[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021121982A1 - Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof - Google Patents

Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof Download PDF

Info

Publication number
WO2021121982A1
WO2021121982A1 PCT/EP2020/084177 EP2020084177W WO2021121982A1 WO 2021121982 A1 WO2021121982 A1 WO 2021121982A1 EP 2020084177 W EP2020084177 W EP 2020084177W WO 2021121982 A1 WO2021121982 A1 WO 2021121982A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal
catalyst
impregnation
hydrated
Prior art date
Application number
PCT/EP2020/084177
Other languages
French (fr)
Inventor
Elodie Devers
Audrey BONDUELLE-SKRZYPCZAK
Mathieu Digne
Anne BOFFO
Malika Boualleg
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2021121982A1 publication Critical patent/WO2021121982A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the invention relates to a process for the preparation of a hydrotreatment and / or hydrocracking catalyst by impregnation in a molten medium, the catalyst obtained by this process and its use in the field of hydrotreatment and / or hydrotreatment. hydrocracking.
  • a hydrotreatment catalyst for hydrocarbon cuts is to remove the sulfur or nitrogen compounds contained therein in order to bring, for example, a petroleum product to the required specifications (sulfur content, aromatics content, etc.) for a given application (automotive fuel, gasoline or diesel, domestic fuel oil, jet fuel).
  • Conventional hydrotreatment catalysts generally include an oxide support and an active phase based on Group VI B and VIII metals in their oxide forms5 as well as phosphorus.
  • the preparation of these catalysts generally comprises an impregnation step using an impregnation solution containing metals and phosphorus on the support (also called conventional impregnation hereinafter), followed by drying and optionally d a calcination making it possible to obtain the active phase in their oxide forms.
  • an impregnation step using an impregnation solution containing metals and phosphorus on the support also called conventional impregnation hereinafter
  • drying and optionally d a calcination making it possible to obtain the active phase in their oxide forms.
  • these catalysts Prior to their use in a hydrotreatment and / or hydrocracking reaction, are generally subjected to sulfurization to form the active species.
  • the hydrotreatment and / or hydrocracking catalysts based on metals from groups VI B and VIII prepared by a single impregnation step generally make it possible to achieve molybdenum and cobalt contents of respectively 30 and 7% by weight expressed as oxide. de5 metal relative to the weight of the catalyst, depending on the pore volume of the support used.
  • desired metals followed by at least one drying step, then optionally by a calcination step between each impregnation.
  • the maximum attainable molybdenum content is generally around 40% by weight expressed as molybdenum oxide relative to the weight of the catalyst, higher contents are not accessible with this technique.
  • impregnation in a molten medium consists in mixing a porous support with a solid metal salt having a relatively low melting point, in particular lower than its decomposition temperature, then heating the mixture to a temperature higher than the melting temperature of said metal salt in order to melt the salt in the support.
  • This technique is thus distinguished from conventional impregnation by several advantages, in particular by a simplified preparation. Indeed, it does not require preparation of solution or solvent because the metal precursors are used in the form of solids. Likewise, the catalyst obtained after heating the solid support / salt mixture does not need additional drying or calcination steps. In addition, a major advantage of impregnation in a molten medium is the fact that it is possible to obtain a catalyst with a very high metal content in a single step. However, this technique has the disadvantage of requiring a metal salt having a relatively low melting point, in particular lower than its decomposition temperature.
  • salts based on a metal of group VIB tend to decompose before reaching their melting point.
  • one of the objectives of the present invention is to provide a process for preparing a hydrotreatment and / or hydrocracking catalyst based on a group VIB metal prepared by impregnation in a molten medium.
  • the invention relates to a process for preparing a hydrotreatment and / or hydrocracking catalyst comprising a porous support based on alumina or silica or silica-alumina and at least one metal from group VIB, the content of metal from group VIB being between 5 and 55% by weight expressed as metal oxide from group VIB relative to the total weight of the catalyst, said process comprising the following steps: a) water is brought into contact with said porous support of so as to obtain a wet porous support, b) said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VIB, the melting point of said hydrated metal acid of which is between 20 and 100 ° C.
  • the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5
  • the solid mixture obtained at the end of step b) is heated with stirring at a temperature between the melting point of said hydrated metal acid is 100 ° C.
  • the Applicant has in fact observed that the use of hydrated metal acid comprising at least one metal from group VIB and having a melting point of between 20 and 100 ° C makes it possible to introduce a metal from group VIB into a porous support by impregnation in molten medium.
  • the hydrated metallic acid which is in the form of powder, is mixed with the porous support (step b), then this solid mixture is heated in order to melt the metallic acid in the support, thus making it possible to obtain the catalyst ( step c).
  • the acid has the peculiarity of only melting in the presence of sufficient partial pressure of water. In other words, it is necessary to keep the molecules of water of crystallization to ensure its fusion.
  • the support is first moistened by impregnating with water (step a).
  • the preparation process according to the invention thus has the advantages of an impregnation in a molten medium, in particular the absence of any preparation of solution or the use of solvent and the absence of the need for drying or subsequent calcination even if such steps are possible.
  • the preparation process according to the invention makes it possible to obtain a catalyst heavily loaded with metal from group VIB having in particular contents of metal from group VIB which are not achievable by impregnation using a solution of impregnation.
  • the catalyst obtained according to the preparation process according to the invention makes it possible to observe a catalytic activity in hydrotreatment and / or hydrocracking at least at the same level as a catalyst prepared by impregnation using an impregnation solution. with however a simplified preparation and the possibility of loading more metal of group VIB.
  • the hydrated metal acid is selected from hydrated phosphomolybdic acid, hydrated silicomolybdic acid, hydrated molybdosilicic acid, hydrated phosphotungstic acid and hydrated silicotungstic acid.
  • the quantity of water introduced into the support in step a) is between 10 and 70% of its water uptake volume.
  • step b) further comprises bringing into contact with at least one metal salt comprising at least one metal from group VIII whose melting point of said metal salt is between 20 and 100 ° C, to form a solid mixture, the molar ratio (metal of group VI I l) / (metal of group VI B) being between 0.1 and 0.8.
  • said metal salt is a hydrated nitrate salt.
  • said metal salt is chosen from nickel nitrate hexahydrate, and cobalt nitrate hexahydrate, taken alone or as a mixture.
  • step b) further comprises contacting with phosphoric acid to form a solid mixture, the phosphorus / (group VI B metal) molar ratio being between 0.08 and 1.
  • step b) further comprises bringing into contact with an organic compound comprising oxygen and / or nitrogen and / or sulfur, the melting point of said organic compound of which is between 20 and 100 ° C, the organic compound / group VI B metal molar ratio being between 0.01 and 5.
  • the organic compound is chosen from maleic acid, sorbitol, xylitol, g-ketovaleric acid, 5-hydroxymethylfurfural and 1, 3-dimethyl-2-imidazolidinone.
  • step d) of drying the catalyst obtained in step c) is carried out at a temperature below 200 ° C.
  • a step e) of calcining the catalyst obtained in step d) is carried out at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or under an atmosphere containing oxygen. .
  • an impregnation step is carried out using an impregnation solution and in which said support or said catalyst is brought into contact with a solution.
  • impregnation comprising a metal from group VI B and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur, followed by a drying step at a temperature below 200 ° C and optionally a calcination step at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or under an atmosphere containing oxygen.
  • the organic compound is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), maleic acid, malonic acid, citric acid, gluconic acid, dimethyl succinate, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5- (hydroxymethyl) -2- furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl 3-hydroxybutanoate, ethyl 3-e
  • the catalyst is subjected to a sulfurization step after step c) or the optional steps d) and e).
  • the invention also relates to the catalyst obtained by the preparation process and its use in a hydrotreatment and / or hydrocracking process.
  • the invention relates to a process for preparing a hydrotreatment and / or hydrocracking catalyst comprising a porous support based on alumina or silica or silica-alumina and at least one metal from group VIB, the content of metal from group VIB being between 5 and 55% by weight expressed as metal oxide from group VIB relative to the total weight of the catalyst, said process comprising the following steps: a) water is brought into contact with said porous support of so as to obtain a wet porous support, b) said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VIB whose melting point of said hydrated metal acid is between 20 and 100 ° C, to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5, c) the solid mixture obtained at the end of step b) is heated with stirring to a temperature between the melting point of said metallic acid and 100 ° C.
  • step a) of the preparation process according to the invention water is brought into contact with said porous support so as to obtain a wet porous support.
  • step c This step of wetting the porous support is necessary in order to be able to melt the hydrated metal acid in step c). This is because the acid has the particularity of only melting in the presence of sufficient partial pressure of water. In other words, it is necessary to keep the water molecules of crystallization of the metallic acid hydrated to ensure its fusion.
  • Contacting step a) can be carried out by dry impregnation.
  • the water can for example be poured drop by drop onto the support contained in a rotating bezel.
  • the quantity of water introduced into the porous support is between 10 and 70%, and preferably between 30 and 50% of its water uptake volume.
  • the wet porous support is allowed to mature. Maturation allows the water to disperse homogeneously within the porous support.
  • Any maturation step is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17 ° C and 50 ° C, and preferably at room temperature.
  • a maturation time of between ten minutes and forty-eight hours, preferably between thirty minutes and fifteen hours and particularly preferably between thirty minutes and six hours, is sufficient.
  • the porous support is a porous support based on alumina or silica or silica-alumina.
  • the porous support advantageously has a total pore volume of between 0.1 and 1.5 cm 3 . g- 1 , preferably between 0.4 and 1.1 cm 3 . g 1 .
  • the total pore volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F.; Rouquerol J.; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academy Press, 1999, for example using a model Autopore III TM apparatus of the brand Micromeritics TM.
  • the specific surface of the porous support is advantageously between 5 and 400 m 2 . g- 1 , preferably between 10 and 350 m 2 .g- 1 , more preferably between 40 and 350 m 2 .g- 1 .
  • the specific surface area is determined in the present invention by the BET method according to the ASTM D3663 standard, a method described in the same work cited above.
  • the porous support has a water uptake volume or VRE of between 0.2 and 1.6 cm 3 . g 1 , preferably between 0.5 and 1, 2 cm 3 . g 1 .
  • the retention volume is determined as follows: poured over a known mass of support, placed in a bezel rotated with the aid of a motor, deionized water, drop by drop using of a graduated burette, while the support is mixed manually using a spatula. When the support begins to adhere to the wall of the bezel, the drip is stopped and the volume of water used is noted. The volume of water / mass of support ratio is then calculated, the water uptake volume (VRE) being expressed in cm 3 / g.
  • the oxide support When the oxide support is based on alumina, it contains more than 50% by weight of alumina relative to the total weight of the support and, in general, it contains only alumina or silica-alumina such as as defined below.
  • the oxide support comprises alumina, and more preferably extruded alumina.
  • the alumina is gamma alumina.
  • the porous support is a silica-alumina containing at least 50% by weight of alumina relative to the total weight of the support.
  • the silica content in support is at most 50% by weight relative to the total weight of the support, most often less than or equal to 45% by weight, preferably less than or equal to 40%.
  • the sources of silicon are well known to those skilled in the art. Mention may be made, by way of example, of silicic acid, silica in powder form or in colloidal form (silica sol), tetraethylorthosilicate Si (OEt) 4.
  • the support of said catalyst is based on silica, it contains more than 50% by weight of silica relative to the total weight of the support and, in general, it contains only silica.
  • the oxide support consists of alumina, silica or silica-alumina. According to a particularly preferred variant, the oxide support consists of gamma alumina.
  • the oxide support can also advantageously additionally contain from 0.1 to 80% by weight, preferably from 0.1 to 50% by weight of zeolite relative to the total weight of the support.
  • the zeolite is chosen from the group FAU, BEA, ISV, IWR, IWW, MEI, UWY and preferably, the zeolite is chosen from the group FAU and BEA, such as zeolite Y and / or beta, and particularly preferably such as USY and / or beta zeolite.
  • the support is advantageously in the form of balls, extrudates, pellets or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
  • step b) of the preparation process according to the invention said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VI B, the melting point of said hydrated metal acid of which is within between 20 and 100 ° C, to form a solid mixture, the mass ratio between said hydrated metallic acid and said porous support being between 0.1 and 2.5.
  • the hydrated metal acid must have a relatively low melting point, especially lower than its decomposition temperature.
  • the melting point of the hydrated metal acid is between 20 and 100 ° C, and preferably between 50 and 90 ° C.
  • the hydrated metal acid comprises at least one metal from Group VIB.
  • the group VI B metal present in the acid is preferably chosen from molybdenum and tungsten.
  • the hydrated metal acid can additionally include phosphorus and silicon.
  • the metal acid can be an acid of a Keggin type heteropolyanion.
  • the mass ratio between said hydrated metal acid and said porous support is between 0.1 and 2.5, preferably between 0.3 and 2.0.
  • the hydrated metallic acid is in solid form, that is to say that the bringing into contact between said porous support and said hydrated metallic acid is carried out at a temperature below the melting temperature of said hydrated metallic acid.
  • Step b) is preferably carried out at room temperature.
  • the contacting of said porous support and hydrated metal acid can be done by any method known to those skilled in the art.
  • the placing in contact of said porous support and of said hydrated metal acid is carried out with contact means chosen from among convective mixers, drum mixers or static mixers.
  • Step b) is preferably carried out for a period of between 5 minutes to 12 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours, and even more preferably between 15 minutes and 3 hours.
  • step b) consists of bringing said wet porous support into contact with at least one hydrated metal acid comprising at least one metal from group VI B, the melting point of said hydrated solid metal acid of which is between 20 and 100 ° C, to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5.
  • Such compounds can in particular be a metal salt comprising at least one metal from group VIII, phosphoric acid or else an organic compound.
  • step b) further comprises bringing into contact with at least one metal salt comprising at least one metal from group VIII whose melting point of said metal salt is between 20 and 100 ° C, to form a solid mixture with the porous support and the hydrated metal acid, the molar ratio (metal of group VI I l) / (metal of group VI B) being between 0.1 and 0.8.
  • the metal salt must have a relatively low melting point, especially lower than its decomposition temperature.
  • the melting point of the metal salt is between 20 and 100 ° C, and preferably between 40 and 60 ° C.
  • the metal salt comprises at least one metal from group VIII.
  • the group VIII metal present in the salt is preferably chosen from nickel and cobalt.
  • the metal salt is hydrated.
  • the metal salt is a hydrated nitrate salt.
  • the molar ratio (metal from group VIII) / (metal from group VIB) is generally between 0.1 and 0.8, preferably between 0.15 and 0.6.
  • the combination of the metals nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, nickel-molybdenum-tungsten and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum, of nickel and molybdenum, nickel and tungsten or a nickel-molybdenum-tungsten combination.
  • phosphorus has no catalytic character but increases the catalytic activity of the active phase by the formation of heteropolyanions which increases the dispersion of the elements on the surface of the support.
  • phosphorus is introduced into the catalyst along with the metal acid hydrate.
  • the P / Mo ratio is 0.08.
  • the molar ratio of P / W is 0.08.
  • P / metal of group VIB
  • Phosphoric acid has a melting point of 42 ° C.
  • step b) further comprises bringing into contact with phosphoric acid, to form a solid mixture with the porous support and the hydrated metal acid and optionally the metal salt comprising at least one group VIII metal.
  • the phosphorus / (metals of group VIB) molar ratio is generally between 0.08 and 1, preferably between 0.1 and 0.9, and very preferably between 0.15 and 0.8.
  • an organic compound to the hydrotreatment and / or hydrocracking catalysts to improve their activity has been recommended by those skilled in the art, in particular for catalysts which have been prepared by impregnation using an impregnation solution followed by drying without subsequent calcination. These catalysts are often called “additivated dried catalysts”.
  • the introduction of an organic compound makes it possible to increase the dispersion of the active phase.
  • the addition of an organic compound can also be carried out in the preparation process according to the invention when the organic compound is in solid form.
  • step b) further comprises bringing into contact with an organic compound comprising oxygen and / or nitrogen and / or sulfur, the melting point of said organic compound of which is within between 20 and 100 ° C, to form a solid mixture with the porous support and the hydrated metal acid, and optionally the metal salt comprising at least one metal from group VIII and phosphoric acid.
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime function, urea and amide or else compounds including a furan ring or also sugars.
  • maleic acid, sorbitol, xylitol will preferably be chosen.
  • g-ketovaleric acid 5-hydroxymethylfurfural (also known as 5- (hydroxymethyl) -2-furaldehyde or 5-HMF), 1, 3-dimethyl-2-imidazolidinone.
  • the organic compound / metal of group VI B molar ratio (contained in the hydrated metal acid) is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
  • step c) of the preparation process according to the invention the solid mixture obtained at the end of step b) is heated with stirring to a temperature between the melting point of said hydrated metal acid and 100 ° C. .
  • Step c) is advantageously carried out at atmospheric pressure.
  • Step c) is generally carried out between 5 minutes and 12 hours, preferably between 5 minutes and 4 hours.
  • the stirring (mechanical homogenization) of the mixture can be carried out by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • step c) is carried out by means of a drum mixer whose speed of rotation is between 4 and 70 revolutions / minute, preferably between 10 and 60 revolutions / minute.
  • the hydrotreatment and / or hydrocracking catalyst is obtained which comprises at least one porous support based on alumina or on silica or on silica-alumina and at least one metal from group VIB in the form of hydrated metallic acid.
  • the catalyst can be subjected to a drying step d) at a temperature below 200 ° C, advantageously between 100 ° C and below 200 ° C, preferably between 50 ° C and 180 ° C, more preferably between 70 ° C and 150 ° C, very preferably between 75 ° C and 130 ° C.
  • the drying temperature of step d) is generally higher than the heating temperature of step c).
  • the drying temperature of step d) is at least 10 ° C higher than the heating temperature of step c).
  • the drying step is preferably carried out under an inert atmosphere or under an atmosphere containing oxygen.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out in a crossed bed using air or any other hot gas. Preferably, when the drying is carried out in a fixed bed, the gas used is either air or an inert gas such as argon or nitrogen. Very preferably, the drying is carried out in a bed passed through in the presence of nitrogen and / or air. Preferably, the drying step has a duration of between 5 minutes and 4 hours, preferably between 30 minutes and 4 hours and very preferably between 1 hour and 3 hours.
  • a dried catalyst is then obtained, which will preferably be subjected to an optional activation step (sulphurization) for its subsequent use in a hydrotreatment process. and / or hydrocracking.
  • the drying step can in particular be carried out when an organic compound is present.
  • the drying is preferably carried out so as to preferably retain at least 30% by weight of the organic compound introduced, preferably this amount is greater than 50% by weight and even more preferably greater than 70% by weight, calculated. based on the carbon remaining on the catalyst.
  • the remaining carbon is measured by elemental analysis according to ASTM D5373.
  • a calcination step e) is carried out at a temperature between 200 ° C and 600 ° C, preferably between 250 ° C and 550 ° C. , under an inert atmosphere (nitrogen for example) or under an atmosphere containing oxygen (air for example).
  • the duration of this heat treatment is generally between 0.5 hours and 16 hours, preferably between 1 hour and 5 hours.
  • the active phase is thus in oxide form, the heteropolyanions are thus transformed into oxides.
  • the catalyst contains very little or no organic compound when it has been introduced. However, the introduction of the organic compound during its preparation made it possible to increase the dispersion of the active phase, thus leading to a more active catalyst.
  • the catalyst is preferably not subjected to calcination. Impregnation step using an impregnation solution via post-impregnation (optional)
  • This conventional impregnation step has the advantage of being able to use metal precursors or organic compounds which are not accessible via the molten medium technique (because in liquid form or having too high a melting point).
  • the heating step c), or the optional drying step d) or the optional calcination step e), can be followed by an impregnation step using a impregnation solution and in which said catalyst is brought into contact with an impregnation solution comprising a metal from group VIB and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur.
  • the metal from group VIB when it is introduced, is preferably chosen from molybdenum and tungsten.
  • the group VIII metal when it is introduced is preferably chosen from cobalt, nickel and a mixture of these two metals.
  • the combination of the metals nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, nickel-molybdenum-tungsten and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum, of nickel and molybdenum, nickel and tungsten or a nickel-molybdenum-tungsten combination.
  • the group VIB metal introduced and / or the group VIII metal introduced may or may not be identical to the metals already present in the catalyst from step c).
  • the sources of molybdenum use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H3PM012O40), and their salts, and optionally silicomolybdic acid (HUSiMo ⁇ C o) and its salts.
  • the sources of molybdenum can also be any heteropolycompound such as Keggin, Lacunar Keggin, substituted Keggin, Dawson, Anderson, Strandberg, for example. Molybdenum trioxide and heteropolycompounds of Keggin, lacunar Keggin, substituted Keggin and Strandberg type are preferably used.
  • the tungsten precursors which can be used are also well known to those skilled in the art.
  • oxides and hydroxides, tungstic acids and their salts in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and theirs. salts, and optionally silicotungstic acid (hUSiW ⁇ O ⁇ ) and its salts.
  • the sources of tungsten can also be any heteropolycompound such as Keggin, lacunar Keggin, substituted Keggin, Dawson, for example.
  • Oxides and ammonium salts such as ammonium metatungstate or heteropolyanions of the Keggin, lacunar Keggin or substituted Keggin type are preferably used.
  • cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
  • the nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Nickel hydroxide and nickel hydroxycarbonate are preferably used.
  • the molar ratio (metal of group VI I l) / (metal of group VI B) is generally between 0.1 and 0.8, preferably between 0.15 and 0.6.
  • Phosphorus can also be added to the impregnation solution.
  • the preferred phosphorus precursor is orthophosphoric acid H 3 PO 4 , but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus can also be introduced at the same time as the metal (s) / metals of group VI B in the form of heteropolyanions of Keggin, lacunar Keggin, substituted Keggin or of the Strandberg type.
  • the molar ratio of the phosphorus added per metal from group VI B is between 0.1 and 2.5 mol / mol, preferably between 0.1 and 2.0 mol / mol, and even more preferred between 0.1 and 1.0 mol / mol.
  • An organic compound comprising oxygen and / or nitrogen and / or sulfur can also be introduced into the impregnation solution.
  • the function of additives or organic compounds is to increase the catalytic activity compared to catalysts without additives.
  • Said organic compound is preferably impregnated on said catalyst after solubilization in aqueous or non-aqueous solution.
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime function, urea and amide or else compounds including a furan ring or also sugars.
  • the organic compound containing oxygen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic, alcohol, ether, aldehyde, ketone, ester or carbonate function or else compounds including a furan ring. or even sugars.
  • the organic compound containing oxygen can be one or more chosen from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, a polyethylene glycol (with a molecular weight of between 200 and 1500 g / mol), propylene glycol, 2-butoxyethanol, 2- (2-butoxyethoxy) ethanol, 2- (2-methoxyethoxy) ethanol, triethylene glycoldimethylether, glycerol, acetophenone, 2,4-pentanedione, pentanone, acetic acid, maleic acid, malic acid, malonic acid, oxalic acid, gluconic acid, tartaric acid, citric acid, g-ketovaleric acid, a succinate of C1-C4 dialkyl, and more particularly dimethyl succinate, methyl acetoacetate, ethyl acetoacetate, 2-methoxyethyl 3-oxobutanoate, 2-methacryloyloxyethyl
  • the organic compound containing nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from an amine or nitrile function.
  • the organic compound containing nitrogen can be one or more chosen from the group consisting of ethylenediamine, diethylenetriamine, hexamethylenediamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, acetonitrile , octylamine, guanidine or a carbazole.
  • the organic compound containing oxygen and nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ether, aldehyde, ketone, ester, carbonate or amine function. , nitrile, imide, amide, urea or oxime.
  • the organic compound containing oxygen and nitrogen can be one or more selected from the group consisting of 1,2-cyclohexanediaminetetraacetic acid, monoethanolamine (MEA), 1- 2-methyl-pyrrolidinone, dimethylformamide, ethylenediaminetetraacetic acid (EDTA), alanine, glycine, nitrilotriacetic acid (NTA), N- (2-hydroxyethyl) ethylenediamine-N, N ', N '- triacetic (HEDTA), diethylene-triaminepentaacetic acid (DTPA), tetramethylurea, glutamic acid, dimethylglyoxime, bicine, tricine, 2-methoxyethyl cyanoacetate, 1-ethyl-2-pyrrolidinone, 1-vinyl-2-pyrrolidinone, 1, 3-dimethyl-2-imidazolidinone, 1- (2-hydroxyethyl) -2-pyrrolidinone, 1- (2-hydroxyethyl)
