように、バッファ層14上に電極83を形成させる。次にステップS15へ移行し、図8(E)に示すように、光導波路12の上部において保護部材86、87を接着する。この保護部材86、87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86、87は、基板11をLiNbO結晶で構成した場合には、同一材質としてのLiNbOにより構成してもよい。このステップS15においては、貼り付けた保護部材86、87につき、それぞれ端面86a、87aが第1の端面84、第2の端面85との間で、それぞれ平面91、92を形成することができるように、切り揃える。
 上記光導波路12の上部において保護部材86、87を接着する場合に使用する接着剤は、エポキシ系やアクリル系等の熱硬化型光学用接着剤又は光硬化型光学用接着剤が使用される。
 最後にステップS16へ移行し、図8(F)に示すように、この得られた平面91、92を光導波路12に対して垂直な平面に研磨する。そしてこの研磨された光導波路12に対して垂直な平面91、92上に入射側反射膜93、出射側反射膜94をそれぞれ一面に亘って形成させる。
 ここで、入射側反射膜93、出射側反射膜94は、蒸着法、スパッタ法、化学気相成長法等により、単層又は多層の蒸着膜として平面91、92上に被着形成される。
  蒸着膜として入射側反射膜93、出射側反射膜94を形成する際には、上記光導波路12の上部において保護部材86、87を接着する使用された光学用接着剤の耐熱温度、例えばガラス転移温度Tgよりも低い温度条件にて蒸着処理が行われる。
 このように、本発明を適用した光変調器8では、各端部において保護部材86、87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12の端面が図7に示すように平面91(92)の略中央部に移動する。その結果、ステップS16における研磨時において平面91(92)の角が欠けた場合においても、光導波路12の端面が欠けることがなくなる。即ち、光導波路12の端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12の各端面からの光損失を極力抑えることが可能となる。
 また、保護部材86、87の材質を基板11の材質に対応する最適な材質で構成することにより、ステップS16における研磨速度を基板11における第1の端面84、第2の端面85から端面86a、87aにかけて均一にすることができる。これにより、光導波路12の端面が加工時に丸くなることがなくなり、平坦な研磨面からなる光導波路12に対して垂直な平面91、92を得ることができ、光導波路12端面における反射損失を最小限に抑えることが可能となる。また、各平面91、92を構成する端面の結晶方位を同一にすることにより、反射損失を更に抑え込むことも可能となる。
 さらに、この保護部材86、87をあえて設けることにより、ステップS16における研磨の精度が向上し、得られる平面91(92)の光導波路12に対する垂直性も向上する。その結果、かかる垂直性の逸脱による光損失も最小限に抑えることが可能となる。
 また、この保護部材86、87を設けることにより、単層又は多層の蒸着膜として被着すべき入射側反射膜93並びに出射側反射膜94が平面91、92から他の側面に成膜粒子の側面への回り込み、ならびに、側面方向から飛来した成膜粒子の端面への回り込みによる膜厚の変化を抑えることができる。このため、反射率を確保する上で重要となる光導波路12の端面付近の膜厚を最適化することができ、反射率をより向上させることができる。
 また、入射側反射膜93、出射側反射膜94は、基板11における第1の端面84、第2の端面85から端面86a、87aにかけて広範囲に亘って形成されているため、非常に安定であり、剥がれにくく、さらに製膜の再現性をも向上させることが可能となる。
 実際に、保護部材86、87を設けたことによる効果を実験的に検証すべく、保護部材86、87を貼り付けた後の平面91(92)の研磨を行ったところ、光導波路12の端面部分における欠けや曲がりは一切発生せず、単層又は多層の蒸着膜からなる入射側反射膜93、出射側反射膜94の被着に適した、平坦な光学研磨が施されていることを確認することができる。
 特に第1の保護部材86並びに第2の保護部材87を、基板11と同一の材質から構成し、また平面91、92を形成する保護部材86、87の端面86a、87aと第1の端面84、第2の端面85とが、互いに同一の結晶方位を有するように加工することにより、結晶の硬度が両者間で同一となるため、研磨速度の違いにより平面91、92が傾くこともなくなる。
 このように、本発明を適用した光変調器8では、各端部において保護部材86、87を貼り付けることにより、光導波路12の端面を平面91(92)の略中央部に移動させることができるため、光導波路12の端面の欠けや丸まり、光導波路12と平面91、92間の垂直性の確保、平面91、92における研磨精度の向上、入射側反射膜93及び出射側反射膜94の剥がれや回り込みの抑制、入射側反射膜93及び出射側反射膜94における反射率の向上、設計した反射特性の実現、反射膜の性能再現性向上が可能となる。その結果、入射側反射膜93及び出射側反射膜94より構成される光共振器5のフィネスを向上させることができ、性能のよい光変調器、光周波数コム発生器を再現性よく作製することが可能となり、歩留まりを向上させることも可能となる。
 実際に上述の構成からなる光変調器8を、研磨された平面91、92上において、反射率97%からなる反射膜93、94を単層又は多層の蒸着膜として被着させることにより作製した結果、光導波路12の結晶長を27.4mmとした場合(以下、短共振器という。)において、最高61ものフィネスを得ることができ、また、光導波路12の結晶長を54.7mmとした場合(以下、長共振器という。)において、最高38ものフィネスを得ることができた。従来の導波路型の光共振器(IEEE Photonics Technology Letters、Vol.8、 No. 10、1996)のフィネスは、30が最高であったことから、この端面研磨、コーティングの精度を向上させた光変調器8は、フィネスを大幅に向上させることができることが分かる。特に、作製した光変調器8のサンプル6個全てにつき、30以上のフィネスを得ることができ、作製プロセスの再現性が高いことも示されている。
  すなわち、光導波路12を上面から形成させるための基板11と同じ硬さを持つ保護部材86、87を、少なくともその一の端面が上記光導波路12における光入射端又は光出射端を含む上記基板11の端面と同一の平面91、92を形成するように上記光導波路12の上部に光学用接着剤で貼り付けて配設し、上記保護部材86、87の端面と上記基板11の端面を研磨することにより、上記光導波路12の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路12に対して垂直な平面91、92を形成することができる。また、上記接着剤で貼り付けられた上記保護部材86、87の端面と上記基板11の端面とで形成される平面91、92の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜として反射膜を被着させることにより、上記接着剤の加熱による放散ガスによる蒸着膜の光学特性を劣化や接着部の強度低下による蒸着膜の物理的な変形などの悪影響をを被ることなく、各反射膜93、94として単層又は多層の蒸着膜を端面最上部の角の部分で剥がれることなく安定して被着させることができる。これにより、光導波路12端面の角の加工時における欠けや丸まりを抑え、各反射膜93、94につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜93、94の反射率や共振器のフィネスを向上させ、デバイスそのものの機能を高めることが可能となる。
 図9は、光導波路12における往路方向又は復路方向のうち何れか一の伝搬方向あたりの光共振器5の内部損失を示している。この図9では、上述した長共振器で構成される光変調器8につきの伝搬方向あたりの損失を3個のサンプルに亘り測定してプロットし(図中●で示す)、また短共振器で構成される光変調器8につきの伝搬方向あたりの損失を3個のサンプルに亘り測定してプロットし(図中■で示す)、得られた各プロットを直線で近似している。
 この得られた直線より、長さlの光共振器5の光導波路12における伝搬方向あたりの内部損失Lsは、反射膜93、94における反射率をR、光導波路12における単位長さあたりの損失をαとするとき、損失そのものが小さい場合においてLs=α-lnRで表される。測定されたフィネスをFとしたとき、一伝搬方向あたりの損失Lsは、Ls=π/Fと求められる。測定したフィネスFから内部損失Lsを求め、これをグラフ化すると、図9に示すように光導波路12の結晶長が長くなるにつれ、光導波路12による内部損失が増加することが分かる。
 ちなみに、この図9において光共振器5の長さが0である場合における内部損失は、結晶端面において生じた損失に基づくものである。即ち、反射率97%(透過率3%)の反射膜93、94がコーティングされているため、最低3%の損失が生じることになる。しかしこの図9より、平面91、92における反射膜93、94への透過以外に目立った損失がないことが分かる。
 光導波路の導波損失率と鏡の透過率を一致させることが共振器のフィネスと透過率を高め共振器の性能を上げることにつながる。光コム発生器として使用可能な光導波路の損失率はおおむね片道当たり1%~5%の範囲に入っているため、反射率が95%~99%の範囲にある反射膜93、94を被着させると性能の良い光共振器を製作することができる。
 同様に、この光変調器8を光周波数コム発生器に応用した場合には、保護部材86、87を貼り付けた状態で平面91、92の研磨と入射側反射膜93及び出射側反射膜94の被着を行うため、これら反射膜93、94の反射率を向上させることが可能となる。その結果、光共振器5のフィネスを向上させることができ、サイドバンドの発生周波数帯域を拡大させることもできる。
 ちなみに、この光変調器8を光周波数コム発生器に応用する場合には、入射側反射膜93を、光導波路12内へ入射させる光のみ透過させ、光導波路12内において発生させたサイドバンドを反射する狭帯域フィルタに置換してもよい。このような狭帯域フィルタに置換することにより、入射させる光からサイドバンドへの変換効率を向上させることができる。
 同様に、出射側反射膜94は、出力スペクトルフラット化のためのフィルタに置換してもよい。通常の光周波数コム発生器において、得られるサイドバンドの光強度は、その次数の増加とともに指数関数的に減少する。そこで出射側反射膜94を、次数に応じた光強度の減少を相殺するような特性を持つフィルタに代替させることにより、得られる各サイドバンドの光強度を平坦化させることが可能となる。
 なお、入射側反射膜93及び出射側反射膜94それぞれにつき、上述した各フィルタに置換してもよいし、何れか一方の反射膜93、94につき上述した各フィルタに置換してもよい。
 なお、本発明を適用した光変調器8並びにこれを応用した光周波数コム発生器は、平面91、92に対して直接的に入射側反射膜93並びに出射側反射膜94を形成させるモノリシック型で構成されている。換言すれば、この光変調器8は、平面91、92と空間的に離間した位置に各反射膜93、94を設ける構成ではないため、光共振器5のFSR(FreeSpectral Range)は、ステップS16における研磨後の光導波路12を構成する結晶の平面91から平面92に至るまでの結晶長さに支配される。このため、光変調器8は、光共振器5のFSRの整数倍が所望の変調周波数となるようにきわめて精密な結晶長さの制御が要求される。
 例えば、光共振器5のFSRを周波数fFSRに一致させる場合、光導波路12の群屈折率nと、入射側反射膜93及び出射側反射膜94の群遅延時間の平均値τを考慮して、光導波路12の結晶長さ(基板11における第1の端面84から第2の端面85に至るまでの間隔)Lを以下の式(1)
L=c/2nFSR-cτ/n・・・・・・・・・・・(1)
(cは真空中の光速度)
に合わせることにより、光共振器5のFSRをfFSRに一致させることができ、変調効率を大幅に向上させることが可能となる。
 なお本発明は、上述した実施の形態に限定されるものではない。例えば図10に示すような光変調器9にも適用することができる。この光変調器9において上述した光変調器8と同一の構成、要素については、図5、図6における説明を引用し、ここでの説明を省略する。
