WO2021123254A1 - Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge - Google Patents
Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge Download PDFInfo
- Publication number
- WO2021123254A1 WO2021123254A1 PCT/EP2020/087150 EP2020087150W WO2021123254A1 WO 2021123254 A1 WO2021123254 A1 WO 2021123254A1 EP 2020087150 W EP2020087150 W EP 2020087150W WO 2021123254 A1 WO2021123254 A1 WO 2021123254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charge
- charging
- state
- traction battery
- battery
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/32—Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/642—Slope of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/66—Ambient conditions
- B60L2240/662—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/56—Temperature prediction, e.g. for pre-cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/58—Departure time prediction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00309—Overheat or overtemperature protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the invention relates to a method for charging a traction battery of a battery-operated rail vehicle and a battery charging system for a battery-operated rail vehicle.
- a rail vehicle When on duty, a rail vehicle typically runs on always defined and therefore recurring routes that are known in advance.
- the rail vehicle is predominantly fed by an external voltage source, for example by means of an overhead line of a power network, which can be connected to a current collector of the rail vehicle.
- an external voltage source for example by means of an overhead line of a power network, which can be connected to a current collector of the rail vehicle.
- separation points or route sections without charging points which means that no external power source is available, can occur.
- alternative energy sources are required, such as diesel, hydrogen or a battery.
- a considerable amount of energy is required to maintain the traction of the rail vehicle and other devices of the rail vehicle, in particular of auxiliary operations, within a separation point, which places high demands on a traction battery for the rail vehicle.
- This object is according to claim 1 by a method for charging a
- a particularly predictive method for charging a traction battery of a battery-operated rail vehicle comprises the step of determining a first expected energy consumption of the battery-operated rail vehicle for driving through a first charging point-free route section until the next charging point is reached.
- the method also has the step of determining a target state of charge of the traction battery taking into account an aging state of the traction battery and the first energy consumption to be expected.
- the method has the steps of setting a target temperature for charging the traction battery and charging the traction battery until the target state of charge is reached.
- Procedure can be carried out in any order.
- the step of charging the traction battery until the target state of charge is reached is preferably carried out last.
- the T r hopessbatterie provides an energy store for feeding a T r relies
- the traction device typically comprises one or more electric motors.
- the traction battery can also provide an energy store for supplying auxiliary services, such as for example air conditioning or heating of the passenger compartment.
- the traction battery can only provide an energy store for feeding the traction device of the rail vehicle.
- the rail vehicle can have a vehicle battery for feeding the auxiliary services.
- a battery-operated rail vehicle is to be understood as meaning a rail vehicle whose traction device can be fully fed by a traction battery.
- the battery-operated rail vehicle can be a purely battery-operated rail vehicle, but it can also be a rail vehicle, the traction device of which is fed by the traction battery in some sections of the route and by an external energy source, in particular by electricity taken from an overhead line, in other sections of the route.
- a “charging point-free route section” is a section without an external energy source for the rail vehicle.
- the target state of charge is the state of charge (or SoC, "State of Charge”) of the traction battery that the traction battery should have when entering the first section of the route without charging points.
- the inventive method aims in particular to not fully charge the T r hopessbatterie as possible, but also not to operate in a very low state of charge, but to keep the state of charge of the traction battery in a range that leads to the lowest possible aging of the traction battery .
- the first expected energy consumption for driving through the first charging point-free route section is determined and based on this and taking into account the current state of aging of the traction battery, the target state of charge is determined.
- the target state of charge is determined in such a way that the energy provided by the traction battery is safely sufficient to drive through the first section of the route without charging points, but without unnecessarily charging the traction battery.
- the traction battery is preferably only charged until the target state of charge is reached and then no longer charged.
- the traction battery charged to the target state of charge has sufficient energy to feed the traction device, and in particular also the auxiliaries, but is, if possible, charged neither to a very high nor to a very low state of charge.
- the service life of the traction battery can advantageously be increased by the traction battery, if possible, not being charged to a very high state of charge, but rather being operated in a “medium range”.
- the target state of charge does not necessarily have to correlate with the first energy consumption to be expected; in particular, the target state of charge can be significantly higher than the first energy consumption to be expected.
- the first route section without charging points can be very short, and thus the first energy consumption to be expected can be very low. Determining the target state of charge of the traction battery taking into account the aging state of the traction battery and the first energy consumption to be expected will, in this example, lead to a significantly higher target state of charge than the first energy consumption to be expected. Instead, the target state of charge will be in a “medium range”.
- the aging of the traction battery leads in particular to the fact that the capacity, i.e. the current maximum usable capacity, of the traction battery is reduced.
- One consequence of aging is that traction batteries with identical energy content but different aging states have different charging states. In other words, traction batteries with different aging states need different charging states in order to provide the same energy.
- the method according to the invention takes into account the state of aging when determining the target state of charge and therefore leads to a lower load on the traction battery in order to increase the overall service life of the traction battery and thus to save costs.
- the method according to the invention further enables an improved recuperation capability of the battery in that a target state of charge adapted to the aging state is determined and a high state of charge is avoided.
- a significantly lower target state of charge is determined for newer or slightly aged traction batteries than for older or more heavily aged traction batteries, which significantly increases the service life of the traction battery and the performance of the traction battery both during charging and discharging.
- the target temperature for charging the traction battery enables the traction battery to be charged at a temperature at which the service life is influenced as little as possible, but the target state of charge is reached.
- the lifespan of the The traction battery decreases as the temperature rises, while the energy that can be supplied when charging the traction battery decreases significantly at low temperatures.
- the traction battery is operated in a temperature range of 15 to 35 ° C when charging. As a result, the cooling or heating power required to control the temperature of the traction battery should be reduced, but the traction battery should be operated in an optimal temperature range.
- the method can furthermore have the step of determining a state of charge range (desired state of charge range) taking into account the aging state of the battery.
- the state of charge range is a range specific to the specifications of the traction battery and the aging state of the traction battery, in which the battery is advantageously operated in order to avoid maximum states of charge and to reduce signs of aging.
- the charge state range to be taken into account increases, since the total capacity of the traction battery decreases and the capacity of the traction battery has to be used more and more. Both a minimum value of the required state of charge range are typically smaller and a maximum value of the required state of charge range is typically larger.
- a mean value of the state of charge range is often roughly in the middle of the total capacity in which the traction battery can be charged (entire SoC range), for example at 50% of the maximum state of charge of the traction battery.
- the target state of charge is set within the state of charge range. The traction battery is charged until the target charge level is reached, and thus within the charge level range.
- the desired state of charge range is smaller than the maximum state of charge of the
- the desired state of charge range can be less than 90% of the maximum state of charge of the traction battery and / or greater than 10% of the maximum state of charge of the traction battery, in particular for an older or more heavily aged traction battery.
- the desired state of charge range can be significantly lower.
- the state of charge range can be less than 65% of the maximum state of charge of the traction battery and / or greater than 35% of the maximum state of charge of the traction battery, in particular for a newer or slightly aged traction battery.
- the state of charge range can be dependent on a state of charge range, taking into account a state of charge range Service life and / or a state of charge range-dependent performance of the traction battery can be determined.
- a typical loss of capacity over the aging of the traction battery is in the range of about 20 to 30%.
- SoC i.e. around 30 to 40% DoD - Depth of Discharge
- a new traction battery should not be discharged to below 35% SoC, and an aged battery is preferably operated in the range from 30% to 85%.
- This allows an additional reserve to be provided.
- the aim is to maintain the symmetry of the operation (working around an average state of charge). In order to maintain the additional reserve even when the traction battery ages, provision can be made to shift the symmetrical operation to a rather asymmetrical operation without, however, completely giving up this.
- the target state of charge is determined
- Traction battery also taking into account a reserve factor, in particular for driving through the first section of the route without charging points until the next charging point is reached.
- the reserve factor serves in particular as a reserve for unplanned delays in the operational sequence and / or as a reserve for a possible failure of components. In the event of unplanned delays in the operational process, energy-optimized driving may not be possible. Taking the reserve factor into account enables traction and / or the auxiliary services to be maintained until the next charging point even if unforeseen events occur.
- the target state of charge is determined
- Traction battery also taking into account an expected energy consumption for tempering the traction battery when driving through the first charging point-free route section until the next charging point is reached.
- the energy consumption to be expected for controlling the temperature of the traction battery can be carried out taking into account the ambient temperature and / or the state of aging of the traction battery.
- the ambient temperature has an effect on the energy consumption to be expected for controlling the temperature of the traction battery, in particular since the energy consumption for cooling or heating the traction battery can depend significantly on the ambient temperature.
- the state of aging can also affect the expected energy consumption for controlling the temperature of the traction battery. An aged traction battery has a higher internal resistance and therefore requires a higher cooling capacity.
- the amount of energy required to control the temperature of the traction battery is typically considerably less than the amount of energy required to drive through the first section of the route without charging points until the next charging point is reached.
- the amount of energy required to control the temperature of the traction battery within the first section of the route without charging points is taken from the traction battery.
- the amount of energy required to control the temperature of the traction battery thus reduces the amount of energy available for driving through the first section of the route without charging points.
- the traction battery is operated in a temperature range of about 15 to 35 ° C when discharging. Setting the target temperature for discharging the traction battery enables the traction battery to be discharged at high power while the service life is affected as little as possible. The service life of the traction battery decreases with increasing temperature, while the power that can be drawn when discharging the traction battery decreases at low temperatures.
- the temperature control is thus carried out in such a way that the lowest possible energy consumption for temperature control (cooling or heating) must be applied during discharging, but the traction battery is still not damaged or restrictions in the performance and service life of the action battery are minimized.
- the traction battery can be a lithium-ion battery.
- the internal resistance of a lithium-ion battery decreases with increasing temperature. This reduces losses, and a larger proportion of the chemically stored energy can be extracted.
- the traction battery can be heated or cooled depending on an ambient temperature and a load requirement on the traction battery. The cooling can take place by means of a compression refrigeration system. In cases in which a target temperature for the traction battery is well below the ambient temperature, the cooling requires significant energy consumption.
- the setting of the target temperature for charging the traction battery can also make it possible to reduce the expected energy consumption for tempering the traction battery within the first charging point-free route section.
- the traction battery can be increasingly cooled as the state of charge increases, for example to 27 ° C. at 35% SoC and to 23 ° C. at 85% SoC.
- the required amount of energy for the temperature control of the traction battery can be used within the first section of the route without charging points be reduced. In this way, the temperature of the traction battery is reduced during the charging process (i.e. energy is invested in cooling) and the temperature is increased during discharge (i.e. the energy required to cool the battery is saved).
- a traction battery of 50kWh has a thermal capacity of approx. 0.1 to 0.2 kWh / K. This saves around 0.5 to 1 kilowatt hours when discharging, or, in other words, 1-2% DoD.