  • the organic compound containing sulfur can be one or more chosen from compounds comprising one or more chemical functions chosen from a thiol, thioether, sulfone or sulfoxide function.
  • the organic compound containing sulfur can be one or more chosen from the group consisting of thioglycolic acid, 2,2'-thiodiethanol, 2-hydroxy-4-methylthiobutanoic acid, a sulfonated derivative of benzothiophene or a sulfoxide derivative of a benzothiophene, methyl 3- (methylthio) propanoate and ethyl 3- (methylthio) propanoate.
  • the organic compound contains oxygen, preferably it is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), 'maleic acid, malonic acid, citric acid, gluconic acid, dimethyl succinate, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde (also known as furfuraldehyde), 5-hydroxymethylfurfural (also known as name 5- (hydroxymethyl) -2-furaldehyde or 5- HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl 3-hydroxy
  • the molar ratio of the organic compound added per metal from group VIB in the catalyst is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
  • the different molar ratios apply for each of the organic compounds present.
  • the impregnation step using an impregnation solution and in which said catalyst is brought into contact with an impregnation solution comprising a metal from group VIB and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur can be produced either by excess impregnation, or by dry impregnation, or by any other means known to those skilled in the art. job.
  • Impregnation at equilibrium consists in immersing the support or the catalyst in a volume of solution (often considerably) greater than the pore volume of the support or of the catalyst while maintaining the system under agitation to improve the exchanges between the solution and the support or catalyst.
  • Dry impregnation consists in introducing a volume of impregnation solution equal to the pore volume of the support or of the catalyst. Dry impregnation allows all of the metals and additives contained in the impregnation solution to be deposited on a given support or catalyst.
  • any impregnation solution described above can comprise any polar protic solvent known to those skilled in the art.
  • a polar protic solvent is used, for example chosen from the group formed by methanol, ethanol and water.
  • the impregnation solution comprises a water-ethanol or water-methanol mixture as solvents in order to facilitate the impregnation of the compound containing a metal from group VIB (and optionally the compound containing a metal from group VIII and / or phosphorus and / or organic compound) on the catalyst.
  • the solvent used in the impregnation solution consists of water or a water-ethanol or water-methanol mixture.
  • the solvent may be absent in the impregnation solution.
  • phosphoric acid also acts as a solvent.
  • the impregnation step using an impregnation solution can be advantageously carried out by one or more impregnation in excess of solution or preferably by one or more dry impregnation and very preferably by a single impregnation with dryness of said catalyst, using the impregnation solution.
  • the impregnation step using an impregnation solution comprises several modes of implementation. They are distinguished in particular by the time of introduction of the organic compound when it is present and which can be carried out either at the same time as the impregnation of the metal of group VIB (co-impregnation), or after (post-impregnation). , is before (pre-impregnation). In addition, the modes of implementation can be combined. Preferably, a co-impregnation is carried out.
  • the impregnated support is allowed to mature. Curing allows the impregnation solution to disperse homogeneously within the substrate.
  • Any maturation step described in the present invention is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17 ° C and 50 ° C, and preferably at room temperature.
  • a maturation time of between ten minutes and forty-eight hours and preferably between thirty minutes and six hours is sufficient.
  • each impregnation step is preferably followed by an intermediate drying step at a temperature below 200 ° C, advantageously between 100 ° C and below 200 ° C, preferably between 50 ° C and 180 ° C, more preferably between 70 ° C and 150 ° C, very preferably between 75 ° C and 130 °.
  • a maturation period was observed between the impregnation step and the intermediate drying step.
  • a calcination step can be carried out after the drying step, at a temperature between 200 ° C and 600 ° C, preferably between 250 ° C and 550 ° C, under an inert atmosphere ( nitrogen for example) or in an atmosphere containing oxygen (air for example).
  • Impregnation step using an impregnation solution via pre-impregnation (optional)
  • step a) of the process according to the invention it may be advantageous in certain cases to add, before step a) of the process according to the invention, to the porous support based on alumina or on silica or on silica-alumina at least one of the precursors.
  • metals and / or phosphorus and / or an additional organic compound by impregnation using an impregnation solution (conventional prepreg).
  • step a) of bringing water into contact with the oxide support can be preceded by an impregnation step using an impregnation solution and in which in contact with said catalyst with an impregnation solution comprising a metal from group VI B and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or or sulfur.
  • the pre-impregnation step can be performed in the same way as the post-impregnation step described above. It generally comprises at least one impregnation step, followed by drying and possibly calcination as described for the post-impregnation step.
  • This pre-impregnation step is particularly advantageous when it is desired to introduce an organic compound having a melting point above 100 ° C.
  • organic compounds comprising oxygen and / or nitrogen and / or sulfur and having a melting point higher than 100 ° C
  • malonic acid citric acid, acid gluconic, glucose, fructose, 2-methoxyethyl 3-oxobutanoate, 5-methyl-2-furaldehyde.
  • the molar ratio of the organic compound added per metal from group VI B present in the catalyst subsequently introduced via impregnation in a molten medium and optionally supplemented by a pre- or post-impregnation is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
  • the different molar ratios apply for each of the organic compounds present.
  • the catalyst is preferably not subjected to calcination.
  • the catalyst obtained according to the process according to the invention Before its use for the hydrotreatment and / or hydrocracking reaction, it is advantageous to transform the catalyst obtained according to the process according to the invention into a sulfurized catalyst in order to form its active species.
  • This stage of activation or sulfurization is carried out by methods well known to those skilled in the art, and advantageously under a sulfo-reducing atmosphere in the presence of hydrogen and hydrogen sulfide.
  • This sulfurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600 ° C, and more preferably between 300 and 500 ° C.
  • the catalyst obtained at the end of step c), or optionally resulting from drying step d) or resulting from calcination step e), is therefore advantageously subjected to a sulfurization step.
  • Sulfurizing agents are H2S gas, elemental sulfur, CS2, mercaptans, sulfides and / or polysulfides, hydrocarbon cuts with a boiling point below 400 ° C containing sulfur compounds or any other sulfur-containing compound used for the activation of the hydrocarbon feedstocks with a view to sulphurizing the catalyst.
  • Said sulfur-containing compounds are advantageously chosen from alkyl disulphides such as, for example, dimethyl disulphide (DM DS), alkyl sulphides, such as for example dimethyl sulphide, thiols such as for example n -butylmercaptan (or 1-butanethiol) and polysulfide compounds of the tertiononylpolysulfide type.
  • the catalyst can also be sulphurized by the sulfur contained in the feed to be desulphurized.
  • the catalyst is sulfurized in situ in the presence of a sulfurizing agent and a hydrocarbon feed.
  • the catalyst is sulfurized in situ in the presence of a hydrocarbon feed supplemented with dimethyl disulfide.
  • the hydrotreatment and / or hydrocracking catalyst is obtained which comprises at least one porous support based on alumina or on silica or on silica-alumina and at least one metal from group VI B under form of hydrated metallic acid. It may further comprise at least one metal from group VIII and / or phosphorus, and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur.
  • the catalyst prepared according to the preparation process according to the invention partially retains the heteropolyanions introduced by the hydrated metal acid. Heteropolyanions are visible by Raman spectroscopy.
  • the catalyst obtained thus has a characteristic Raman spectrum grouping together characteristic bands of the heteropolyanion (s) of Keggin PXYnC t f and / or RUi 2 0 4 o c type - where Y is a metal from group VIB and X is a metal from group VIII (and X x).
  • the main bands of PMoi 2 0 4 o x_ are in the mass state of G heteropolyanion, for example with cobalt in counterion at 251, 603, 902, 970, 990 cm 1 .
  • the most intense band characteristic of this Keggin heteropolyanion is located at 990 cm 1 .
  • the Raman spectra were obtained with a dispersive Raman type spectrometer equipped with an argon ionized laser (514 nm).
  • the laser beam is focused on the sample using a microscope equipped with a x50 long working distance objective.
  • the power of the laser sample level is of the order of 1 mW.
  • the Raman signal emitted by the sample is collected by the same objective and is dispersed using an 1800 rpm network then collected by a CCD detector.
  • the spectral resolution obtained is of the order of 0.5 cm ⁇ 1 .
  • the spectral zone recorded is between 300 and 1800 cm 1 .
  • the acquisition time was set at 120 s for each Raman spectrum recorded.
  • the total content of metal from group VI B (introduced by the hydrated metal acid and optionally supplemented by impregnation using an impregnation solution comprising a metal from group VI B in pre- or post-impregnation) present in the catalyst is between 5 and 55% by weight, preferably between 10 and 50% by weight, and more preferably between 25 and 45% by weight expressed as group VI B metal oxide relative to the total weight of the catalyst.
  • the total content of metal from group VIII, when it is present, (introduced by the metal salt or by an impregnation using an impregnation solution comprising a metal from group VIII in pre- or post-impregnation) present in the catalyst is between 1 and 23% by weight, preferably between 2 and 18% by weight, and more preferably between 5 and 15% by weight expressed as group VIII metal oxide relative to the total weight of the catalyst.
  • the group VIII metal to group VI B metal molar ratio of the catalyst is generally between 0.1 and 0.8, preferably between 0.15 and 0.6.
  • the catalyst may also have a total phosphorus content (introduced by phosphoric acid by impregnation in a molten medium or by impregnation using an impregnation solution comprising phosphoric acid) present in the mixture.
  • catalyst generally between 0.1 and 20% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.2 and 15% by weight of P2O5, very preferably between 0.3 and 11% by weight of P2O5 .
  • the phosphorus present in the catalyst is combined with the metal of group VI B and optionally also with the metal of group VIII in the form of heteropolyanions.
  • the phosphorus / (metal of group VIB) molar ratio is generally between 0.08 and 1, preferably between 0.1 and 0.9, and very preferably between 0.15 and 0.8 .
  • group VIB metal, group VIII metal and phosphorus in the catalyst are expressed as oxides after correction of the loss on ignition of the catalyst sample at 550 ° C for two hours in a muffle furnace. Loss on ignition is due to loss of moisture. It is determined according to ASTM D7348.
  • the total content of organic compound (s) containing oxygen and / or nitrogen and / or sulfur present in the catalyst is generally between 1 and 30% by weight, preferably between 1.5 and 25% by weight, and more preferably between 2 and 20% by weight relative to the total weight of the catalyst.
  • the pore volume of the catalyst is generally between 0.1 cm 3 / g and 1.5 cm 3 / g, preferably between 0.15 cm 3 / g and 1.1 cm 3 / g.
  • the total pore volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F.; Rouquerol J.; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academy Press, 1999, for example using a model Autopore III TM apparatus of the brand Micromeritics TM.
  • the catalyst is characterized by a specific surface area of between 5 and 400 m 2 / g, preferably between 10 and 350 m 2 / g, preferably between 40 and 350 m 2 / g, very preferably between 50 and 300 m 2 / g.
  • the specific surface area is determined in the present invention by the BET method according to the ASTM D3663 standard, a method described in the same work cited above.
  • Another subject of the invention is the use of the catalyst prepared by the preparation process according to the invention in processes for the hydrotreatment and / or hydrocracking of hydrocarbon cuts.
  • the process for hydrotreating and / or hydrocracking hydrocarbon cuts can be carried out in one or more reactors in series of the fixed bed type or of the ebullating bed type.
  • the hydrotreatment and / or hydrocracking process of hydrocarbon cuts is carried out in the presence of the catalyst prepared by the preparation process according to the invention. It can also be carried out in the presence of a mixture of the catalyst prepared by the preparation process according to the invention and of a catalyst prepared by conventional impregnation, using an impregnation solution, whether this be a fresh, regenerated or rejuvenated catalyst.
  • the catalyst prepared by impregnation using an impregnation solution comprises at least one metal from group VIII, at least one metal from group VIB and an oxide support, and optionally phosphorus and / or an organic compound as described above.
  • the active phase and the support of the catalyst prepared by impregnation using an impregnation solution may or may not be identical to the active phase and to the support of the catalyst prepared by the preparation process according to the invention.
  • hydrotreatment and / or hydrocracking process of hydrocarbon cuts is carried out in the presence of a catalyst prepared by the preparation process according to the invention and of a catalyst prepared by conventional impregnation, it can be carried out in a reactor. of the fixed bed type containing several catalytic beds.
  • a catalytic bed containing the catalyst prepared by the preparation process according to the invention can precede a catalytic bed containing the catalyst prepared by conventional impregnation in the direction of flow of the feed.
  • a catalytic bed containing the catalyst prepared by conventional impregnation can precede a catalytic bed containing the catalyst prepared by the preparation process according to the invention in the direction of circulation of the feed.
  • a catalytic bed may contain a mixture of a catalyst prepared by the preparation process according to the invention and of a catalyst by conventional impregnation.
  • the operating conditions are those described below. They are generally identical in the different catalytic beds except for the temperature which generally increases in a catalytic bed as a result of the exothermic nature of the hydrodesulfurization reactions.
  • a reactor may comprise a catalyst prepared by the preparation process according to the invention while another reactor may comprise a catalyst prepared by conventional impregnation, or a mixture of a catalyst prepared by the process of preparation according to the invention and of a catalyst prepared by conventional impregnation, and this in any order. It is possible to provide a device for removing the hhS from the effluent issuing from the first hydrodesulfurization reactor before treating said effluent in the second hydrodesulfurization reactor. In these cases, the operating conditions are those described above and may or may not be identical in the different reactors.
  • the catalyst prepared according to the preparation process according to the invention and having preferably previously undergone a sulfurization step is advantageously used for the hydrotreatment and / or hydrocracking reactions of hydrocarbon feeds such as petroleum cuts, cuts resulting from coal or hydrocarbons produced from natural gas, optionally in mixtures or even from a hydrocarbon cut obtained from biomass and more particularly for the reactions of hydrogenation, hydrodenitrogenation, hydrodearomatization, hydrodesulfurization, d 'hydrodeoxygenation, hydrodemetallation or hydroconversion of hydrocarbon feeds.
  • hydrocarbon feeds such as petroleum cuts, cuts resulting from coal or hydrocarbons produced from natural gas, optionally in mixtures or even from a hydrocarbon cut obtained from biomass and more particularly for the reactions of hydrogenation, hydrodenitrogenation, hydrodearomatization, hydrodesulfurization, d 'hydrodeoxygenation, hydrodemetallation or hydroconversion of hydrocarbon feeds.
  • the catalyst which has preferably previously undergone a sulfurization step has an activity at least as good as the catalysts of the prior art.
  • This catalyst can also advantageously be used during the pretreatment of catalytic cracking or hydrocracking feedstocks, or the hydrodesulphurization of the residues or the extensive hydrodesulphurization of gas oils (U LSD Ultra Low Sulfur Diesel according to English terminology).
  • the feeds used in the hydrotreatment process are, for example, gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes and paraffins, used oils, deasphalted residues or crude, feeds from thermal or catalytic conversion processes, lignocellulosic feeds or more generally feeds resulting from biomass such as vegetable oils, taken alone or as a mixture.
  • the feeds that are processed, and in particular those mentioned above generally contain heteroatoms such as sulfur, oxygen and nitrogen and, for heavy loads, they most often also contain metals.
  • the operating conditions used in the processes implementing the hydrotreatment reactions of hydrocarbon feeds described above are generally as follows: the temperature is advantageously between 180 and 450 ° C, and preferably between 250 and 440 ° C, the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the hourly volume speed is advantageously between 0.1 and 20 h 1 and preferably between 0.2 and 5 h 1 , and the hydrogen / feed ratio expressed as a volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed is advantageously between 50 l / l to 5000 l / l and preferably 80 to 2000 l / l.
  • said hydrotreatment process is a hydrotreatment process, and in particular hydrodesulfurization (H DS) process of a gas oil cut produced in the presence of at least one catalyst prepared according to the invention.
  • Said hydrotreatment process aims to eliminate the sulfur compounds present in said gas oil cut so as to achieve the environmental standards in force, namely an authorized sulfur content of up to 10 ppm. It also makes it possible to reduce the aromatics and nitrogen contents of the diesel cut to be hydrotreated.
  • Said diesel cut to be hydrotreated contains from 0.02 to 5.0% by weight of sulfur.
  • Said diesel cut preferably has at least 90% of the compounds whose boiling point is between 250 ° C and 400 ° C at atmospheric pressure.
  • the hydrotreatment process for said diesel cut is carried out under the following operating conditions: a temperature between 200 and 400 ° C, preferably between 300 and 380 ° C, a total pressure between 2 MPa and 10 MPa and more preferably between 3 MPa and 8 MPa with a volume ratio of hydrogen per volume of hydrocarbon feed, expressed as a volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed, between 100 and 600 liters per liter and more preferably between 200 and 400 liters per liter and an hourly volume speed (WH) of between 1 and 10 h 1 , preferably between 2 and 8 h 1 .
  • WH hourly volume speed
  • the WH corresponds to the inverse of the contact time expressed in hours and is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock to the volume of catalyst loaded into the reaction unit implementing the hydrotreatment process according to the invention .
  • the reaction unit implementing the hydrotreatment process for said gas oil cut is preferably carried out in a fixed bed, in a moving bed or in an ebullating bed, preferably in a fixed bed.
  • said hydrotreatment and / or hydrocracking process is a hydrotreatment process (in particular hydrodesulfurization, hydrodenitrogenation, hydrogenation of aromatics) and / or hydrocracking of a distillate cut under vacuum produced in the presence of at least one catalyst prepared according to the preparation process according to the invention.
  • Said hydrotreatment and / or hydrocracking process otherwise known as a hydrocracking or hydrocracking pretreatment process, is aimed, depending on the case, at removing the sulfur, nitrogen or aromatic compounds present in said distillate cut so as to carry out a pretreatment before conversion. in catalytic cracking processes or hydroconversion, or in hydrocracking the distillate cut which would possibly have been pretreated before if necessary.
  • feeds can be treated by the hydrotreatment and / or hydrocracking processes of vacuum distillates described above. Generally they contain at least 20% by volume and often at least 80% by volume of compounds boiling above 340 ° C at atmospheric pressure.
  • the feed may for example be vacuum distillates as well as feeds originating from units for extracting aromatics from lubricating oil bases or resulting from solvent dewaxing of lubricating oil bases, and / or deasphalted oils. , or else the feed may be a deasphalted oil or paraffins resulting from the Fischer-Tropsch process or even any mixture of the feeds mentioned above.
  • the charges have a boiling point T5 greater than 340 ° C at atmospheric pressure, and better still greater than 370 ° C at atmospheric pressure, that is to say that 95% of the compounds present in the charge have a point boiling above 340 ° C, and better still above 370 ° C.
  • the nitrogen content of the feeds treated in the processes according to the invention is usually greater than 200 ppm by weight, preferably between 500 and 10,000 ppm by weight.
  • the sulfur content of the feeds treated in the processes according to the invention is usually between 0.01 and 5.0% by weight.
  • the filler can optionally contain metals (eg nickel and vanadium).
  • the asphaltene content is generally less than 3000 ppm by weight.
  • the catalyst prepared according to the preparation process according to the invention is generally brought into contact, in the presence of hydrogen, with the charges described above, at a temperature above 200 ° C, often between 250 ° C and 480 ° C, advantageously between 320 ° C and 450 ° C, preferably between 330 ° C and 435 ° C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the volume speed being between 0.1 and 20.0 fr 1 and preferably 0.1 -6.0 h 1 , preferably 0, 2-3.0 fr 1 , and the quantity of hydrogen introduced is such that the ratio volume liter of hydrogen / liter of hydrocarbon, expressed in volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed, i.e.
  • the processes for hydrotreating and / or hydrocracking vacuum distillates using the catalysts prepared according to the preparation process according to the invention cover the pressure and conversion fields ranging from mild hydrocracking to high pressure hydrocracking. .
  • mild hydrocracking means hydrocracking leading to moderate conversions, generally less than 40%, and operating at low pressure, generally between 2 MPa and 6 MPa.
  • the catalyst prepared according to the preparation process according to the invention can be used alone, in one or more fixed bed catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling. of the unconverted fraction, or else in a so-called two-step hydrocracking scheme, optionally in combination with a hydrorefining catalyst located upstream of the catalyst prepared according to the preparation process according to the invention.
  • said hydrotreatment and / or hydrocracking process is advantageously implemented as a pretreatment in a fluidized bed catalytic cracking process (or FCC process for Fluid Catalytic Cracking according to English terminology) .
  • the operating conditions of the pretreatment in terms of temperature range, pressure, hydrogen recycling rate, hourly volume speed are generally identical to those described above for the hydrotreatment and / or hydrocracking processes of vacuum distillates.
  • the FCC process can be carried out in a conventional manner known to those skilled in the art under suitable cracking conditions in order to produce hydrocarbon products of lower molecular weight.
  • said hydrotreatment and / or hydrocracking process according to the invention is a hydrotreatment process (in particular hydrodesulfurization) of a gasoline cut in the presence of at least one catalyst prepared according to the invention. the preparation process according to the invention.
  • the hydrotreatment (in particular hydrodesulfurization) of gasolines must make it possible to respond to a double antagonistic constraint: ensure deep hydrodesulfurization of the gasolines and limit the hydrogenation of the unsaturated compounds present in order to limit the loss of octane number.
  • the feed is generally a hydrocarbon cut having a distillation range of between 30 and 260 ° C.
  • this cut of hydrocarbons is a cut of the gasoline type.
  • the gasoline cut is an olefinic gasoline cut obtained, for example, from a catalytic cracking unit (Fluid Catalytic Cracking according to English terminology).
  • the hydrotreatment process consists in bringing the hydrocarbon cut into contact with the catalyst prepared according to the preparation process according to the invention and hydrogen under the following conditions: at a temperature between 200 and 400 ° C, preferably between 230 and 330 ° C, at a total pressure between 1 and 3 MPa, preferably between 1, 5 and 2.5 MPa, at an Hourly Volume Velocity (WH), defined as being the load volume flow based on the volume of catalyst, between 1 and 10 h 1 , preferably between 2 and 6 fr 1 and at a hydrogen / gasoline feed volume ratio of between 100 and 600 N l / l, preferably between 200 and 400 N l / l.
  • WH Hourly Volume Velocity
  • the gasoline hydrotreatment process can be carried out in one or more reactors in series of the fixed bed type or of the ebullated bed type. If the process is implemented by means of at least two reactors in series, it is possible to provide a device for removing the H2S from the effluent from the first hydrodesulfurization reactor before treating said effluent in the second hydrodesulfurization reactor.
  • Catalyst C1 is prepared by dry impregnation of a gamma alumina (SBET 270 m 2 / g, Vp 0.75 cm 3 / g), crushed so as to obtain grains of 300 to 500 ⁇ m (VRE 1.2 cm 3 / g), with a solution containing hydrated phosphomolybdic acid H 3 PMoi 2 C> 4 o, 28H 2 C> (PMA). The concentration of PMA in solution is adjusted so as to obtain 22% by weight of M0O3 on the final catalyst. After maturing for 3 hours, the catalyst is dried at 120 ° C. for 2 hours.
  • the catalysts were evaluated for the hydrogenation of toluene under sulfo-reducing conditions.
  • the feed consists of dimethyldisulfide (5.9% wt) and toluene (20% wt) as a mixture in cyclohexane.
  • the catalysts are pre-sulphurized in situ with the test feed at an hourly volume velocity (WH) of 4 h 1 , a hydrogen to feed ratio of 450 L / L and a pressure of 6 MPa (60 bar).
  • WH hourly volume velocity
  • the temperature is increased from ambient conditions to 350 ° C with a ramp of 2 ° C min 1 .
  • the catalytic test is then carried out with the following conditions: a temperature of 350 ° C, a pressure of 6 MPa (60 bar), an hourly volume speed (WH) of 2 h 1 , and a hydrogen to feed ratio of 450 L / L.
  • the reaction products are analyzed online by gas chromatography.
  • the hydrogenation activity of toluene (A Hydro) is expressed by considering an order 1 according to the equation following and in relative with respect to the activity of catalysts C1, 22% by weight M0O3 prepared by dry impregnation.
  • the catalyst prepared by molten impregnation with cobalt and molybdenum gives an activity of 544.
  • the preparation of catalysts according to the invention does not require a solvent, nor a drying step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a process for the preparation, by impregnation in a melted medium, of a hydrotreatment and/or hydrocracking catalyst, said process comprising the following steps: a) bringing water in contact with said porous support so as to obtain a wet porous support; b) bringing said wet porous support in contact with at least one hydrated metal acid comprising at least one group VIB metal, wherein the melting temperature of said hydrated solid metal acid is between 20 and 100 °C, in order to form a solid mixture, the weight ratio between the metal acid and the porous support being between 0.1 and 2.5; c) heating while stirring the solid mixture obtained at the end of step b) to a temperature between the melting temperature of the metal acid and 100 °C. The invention also relates to the catalyst and its use in the field of hydrotreatment and/or hydrocracking.