 光変調器9は、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、光導波路12の上面に設けられたウェハ95と、変調電界の方向が光の伝搬方向に対して略垂直になるようにウェハ95の上面に設けられた電極83と、光導波路12を介して互いに対向するように設けられた第1の端面84並びに第2の端面85と、第1の端面84並びにウェハ95の端面96aとの間で形成される平面101上に被着される単層又は多層の蒸着膜からなる入射側反射膜93と、第2の端面85並びにウェハ95の端面97aとの間で形成される平面102上に被着される単層又は多層の蒸着膜からなる出射側反射膜94とを備えている。
 この光変調器9においても、上述した光変調器8と同様に、周波数fの変調信号を発振する図示しない発振器と、図示しない終端抵抗が接続される。
 ウェハ95は、SiO等からなり、光導波路12と略同一の長さでコ字状となるように構成される。このウェハ95は端部のみ厚く構成され、電極83が配設される中央部分のみ薄く構成する。これにより光導波路12内を伝搬する光につき電極83から変調電界を効率よく印加することができる。
 このウェハ95は、上述したバッファ層14としての役割を担い、基板11の表面直下に形成されてなる光導波路12を被覆することにより光損失を抑える。またこのウェハ95は、上述した光変調器8における第1の保護部材86並びに第2の保護部材87としての役割も担い、それぞれ端面96a、97aが第1の端面84、第2の端面85との間で、それぞれ平面101、102を形成することができるように切り揃えられている。
 このウェハ95を配設する場合には、端部の厚みに合わせたSiOのウェハを基板11上に貼り付け、次に電極83を設ける部分につき切削していくことで、図10に示すようなコ字状に仕上げることが可能となる。
 即ち、この光変調器9は、光変調器8と同等の効果が得られるとともに、保護部材を取り付ける手間を省くことができるという利点がある。
 なお、本発明は、上述した実施の形態に限定されるものではない。例えば図11に示すような往復変調型の光変調器51にも適用することができる。この光変調器51において上述した光変調器8と同一の構成、要素については、図5、図6における説明を引用し、ここでの説明を省略する。
  また、上記光変調器51は、光導波路12の一の端部につき高反射膜としての単層又は多層の蒸着膜からなる出射側反射膜94を設け、他の端部につき単層又は多層の蒸着膜からなる反射防止膜63を設けることにより、図11に示すように、いわゆる往復変調型の光変調器51として動作させることもできる。
 光変調器51は、図11(A)に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に被着される単層又は多層の蒸着膜からなる反射防止膜63と、平面92上に被着される単層又は多層の蒸着膜からなる出射側反射膜94とを備えている。
 また、この光変調器51を実際に使用する場合には、更に図11(B)に示すように、図示しない光源からの入力光を伝送し或いは光変調器51から出力される出力光を外部へ伝送するための光ファイバ等で構成される光伝送路23と、上記入力光並びに出力光を分離するための光サーキュレータ21と、この光サーキュレータ21に光接続されるフォーカサー22からなる光学系が実装され、電極83の一端側に配設され周波数fの変調信号を発振する発振器16と、電極83の他端側に移相器19a、反射器19bとがさらに配設される。
 反射防止膜63は、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される平面91上に被着される。この反射防止膜63は、低反射膜により構成されていてもよいし、無コートで構成することにより、低反射膜を被着したのと同等の効果が得られるようにしてもよい。
 フォーカサー22は、光サーキュレータ21を通過した入力光を光導波路12の端部へ集束させるとともに、光導波路12の端部から反射防止膜63を透過した出力光を集光してこれを光サーキュレータ21へ送る。このフォーカサー22は、光導波路12の径に応じたスポット径となるように入力光を光結合させるためのレンズ等で構成してもよい。
 このような構成からなる光変調器51は、光導波路12の一の端部につき高反射膜としての出射側反射膜94を設け、他の端部につき反射防止膜63を設けることにより、いわゆる往復変調型の光変調器として動作する。光導波路12に入射された入力光は、光導波路12を伝搬しながら変調され、端面の出射側反射膜94により反射された後、再び光導波路12を伝搬して反射防止膜63を透過してフォーカサー22側に出射され出力光となる。同時に、発振器16から供給される周波数fの電気信号は、入力光を変調しつつ電極83上を伝搬した後、反射器19bにより反射されることになる。
 この光変調器51では、上記電極83 に対して発振器16より発振された周波数fの変調信号を供給すると、当該変調信号は、電極83を往路方向へ伝搬することになり、光導波路12内を往路方向へ伝搬する光につき位相を変調させることができる。電極83上を往路方向へ伝搬した変調信号は、そのまま反反射器19bにより反射され、移相器19aにより位相調整された上で、今度は電極83を復路方向へ伝搬することになる。これにより、光導波路12内を復路方向へ伝搬する光につき位相変調させることができる。ちなみに、この移相器19aにより調整される位相は、光導波路12内を復路方向へ伝搬する光につき施される位相変調が、往路方向へ伝搬する光に対する移相変調と同様になるようにしてもよい。
 この光変調器51では、光導波路12を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても位相変調を施すことができるため変調効率を増加させることができる。
 また、この光変調器51では、光が光導波路12内を往復する時間に同期した電気信号を電極83から駆動入力とすることにより、光導波路12を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fと同等になる。
 また、この光変調器51は、光を狭小な光導波路12に押し込めて変調させることができるため、変調指数を大きくすることができ、光周波数コム発生器1として機能して、バルク型の光周波数コム発生器と比較して発生するサイドバンド数やサイドバンドの光量を多くすることができる。
 なお、この光変調器51を用いた光周波数コム発生器1では、反射器19bより反射されて移相器19aにより調整される変調信号の位相を、電極83の形状、変調信号の周波数f、並びに光導波路12の群屈折率nに応じて調整することにより、光の位相に高精度に合わせ込むことことにより、光導波路12を往路方向へ伝搬する光のみならず復路方向へ伝搬する光についても高効率に位相変調を施すことができ、変調効率を最大2倍近くまで増加させることができる。また、電極83へ印加する電圧を上げることなく、変調効率を効果的に向上させることができるため、消費電力を削減でき、光周波数コム発生器1を配設するヘテロダイン検波系自体をスリムにすることができ、コストを大幅に削減することができる。
 また、この光変調器51は、図11(C)に示すように、発振器25並びに終端抵抗27を電極83の一端側に設け、発振器25から供給される電気信号を電極83上において伝搬させた上で、これを電極83の他端側で反射させるようにしてもよい。このとき、発振器25から供給される電気信号と、電極83の他端側で反射された電気信号を分けるためのアイソレータ26を設けるようにしてもよい。また、この光変調器51では、反射率の高い単層又は多層の蒸着膜からなる入射側反射膜93を被着させる。これにより光導波路12内部において光を共振させることができる。また、この入射側反射膜93の代替として、上述した低反射率の反射防止膜63を被着させるようにしてもよい。これにより、光を光導波路12内において一度だけ往復させつつ、位相変調を施すことも可能となる。
 この光変調器51では、出射側反射膜94により反射される光の位相に合わせて電気信号の反射位相を調整することにより、電極83を往復する電気信号それぞれにより光の位相を変調させることができるため、変調効率を増大させることができる。特に、保護部材86、87を貼り付けることにより、上述の如く膜63、93、94の剥がれや欠け等を抑え、フィネスをより向上させた光変調器51では、光変調効率をさらに増大させることが可能となる。
 また、これら光変調器51を光周波数コム発生器に適用した場合において、電極を往復する電気信号により、光導波路12内で共振する光につき往復変調を施すことが可能となる。かかる場合において、発生させたサイドバンドの各周波数(波長)における強度分布は、図12に示すように、電極83へ印加する電気信号の変調周波数を25GHzとし、そのパワーを0.5Wとした場合において、光導波路12内に加わる変調の大きさとして表される変調指数は、伝搬方向あたりπラジアンである。この結果より、位相を半波長動かすために必要な電圧として定義される半波長電圧Vπは、7.1Vであることが分かる。
 短共振器で構成される光変調器8は、長共振器で構成される光変調器8と比較して、上述の如くフィネスが高い分、サイドバンドの発生の効率は高く、またサイドバンドの発生周波数帯域幅Δfは11THzに達する。また、短共振器で構成される光変調器8の電極83の長さは、僅か20mmであるが、長共振器で構成される光変調器8と比較して遜色のない変調効率が得られる。即ち、往復変調が有効に作用していることが分かる。
 なお、この光変調器51は、電気信号を反射させる代わりに、信号源としての発振器16の出力を分割することにより、電極83の両端から電気信号を別々に駆動入力するようにしてもよいし、電極83の両端にそれぞれ別の発振器16を接続することにより、これを実行するようにしてもよい。
 なお、本発明は、例えば図13に示すような光導波路型のレーザー発振器52にも適用することができる。このレーザー発振器52において、上述した光変調器8と同一の構成要素については、図5、図6における説明を引用し、ここでの説明を省略する。
 レーザー発振器52は、図13に示すように、基板11と、基板11上に形成されてなる光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に被着される単層又は多層の蒸着膜からなる入射側反射膜93と、平面92上に被着される単層又は多層の蒸着膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、このレーザー発振器52を実際に使用する場合には、波長λの光を出射する励起光源28が実装される。
 このレーザー発振器52における光導波路12中には、例えばエルビウムイオンのような、入射側反射膜93を介して入射された光を吸収して媒質固有の光の波長に対して増幅特性を有する増幅媒質を拡散させる。これにより、光導波路12を光の増幅媒質として働かせることが可能となる。またこのような増幅媒質としての光導波路12に対して、適当な波長の光を入射させると、エネルギー準位で決まる固有の波長に対する光の増幅器として作用することになる。また、自然放出遷移により発生した光を増幅して発振する発振器としても作用することになる。レーザー発振するのは、光共振器5内における増幅率が損失率を上回った場合であるから、保護部材86、87を貼り付けて反射膜93、94の剥がれや欠け等を防止しつつ光導波路12の端面における反射特性を高めることにより、光共振器5内の損失率も低くなることから、レーザー発振の閾値を低下させることができる。
 光導波路12内に特別な増幅媒質を導入しなくても、この光導波路12としてLiNbO結晶のような非線形光学結晶で構成することにより、光導波路12内に入射される光によって誘起される非線形分極により、当該入射される光とは異なる波長に増幅利得を持たせることが可能となる。例えば、周期分極反転構造を持つ非線形光学結晶を用いて光導波路12を構成しても良い。
 このレーザー発振器52における光共振器5を構成する入射側反射膜93は、励起光源28からの光に対して低反射率であり、かつ光導波路12により発振される光の波長に対して高反射率の膜を使用してもよい。また、この光共振器5を構成する出射側反射膜94は、光導波路12により発振される光の波長に対して最適な出力カップリングが可能な反射率を有する膜を使用してもよい。
 ちなみに、このレーザー発振器52を光パラメトリック発振器として適用してもよい。かかる場合には、発振が起こるのは光共振器5内の増幅率が損失率を上回った場合であるから、保護部材86、87を貼り付けた反射膜93、94の剥がれや欠けのない高フィネスの光共振器5を構成することにより、発振の閾値を低下させることができる。
 上述の如くレーザー発振器52やこれを適用する光パラメトリック発振器において光導波路12を用いる利点は、光を狭い領域に閉じ込めることができることと、電界強度が高めることができることによる増幅率の向上である。特にこのレーザー発振器52等では、従来の発振器と比較して高いフィネスを得ることができるため、光導波路12を用いることの利点がさらに助長されることになる。