- the target state of charge is determined such that the
- the charge level of the traction battery is within the charge level range (target charge level range).
- the charge status of the traction battery is advantageously within the charge status range during the entire journey within the first charging point-free route section.
- the determination of the target state of charge can result in the target state of charge being within an upper range of the state of charge range, the state of charge of the traction battery being within a lower range of the state of charge range when the next charging point is reached.
- the first expected energy consumption is determined on the basis of an ambient temperature.
- the battery-operated rail vehicle can have a battery charging system that has a sensor for detecting the ambient temperature.
- the ambient temperature can be transmitted to the battery charging system.
- the ambient temperature has an effect on the first expected energy consumption, in particular since the energy consumption of the auxiliary services, such as heating or air conditioning the passenger compartment, can depend significantly on the ambient temperature.
- the first expected energy consumption can also be determined on the basis of a usage profile.
- the method further comprises determining the usage profile taking into account a route profile for the first route section free of charging points.
- the route profile shows the height differences and the distances within the first route section without charging points.
- the energy requirement for driving through the first section of the route without charging points can be estimated from the information on the height differences and the distances, taking into account the desired driving speeds and any acceleration and braking processes.
- the usage profile can be determined on the basis of various other factors. For example, the usage profile can also be determined taking into account a recuperation factor of the traction battery if the battery-operated rail vehicle is set up for regenerative braking or regenerative braking.
- the recuperation factor can mean that the first expected energy consumption is low or even negative, for example if the charging point is on a mountain and the first charging point-free route section corresponds to a downhill journey with a high proportion of braking.
- the usage profile can be determined taking into account external factors other than the ambient temperature.
- the external factor can be a volume of traffic. An increased volume of traffic can lead to longer travel times and increase energy consumption, especially of the auxiliary services.
- the usage profile can, for example, also take into account a driving style of a vehicle driver.
- the first expected energy consumption can vary depending on the level of training of the locomotive driver on an energy-optimized driving style.
- the usage profile can also take into account a timetable.
- the traction of the battery-operated rail vehicle can be carried out in an energy-optimized manner, and thus the first expected energy consumption can be reduced.
- an energy-inefficient driving style may be necessary and the first expected energy consumption may increase.
- the method further comprises the step of determining a
- the method can furthermore have the step of creating a charging profile for reaching the target state of charge, taking into account the remaining time.
- a charging current can be adjusted so that the target state of charge is reached.
- the charging of the action battery can advantageously take place within a predetermined charging current range.
- the charging profile is created in such a way that the charging current remains within the specified charging current range.
- a maximum charging current can be adapted to the available remaining charging time so that the target state of charge is reached.
- the charging current is preferably limited to a minimum so that, on the one hand, the remaining time is sufficient to bring the traction battery to the target state of charge and, on the other hand, the traction battery is charged as gently as possible.
- the damaging influence increases and leads to accelerated aging of the traction battery.
- limiting factors for the charging current such as current limits for the overhead line, can be taken into account.
- a journey of the battery-operated rail vehicle can include a series of charging points and route sections without charging points.
- embodiments are explained on the basis of a journey having two charging points and two route sections without charging points. These embodiments can be applied in a corresponding manner to journeys with three or more charging points and / or three or more charging point-free route sections.
- the naming of the route sections is chosen as follows: the charging point is followed by the first charging point-free route section, the first charging point-free route section is followed by the next charging point, this is followed by a second charging point-free route section, and this in turn is followed by the next but one charging point, and so on.
- the method can further include the step of determining a second expected energy consumption of the battery-operated rail vehicle for driving through a second charging point-free route section following the next charging point until the next but one charging point is reached.
- the determination of the second expected energy consumption of the battery-operated rail vehicle can take place in a manner corresponding to the determination of the first energy consumption to be expected of the battery-operated rail vehicle. This applies to all of the embodiments explained above, in particular with regard to the usage profile and / or the route profile, in relation to the determination of the first expected energy consumption of the battery-operated rail vehicle.
- the method can furthermore have the step of determining a dwell time within the next charging point until the second charging point-free route section is driven into.
- the dwell time in the next charging point can be viewed as an analogue to the remaining time in the charging point, with the difference that the dwell time corresponds to a total duration of the battery-powered rail vehicle within the next charging point, while the remaining time is based on the assumption that the rail vehicle has already been within for some time of the charging point, the remaining time until leaving the charging point.
- the method according to the invention could be carried out with a time delay after the charging point has been reached, or else that Procedure could be carried out before reaching the charging point.
- the determination of the second expected energy consumption and the dwell time already in the charging point can be particularly relevant if the dwell time is rather short and possibly not sufficient to charge the traction battery in such a way that sufficient energy is available for driving through the second section of the route without charging points.
- the dwell time can be too short to charge the traction battery within the specified charging current range.
- the method can furthermore comprise the step of determining the target state of charge further taking into account the second expected energy consumption and the dwell time. This advantageously makes it possible for the traction battery to provide sufficient energy for driving through the second charging point-free route section even with a rather short dwell time.
- the target state of charge is determined in such a way that the state of charge of the traction battery is within the state of charge range when it enters the next but one charging point. This enables the charge status of the traction battery to be largely or even completely within the charge status range both in the first charging point-free route section and in the second charging point-free route section.
- the charging profile for reaching the target state of charge can be created taking into account the remaining time and the length of stay.
- the charging profile can be set in such a way that the charging current remains within a predetermined charging current range both in the charging point and in the next charging point.
- the method can further comprise detecting the state of charge of the traction battery.
- the battery charging system can, for example, have a sensor for detecting the state of charge of the traction battery. From the difference between the target state of charge and a current state of charge of the traction battery, the amount of energy required to achieve the target state of charge can be determined.
- a battery charging system for a battery-operated rail vehicle has a traction battery for operating the rail vehicle and a control unit.
- the control unit is set up for a first expected energy consumption of the battery-operated one To determine rail vehicle for driving through a first charging point-free route section until reaching the next charging point. Furthermore, the control unit is set up to determine a target state of charge of the traction battery, taking into account an aging state of the traction battery and the first energy consumption to be expected.
- the control unit is configured to set a target temperature for charging the traction battery and to control the charging of the traction battery until the target state of charge is reached.
- the control unit can be set up to all of the above disclosed
- control unit can be set up to measure the reserve factor and / or the ambient temperature and / or the usage profile and / or the state of charge range and / or the route profile and / or the remaining time and / or the dwell time and / or the second expected energy consumption and / or to determine the charging current and / or the charging current range.
- the control unit can have a computing unit for determining the aforementioned components.
- the computing unit can have a data memory with map data for determining the route profile.
- the battery charging system can have a sensor for detecting the state of charge of the traction battery.
- the control unit can be set up to determine a required amount of energy from the difference between the target state of charge and a current state of charge of the traction battery and to control the charging of the traction battery until the target state of charge is reached.
- control unit can be set up below a state of charge range
- the battery charging system can also include a sensor for detecting the
- the control unit can be set up to determine the first expected energy consumption on the basis of the ambient temperature and a usage profile and to obtain the usage profile taking into account a route profile within the first route section without charging points.
- the control unit can also be configured to determine a remaining time until the first charging point-free route section is entered and configured to include a To determine the charging profile for reaching the target state of charge, taking into account the remaining time.
- a rail vehicle is provided.
- Rail vehicle has a battery charging system according to one of the embodiments disclosed herein.
- Figure 1 shows schematically a time profile of a charge state of a traction battery within the charging point and within the first charging point-free route section.
- FIG. 2 schematically shows a time profile of a state of charge of a traction battery within the charging point, within the first charging point-free route section, within the next charging point, and within the second charging point-free route section.
- Figure 3 shows the state of charge range of a new traction battery.
- FIG. 4 shows the state of charge range of an aged traction battery.
- FIG. 1 schematically shows a time profile of a state of charge (SoC) of a
- Traction battery when driving on a route section that includes a charging point and a first route section without charging points.
- the horizontal, dotted lines represent a minimum and a maximum value of a desired state of charge range in which the traction battery should preferably be operated, to reduce the aging of the traction battery.
- the vertical dotted line highlights the transition between the charging point and the first section of the route without charging points.
- the target state of charge shown is the state of charge of the traction battery at the time of entering the route section without charging points.
- the charging point can designate a place where the rail vehicle stays for charging, or an electrified route section that the rail vehicle travels through.
- the charging status of the traction battery is within the charging status range, but not sufficiently high to drive through a first charging point-free section of the route until the next charging point is reached.
- the rail vehicle can be located in an electrified section of the entire route.
- the charge status of the traction battery is constantly monitored.
- the aim of the method according to the invention is to avoid this.
- the aim is to operate the traction battery in a “medium” range (charging and discharging) in which the load on the traction battery is comparatively low.
- This middle area is referred to as the target state of charge area.
- the target state of charge range can be selected to be comparatively narrow.
- the target state of charge range must be chosen to be larger and larger so that the same amount of energy can be accessed.
- the method according to the invention therefore avoids especially with new traction batteries that they are subject to accelerated aging due to a high state of charge.
- the desired state of charge range for a new traction battery is shown. Since the total capacity is still very high, the state of charge range can still be selected to be relatively narrow in contrast to a traction battery that has been in operation for a long time. Their state of charge range is shown in FIG. The state of charge range for both traction batteries covers the same energy content. Due to the reduced total capacity due to aging, however, the range of use of the traction battery in FIG. 4 must be expanded.
- the state of charge range selected as a function of the aging state can also be referred to as the desired state of charge range.
- the first expected energy consumption should include the total consumption, i.e. in particular the energy consumption for traction taking into account current requirements from the timetable, consumption by auxiliary equipment, e.g. air conditioning, as well as safety surcharges for any unexpected events, e.g. unscheduled stops or delays.
- Climbs, route length, descents) as well as the desired driving speeds for the individual sections within the route profile are important. Scheduled stops must also be taken into account. In addition, the individual driving behavior of the rail vehicle driver and current timetable requirements can also be taken into account.
- the energy requirement for air conditioning and, for example, lighting is estimated.
- the outside temperature can be determined and the lighting conditions taken into account.
- recuperation factor can be taken into account, which is also influenced in particular by the route profile and the braking processes to be expected.
- a usage profile for the first charging point-free route section results, which is determined for the estimation of the first energy consumption to be expected.
- a desired state of charge range is defined, which was determined as a function of the aging state of the action battery.
- the desired state of charge range is intended to avoid excessive stress on the traction battery.
- the traction battery is charged in the charging point in such a way that the charging state of the traction battery is sufficient for driving through the first charging point-free route section until the next charging point is reached.
- the target state of charge is set within the desired state of charge range.