Description

PROCEDE DE PREPARATION D'UN CATALYSEUR D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE PAR IMPREGNATION EN MILIEU FONDU, CATALYSEUR OBTENU EN SON UTILISATION PROCESS FOR THE PREPARATION OF A HYDROTREATMENT AND / OR HYDROCRACKING CATALYST BY IMPREGNATION IN MELTED MEDIUM, CATALYST OBTAINED IN ITS USE
Domaine de l’invention Field of the invention
L'invention concerne un procédé de préparation d’un catalyseur d'hydrotraitement et/ou 5 d’hydrocraquage par imprégnation en milieu fondu, le catalyseur obtenu par ce procédé et son utilisation dans le domaine de l’hydrotraitement et/ou de l’hydrocraquage. The invention relates to a process for the preparation of a hydrotreatment and / or hydrocracking catalyst by impregnation in a molten medium, the catalyst obtained by this process and its use in the field of hydrotreatment and / or hydrotreatment. hydrocracking.
État de la technique State of the art
Habituellement, un catalyseur d’hydrotraitement de coupes hydrocarbonées a pour but d’éliminer les composés soufrés ou azotés contenus dans celles-ci afin de mettre par0 exemple un produit pétrolier aux spécifications requises (teneur en soufre, teneur en aromatiques etc...) pour une application donnée (carburant automobile, essence ou gazole, fioul domestique, carburéacteur). Usually, the purpose of a hydrotreatment catalyst for hydrocarbon cuts is to remove the sulfur or nitrogen compounds contained therein in order to bring, for example, a petroleum product to the required specifications (sulfur content, aromatics content, etc.) for a given application (automotive fuel, gasoline or diesel, domestic fuel oil, jet fuel).
Les catalyseurs d’hydrotraitement classiques comprennent généralement un support d’oxyde et une phase active à base de métaux des groupes VI B et VIII sous leurs formes oxydes5 ainsi que du phosphore. Conventional hydrotreatment catalysts generally include an oxide support and an active phase based on Group VI B and VIII metals in their oxide forms5 as well as phosphorus.
La préparation de ces catalyseurs comprend généralement une étape d’imprégnation à l’aide d’une solution d’imprégnation contenant des métaux et du phosphore sur le support (aussi appelé imprégnation classique par la suite), suivie d’un séchage et éventuellement d’une calcination permettant d’obtenir la phase active sous leurs formes oxydes. Avant leur0 utilisation dans une réaction d’hydrotraitement et/ou d’hydrocraquage, ces catalyseurs sont généralement soumis à une sulfuration afin de former l’espèce active. The preparation of these catalysts generally comprises an impregnation step using an impregnation solution containing metals and phosphorus on the support (also called conventional impregnation hereinafter), followed by drying and optionally d a calcination making it possible to obtain the active phase in their oxide forms. Prior to their use in a hydrotreatment and / or hydrocracking reaction, these catalysts are generally subjected to sulfurization to form the active species.
Les catalyseurs d'hydrotraitement et/ou d’hydrocraquage à base de métaux des groupes VI B et VIII préparés par une seule étape d'imprégnation permettent généralement d'atteindre des teneurs en molybdène et cobalt de respectivement 30 et 7 % poids exprimées en oxyde de5 métal par rapport au poids du catalyseur, selon le volume poreux du support utilisé. Lorsqu'on souhaite préparer des catalyseurs ayant une teneur en métaux plus élevée, plusieurs imprégnations successives sont souvent nécessaires pour obtenir la teneur en métaux souhaitée, suivie d'au moins une étape de séchage, puis éventuellement d'une étape de calcination entre chaque imprégnation. The hydrotreatment and / or hydrocracking catalysts based on metals from groups VI B and VIII prepared by a single impregnation step generally make it possible to achieve molybdenum and cobalt contents of respectively 30 and 7% by weight expressed as oxide. de5 metal relative to the weight of the catalyst, depending on the pore volume of the support used. When it is desired to prepare catalysts having a higher metal content, several successive impregnations are often necessary to obtain the metal content. desired metals, followed by at least one drying step, then optionally by a calcination step between each impregnation.
La préparation de catalyseurs d'hydrotraitement et/ou d’hydrocraquage à base de métaux des groupes VI B et VIII ayant une teneur en métaux élevée par la voie d'imprégnation classique implique ainsi un enchaînement de nombreuses étapes et l’utilisation de solvant ce qui augmente les coûts de fabrication associés. The preparation of hydrotreatment and / or hydrocracking catalysts based on metals from groups VI B and VIII having a high metal content by the conventional impregnation route thus involves a series of numerous steps and the use of solvent this which increases the associated manufacturing costs.
De plus, même en effectuant plusieurs imprégnations successives, la teneur maximale atteignable en molybdène est généralement autour de 40 % poids exprimée en oxyde de molybdène par rapport au poids du catalyseur, des teneurs plus élevées ne sont pas accessibles avec cette technique. In addition, even by carrying out several successive impregnations, the maximum attainable molybdenum content is generally around 40% by weight expressed as molybdenum oxide relative to the weight of the catalyst, higher contents are not accessible with this technique.
Une autre voie de préparation est l’imprégnation en milieu fondu. Cette technique, particulièrement bien décrite dans la publication « Melt Infiltration : an Emerging Technique for the Préparation of Novel Functional Nanostructured Materials », P.E. de Jongh, T.M. Eggenhuisen, Adv. Mater. 2013, 25, 6672-6690 se base sur un procédé en une seule étape basé sur l’infiltration sans pression et par capillarité d’un liquide en fusion dans un corps poreux. Another preparation route is impregnation in a molten medium. This technique, particularly well described in the publication “Melt Infiltration: an Emerging Technique for the Preparation of Novel Functional Nanostructured Materials”, P.E. de Jongh, T.M. Eggenhuisen, Adv. Mater. 2013, 25, 6672-6690 is based on a one-step process based on the pressure-free and capillary infiltration of a molten liquid into a porous body.
Appliqué au domaine de la catalyse, l’imprégnation en milieu fondu consiste à mélanger un support poreux avec un sel métallique solide ayant une température de fusion relativement basse, notamment inférieure à sa température de décomposition, puis de chauffer le mélange à une température supérieure à la température de fusion dudit sel métallique afin de faire fondre le sel dans le support. Applied to the field of catalysis, impregnation in a molten medium consists in mixing a porous support with a solid metal salt having a relatively low melting point, in particular lower than its decomposition temperature, then heating the mixture to a temperature higher than the melting temperature of said metal salt in order to melt the salt in the support.
Cette technique se distingue ainsi par rapport à l’imprégnation classique par plusieurs avantages, notamment par une préparation simplifiée. En effet, elle ne nécessite pas de préparation de solution ou de solvant car les précurseurs métalliques sont utilisés sous forme de solides. De même, le catalyseur obtenu après le chauffage du mélange solide support/sel n’a pas besoin d’étapes supplémentaires de séchage ou de calcination. De plus, un avantage majeur de l’imprégnation en milieu fondu est le fait de pouvoir obtenir en une seule étape un catalyseur à très forte teneur en métal. Cependant, cette technique a le désavantage de nécessiter un sel métallique ayant une température de fusion relativement basse, notamment inférieure à sa température de décomposition. Bien que de tels sels existent pour les métaux du groupe VIII, notamment sous forme de sel de nitrate hydraté à base de nickel ou de cobalt, il ne semble pas avoir de sels du groupe VIB qui répondent à ces critères de faible point de fusion. En effet, les sels à base d’un métal du groupe VIB ont plutôt tendance à se décomposer avant d’atteindre leur point de fusion. This technique is thus distinguished from conventional impregnation by several advantages, in particular by a simplified preparation. Indeed, it does not require preparation of solution or solvent because the metal precursors are used in the form of solids. Likewise, the catalyst obtained after heating the solid support / salt mixture does not need additional drying or calcination steps. In addition, a major advantage of impregnation in a molten medium is the fact that it is possible to obtain a catalyst with a very high metal content in a single step. However, this technique has the disadvantage of requiring a metal salt having a relatively low melting point, in particular lower than its decomposition temperature. Although such salts exist for the metals of group VIII, especially in the form of hydrated nitrate salt based on nickel or cobalt, there does not appear to be any group VIB salts which meet these low melting point criteria. Indeed, salts based on a metal of group VIB tend to decompose before reaching their melting point.
Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé de préparation d’un catalyseur d'hydrotraitement et/ou d’hydrocraquage à base d’un métal du groupe VIB préparé par imprégnation en milieu fondu. In this context, one of the objectives of the present invention is to provide a process for preparing a hydrotreatment and / or hydrocracking catalyst based on a group VIB metal prepared by impregnation in a molten medium.
Objets de l’invention Objects of the invention
L'invention concerne un procédé de préparation d’un catalyseur d'hydrotraitement et/ou d’hydrocraquage comprenant un support poreux à base d'alumine ou de silice ou de silice- alumine et au moins un métal du groupe VIB, la teneur en métal du groupe VIB étant comprise entre 5 et 55 % poids exprimée en oxyde de métal du groupe VIB par rapport au poids total du catalyseur, ledit procédé comprenant les étapes suivantes : a) on met en contact de l’eau avec ledit support poreux de manière à obtenir un support poreux mouillé, b) on met en contact ledit support poreux mouillé avec au moins un acide métallique hydraté comprenant au moins un métal du groupe VIB dont la température de fusion dudit acide métallique hydraté est comprise entre 20 et 100°C, pour former un mélange solide, le rapport massique entre ledit acide métallique et ledit support poreux étant compris entre 0,1 et 2,5, c) on chauffe sous agitation le mélange solide obtenu à l’issue de l’étape b) à une température comprise entre la température de fusion dudit acide métallique hydraté et 100°C. La demanderesse a en effet constaté que l’utilisation d’acide métallique hydraté comprenant au moins un métal du groupe VIB et ayant une température de fusion comprise entre 20 et 100°C permet d’introduire un métal du groupe VIB dans un support poreux par imprégnation en milieu fondu. The invention relates to a process for preparing a hydrotreatment and / or hydrocracking catalyst comprising a porous support based on alumina or silica or silica-alumina and at least one metal from group VIB, the content of metal from group VIB being between 5 and 55% by weight expressed as metal oxide from group VIB relative to the total weight of the catalyst, said process comprising the following steps: a) water is brought into contact with said porous support of so as to obtain a wet porous support, b) said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VIB, the melting point of said hydrated metal acid of which is between 20 and 100 ° C. , to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5, c) the solid mixture obtained at the end of step b) is heated with stirring at a temperature between the melting point of said hydrated metal acid is 100 ° C. The Applicant has in fact observed that the use of hydrated metal acid comprising at least one metal from group VIB and having a melting point of between 20 and 100 ° C makes it possible to introduce a metal from group VIB into a porous support by impregnation in molten medium.
L’acide métallique hydraté, qui se présente sous forme de poudre, est mélangé avec le support poreux (étape b), puis ce mélange solide est chauffé afin de faire fondre l’acide métallique dans le support permettant ainsi d’obtenir le catalyseur (étape c). Cependant, l’acide présente la particularité de ne fondre qu’en présence d’une pression partielle d’eau suffisante. En d’autres termes, il est nécessaire de garder les molécules d’eau de cristallisation pour assurer sa fusion. Afin de garantir une pression partielle d’eau suffisante, le support est au préalable humidifié par une imprégnation d’eau (étape a). The hydrated metallic acid, which is in the form of powder, is mixed with the porous support (step b), then this solid mixture is heated in order to melt the metallic acid in the support, thus making it possible to obtain the catalyst ( step c). However, the acid has the peculiarity of only melting in the presence of sufficient partial pressure of water. In other words, it is necessary to keep the molecules of water of crystallization to ensure its fusion. In order to guarantee sufficient partial water pressure, the support is first moistened by impregnating with water (step a).
Le procédé de préparation selon l’invention présente ainsi les avantages d’une imprégnation en milieu fondu, notamment l’absence de toute préparation de solution ou l’utilisation de solvant et l’absence de la nécessité d’un séchage ou d’une calcination ultérieure même si de telles étapes sont possibles. The preparation process according to the invention thus has the advantages of an impregnation in a molten medium, in particular the absence of any preparation of solution or the use of solvent and the absence of the need for drying or subsequent calcination even if such steps are possible.
De plus, le procédé de préparation selon l’invention permet d’obtenir un catalyseur fortement chargé en métal du groupe VIB ayant notamment des teneurs en métal du groupe VIB qui ne sont pas atteignables par imprégnation à l’aide d’une solution d’imprégnation. In addition, the preparation process according to the invention makes it possible to obtain a catalyst heavily loaded with metal from group VIB having in particular contents of metal from group VIB which are not achievable by impregnation using a solution of impregnation.
Ainsi, le catalyseur obtenu selon le procédé de préparation selon l’invention permet d’observer une activité catalytique en hydrotraitement et/ou hydrocraquage au moins au même niveau qu’un catalyseur préparé par imprégnation à l’aide d’une solution d’imprégnation avec cependant une préparation simplifiée et la possibilité de charger plus de métal du groupe VIB. Thus, the catalyst obtained according to the preparation process according to the invention makes it possible to observe a catalytic activity in hydrotreatment and / or hydrocracking at least at the same level as a catalyst prepared by impregnation using an impregnation solution. with however a simplified preparation and the possibility of loading more metal of group VIB.
Selon une variante, l’acide métallique hydraté est choisi parmi l’acide phosphomolybdique hydraté, l’acide silicomolybdique hydraté, l’acide molybdosilicique hydraté, l’acide phosphotungstique hydraté et l’acide silicotungstique hydraté. Alternatively, the hydrated metal acid is selected from hydrated phosphomolybdic acid, hydrated silicomolybdic acid, hydrated molybdosilicic acid, hydrated phosphotungstic acid and hydrated silicotungstic acid.
Selon une variante, la quantité d’eau introduite dans le support à l’étape a) est entre 10 et 70 % de son volume de reprise en eau. Selon une variante, l’étape b) comprend en outre la mise en contact avec au moins un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 20 et 100°C, pour former un mélange solide, le rapport molaire (métal du groupe VI I l)/(métal du groupe VI B) étant compris entre 0,1 et 0,8. According to one variant, the quantity of water introduced into the support in step a) is between 10 and 70% of its water uptake volume. According to one variant, step b) further comprises bringing into contact with at least one metal salt comprising at least one metal from group VIII whose melting point of said metal salt is between 20 and 100 ° C, to form a solid mixture, the molar ratio (metal of group VI I l) / (metal of group VI B) being between 0.1 and 0.8.
Selon une variante, ledit sel métallique est un sel de nitrate hydraté. Selon une variante préférée, ledit sel métallique est choisi parmi le nitrate de nickel hexahydraté, et le nitrate de cobalt hexahydraté, pris seul ou en mélange. According to one variant, said metal salt is a hydrated nitrate salt. According to a preferred variant, said metal salt is chosen from nickel nitrate hexahydrate, and cobalt nitrate hexahydrate, taken alone or as a mixture.
Selon une variante, l’étape b) comprend en outre la mise en contact avec de l’acide phosphorique, pour former un mélange solide, le rapport molaire phosphore/(métal du groupe VI B) étant compris entre 0,08 et 1. Alternatively, step b) further comprises contacting with phosphoric acid to form a solid mixture, the phosphorus / (group VI B metal) molar ratio being between 0.08 and 1.
Selon une variante, l’étape b) comprend en outre la mise en contact avec un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre dont la température de fusion dudit composé organique est comprise entre 20 et 100°C, le rapport molaire composé organique/métal du groupe VI B étant compris entre 0,01 et 5. According to one variant, step b) further comprises bringing into contact with an organic compound comprising oxygen and / or nitrogen and / or sulfur, the melting point of said organic compound of which is between 20 and 100 ° C, the organic compound / group VI B metal molar ratio being between 0.01 and 5.
Selon cette variante, le composé organique est choisi parmi l’acide maléique, le sorbitol, le xylitol, l’acide g-cétovalérique, le 5-hydroxyméthylfurfural et la 1 ,3-diméthyl-2- imidazolidinone. According to this variant, the organic compound is chosen from maleic acid, sorbitol, xylitol, g-ketovaleric acid, 5-hydroxymethylfurfural and 1, 3-dimethyl-2-imidazolidinone.
Selon une variante, on réalise après l’étape c) une étape d) de séchage du catalyseur obtenu à l’étape c) à une température inférieure à 200°C. Alternatively, after step c), a step d) of drying the catalyst obtained in step c) is carried out at a temperature below 200 ° C.
Selon une variante, on réalise une étape e) de calcination du catalyseur obtenu à l’étape d) à une température supérieure ou égale à 200°C et inférieure ou égale à 600 °C sous atmosphère inerte ou sous atmosphère contenant de l’oxygène. According to one variant, a step e) of calcining the catalyst obtained in step d) is carried out at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or under an atmosphere containing oxygen. .
Selon une variante, on réalise avant l’étape a) ou après l’étape c) une étape d’imprégnation à l’aide d’une solution d’imprégnation et dans laquelle on met en contact ledit support ou ledit catalyseur avec une solution d’imprégnation comprenant un métal du groupe VI B et/ou un métal du groupe VIII et/ou du phosphore et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre, suivi d’une étape de séchage à une température inférieure à 200°C et éventuellement d’une étape de calcination à une température supérieure ou égale à 200°C et inférieure ou égale à 600 °C sous atmosphère inerte ou sous atmosphère contenant de l’oxygène. According to one variant, before step a) or after step c), an impregnation step is carried out using an impregnation solution and in which said support or said catalyst is brought into contact with a solution. impregnation comprising a metal from group VI B and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur, followed by a drying step at a temperature below 200 ° C and optionally a calcination step at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or under an atmosphere containing oxygen.
Selon cette variante, le composé organique est choisi parmi la g-valérolactone, la 2- acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique (EDTA), l’acide maléique, l’acide malonique, l’acide citrique, l’acide gluconique, le succinate de diméthyle, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide g-cétovalérique, le diméthylformamide, la 1-méthyl-2-pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2- furaldéhyde (aussi connu sous le nom furfural), le 5-hydroxyméthylfurfural (aussi connu sous le nom 5-(hydroxyméthyl)-2-furaldéhyde ou 5-HMF), le 2-acétylfurane, le 5-méthyl-2- furaldéhyde, l’acide ascorbique, le lactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3- éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2-hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1 ,3-diméthyl-2-imidazolidinone, la 1-(2- hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5-pyrrolidinedione, la 5-méthyl-2(3H)- furanone, la 1-méthyl-2-pipéridinone et l’acide 4-aminobutanoïque. According to this variant, the organic compound is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), maleic acid, malonic acid, citric acid, gluconic acid, dimethyl succinate, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5- (hydroxymethyl) -2- furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, acetate 2-ethoxyethyl, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 1-vinyl-2-pyrrolidinone, 1, 3-dimethyl-2-imidazolidinone, 1- (2-hydroxyethyl) -2-pyrrolidinone, 1- (2-hydroxyethyl) -2,5-pyrrolidinedione, 5-methyl-2 (3H) - furanone, 1-methyl-2-piperidinone and l 4-aminobutanoic acid.
Selon une variante, le catalyseur est soumis à une étape de sulfuration après l’étape c) ou les éventuelles étapes d) et e). According to one variant, the catalyst is subjected to a sulfurization step after step c) or the optional steps d) and e).
L’invention concerne également le catalyseur obtenu par le procédé de préparation et son utilisation dans un procédé d’hydrotraitement et/ou de d’hydrocraquage. The invention also relates to the catalyst obtained by the preparation process and its use in a hydrotreatment and / or hydrocracking process.
Description de l’invention Description of the invention
L'invention concerne un procédé de préparation d’un catalyseur d'hydrotraitement et/ou d’hydrocraquage comprenant un support poreux à base d'alumine ou de silice ou de silice- alumine et au moins un métal du groupe VIB, la teneur en métal du groupe VIB étant comprise entre 5 et 55 % poids exprimée en oxyde de métal du groupe VIB par rapport au poids total du catalyseur, ledit procédé comprenant les étapes suivantes : a) on met en contact de l’eau avec ledit support poreux de manière à obtenir un support poreux mouillé, b) on met en contact ledit support poreux mouillé avec au moins un acide métallique hydraté comprenant au moins un métal du groupe VIB dont la température de fusion dudit acide métallique hydraté est comprise entre 20 et 100°C, pour former un mélange solide, le rapport massique entre ledit acide métallique et ledit support poreux étant compris entre 0,1 et 2,5, c) on chauffe sous agitation le mélange solide obtenu à l’issue de l’étape b) à une température comprise entre la température de fusion dudit acide métallique et 100°C. The invention relates to a process for preparing a hydrotreatment and / or hydrocracking catalyst comprising a porous support based on alumina or silica or silica-alumina and at least one metal from group VIB, the content of metal from group VIB being between 5 and 55% by weight expressed as metal oxide from group VIB relative to the total weight of the catalyst, said process comprising the following steps: a) water is brought into contact with said porous support of so as to obtain a wet porous support, b) said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VIB whose melting point of said hydrated metal acid is between 20 and 100 ° C, to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5, c) the solid mixture obtained at the end of step b) is heated with stirring to a temperature between the melting point of said metallic acid and 100 ° C.
Etape a) : Mise en contact de l’eau avec le support d’oxyde Step a): Contacting the water with the oxide support
Selon l’étape a) du procédé de préparation selon l’invention, on met en contact de l’eau avec ledit support poreux de manière à obtenir un support poreux mouillé. According to step a) of the preparation process according to the invention, water is brought into contact with said porous support so as to obtain a wet porous support.
Cette étape d’humidification du support poreux est nécessaire afin de pouvoir faire fondre l’acide métallique hydraté dans l’étape c). En effet, l’acide présente la particularité de ne fondre qu’en présence d’une pression partielle d’eau suffisante. En d’autres termes, il est nécessaire de garder les molécules d’eau de cristallisation de l’acide métallique hydraté pour assurer sa fusion. This step of wetting the porous support is necessary in order to be able to melt the hydrated metal acid in step c). This is because the acid has the particularity of only melting in the presence of sufficient partial pressure of water. In other words, it is necessary to keep the water molecules of crystallization of the metallic acid hydrated to ensure its fusion.
L’étape a) de mise en contact peut être réalisée par imprégnation à sec. L’eau peut par exemple être versée en goutte à goutte sur le support contenu dans un drageoir en rotation.Contacting step a) can be carried out by dry impregnation. The water can for example be poured drop by drop onto the support contained in a rotating bezel.
Selon une variante, la quantité d’eau introduit dans le support poreux est entre 10 et 70 %, et de préférence entre 30 et 50% de son volume de reprise en eau. According to one variant, the quantity of water introduced into the porous support is between 10 and 70%, and preferably between 30 and 50% of its water uptake volume.
Avantageusement, après la mise en contact de l’eau avec le support, on laisse maturer le support poreux mouillé. La maturation permet à l’eau de se disperser de manière homogène au sein du support poreux. Advantageously, after the water has come into contact with the support, the wet porous support is allowed to mature. Maturation allows the water to disperse homogeneously within the porous support.
Toute étape de maturation est avantageusement réalisée à pression atmosphérique, dans une atmosphère saturée en eau et à une température comprise entre 17°C et 50°C, et de préférence à température ambiante. Généralement une durée de maturation comprise entre dix minutes et quarante-huit heures, de préférence comprise entre trente minutes et quinze heures et de manière particulièrement préférée entre trente minutes et six heures, est suffisante. Le support poreux est un support poreux à base d'alumine ou de silice ou de silice-alumine.Any maturation step is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17 ° C and 50 ° C, and preferably at room temperature. Generally, a maturation time of between ten minutes and forty-eight hours, preferably between thirty minutes and fifteen hours and particularly preferably between thirty minutes and six hours, is sufficient. The porous support is a porous support based on alumina or silica or silica-alumina.
Le support poreux présente avantageusement un volume poreux total compris entre 0,1 et 1,5 cm3. g-1, de préférence entre 0,4 et 1 ,1 cm3. g 1. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans l'ouvrage Rouquerol F. ; Rouquerol J. ; Singh K. « Adsorption by Powders & Porous Solids : Principle, methodology and applications », Academie Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Micromeritics™. The porous support advantageously has a total pore volume of between 0.1 and 1.5 cm 3 . g- 1 , preferably between 0.4 and 1.1 cm 3 . g 1 . The total pore volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F.; Rouquerol J.; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academie Press, 1999, for example using a model Autopore III ™ apparatus of the brand Micromeritics ™.
La surface spécifique du support poreux est avantageusement comprise entre 5 et 400 m2. g-1, de préférence entre 10 et 350 m2.g-1, de manière plus préférée entre 40 et 350 m2.g-1. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, méthode décrite dans le même ouvrage cité ci-dessus. The specific surface of the porous support is advantageously between 5 and 400 m 2 . g- 1 , preferably between 10 and 350 m 2 .g- 1 , more preferably between 40 and 350 m 2 .g- 1 . The specific surface area is determined in the present invention by the BET method according to the ASTM D3663 standard, a method described in the same work cited above.
Le support poreux a un volume de reprise en eau ou VRE compris entre 0,2 et 1,6 cm3. g 1, de préférence entre 0,5 et 1 ,2 cm3. g 1. Le volume de rétention est déterminé de la façon suivante : on verse sur une masse connue de support, placée dans un drageoir mis en rotation à l'aide d'un moteur, de l'eau permutée, au goutte à goutte à l'aide d'une burette graduée, alors que le support est mélangé manuellement à l'aide d'une spatule. Lorsque le support commence à adhérer à la paroi du drageoir, on arrête le goutte à goutte et on note le volume d'eau utilisé. On calcule alors le rapport volume d’eau/masse de support, le volume de reprise à l'eau (VRE) étant exprimé en cm3/g. The porous support has a water uptake volume or VRE of between 0.2 and 1.6 cm 3 . g 1 , preferably between 0.5 and 1, 2 cm 3 . g 1 . The retention volume is determined as follows: poured over a known mass of support, placed in a bezel rotated with the aid of a motor, deionized water, drop by drop using of a graduated burette, while the support is mixed manually using a spatula. When the support begins to adhere to the wall of the bezel, the drip is stopped and the volume of water used is noted. The volume of water / mass of support ratio is then calculated, the water uptake volume (VRE) being expressed in cm 3 / g.