 なお本発明は、例えば図14に示すようなモードが同期された光を発振するレーザー発振器53にも適用することができる。このモードが同期された光とは、等しい周波数間隔で発振している多数のモードの位相を揃えたものである。このレーザー発振器53において、上述した光変調器8並びにレーザー発振器52と同一の構成、要素については、図5、図6、図13における説明を引用し、ここでの説明を省略する。
 レーザー発振器53は、図14(A)、図14(B)に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に被着される単層又は多層の蒸着膜からなる入射側反射膜93と、平面92上に被着される単層又は多層の蒸着膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、このレーザー発振器53を実際に使用する場合には、波長λの光を出射する励起光源28が実装され、更に電極83の一端側に配設され周波数fの変調信号を発振する発振器16と、電極83の他端側に配設される終端抵抗18とが配設される。この入射側反射膜93と出射側反射膜94とは、それぞれレーザー発振する多モード間の位相同期をとる機能を有する。
 このような構成からなるレーザー発振器53では、上述したレーザー発振器52において光導波路12の上部に電極83を配設することにより、各モードにつき同期がとられたモード同期レーザーの発振が可能となる。ここで、光共振器5のFSRの整数倍に一致する周波数の変調信号を発振器16から駆動入力することにより、多モードの光を発振する光導波路12の電気光学効果に基づき、各モードの位相同期が施される結果、モード同期レーザーを発振するレーザー発振器として動作することになる。
 このモード同期が施されると、レーザー発振器53より発振される光の時間波形は、増幅周波数帯域幅の逆数程度の時間幅を持つ短パルスとなる。また、周波数軸の波形は、一定の周波数間隔でサイドバンドが配列する光周波数コムとなる。このため、レーザー発振器53に対する制御を最適化させることにより、光の周波数測定への応用や多波長光源への応用も可能となる。またこのレーザー発振器53を、上述したレーザー発振器52と同様に光パラメトリック発振器として適用してもよいことは勿論である。特にこのレーザー発振器53は、保護部材86、87が貼り付けられているため反射膜93、94の剥がれや欠けがなく、光共振器5全体のフィネスを向上させることができ、モード同期レーザーを効率よく発振させることが可能となる。
 ちなみに、レーザー発振器53におけるモード同期は、上述した電気光学効果を利用するものに限定されるものではなく、光共振器5内における光学素子の非線形効果を利用するものであればいかなる現象に基づくものであってもよい。例えば、LiNbO結晶を光導波路12に用いることにより、その効果をより際立たせることも可能となる。
 なお、本発明は、例えば図15に示すような変形ファブリペロー(FP)電気光学変調器54にも適用することができる。この変形FP電気光学変調器54において、上述した光変調器8並びにレーザー発振器52と同一の構成、要素については、図5、図6、図13における説明を引用し、ここでの説明を省略する。
 変形FP電気光学変調器54は、図15に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に被着される単層又は多層の蒸着膜からなる入射側反射膜93と、平面92上に被着される単層又は多層の蒸着膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、この変形FP電気光学変調器54を実際に使用する場合には、反射鏡31が実装され、必要な場合には、更に電極の一端側に配設され周波数fの変調信号を発振する図示しない発振器と、電極の他端側に配設される図示しない終端抵抗とが配設される。
 反射鏡31は、外部から供給される光を透過させ変形FP電気光学変調器54側の光導波路12の端部へ導くとともに、当該光導波路12の端部から出射された光を反射する。即ち、この反射鏡31を設けることにより、光導波路12内へ入射させる光のみ透過させ、光導波路12内で発生させたサイドバンドを反射することができるため、入射させる光からサイドバンドへの変換効率を向上させることができる。即ち、このような構成からなる変形FP電気光学変調器54では、入射側反射膜93を、光導波路12内へ入射させる光のみ透過させ発生させたサイドバンドを反射する狭帯域フィルタに置換した場合と同様の効果を得ることができる。特にこの変形FP電気光学変調器54では、保護部材86、87が貼り付けられているため反射膜93、94の剥がれや欠けがなく、光共振器5全体のフィネスを向上させることができるため、サイドバンドへの変換効率をより高めることが可能となる。
 なお、本発明を適用した光変調器8は更に以下に説明する通信システム55に適用することもできる。
 通信システム55は、例えば、WDM通信方式に基づいて符号分割多重接続を行うシステムが適用され、図16(A)に示すように、歩行者が携帯可能な移動体端末としての携帯通信機器57と、携帯通信機器57との間で無線信号の送受信を行うことにより通信を中継するための複数の基地局58と、接続された光ファイバ通信網35、38を介して基地局58を含めたネットワーク全体における通信を制御するホスト制御装置59とを備えている。
 携帯通信機器57は、各地区に設けられた基地局58との間で無線信号を送受信すべく、車載或いは携帯できるように構成されている。即ち、この携帯通信機器57は、例えばファクシミリ通信やパーソナルコンピュータ等に搭載されてデータ通信を行うための装置を含むものであるが、一般には音声による通話を行うための携帯電話やPHS(パーソナルハンディホンシステム)等であり、特に小型軽量で携帯性に特化した機器として構成されている。
 各基地局58には、図16(A)に示すように光変調器8が搭載される。光変調器8における電極83には、携帯通信機器57との間でマイクロ波を送受信するためのアンテナ33が接続されている。また、この光変調器8は、ホスト制御装置59から光ファイバ通信網35を介して伝送された光の一部が入射側反射膜93を介して光導波路12内へ入射される。この光導波路12内へ入射された光は、略平行に配設された入射側反射膜93並びに出射側反射膜94により共振されることになる。またこの光変調器8では、携帯通信機器57から供給されるマイクロ波をアンテナ33を介して受信し、かかるマイクロ波に応じた変調信号を電極83を介して光導波路12内を伝搬する光に印加することができるため、携帯通信機器57からの送信情報に応じた位相変調をこれに施すことが可能となる。なお、光変調器8は、位相変調した光を出射側反射膜94を介して出射させる。出射された光は光ファイバ通信網38を介してホスト制御装置59へ伝送されることになる。
 ホスト制御装置59は、基地局58へ伝送するための光を発生させ、また基地局58において変調された光を光電変換して検波出力を得る。即ち、このホスト制御装置59は、様々な基地局からの検波出力を一括管理することができる。
 このような通信システム55では、ホスト制御装置59から出力された光を光ファイバ通信網35を介して基地局58へ伝送する。基地局58は、この伝送された光を光変調器8における光導波路12内を伝搬させるとともに、更にマイクロ波に応じた位相変調を施した上で、光ファイバ通信網38を介してこれをホスト制御装置59へ伝送する。
 即ち、基地局58へ伝送される光は、当該基地局58周辺にある携帯通信機器57から発呼された場合に、上述したマイクロ波に含まれる通話内容に応じた位相変調が施されることになる。一方、この基地局58へ伝送される光は、当該基地局58周辺にある携帯通信機器57から発呼されなかった場合に、上述した位相変調が施されることはなくなる。ホスト制御装置59では、基地局58から光ファイバ通信網38を介して伝送される光につき位相変調が施されていた場合には、これを光電変換することにより、通話内容に応じた検波出力を取得することが可能となる。
 この通信システム55では、保護部材86、87を貼り付けた高フィネスの共振器を有する光変調器8を基地局58へ搭載するため、光導波路12内を伝搬する光の往復回数を増やすことができ、光変調器8自体の感度を向上させることが可能となる。
 なお、この通信システム55では、図16(B)に示すように、一芯双方向で光伝送するようにしてもよいことは勿論である。
 さらに、本発明を適用した光変調器8では、図5に示すように光導波路12の往路方向(復路方向)の結晶長LCを27mm(又は54mm)程度になるように調整されていてもよい。かかる結晶長にすることにより奏する効果につき、以下において説明する。
 光導波路12における往路方向(復路方向)へ伝播する光の損失率をLoとしたとき、かかる損失率Loと光導波路12の結晶長LCとの関係を図17(A)に示す。結晶長LCが増加していくにつれて、伝播する光の損失は徐々に大きくなることが示されている。また図17(B)は、かかる結晶長LCに対するフィネスの関係を示している。この図17(B)に示すようにフィネスは、一般にπ/Loで表されるが、結晶長LCが小さいほど高くなることがわかる。
 光変調器8の性能指数は、Vπ/(フィネス)で表すことができる(Vπは光位相をπラジアン変調するために要する電圧)。この性能指数が小さいほど光変調器8として、また当該光変調器8を用いた光周波数コム発生器として、性能がより優れていることになる。
 図18は、これらフィネスや損失率Loに基づいて計算した性能指数を結晶長LCとの関係において示している。この図18において、lmは、結晶長LCに対する電極83の長さの差分を表している。一般に光導波路12の両端から数mmは電極を設けることができないため、このlmを6mmとした場合と、lmを1mmとした場合を例に挙げて計算をしている。
 この図18に示すようにlm=6mmである場合において、結晶長LCが15~30mmのときに性能指数が小さくなることが分かる。またかかる性能指数の結晶長LCに対応するFSRをプロットすると、2.5GHz付近において最も優れた性能となることが分かる。ちなみに、この図18における傾向をシミュレーションする上において、変調周波数を25GHzとし、電極83によるマイクロ波の伝送損失を-10dB/50mm@25GHzと仮定し、さらに変調効率は、往復変調時においてPin=0.43W、結晶長LC=27mm(電極83の長さが21mmのとき)である場合に変調指数がπラジアンであることを考慮し、さらに光の伝送損失αが-0.0106/cmである場合を仮定している。また、ミラーの反射率は、結晶長に応じた損失率に対して最適化されている。
 このため、lm=6mmである場合において、光導波路12の結晶長LCを27mm程度とすることにより、光変調器8としての性能をより向上させることが可能となる。ちなみに、この結晶長LCは27mmにある場合に限定されるものではなく、24±6mmの範囲であればいかなる長さで構成されていてもよい。なお、実用上の結晶長LCは、光通信分野における時分割多重化(TDM:Time Division Multiplex)光通信における10GHzや波長割多重化(WDM:Wavelenth Division Multiplex)光通信における25GHzの最大公約数である5GHzの整数分の1とするのが好適であり、27mmは2.5GHzに相当している。
 また、結晶長LCに対応するFSRのプロットが1.25GHzである場合においても、同様に優れた性能が示されることから、これに対応する結晶長LCを54mm程度で構成してもよい。
 またlm=1mmである場合においても、同様にシミュレーションすると、10GHz程度で優れた性能が示されることから、結晶長LCをこれに対応させることで、光変調器8としての性能をより高めることが可能となる。
 なお、上記図8に示した本発明を適用した光変調器8の作製方法では、ステップS11、S12の光導波路12の作製工程において、Ti原子を基板11中に熱拡散させて光導波路12を形成したが、LiNbO結晶を安息香酸に浸すことによりLiをHに置換させるプロトン交換法にこれを代替してもよい。