- the target state of charge is also determined in such a way that the state of charge of the traction battery is still within the state of charge range even when entering the next charging point. This avoids maximum states during loading and unloading.
- the charging takes place at a temperature which is only slightly stressful for the traction battery. At this temperature the battery can be charged efficiently. At higher temperatures, a traction battery, especially if it is a lithium-ion battery, can be charged more quickly and with lower internal losses, but this leads to a greater load on the traction battery. Therefore, the temperature is set so that charging is efficient, but only results in a low load on the traction battery and the energy consumption for temperature control is low. Temperatures between 15 - 35 ° C are favorable.
- FIG. 2 schematically shows a time profile of a state of charge (SoC) of a
- Traction battery when driving in a route section which comprises a charging point, a first charging point-free route section following the charging point, a next charging point following the first charging point-free route section, and a second charging point-free route section following this.
- the horizontal, dotted lines represent a minimum and a maximum value of a The vertical dotted lines highlight the transitions between the respective route sections.
- the target state of charge shown is the state of charge of the traction battery at the time of entering the route section without charging points.
- the traction battery must also provide sufficient energy for driving through the second charging point-free route section. If the dwell time at the next charging point, i.e. before entering the second section of the route without charging points, is sufficiently long, there would be enough time for charging. However, if the dwell time at the next charging point is only short, the dwell time alone is not sufficient to charge the traction battery for driving through the second section of the route without charging points. Therefore, when charging the traction battery in the (first) charging point, both the energy consumption for driving through the first and second charging point-free route section (first expected energy consumption and second expected energy consumption) as well as partial charging during the stay at the next charging point must be taken into account.
- the charging status of the traction battery is within the desired charging status range, but not sufficient for driving through a first charging point-free route section until the next charging point is reached.
- a second expected energy consumption of the battery-operated rail vehicle for driving through the second charging point-free route section until reaching the next but one charging point and a dwell time within the next charging point until entering the second charging point-free route section have been determined.
- the time spent at the next charging point is too short to sufficiently charge the traction battery for the second section of the route without charging points.
- the target state of charge has therefore been determined taking into account the first expected energy consumption, the second expected energy consumption and the dwell time.
- the traction battery has been charged in the charging point in such a way that there is sufficient energy for the second section of the route without charging points is available.
- the target state of charge has been determined in such a way that the state of charge of the traction battery when entering the next but one charging point is within the state of charge range.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Ein Verfahren zur Ladung einer Traktionsbatterie eines batteriebetriebenen Schienenfahrzeugs wird hierin beschrieben. Das Verfahren umfasst den Schritt Ermitteln eines ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für ein Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes. Ferner weist das Verfahren den Schritt Ermitteln eines Zielladezustands der Traktionsbatterie unter Berücksichtigung eines Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs auf. Das Verfahren umfasst die Schritte Einstellen einer Zieltemperatur für das Laden der Traktionsbatterie, und Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands. Weiterhin wird Batterieladungssystem für ein batteriebetriebenes Schienenfahrzeugs hierin beschrieben.
Description
Beschreibung
Prädiktive Batterieladung für batteriebetriebene Schienenfahrzeuge
TECHNISCHES GEBIET
[0001] Die Erfindung betrifft ein Verfahren zur Ladung einer Traktionsbatterie eines batteriebetriebenen Schienenfahrzeugs und ein Batterieladungssystem für ein batteriebetriebenes Schienenfahrzeug.
TECHNISCHER HINTERGRUND
[0002] Ein Schienenfahrzeug verkehrt im Diensteinsatz typischerweise auf immer definierten und daher wiederkehrenden Strecken, die im Voraus bekannt sind. Überwiegend wird das Schienenfahrzeug durch eine externe Spannungsquelle gespeist, beispielsweise mittels einer Oberleitung eines Stromnetzes, die mit einem Stromabnehmer des Schienenfahrzeugs verbindbar ist. Während der Traktion eines Schienenfahrzeugs können Trennstellen oder ladepunktfreie Streckenabschnitte, womit keine externe Stromquelle verfügbar ist, auftreten. Um die Traktion des Schienenfahrzeugs weiter aufrechterhalten zu können, werden alternative Energiequellen benötigt, wie beispielsweise Diesel, Wasserstoff oder eine Batterie. Zur Aufrechterhaltung der Traktion des Schienenfahrzeugs und anderer Einrichtungen des Schienenfahrzeugs, insbesondere von Hilfsbetrieben, innerhalb einer Trennstelle, wird eine erhebliche Energiemenge benötigt, wodurch hohe Anforderungen an eine Traktionsbatterie für das Schienenfahrzeug gestellt werden.
PROBLEMSTELLUNG
[0003] Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Ladung einer Traktionsbatterie eines batteriebetriebenen Schienenfahrzeugs und ein Batterieladungssystem für ein batteriebetriebenes Schienenfahrzeug bereitzustellen, mit dem ein effizientes Betreiben der Traktionsbatterie ermöglicht wird, insbesondere innerhalb eines ladepunktfreien Streckenabschnitts.
ERFIN DUNGSGEMÄSSE LÖSUNG
[0004] Diese Aufgabe wird gemäß Anspruch 1 durch ein Verfahren zur Ladung einer
Traktionsbatterie eines batteriebetriebenen Schienenfahrzeugs gelöst. Ferner wird die Aufgabe Bereitstellung eines Batterieladungssystems für ein batteriebetriebenes Schienenfahrzeug gemäß Anspruch 14 gelöst. Weitere Ausführungsformen, Modifikationen und Verbesserungen ergeben sich anhand der folgenden Beschreibung und der beigefügten Ansprüche.
[0005] Gemäß einer Ausführungsform wird ein, insbesondere prädiktives, Verfahren zur Ladung einer Traktionsbatterie eines batteriebetriebenen Schienenfahrzeugs bereitgestellt. Das Verfahren umfasst den Schritt Ermitteln eines ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für ein Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes. Das Verfahren weist ferner den Schritt Ermitteln eines Zielladezustands der Traktionsbatterie unter Berücksichtigung eines Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs auf. Das Verfahren weist die Schritte Einstellen einer Zieltemperatur für das Laden der Traktionsbatterie und Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands auf.
[0006] Nach einem allgemeinen Aspekt der vorliegenden Offenbarung können die Schritte des
Verfahrens in beliebiger Reihenfolge ausgeführt werden. Bevorzugt wird der Schritt, Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands auf, zuletzt ausgeführt.
[0007] Die T raktionsbatterie stellt einen Energiespeicher für das Speisen einer T raktionseinrichtung des Schienenfahrzeugs bereit, ist jedoch nicht darauf beschränkt. Typischerweise umfasst die Traktionseinrichtung einen oder mehrere Elektromotoren. Weiterhin kann die Traktionsbatterie zusätzlich einen Energiespeicher für das Speisen von Hilfsbetrieben, wie beispielsweise das Klimatisieren oder Heizen des Fahrgastraums, bereitstellen. Alternativ kann die Traktionsbatterie ausschließlich einen Energiespeicher für das Speisen der Traktionseinrichtung des Schienenfahrzeugs bereitstellen. In diesem Fall kann das Schienenfahrzeug eine Fahrzeugbatterie aufweisen für das Speisen der Hilfsbetriebe.
[0008] Unter einem batteriebetriebenen Schienenfahrzeug ist ein Schienenfahrzeug zu verstehen, dessen Traktionseinrichtung vollständig durch eine Traktionsbatterie gespeist werden kann. Bei dem batteriebetriebenen Schienenfahrzeug kann es sich um ein rein batteriebetriebenes Schienenfahrzeug handeln, es kann sich aber auch um ein Schienenfahrzeug handeln,
dessen Traktionseinrichtung in manchen Streckabschnitten durch die Traktionsbatterie gespeist wird und in anderen Streckenabschnitten durch eine externe Energiequelle, insbesondere durch aus einer Oberleitung entnommenen Strom, gespeist wird.
[0009] Unter „innerhalb eines Ladepunkts“ oder „innerhalb eines nächsten Ladepunkts“ wird sowohl das Verweilen des batteriebetriebenen Schienenfahrzeugs an einem Ort (beispielsweise einem Bahnhof), an dem die Traktionsbatterie geladen werden kann, als auch das Durchfahren einer ausgedehnten Strecke, in der die Traktionsbatterie beim Fahren durch eine externe Energiequelle (beispielsweise Energie aus einer Oberleitung) aufgeladen werden kann. Ein Laden der Traktionsbatterie erfolgt im letzten Fall während der Fahrt des batteriebetriebenen Schienenfahrzeugs innerhalb des Ladepunkts (Ladestrecke). Ein „ladepunktfreier Streckenabschnitt“ ist ein Abschnitt ohne externe Energiequelle für das Schienenfahrzeug.
[0010] Der Zielladezustand ist der Ladezustand (oder SoC, „State of Charge“) der T raktionsbatterie, den die Traktionsbatterie beim Einfahren in den ersten ladepunktfreien Streckenabschnitt aufweisen soll.
[0011] Das erfindungsgemäße Verfahren zielt insbesondere darauf ab, die T raktionsbatterie möglichst nicht vollständig aufzuladen, aber auch nicht in einem sehr niedrigen Ladezustand zu betreiben, sondern den Ladezustand der Traktionsbatterie in einem Bereich zu halten, welcher zu einer möglichst geringen Alterungsbelastung der Traktionsbatterie führt. Zu diesem Zweck wird der erste zu erwartende Energieverbrauch für das Durchfahren des ersten ladepunktfreien Streckenabschnitts ermittelt und basierend hierauf und unter Berücksichtigung des aktuellen Alterungszustands der Traktionsbatterie der Zielladezustand ermittelt. Der Zielladezustand wird so ermittelt, dass die von der Traktionsbatterie bereitgestellte Energie für das Durchfahren des ersten ladepunktfreien Streckenabschnitts sicher ausreicht, ohne jedoch die Traktionsbatterie unnötig stark aufzuladen. Die Traktionsbatterie wird bevorzugt lediglich solange geladen, bis der Zielladezustand erreicht wird und danach nicht weitergeladen. Die auf den Zielladezustand geladene Traktionsbatterie verfügt hierdurch über ausreichend Energie zum Speisen der Traktionseinrichtung, und insbesondere auch der Hilfsbetriebe, ist jedoch möglichst weder auf einen sehr hohen noch auf einen sehr niedrigen Ladezustand aufgeladen. Vorteilhafterweise lässt sich die Lebensdauer der Traktionsbatterie erhöhen, indem die Traktionsbatterie möglichst nicht auf einen sehr hohen Ladezustand aufgeladen wird, sondern in einem „mittleren Bereich“ betrieben wird. Allgemeiner ausgedrückt lässt sich die
Leistung der Traktionsbatterie sowohl beim Laden als auch beim Entladen erhöhen, indem Traktionsbatterie möglichst weder auf einen sehr hohen Ladezustand noch auf einen sehr niedrigen Ladezustand aufgeladen wird, sondern in einem „mittleren Bereich“ betrieben wird.