Lorsque le support d’oxyde est à base d'alumine, il contient plus de 50 % poids d'alumine par rapport au poids total du support et, de façon générale, il contient uniquement de l'alumine ou de la silice-alumine telle que définie ci-dessous. When the oxide support is based on alumina, it contains more than 50% by weight of alumina relative to the total weight of the support and, in general, it contains only alumina or silica-alumina such as as defined below.
De préférence, le support d’oxyde comprend de l’alumine, et de préférence de l'alumine extrudée. De préférence, l'alumine est l'alumine gamma. Preferably, the oxide support comprises alumina, and more preferably extruded alumina. Preferably, the alumina is gamma alumina.
Dans un autre cas préféré, le support poreux est une silice-alumine contenant au moins 50 % poids d'alumine par rapport au poids total du support. La teneur en silice dans le support est d'au plus 50% poids par rapport au poids total du support, le plus souvent inférieure ou égale à 45% poids, de préférence inférieure ou égale à 40%. In another preferred case, the porous support is a silica-alumina containing at least 50% by weight of alumina relative to the total weight of the support. The silica content in support is at most 50% by weight relative to the total weight of the support, most often less than or equal to 45% by weight, preferably less than or equal to 40%.
Les sources de silicium sont bien connues de l'Homme du métier. On peut citer à titre d'exemple l'acide silicique, la silice sous forme de poudre ou sous forme colloïdale (sol de silice), le tétraéthylorthosilicate Si(OEt)4. The sources of silicon are well known to those skilled in the art. Mention may be made, by way of example, of silicic acid, silica in powder form or in colloidal form (silica sol), tetraethylorthosilicate Si (OEt) 4.
Lorsque le support dudit catalyseur est à base de silice, il contient plus de 50 % poids de silice par rapport au poids total du support et, de façon générale, il contient uniquement de la silice. When the support of said catalyst is based on silica, it contains more than 50% by weight of silica relative to the total weight of the support and, in general, it contains only silica.
Selon une variante particulièrement préférée, le support d’oxyde est constitué d’alumine, de silice ou de silice-alumine. Selon une variante particulièrement préférée, le support d’oxyde est constitué d’alumine gamma. According to a particularly preferred variant, the oxide support consists of alumina, silica or silica-alumina. According to a particularly preferred variant, the oxide support consists of gamma alumina.
Le support d’oxyde peut aussi avantageusement contenir en outre de 0,1 à 80% poids, de préférence de 0,1 à 50% poids de zéolithe par rapport au poids total du support. Dans ce cas, toutes les sources de zéolithe et toutes les méthodes de préparations associées connues de l’Homme du métier peuvent être incorporées. De préférence, la zéolithe est choisie parmi le groupe FAU, BEA, ISV, IWR, IWW, MEI, UWY et de manière préférée, la zéolithe est choisie parmi le groupe FAU et BEA, telle que la zéolithe Y et/ou bêta, et de manière particulièrement préférée telle que la zéolithe USY et/ou bêta. The oxide support can also advantageously additionally contain from 0.1 to 80% by weight, preferably from 0.1 to 50% by weight of zeolite relative to the total weight of the support. In this case, all the sources of zeolite and all the associated preparation methods known to those skilled in the art can be incorporated. Preferably, the zeolite is chosen from the group FAU, BEA, ISV, IWR, IWW, MEI, UWY and preferably, the zeolite is chosen from the group FAU and BEA, such as zeolite Y and / or beta, and particularly preferably such as USY and / or beta zeolite.
Le support se présente avantageusement sous forme de billes, d'extrudés, de pastilles ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. The support is advantageously in the form of balls, extrudates, pellets or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
Etape b): Mise en contact de l’acide métallique avec le support mouillé Step b): Bringing the metallic acid into contact with the wet support
Selon l’étape b) du procédé de préparation selon l’invention, on met en contact ledit support poreux mouillé avec au moins un acide métallique hydraté comprenant au moins un métal du groupe VI B dont la température de fusion dudit acide métallique hydraté est comprise entre 20 et 100°C, pour former un mélange solide, le rapport massique entre ledit acide métallique hydraté et ledit support poreux étant compris entre 0,1 et 2,5. L’acide métallique hydraté doit avoir une température de fusion relativement basse, notamment inférieure à sa température de décomposition. La température de fusion de l’acide métallique hydraté est comprise entre 20 et 100°C, et de préférence entre 50 et 90°C.According to step b) of the preparation process according to the invention, said wet porous support is brought into contact with at least one hydrated metal acid comprising at least one metal from group VI B, the melting point of said hydrated metal acid of which is within between 20 and 100 ° C, to form a solid mixture, the mass ratio between said hydrated metallic acid and said porous support being between 0.1 and 2.5. The hydrated metal acid must have a relatively low melting point, especially lower than its decomposition temperature. The melting point of the hydrated metal acid is between 20 and 100 ° C, and preferably between 50 and 90 ° C.
L’acide métallique hydraté comprend au moins un métal du groupe VIB. Le métal du groupe VI B présent dans l’acide est préférentiellement choisi parmi le molybdène et le tungstène.The hydrated metal acid comprises at least one metal from Group VIB. The group VI B metal present in the acid is preferably chosen from molybdenum and tungsten.
L’acide métallique hydraté peut en plus comprendre du phosphore et du silicium. The hydrated metal acid can additionally include phosphorus and silicon.
L’acide métallique peut être un acide d’un hétéropolyanions de type Keggin. The metal acid can be an acid of a Keggin type heteropolyanion.
L’acide métallique hydraté est de préférence choisi parmi l’acide phosphomolybdique hydraté (H3PM012O40, 28H2O, point de fusion T= 85°C), l’acide silicomolybdique hydraté (hUSiMo^Cho, XH2O, point de fusion T= 47-55°C), l’acide molybdosilicique hydraté (H6Moi204iSi, XH2O, point de fusion T= 45-70°C), l’acide phosphotungstique hydraté (H3PW12O40, 28H2O, point de fusion T= 89°C), l’acide silicotungstique hydraté (hUSiW^C o, XH2O, point de fusion T= 53°C). The hydrated metal acid is preferably chosen from hydrated phosphomolybdic acid (H3PM012O40, 28H2O, melting point T = 85 ° C), hydrated silicomolybdic acid (hUSiMo ^ Cho, XH2O, melting point T = 47-55 ° C), hydrated molybdosilicic acid (H 6 Moi 2 0 4i Si, XH2O, melting point T = 45-70 ° C), hydrated phosphotungstic acid (H3PW12O40, 28H2O, melting point T = 89 ° C ), hydrated silicotungstic acid (hUSiW ^ C o, XH2O, melting point T = 53 ° C).
Le rapport massique entre ledit acide métallique hydraté et ledit support poreux est compris entre 0,1 et 2,5, de préférence compris entre 0,3 et 2,0. The mass ratio between said hydrated metal acid and said porous support is between 0.1 and 2.5, preferably between 0.3 and 2.0.
Dans cette étape, l’acide métallique hydraté est sous forme solide, c’est-à-dire que la mise en contact entre ledit support poreux et ledit acide métallique hydraté est réalisée à une température inférieure à la température de fusion dudit acide métallique hydraté. L’étape b) est de préférence réalisée à température ambiante. In this step, the hydrated metallic acid is in solid form, that is to say that the bringing into contact between said porous support and said hydrated metallic acid is carried out at a temperature below the melting temperature of said hydrated metallic acid. . Step b) is preferably carried out at room temperature.
Selon l’étape b), la mise en contact dudit support poreux et de l’acide métallique hydraté peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, la mise en contact dudit support poreux et dudit acide métallique hydraté est réalisée avec des moyens de contact choisis parmi les mélangeurs convectifs, les mélangeurs à tambour ou les mélangeurs statiques. According to step b), the contacting of said porous support and hydrated metal acid can be done by any method known to those skilled in the art. Preferably, the placing in contact of said porous support and of said hydrated metal acid is carried out with contact means chosen from among convective mixers, drum mixers or static mixers.
L’étape b) est de préférence réalisée pendant une durée comprise entre 5 minutes à 12 heures selon le type de mélangeur utilisé, de préférence entre 10 minutes et 4 heures, et encore plus préférentiellement entre 15 minutes et 3 heures. Selon une première variante, l’étape b) consiste en la mise en contact dudit support poreux mouillé avec au moins un acide métallique hydraté comprenant au moins un métal du groupe VI B dont la température de fusion dudit acide métallique solide hydraté est comprise entre 20 et 100°C, pour former un mélange solide, le rapport massique entre ledit acide métallique et ledit support poreux étant compris entre 0,1 et 2,5. Step b) is preferably carried out for a period of between 5 minutes to 12 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours, and even more preferably between 15 minutes and 3 hours. According to a first variant, step b) consists of bringing said wet porous support into contact with at least one hydrated metal acid comprising at least one metal from group VI B, the melting point of said hydrated solid metal acid of which is between 20 and 100 ° C, to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5.
Bien que l’ajout d’autres composés solides sur le catalyseur obtenu selon le procédé de préparation de l’invention après l’étape c) ne soit pas nécessaire pour obtenir une activité catalytique proche de celles des catalyseurs selon l’état de la technique (préparé par une imprégnation à l’aide d’une solution d’imprégnation), il peut être avantageux dans certains cas d’ajouter d’autres composés solides dans le mélange solide obtenu à l’étape b). De tels composés peuvent notamment être un sel métallique comprenant au moins un métal du groupe VIII, de l’acide phosphorique ou encore un composé organique. Although the addition of other solid compounds to the catalyst obtained according to the preparation process of the invention after step c) is not necessary to obtain a catalytic activity close to those of catalysts according to the state of the art (prepared by impregnation using an impregnation solution), it may be advantageous in certain cases to add other solid compounds to the solid mixture obtained in step b). Such compounds can in particular be a metal salt comprising at least one metal from group VIII, phosphoric acid or else an organic compound.
Ainsi, selon une deuxième variante, l’étape b) comprend en outre la mise en contact avec au moins un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 20 et 100°C, pour former un mélange solide avec le support poreux et l’acide métallique hydraté, le rapport molaire (métal du groupe VI I l)/(métal du groupe VI B) étant compris entre 0,1 et 0,8. Thus, according to a second variant, step b) further comprises bringing into contact with at least one metal salt comprising at least one metal from group VIII whose melting point of said metal salt is between 20 and 100 ° C, to form a solid mixture with the porous support and the hydrated metal acid, the molar ratio (metal of group VI I l) / (metal of group VI B) being between 0.1 and 0.8.
Le sel métallique doit avoir une température de fusion relativement basse, notamment inférieure à sa température de décomposition. La température de fusion du sel métallique est comprise entre 20 et 100°C, et de préférence entre 40 et 60°C. The metal salt must have a relatively low melting point, especially lower than its decomposition temperature. The melting point of the metal salt is between 20 and 100 ° C, and preferably between 40 and 60 ° C.
Le sel métallique comprend au moins un métal du groupe VIII. Le métal du groupe VIII présent dans le sel est préférentiellement choisi parmi le nickel et le cobalt. The metal salt comprises at least one metal from group VIII. The group VIII metal present in the salt is preferably chosen from nickel and cobalt.
De manière préférée le sel métallique est hydraté. De manière préférée, le sel métallique est un sel de nitrate hydraté. De manière préférée, le sel métallique est choisi parmi le nitrate de nickel hexahydraté (Ni(NC>3)2, 6H2O, point de fusion T= 56,7°C) et le nitrate de cobalt hexahydraté (Co(NC>3)2, 6H2O, point de fusion T= 55,0°C), pris seul ou en mélange. Preferably, the metal salt is hydrated. Preferably, the metal salt is a hydrated nitrate salt. Preferably, the metal salt is chosen from nickel nitrate hexahydrate (Ni (NC> 3) 2, 6H 2 O, melting point T = 56.7 ° C) and cobalt nitrate hexahydrate (Co (NC> 3) 2, 6H 2 O, melting point T = 55.0 ° C), taken alone or as a mixture.
Le rapport molaire (métal du groupe Vlll)/(métal du groupe VIB) est généralement compris entre 0,1 et 0,8, de préférence compris entre 0,15 et 0,6. De préférence, on choisit la combinaison des métaux nickel-molybdène, cobalt-molybdène, nickel-tungstène, nickel-molybdène-tungstène et nickel-cobalt-molybdène, et de manière très préférée la phase active est constituée de cobalt et de molybdène, de nickel et de molybdène, de nickel et de tungstène ou d’une combinaison nickel-molybdène-tungstène.The molar ratio (metal from group VIII) / (metal from group VIB) is generally between 0.1 and 0.8, preferably between 0.15 and 0.6. Preferably, the combination of the metals nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, nickel-molybdenum-tungsten and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum, of nickel and molybdenum, nickel and tungsten or a nickel-molybdenum-tungsten combination.
Il est bien connu qu’il est avantageux d’ajouter du phosphore dans les catalyseurs d’hydrotraitement et/ou d’hydrocraquage. En effet, le phosphore ne présente aucun caractère catalytique mais accroit l’activité catalytique de la phase active par la formation d’hétéropolyanions qui accroit la dispersion des éléments à la surface du support. It is well known that it is advantageous to add phosphorus to hydrotreating and / or hydrocracking catalysts. In fact, phosphorus has no catalytic character but increases the catalytic activity of the active phase by the formation of heteropolyanions which increases the dispersion of the elements on the surface of the support.
Lorsqu’on utilise comme acide métallique hydraté l’acide phosphomolybdique hydraté ou l’acide phosphotungstique hydraté, du phosphore est introduit dans le catalyseur avec l’acide métallique hydraté. Dans le cas de l’acide phosphomolybdique hydraté, le rapport P/Mo est de 0,08. Dans le cas de l’acide phosphotungstique hydraté, le rapport molaire de P/W est de 0,08. When hydrated phosphomolybdic acid or hydrated phosphotungstic acid is used as the metal acid hydrate, phosphorus is introduced into the catalyst along with the metal acid hydrate. In the case of hydrated phosphomolybdic acid, the P / Mo ratio is 0.08. In the case of hydrated phosphotungstic acid, the molar ratio of P / W is 0.08.
Lorsqu’on souhaite augmenter le rapport molaire P/(métal du groupe VIB) pour in fine augmenter l’activité catalytique, on peut ajouter au mélange support poreux/acide métallique hydraté un composé de phosphore sous forme solide, notamment l’acide phosphorique. L’acide phosphorique a un point de fusion de 42°C. When it is desired to increase the molar ratio P / (metal of group VIB) in order to ultimately increase the catalytic activity, one can add to the porous support / hydrated metal acid mixture a phosphorus compound in solid form, in particular phosphoric acid. Phosphoric acid has a melting point of 42 ° C.
Ainsi, selon une troisième variante, l’étape b) comprend en outre la mise en contact avec de l’acide phosphorique, pour former un mélange solide avec le support poreux et l’acide métallique hydraté et éventuellement le sel métallique comprenant au moins un métal du groupe VIII. Thus, according to a third variant, step b) further comprises bringing into contact with phosphoric acid, to form a solid mixture with the porous support and the hydrated metal acid and optionally the metal salt comprising at least one group VIII metal.
Le rapport molaire phosphore/(métaux du groupe VIB) est généralement compris entre 0,08 et 1, de préférence compris entre 0,1 et 0,9, et de manière très préférée compris entre 0,15 et 0,8. The phosphorus / (metals of group VIB) molar ratio is generally between 0.08 and 1, preferably between 0.1 and 0.9, and very preferably between 0.15 and 0.8.
L'ajout d'un composé organique sur les catalyseurs d'hydrotraitement et/ou d’hydrocraquage pour améliorer leur activité a été préconisé par l'Homme du métier, notamment pour des catalyseurs qui ont été préparés par imprégnation à l’aide d’une solution d’imprégnation suivie d’un séchage sans calcination ultérieure. Ces catalyseurs sont souvent appelés «catalyseurs séchés additivés». L’introduction d’un composé organique permet d’augmenter la dispersion de la phase active. L’ajout d’un composé organique peut également être effectué dans le procédé de préparation selon l’invention lorsque le composé organique est sous forme solide. The addition of an organic compound to the hydrotreatment and / or hydrocracking catalysts to improve their activity has been recommended by those skilled in the art, in particular for catalysts which have been prepared by impregnation using an impregnation solution followed by drying without subsequent calcination. These catalysts are often called “additivated dried catalysts”. The introduction of an organic compound makes it possible to increase the dispersion of the active phase. The addition of an organic compound can also be carried out in the preparation process according to the invention when the organic compound is in solid form.
Ainsi, selon une quatrième variante, l’étape b) comprend en outre la mise en contact avec un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre dont la température de fusion dudit composé organique est comprise entre 20 et 100°C, pour former un mélange solide avec le support poreux et l’acide métallique hydraté, et éventuellement le sel métallique comprenant au moins un métal du groupe VIII et l’acide phosphorique. Thus, according to a fourth variant, step b) further comprises bringing into contact with an organic compound comprising oxygen and / or nitrogen and / or sulfur, the melting point of said organic compound of which is within between 20 and 100 ° C, to form a solid mixture with the porous support and the hydrated metal acid, and optionally the metal salt comprising at least one metal from group VIII and phosphoric acid.
Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide ou encore les composés incluant un cycle furanique ou encore les sucres. Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime function, urea and amide or else compounds including a furan ring or also sugars.
Parmi les composés organiques comprenant de l’oxygène et/ou de l’azote et/ou du soufre et ayant une température de fusion comprise entre 20 et 100°C, on choisira de préférence, l’acide maléique, le sorbitol, le xylitol, l’acide g-cétovalérique, le 5-hydroxyméthylfurfural (aussi connu sous le nom 5-(hydroxyméthyl)-2-furaldéhyde ou 5-HMF), la 1 ,3-diméthyl-2- imidazolidinone. Among the organic compounds comprising oxygen and / or nitrogen and / or sulfur and having a melting point of between 20 and 100 ° C, maleic acid, sorbitol, xylitol will preferably be chosen. , g-ketovaleric acid, 5-hydroxymethylfurfural (also known as 5- (hydroxymethyl) -2-furaldehyde or 5-HMF), 1, 3-dimethyl-2-imidazolidinone.
Le rapport molaire composé organique/métal du groupe VI B (contenu dans l’acide métallique hydraté) est compris entre 0,01 et 5 mol/mol, de préférence compris entre 0,05 et 3 mol/mol, de manière préférée compris entre 0,05 et 2 mol/mol et de manière très préférée, compris entre 0,1 et 1,5 mol/mol. The organic compound / metal of group VI B molar ratio (contained in the hydrated metal acid) is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
Etape c): Chauffage sous agitation Step c): Heating with stirring
Selon l’étape c) du procédé de préparation selon l’invention, on chauffe sous agitation le mélange solide obtenu à l’issue de l’étape b) à une température comprise entre la température du fusion dudit acide métallique hydraté et 100°C. L’étape c) est avantageusement effectuée à pression atmosphérique. L’étape c) est généralement effectuée entre 5 minutes et 12 heures, de manière préférée entre 5 minutes et 4 heures. According to step c) of the preparation process according to the invention, the solid mixture obtained at the end of step b) is heated with stirring to a temperature between the melting point of said hydrated metal acid and 100 ° C. . Step c) is advantageously carried out at atmospheric pressure. Step c) is generally carried out between 5 minutes and 12 hours, preferably between 5 minutes and 4 hours.
Selon l’étape c), l’agitation (homogénéisation mécanique) du mélange peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, on pourra employer des mélangeurs convectifs, des mélangeurs à tambour ou des mélangeurs statiques. According to step c), the stirring (mechanical homogenization) of the mixture can be carried out by any method known to those skilled in the art. Preferably, convective mixers, drum mixers or static mixers can be used.
Encore plus préférentiellement, l’étape c) est réalisée au moyen d’un mélangeur à tambour dont la vitesse de rotation est comprise entre 4 et 70 tours/minute, de préférence entre 10 et 60 tours/minute. Even more preferably, step c) is carried out by means of a drum mixer whose speed of rotation is between 4 and 70 revolutions / minute, preferably between 10 and 60 revolutions / minute.
Après l’étape c) on obtient le catalyseur d’hydrotraitement et/ou d’hydrocraquage qui comprend au moins un support poreux à base d'alumine ou de silice ou de silice-alumine et au moins un métal du groupe VIB sous forme d’acide métallique hydraté. After step c), the hydrotreatment and / or hydrocracking catalyst is obtained which comprises at least one porous support based on alumina or on silica or on silica-alumina and at least one metal from group VIB in the form of hydrated metallic acid.
Etape d): Séchage (optionnelle) Step d): Drying (optional)
Après l’étape c) de chauffage, le catalyseur peut être soumis à une étape de séchage d) à une température inférieure à 200°C, avantageusement comprise entre 100°C et inférieure à 200°C, de préférence entre 50°C et 180°C, de manière plus préférée entre 70°C et 150°C, de manière très préférée entre 75°C et 130°C. After heating step c), the catalyst can be subjected to a drying step d) at a temperature below 200 ° C, advantageously between 100 ° C and below 200 ° C, preferably between 50 ° C and 180 ° C, more preferably between 70 ° C and 150 ° C, very preferably between 75 ° C and 130 ° C.
La température de séchage de l’étape d) est en règle générale plus élevée que la température de chauffage de l’étape c). De préférence, la température de séchage de l’étape d) est au moins de 10 °C plus élevée que la température de chauffage de l’étape c). The drying temperature of step d) is generally higher than the heating temperature of step c). Preferably, the drying temperature of step d) is at least 10 ° C higher than the heating temperature of step c).
L’étape de séchage est préférentiellement réalisée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. The drying step is preferably carried out under an inert atmosphere or under an atmosphere containing oxygen.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit fixe, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'azote et/ou d’air. De préférence, l’étape de séchage a une durée comprise entre 5 minutes et 4 heures, de préférence entre 30 minutes et 4 heures et de manière très préférée entre 1 heure et 3 heures. The drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out in a crossed bed using air or any other hot gas. Preferably, when the drying is carried out in a fixed bed, the gas used is either air or an inert gas such as argon or nitrogen. Very preferably, the drying is carried out in a bed passed through in the presence of nitrogen and / or air. Preferably, the drying step has a duration of between 5 minutes and 4 hours, preferably between 30 minutes and 4 hours and very preferably between 1 hour and 3 hours.
Selon une variante, à l’issue de l’étape de séchage d), on obtient alors un catalyseur séché, qui sera de préférence soumis à une étape d’activation optionnelle (sulfuration) pour sa mise en œuvre ultérieure en procédé d’hydrotraitement et/ou d’hydrocraquage. According to one variant, at the end of the drying step d), a dried catalyst is then obtained, which will preferably be subjected to an optional activation step (sulphurization) for its subsequent use in a hydrotreatment process. and / or hydrocracking.
L’étape de séchage peut notamment être effectuée lorsqu’un composé organique est présent. Dans ce cas, le séchage est de préférence conduit de manière à conserver de préférence au moins 30 % poids du composé organique introduit, de préférence cette quantité est supérieure à 50% poids et de manière encore plus préférée, supérieure à 70 % poids, calculée sur la base du carbone restant sur le catalyseur. Le carbone restant est mesuré par analyse élémentaire selon ASTM D5373. The drying step can in particular be carried out when an organic compound is present. In this case, the drying is preferably carried out so as to preferably retain at least 30% by weight of the organic compound introduced, preferably this amount is greater than 50% by weight and even more preferably greater than 70% by weight, calculated. based on the carbon remaining on the catalyst. The remaining carbon is measured by elemental analysis according to ASTM D5373.
Etape e): Calcination (optionnelle) Step e): Calcination (optional)
Selon une autre variante, à l’issue de l’étape d) de séchage, on effectue une étape de calcination e) à une température comprise entre 200°C et 600°C, de préférence comprise entre 250°C et 550°C, sous une atmosphère inerte (azote par exemple) ou sous une atmosphère contenant de l’oxygène (air par exemple). La durée de ce traitement thermique est généralement comprise entre 0,5 heures et 16 heures, de préférence entre 1 heure et 5 heures. Après ce traitement, la phase active se trouve ainsi sous forme oxyde, les hétéropolyanions sont ainsi transformés en oxydes. De même, le catalyseur ne contient plus ou très peu de composé organique lorsqu’il a été introduit. Cependant l’introduction du composé organique lors de sa préparation a permis d’augmenter la dispersion de la phase active menant ainsi à un catalyseur plus actif. According to another variant, at the end of the drying step d), a calcination step e) is carried out at a temperature between 200 ° C and 600 ° C, preferably between 250 ° C and 550 ° C. , under an inert atmosphere (nitrogen for example) or under an atmosphere containing oxygen (air for example). The duration of this heat treatment is generally between 0.5 hours and 16 hours, preferably between 1 hour and 5 hours. After this treatment, the active phase is thus in oxide form, the heteropolyanions are thus transformed into oxides. Likewise, the catalyst contains very little or no organic compound when it has been introduced. However, the introduction of the organic compound during its preparation made it possible to increase the dispersion of the active phase, thus leading to a more active catalyst.
Lorsqu’un composé organique est présent, qu’il soit introduit par imprégnation en milieu fondu ou par imprégnation à l’aide d’une solution d’imprégnation, le catalyseur n’est de préférence pas soumis à une calcination. Etape d’imprégnation à l’aide d’une solution d’imprégnation via post-imprégnation (optionnelle) When an organic compound is present, whether it is introduced by impregnation in a molten medium or by impregnation using an impregnation solution, the catalyst is preferably not subjected to calcination. Impregnation step using an impregnation solution via post-impregnation (optional)
Selon une variante, il peut être avantageux dans certain cas d’ajouter au catalyseur obtenu selon l’étape c) du procédé de préparation selon l’invention, ou au catalyseur obtenu après l’étape optionnelle d) de séchage ou après l’étape optionnelle e) de calcination au moins un des précurseurs métalliques supplémentaires par imprégnation à l’aide d’une solution d’imprégnation (post-imprégnation classique). On peut également ajouter du phosphore ou un composé organique. According to one variant, it may be advantageous in certain cases to add to the catalyst obtained according to stage c) of the preparation process according to the invention, or to the catalyst obtained after the optional drying stage d) or after stage optional e) calcining at least one of the additional metal precursors by impregnation using an impregnation solution (conventional post-impregnation). It is also possible to add phosphorus or an organic compound.