 ここで、光導波路に閉じ込めた光を共振させる導波路型光共振器を用いた光コム発生器における光コム発生において、直交する偏光成分は、光コム発生器の共振周波数をレーザー周波数に一致させるための制御を不安定にすることがあり、制御点のずれ、制御の発振等の原因となり、光コムを例えば測定対象までの距離や高さを測定する計測装置に利用する場合に、直交する偏光成分が計測誤差の要因になっていたが、例えば図5に示すような構成の単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを有する導波路型光変調器8Aを採用して、光コム発生に寄与しない直交偏光成分の出力を抑制して、偏光消光比の向上をはかり、単一偏光度を高めた光コム出力を得られるようにすることにより、光導波路の透過モード波形に変形が生じることがなく、共振器制御を安定化することができ、光コム発生器としての安定化、光コムを含む計測装置の精度向上、誤差の低減などを図ることができる。
 図19に示す導波路型光変調器8Aは、単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12A以外の構成は図5に示した導波路型光変調器8と同じなので、同一構成要素については、同一符号を付して示すことにより、詳細な説明を省略する。
 図20は、導波路型光変調器8Aの側面図である。
 この導波路型光変調器8Aにおいて、光導波路12Aは、入射側反射防止膜63から出射側反射防止膜64にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成されている。
  入射側反射防止膜63を介して光導波路12Aに入射した光は、単一の偏波成分のみが光導波路12Aの境界面で全反射しながら伝搬する。
 ここで、単一の偏光成分のみ通す光導波路12Aは、特定の偏光成分にのみ屈折率の変化をもたらす光導波路形成法、例えば、プロトン交換法により、電気光学効果を有する基板11にて単一の偏波成分に対してのみ屈折率が高い領域として形成することができる。
 この光導波路12Aは、例えば、LiNbO等からなる基板11に、プロトン交換法により単一の偏波成分に対してのみ導波モードが存在している領域として形成することができる。
 また、光導波路12Aは、基板11中においてTi原子を拡散させることにより、或いは基板11上へのエピタキシャル成長させることにより作製する際に、屈折率分布を工夫することにより導波モードを単一偏光に限定した領域として形成することができる。この光導波路12Aには、例えばLiNbO結晶光導波路を用いることができ、LiNbO等からなる基板11表面にTiを拡散させることにより形成することができる。このTiが拡散された領域については他の領域よりも屈折率が高くなり、単一の偏波成分の光を閉じ込めることができるため、単一の偏波成分の光を伝搬させることができる光導波路12Aを形成することができる。直交する両方の偏波成分に対して屈折率は高くなるが、単一の偏波成分に対してのみ導波モードが成立する条件もある。
 このような方法に基づいて作製したLiNbO結晶型の光導波路12Aは、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して単一の偏波成分の光の変調を行うことができる。
 バッファ層14は、光導波路12Aにおける単一の偏波成分の光の伝搬損失を抑えるべくこれを被覆するものである。ちなみに、このバッファ層14の膜厚をあまりに厚くし過ぎると、電界強度が下がり、変調効率が低下するため、単一の偏波成分の光の伝搬損失が大きくならない範囲においてなるべく膜厚を薄く設定するようにしてもよい。
 電極83は、例えばTiやPt、Au等の金属材料からなり、発振器16から供給された周波数fの変調信号を光導波路12Aに駆動入力することにより、光導波路12A内を伝搬する光に位相変調をかける。
 第1の保護部材86並びに第2の保護部材87は、それぞれ基板11の材質に対応する部材から構成される。第1の保護部材86並びに第2の保護部材87は、基板11と同一の材質から構成してもよい。また上記平面91を形成する第1の保護部材86の端面86aと第1の端面84とが、互いに同一の結晶方位を有するように加工されていてもよく、同様に上記平面92を形成する第2の保護部材87の端面87aと第2の端面85とが、互いに同一の結晶方位を有するように加工されていてもよい。
 入射側反射防止膜63は、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される光導波路12Aに対して垂直な平面91上に単層又は多層の蒸着膜として被着形成される。出射側反射防止膜64は、第2の端面85並びに第2の保護部材87の端面87aとの間で形成される光導波路12Aに対して垂直な平面92上に単層又は多層の蒸着膜として被着形成される。これらの反射防止膜63、64は、低反射膜により構成されていてもよいし、無コートで構成することにより、低反射膜を被着したのと同等の効果が得られるようにしてもよい。
 終端抵抗18は、電極83の終端に取り付けられる抵抗器であり、終端における電気信号の反射を防止することにより、その波形の乱れを防ぐ。
 次に、本発明を適用した光変調器8Aの作製方法につき図21を用いて説明をする。
 先ずステップS21において、図21(A)に示すように、LiNbO結晶からなる基板11の表面にフォトレジストのパターン13を作製する。
 次にステップS22へ移行し、図21(B)に示すように、表面にフォトレジストのパターン13が作製されたLiNbO結晶の基板11をプロトン交換液例えば安息香酸に浸漬した状態で加熱して、基板11の表面層部分のLiをHに置換させるプロトン交換法によって、単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成する。
 なお、このステップS21、S22の光導波路12Aの作製工程においては、プロトン交換法に限定されるものではなく、例えば、ステップS21において、LiNbO結晶からなる基板11の表面にフォトレジストのパターン13を作製し、LiNbO結晶からなる基板11の表面にTiを蒸着させ、このフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製して、次のステップS22において、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成するTi拡散法にこれを代替してもよい。
 次にステップS23へ移行し、図21(C)に示すように、レジストパターン13を除去して基板11表面にバッファ層14としてのSiO薄膜を蒸着させる。このステップS23では、SiOウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、次のステップS24における電極の取り付け領域を考慮して、この蒸着させたバッファ層24を研磨することにより適当な膜厚に制御するようにしてもよい。
 次に、図21(D)に示すように、ステップS24へ移行し、バッファ層14上に電極83を形成させる。
 次にステップS25へ移行し、図21(E)に示すように、光導波路12Aの上部において保護部材86、87を接着する。この保護部材86、87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86、87は、基板11をLiNbO結晶で構成した場合には、同一材質としてのLiNbOにより構成してもよい。このステップS25においては、貼り付けた保護部材86、87につき、それぞれ端面86a、87aが第1の端面84、第2の端面85との間で、それぞれ平面91、92を形成することができるように、切り揃える。
 最後にステップS26へ移行し、、図21(F)に示すように、この得られた平面91、92を光導波路12Aに対して垂直な平面に研磨する。そしてこの研磨された光導波路12Aに対して垂直な平面91、92上に入射側反射防止膜63、出射側反射防止膜64をそれぞれ一面に亘って形成させる。
 このように、本発明を適用した光変調器8Aでは、各端部において保護部材86、87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12Aの端面が平面91(92)の略中央部に移動する。その結果、ステップS26における研磨時において平面91(92)の角が欠けた場合においても、光導波路12Aの端面が欠けることがなくなる。即ち、光導波路12Aの端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12Aの各端面からの光損失を極力抑えることが可能となる。
 また、保護部材86、87の材質を基板11の材質に対応する最適な材質で構成することにより、ステップS26における研磨速度を基板11における第1の端面84、第2の端面85から端面86a、87aにかけて均一にすることができる。これにより、光導波路12Aの端面が加工時に丸くなることがなくなり、平坦な研磨面からなる平面91、92を得ることができ、光導波路12Aの端面における反射損失を最小限に抑えることが可能となる。また、各平面91、92を構成する端面の結晶方位を同一にすることにより、反射損失を更に抑え込むことも可能となる。
 さらに、この保護部材86、87をあえて設けることにより、ステップS26における研磨の精度が向上し、得られる平面91(92)の光導波路12Aに対する垂直性も向上する。その結果、かかる垂直性の逸脱による光損失も最小限に抑えることが可能となる。
 また、入射側反射防止膜63、出射側反射防止膜64は、基板11における第1の端面84、第2の端面85から端面86a、87aにかけて広範囲に亘って形成されているため、非常に安定であり、剥がれにくく、さらに成膜の再現性をも向上させることが可能となる。
 実際に、保護部材86、87を設けたことによる効果を実験的に検証すべく、保護部材86、87を貼り付けた後の平面91(92)の研磨を行ったところ、光導波路12Aの端面部分における欠けや曲がりは一切発生せず、単層又は多層の蒸着膜からなる入射側反射防止膜63、出射反射防止膜64の被着に適した、平坦な光学研磨が施されていることを確認することができた。
 特に第1の保護部材86並びに第2の保護部材87を、基板11と同一の材質から構成し、また平面91、92を形成する保護部材86、87の端面86a、87aと第1の端面84、第2の端面85とが、互いに同一の結晶方位を有するように加工することにより、結晶の硬度が両者間で同一となるため、研磨速度の違いにより平面91、92が傾くこともなくなる。
 このような構成の光変調器8Aでは、入射側反射防止膜63を介して入射され光導波路12Aを伝搬される単一の偏波成分のみ光が、発振器16から供給された周波数fの変調信号により位相変調されて、出射側反射防止膜64を介して出射される。しかも、本発明を適用した光変調器8Aでは、各端部において保護部材86、87を貼り付けることにより、光導波路12Aの端面を平面91(92)の略中央部に移動させることができるため、光導波路12Aの端面の欠けや丸まり、光導波路12Aと平面91、92間の垂直性の確保、平面91、92における研磨精度の向上が可能となり、歩留まりを向上させることも可能となる。
 ここで、入射された光の単一の偏波成分のみが伝搬されるプロトン交換法により作製された単一偏光型光導波路と、入射された光の直交する偏波成分のみ両方が伝搬されるTi拡散法により作製された直交偏光型光導波路について、図22、図23、図24に示すように、幅W=1.9[mm]、長さL=27.4[mm]、厚みT=0.5[mm]のLiNbO結晶基板11に3本の光導波路112A、112B、112Cを形成し、光導波路112A、112B、112Cの上部に幅W=1.9[mm]、長さL=1.5[mm]、厚みT=0.5[mm]の保護部材86、87を接着して、保護部材86、87の端面とLiNbO結晶基板11の端面を研磨することにより、3本の光導波路112A、112B、112Cの入射面と出射面を平面に仕上げたLiNbO結晶基板ブロックとして、それぞれ3本の光導波路112A、112B、112Cの光路幅W3が6.0[μm]、6.3[μm]、6.6[μm]、6.9[μm]、7.2[μm]、7.5[μm]の6種類のサンプルを10個作製して、3本の光導波路112A、112B、112Cの入射面A、B、Cと出射面A、B、Cにおける反射率を測定し、各サンプルのフィネスと透過率を求めたところ、次のような結果が得られた。
 すなわち、直交偏光型光導波路のフィネスは、30~45程度であったのに対し、単一偏光型光導波路では、50~65程度のフィネスが得られる。また、直交偏光型光導波路の透過率は、12.5~25[%]程度であったのに対し、単一偏光型光導波路では、20~32.5[%]程度の透過率が得られている。
 なお、この光変調器8Aは、単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aの一の端部につき高反射膜としての出射側反射膜94を設け、他の端部につき反射防止膜63を設けることにより、上記光変調器8と同様に、上述した図11(A)、図11(B)、図11(C)に示した構成のいわゆる往復変調型の光変調器として動作させることもできる。