[0012] Der Zielladezustand muss nicht notwendigerweise mit dem ersten zu erwartenden Energieverbrauch korrelieren, insbesondere kann der Zielladezustand wesentlich höher sein als der erste zu erwartende Energieverbrauch. Beispielsweise kann der erste ladepunktfreie Streckenabschnitt sehr kurz sein, und damit der erste zu erwartende Energieverbrauch sehr gering sein. Das Ermitteln des Zielladezustands der Traktionsbatterie unter Berücksichtigung des Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs wird in diesem Beispiel zu einem wesentlich höheren Zielladezustand als der erste zu erwartende Energieverbrauch führen. Stattdessen wird der Zielladezustand sich in einem „mittleren Bereich“ befinden.
[0013] Die Alterung der Traktionsbatterie führt insbesondere dazu, dass sich die Kapazität, d.h. die aktuell maximal nutzbare Kapazität, der Traktionsbatterie verringert. Eine Konsequenz der Alterung ist, dass Traktionsbatterien mit identischen Energieinhalten aber unterschiedlichen Alterungszuständen unterschiedliche Ladezustände aufweisen. Anders ausgedrückt sind bei Traktionsbatterien mit unterschiedlichen Alterungszuständen unterschiedliche Ladezustände nötig, um die gleiche Energie bereitzustellen. Das erfindungsgemäße Verfahren berücksichtigt den Alterungszustand beim Ermitteln des Zielladezustands und führt daher zu einer geringeren Belastung der Traktionsbatterie, um insgesamt die Lebensdauer der Traktionsbatterie zu erhöhen und damit Kosten einzusparen.
[0014] Durch das erfindungsgemäße Verfahren wird weiterhin eine verbesserte Rekuperationsfähigkeit der Batterie ermöglicht, indem ein auf den Alterungszustand angepasster Zielladezustand ermittelt und ein hoher Ladungszustand vermieden wird. Insbesondere wird gemäß dem vorliegenden Verfahren für neuere oder wenig gealterte Traktionsbatterien ein wesentlich niedrigerer Zielladezustand als für ältere oder bereits stärker gealterte Traktionsbatterien ermittelt, wodurch sich die Lebensdauer der Traktionsbatterie und die Leistung der Traktionsbatterie sowohl bei dem Laden als auch bei dem Entladen wesentlich erhöhen.
[0015] Das Einstellen der Zieltemperatur für das Laden der Traktionsbatterie ermöglicht das Aufladen der Traktionsbatterie bei einer Temperatur, bei der die Lebensdauer möglichst wenig beeinflusst wird, der Zielladezustand jedoch erreicht wird. Die Lebensdauer der
Traktionsbatterie nimmt mit steigender Temperatur ab, während die beim Aufladen der Traktionsbatterie zuführbare Energie erheblich bei niedrigen Temperaturen abnimmt. Typischerweise wird die Traktionsbatterie beim Aufladen in einem Temperaturbereich von 15 bis 35 °C betrieben. Im Ergebnis soll die für die Temperierung der Traktionsbatterie erforderliche Kühl- bzw. Heizleistung verringert, die Traktionsbatterie jedoch in einem optimalen Temperaturbereich betrieben werden.
[0016] Das Verfahren kann ferner den Schritt Ermitteln eines Ladezustandsbereichs (angestrebter Ladezustandsbereich) unter Berücksichtigung des Alterungszustandes der Batterie, aufweisen. Der Ladezustandsbereich ist ein jeweils für die Spezifikationen der Traktionsbatterie und dem Alterungszustand der Traktionsbatterie spezifischer Bereich, in dem die Batterie vorteilhafterweise betrieben wird, um maximale Ladezustande zu vermeiden und Alterungserscheinungen zu vermindern. Mit steigendem Alterungszustand der Traktionsbatterie wird jedoch der zu berücksichtigenden Ladezustandsbereich größer, da die Gesamtkapazität der Traktionsbatterie abnimmt und die Kapazität der Traktionsbatterie immer mehr ausgenutzt werden muss. Dabei wird sowohl ein minimaler Wert des erforderlichen Ladezustandsbereichs typischerweise kleiner, als auch ein maximaler Wert des erforderlichen Ladezustandsbereichs typischerweise größer. Ein Mittelwert des Ladezustandsbereichs liegt häufig in etwa in der Mitte der Gesamtkapazität, in dem die Traktionsbatterie geladen werden kann (gesamter SoC Bereich), beispielsweise bei 50 % des maximalen Ladezustands der Traktionsbatterie. Der Zielladezustand wird innerhalb des Ladezustandsbereichs festgelegt. Das Laden der Traktionsbatterie erfolgt bis zum Erreichen des Zielladezustands, und somit innerhalb des Ladezustandsbereichs.
[0017] Der angestrebte Ladezustandsbereich ist kleiner als der maximale Ladezustand der
Traktionsbatterie und oberhalb einer Entladeschlussspannung der Traktionsbatterie. Der angestrebte Ladezustandsbereich kann kleiner als 90 % des maximalen Ladezustands der Traktionsbatterie und/oder größer als 10 % des maximalen Ladezustands der Traktionsbatterie sein, insbesondere für eine ältere oder bereits stärker gealterte Traktionsbatterie. Für eine neuere oder wenig gealterte Traktionsbatterie kann der angestrebte Ladezustandsbereich wesentlich geringer sein. Beispielsweise kann der Ladezustandsbereich kleiner als 65 % des maximalen Ladezustands der Traktionsbatterie und/oder größer als 35 % des maximalen Ladezustands der Traktionsbatterie sein, insbesondere für eine neuere oder wenig gealterte Traktionsbatterie. Der Ladezustandsbereich kann unter Berücksichtigung einer ladezustandsbereichsabhängigen
Lebensdauer und/oder einer ladezustandsbereichsabhängigen Leistung der Traktionsbatterie ermittelt werden.
[0018] Ein typischer Kapazitätsverlust über die Alterung der Traktionsbatterie liegt im Bereich von etwa 20 bis 30%. Im Neuzustand einer Traktionsbatterie können etwa 35% bis etwa 65% SoC (also etwa 30 bis 40% DoD - Depth of Discharge) genutzt werden und im Alt-Zustand etwa 10% bis etwa 90% SoC (also etwa 80% DoD). Es ist gemäß einer Ausführungsform vorgesehen, dass eine neue Traktionsbatterie nicht auf unter 35% SoC entleert werden soll, und eine gealterte Batterie bevorzugt im Bereich von 30% bis 85% betrieben wird. Dadurch kann eine zusätzliche Reserve bereitgestellt werden. Gleichzeitig wird angestrebt, die Symmetrie des Betriebs (arbeiten um eine mittleren Ladungszustand) beizubehalten. Um auch bei Alterung der Traktionsbatterie die zusätzliche Reserve beizubehalten, kann vorgesehen werden, den symmetrischen Betrieb zu einem eher unsymmetrischen Betrieb zu verschieben, ohne jedoch diesen vollständigen aufzugeben.
[0019] Gemäß einer Ausführungsform erfolgt das Ermitteln des Zielladezustands der
Traktionsbatterie ferner unter Berücksichtigung eines Reservefaktors, insbesondere für das Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen des nächsten Ladepunktes. Der Reservefaktor dient insbesondere als Vorhalt für ungeplante Verzögerungen im Betriebsablauf und/oder als Vorhalt für einen möglichen Ausfall von Komponenten. Bei ungeplanten Verzögerungen im Betriebsablauf kann ein energieoptimiertes Fahren gegebenenfalls nicht möglich sein. Die Berücksichtigung des Reservefaktors ermöglicht es eine Traktion und/oder die Hilfsbetriebe auch dann bis zum nächsten Ladepunkt aufrechtzuerhalten falls unvorhergesehene Ereignisse auftreten.
[0020] Gemäß einer Ausführungsform erfolgt das Ermitteln des Zielladezustands der
Traktionsbatterie ferner unter Berücksichtigung eines zu erwartenden Energieverbrauchs für das Temperieren der Traktionsbatterie beim Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen des nächsten Ladepunkts. Der zu erwartende Energieverbrauch für das Temperieren der Traktionsbatterie kann unter Berücksichtigung der Umgebungstemperatur und/oder des Alterungszustands der Traktionsbatterie erfolgen. Die Umgebungstemperatur wirkt sich auf den zu erwartenden Energieverbrauchs für das Temperieren der Traktionsbatterie aus, insbesondere da ein Energieverbrauch zum Kühlen oder Heizen der Traktionsbatterie erheblich von der Umgebungstemperatur abhängen kann. Der Alterungszustand kann sich auch auf den zu erwartenden Energieverbrauchs für das Temperieren der Traktionsbatterie auswirken. Eine gealterte Traktionsbatterie weist einen
höheren Innenwiderstand auf und erfordet daher eine höhere Kühlleistung. Die für das Temperieren der Traktionsbatterie benötigte Energiemenge ist typischerweise erheblich geringer als die für das Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen des nächsten Ladepunktes benötigte Energiemenge. Die für das Temperieren der Traktionsbatterie benötigte Energiemenge innerhalb des ersten ladepunktfreien Streckenabschnitts wird der Traktionsbatterie entnommen. Die für das Temperieren der Traktionsbatterie benötigte Energiemenge reduziert somit die für das Durchfahren des ersten ladepunktfreien Streckenabschnitts verfügbare Energiemenge.
[0021] Typischerweise wird die Traktionsbatterie beim Entladen in einem Temperaturbereich von etwa 15 bis 35 °C betrieben. Das Einstellen der Zieltemperatur für das Entladen der Traktionsbatterie ermöglicht das Entladen der Traktionsbatterie bei hoher Leistung, während die Lebensdauer möglichst wenig beeinflusst wird. Die Lebensdauer der Traktionsbatterie nimmt mit steigender Temperatur ab, während die beim Entladen der Traktionsbatterie entnehmbare Leistung bei niedrigen Temperaturen abnimmt. Das Temperieren erfolgt somit derart, dass während des Entladens ein möglichst geringer Energieverbrauch für das Temperieren (Kühlen bzw. Heizen) aufgebracht werden muss, aber trotzdem die Traktionsbatterie nicht geschädigt wird oder Einschränkungen in der Leistung und der Lebensdauer der T raktionsbatterie minimiert werden.