Cette étape d’imprégnation classique a l’avantage de pouvoir utiliser des précurseurs métalliques ou des composés organiques qui ne sont pas accessibles via la technique du milieu fondu (car sous forme liquide ou ayant une température de fusion trop haut). This conventional impregnation step has the advantage of being able to use metal precursors or organic compounds which are not accessible via the molten medium technique (because in liquid form or having too high a melting point).
Ainsi, selon une variante, l’étape c) de chauffage, ou l’étape d) optionnelle de séchage ou l’étape e) optionnelle de calcination, peut être suivie d’une étape d’imprégnation à l’aide d’une solution d’imprégnation et dans laquelle on met en contact ledit catalyseur avec une solution d’imprégnation comprenant un métal du groupe VIB et/ou un métal du groupe VIII et/ou du phosphore et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre. Thus, according to one variant, the heating step c), or the optional drying step d) or the optional calcination step e), can be followed by an impregnation step using a impregnation solution and in which said catalyst is brought into contact with an impregnation solution comprising a metal from group VIB and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur.
Dans ce cas, le métal du groupe VIB, lorsqu’il est introduit, est préférentiellement choisi parmi le molybdène et le tungstène. Le métal du groupe VIII lorsqu’il est introduit, est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux métaux. De préférence, on choisit la combinaison des métaux nickel-molybdène, cobalt-molybdène, nickel-tungstène, nickel-molybdène-tungstène et nickel-cobalt-molybdène, et de manière très préférée la phase active est constituée de cobalt et de molybdène, de nickel et de molybdène, de nickel et de tungstène ou d’une combinaison nickel-molybdène-tungstène.In this case, the metal from group VIB, when it is introduced, is preferably chosen from molybdenum and tungsten. The group VIII metal when it is introduced is preferably chosen from cobalt, nickel and a mixture of these two metals. Preferably, the combination of the metals nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, nickel-molybdenum-tungsten and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum, of nickel and molybdenum, nickel and tungsten or a nickel-molybdenum-tungsten combination.
Le métal du groupe VIB introduit et/ou le métal du groupe VIII introduit peuvent être identiques ou non aux métaux déjà présents dans le catalyseur issu de l’étape c). The group VIB metal introduced and / or the group VIII metal introduced may or may not be identical to the metals already present in the catalyst from step c).
A titre d'exemple, parmi les sources de molybdène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide phosphomolybdique (H3PM012O40), et leurs sels, et éventuellement l'acide silicomolybdique (HUSiMo^C o) et ses sels. Les sources de molybdène peuvent être également tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, Anderson, Strandberg, par exemple. On utilise de préférence le trioxyde de molybdène et les hétéropolycomposés de type Keggin, Keggin lacunaire, Keggin substitué et Strandberg. By way of example, among the sources of molybdenum, use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H3PM012O40), and their salts, and optionally silicomolybdic acid (HUSiMo ^ C o) and its salts. The sources of molybdenum can also be any heteropolycompound such as Keggin, Lacunar Keggin, substituted Keggin, Dawson, Anderson, Strandberg, for example. Molybdenum trioxide and heteropolycompounds of Keggin, lacunar Keggin, substituted Keggin and Strandberg type are preferably used.
Les précurseurs de tungstène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de tungstène, on peut utiliser les oxydes et hydroxydes, les acides tungstiques et leurs sels en particulier les sels d'ammonium tels que le tungstate d'ammonium, le métatungstate d'ammonium, l'acide phosphotungstique et leurs sels, et éventuellement l'acide silicotungstique (hUSiW^O^) et ses sels. Les sources de tungstène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, par exemple. On utilise de préférence les oxydes et les sels d'ammonium tel que le métatungstate d'ammonium ou les hétéropolyanions de type Keggin, Keggin lacunaire ou Keggin substitué. The tungsten precursors which can be used are also well known to those skilled in the art. For example, among the sources of tungsten, it is possible to use oxides and hydroxides, tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and theirs. salts, and optionally silicotungstic acid (hUSiW ^ O ^) and its salts. The sources of tungsten can also be any heteropolycompound such as Keggin, lacunar Keggin, substituted Keggin, Dawson, for example. Oxides and ammonium salts such as ammonium metatungstate or heteropolyanions of the Keggin, lacunar Keggin or substituted Keggin type are preferably used.
Les précurseurs de cobalt qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de cobalt et le carbonate de cobalt sont utilisés de manière préférée. The cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
Les précurseurs de nickel qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de nickel et l'hydroxycarbonate de nickel sont utilisés de manière préférée.The nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Nickel hydroxide and nickel hydroxycarbonate are preferably used.
Dans ce cas, le rapport molaire (métal du groupe VI I l)/(métal du groupe VI B) est généralement compris entre 0,1 et 0,8, de préférence compris entre 0,15 et 0,6. In this case, the molar ratio (metal of group VI I l) / (metal of group VI B) is generally between 0.1 and 0.8, preferably between 0.15 and 0.6.
On peut également introduire du phosphore dans la solution d’imprégnation. Phosphorus can also be added to the impregnation solution.
Le précurseur de phosphore préféré est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut également être introduit en même temps que le(s) métal/métaux du groupe VI B sous la forme d'hétéropolyanions de Keggin, Keggin lacunaire, Keggin substitué ou de type Strandberg. Dans ce cas, le rapport molaire du phosphore ajouté par métal du groupe VI B est compris entre 0,1 et 2,5 mol/mol, de préférence compris entre 0,1 et 2,0 mol/mol, et de manière encore plus préférée compris entre 0,1 et 1,0 mol/mol. The preferred phosphorus precursor is orthophosphoric acid H 3 PO 4 , but its salts and esters such as ammonium phosphates are also suitable. The phosphorus can also be introduced at the same time as the metal (s) / metals of group VI B in the form of heteropolyanions of Keggin, lacunar Keggin, substituted Keggin or of the Strandberg type. In this case, the molar ratio of the phosphorus added per metal from group VI B is between 0.1 and 2.5 mol / mol, preferably between 0.1 and 2.0 mol / mol, and even more preferred between 0.1 and 1.0 mol / mol.
On peut également introduire un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre dans la solution d’imprégnation. An organic compound comprising oxygen and / or nitrogen and / or sulfur can also be introduced into the impregnation solution.
La fonction des additifs ou composés organiques est d’augmenter l’activité catalytique par rapport aux catalyseurs non additivés. Ledit composé organique est préférentiellement imprégné sur ledit catalyseur après solubilisation en solution aqueuse ou non aqueuse. Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide ou encore les composés incluant un cycle furanique ou encore les sucres. The function of additives or organic compounds is to increase the catalytic activity compared to catalysts without additives. Said organic compound is preferably impregnated on said catalyst after solubilization in aqueous or non-aqueous solution. Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime function, urea and amide or else compounds including a furan ring or also sugars.
Le composé organique contenant de l’oxygène peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, éther, aldéhyde, cétone, ester ou carbonate ou encore les composés incluant un cycle furanique ou encore les sucres. A titre d’exemple, le composé organique contenant de l’oxygène peut être l’un ou plusieurs choisis dans le groupe constitué par l’éthylèneglycol, le diéthylèneglycol, le triéthylèneglycol, un polyéthylèneglycol (avec un poids moléculaire compris entre 200 et 1500 g/mol), le propylèneglycol, le 2-butoxyéthanol, 2-(2- butoxyéthoxy)éthanol, 2-(2-méthoxyéthoxy)éthanol, le triéthylèneglycoldiméthyléther, le glycérol, l’acétophénone, la 2,4-pentanedione, la pentanone, l’acide acétique, l’acide maléique, l’acide malique, l’acide malonique, l’acide oxalique, l’acide gluconique, l’acide tartrique, l’acide citrique, l’acide g-cétovalérique, un succinate de dialkyle C1-C4, et plus particulièrement le succinate de diméthyle, l’acétoacétate de méthyle, l’acétoacétate d’éthyle, le 3-oxobutanoate de 2-méthoxyéthyle, le 3-oxobutanoate de 2- méthacryloyloxyéthyle, le dibenzofurane, un éther couronne, l’acide orthophtalique, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, la g-valérolactone, la 2- acétylbutyrolactone, le carbonate de propylène, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5-hydroxyméthylfurfural (aussi connu sous le nom 5-(hydroxyméthyl)-2- furaldéhyde ou 5-HMF), le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, le 2-furoate de méthyle, l’alcool furfurylique (aussi connu sous le nom furfuranol), l’acétate de furfuryle, l’acide ascorbique, le lactate de butyle, le butyryllactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, le 3-méthoxypropanoate de méthyle, l’acétate de 2- éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2-hydroxyéthyle, le méthacrylate de 2- hydroxyéthyle, et la 5-méthyl-2(3H)-furanone. The organic compound containing oxygen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic, alcohol, ether, aldehyde, ketone, ester or carbonate function or else compounds including a furan ring. or even sugars. By way of example, the organic compound containing oxygen can be one or more chosen from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, a polyethylene glycol (with a molecular weight of between 200 and 1500 g / mol), propylene glycol, 2-butoxyethanol, 2- (2-butoxyethoxy) ethanol, 2- (2-methoxyethoxy) ethanol, triethylene glycoldimethylether, glycerol, acetophenone, 2,4-pentanedione, pentanone, acetic acid, maleic acid, malic acid, malonic acid, oxalic acid, gluconic acid, tartaric acid, citric acid, g-ketovaleric acid, a succinate of C1-C4 dialkyl, and more particularly dimethyl succinate, methyl acetoacetate, ethyl acetoacetate, 2-methoxyethyl 3-oxobutanoate, 2-methacryloyloxyethyl 3-oxobutanoate, dibenzofuran, a crown ether , orthophthalic acid, glucose, fructose, sucrose, sorbitol, xylitol, g-valerolac tone, 2-acetylbutyrolactone, propylene carbonate, 2-furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5- (hydroxymethyl) -2-furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, methyl 2-furoate, furfuryl alcohol (also known as furfuranol), furfuryl acetate, ascorbic acid, butyl lactate, butyl butyryllactate, ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, methyl 3-methoxypropanoate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 5-methyl-2 (3H) -furanone .
Le composé organique contenant de l’azote peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction amine ou nitrile. A titre d’exemple, le composé organique contenant de l’azote peut être l’un ou plusieurs choisis dans le groupe constitué par l’éthylènediamine, la diéthylènetriamine, l’hexaméthylènediamine, la triéthylènetétramine, la tétraéthylènepentamine, la pentaéthylènehexamine, l’acétonitrile, l’octylamine, la guanidine ou un carbazole. The organic compound containing nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from an amine or nitrile function. By way of example, the organic compound containing nitrogen can be one or more chosen from the group consisting of ethylenediamine, diethylenetriamine, hexamethylenediamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, acetonitrile , octylamine, guanidine or a carbazole.
Le composé organique contenant de l’oxygène et de l’azote peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction acide carboxylique, alcool, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, amide, urée ou oxime. A titre d’exemple, le composé organique contenant de l’oxygène et de l’azote peut être l’un ou plusieurs choisis dans le groupe constitué par l’acide 1,2-cyclohexanediaminetétraacétique, la monoéthanolamine (MEA), la 1-méthyl-2- pyrrolidinone, le diméthylformamide, l’acide éthylènediaminetétraacétique (EDTA), l’alanine, la glycine, l’acide nitrilotriacétique (NTA), l’acide N-(2-hydroxyéthyl)éthylènediamine-N,N',N'- triacétique (HEDTA), l’acide diéthylène-triaminepentaacétique (DTPA), la tétraméthylurée, l’acide glutamique, le diméthylglyoxime, la bicine, la tricine, le cyanoacétate de 2- méthoxyéthyle, la 1-éthyl-2-pyrrolidinone, la 1-vinyl-2-pyrrolidinone, la 1 ,3-diméthyl-2- imidazolidinone, la 1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5- pyrrolidinedione, la 1-méthyl-2-pipéridinone, la 1-acétyl-2-azépanone, la 1-vinyl-2-azépanone et l’acide 4-aminobutanoïque. The organic compound containing oxygen and nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ether, aldehyde, ketone, ester, carbonate or amine function. , nitrile, imide, amide, urea or oxime. For example, the organic compound containing oxygen and nitrogen can be one or more selected from the group consisting of 1,2-cyclohexanediaminetetraacetic acid, monoethanolamine (MEA), 1- 2-methyl-pyrrolidinone, dimethylformamide, ethylenediaminetetraacetic acid (EDTA), alanine, glycine, nitrilotriacetic acid (NTA), N- (2-hydroxyethyl) ethylenediamine-N, N ', N '- triacetic (HEDTA), diethylene-triaminepentaacetic acid (DTPA), tetramethylurea, glutamic acid, dimethylglyoxime, bicine, tricine, 2-methoxyethyl cyanoacetate, 1-ethyl-2-pyrrolidinone, 1-vinyl-2-pyrrolidinone, 1, 3-dimethyl-2-imidazolidinone, 1- (2-hydroxyethyl) -2-pyrrolidinone, 1- (2-hydroxyethyl) -2,5-pyrrolidinedione, 1 -methyl-2-piperidinone, 1-acetyl-2-azepanone, 1-vinyl-2-azepanone and 4-aminobutanoic acid.
Le composé organique contenant du soufre peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction thiol, thioéther, sulfone ou sulfoxyde. A titre d’exemple, le composé organique contenant du soufre peut être l’un ou plusieurs choisis dans le groupe constitué par l’acide thioglycolique, le 2,2’-thiodiéthanol, l’acide 2-hydroxy-4-méthylthiobutanoïque, un dérivé sulfoné d’un benzothiophène ou un dérivé sulfoxydé d’un benzothiophène, le 3-(méthylthio)propanoate de méthyle et le 3-(méthylthio)propanoate d’éthyle. The organic compound containing sulfur can be one or more chosen from compounds comprising one or more chemical functions chosen from a thiol, thioether, sulfone or sulfoxide function. By way of example, the organic compound containing sulfur can be one or more chosen from the group consisting of thioglycolic acid, 2,2'-thiodiethanol, 2-hydroxy-4-methylthiobutanoic acid, a sulfonated derivative of benzothiophene or a sulfoxide derivative of a benzothiophene, methyl 3- (methylthio) propanoate and ethyl 3- (methylthio) propanoate.
De préférence, le composé organique contient de l’oxygène, de manière préférée il est choisi parmi la g-valérolactone, la 2-acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique (EDTA), l’acide maléique, l’acide malonique, l’acide citrique, l’acide gluconique, le succinate de diméthyle, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide g-cétovalérique, le diméthylformamide, la 1-méthyl-2-pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5- hydroxyméthylfurfural (aussi connu sous le nom 5-(hydroxyméthyl)-2-furaldéhyde ou 5- HMF), le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, l’acide ascorbique, le lactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2-hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1 ,3- diméthyl-2-imidazolidinone, la 1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5- pyrrolidinedione, la 5-méthyl-2(3H)-furanone, la 1-méthyl-2-pipéridinone et l’acide 4- aminobutanoïque. Preferably, the organic compound contains oxygen, preferably it is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), 'maleic acid, malonic acid, citric acid, gluconic acid, dimethyl succinate, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde (also known as furfuraldehyde), 5-hydroxymethylfurfural (also known as name 5- (hydroxymethyl) -2-furaldehyde or 5- HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl 3-hydroxybutanoate, 3 -ethylethoxypropanoate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 1-vinyl-2-pyrrolidinone , 1, 3-dimethyl-2-imidazolidinone, 1- (2-hydroxyethyl) -2-pyrrolidinone, 1- (2-hydroxyethyl) -2,5-pyrrolidinedione, 5-methyl-2 (3H) - furanone, 1-methyl-2-piperidinone and 4-aminobutanoic acid.
Dans ce cas, le rapport molaire du composé organique ajouté par métal du groupe VIB dans le catalyseur est compris entre 0,01 et 5 mol/mol, de préférence compris entre 0,05 et 3 mol/mol, de manière préférée compris entre 0,05 et 2 mol/mol et de manière très préférée, compris entre 0,1 et 1 ,5 mol/mol. In this case, the molar ratio of the organic compound added per metal from group VIB in the catalyst is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
Lorsque plusieurs composés organiques sont présents, les différents rapports molaires s’appliquent pour chacun des composés organiques présents. When more than one organic compound is present, the different molar ratios apply for each of the organic compounds present.
L’étape d’imprégnation à l’aide d’une solution d’imprégnation et dans laquelle on met en contact ledit catalyseur avec une solution d’imprégnation comprenant un métal du groupe VIB et/ou un métal du groupe VIII et/ou du phosphore et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre peut être réalisée soit par imprégnation en excès, soit par imprégnation à sec, soit par tout autre moyen connu de l'Homme du métier. L'imprégnation à l'équilibre (ou en excès), consiste à immerger le support ou le catalyseur dans un volume de solution (souvent largement) supérieur au volume poreux du support ou du catalyseur en maintenant le système sous agitation pour améliorer les échanges entre la solution et le support ou catalyseur. Un équilibre est finalement atteint après diffusion des différentes espèces dans les pores du support ou catalyseur. La maîtrise de la quantité d'éléments déposés est assurée par la mesure préalable d’une isotherme d’adsorption qui relie la concentration des éléments à déposer contenus dans la solution à la quantité des éléments déposés sur le solide en équilibre avec cette solution. The impregnation step using an impregnation solution and in which said catalyst is brought into contact with an impregnation solution comprising a metal from group VIB and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur can be produced either by excess impregnation, or by dry impregnation, or by any other means known to those skilled in the art. job. Impregnation at equilibrium (or in excess), consists in immersing the support or the catalyst in a volume of solution (often considerably) greater than the pore volume of the support or of the catalyst while maintaining the system under agitation to improve the exchanges between the solution and the support or catalyst. An equilibrium is finally reached after diffusion of the different species into the pores of the support or catalyst. Control of the quantity of elements deposited is ensured by the prior measurement of an adsorption isotherm which links the concentration of the elements to be deposited contained in the solution to the quantity of elements deposited on the solid in equilibrium with this solution.
L’imprégnation à sec consiste, quant à elle, à introduire un volume de solution d’imprégnation égal au volume poreux du support ou du catalyseur. L’imprégnation à sec permet de déposer sur un support ou catalyseur donné l’intégralité des métaux et additifs contenus dans la solution d’imprégnation. Dry impregnation consists in introducing a volume of impregnation solution equal to the pore volume of the support or of the catalyst. Dry impregnation allows all of the metals and additives contained in the impregnation solution to be deposited on a given support or catalyst.
Toute solution d'imprégnation décrit ci-dessus peut comprendre tout solvant protique polaire connu de l'homme du métier. De manière préférée, on utilise un solvant protique polaire, par exemple choisi dans le groupe formé par le méthanol, l'éthanol, et l'eau. De manière préférée, la solution d’imprégnation comprend un mélange eau-éthanol ou eau-méthanol en tant que solvants afin de faciliter l’imprégnation du composé contenant un métal du groupe VIB (et éventuellement du composé contenant un métal du groupe VIII et/ou du phosphore et/ou du composé organique) sur le catalyseur. De préférence, le solvant utilisé dans la solution d’imprégnation est constitué d’eau ou d’un mélange eau-éthanol ou eau-méthanol. Dans un mode de réalisation possible, le solvant peut être absent dans la solution d’imprégnation. Dans ce cas, l’acide phosphorique joue également le rôle de solvant. Any impregnation solution described above can comprise any polar protic solvent known to those skilled in the art. Preferably, a polar protic solvent is used, for example chosen from the group formed by methanol, ethanol and water. Preferably, the impregnation solution comprises a water-ethanol or water-methanol mixture as solvents in order to facilitate the impregnation of the compound containing a metal from group VIB (and optionally the compound containing a metal from group VIII and / or phosphorus and / or organic compound) on the catalyst. Preferably, the solvent used in the impregnation solution consists of water or a water-ethanol or water-methanol mixture. In one possible embodiment, the solvent may be absent in the impregnation solution. In this case, phosphoric acid also acts as a solvent.
L’étape d’imprégnation à l’aide d’une solution d’imprégnation peut être avantageusement effectuée par une ou plusieurs imprégnation en excès de solution ou de préférence par une ou plusieurs imprégnation à sec et de manière très préférée par une seule imprégnation à sec dudit catalyseur, à l'aide de la solution d’imprégnation. The impregnation step using an impregnation solution can be advantageously carried out by one or more impregnation in excess of solution or preferably by one or more dry impregnation and very preferably by a single impregnation with dryness of said catalyst, using the impregnation solution.
L’étape d’imprégnation à l’aide d’une solution d’imprégnation comporte plusieurs modes de mises en œuvre. Ils se distinguent notamment par le moment de l’introduction du composé organique lorsqu’il est présent et qui peut être effectuée soit en même temps que l’imprégnation du métal du groupe VIB (co-imprégnation), soit après (post-imprégnation), soit avant (pré-imprégnation). De plus, on peut combiner les modes de mise en œuvre. De préférence, on effectue une co-imprégnation. The impregnation step using an impregnation solution comprises several modes of implementation. They are distinguished in particular by the time of introduction of the organic compound when it is present and which can be carried out either at the same time as the impregnation of the metal of group VIB (co-impregnation), or after (post-impregnation). , is before (pre-impregnation). In addition, the modes of implementation can be combined. Preferably, a co-impregnation is carried out.
Avantageusement, après chaque étape d’imprégnation, on laisse maturer le support imprégné. La maturation permet à la solution d’imprégnation de se disperser de manière homogène au sein du support. Advantageously, after each impregnation step, the impregnated support is allowed to mature. Curing allows the impregnation solution to disperse homogeneously within the substrate.
Toute étape de maturation décrite dans la présente invention est avantageusement réalisée à pression atmosphérique, dans une atmosphère saturée en eau et à une température comprise entre 17°C et 50°C, et de préférence à température ambiante. Généralement une durée de maturation comprise entre dix minutes et quarante-huit heures et de préférence comprise entre trente minutes et six heures, est suffisante. Any maturation step described in the present invention is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17 ° C and 50 ° C, and preferably at room temperature. Generally, a maturation time of between ten minutes and forty-eight hours and preferably between thirty minutes and six hours is sufficient.
Lorsqu’on effectue plusieurs étapes d’imprégnation, chaque étape d’imprégnation est de préférence suivie d’une étape de séchage intermédiaire à une température inférieure à 200°C, avantageusement comprise entre 100°C et inférieure à 200°C, de préférence entre 50°C et 180°C, de manière plus préférée entre 70°C et 150°C, de manière très préférée entre 75°C et 130°. Optionnellement une période de maturation a été observée entre l’étape d’imprégnation et l’étape de séchage intermédiaire. De plus, une étape de calcination peut être effectuée par la suite de l’étape de séchage, à une température comprise entre 200°C et 600°C, de préférence comprise entre 250°C et 550°C, sous une atmosphère inerte (azote par exemple) ou sous une atmosphère contenant de l’oxygène (air par exemple). When carrying out several impregnation steps, each impregnation step is preferably followed by an intermediate drying step at a temperature below 200 ° C, advantageously between 100 ° C and below 200 ° C, preferably between 50 ° C and 180 ° C, more preferably between 70 ° C and 150 ° C, very preferably between 75 ° C and 130 °. Optionally, a maturation period was observed between the impregnation step and the intermediate drying step. In addition, a calcination step can be carried out after the drying step, at a temperature between 200 ° C and 600 ° C, preferably between 250 ° C and 550 ° C, under an inert atmosphere ( nitrogen for example) or in an atmosphere containing oxygen (air for example).
Etape d’imprégnation à l’aide d’une solution d’imprégnation via pré-imprégnation (optionnelle) Impregnation step using an impregnation solution via pre-impregnation (optional)
Selon une autre variante, il peut être avantageux dans certain cas d’ajouter, avant l’étape a) du procédé selon l’invention, au support poreux à base d'alumine ou de silice ou de silice- alumine au moins un des précurseurs métalliques et/ou du phosphore et/ou un composé organique supplémentaires par imprégnation à l’aide d’une solution d’imprégnation (pré imprégnation classique). According to another variant, it may be advantageous in certain cases to add, before step a) of the process according to the invention, to the porous support based on alumina or on silica or on silica-alumina at least one of the precursors. metals and / or phosphorus and / or an additional organic compound by impregnation using an impregnation solution (conventional prepreg).
Cette étape d’imprégnation classique a l’avantage de pouvoir utiliser des précurseurs métalliques ou des composés organiques qui ne sont pas accessibles via la technique du milieu fondu (car sous forme liquide ou ayant une température de fusion trop haut). Ainsi, selon une variante, l’étape a) de mise en contact l’eau avec le support d’oxyde peut être précédée d’une étape d’imprégnation à l’aide d’une solution d’imprégnation et dans laquelle on met en contact ledit catalyseur avec une solution d’imprégnation comprenant un métal du groupe VI B et/ou un métal du groupe VIII et/ou du phosphore et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre. This conventional impregnation step has the advantage of being able to use metal precursors or organic compounds which are not accessible via the molten medium technique (because in liquid form or having too high a melting point). Thus, according to one variant, step a) of bringing water into contact with the oxide support can be preceded by an impregnation step using an impregnation solution and in which in contact with said catalyst with an impregnation solution comprising a metal from group VI B and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or or sulfur.
L’étape de pré-imprégnation peut être effectuée de la même manière que l’étape de post imprégnation décrite ci-dessus. Elle comprend généralement au moins une étape d’imprégnation, suivi d’un séchage et éventuellement d’une calcination tels que décrits pour l’étape de post-imprégnation. The pre-impregnation step can be performed in the same way as the post-impregnation step described above. It generally comprises at least one impregnation step, followed by drying and possibly calcination as described for the post-impregnation step.
Cette étape de pré-imprégnation est notamment avantageux lorsqu’on souhaite introduire un composé organique ayant une température de fusion supérieure à 100°C. This pre-impregnation step is particularly advantageous when it is desired to introduce an organic compound having a melting point above 100 ° C.
Parmi les composés organiques comprenant de l’oxygène et/ou de l’azote et/ou du soufre et ayant une température de fusion supérieur à 100°C, on choisira de préférence l’acide malonique, l’acide citrique, l’acide gluconique, le glucose, le fructose, le 3-oxobutanoate de 2-méthoxyéthyle, le 5-méthyl-2-furaldéhyde. Among the organic compounds comprising oxygen and / or nitrogen and / or sulfur and having a melting point higher than 100 ° C, one will preferably choose malonic acid, citric acid, acid gluconic, glucose, fructose, 2-methoxyethyl 3-oxobutanoate, 5-methyl-2-furaldehyde.