 また、上記光変調器8Aは、上記ステップS26において、平面91、92を互いに平行に研磨し、この研磨された平面91、92上に、上記入射側反射防止膜63と出射側反射防止膜64に替えて、入射側反射膜93と出射側反射膜94を、それぞれ一面に亘って形成させることにより、光コム発生器1Aとして機能する。
 すなわち、光コム発生器1Aにおいて、入射側反射膜93及び出射側反射膜94は、光導波路12Aに入射した光を共振させるために互いに平行となるように設けられたものであり、光導波路12Aを通過する光を往復反射させることにより共振させる光共振器5を構成する。
 第1の端面84並びに第2の端面85を光導波路12Aに対して略垂直に形成させることにより、これに被着される単層又は多層の蒸着膜からなる入射側反射膜93並びに出射側反射膜94により単一の偏波成分の光を効率よく共振させることができる。
 上述の如き構成からなる光コム発生器1Aにおいて、入射側反射膜93を介して外部から入射された光は、単一の偏波成分の光が光導波路12A内を往路方向へ伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した単一の偏波成分の光は光導波路12A内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、単一の偏波成分の光で光導波路12A内を共振することになる。
 また、単一の偏波成分の光が光導波路12A内を往復する時間に同期した電気信号を電極83を介して駆動入力とすることにより、単一の偏波成分の光がこの光変調器8A内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数νを中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fと同等である。したがって、光変調器8Aは、入射側反射防止膜63及び出射側反射防止膜64を入射側反射膜93及び出射側反射膜94に置き換えることにより、多数のサイドバンドにより構成される単一の偏波成分の光コムを発生する光コム発生器1Aとして機能する。
 すなわち、光コム発生器1Aは、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えているので、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として光コムを発生することができる。
 ここで、本発明に係る光変調器8、8A、51において、変調信号が供給される光導波路12Aの上面に設けられた電極83は、例えば図25に示すような構成の導波路型光変調器8B(光コム発生器1B)のように、リッジ構造を有するものとすることによって、光変調効率をさらに向上させることができる。
 この導波路型光変調器8B(光コム発生器1B)は、図19、図20に示した導波路型光変調器8A(光コム発生器1A)における電極83をリッジ構造を有するものにしたものであって、上述した光変調器8A(光コム発生器1A)と同一の構成要素については、図19、図20における説明を引用し、ここでの説明を省略する。
 この導波路型光変調器8B(光コム発生器1B)において、基板11は、例えば引き上げ法により育成された3~4インチ径のLiNbOやGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板11上には、機械研磨や化学研磨等の処理を施されることにより、リッジ構造を有する電極83Aを形成するための凸条部20が設けられる。
 光導波路12Aは、プロトン交換法やTi拡散法により、入射端から出射端にかけて貫通するように形成され、単一の偏波成分の光を伝搬させるべく単一の偏波成分に対してのみ導波モードが存在している領域として形成として形成されている。
 この光導波路12Aを構成する層の屈折率は、基板11等の他層よりも単一の偏波成分に対してのみ屈折率が高く設定されている。光導波路12Aに入射した光は、単一の偏波成分のみが光導波路12Aの境界面で全反射しながら伝搬する。
 このような方法に基づいて作製したLiNbO結晶型の光導波路12Aは、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して単一の偏波成分の光の変調を行うことができる。
 リッジ構造を有する電極83Aは、凸条部20上に形成された主電極を有し、例えばTiやPt、Au等の金属材料からなる。凸条部20上に主電極が形成されたリッジ構造を有する電極83Aは、発振器16から供給された周波数fの変調信号を光導波路12Aに駆動入力とすることにより、光導波路12A内を伝搬する光に位相変調をかける。
 このような構造の導波路型光変調器8B(光コム発生器1B)の作製方法について、図26を用いて説明をする。
 すなわち、先ずステップS31において、図26(A)に示すように、LiNbO結晶からなる基板11の表面にフォトレジストのパターン13を作製する。
 次にステップS32へ移行し、図26(B)に示すように、表面にフォトレジストのパターン13が作製されたLiNbO3結晶の基板11をプロトン交換液例えば安息香酸に浸漬した状態で加熱して、基板11の表面層部分のLiをHに置換させるプロトン交換法によって、単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成する。
 なお、このステップS31、S32の光導波路12Aの作製工程においては、プロトン交換法に限定されるものではなく、例えば、ステップS31において、LiNbO結晶からなる基板11の表面にフォトレジストのパターン13を作製し、LiNbO結晶からなる基板11の表面にTiを蒸着させ、このフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製して、次のステップS32において、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成するTi拡散法にこれを代替してもよい。
 次にステップS33へ移行し、図26(C)に示すように、光導波路12Aが形成された基板11のレジストパターン13を除去し、さらに、機械研磨や化学研磨等の処理により、図27に示すように、リッジ構造を有する電極83Aを形成するための凸条部20が設けられる。
 次にステップS34へ移行し、図26(D)に示すように、バッファ層14としてのSiO薄膜を基板11表面に蒸着させる。このステップS34では、SiOウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、後述するステップS35における電極の取り付け領域を考慮して、この蒸着させたバッファ層14を研磨することにより適当な膜厚に制御するようにしてもよい。
 次にステップS35へ移行し、図26(E)に示すように、基板11のバッファ層14上にリッジ構造を有する電極83Aを形成させる。リッジ構造を有する電極を図28の要部縦断面に示す。
 次にステップS36へ移行し、図26(F)に示すように、光導波路12Aの上部において保護部材86、87を接着する。この保護部材86、87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86、87は、基板11をLiNbO結晶で構成した場合には、同一材質としてのLiNbOにより構成してもよい。このステップS36においては、貼り付けた保護部材86、87につき、それぞれ端面86a、87aが第1の端面84、第2の端面85との間で、それぞれ平面91、92を形成することができるように、切り揃える。
 本発明を適用した光変調器8Bでは、最後のステップS37において、図26(G)に示すように、この得られた平面91、92を光導波路12Aに対して垂直な平面に研磨して、この研磨された平面91、92上に入射側反射防止膜63、出射側反射防止膜64をそれぞれ一面に亘って形成させる。
 また、本発明を適用した光コム発生器1Bでは、上記ステップS37において、平面91、92を互いに平行に研磨し、この研磨された光導波路12Aに対して垂直な平面91、92上に、上記入射側反射防止膜63と出射側反射防止膜64に替えて、入射側反射膜93と出射側反射膜94を、それぞれ一面に亘って形成させる。
 このような構成の光変調器8B、光コム発生器1Bでは、入射端から入射され光導波路12Aを伝搬される単一の偏波成分のみ光に対して、リッジ構造を有する電極83Aに発振器16から供給された周波数fの変調信号により、効率よく位相変調をかけることができる。
 しかも、本発明を適用した光変調器8B、光コム発生器1Bでは、各端部において保護部材86、87を貼り付けることにより、光導波路12Aの端面を平面91(92)の略中央部に移動させることができるため、光導波路12Aの端面の欠けや丸まり、光導波路12Aと平面91、92間の垂直性の確保、平面91、92における研磨精度の向上が可能となり、歩留まりを向上させることも可能となる。
 また、光コム発生器1Bでは、入射側反射膜93を介して外部から入射された光は光導波路12A内を往路方向へ単一の偏波成分のみが伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した単一の偏波成分の光は光導波路12A内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、単一の偏波成分の光が光導波路12A内を共振することになる。
 また、単一の偏波成分の光が光導波路12A内を往復する時間に同期した電気信号を電極83Aを介して駆動入力とすることにより、単一の偏波成分の光がこの光変調器8B内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数νを中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fと同等である。したがって、光変調器8Bは、多数のサイドバンドにより構成される単一の偏波成分の光コムを発生する光コム発生器1Bとして機能する。
 このように、本発明を適用した光コム発生器1Bでは、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えているので、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として光コムを発生することができ、また、各端部において保護部材86、87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12Aの端面が平面91(92)の略中央部に移動する。その結果、ステップS37における研磨時において平面91(92)の角が欠けた場合においても、光導波路12Aの端面が欠けることがなくなる。即ち、光導波路12Aの端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12Aの各端面からの光損失を極力抑えることが可能となる。
 しかも、この光変調器8Bは、図28の要部縦断面に示すように、基板11のバッファ層14上に形成されたリッジ構造を有する電極83Aを備えているので、さらに、変調効率を向上させることができる。
 ここで、この光変調器8Bにおいて、基板11のバッファ層14上に形成されたリッジ構造を有する電極83Aのリッジ幅RWを10、12、14、16、及び18[μm]、リッジ溝の平均深さAVD(Average depths)を3.3、2.96、4.79、及び4.72[μm]とした光変調器8Aの試料を作成して、25GHzにおける駆動電圧(AC Vpi)と直流駆動電圧(DC Vpi)を実測して結果を図29、図30に示す。Vpiは位相をπラジアン変調するために必要な電圧である。
 すなわち、リッジ構造を有さない電極構造の従来の光変調器では、25GHzにおける駆動電圧(AC Vpi)が8~10V程度で、直流駆動電圧(DC Vpi)は、6~6.5V程度であったのに対し、リッジ構造を有する電極83Aを備える光変調器8Bでは、25GHzにおける駆動電圧(AC Vpi)が3.5~7.5V程度で、直流駆動電圧(DC Vpi)は、5~6V程度になっている。
 このようにリッジ構造を設けることにより、25GHzにおける駆動電圧(AC Vpi)は、リッジ構造の無い場合と比較して平均的な電圧が元の約70%に低下しており、電力ではおよそ50%の低下に相当する。また、直流駆動電圧(DC Vpi)は、リッジ構造の無い場合と比較して平均的な電圧が元の約80%に低下しており、電力ではおよそ50%の低下に相当する。