[0022] Beispielsweise kann die Traktionsbatterie eine Lithium-Ionenbatterie sein. Der
Innenwiderstand einer Lithium-Ionenbatterie sinkt mit steigender Temperatur. Dadurch sinken Verluste, ein größerer Anteil der chemisch gespeicherten Energie kann entnommen werden. Die Traktionsbatterie kann abhängig von einer Umgebungstemperatur und einer Lastanforderung an die Traktionsbatterie beheizt oder gekühlt werden. Die Kühlung kann mittels einer Kompressionskälteanlage erfolgen. In Fällen in denen eine Solltemperatur für die Traktionsbatterie deutlich unterhalb der Umgebungstemperatur liegt, erfordert die Kühlung einen signifikanten Energieverbrauch.
[0023] Das Einstellen der Zieltemperatur für das Laden der Traktionsbatterie kann ferner ermöglichen, den zu erwartenden Energieverbrauch für das Temperieren der Traktionsbatterie innerhalb des ersten ladepunktfreien Streckenabschnitts zu reduzieren. Insbesondere kann während dem Laden der Traktionsbatterie, die Traktionsbatterie mit steigendem Ladezustand zunehmend abgekühlt werden, beispielsweise auf 27 °C bei 35 % SoC und auf 23 °C bei 85% SoC. Innerhalb des ersten ladepunktfreien Streckenabschnitts kann die erforderliche Energiemenge für das Temperieren der Traktionsbatterie hierdurch
reduziert werden. Damit wird während des Ladevorgangs die Temperatur der Traktionsbatterie reduziert (also Energie für die Kühlung investiert) und während des Entladens die Temperatur erhöht (also die Energie für die Kühlung der Batterie eingespart). Dies ist deswegen möglich, weil eine Traktionsbatterie von 50kWh eine thermische Kapazität von ca. 0,1 bis 0,2 kWh/K hat. Damit wird also beispielsweise bereits etwa 0,5 bis 1 Kilowattstunden beim Entladen, oder anders ausgedrückt 1-2% DoD, gespart.
[0024] Gemäß einer Ausführungsform erfolgt das Ermitteln des Zielladezustands derart, dass der
Ladezustand der Traktionsbatterie bei einem Einfahren in den nächsten Ladepunkt innerhalb des Ladezustandsbereichs (angestrebter Ladezustandsbereichs) liegt. Vorteilhafterweise liegt der Ladezustand der Traktionsbatterie während der gesamten Fahrt innerhalb des ersten ladepunktfreien Streckenabschnitts innerhalb des Ladezustandsbereichs. Beispielsweise kann das Ermitteln des Zielladezustands dazu führen, dass der Zielladezustands sich innerhalb eines oberen Bereichs des Ladezustandsbereichs befindet, wobei bei dem Einfahren in den nächsten Ladepunkt der Ladezustand der Traktionsbatterie innerhalb eines unteren Bereichs des Ladezustandsbereichs liegen kann.
[0025] In einer Ausführungsform erfolgt das Ermitteln des ersten zu erwartenden Energieverbrauchs auf Basis einer Umgebungstemperatur. Das batteriebetriebene Schienenfahrzeug kann ein Batterieladungssystem aufweisen, das einen Sensor zum Erfassen der Umgebungstemperatur aufweist. Alternativ kann beispielsweise die Umgebungstemperatur an das Batterieladungssystem übermittelt werden. Die Umgebungstemperatur wirkt sich auf den ersten zu erwartenden Energieverbrauchs aus, insbesondere da ein Energieverbrauch der Hilfsbetriebe, wie das Heizen oder Klimatisieren des Fahrgastraums, erheblich von der Umgebungstemperatur abhängen kann.
[0026] Das Ermitteln des ersten zu erwartenden Energieverbrauchs kann ferner auf Basis eines Nutzungsprofils erfolgen. Das Verfahren umfasst ferner das Ermitteln des Nutzungsprofils unter Berücksichtigung eines Strecken profils für den ersten ladepunktfreien Streckenabschnitt. Das Strecken profil weist die Höhenunterschiede und die Distanzen innerhalb des ersten ladepunktfreien Streckenabschnitts auf. Aus den Angaben zu den Höhenunterschieden und den Distanzen, und unter Berücksichtigung der angestrebten Fahrgeschwindigkeiten sowie eventuellen Beschleunigungs- und Abbremsvorgängen lässt sich der Energiebedarf für das Durchfahren des ersten ladepunktfreien Streckenabschnitts abschätzen.
[0027] Das Ermitteln des Nutzungsprofils kann auf Basis diverser weiterer Faktoren erfolgen. Beispielsweise kann das Nutzungsprofil ferner unter Berücksichtigung eines Rekuperationsfaktors der Traktionsbatterie ermittelt werden, falls das batteriebetriebene Schienenfahrzeug für eine Nutzbremsung oder Rekuperationsbremsung eingerichtet ist. Der Rekuperationsfaktor kann dazu führen, dass der erste zu erwartende Energieverbrauch gering oder sogar negativ wird, beispielsweise wenn der Ladepunkt auf einem Berg liegt und der erste ladepunktfreie Streckenabschnitt einer Abwärtsfahrt mit hohem Bremsanteil entspricht. Das Nutzungsprofil kann unter Berücksichtigung anderer externer Faktoren als die Umgebungstemperatur ermittelt werden. Beispielsweise kann der externe Faktor ein Verkehrsaufkommen sein. Ein erhöhtes Verkehrsaufkommen kann längere Fahrtzeiten bewirken und den Energieverbrauch, insbesondere der Hilfsbetriebe, erhöhen. Das Nutzungsprofil kann beispielsweise auch unter Berücksichtigung eines Fahrstils eines Fahrzeugführers erfolgen. Der erste zu erwartende Energieverbrauch kann je nach Schulungsgrad des Lokomotivführers auf eine energieoptimierte Fahrweise abweichen. Das Nutzungsprofil kann auch unter Berücksichtigung eines Fahrplans erfolgen. Im Falle von Zeitreserven kann die Traktion des batteriebetriebenen Schienenfahrzeugs energieoptimiert erfolgen, und damit der erste zu erwartende Energieverbrauch sinken. Im Falle einer Verspätung kann eine energieineffiziente Fahrweise erforderlich sein, und damit der erste zu erwartende Energieverbrauch steigen.
[0028] Gemäß einer Ausführungsform weist das Verfahren ferner den Schritt, Ermitteln einer
Restzeit bis zu einem Einfahren in den ersten ladepunktfreien Streckenabschnitt auf. Die Restzeit ist von Bedeutung zum Ermitteln, welche Zeitdauer zum Laden der Traktionsbatterie bis zum Erreichen des Zieladezustands verbleibt. Das Verfahren kann ferner den Schritt Erstellen eines Ladeprofils zum Erreichen des Zielladezustands unter Berücksichtigung der Restzeit, aufweisen. Je nach verbleibender Restzeit kann ein Ladestrom angepasst werden, damit der Zieladezustand erreicht wird. Das Aufladen der T raktionsbatterie kann aus Effizienzgründen vorteilhafterweise innerhalb eines vorgegebenen Ladestrombereichs erfolgen. In einer Ausgestaltungsform erfolgt das Erstellen des Ladeprofils derart, dass der Ladestrom innerhalb des vorgegebenen Ladestrombereichs bleibt. Insbesondere kann ein maximaler Ladestrom auf die verfügbare Restladezeit angepasst werden, damit der Zieladezustand erreicht wird. Bevorzugt wird der Ladestrom auf ein Minimum begrenzt, sodass einerseits die verbleibende Restzeit ausreicht, um die Traktionsbatterie auf den Zielladezustand zu bringen und andererseits die Traktionsbatterie möglichst schonend geladen wird. Mit steigendem Ladestrom erhöht sich der schädigende Einfluss und führt zu
einer beschleunigten Alterung der Traktionsbatterie. Zudem können begrenzende Faktoren für den Ladestrom, wie beispielsweise Strombegrenzungen der Oberleitung, berücksichtigt werden.
[0029] Nach einem allgemeinen Aspekt kann eine Fahrt des batteriebetriebenen Schienenfahrzeugs eine Serie von Ladepunkten und ladepunktfreien Streckenabschnitten beinhalten. Nachfolgend werden Ausführungsformen anhand von einer Fahrt aufweisend zwei Ladepunkten und zwei ladepunktfreien Streckenabschnitten erläutert. Diese Ausführungsformen können in entsprechender Weise auf Fahrten mit drei und mehr Ladepunkten und/oder drei und mehr ladepunktfreien Streckenabschnitten angewendet werden. Die Benennung der Streckenabschnitte ist dabei folgendermaßen gewählt: auf den Ladepunkt folgt der erste ladepunktfreie Streckenabschnitt, auf den ersten ladepunktfreien Streckenabschnitt folgt der nächste Ladepunkt, hierauf folgt ein zweiter ladepunktfreier Streckenabschnitt, und hierauf wiederum folgt ein übernächster Ladepunkt, und so weiter.
[0030] Bei einer Fahrt mit mehreren Ladepunkten und mehreren ladepunktfreien
Streckenabschnitten kann das Verfahren ferner den Schritt, Ermitteln eines zweiten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für das Durchfahren eines nach dem nächsten Ladepunkt folgenden zweiten ladepunktfreien Streckenabschnitts bis zum Erreichen eines übernächsten Ladepunktes, aufweisen. Das Ermitteln des zweiten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs kann in entsprechender weise zu dem Ermitteln des ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs erfolgen. Dies gilt für alle vorstehend erläuterten Ausführungsformen, insbesondere in Bezug auf das Nutzungsprofil und/oder das Streckenprofil, bezogen auf das Ermitteln des ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs.
[0031] Das Verfahren kann ferner den Schritt, Ermitteln einer Verweildauer innerhalb des nächsten Ladepunkts bis zu einem Einfahren in den zweiten ladepunktfreien Streckenabschnitt, aufweisen. Die Verweildauer im nächsten Ladepunkt kann als ein Analogon zu der Restzeit im Ladepunkt angesehen werden, mit dem Unterschied, dass die Verweildauer eine Gesamtdauer des batteriebetriebenen Schienenfahrzeugs innerhalb des nächsten Ladepunkts entspricht, während die Restzeit unter der Annahme, das Schienenfahrzeug ist bereits seit einiger Zeit innerhalb des Ladepunkts, die noch verbleibende Zeit bis zum Verlassen des Ladepunktes ist. Beispielsweise könnte das erfindungsgemäße Verfahren mit zeitlicher Verzögerung nach Erreichen des Ladepunkt ausgeführt werden oder aber das
Verfahren könnte vor Erreichen des Ladepunkts ausgeführt werden. Das Ermitteln der zweiten zu erwartenden Energieverbrauchs und der Verweildauer bereits im Ladepunkt kann vor allem dann relevant sein, falls die Verweildauer eher kurz ist und möglicherweise nicht ausreicht, um die Traktionsbatterie derart aufzuladen, dass ausreichend Energie für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts vorhanden ist. Insbesondere kann die Verweildauer zu kurz sein, um die Traktionsbatterie innerhalb des vorgegebenen Ladestrom bereichs aufzuladen.