Dans ce cas, le rapport molaire du composé organique ajouté par métal du groupe VI B présent dans le catalyseur introduit par la suite via l’imprégnation en milieu fondu et éventuellement complété par une pré- ou post-imprégnation est compris entre 0,01 et 5 mol/mol, de préférence compris entre 0,05 et 3 mol/mol, de manière préférée compris entre 0,05 et 2 mol/mol et de manière très préférée, compris entre 0,1 et 1 ,5 mol/mol. In this case, the molar ratio of the organic compound added per metal from group VI B present in the catalyst subsequently introduced via impregnation in a molten medium and optionally supplemented by a pre- or post-impregnation is between 0.01 and 5 mol / mol, preferably between 0.05 and 3 mol / mol, preferably between 0.05 and 2 mol / mol and very preferably between 0.1 and 1.5 mol / mol.
Lorsque plusieurs composés organiques sont présents, les différents rapports molaires s’appliquent pour chacun des composés organiques présents. When more than one organic compound is present, the different molar ratios apply for each of the organic compounds present.
Lorsqu’un composé organique est présent, le catalyseur n’est de préférence pas soumis à une calcination. When an organic compound is present, the catalyst is preferably not subjected to calcination.
Etape e) Sulfuration (étape optionnelle) Step e) Sulfurization (optional step)
Avant son utilisation pour la réaction d'hydrotraitement et/ou d’hydrocraquage, il est avantageux de transformer le catalyseur obtenu selon le procédé selon l’invention en un catalyseur sulfuré afin de former son espèce active. Cette étape d’activation ou de sulfuration s’effectue par les méthodes bien connues de l'Homme de l'art, et avantageusement sous une atmosphère sulfo-réductrice en présence d’hydrogène et d’hydrogène sulfuré. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur du procédé selon l’invention à des températures comprises entre 200 et 600°C, et plus préférentiellement entre 300 et 500°C. Before its use for the hydrotreatment and / or hydrocracking reaction, it is advantageous to transform the catalyst obtained according to the process according to the invention into a sulfurized catalyst in order to form its active species. This stage of activation or sulfurization is carried out by methods well known to those skilled in the art, and advantageously under a sulfo-reducing atmosphere in the presence of hydrogen and hydrogen sulfide. This sulfurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600 ° C, and more preferably between 300 and 500 ° C.
Le catalyseur obtenu à l’issue de l’étape c), ou optionnellement issu de l’étape d) de séchage ou issu de l’étape e) de calcination, est donc avantageusement soumis à une étape de sulfuration. The catalyst obtained at the end of step c), or optionally resulting from drying step d) or resulting from calcination step e), is therefore advantageously subjected to a sulfurization step.
Les agents sulfurants sont le gaz H2S, le soufre élémentaire, le CS2, les mercaptans, les sulfures et/ou polysulfures, les coupes hydrocarbonées à point d'ébullition inférieur à 400°C contenant des composés soufrés ou tout autre composé contenant du soufre utilisé pour l’activation des charges hydrocarbures en vue de sulfurer le catalyseur. Lesdits composés contenant du soufre sont avantageusement choisis parmi les disulfures d’alkyle tel que par exemple le disulfure de diméthyle (DM DS), les sulfures d’alkyle, tel que par exemple le sulfure de diméthyle, les thiols tel que par exemple le n-butylmercaptan (ou 1-butanethiol) et les composés polysulfures de type tertiononylpolysulfure. Le catalyseur peut également être sulfuré par le soufre contenu dans la charge à désulfurer. De manière préférée, le catalyseur est sulfuré in situ en présence d'un agent sulfurant et d'une charge hydrocarbonée. De manière très préférée le catalyseur est sulfuré in situ en présence d'une charge hydrocarbonée additivée de disulfure de diméthyle. Sulfurizing agents are H2S gas, elemental sulfur, CS2, mercaptans, sulfides and / or polysulfides, hydrocarbon cuts with a boiling point below 400 ° C containing sulfur compounds or any other sulfur-containing compound used for the activation of the hydrocarbon feedstocks with a view to sulphurizing the catalyst. Said sulfur-containing compounds are advantageously chosen from alkyl disulphides such as, for example, dimethyl disulphide (DM DS), alkyl sulphides, such as for example dimethyl sulphide, thiols such as for example n -butylmercaptan (or 1-butanethiol) and polysulfide compounds of the tertiononylpolysulfide type. The catalyst can also be sulphurized by the sulfur contained in the feed to be desulphurized. Preferably, the catalyst is sulfurized in situ in the presence of a sulfurizing agent and a hydrocarbon feed. Very preferably, the catalyst is sulfurized in situ in the presence of a hydrocarbon feed supplemented with dimethyl disulfide.
Catalyseur Catalyst
Après l’étape c), on obtient le catalyseur d’hydrotraitement et/ou d’hydrocraquage qui comprend au moins un support poreux à base d'alumine ou de silice ou de silice-alumine et au moins un métal du groupe VI B sous forme d’acide métallique hydraté. Il peut en plus comprendre au moins un métal du groupe VIII et/ou du phosphore, et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre. After step c), the hydrotreatment and / or hydrocracking catalyst is obtained which comprises at least one porous support based on alumina or on silica or on silica-alumina and at least one metal from group VI B under form of hydrated metallic acid. It may further comprise at least one metal from group VIII and / or phosphorus, and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur.
A la différence des catalyseurs préparés par imprégnation classique, le catalyseur préparé selon le procédé de préparation selon l’invention conserve en partie les hétéropolyanions introduits par l’acide métallique hydraté. Les hétéropolyanions sont visibles par spectroscopie Raman. Unlike the catalysts prepared by conventional impregnation, the catalyst prepared according to the preparation process according to the invention partially retains the heteropolyanions introduced by the hydrated metal acid. Heteropolyanions are visible by Raman spectroscopy.
Le catalyseur obtenu possède ainsi un spectre Raman caractéristique regroupant des bandes caractéristiques du ou des hétéropolyanions de type Keggin PXYnC tf et/ou RUi204oc- où Y est un métal du groupe VIB etX un métal du groupe VIII (et X¹ x). The catalyst obtained thus has a characteristic Raman spectrum grouping together characteristic bands of the heteropolyanion (s) of Keggin PXYnC t f and / or RUi 2 0 4 o c type - where Y is a metal from group VIB and X is a metal from group VIII (and X x).
D'après Griboval, Blanchard, Payen, Fournier, Dubois dans Catalysis Today 45 (1998) 277 fig. 3 e), les bandes principales de la structure PCoMon04o sont sur catalyseur séché à 232, 366, 943, 974 cm 1 et d'après M. T. Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, ces bandes ne sont pas caractéristiques de la nature de l'atome X ou Y, mais bien de la structure de l'hétéropolyanion. La bande la plus intense caractéristique de ce type d' hétéropolyanion de Keggin lacunaire se situe à 974 cnr1. According to Griboval, Blanchard, Payen, Fournier, Dubois in Catalysis Today 45 (1998) 277 fig. 3 e), the main bands of the PCoMon0 4 o x structure are on catalyst dried at 232, 366, 943, 974 cm 1 and according to MT Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, these bands are not characteristic of the nature of the X or Y atom, but of the structure of the heteropolyanion. The most intense band characteristic of this type of lacunar Keggin heteropolyanion is at 974 cnr 1 .
D'après Griboval, Blanchard, Gengembre, Payen, Fournier, Dubois, Bernard, Journal of Catalysis 188 (1999) 102, fig. 1 a), les bandes principales de PMoi204ox_ sont à l'état massique de G hétéropolyanion, par exemple avec du cobalt en contre ion à 251 , 603, 902, 970, 990 cm 1. La bande la plus intense caractéristique de cet hétéropolyanion de Keggin se situe à 990 cm 1. M. T. Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, nous enseigne également que ces bandes ne sont pas caractéristiques de la nature de l'atome X ou Y, mais bien de la structure de G hétéropolyanion de Keggin, complet, lacunaire ou substitué. According to Griboval, Blanchard, Gengembre, Payen, Fournier, Dubois, Bernard, Journal of Catalysis 188 (1999) 102, fig. 1 a), the main bands of PMoi 2 0 4 o x_ are in the mass state of G heteropolyanion, for example with cobalt in counterion at 251, 603, 902, 970, 990 cm 1 . The most intense band characteristic of this Keggin heteropolyanion is located at 990 cm 1 . MT Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, also teaches us that these bands are not characteristic of the nature of the X or Y atom, but of the structure of G heteropolyanion of Keggin, complete, lacunar or substituted.
La position exacte des bandes, leurs formes et leur intensités relatives peuvent varier dans une certaine mesure en fonction des conditions d'enregistrement du spectre, tout en restant caractéristiques de cette molécule. Les spectres Raman des composés organiques sont par ailleurs bien documentés soit dans les bases de données de spectre Raman (voir par exemple, Spectral Database for Organic Compounds, http://riodb01.ibase.aist.go.jp/sdbs/cgi- bin/direct_frame_top.cgi) soit par les fournisseurs du produit (voir par exemple, www.sigmaaldrich.com). The exact position of the bands, their shapes and their relative intensities may vary to some extent depending on the recording conditions of the spectrum, while remaining characteristic of this molecule. Raman spectra of organic compounds are also well documented either in Raman spectrum databases (see for example, Spectral Database for Organic Compounds, http://riodb01.ibase.aist.go.jp/sdbs/cgi- bin /direct_frame_top.cgi) or by the suppliers of the product (see for example, www.sigmaaldrich.com).
Les spectres Raman ont été obtenus avec un spectromètre de type Raman dispersif équipé d'un laser argon ionisé (514 nm). Le faisceau laser est focalisé sur l'échantillon à l'aide d'un microscope équipé d'un objectif x50 longue distance de travail. La puissance du laser au niveau de l'échantillon est de l'ordre de 1 mW. Le signal Raman émis par l'échantillon est collecté par le même objectif et est dispersé à l'aide d'un réseau 1800 tr/mn puis collecté par un détecteur CCD. La résolution spectrale obtenue est de l'ordre de 0,5 cm·1. La zone spectrale enregistrée est comprise entre 300 et 1800 cm·1. La durée d'acquisition a été fixée à 120 s pour chaque spectre Raman enregistré. The Raman spectra were obtained with a dispersive Raman type spectrometer equipped with an argon ionized laser (514 nm). The laser beam is focused on the sample using a microscope equipped with a x50 long working distance objective. The power of the laser sample level is of the order of 1 mW. The Raman signal emitted by the sample is collected by the same objective and is dispersed using an 1800 rpm network then collected by a CCD detector. The spectral resolution obtained is of the order of 0.5 cm · 1 . The spectral zone recorded is between 300 and 1800 cm 1 . The acquisition time was set at 120 s for each Raman spectrum recorded.
La teneur totale en métal du groupe VI B (introduit par l’acide métallique hydraté et éventuellement complété par une imprégnation à l’aide d’une solution d’imprégnation comprenant un métal du groupe VI B en pré- ou post-imprégnation) présent dans le catalyseur est comprise entre 5 et 55 % poids, de préférence entre 10 et 50 % poids, et de manière plus préférée entre 25 et 45 % poids exprimé en oxyde de métal du groupe VI B par rapport au poids total du catalyseur. The total content of metal from group VI B (introduced by the hydrated metal acid and optionally supplemented by impregnation using an impregnation solution comprising a metal from group VI B in pre- or post-impregnation) present in the catalyst is between 5 and 55% by weight, preferably between 10 and 50% by weight, and more preferably between 25 and 45% by weight expressed as group VI B metal oxide relative to the total weight of the catalyst.
La teneur totale en métal du groupe VIII, lorsqu’il est présent, (introduit par le sel métallique ou par une imprégnation à l’aide d’une solution d’imprégnation comprenant un métal du groupe VIII en pré- ou post-imprégnation) présent dans le catalyseur est comprise entre 1 et 23 % poids, de préférence entre 2 et 18 % poids, et de manière plus préférée entre 5 et 15 % poids exprimé en oxyde de métal du groupe VIII par rapport au poids total du catalyseur. The total content of metal from group VIII, when it is present, (introduced by the metal salt or by an impregnation using an impregnation solution comprising a metal from group VIII in pre- or post-impregnation) present in the catalyst is between 1 and 23% by weight, preferably between 2 and 18% by weight, and more preferably between 5 and 15% by weight expressed as group VIII metal oxide relative to the total weight of the catalyst.
Le rapport molaire métal du groupe VIII sur métal du groupe VI B du catalyseur est généralement compris entre 0,1 et 0,8, de préférence compris entre 0,15 et 0,6. The group VIII metal to group VI B metal molar ratio of the catalyst is generally between 0.1 and 0.8, preferably between 0.15 and 0.6.
Optionnellement, le catalyseur peut présenter en outre une teneur totale en phosphore (introduit par l’acide phosphorique par imprégnation en milieu fondu ou par une imprégnation à l’aide d’une solution d’imprégnation comprenant de l’acide phosphorique) présent dans le catalyseur généralement comprise entre 0,1 et 20% poids de P2O5 par rapport au poids total de catalyseur, de préférence comprise entre 0,2 et 15% poids de P2O5, de manière très préférée comprise entre 0,3 et 11% poids de P2O5. Par exemple, le phosphore présent dans le catalyseur est combiné avec le métal du groupe VI B et éventuellement avec également le métal du groupe VIII sous la forme d'hétéropolyanions. Par ailleurs, le rapport molaire phosphore/(métal du groupe VIB) est généralement compris entre 0,08 et 1, de préférence compris entre 0,1 et 0,9, et de manière très préférée compris entre 0,15 et 0,8. Optionally, the catalyst may also have a total phosphorus content (introduced by phosphoric acid by impregnation in a molten medium or by impregnation using an impregnation solution comprising phosphoric acid) present in the mixture. catalyst generally between 0.1 and 20% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.2 and 15% by weight of P2O5, very preferably between 0.3 and 11% by weight of P2O5 . For example, the phosphorus present in the catalyst is combined with the metal of group VI B and optionally also with the metal of group VIII in the form of heteropolyanions. Furthermore, the phosphorus / (metal of group VIB) molar ratio is generally between 0.08 and 1, preferably between 0.1 and 0.9, and very preferably between 0.15 and 0.8 .
Les teneurs en métal du groupe VIB, en métal du groupe VIII et en phosphore dans le catalyseur sont exprimées en oxydes après correction de la perte au feu de l’échantillon de catalyseur à 550°C pendant deux heures en four à moufle. La perte au feu est due à la perte d'humidité. Elle est déterminée selon l’ASTM D7348. The contents of group VIB metal, group VIII metal and phosphorus in the catalyst are expressed as oxides after correction of the loss on ignition of the catalyst sample at 550 ° C for two hours in a muffle furnace. Loss on ignition is due to loss of moisture. It is determined according to ASTM D7348.
La teneur totale en composé(s) organique(s) contenant de l’oxygène et/ou de l’azote et/ou du soufre présent dans le catalyseur est généralement comprise entre 1 et 30 % poids, de préférence entre 1,5 et 25% poids, et de manière plus préférée entre 2 et 20 % poids par rapport au poids total du catalyseur. The total content of organic compound (s) containing oxygen and / or nitrogen and / or sulfur present in the catalyst is generally between 1 and 30% by weight, preferably between 1.5 and 25% by weight, and more preferably between 2 and 20% by weight relative to the total weight of the catalyst.
Le volume poreux du catalyseur est généralement compris entre 0,1 cm3/g et 1 ,5 cm3/g, de préférence compris entre 0,15 cm3/g et 1,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans l'ouvrage Rouquerol F. ; Rouquerol J. ; Singh K. « Adsorption by Powders & Porous Solids : Principle, methodology and applications », Academie Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Micromeritics™. The pore volume of the catalyst is generally between 0.1 cm 3 / g and 1.5 cm 3 / g, preferably between 0.15 cm 3 / g and 1.1 cm 3 / g. The total pore volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F.; Rouquerol J.; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academie Press, 1999, for example using a model Autopore III ™ apparatus of the brand Micromeritics ™.
Le catalyseur se caractérise par une surface spécifique comprise entre 5 et 400 m2/g, de préférence comprise entre 10 et 350 m2/g, de préférence comprise entre 40 et 350 m2/g, de manière très préférée comprise entre 50 et 300 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, méthode décrite dans le même ouvrage cité ci-dessus. The catalyst is characterized by a specific surface area of between 5 and 400 m 2 / g, preferably between 10 and 350 m 2 / g, preferably between 40 and 350 m 2 / g, very preferably between 50 and 300 m 2 / g. The specific surface area is determined in the present invention by the BET method according to the ASTM D3663 standard, a method described in the same work cited above.
Procédé d’hydrotraitement et/ou hydrocraquage Hydrotreatment and / or hydrocracking process
Enfin, un autre objet de l'invention est l'utilisation du catalyseur préparé par le procédé de préparation selon l’invention dans des procédés d'hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonées. Le procédé d'hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonées peut être réalisé dans un ou plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant.Finally, another subject of the invention is the use of the catalyst prepared by the preparation process according to the invention in processes for the hydrotreatment and / or hydrocracking of hydrocarbon cuts. The process for hydrotreating and / or hydrocracking hydrocarbon cuts can be carried out in one or more reactors in series of the fixed bed type or of the ebullating bed type.
Le procédé d'hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonées est effectué en présence du catalyseur préparé par le procédé de préparation selon l’invention. Il peut également être effectué en présence d’un mélange du catalyseur préparé par le procédé de préparation selon l’invention et d’un catalyseur préparé par imprégnation classique, à l’aide d’une solution d’imprégnation, et ceci que ce soit un catalyseur frais, régénéré ou réjuvéné.The hydrotreatment and / or hydrocracking process of hydrocarbon cuts is carried out in the presence of the catalyst prepared by the preparation process according to the invention. It can also be carried out in the presence of a mixture of the catalyst prepared by the preparation process according to the invention and of a catalyst prepared by conventional impregnation, using an impregnation solution, whether this be a fresh, regenerated or rejuvenated catalyst.
Lorsque que le catalyseur préparé par imprégnation à l’aide d’une solution d’imprégnation est présent, il comprend au moins un métal du groupe VIII, au moins un métal du groupe VIB et un support d’oxyde, et optionnellement du phosphore et/ou un composé organique tel que décrits ci-dessus. When the catalyst prepared by impregnation using an impregnation solution is present, it comprises at least one metal from group VIII, at least one metal from group VIB and an oxide support, and optionally phosphorus and / or an organic compound as described above.
La phase active et le support du catalyseur préparé par imprégnation à l’aide d’une solution d’imprégnation peuvent être identiques ou non à la phase active et au support du catalyseur préparé par le procédé de préparation selon l’invention. The active phase and the support of the catalyst prepared by impregnation using an impregnation solution may or may not be identical to the active phase and to the support of the catalyst prepared by the preparation process according to the invention.
Lorsque le procédé d'hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonée est effectué en présence d’un catalyseur préparé par le procédé de préparation selon l’invention et d’un catalyseur préparé par imprégnation classique, il peut être réalisé dans un réacteur du type lit fixe contenant plusieurs lits catalytiques. When the hydrotreatment and / or hydrocracking process of hydrocarbon cuts is carried out in the presence of a catalyst prepared by the preparation process according to the invention and of a catalyst prepared by conventional impregnation, it can be carried out in a reactor. of the fixed bed type containing several catalytic beds.
Dans ce cas, et selon une première variante, un lit catalytique contenant le catalyseur préparé par le procédé de préparation selon l’invention peut précéder un lit catalytique contenant le catalyseur préparé par imprégnation classique dans le sens de la circulation de la charge. In this case, and according to a first variant, a catalytic bed containing the catalyst prepared by the preparation process according to the invention can precede a catalytic bed containing the catalyst prepared by conventional impregnation in the direction of flow of the feed.
Dans ce cas, et selon une deuxième variante, un lit catalytique contenant le catalyseur préparé par imprégnation classique peut précéder un lit catalytique contenant le catalyseur préparé par le procédé de préparation selon l’invention dans le sens de la circulation de la charge. Dans ce cas, et selon une troisième variante, un lit catalytique peut contenir un mélange d’un catalyseur préparé par le procédé de préparation selon l’invention et d’un catalyseur par imprégnation classique. In this case, and according to a second variant, a catalytic bed containing the catalyst prepared by conventional impregnation can precede a catalytic bed containing the catalyst prepared by the preparation process according to the invention in the direction of circulation of the feed. In this case, and according to a third variant, a catalytic bed may contain a mixture of a catalyst prepared by the preparation process according to the invention and of a catalyst by conventional impregnation.
Dans ces cas, les conditions opératoires sont celles décrites ci-dessous. Elles sont généralement identiques dans les différents lits catalytiques à l’exception de la température qui augmente généralement dans un lit catalytique suite à l’exothermie des réactions d’hydrodésulfuration. In these cases, the operating conditions are those described below. They are generally identical in the different catalytic beds except for the temperature which generally increases in a catalytic bed as a result of the exothermic nature of the hydrodesulfurization reactions.
Lorsque le procédé d'hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonée est effectué en présence d’un catalyseur préparé par le procédé de préparation selon l’invention et d’un catalyseur préparé par imprégnation classique en plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant, un réacteur peut comprendre un catalyseur préparé par le procédé de préparation selon l’invention alors qu’un autre réacteur peut comprendre un catalyseur préparé par imprégnation classique, ou un mélange d’un catalyseur préparé par le procédé de préparation selon l’invention et d’un catalyseur préparé par imprégnation classique, et ceci dans n’importe quel ordre. On peut prévoir un dispositif d'élimination de l'hhS de l'effluent issu du premier réacteur d'hydrodésulfuration avant de traiter ledit effluent dans le deuxième réacteur d'hydrodésulfuration. Dans ces cas, les conditions opératoires sont celles décrites ci-dessus et peuvent être identiques ou non dans les différents réacteurs. When the hydrotreatment and / or hydrocracking process of hydrocarbon cuts is carried out in the presence of a catalyst prepared by the preparation process according to the invention and of a catalyst prepared by conventional impregnation in several reactors in series of the bed type fixed or of the ebullating bed type, a reactor may comprise a catalyst prepared by the preparation process according to the invention while another reactor may comprise a catalyst prepared by conventional impregnation, or a mixture of a catalyst prepared by the process of preparation according to the invention and of a catalyst prepared by conventional impregnation, and this in any order. It is possible to provide a device for removing the hhS from the effluent issuing from the first hydrodesulfurization reactor before treating said effluent in the second hydrodesulfurization reactor. In these cases, the operating conditions are those described above and may or may not be identical in the different reactors.
Le catalyseur préparé selon le procédé de préparation selon l’invention et ayant de préférence préalablement subi une étape de sulfuration est avantageusement utilisé pour les réactions d'hydrotraitement et/ou d’hydrocraquage de charges hydrocarbonées telles que les coupes pétrolières, les coupes issues du charbon ou les hydrocarbures produits à partir du gaz naturel, éventuellement en mélanges ou encore à partir d’une coupe hydrocarbonée issue de la biomasse et plus particulièrement pour les réactions d'hydrogénation, d'hydrodéazotation, d'hydrodésaromatisation, d'hydrodésulfuration, d’hydrodéoxygénation, d'hydrodémétallation ou d'hydroconversion de charges hydrocarbonées. The catalyst prepared according to the preparation process according to the invention and having preferably previously undergone a sulfurization step is advantageously used for the hydrotreatment and / or hydrocracking reactions of hydrocarbon feeds such as petroleum cuts, cuts resulting from coal or hydrocarbons produced from natural gas, optionally in mixtures or even from a hydrocarbon cut obtained from biomass and more particularly for the reactions of hydrogenation, hydrodenitrogenation, hydrodearomatization, hydrodesulfurization, d 'hydrodeoxygenation, hydrodemetallation or hydroconversion of hydrocarbon feeds.
Dans ces utilisations, le catalyseur ayant de préférence préalablement subi une étape de sulfuration présente une activité au moins aussi bonne que les catalyseurs de l'art antérieur. Ce catalyseur peut aussi avantageusement être utilisé lors du prétraitement des charges de craquage catalytique ou d’hydrocraquage, ou l'hydrodésulfuration des résidus ou l'hydrodésulfuration poussée des gazoles (U LSD Ultra Low Sulfur Diesel selon la terminologie anglo-saxonne). In these uses, the catalyst which has preferably previously undergone a sulfurization step has an activity at least as good as the catalysts of the prior art. This catalyst can also advantageously be used during the pretreatment of catalytic cracking or hydrocracking feedstocks, or the hydrodesulphurization of the residues or the extensive hydrodesulphurization of gas oils (U LSD Ultra Low Sulfur Diesel according to English terminology).
Les charges employées dans le procédé d'hydrotraitement sont par exemple des essences, des gazoles, des gazoles sous vide, des résidus atmosphériques, des résidus sous vide, des distillats atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques, des charges lignocellulosiques ou plus généralement des charges issues de la biomasse telles que des huiles végétales, prises seules ou en mélange. Les charges qui sont traitées, et en particulier celles citées ci-dessus, contiennent généralement des hétéroatomes tels que le soufre, l’oxygène et l’azote et, pour les charges lourdes, elles contiennent le plus souvent également des métaux. The feeds used in the hydrotreatment process are, for example, gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes and paraffins, used oils, deasphalted residues or crude, feeds from thermal or catalytic conversion processes, lignocellulosic feeds or more generally feeds resulting from biomass such as vegetable oils, taken alone or as a mixture. The feeds that are processed, and in particular those mentioned above, generally contain heteroatoms such as sulfur, oxygen and nitrogen and, for heavy loads, they most often also contain metals.
Les conditions opératoires utilisées dans les procédés mettant en œuvre les réactions d'hydrotraitement de charges hydrocarbonées décrites ci-dessus sont généralement les suivantes : le température est avantageusement comprise entre 180 et 450°C, et de préférence entre 250 et 440°C, la pression est avantageusement comprise entre 0,5 et 30 MPa, et de préférence entre 1 et 18 MPa, la vitesse volumique horaire est avantageusement comprise entre 0,1 et 20 h 1 et de préférence entre 0,2 et 5 h 1, et le rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide est avantageusement compris entre 50 l/l à 5000 l/l et de préférence 80 à 2000 l/l. The operating conditions used in the processes implementing the hydrotreatment reactions of hydrocarbon feeds described above are generally as follows: the temperature is advantageously between 180 and 450 ° C, and preferably between 250 and 440 ° C, the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the hourly volume speed is advantageously between 0.1 and 20 h 1 and preferably between 0.2 and 5 h 1 , and the hydrogen / feed ratio expressed as a volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed is advantageously between 50 l / l to 5000 l / l and preferably 80 to 2000 l / l.