 すなわち、この光変調器8B、光コム発生器1Bでは、光導波路12Aの基板11と同じ硬さを持つ部材から構成され、上記部材における少なくとも一の端面が上記光導波路12Aにおける光入射端又は光出射端を含む上記基板11の端面と同一の平面を形成するように上記光導波路12Aの上部に配設される第1の保護部材86並びに第2の保護部材87を備え、上記部材の端面と上記基板の端面を研磨することにより形成される光導波路12Aに対して垂直な平面に入射側反射防止膜63又は入射側反射膜93及び出射側反射防止膜64又は出射側反射膜94がそれぞれ単層又は多層の蒸着膜として被着されているので、光導波路端面に欠けが発生することを防ぐとともに、高反射膜取り付けの安定化を図り、入射側反射膜93及び出射側反射膜94より構成される光共振器5のフィネスを向上させることができ、しかも、リッジ構造を有する電極83Aを備えることにより駆動電力を低減することができる。
 したがって、上述の如き構成の光変調器8A、8B、光変調器51は、光導波路12Aを上面から形成させるための基板11と同じ硬さを持つ部材86、87を、少なくともその一の端面が上記光導波路12Aにおける光入射端又は光出射端を含む上記基板11の端面と同一の平面を形成するように上記光導波路12Aの上部に配設し、上記部材86、87の端面と上記基板11の端面を研磨することにより形成された上記光導波路12Aに対して垂直な平面上に共振手段を構成する単層又は多層の蒸着膜からなる入射側反射膜93並びに出射側反射膜94を被着させるので、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜の反射率や光共振器のフィネスを向上させ、デバイスそのものの機能を高めることができ、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えることにより、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として安定した光コムを発生することができる光コムを発生器1、1Aとして機能する。
 上述の如き光変調器8B、光変調器51における光導波路12Aは、入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成され、リッジ構造を有する電極83Aを設けることにより、単一の偏波成分のみのレーザー光や光コムを出力することのできる低電力型のレーザー光源や光コム発生器を構築することができる。
また、光変調器8A、8B(光コム発生器1A、1B)においても、反射率が95%~99%の範囲にある反射膜93、94を被着させることにより、光導波路12Aの導波損失率と反射膜93、94の透過率を一致させて共振器のフィネスと透過率を高め共振器の性能を上げることができる。
 次に、本発明を適用した低電力型光コムモジュールを利用した光コム発生器210の構成を図31のブロック図に示す。
 この光コム発生器210は、本発明を適用した低電力型光コムモジュール200Aから出力される光コムの一部を分岐する光カップラ211と、光カップラ211により分岐された光を検出する光検出器212と、この光検出器212により得られる光検出信号が供給される制御回路213などを備える。
 光コムモジュール200Aは、図示しないレーザー光源からレーザー光が入射されるとともに、バイアス・ティー214を介してRF変調信号が入力されることにより、入射されたレーザー光の単一の偏波成分に対してRF変調信号により位相変調をかけることにより、光コムを発生して出力する。この光コムモジュール200Aは、温度調節回路219による温度制御によって、光導波路に設けられた入射側反射膜と出射側反射膜による共振手段の共振長が制御されるようになっている。
 制御回路213は、光検出信号から制御目標に対する誤差を求め、その誤差がゼロとなるような制御信号を生成してバイアス・ティー214に供給する。
 光コムモジュール200AのDCバイアスに加えることにより、光コムモジュール200Aの共振周波数を入力レーザー周波数に追従させることができる。
 制御回路213は、プリント基板単体の場合やRFミキサやアイソレータとプリント基板の組み合わせの場合もある。光検出器212の光検出信号と同期信号のミキシングによって制御目標からの誤差量に応じた制御信号を作り出す。
 同期信号としてRF変調信号源の出力の一部を使うことができる。その場合、光検出器212の動作帯域はRF駆動周波数以上であることが必要である。
 制御回路213では、位相調整器を介してミキサに光検出信号と同期信号を入力して得られる信号の低周波数成分を取って誤差信号とする。または同期信号としてRF駆動信号は別の変調信号(ディザ信号)を使用することが可能である。レーザー周波数または光コムモジュール200Aの共振周波数に、共振モードのFSRと比べて小さい振幅の変調を与えておいて、光検出器212の出力信号と同期信号のミキシングを行う。ディザ信号周波数が低ければ、光検出信号をアナログ・デジタル変換器によりデジタル信号に変換したのちにデジタル信号処理の積和演算で誤差信号を生成することも可能である。
 誤差信号の周波数特性を調整したものが制御信号としてバイアス・ティー214経由で光コムモジュール200AのDCバイアスに加えられる。一般的には、誤差信号は比例、積分、微分の各機能を持った回路に入力され、それらの成分の振幅調整により制御ループの周波数特性が決まり、光コムモジュール200Aの共振周波数が入力レーザーの発振周波数に追従するように制御される。
 また、本発明を適用した低電力型光コムモジュールを利用した光コム発生器220の構成を図32のブロック図に示す。
 この光コム発生器220は、本発明を適用した低電力型光コムモジュール200Aの反射光を利用して共振器制御を行うもので、低電力型光コムモジュール100Aの反射光の一部が光カップラ211により分岐されて光検出器212に入射されるようになっている。
 この光コム発生器220における各構成要素は図31に示した光コム発生器210の構成要素と同じであり、対応する構成要素について、図32中に同一符号を付して詳細な説明を省略する。
 制御回路213は光検出器212により得られる光検出信号から制御目標に対する誤差を求め、その誤差がゼロとなるような制御信号を出力する。その制御信号を光コムモジュールのDCバイアスに加えることにより光コムモジュール200Aの共振周波数を入力レーザー周波数に追従させることができる。
 さらに、本発明を適用した低電力型光コムモジュールは、例えば、図33に示すような構成の光コム光源300を構築することができる。
 この光コム光源300は、単一周波数発振のレーザー光源301、レーザー光源301から出射された単一周波数のレーザー光を2つのレーザー光に分離する光カップラや光ビームスプリッタ等の分離光学系302、分離光学系302により分離された一方のレーザー光の周波数をシフトする周波数シフタ305、それぞれ低電力型光コムモジュールを用いた2つの光コム発生器(OFCG1、OFCG2)320A、320B等を備える。
 この光コム光源300では、1台の単一周波数発振のレーザー光源301から出射されるレーザー光が分離光学系302により2つのレーザー光に分離されて2台の光コム発生器(OFCG1、OFCG2)320A、320Bに入力されるようになっている。
 2台の光コム発生器320A、320Bは、互いに異なる周波数fと周波数f+Δfで発振する発振器303A、303Bにより駆動される。それぞれの発振器303A、303Bは、共通の基準発振器304により位相同期されることにより、fとf+Δfとの相対周波数が安定になる。光コム発生器(OFCG2)320Bの前には、音響光学周波数シフタ(AOFS)のような周波数シフタ305を設けて、入力されたレーザー光にこの周波数シフタ305により周波数faの光周波数シフトを与えるようになっている。これにより、キャリア周波数間のビート周波数が直流信号ではなく周波数faの交流信号になる。その結果、キャリア周波数の高周波側サイドバンドのビート信号と低周波側サイドバンドのビート信号がビート信号のキャリア周波数間のビート周波数faを挟んで相対する周波数領域に発生するため位相比較に都合が良い。
 2つの光コム発生器(OFCG1、OFCG2)320A、320Bは、それぞれ本発明を適用した低電力型光コムモジュールにより構成されるもので、入力されるレーザー光の単一の偏波成分のみを位相変調することにより、単一の偏波成分の光コムを出力することができる。
 この光コム光源300は、1台の単一周波数発振のレーザー光源301を共通として、2台の光コム発生器(OFCG1、OFCG2)320A、320Bの中心周波数と周波数間隔の異なる二つの光コムを発生するもので、例えば、本件発明者が先に提案している特許5231883号に係る距離計や光学的三次元形状測定機における第1及び第2の光源、すなわち、それぞれ周期的に強度又は位相が変調され、互いに変調周期が異なる干渉性のある基準光と測定光を出射する第1及び第2の光源として上記光コム光源300を用いることにより、2つの光コム発生器(OFCG1、OFCG2)320A、320Bの偏波成分の計測用の光コム出力を測定対象の表面にスキャンしながら照射して、表面からの反射光を照射ポイント一点一点について検出して距離(高さ)計算を行うことにより、安定した測定動作行う距離計や光学的三次元形状測定機の測定系を構築することができる。
 図34は、上記光コム光源300を用いて構成した光コム距離計400の構成を示すブロック図である。
 図34のブロック図に示す光コム距離計400は、光周波数コム干渉計を用いて距離を測定するものであって、第1、第2の光コム光源401、402から出射される中心周波数と周波数間隔の異なる二つの光周波数コムをそれぞれ周期的に強度又は位相が変調され、互いに変調周期が異なる干渉性のある基準光S1と測定光S2として干渉光学系410を介して基準面404と測定面405に照射し、上記基準面404と測定面405に照射する基準光S1と測定光S2との干渉光S3を基準光検出器403により検出するとともに、上記基準面404により反射された基準光S1’と上記測定面305により反射された測定光S2’との干渉光S4を測定光検出器406により検出し、信号処理部407により、上記基準光検出器403により干渉光S3を検出した干渉信号と上記測定光検出器406により干渉光S4を検出した干渉信号の時間差から、光速と測定波長における屈折率から上記基準面404までの距離L1と上記測定面405までの距離L2の差を求めることができる。なお、干渉計や検出器の形態は複数ある。
 この光コム距離計400は、光学スキャン装置と組み合わせることにより、測定光S2を測定対象の表面にスキャンしながら照射して、表面からの反射光を照射ポイント一点一点について検出して距離(高さ)計算を行い、スキャンの座標と距離(高さ)の分布から対象物の表面形状が得られる光コム形状計測器を構成することができる。スキャナ光学系には様々な形態がある。テレセントリック光学系を使用すると測定範囲内で対象物に向かってほぼ垂直に光が入射するようにすることができる。
 また、例えば、本件発明者が先に提案している特許5336921号や特許5363231号に係る振動計測装置における光源、すなわち、所定の周波数間隔のスペクトルであり、互いに変調周波数及び中心周波数が異なり、互いに位相同期され干渉性のある参照光と測定光とを出射する光源部として上記光コム光源300を用いることにより、2つの光コム発生器(OFCG1、OFCG2)320A、320Bから出射される単一の偏波成分の光コムを波長毎に分派する素子を介して波長によって異なる場所に照射して、安定した多点振動計測動作行う振動計測装置の測定系を構築することができる。
 ここで、直交モードが混在する偏光成分を透過する光導波路を用いた光コム発生器により得られる光コムを用いる計測装置では、図4に○印を付して示すように、直交偏光成分による透過モード波形に変形が生じることがあり、しかも、発生する場所(主モードに対する相対位置)がばらばらであり、極小部が複数になるため制御の不安定要因になるが、単一の偏光成分のみ通す光導波路を用いることにより、図35に示すように、透過モード波形に変形が生じることがなくなり、光コム発生器としての安定化、光コムを含む計測装置の精度向上、誤差の低減などを図ることができる。
 すなわち、光コム発生に直交する偏光成分は光コムを計測に利用する場合に、距離、高さの計測誤差の要因になり、また、光コム発生に直交する偏光成分は、光コム発生器の共振周波数をレーザー周波数に一致させるための制御を不安定にすることがあり、制御点のずれ、制御の発振の原因となり、また、光コムを計測に利用する場合に、距離、高さの計測誤差の要因になっていたが、単一の偏光成分のみ通過させる光導波路を用いて光コム発生を行うことにより、光コム発生に寄与しない直交偏光成分の出力が抑制され、光コム出力の偏光消光比を向上させ、単一偏光度を高めることができ、共振器制御を安定化させ、不要な干渉信号を除去して、光コムを用いた距離計測や形状計測における計測誤差を除去して計測精度の向上、システム全体の信頼性向上等を実現することができる。