[0032] Es kann daher vorteilhaft sein, beim Aufladen der Traktionsbatterie im Ladepunkt einen Vorhalt für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts vorzusehen.
Das Verfahren kann ferner den Schritt, Ermitteln des Zielladezustands ferner unter Berücksichtigung des zweiten zu erwartenden Energieverbrauchs und der Verweildauer, umfassen. Vorteilhafterweise kann hierdurch ermöglicht werden, dass auch bei einer eher kurzen Verweildauer ausreichend Energie für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts durch die Traktionsbatterie bereitgestellt werden kann.
[0033] In einer Ausgestaltungsform wird der Zielladezustand derart ermittelt, dass der Ladezustand der Traktionsbatterie bei einem Einfahren in den übernächsten Ladepunkt innerhalb des Ladezustandsbereichs liegt. Hierdurch wird ermöglicht, dass der Ladezustand der Traktionsbatterie sowohl im ersten ladepunktfreien Streckenabschnitt als auch im zweiten ladepunktfreien Streckenabschnitt weitgehend oder sogar vollständig innerhalb des Ladezustandsbereichs liegt. Das Ladeprofil zum Erreichen des Zielladezustands kann dabei unter Berücksichtigung der Restzeit und der Verweildauer erstellt werden. Das Ladeprofil kann dabei derart eingestellt werden, dass der Ladestrom sowohl im Ladepunkt als auch im nächsten Ladepunkt innerhalb eines vorgegebenen Ladestrombereichs bleibt.
[0034] Das Verfahren kann ferner das Erfassen des Ladezustands der Traktionsbatterie umfassen. Das Batterieladungssystem kann beispielsweise einen Sensor zum Erfassen des Ladezustands der Traktionsbatterie aufweisen. Aus der Differenz zwischen dem Zielladezustand und einem derzeitigen Ladezustands der Traktionsbatterie kann eine benötigte Energiemenge ermittelt werden um den Zielladezustand zu erreichen.
[0035] Gemäß einer Ausführungsform wird ein Batterieladungssystem für ein batteriebetriebenes Schienenfahrzeugs bereitgestellt. Das Batterieladungssystem weist eine Traktionsbatterie zum Betreiben des Schienenfahrzeugs und eine Kontrolleinheit auf. Die Kontrolleinheit ist dazu eingerichtet einen zu ersten erwartenden Energieverbrauch des batteriebetriebenen
Schienenfahrzeugs für das Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes zu ermitteln. Ferner ist die Kontrolleinheit dazu eingerichtet einen Zielladezustand der Traktionsbatterie unter Berücksichtigung eines Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs zu ermitteln. Die Kontrolleinheit ist konfiguriert, eine Zieltemperatur für das Laden der Traktionsbatterie einzustellen, und das Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands zu kontrollieren.
[0036] Die Kontrolleinheit kann dazu eingerichtet sein, alle vorstehend offenbarten
Ausführungsformen im Zusammenhang mit dem erfindungsgemäßen Verfahren auszuführen. Insbesondere kann die Kontrolleinheit dazu eingerichtet sein, den Reservefaktor und/oder die Umgebungstemperatur und/oder das Nutzungsprofil und/oder den Ladezustandsbereich und/oder das Streckenprofil und/oder die Restzeit und/oder die Verweildauer und/oder den zweiten zu erwartenden Energieverbrauch und/oder den Ladestrom und/oder den Ladestrombereich zu bestimmen. Die Kontrolleinheit kann eine Recheneinheit zur Bestimmung der vorgenannten Komponenten aufweisen. Beispielsweise kann die Recheneinheit einen Datenspeicher mit Kartendaten zur Bestimmung des Streckenprofils aufweisen. Das Batterieladungssystem kann einen Sensor zum Erfassen des Ladezustands der Traktionsbatterie aufweisen. Die Kontrolleinheit kann dazu eingerichtet sein aus der Differenz zwischen dem Zielladezustand und einem derzeitigen Ladezustand der Traktionsbatterie eine benötigte Energiemenge zu ermitteln und das Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands zu kontrollieren.
[0037] Die Kontrolleinheit kann dazu eingerichtet sein einen Ladezustandsbereich unter
Berücksichtigung des Alterungszustandes der Traktionsbatterie zu ermitteln, und den Zielladezustand innerhalb des Ladezustandsbereichs festzulegen.
[0038] Das Batterieladungssystem kann ferner einen Sensor zur Erfassung der
Umgebungstemperatur aufweisen. Die Kontrolleinheit kann dazu eingerichtet sein, den ersten zu erwartenden Energieverbrauchs auf Basis der Umgebungstemperatur und einem Nutzungsprofil zu ermitteln und das Nutzungsprofil unter Berücksichtigung eines Streckenprofils innerhalb des ersten ladepunktfreien Streckenabschnitts zu erhalten.
[0039] Die Kontrolleinheit kann ferner dazu konfiguriert sein, eine Restzeit bis zu einem Einfahren in den ersten ladepunktfreien Streckenabschnitt zu ermitteln und dazu konfiguriert sein, ein
Ladeprofil zum Erreichen des Zielladezustands unter Berücksichtigung der Restzeit zu ermitteln.
[0040] Gemäß einer Ausführungsform wird ein Schienenfahrzeug bereitgestellt. Das
Schienenfahrzeug weist ein Batterieladungssystem nach einem der hierin offenbarten Ausführungsformen auf.
FIGUREN
[0041] Nachfolgend wird die Erfindung anhand von Ausführungsformen näher erläutert, ohne dass diese den durch die Ansprüche definierten Schutzbereich einschränken sollen.
[0042] Die beiliegenden Zeichnungen veranschaulichen Ausführungsformen und dienen zusammen mit der Beschreibung der Erläuterung der Prinzipien der Erfindung. Die Elemente der Zeichnungen sind relativ zueinander und nicht notwendigerweise maßstabsgetreu.
Figur 1 zeigt schematisch einen zeitlichen Verlauf eines Ladezustands einer Traktionsbatterie innerhalb des Ladepunkts und innerhalb des ersten ladepunktfreien Streckenabschnitts.
Figur 2 zeigt schematisch einen zeitlichen Verlauf eines Ladezustands einer Traktionsbatterie innerhalb des Ladepunkts, innerhalb des ersten ladepunktfreien Streckenabschnitts, innerhalb des nächsten Ladepunkts, und innerhalb des zweiten ladepunktfreien Streckenabschnitts.
Figur 3 zeigt den Ladezustandsbereich einer neuen Traktionsbatterie.
Figur 4 zeigt den Ladezustandsbereich einer gealterten Traktionsbatterie.
AUSFÜHRUNGSBEISPIELE
[0043] Figur 1 zeigt schematisch einen zeitlichen Verlauf eines Ladezustands (SoC) einer
Traktionsbatterie bei einer Fahrt in einem Streckenabschnitt, der einen Ladepunkt und einen ersten ladepunktfreien Streckenabschnitt umfasst. Die horizontalen, gepunkteten Linien stellen einen minimalen und einen maximalen Wert eines angestrebten Ladezustandsbereichs dar, in dem die Traktionsbatterie vorzugsweise betrieben werden soll,
um die Alterung der Traktionsbatterie zu verringern. Die vertikal gepunktete Linie hebt den Übergang zwischen dem Ladepunkt und dem ersten ladepunktfreien Streckenabschnitt hervor.
[0044] Der dargestellte Zielladezustand ist der Ladezustand der Traktionsbatterie zum Zeitpunkt des Einfahrens in den ladepunktfreien Streckenabschnitt. Der Ladepunkt kann einen Ort bezeichnen, an dem das Schienenfahrzeug zum Laden verweilt, oder einen elektrifizierten Streckenabschnitt, der vom Schienenfahrzeug durchfahren wird.
[0045] Zu Beginn einer Restzeit im Ladepunkt ist der Ladezustand der Traktionsbatterie innerhalb des Ladezustandsbereichs, allerdings nicht ausreichend hoch zum Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes. Beispielsweise kann sich das Schienenfahrzeug in einem elektrifizierten Teilabschnitt der Gesamtstrecke befinden. Dabei wird beispielsweise der Ladezustand der Traktionsbatterie ständig überwacht. Mit dem erfindungsgemäßen Verfahren wird nun vorausschauend abgeschätzt, wieviel Energie für den zu durchfahrenden ladepunktfreien Streckenabschnitt benötigt wird, um rechtzeitig mit dem Laden der Traktionsbatterie zu beginnen, ohne dass zu hohe Ladeströme erforderlich sind.
[0046] Da Schienenfahrzeuge herstellerseitig gemäß Kundenanforderungen hergestellt werden, kann davon ausgegangen werden, dass die Gesamtkapazität der Traktionsbatterie grundsätzlich ausreichend hoch ist, um die erforderliche Energie bereitzustellen. Am einfachsten wäre es, die Traktionsbatterie immer maximal zu laden, da hierdurch sichergestellt wird, dass immer ausreichend Energie zur Verfügung steht. Allerdings führt ein ständiges Laden bis zum Maximalladezustand zu einer erhöhten Alterung der Traktionsbatterie, in deren Folge die von der Traktionsbatterie bereitgestellte Maximalkapazität rasch sinkt.
[0047] Ziel des erfindungsgemäßen Verfahrens ist es, dies zu vermeiden. Dabei wird angestrebt, die Traktionsbatterie in einem „mittleren“ Bereich zu betreiben (Laden und Entladen), in dem die Belastung der Traktionsbatterie vergleichsweise gering ist. Dieser mittlere Bereich wird als Zielladezustandsbereich bezeichnet. Bei neuen Traktionsbatterien, bei denen die Maximalkapazität sehr hoch ist, kann der Zielladezustandsbereich vergleichsweise eng gewählt werden. Mit zunehmend sinkender Kapazität aufgrund der Alterung muss der Zielladezustandsbereich dagegen immer größer gewählt werden, damit die gleiche Energiemenge abgerufen werden kann. Das erfindungsgemäße Verfahren vermeidet daher
insbesondere bei neuen Traktionsbatterien, dass diese einer beschleunigten Alterung aufgrund eines hohen Ladezustandes unterworfen sind.
[0048] In der Figur 3 ist der angestrebte Ladezustandsbereich für eine neue Traktionsbatterie gezeigt. Da die Gesamtkapazität noch sehr hoch ist, kann der Ladezustandsbereich noch relativ eng gewählt werden im Gegensatz zu einer bereits seit längerem im Betrieb befindlichen Traktionsbatterie. Deren Ladezustandsbereich ist in Figur 4 dargestellt. Der Ladezustandsbereich für beide Traktionsbatterien überdeckt den gleichen Energieinhalt. Aufgrund der verringerten Gesamtkapazität durch die Alterung muss jedoch der Nutzungsbereich der Traktionsbatterie in Figur 4 erweitert werden.