Selon un premier mode d’utilisation, ledit procédé d'hydrotraitement est un procédé d'hydrotraitement, et notamment d’hydrodésulfuration (H DS) d'une coupe gazole réalisé en présence d'au moins un catalyseur préparé selon l’invention. Ledit procédé d'hydrotraitement vise à éliminer les composés soufrés présents dans ladite coupe gazole de façon à atteindre les normes environnementales en vigueur, à savoir une teneur en soufre autorisée jusqu'à 10 ppm. Il permet aussi de réduire les teneurs en aromatiques et en azote de la coupe gazole à hydrotraiter. Ladite coupe gazole à hydrotraiter contient de 0,02 à 5,0 % poids de soufre. Elle est avantageusement issue de la distillation directe (ou gazole straight run selon la terminologie anglo-saxonne), d’une unité de cokéfaction (coking selon la terminologie anglo-saxonne), d'une unité de viscoréduction (visbreaking selon la terminologie anglo-saxonne), d'une unité de vapocraquage (steam cracking selon la terminologie anglo-saxonne), d’une unité d’hydrotraitement et/ou d’hydrocraquage de charges plus lourdes et/ou d'une unité de craquage catalytique (Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Ladite coupe gazole présente préférentiellement au moins 90% des composés dont la température d’ébullition est comprise entre 250°C et 400°C à pression atmosphérique. According to a first mode of use, said hydrotreatment process is a hydrotreatment process, and in particular hydrodesulfurization (H DS) process of a gas oil cut produced in the presence of at least one catalyst prepared according to the invention. Said hydrotreatment process aims to eliminate the sulfur compounds present in said gas oil cut so as to achieve the environmental standards in force, namely an authorized sulfur content of up to 10 ppm. It also makes it possible to reduce the aromatics and nitrogen contents of the diesel cut to be hydrotreated. Said diesel cut to be hydrotreated contains from 0.02 to 5.0% by weight of sulfur. It is advantageously obtained from direct distillation (or straight run gas oil according to Anglo-Saxon terminology), from a coking unit (coking according to Anglo-Saxon terminology), from a visbreaking unit (visbreaking according to Anglo-Saxon terminology). Saxon), a steam cracking unit (steam cracking according to the English terminology), a hydrotreatment and / or hydrocracking unit for heavier feeds and / or a catalytic cracking unit (Fluid Catalytic Cracking according to Anglo-Saxon terminology). Said diesel cut preferably has at least 90% of the compounds whose boiling point is between 250 ° C and 400 ° C at atmospheric pressure.
Le procédé d'hydrotraitement de ladite coupe gazole est mis en œuvre dans les conditions opératoires suivantes : une température comprise entre 200 et 400°C, préférentiellement entre 300 et 380°C, une pression totale comprise entre 2 MPa et 10 MPa et plus préférentiellement entre 3 MPa et 8 MPa avec un ratio volume d’hydrogène par volume de charge hydrocarbonée, exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide, compris entre 100 et 600 litres par litre et plus préférentiellement entre 200 et 400 litres par litre et une vitesse volumique horaire (WH) comprise entre 1 et 10 h 1, préférentiellement entre 2 et 8 h 1. La WH correspond à l'inverse du temps de contact exprimée en heure et est définie par le rapport du débit volumique de charge hydrocarbonée liquide par le volume de catalyseur chargé dans l'unité réactionnelle mettant en œuvre le procédé d'hydrotraitement selon l'invention. L'unité réactionnelle mettant en œuvre le procédé d'hydrotraitement de ladite coupe gazole est préférentiellement opérée en lit fixe, en lit mobile ou en lit bouillonnant, de préférence en lit fixe. The hydrotreatment process for said diesel cut is carried out under the following operating conditions: a temperature between 200 and 400 ° C, preferably between 300 and 380 ° C, a total pressure between 2 MPa and 10 MPa and more preferably between 3 MPa and 8 MPa with a volume ratio of hydrogen per volume of hydrocarbon feed, expressed as a volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed, between 100 and 600 liters per liter and more preferably between 200 and 400 liters per liter and an hourly volume speed (WH) of between 1 and 10 h 1 , preferably between 2 and 8 h 1 . The WH corresponds to the inverse of the contact time expressed in hours and is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock to the volume of catalyst loaded into the reaction unit implementing the hydrotreatment process according to the invention . The reaction unit implementing the hydrotreatment process for said gas oil cut is preferably carried out in a fixed bed, in a moving bed or in an ebullating bed, preferably in a fixed bed.
Selon un second mode d’utilisation, ledit procédé d'hydrotraitement et/ou d’hydrocraquage est un procédé d'hydrotraitement (notamment hydrodésulfuration, hydrodéazotation, hydrogénation des aromatiques) et/ou d’hydrocraquage d'une coupe de distillât sous vide réalisé en présence d'au moins un catalyseur préparé selon le procédé de préparation selon l’invention. Ledit procédé d’hydrotraitement et/ou d’hydrocraquage, autrement appelé procédé de prétraitement d’hydrocraquage ou d’hydrocraquage vise selon les cas à éliminer les composés soufrés, azotés ou aromatiques présents dans ladite coupe distillât de façon à effectuer un prétraitement avant conversion dans des procédés de craquage catalytique ou d’hydroconversion, ou à hydrocraquer la coupe distillât qui aurait éventuellement été prétraitée auparavant si besoin. According to a second mode of use, said hydrotreatment and / or hydrocracking process is a hydrotreatment process (in particular hydrodesulfurization, hydrodenitrogenation, hydrogenation of aromatics) and / or hydrocracking of a distillate cut under vacuum produced in the presence of at least one catalyst prepared according to the preparation process according to the invention. Said hydrotreatment and / or hydrocracking process, otherwise known as a hydrocracking or hydrocracking pretreatment process, is aimed, depending on the case, at removing the sulfur, nitrogen or aromatic compounds present in said distillate cut so as to carry out a pretreatment before conversion. in catalytic cracking processes or hydroconversion, or in hydrocracking the distillate cut which would possibly have been pretreated before if necessary.
Des charges très variées peuvent être traitées par les procédés d’hydrotraitement et/ou d’hydrocraquage de distillats sous vide décrits ci-dessus. Généralement elles contiennent au moins 20% volume et souvent au moins 80% volume de composés bouillant au-dessus de 340°C à pression atmosphérique. La charge peut être par exemple des distillats sous vide ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d’huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, et/ou d'huiles désasphaltées, ou encore la charge peut être une huile désasphaltée ou des paraffines issues du procédé Fischer-Tropsch ou encore tout mélange des charges précédemment citées. En général, les charges ont un point d'ébullition T5 supérieur à 340°C à pression atmosphérique, et mieux encore supérieur à 370°C à pression atmosphérique, c’est à dire que 95% des composés présents dans la charge ont un point d’ébullition supérieur à 340°C, et mieux encore supérieur à 370°C. La teneur en azote des charges traitées dans les procédés selon l’invention est usuellement supérieure à 200 ppm poids, de préférence comprise entre 500 et 10 000 ppm poids. La teneur en soufre des charges traitées dans les procédés selon l’invention est usuellement comprise entre 0,01 et 5,0 % poids. La charge peut éventuellement contenir des métaux (par exemple le nickel et vanadium). La teneur en asphaltènes est généralement inférieure à 3000 ppm poids. A wide variety of feeds can be treated by the hydrotreatment and / or hydrocracking processes of vacuum distillates described above. Generally they contain at least 20% by volume and often at least 80% by volume of compounds boiling above 340 ° C at atmospheric pressure. The feed may for example be vacuum distillates as well as feeds originating from units for extracting aromatics from lubricating oil bases or resulting from solvent dewaxing of lubricating oil bases, and / or deasphalted oils. , or else the feed may be a deasphalted oil or paraffins resulting from the Fischer-Tropsch process or even any mixture of the feeds mentioned above. In general, the charges have a boiling point T5 greater than 340 ° C at atmospheric pressure, and better still greater than 370 ° C at atmospheric pressure, that is to say that 95% of the compounds present in the charge have a point boiling above 340 ° C, and better still above 370 ° C. The nitrogen content of the feeds treated in the processes according to the invention is usually greater than 200 ppm by weight, preferably between 500 and 10,000 ppm by weight. The sulfur content of the feeds treated in the processes according to the invention is usually between 0.01 and 5.0% by weight. The filler can optionally contain metals (eg nickel and vanadium). The asphaltene content is generally less than 3000 ppm by weight.
Le catalyseur préparé selon le procédé de préparation selon l’invention est généralement mis en contact, en présence d’hydrogène, avec les charges décrites précédemment, à une température supérieure à 200°C, souvent comprise entre 250°C et 480°C, avantageusement comprise entre 320°C et 450°C, de préférence entre 330°C et 435°C, sous une pression supérieure à 1 MPa, souvent comprise entre 2 et 25 MPa, de manière préférée entre 3 et 20 MPa, la vitesse volumique étant comprise entre 0,1 et 20,0 fr1 et de préférence 0,1 -6,0 h 1, de préférence, 0, 2-3,0 fr1, et la quantité d’hydrogène introduite est telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure, exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide, soit compris entre 80 et 5 000 l/l et le plus souvent entre 100 et 2 000 l/l. Ces conditions opératoires utilisées dans les procédés selon l’invention permettent généralement d’atteindre des conversions par passe, en produits ayant des points d’ébullition inférieurs à 340°C à pression atmosphérique, et mieux inférieurs à 370°C à pression atmosphérique, supérieures à 15% et de manière encore plus préférée comprises entre 20 et 95%. The catalyst prepared according to the preparation process according to the invention is generally brought into contact, in the presence of hydrogen, with the charges described above, at a temperature above 200 ° C, often between 250 ° C and 480 ° C, advantageously between 320 ° C and 450 ° C, preferably between 330 ° C and 435 ° C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the volume speed being between 0.1 and 20.0 fr 1 and preferably 0.1 -6.0 h 1 , preferably 0, 2-3.0 fr 1 , and the quantity of hydrogen introduced is such that the ratio volume liter of hydrogen / liter of hydrocarbon, expressed in volume of hydrogen, measured under normal temperature and pressure conditions, per volume of liquid feed, i.e. between 80 and 5,000 l / l and most often between 100 and 2000 l / l. These operating conditions used in the processes according to the invention generally make it possible to achieve per-pass conversions, into products having boiling points below 340 ° C. at atmospheric pressure, and better still less than 370 ° C. at atmospheric pressure, greater than 15% and even more preferably between 20 and 95%.
Les procédés d'hydrotraitement et/ou d’hydrocraquage de distillats sous vide mettant en œuvre les catalyseurs préparés selon le procédé de préparation selon l’invention couvrent les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression. On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 40%, et fonctionnant à basse pression, généralement entre 2 MPa et 6 MPa. The processes for hydrotreating and / or hydrocracking vacuum distillates using the catalysts prepared according to the preparation process according to the invention cover the pressure and conversion fields ranging from mild hydrocracking to high pressure hydrocracking. . The term “mild hydrocracking” means hydrocracking leading to moderate conversions, generally less than 40%, and operating at low pressure, generally between 2 MPa and 6 MPa.
Le catalyseur préparé selon le procédé de préparation selon l’invention peut être utilisé seul, en un seul ou plusieurs lits catalytiques en lit fixe, dans un ou plusieurs réacteurs, dans un schéma d’hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, ou encore dans un schéma d’hydrocraquage dit en deux étapes, éventuellement en association avec un catalyseur d’hydroraffinage situé en amont du catalyseur préparé selon le procédé de préparation selon l’invention. The catalyst prepared according to the preparation process according to the invention can be used alone, in one or more fixed bed catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling. of the unconverted fraction, or else in a so-called two-step hydrocracking scheme, optionally in combination with a hydrorefining catalyst located upstream of the catalyst prepared according to the preparation process according to the invention.
Selon un troisième mode d’utilisation, ledit procédé d'hydrotraitement et/ou d’hydrocraquage est avantageusement mis en œuvre comme prétraitement dans un procédé de craquage catalytique à lit fluidisé (ou procédé FCC pour Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Les conditions opératoires du prétraitement en termes de gamme de température, pression, taux de recyclage d’hydrogène, vitesse volumique horaire sont généralement identiques à celles décrites ci-dessus pour les procédés d’hydrotraitement et/ou d’hydrocraquage de distillats sous vide. Le procédé FCC peut être exécuté de manière classique connue des Hommes du métier dans les conditions adéquates de craquage en vue de produire des produits hydrocarbonés de plus faible poids moléculaire. On trouvera par exemple une description sommaire du craquage catalytique dans ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991 , pages 61 à 64.According to a third mode of use, said hydrotreatment and / or hydrocracking process is advantageously implemented as a pretreatment in a fluidized bed catalytic cracking process (or FCC process for Fluid Catalytic Cracking according to English terminology) . The operating conditions of the pretreatment in terms of temperature range, pressure, hydrogen recycling rate, hourly volume speed are generally identical to those described above for the hydrotreatment and / or hydrocracking processes of vacuum distillates. The FCC process can be carried out in a conventional manner known to those skilled in the art under suitable cracking conditions in order to produce hydrocarbon products of lower molecular weight. For example, a brief description of catalytic cracking can be found in ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 to 64.
Selon un quatrième mode d’utilisation, ledit procédé d'hydrotraitement et/ou d’hydrocraquage selon l'invention est un procédé d'hydrotraitement (notamment hydrodésulfuration) d'une coupe d’essence en présence d'au moins un catalyseur préparé selon le procédé de préparation selon l’invention. Contrairement à d’autres procédés d’hydrotraitement, l’hydrotraitement (notamment l’hydrodésulfuration) des essences doit permettre de répondre à une double contrainte antagoniste : assurer une hydrodésulfuration profonde des essences et limiter l’hydrogénation des composés insaturés présents afin de limiter la perte d’indice d’octane.According to a fourth mode of use, said hydrotreatment and / or hydrocracking process according to the invention is a hydrotreatment process (in particular hydrodesulfurization) of a gasoline cut in the presence of at least one catalyst prepared according to the invention. the preparation process according to the invention. Unlike other hydrotreatment processes, the hydrotreatment (in particular hydrodesulfurization) of gasolines must make it possible to respond to a double antagonistic constraint: ensure deep hydrodesulfurization of the gasolines and limit the hydrogenation of the unsaturated compounds present in order to limit the loss of octane number.
La charge est généralement une coupe d'hydrocarbures ayant un intervalle de distillation compris entre 30 et 260°C. De préférence, cette coupe d'hydrocarbures est une coupe du type essence. De manière très préférée, la coupe essence est une coupe essence oléfinique issue par exemple d'une unité de craquage catalytique (Fluid Catalytic Cracking selon la terminologie anglo-saxonne). The feed is generally a hydrocarbon cut having a distillation range of between 30 and 260 ° C. Preferably, this cut of hydrocarbons is a cut of the gasoline type. Very preferably, the gasoline cut is an olefinic gasoline cut obtained, for example, from a catalytic cracking unit (Fluid Catalytic Cracking according to English terminology).
Le procédé d'hydrotraitement consiste à mettre en contact la coupe d'hydrocarbures avec le catalyseur préparé selon le procédé de préparation selon l’invention et de l'hydrogène dans les conditions suivantes: à une température comprise entre 200 et 400°C, de préférence comprise entre 230 et 330°C, à une pression totale comprise entre 1 et 3 MPa, de préférence comprise entre 1 ,5 et 2,5 MPa, à une Vitesse Volumique Horaire (WH), définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, de préférence comprise entre 2 et 6 fr1 et à un rapport volumique hydrogène/charge essence compris entre 100 et 600 N l/l, de préférence compris entre 200 et 400 N l/l. The hydrotreatment process consists in bringing the hydrocarbon cut into contact with the catalyst prepared according to the preparation process according to the invention and hydrogen under the following conditions: at a temperature between 200 and 400 ° C, preferably between 230 and 330 ° C, at a total pressure between 1 and 3 MPa, preferably between 1, 5 and 2.5 MPa, at an Hourly Volume Velocity (WH), defined as being the load volume flow based on the volume of catalyst, between 1 and 10 h 1 , preferably between 2 and 6 fr 1 and at a hydrogen / gasoline feed volume ratio of between 100 and 600 N l / l, preferably between 200 and 400 N l / l.
Le procédé d'hydrotraitement des essences peut être réalisé dans un ou plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant. Si le procédé est mis en œuvre au moyen d'au moins deux réacteurs en série, il est possible de prévoir un dispositif d'élimination de l'H2S de l'effluent issu du premier réacteur d'hydrodésulfuration avant de traiter ledit effluent dans le deuxième réacteur d'hydrodésulfuration. The gasoline hydrotreatment process can be carried out in one or more reactors in series of the fixed bed type or of the ebullated bed type. If the process is implemented by means of at least two reactors in series, it is possible to provide a device for removing the H2S from the effluent from the first hydrodesulfurization reactor before treating said effluent in the second hydrodesulfurization reactor.
Les exemples qui suivent démontrent que le catalyseur obtenu selon le procédé de préparation selon l’invention permet d’observer une activité catalytique en hydrotraitement et/ou hydrocraquage au moins au même niveau qu’un catalyseur préparé par imprégnation à l’aide d’une solution d’imprégnation avec cependant une préparation simplifiée et la possibilité de charger plus de métal du groupe VI B. Exemples The examples which follow demonstrate that the catalyst obtained according to the preparation process according to the invention makes it possible to observe a catalytic activity in hydrotreatment and / or hydrocracking at least at the same level as a catalyst prepared by impregnation using a impregnation solution with, however, a simplified preparation and the possibility of loading more metal of group VI B. Examples
Exemple 1 : Préparation du catalyseur C1 de référence Example 1: Preparation of the reference catalyst C1
Le catalyseur C1 est préparé par imprégnation à sec d’une alumine gamma (SBET 270 m2/g, Vp 0,75 cm3/g), concassée de façon à obtenir des grains de 300 à 500 pm (VRE 1 ,2 cm3/g), avec une solution contenant l’acide phosphomolybdique hydraté H3PMoi2C>4o,28H2C> (PMA). La concentration en PMA en solution est ajustée de façon à obtenir sur le catalyseur final 22%pds en M0O3. Après une maturation de 3h, le catalyseur est séché à 120°C pendant 2h. Catalyst C1 is prepared by dry impregnation of a gamma alumina (SBET 270 m 2 / g, Vp 0.75 cm 3 / g), crushed so as to obtain grains of 300 to 500 μm (VRE 1.2 cm 3 / g), with a solution containing hydrated phosphomolybdic acid H 3 PMoi 2 C> 4 o, 28H 2 C> (PMA). The concentration of PMA in solution is adjusted so as to obtain 22% by weight of M0O3 on the final catalyst. After maturing for 3 hours, the catalyst is dried at 120 ° C. for 2 hours.
Exemple 2 : Préparation du catalyseur C2 conforme à l’invention Example 2: Preparation of catalyst C2 in accordance with the invention
10 g du même support concassé en 300-500 pm utilisé pour la préparation du catalyseur C1 a été pré-imprégné d’eau en ajoutant 5 cm3 d’eau, soit 42% du VRE. L’eau est versée en goutte à goutte sur le support contenu dans un drageoir en rotation. Afin de laisser le support s’imprégner correctement, il est placé en maturateur pendant 1 h. Le support pré-imprégné d’eau est ensuite transféré dans le réacteur et 4 g de PMA, dont le point de fusion est de 85°C, sont ajoutés. Le reflux est mis en place et le réacteur est chauffé à 85°C avec agitation pendant 3h. Le catalyseur est ensuite laissé à maturer pendant 18h. On obtient ainsi le catalyseur C2 qui contient 22%pds en M0O3. 10 g of the same support crushed to 300-500 μm used for the preparation of catalyst C1 was pre-impregnated with water by adding 5 cm 3 of water, ie 42% of the VRE. The water is poured drop by drop onto the support contained in a rotating bezel. In order to let the support soak up properly, it is placed in a maturator for 1 h. The support prepreg with water is then transferred to the reactor and 4 g of PMA, the melting point of which is 85 ° C., are added. The reflux is set up and the reactor is heated to 85 ° C. with stirring for 3 h. The catalyst is then left to mature for 18 hours. Catalyst C2 is thus obtained which contains 22% by weight of M0O3.
Exemple 3 : Préparation du catalyseur C3 conforme à l’invention Example 3: Preparation of catalyst C3 according to the invention
10 g du même support concassé en 300-500 pm utilisé pour la préparation du catalyseur C1 a été pré-imprégné d’eau en ajoutant 5 cm3 d’eau, soit 42% du VRE. L’eau est versée en goutte à goutte sur le support contenu dans un drageoir en rotation. Afin de laisser le support s’imprégner correctement, il est placé en maturateur pendant 1 h. Le support pré-imprégné d’eau est ensuite transféré dans le réacteur et 4,85 g de PMA sont ajoutés. Le reflux est mis en place et le réacteur est chauffé à 85°C avec agitation pendant 3h. Le catalyseur est ensuite laissé à maturer pendant 18h. On obtient ainsi le catalyseur C3 qui contient 26%pds en M0O3. Exemple 4 : Préparation du catalyseur C4 conforme à l’invention 10 g of the same support crushed to 300-500 μm used for the preparation of catalyst C1 was pre-impregnated with water by adding 5 cm 3 of water, ie 42% of the VRE. The water is poured drop by drop onto the support contained in a rotating bezel. In order to let the support soak up properly, it is placed in a maturator for 1 h. The support pre-impregnated with water is then transferred to the reactor and 4.85 g of PMA are added. The reflux is set up and the reactor is heated to 85 ° C. with stirring for 3 h. The catalyst is then left to mature for 18 hours. The catalyst C3 is thus obtained which contains 26% by weight of M0O3. Example 4 Preparation of the catalyst C4 in accordance with the invention
10 g du même support concassé en 300-500 pm utilisé pour la préparation du catalyseur C1 a été pré-imprégné d’eau en ajoutant 5 cm3 d’eau, soit 42% du VRE. L’eau est versée en goutte à goutte sur le support contenu dans un drageoir en rotation. Afin de laisser le support s’imprégner correctement, il est placé en maturateur pendant 1h. Le support pré-imprégné d’eau est ensuite transféré dans le réacteur et 13 g de PMA sont ajoutés. Le reflux est mis en place et le réacteur est chauffé à 85°C avec agitation pendant 3h. Le catalyseur est ensuite laissé à maturer pendant 18h. On obtient ainsi le catalyseur C4 qui contient 48%pds en M0O3. 10 g of the same support crushed to 300-500 μm used for the preparation of catalyst C1 was pre-impregnated with water by adding 5 cm 3 of water, ie 42% of the VRE. The water is poured drop by drop onto the support contained in a rotating bezel. In order to let the support soak up properly, it is placed in a ripener for 1 hour. The support prepreg with water is then transferred to the reactor and 13 g of PMA are added. The reflux is set up and the reactor is heated to 85 ° C. with stirring for 3 h. The catalyst is then left to mature for 18 hours. The catalyst C4 is thus obtained which contains 48% by weight of MOO3.
Exemple 5 : Préparation du catalyseur C5 conforme à l’invention Example 5: Preparation of catalyst C5 according to the invention
10 g du même support concassé en 300-500 pm utilisé pour la préparation du catalyseur C1 a été pré-imprégné d’eau en ajoutant 5 cm3 d’eau, soit 42% du VRE. L’eau est versée en goutte à goutte sur le support contenu dans un drageoir en rotation. Afin de laisser le support s’imprégner correctement, il est placé en maturateur pendant 1h. Le support pré-imprégné d’eau est ensuite transféré dans le réacteur et 4,2 g de PMA ainsi que 2,5 g de nitrate de cobalt hexahydraté sont ajoutés. Le reflux est mis en place et le réacteur est chauffé à 85°C avec agitation pendant 3h. Le catalyseur est ensuite laissé à maturer pendant 18h. On obtient ainsi le catalyseur C5 qui contient 22%pds de Mo03 et 4,6%pds de CoO. 10 g of the same support crushed to 300-500 μm used for the preparation of catalyst C1 was pre-impregnated with water by adding 5 cm 3 of water, ie 42% of the VRE. The water is poured drop by drop onto the support contained in a rotating bezel. In order to let the support soak up properly, it is placed in a ripener for 1 hour. The support pre-impregnated with water is then transferred to the reactor and 4.2 g of PMA as well as 2.5 g of cobalt nitrate hexahydrate are added. The reflux is set up and the reactor is heated to 85 ° C. with stirring for 3 h. The catalyst is then left to mature for 18 hours. Catalyst C5 is thus obtained which contains 22 wt% MoO3 and 4.6 wt% CoO.
Exemple 6 : Evaluation des catalyseurs C1 à C6 en hydrogénation du toluène Example 6: Evaluation of catalysts C1 to C6 in the hydrogenation of toluene
Les catalyseurs ont été évalués en hydrogénation du toluène en conditions sulfo-réductrices. La charge est constituée de diméthyldisulfure (5,9 % pds) et de toluène (20 % pds) en mélange dans le cyclohexane. Les catalyseurs sont pré-sufurés in situ avec la charge de test à une vitesse volumique horaire (WH) de 4 h 1, un ratio hydrogène sur charge de 450 L/L et une pression de 6 MPa (60 bar). La température est augmentée des conditions ambiantes à 350°C avec une rampe de 2°C min 1. Le test catalytique est ensuite réalisé avec les conditions suivantes : une température de 350°C, une pression de 6 MPa (60 bar), une vitesse volumique horaire (WH) de 2 h 1, et un ratio hydrogène sur charge de 450 L/L. Les produits de réaction sont analysés en ligne par chromatographie gazeuse. L’activité en hydrogénation du toluène (A Hydro) est exprimée en considérant un ordre 1 selon l’équation suivante et en relatif par rapport à l’activité du catalyseurs C1 , 22% pds M0O3 préparés par imprégnation à sec. kHYD = WH x Ln (1 / (1 -CTqiub™ )) avec Xïoiuène, conversion du toluène par hydrogénation Les résultats d’activité sont donnés dans le tableau suivant. Ces résultats montrent qu’un catalyseur préparé par imprégnation en fusion avec la même teneur en oxyde de molybdène à 22% pds est plus actif que le catalyseur de référence préparés par imprégnation à sec avec une activité de 122. The catalysts were evaluated for the hydrogenation of toluene under sulfo-reducing conditions. The feed consists of dimethyldisulfide (5.9% wt) and toluene (20% wt) as a mixture in cyclohexane. The catalysts are pre-sulphurized in situ with the test feed at an hourly volume velocity (WH) of 4 h 1 , a hydrogen to feed ratio of 450 L / L and a pressure of 6 MPa (60 bar). The temperature is increased from ambient conditions to 350 ° C with a ramp of 2 ° C min 1 . The catalytic test is then carried out with the following conditions: a temperature of 350 ° C, a pressure of 6 MPa (60 bar), an hourly volume speed (WH) of 2 h 1 , and a hydrogen to feed ratio of 450 L / L. The reaction products are analyzed online by gas chromatography. The hydrogenation activity of toluene (A Hydro) is expressed by considering an order 1 according to the equation following and in relative with respect to the activity of catalysts C1, 22% by weight M0O3 prepared by dry impregnation. kHYD = WH x Ln (1 / (1 -C Tq i ub ™)) with X oluene , conversion of toluene by hydrogenation The activity results are given in the following table. These results show that a catalyst prepared by melt impregnation with the same 22 wt% molybdenum oxide content is more active than the reference catalyst prepared by dry impregnation with an activity of 122.
L’augmentation de la quantité d’oxyde de molybdène par imprégnation en fusion à 26% pds donne une activité de 178. Increasing the amount of molybdenum oxide by melt impregnation to 26 wt% gives an activity of 178.
L’augmentation de la quantité d’oxyde de molybdène par imprégnation en fusion à 48% pds, qui ne serait pas possible par imprégnation à sec donne un activité de 583. Increasing the amount of molybdenum oxide by melt impregnation to 48 wt%, which would not be possible by dry impregnation gives an activity of 583.
Le catalyseur préparé par imprégnation en fusion avec du cobalt et du molybdène donne une activité de 544. De plus, la préparation de catalyseurs selon l’invention ne nécessite pas de solvant, ni une étape de séchage.
Figure imgf000038_0001
The catalyst prepared by molten impregnation with cobalt and molybdenum gives an activity of 544. In addition, the preparation of catalysts according to the invention does not require a solvent, nor a drying step.
Figure imgf000038_0001