 1、1A、1B、210、220、320A、320B 光コム発生器、5 光共振器、8、8A、8B、51 光変調器、11 基板、12、12A 光導波路、14 バッファ層、16 発振器、18 終端抵抗、19a 位相器、19b 反射器、20 凸条部、21 光サーキュレータ、22 フォーカサー、63 反射防止膜、83、83A 電極、84 第1の端面、85 第2の端面、86 第1の保護部材、86a、87a 端面、87 第2の保護部材、91、92 平面、93 入射側反射膜、94 出射側反射膜、200A 低電力型光コムモジュール、210、220 光コム発生器、211 光カップラ、212 光検出器、213 制御回路、214 バイアス・ティー、130、300 光コム光源、301 レーザー光源、302 分離光学系、303A、303B  発振器、 304   基準発振器 、305 周波数シフタ、320A、320B 光コム発生器(OFCG1、OFCG2)、400 光コム距離計、401、402 光コム光源、403 基準光検出器、404 基準面、405 測定面、406 測定光検出器、407 信号処理部

Claims (23)

  1.  入射側反射膜から出射側反射膜にかけて貫通するように形成された光導波路により、上記入射側反射膜を介して入射された光を伝搬して共振させる光共振器の作製方法において、
     上記光導波路を基板の上面から形成する光導波路形成工程と、
     上記基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設する配設工程と、
     上記配設工程において配置した上記保護部材の端面と上記基板の端面を研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路に対して垂直な平面を形成する研磨工程と、
     上記研磨工程において形成された上記平面上に上記入射側反射膜又は上記出射側反射膜として単層又は多層の蒸着膜を被着させる反射膜被着工程とを有し、
     上記配設工程では上記保護部材を上記光導波路の上部に接着剤で貼り付けて配設し、
     上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り単層又は多層の蒸着膜を被着させることにより、上記入射側反射膜又は上記出射側反射膜を上記光導波路に対して垂直な平面に形成する
     ことを特徴とする光共振器の作製方法。
  2.  上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜を被着させる
     ことを特徴とする請求項1に記載の光共振器の作製方法。
  3.  入射側反射膜及び出射側反射膜が形成された光導波路により、上記入射側反射膜を介して入射された光を伝搬して変調する光変調器の作製方法において、
     上記光導波路を基板の上面から形成する光導波路形成工程と、
     少なくとも上記光導波路形成工程において形成した光導波路を被覆するように上記基板上にバッファ層を積層する積層工程と、
     上記光導波路に対して電界を印加するための電極を上記積層工程において積層したバッファ層上に形成する電極形成工程と、
     上記基板と同じ硬さを持つ保護部材を、少なくともその一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に配設する配設工程と、
     上記配設工程において配置した上記保護部材の端面と上記基板の端面を研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路に対して垂直な平面を形成する研磨工程と、
     上記研磨工程において形成された上記平面上に上記入射側反射膜又は上記出射側反射膜として単層又は多層の蒸着膜を被着させる反射膜被着工程とを有し、
     上記配設工程では上記保護部材を上記光導波路の上部に接着剤で貼り付けて配設し、
     上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り単層又は多層の蒸着膜を被着させることにより、上記入射側反射膜又は上記出射側反射膜を上記光導波路に対して垂直な平面に形成する
     ことを特徴とする光変調器の作製方法。
  4.  上記反射膜被着工程では、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の蒸着膜を被着させる
     ことを特徴とする請求項3に記載の光変調器の作製方法。
  5.  上記光導波路形成工程では、少なくとも電気光学効果を有する上記基板の上面からプロトン交換により単一の偏波成分に対してのみ導波モードが存在している領域として上記光導波路を形成することを特徴とする請求項3又は請求項4に記載の光変調器の作製方法。
  6.  上記基板にリッジ構造を形成するリッジ構造形成工程を有し、
     上記電極形成工程において、リッジ構造が形成された上記基板に上記積層工程において積層したバッファ層上に、上記光導波路に対して電界を印加するための電極として、リッジ構造を有する電極を形成することを特徴とする請求項3又は請求項4に記載の光変調器の作製方法。
  7.  入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記共振手段により共振された光を伝搬させる光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする光共振器。
  8.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項7に記載の光共振器。
  9.  上記端面保護手段を構成する保護部材は上記基板と同じ材質からなり、また、上記平面を形成する上記保護部材の端面並びに上記基板の端面は、互いに同一の結晶方位を有し、
     上記端面保護手段は、上記保護部材における一の端面が上記光導波路における光入射端を含む上記基板の端面と同一の平面を形成するように、また上記保護部材における他の端面が上記光導波路における光出射端を含む上記基板の端面と同一の平面を形成するように、上記光導波路の上部に配設されることを特徴とする請求項7又は請求項8に記載の光共振器。
  10.  所定の周波数の変調信号を発振する発振手段と、
     入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光の位相を変調する光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする光変調器。
  11.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項10に記載の光変調器。
  12.  入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成された光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする光変調器。
  13.  上記光導波路は、単一の偏波成分に対してのみ導波モードが存在している領域として少なくとも電気光学効果を有する上記基板に形成されていることを特徴とする請求項12に記載の光変調器。
  14.  上記光変調手段の電極は、リッジ構造を有することを特徴とする請求項12又は請求項13に記載の光変調器。
  15.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項12又は請求項13に記載の光変調器。
  16.  所定の周波数の変調信号を発振する発振手段と、
     入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光の位相を変調し、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする光周波数コム発生器。
  17.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項16に記載の光周波数コム発生器。
  18.  入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光、又はレーザー増幅により発生された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記共振手段により共振された光を増幅させるとともに、これを出射側反射膜を介して外部へ出射させる光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であることを特徴とする光発振器。
  19.  上記光導波路は、上記入射側反射膜を介して入射された光を吸収して媒質固有の光の波長に対して増幅特性を有する媒質が拡散されてなることを特徴とする請求項18に記載の光発振器。
  20.  上記光導波路は、非線形光学結晶からなることを特徴とする請求項18又は請求項19に記載の光発振器。
  21.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項18又は請求項19に記載の光発振器。
  22.  所定の周波数の変調信号を発振する発振手段と、
     入射側反射膜及び出射側反射膜より構成され、入射側反射膜を介して入射された光、又はレーザー増幅により発生された光を共振させる共振手段と、
     上記入射側反射膜から上記出射側反射膜にかけて貫通するように形成され、上記発振手段から供給された上記変調信号に応じて上記共振手段により共振された光を増幅させるとともに、これを出射側反射膜を介して外部へ出射させる光導波路と、
     上記光導波路が上面から形成された基板と、
     上記基板上に形成され変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記電極に供給される電気信号の波長に応じて上記光導波路内を伝搬される光の位相を変調する光変調手段と、
     上記基板と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路における光入射端又は光出射端を含む上記基板の端面と同一の平面を形成するように上記光導波路の上部に上記保護部材が接着剤で貼り付けて配設された端面保護手段とを備え、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り研磨することにより、上記光導波路の光入射端又は光出射端を含む平坦な研磨面として形成された上記光導波路に対して垂直な平面に被着された単層又は多層の蒸着膜であり、レーザー発振する多モード間の位相同期をとることを特徴とする光発振器。
  23.  上記端面保護手段は、上記保護部材の端面と上記基板の端面とで形成される平面の略中心に上記光導波路における光入射端又は光出射端が位置するように配設され、
     上記入射側反射膜及び出射側反射膜は、上記接着剤で貼り付けられた上記保護部材の端面と上記基板の端面とで形成される平面の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の蒸着膜であることを特徴とする請求項22に記載の光発振器。
PCT/JP2020/045819 2019-12-17 2020-12-09 光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器 WO2021125007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20902250.8A EP4080273A4 (en) 2019-12-17 2020-12-09 Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator
US17/787,215 US11726254B2 (en) 2019-12-17 2020-12-09 Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator
CN202080088156.3A CN114830018A (zh) 2019-12-17 2020-12-09 光谐振器、光调制器及它们的制作方法、光频梳产生器、光振荡器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-227630 2019-12-17