[0049] Der in Abhängigkeit vom Alterungszustand gewählte Ladezustandsbereich kann auch als angestrebter Ladezustandsbereich bezeichnet werden.
[0050] Es erfolgt zunächst eine Abschätzung eines ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für das Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes. Der erste zu erwartende Energieverbrauch soll dabei den Gesamtverbrauch umfassen, d.h. insbesondere den Energieverbrauch für die Traktion unter Berücksichtigung aktueller Anforderungen durch den Fahrplan, den Verbrauch durch Hilfseinrichtungen, z.B. Klimatisierung, sowie von Sicherheitszuschlägen für eventuelle unerwartete Ereignisse, beispielsweise außerplanmäßige Halte oder Verzögerungen.
[0051] Für den Energieverbrauch für die Traktion sind insbesondere das Streckenprofil (Höhen,
Anstiege, Streckenlänge, Abfahrten) sowie die angestrebten Fahrgeschwindigkeiten bei den einzelnen Teilabschnitten innerhalb des Streckenprofils von Bedeutung. Außerdem sind planmäßige Halte zu berücksichtigen. Zusätzlich können auch das individuelle Fahrverhalten des Schienenfahrzeugführers sowie aktuelle Fahrplananforderungen berücksichtigt werden.
[0052] Darüber hinaus wird der Energiebedarf für die Klimatisierung und beispielsweise Beleuchtung abgeschätzt. Hierzu können die Außentemperatur ermittelt und die Lichtverhältnisse berücksichtigt werden.
[0053] Schließlich ist auch für das Betreiben der Traktionsbatterie eine Klimatisierung erforderlich, um deren Temperatur in einem optimalen Bereich zu halten.
[0054] Darüber hinaus kann der Rekuperationsfaktor berücksichtigt werden, der insbesondere auch vom Streckenprofil und den zu erwartenden Bremsvorgängen beeinflusst wird.
[0055] Zusätzlich wird ein Reservefaktor einkalkuliert.
[0056] Alles zusammen ergibt ein Nutzungsprofil für den ersten ladepunktfreien Streckenabschnitt, welches für die Abschätzung des ersten zu erwartenden Energieverbrauchs ermittelt wird.
[0057] Weiterhin wird ein angestrebter Ladezustandsbereich festgelegt, der in Abhängigkeit des Alterungszustands der T raktionsbatterie ermittelt wurde. Der angestrebte Ladezustandsbereich soll dabei eine zu starke Belastung der Traktionsbatterie vermeiden.
[0058] Nachdem der erste zu erwartende Energieverbrauch ermittelt wurde, wird die Traktionsbatterie derart im Ladepunkt aufgeladen, dass der Ladezustand der Traktionsbatterie ausreichend für das Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes ist. Der Zielladezustand wird dabei innerhalb des angestrebten Ladezustandsbereichs festgelegt. Der Zielladezustand wird weiterhin derart ermittelt worden, dass der Ladezustand der Traktionsbatterie auch beim Einfahren in den nächsten Ladepunkt noch innerhalb des Ladezustandsbereichs liegt. Damit werden Maximalzustände beim Laden und Entladen vermieden.
[0059] Zur weiteren Verbesserung erfolgt das Laden bei einer die Traktionsbatterie nur gering belastenden Temperatur. Bei dieser Temperatur kann die Batterie effizient geladen werden. Bei höheren Temperaturen kann zwar eine Traktionsbatterie, insbesondere wenn es sich um eine Lithium-Ionen-Batterie handelt, schneller und mit geringeren Eigenverlusten geladen werden, dies führt jedoch zu einer stärkeren Belastung der Traktionsbatterie. Daher wird die Temperatur so eingestellt, dass das Laden effizient ist, jedoch nur zu einer geringen Belastung der Traktionsbatterie führt und der Energieverbrauch zum Temperieren gering ist. Günstig sind Temperaturen zwischen 15 - 35°C.
[0060] Figur 2 zeigt schematisch einen zeitlichen Verlauf eines Ladezustands (SoC) einer
Traktionsbatterie bei einer Fahrt in einem Streckenabschnitt, der einen Ladepunkt, einen auf den Ladepunkt folgenden ersten ladepunktfreien Streckenabschnitt, einen auf den ersten ladepunktfreien Streckenabschnitt folgenden nächsten Ladepunkt, und einen hierauf folgenden zweiten ladepunktfreien Streckenabschnitt umfasst. Die horizontalen, gepunkteten Linien stellen einen minimalen und einen maximalen Wert eines
Ladezustandsbereichs dar. Die vertikal gepunkteten Linien heben die Übergänge zwischen den jeweiligen Streckenabschnitten hervor.
[0061] Der dargestellte Zielladezustand ist der Ladezustand der Traktionsbatterie zum Zeitpunkt des Einfahrens in den ladepunktfreien Streckenabschnitt.
[0062] Bei dieser Ausführungsform werden nicht nur der erste ladepunktfreie Streckenabschnitt sondern noch weitere Abschnitte berücksichtigt, denn auch für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts muss die Traktionsbatterie ausreichend Energie zur Verfügung stellen. Sofern die Verweildauer im nächsten Ladepunkt, d.h. vor dem Einfahren in den zweiten ladepunktfreien Streckenabschnitt, ausreichend lang ist, stünde genügen Zeit für das Laden zur Verfügung. Wenn jedoch die Verweildauer im nächsten Ladepunkt nur kurz ist, reicht die Verweildauer alleine nicht aus, um die Traktionsbatterie für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts zu laden. Daher müssen bereits beim Laden der Traktionsbatterie im (ersten) Ladepunkt sowohl der Energieverbrauch für das Durchfahren des ersten und zweiten ladepunktfreien Streckenabschnitts (erster zu erwartender Energieverbrauch und zweiter zu erwartender Energieverbrauch) als auch ein Teilladen während des Aufenthalts im nächsten Ladepunkt berücksichtigt werden.
[0063] Zu Beginn einer Restzeit im Ladepunkt ist der Ladezustand der Traktionsbatterie innerhalb des angestrebten Ladezustandsbereichs, allerdings nicht ausreichend zum Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes.
[0064] Zusätzlich sind ein zweiter zu erwartender Energieverbrauch des batteriebetriebenen Schienenfahrzeugs für das Durchfahren des zweiten ladepunktfreien Streckenabschnitts bis zum Erreichen eines übernächsten Ladepunktes und eine Verweildauer innerhalb des nächsten Ladepunkts bis zu einem Einfahren in den zweiten ladepunktfreien Streckenabschnitt ermittelt worden. Die Verweildauer im nächsten Ladepunkt ist allerdings zu kurz, um die Traktionsbatterie für den zweiten ladepunktfreien Streckenabschnitt ausreichend aufzuladen.
[0065] Der Zielladezustand ist daher sowohl unter Berücksichtigung des ersten zu erwartenden Energieverbrauchs, des zweiten zu erwartenden Energieverbrauchs und der Verweildauer ermittelt worden. Insbesondere ist die Traktionsbatterie derart im Ladepunkt aufgeladen worden, dass ausreichend Energie für den zweiten ladepunktfreien Streckenabschnitt
vorhanden ist. Der Zielladezustand ist derart ermittelt worden, dass der Ladezustand der Traktionsbatterie beim Einfahren in den übernächsten Ladepunkt innerhalb des Ladezustandsbereichs liegt.
[0066] Wenngleich hierin spezifische Ausführungsformen dargestellt und beschrieben worden sind, liegt es im Rahmen der vorliegenden Erfindung, die gezeigten Ausführungsformen geeignet zu modifizieren, ohne vom Schutzbereich der vorliegenden Erfindung abzuweichen.
Claims
1. Verfahren zur Ladung einer T raktionsbatterie eines batteriebetriebenen Schienenfahrzeugs, umfassend:
Ermitteln eines ersten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für ein Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes; und
Ermitteln eines Zielladezustands der Traktionsbatterie unter Berücksichtigung eines Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs; und
Einstellen einer Zieltemperatur für das Laden der Traktionsbatterie; und Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands.
2. Verfahren nach Anspruch 1 , ferner umfassend:
Ermitteln eines Ladezustandsbereichs unter Berücksichtigung des Alterungszustandes der Traktionsbatterie, wobei der Zielladezustand innerhalb des Ladezustandsbereichs festgelegt wird.
3. Verfahren nach einem der vorherigen Ansprüche, wobei der Ladezustandsbereich kleiner als der maximale Ladezustand der Traktionsbatterie und oberhalb eines vollständigen Entladungszustands der Traktionsbatterie ist, insbesondere wobei der Ladezustandsbereich kleiner als 90 % des maximalen Ladezustands der Traktionsbatterie und/oder größer als 10 % des maximalen Ladezustands der Traktionsbatterie ist.
4. Verfahren nach einem der vorherigen Ansprüche, wobei das Ermitteln des ersten zu erwartenden Energieverbrauchs auf Basis einer Umgebungstemperatur und einem
Nutzungsprofil, das unter Berücksichtigung eines Streckenprofils innerhalb des ersten ladepunktfreien Streckenabschnitts erhalten wird, erfolgt.
5. Verfahren nach Anspruch 4, wobei das Streckenprofil die Höhenunterschiede innerhalb des ersten ladepunktfreien Streckenabschnitts, die Distanz bis zum nächsten Ladepunktes, und die Anzahl Haltestellen innerhalb des ersten ladepunktfreien Streckenabschnitts umfasst.
6. Verfahren nach einem der vorherigen Ansprüche, wobei der Zielladezustand ferner unter Berücksichtigung eines Reservefaktors ermittelt wird.
7. Verfahren nach einem der vorherigen Ansprüche, ferner umfassend:
Ermitteln einer Restzeit bis zu einem Einfahren in den ersten ladepunktfreien Streckenabschnitt; und
Erstellen eines Ladeprofils zum Erreichen des Zielladezustands unter Berücksichtigung der Restzeit.
8. Verfahren nach Anspruch 7, wobei das Ladeprofil so erstellt wird, dass ein Ladestrom innerhalb eines vorgegebenen Ladestrom bereichs bleibt, insbesondere, dass ein die Traktionsbatterie nur gering belastender Ladestrom eingestellt wird.