JP2019227630A JP6745395B1 (ja) 2019-12-17 2019-12-17 光共振器、光変調器、光周波数コム発生器、光発振器、並びにその光共振器及び光変調器の作製方法
JP2020099226A JP7100906B2 (ja) 2020-06-08 2020-06-08 光共振器及び光変調器の作製方法
JP2020-099226 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021125007A1 true WO2021125007A1 (ja) 2021-06-24

Family

ID=76477472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045819 WO2021125007A1 (ja) 2019-12-17 2020-12-09 光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器

Country Status (4)

Country Link
US (1) US11726254B2 (ja)
EP (1) EP4080273A4 (ja)
CN (1) CN114830018A (ja)
WO (1) WO2021125007A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210949A1 (de) * 2020-08-31 2022-03-03 Siemens Energy Global GmbH & Co. KG Lichtleiter für einen magnetooptischen Stromsensor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545070A (en) * 1978-09-26 1980-03-29 Minolta Camera Co Ltd Focusing type optical transmission body array
JPH02118605A (ja) * 1988-10-28 1990-05-02 Anritsu Corp 単一モ−ド光導波路の製造方法及びそれを用いた光変調素子
JPH0727931A (ja) * 1993-06-24 1995-01-31 Nikon Corp 光導波路
JPH0758386A (ja) * 1993-08-17 1995-03-03 Kanagawa Kagaku Gijutsu Akad 光周波数コム発生器
JPH11352350A (ja) * 1998-06-08 1999-12-24 Sony Corp 光導波路素子の製造方法
JP2001125157A (ja) * 1999-10-26 2001-05-11 Oki Electric Ind Co Ltd 波長変換装置
JP2003202609A (ja) 2001-10-31 2003-07-18 Japan Science & Technology Corp 光共振器並びに光周波数コム発生器
JP2004206068A (ja) * 2002-10-29 2004-07-22 Kyocera Corp 光ファイバ及びその加工方法
JP3891977B2 (ja) 2003-11-14 2007-03-14 株式会社 光コム 光周波数コム発生器並びに光変調器
WO2007114367A1 (ja) * 2006-03-31 2007-10-11 Sumitomo Osaka Cement Co., Ltd. 光制御素子
US20090297087A1 (en) * 2008-05-27 2009-12-03 Anritsu Corporation Optical modulator
JP4781648B2 (ja) 2004-04-14 2011-09-28 株式会社 光コム 光共振器
JP5231883B2 (ja) 2008-07-03 2013-07-10 株式会社 光コム 距離計及び距離測定方法並びに光学的三次元形状測定機
JP5336921B2 (ja) 2009-05-11 2013-11-06 株式会社 光コム 振動計測装置及び振動計測方法
JP5363231B2 (ja) 2009-07-28 2013-12-11 株式会社 光コム 振動計測装置及び振動計測方法
JP2020099226A (ja) 2018-12-20 2020-07-02 株式会社クボタ 自動走行作業車のための制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537058B2 (ja) * 1994-12-13 2004-06-14 財団法人神奈川科学技術アカデミー 多重光周波数コム発生器
US6181851B1 (en) * 1997-05-29 2001-01-30 E-Tek Dynamics, Inc. Temperature-compensated optical fiber package
US6456766B1 (en) * 2000-02-01 2002-09-24 Cornell Research Foundation Inc. Optoelectronic packaging
WO2002050585A1 (en) * 2000-12-21 2002-06-27 Cquint Communications Corporation Multi-layer dispersion-engineered waveguides and resonators
WO2005047965A1 (ja) * 2003-11-14 2005-05-26 Optical Comb Institute, Inc. 光周波数コム発生器並びに光変調器
KR20080022553A (ko) * 2005-06-24 2008-03-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 외팔보형 섬유 어레이를 구비한 광학 장치 및 방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545070A (en) * 1978-09-26 1980-03-29 Minolta Camera Co Ltd Focusing type optical transmission body array
JPH02118605A (ja) * 1988-10-28 1990-05-02 Anritsu Corp 単一モ−ド光導波路の製造方法及びそれを用いた光変調素子
JPH0727931A (ja) * 1993-06-24 1995-01-31 Nikon Corp 光導波路
JPH0758386A (ja) * 1993-08-17 1995-03-03 Kanagawa Kagaku Gijutsu Akad 光周波数コム発生器
JPH11352350A (ja) * 1998-06-08 1999-12-24 Sony Corp 光導波路素子の製造方法
JP2001125157A (ja) * 1999-10-26 2001-05-11 Oki Electric Ind Co Ltd 波長変換装置
JP2003202609A (ja) 2001-10-31 2003-07-18 Japan Science & Technology Corp 光共振器並びに光周波数コム発生器
JP2004206068A (ja) * 2002-10-29 2004-07-22 Kyocera Corp 光ファイバ及びその加工方法
JP3891977B2 (ja) 2003-11-14 2007-03-14 株式会社 光コム 光周波数コム発生器並びに光変調器
JP4781648B2 (ja) 2004-04-14 2011-09-28 株式会社 光コム 光共振器
WO2007114367A1 (ja) * 2006-03-31 2007-10-11 Sumitomo Osaka Cement Co., Ltd. 光制御素子
US20090297087A1 (en) * 2008-05-27 2009-12-03 Anritsu Corporation Optical modulator
JP5231883B2 (ja) 2008-07-03 2013-07-10 株式会社 光コム 距離計及び距離測定方法並びに光学的三次元形状測定機
JP5336921B2 (ja) 2009-05-11 2013-11-06 株式会社 光コム 振動計測装置及び振動計測方法
JP5363231B2 (ja) 2009-07-28 2013-12-11 株式会社 光コム 振動計測装置及び振動計測方法
JP2020099226A (ja) 2018-12-20 2020-07-02 株式会社クボタ 自動走行作業車のための制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 8, no. 10, 1996

Also Published As

Publication number Publication date
EP4080273A4 (en) 2023-06-28
EP4080273A1 (en) 2022-10-26
CN114830018A (zh) 2022-07-29
US20230016963A1 (en) 2023-01-19
US11726254B2 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US5499256A (en) Polarized frequency-selective optical source
US5513196A (en) Optical source with mode reshaping
US5946129A (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
EP2210318B1 (en) Cross modulation-based opto-electronic oscillator with tunable electro-optic optical whispering gallery mode resonator
US6763042B2 (en) Apparatus and method for frequency conversion and mixing of laser light
US20090232169A1 (en) Wavelength converting laser device
JP2004193545A (ja) スペクトル依存性空間フィルタリングによるレーザの同調方法およびレーザ
JP7152802B2 (ja) 光コム発生装置
US6775307B2 (en) Light wavelength conversion module
JP4781648B2 (ja) 光共振器
WO2002069462A1 (en) External frequency conversion of surface-emitting diode lasers
WO2021125007A1 (ja) 光共振器及び光変調器の作製方法、並びに光共振器、光変調器、光周波数コム発生器、光発振器
Block et al. Semiconductor laser with external resonant grating mirror
WO2015085544A1 (zh) 一种激光器
JP6745395B1 (ja) 光共振器、光変調器、光周波数コム発生器、光発振器、並びにその光共振器及び光変調器の作製方法
EP0957546A2 (en) solid-state laser device and solid-state laser amplifier provided therewith
JP7100906B2 (ja) 光共振器及び光変調器の作製方法
JP2002303904A (ja) 光波長変換装置およびその調整方法
JP3537058B2 (ja) 多重光周波数コム発生器
JPH02184827A (ja) 光変調波復調装置
WO2004107033A1 (en) Frequency comb generator
JP3848883B2 (ja) 光共振器並びに光周波数コム発生器
JP2020086136A (ja) 光変調器及び光コム発生器
JP4862960B2 (ja) 波長変換レーザ装置および画像表示装置
US7075955B2 (en) Integrated narrow-line tunable optical parametric oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902250

Country of ref document: EP

Effective date: 20220718