9. Verfahren nach einem der vorherigen Ansprüche, ferner umfassend:
Ermitteln eines zweiten zu erwartenden Energieverbrauchs des batteriebetriebenen Schienenfahrzeugs für das Durchfahren eines nach dem nächsten Ladepunkt folgenden zweiten ladepunktfreien Streckenabschnitts bis zum Erreichen eines übernächsten Ladepunktes; und
Ermitteln einer Verweildauer innerhalb des nächsten Ladepunkts bis zu einem Einfahren in den zweiten ladepunktfreien Streckenabschnitt; und
Ermitteln des Zielladezustands ferner unter Berücksichtigung des zweiten zu erwartenden Energieverbrauchs und der Verweildauer.
10. Verfahren nach einem der vorherigen Ansprüche, wobei der Zielladezustand so ermittelt wird, dass der Ladezustand der Traktionsbatterie bei einem Einfahren in den nächsten Ladepunkt innerhalb des Ladezustandsbereichs liegt.
11. Verfahren nach einem der vorherigen Ansprüche, wobei der Zielladezustand so ermittelt wird, dass der Ladezustand der Traktionsbatterie bei einem Einfahren in den übernächsten Ladepunkt innerhalb des Ladezustandsbereichs liegt.
12. Verfahren nach einem der vorherigen Ansprüche, wobei der Zielladezustand ferner unter Berücksichtigung eines zu erwartenden Energieverbrauchs für das Temperieren der Traktionsbatterie beim Durchfahren des ersten ladepunktfreien Streckenabschnitts bis zum Erreichen des nächsten Ladepunktes ermittelt wird.
13. Verfahren nach einem der vorherigen Ansprüche, wobei der Ladezustandsbereich unter Berücksichtigung einer ladezustandsbereichsabhängigen Lebensdauer und/oder einer ladezustandsbereichsabhängigen Leistung der Traktionsbatterie ermittelt wird.
14. Batterieladungssystem für ein batteriebetriebenes Schienenfahrzeugs, aufweisend: eine Traktionsbatterie zum Betreiben des Schienenfahrzeugs, eine Kontrolleinheit, die dazu eingerichtet ist: einen zu ersten erwartenden Energieverbrauch des batteriebetriebenen Schienenfahrzeugs für das Durchfahren eines ersten ladepunktfreien Streckenabschnitts bis zum Erreichen eines nächsten Ladepunktes zu ermitteln; und
einen Zielladezustand der Traktionsbatterie unter Berücksichtigung eines Alterungszustandes der Traktionsbatterie und des ersten zu erwartenden Energieverbrauchs zu ermitteln; eine Zieltemperatur für das Laden der Traktionsbatterie einzustellen; und das Laden der Traktionsbatterie bis zum Erreichen des Zielladezustands zu kontrollieren.
15. Batterieladungssystem nach Anspruch 14, wobei die Kontrolleinheit dazu eingerichtet ist einen Ladezustandsbereich unter Berücksichtigung des Alterungszustandes der Traktionsbatterie zu ermitteln, und den Zielladezustand innerhalb des Ladezustandsbereichs festzulegen.
16. Batterieladungssystem nach einem der Ansprüche 14 und 15, weiterhin aufweisend einen Sensor zur Erfassung der Umgebungstemperatur, wobei die Kontrolleinheit dazu eingerichtet ist den ersten zu erwartenden Energieverbrauchs auf Basis der Umgebungstemperatur und einem Nutzungsprofil zu ermittelt, und dazu konfiguriert ist das Nutzungsprofil unter Berücksichtigung eines Streckenprofils innerhalb des ersten ladepunktfreien Streckenabschnitts zu erhalten.
17. Batterieladungssystem nach einem der Ansprüche 14 bis 16, wobei die Kontrolleinheit ferner dazu konfiguriert ist eine Restzeit bis zu einem Einfahren in den ersten ladepunktfreien Streckenabschnitt zu ermitteln und dazu konfiguriert ist ein Ladeprofil zum Erreichen des Zielladezustands unter Berücksichtigung der Restzeit zu ermitteln.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20838964.3A EP4077039A1 (de) | 2019-12-19 | 2020-12-18 | Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019135315.7 | 2019-12-19 | ||
DE102019135315.7A DE102019135315A1 (de) | 2019-12-19 | 2019-12-19 | Prädiktive Batterieladung für batteriebetriebene Schienenfahrzeuge |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021123254A1 true WO2021123254A1 (de) | 2021-06-24 |
Family
ID=74175771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/087150 WO2021123254A1 (de) | 2019-12-19 | 2020-12-18 | Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4077039A1 (de) |
DE (1) | DE102019135315A1 (de) |
WO (1) | WO2021123254A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020209176B3 (de) | 2020-07-22 | 2022-01-20 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben eines Fahrzeuges |
DE102021202562B4 (de) | 2021-03-16 | 2023-07-13 | Siemens Mobility GmbH | Steuereinrichtung für ein Fahrzeug und Verfahren zum Steuern des Ausgangsstroms einer Brennstoffzelle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006054958A (ja) * | 2004-08-11 | 2006-02-23 | Mitsubishi Heavy Ind Ltd | 電気車両、架線レス交通システム及び架線レス交通システムの制御方法 |
SE1100491A1 (sv) * | 2010-07-07 | 2011-09-12 | Volvo Lastvagnar Ab | Method for adapted battery charging/discharging |
US20120176096A1 (en) * | 2009-09-23 | 2012-07-12 | Bayerische Motoren Werke Aktiengesellschaft | Method for Controlling at Least One Operating Parameter that Influences the Aging State of an Electrical Energy Store in an Open-Loop or Closed-Loop Manner |
US20140217976A1 (en) * | 2011-10-10 | 2014-08-07 | Proterra Inc. | Systems and methods for battery life maximization under fixed-route applications |
US20150100188A1 (en) * | 2012-03-20 | 2015-04-09 | Robert Bosch Gmbh | Method and apparatus for operating a battery arrangement of a motor vehicle |
US9352635B1 (en) * | 2015-03-31 | 2016-05-31 | Proterra Inc. | Energy control mechanisms for an electric vehicle |
-
2019
- 2019-12-19 DE DE102019135315.7A patent/DE102019135315A1/de active Pending
-
2020
- 2020-12-18 EP EP20838964.3A patent/EP4077039A1/de active Pending
- 2020-12-18 WO PCT/EP2020/087150 patent/WO2021123254A1/de unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006054958A (ja) * | 2004-08-11 | 2006-02-23 | Mitsubishi Heavy Ind Ltd | 電気車両、架線レス交通システム及び架線レス交通システムの制御方法 |
US20120176096A1 (en) * | 2009-09-23 | 2012-07-12 | Bayerische Motoren Werke Aktiengesellschaft | Method for Controlling at Least One Operating Parameter that Influences the Aging State of an Electrical Energy Store in an Open-Loop or Closed-Loop Manner |
SE1100491A1 (sv) * | 2010-07-07 | 2011-09-12 | Volvo Lastvagnar Ab | Method for adapted battery charging/discharging |
US20140217976A1 (en) * | 2011-10-10 | 2014-08-07 | Proterra Inc. | Systems and methods for battery life maximization under fixed-route applications |
US20150100188A1 (en) * | 2012-03-20 | 2015-04-09 | Robert Bosch Gmbh | Method and apparatus for operating a battery arrangement of a motor vehicle |
US9352635B1 (en) * | 2015-03-31 | 2016-05-31 | Proterra Inc. | Energy control mechanisms for an electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP4077039A1 (de) | 2022-10-26 |
DE102019135315A1 (de) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3418107B1 (de) | Verfahren und batteriemanagementsystem zum betreiben einer traktionsbatterie in einem kraftfahrzeug sowie kraftfahrzeug mit einem derartigen batteriemanagementsystem | |
EP2323887B2 (de) | Verfahren zur steuerung eines hybridantriebs in einem schienenfahrzeug | |
DE102012204410A1 (de) | Verfahren und Vorrichtung zum Betreiben einer Batterieanordnung eines Kraftfahrzeugs | |
AT519890B1 (de) | Verfahren zum temperieren einer batterie eines fahrzeuges | |
DE10121962A1 (de) | Energiemanagementsystem für ein elektrisches Kraftfahrzeugbordnetz | |
DE102012222102A1 (de) | Aktives steuersystem für einen niederspannungs- gleichspannungswandler in einem elektrofahrzeug | |
EP1399329A1 (de) | Verfahren und einrichtung zur ansteuerung eines hybridfahreuges | |
EP3848229B1 (de) | Verfahren zum betrieb eines elektrisch angetriebenen oder antreibbaren kraftfahrzeugs | |
DE102011089962A1 (de) | Verfahren zur Temperaturregelung von mindestens einem Batterieelement, Batterie sowie Kraftfahrzeug mit einer solchen Batterie | |
EP3785978B1 (de) | Fahrzeug und verfahren zu dessen betrieb | |
DE102011085454A1 (de) | Verfahren zur Steuerung eines Hybridantriebs mit einer Brennkraftmaschine und einem Elektromotor und einem elektrischen Energiespeicher, insbesondere für ein Schienenfahrzeug, Steuereinrichtung und Hybridantrieb | |
EP3067240A1 (de) | Verfahren zur spannungsversorgung eines bordnetzes eines kraftfahrzeugs | |
WO2021123254A1 (de) | Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge | |
EP3720733B1 (de) | Verfahren zum steuern einer elektrischen anlage eines elektrisch antreibbaren kraftfahrzeugs mit mehreren batterien sowie elektrische anlage eines elektrisch antreibbaren kraftfahrzeugs | |
DE102005023365A1 (de) | Batterie-Management für Batterien in Hybrid-Fahrzeugen | |
WO2019034695A1 (de) | Verfahren zum betreiben eines batteriemanagementsystems, batteriemanagementsystem und kraftfahrzeug | |
DE102018005566A1 (de) | Verfahren für das Bestimmen einer Reichweite eines Kraftwagens sowie Vorrichtung für das Bestimmen einer Reichweite | |
DE102012210916A1 (de) | Verfahren und Vorrichtung zum Bereitstellen eines negativen Antriebsmoments einer elektrischen Maschine eines Kraftfahrzeuges | |
EP2612394A1 (de) | System zur speicherung elektrischer energie | |
WO2024104970A1 (de) | Verfahren zur vorhersage von erwarteten lastprofilen zur steuerung der ladeleistung einer batterie | |
DE102012209631A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs | |
DE102020203127A1 (de) | Verfahren zur Steuerung der Längsdynamik eines Fahrzeugs | |
WO2022156968A1 (de) | Klimasystem und verfahren zur klimatisierung eines elektrifizierten kraftfahrzeugs | |
DE102021201379B4 (de) | Verfahren zur Routenplanung für ein Elektrokraftfahrzeug | |
EP4091870A1 (de) | Erhaltung der lebensdauer von komponenten eines schienenfahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20838964 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020838964 Country of ref document: EP Effective date: 20220719 |