Claims

REVENDICATIONS
1. Procédé de préparation d’un catalyseur d'hydrotraitement et/ou d’hydrocraquage comprenant un support poreux à base d'alumine ou de silice ou de silice-alumine et au moins un métal du groupe VIB, la teneur en métal du groupe VIB étant comprise entre 5 et 55 % poids exprimée en oxyde de métal du groupe VIB par rapport au poids total du catalyseur, ledit procédé comprenant les étapes suivantes : a) on met en contact de l’eau avec ledit support poreux de manière à obtenir un support poreux mouillé, b) on met en contact ledit support poreux mouillé avec au moins un acide métallique hydraté comprenant au moins un métal du groupe VIB dont la température de fusion dudit acide métallique hydraté est comprise entre 20 et 100°C, pour former un mélange solide, le rapport massique entre ledit acide métallique et ledit support poreux étant compris entre 0,1 et 2,5, c) on chauffe sous agitation le mélange solide obtenu à l’issue de l’étape b) à une température comprise entre la température de fusion dudit acide métallique et 100°C. 1. Process for preparing a hydrotreatment and / or hydrocracking catalyst comprising a porous support based on alumina or on silica or on silica-alumina and at least one metal from group VIB, the group metal content. VIB being between 5 and 55% by weight expressed as metal oxide of group VIB relative to the total weight of the catalyst, said process comprising the following steps: a) water is brought into contact with said porous support so as to obtain a wet porous support, b) contacting said wet porous support with at least one hydrated metallic acid comprising at least one metal from group VIB whose melting point of said hydrated metallic acid is between 20 and 100 ° C, to form a solid mixture, the mass ratio between said metallic acid and said porous support being between 0.1 and 2.5, c) the solid mixture obtained at the end of step b) is heated with stirring to a temperature of between fusi temperature on said metal acid and 100 ° C.
2. Procédé selon la revendication précédente, dans lequel à l’étape b) l’acide métallique hydraté est choisi parmi l’acide phosphomolybdique hydraté, l’acide silicomolybdique hydraté, l’acide molybdosilicique hydraté, l’acide phosphotungstique hydraté et l’acide silicotungstique hydraté. 2. Method according to the preceding claim, wherein in step b) the hydrated metal acid is chosen from hydrated phosphomolybdic acid, hydrated silicomolybdic acid, hydrated molybdosilicic acid, hydrated phosphotungstic acid and hydrated silicotungstic acid.
3. Procédé selon l’une des revendications précédentes, dans lequel à l’étape a) la quantité d’eau introduite dans le support est entre 10 et 70 % de son volume de reprise en eau.3. Method according to one of the preceding claims, wherein in step a) the amount of water introduced into the support is between 10 and 70% of its water uptake volume.
4. Procédé selon l’une des revendications précédentes, dans lequel l’étape b) comprend en outre la mise en contact avec au moins un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 20 et 100°C, pour former un mélange solide, le rapport molaire (métal du groupe Vlll)/(métal du groupe VIB) étant compris entre 0,1 et 0,8. 4. Method according to one of the preceding claims, wherein step b) further comprises contacting with at least one metal salt comprising at least one metal from group VIII, the melting point of said metal salt is between 20 and 100 ° C, to form a solid mixture, the molar ratio (metal of group VIII) / (metal of group VIB) being between 0.1 and 0.8.
5. Procédé selon la revendication précédente, dans lequel ledit sel métallique est un sel de nitrate hydraté. 5. Method according to the preceding claim, wherein said metal salt is a hydrated nitrate salt.
6. Procédé selon la revendication précédente, dans lequel ledit sel métallique est choisi parmi le nitrate de nickel hexahydraté, et le nitrate de cobalt hexahydraté, pris seul ou en mélange. 6. Method according to the preceding claim, wherein said metal salt is chosen from nickel nitrate hexahydrate, and cobalt nitrate hexahydrate, taken alone or as a mixture.
7. Procédé selon l’une des revendications précédentes, dans lequel l’étape b) comprend en outre la mise en contact avec de l’acide phosphorique, pour former un mélange solide, le rapport molaire phosphore/(métal du groupe VIB) étant compris entre 0,08 et 1. 7. Method according to one of the preceding claims, wherein step b) further comprises contacting with phosphoric acid, to form a solid mixture, the molar ratio phosphorus / (metal of group VIB) being between 0.08 and 1.
8. Procédé selon l’une des revendications précédentes, dans lequel l’étape b) comprend en outre la mise en contact avec un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre dont la température de fusion dudit composé organique est comprise entre 20 et 100°C, le rapport molaire composé organique/métal du groupe VIB étant compris entre 0,01 et 5. 8. Method according to one of the preceding claims, wherein step b) further comprises contacting with an organic compound comprising oxygen and / or nitrogen and / or sulfur whose temperature. melting point of said organic compound is between 20 and 100 ° C, the organic compound / metal of group VIB molar ratio being between 0.01 and 5.
9. Procédé selon la revendication précédente, dans lequel le composé organique est choisi parmi l’acide maléique, le sorbitol, le xylitol, l’acide g-cétovalérique, le 5- hydroxyméthylfurfural et la 1 ,3-diméthyl-2-imidazolidinone. 9. The method of the preceding claim, wherein the organic compound is selected from maleic acid, sorbitol, xylitol, g-ketovaleric acid, 5-hydroxymethylfurfural and 1, 3-dimethyl-2-imidazolidinone.
10. Procédé selon l’une des revendications précédentes, dans lequel on réalise après l’étape c) une étape d) de séchage du catalyseur obtenu à l’étape c) à une température inférieure à 200° C. 10. Method according to one of the preceding claims, wherein after step c) is carried out a step d) of drying the catalyst obtained in step c) at a temperature below 200 ° C.
11. Procédé selon la revendication précédente, dans lequel on réalise une étape e) de calcination du catalyseur obtenu à l’étape d) à une température supérieure ou égale à 200°C et inférieure ou égale à 600 °C sous atmosphère inerte ou sous atmosphère contenant de l’oxygène. 11. Process according to the preceding claim, in which a stage e) of calcining the catalyst obtained in stage d) is carried out at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or under an inert atmosphere. oxygen-containing atmosphere.
12. Procédé selon l’une des revendications précédentes, dans lequel on réalise avant l’étape a) ou après l’étape c) une étape d’imprégnation à l’aide d’une solution d’imprégnation et dans laquelle on met en contact ledit support ou ledit catalyseur avec une solution d’imprégnation comprenant un métal du groupe VIB et/ou un métal du groupe VIII et/ou du phosphore et/ou un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre, suivi d’une étape de séchage à une température inférieure à 200°C et éventuellement d’une étape de calcination à une température supérieure ou égale à 200°C et inférieure ou égale à 600 °C sous atmosphère inerte ou sous atmosphère contenant de l’oxygène. 12. Method according to one of the preceding claims, wherein before step a) or after step c) an impregnation step is carried out with the aid of an impregnation solution and in which one puts in contacting said support or said catalyst with an impregnation solution comprising a metal from group VIB and / or a metal from group VIII and / or phosphorus and / or an organic compound comprising oxygen and / or nitrogen and / or sulfur, followed by a drying step at a temperature below 200 ° C and optionally by a calcination step at a temperature greater than or equal to 200 ° C and less than or equal to 600 ° C under an inert atmosphere or in an oxygen-containing atmosphere.
13. Procédé selon la revendication précédente, dans lequel le composé organique est choisi parmi la g-valérolactone, la 2-acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique, l’acide maléique, l’acide malonique, l’acide citrique, l’acide gluconique, le succinate de diméthyle, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide y- cétovalérique, le diméthylformamide, la 1-méthyl-2-pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2-furaldéhyde, le 5-hydroxyméthylfurfural, le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, l’acide ascorbique, le lactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2- hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1,3-diméthyl-2-imidazolidinone, la 1-(2- hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5-pyrrolidinedione, la 5-méthyl- 2(3H)-furanone, la 1-méthyl-2-pipéridinone et l’acide 4-aminobutanoïque. 13. Process according to the preceding claim, in which the organic compound is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid, maleic acid, l ' malonic acid, citric acid, gluconic acid, dimethyl succinate, glucose, fructose, sucrose, sorbitol, xylitol, y-ketovaleric acid, dimethylformamide, 1-methyl-2- pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde, 5-hydroxymethylfurfural, 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid , butyl lactate, ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 1-vinyl -2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1- (2-hydroxyethyl) -2-pyrrolidinone, 1- (2-hydroxyethyl) -2,5-pyrrolid inedione, 5-methyl-2 (3H) -furanone, 1-methyl-2-piperidinone, and 4-aminobutanoic acid.
14. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur est soumis à une étape de sulfuration après l’étape c) ou les éventuelles étapes d) et e). 14. Method according to one of the preceding claims, wherein the catalyst is subjected to a sulfurization step after step c) or optional steps d) and e).
15. Catalyseur obtenu selon le procédé de préparation selon les revendications 1 à 14. 15. Catalyst obtained according to the preparation process according to claims 1 to 14.
16. Utilisation du catalyseur préparé selon l’une des revendications 1 à 14 dans un procédé d’hydrotraitement et/ou d’hydrocraquage de coupes hydrocarbonées. 16. Use of the catalyst prepared according to one of claims 1 to 14 in a hydrotreatment and / or hydrocracking process of hydrocarbon cuts.
PCT/EP2020/084177 2019-12-17 2020-12-01 Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof WO2021121982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1914610 2019-12-17
FR1914610A FR3104465B1 (en) 2019-12-17 2019-12-17 Process for preparing a hydrotreatment and / or hydrocracking catalyst by impregnation in a molten medium

Publications (1)

Publication Number Publication Date
WO2021121982A1 true WO2021121982A1 (en) 2021-06-24

Family

ID=69811246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084177 WO2021121982A1 (en) 2019-12-17 2020-12-01 Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof

Country Status (2)

Country Link
FR (1) FR3104465B1 (en)
WO (1) WO2021121982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377692A (en) * 2021-12-21 2022-04-22 中海油天津化工研究设计院有限公司 Regeneration method for treating hydrogenation catalyst iron poisoning
CN116060093A (en) * 2021-10-31 2023-05-05 中国石油化工股份有限公司 Hydrocracking catalyst and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2139913A (en) * 1983-05-19 1984-11-21 Gulf Research Development Co Process for preparing catalysts
US20170001863A1 (en) * 2015-06-30 2017-01-05 Korea Institute Of Energy Research Methane steam reforming, using nickel/alumina nanocomposite catalyst or nickel/silica-alumina hybrid nanocomposite catalyst
RU2694370C2 (en) * 2017-12-06 2019-07-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Catalyst for deep hydrotreating of vacuum gas oil and method of its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2139913A (en) * 1983-05-19 1984-11-21 Gulf Research Development Co Process for preparing catalysts
US20170001863A1 (en) * 2015-06-30 2017-01-05 Korea Institute Of Energy Research Methane steam reforming, using nickel/alumina nanocomposite catalyst or nickel/silica-alumina hybrid nanocomposite catalyst
RU2694370C2 (en) * 2017-12-06 2019-07-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Catalyst for deep hydrotreating of vacuum gas oil and method of its preparation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY", vol. 18, 1991, pages: 61 - 64
GRIBOVALBLANCHARDGENGEMBREPAYENFOURNIERDUBOISBERNARD, JOURNAL OF CATALYSIS, vol. 188, 1999, pages 102
P.E. DE JONGHT.M. EGGENHUISEN: "Melt Infiltration : an Emerging Technique for the Préparation of Novel Functional Nanostructured Materials", ADV. MATER., vol. 25, 2013, pages 6672 - 6690, XP002799810 *
P.E. DE JONGHT.M. EGGENHUISEN: "Melt Infiltration : an Emerging Technique for the Préparation of Novel Functional Nanostructured Materials", ADV. MATER., vol. 25, 2013, pages 6672 - 6690, XP055713576, DOI: 10.1002/adma.201301912
XUE LIU ET AL: "Drying of Ni/Alumina Catalysts: Control of the Metal Distribution Using Surfactants and the Melt Infiltration Method", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 53, no. 14, 9 April 2014 (2014-04-09), pages 5792 - 5800, XP055716163, ISSN: 0888-5885, DOI: 10.1021/ie500099c *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060093A (en) * 2021-10-31 2023-05-05 中国石油化工股份有限公司 Hydrocracking catalyst and preparation method thereof
CN114377692A (en) * 2021-12-21 2022-04-22 中海油天津化工研究设计院有限公司 Regeneration method for treating hydrogenation catalyst iron poisoning

Also Published As

Publication number Publication date
FR3104465B1 (en) 2021-11-26
FR3104465A1 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
EP3288678B1 (en) Catalyst containing gamma-valerolactone and/or the hydrolysis products thereof, and use thereof in a hydroprocessing and/or hydrocracking method
EP3490707A1 (en) Catalyst made from an organic compound and use thereof in a hydroprocessing and/or hydrocracking method
WO2016173760A1 (en) Γ-ketovaleric acid-based catalyst and use thereof in a hydroprocessing and/or hydrocracking method
WO2020126680A1 (en) Method for rejuvenating a catalyst of a hydroprocessing and/or hydrocracking process
EP4263054A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
EP3713669A1 (en) Catalyst containing a furan compound and use thereof in a hydroprocessing and/or hydrocracking method
WO2021121982A1 (en) Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof
FR3121368A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst containing an organic compound by hydrothermal synthesis
FR3105931A1 (en) CATALYST BASED ON 2-HYDROXY-BUTANEDIOIC ACID OR 2-HYDROXY-BUTANEDIOIC ACID ESTERS AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS
EP3490708B1 (en) Catalyst based on acetlybutyrolactone and/or its hydrolysis products and the use thereof in a process of hydrotreating and/or hydrocracking
EP4171806B1 (en) Trimetallic catalyst made from nickel, molybdenum and tungsten and use thereof in a hydrotreatment and/or hydrocracking process
FR3083142A1 (en) CATALYST BASED ON 1,5-PENTANEDIOL DERIVATIVES AND ITS USE IN A HYDROPROCESSING AND / OR HYDROCRACKING PROCESS
WO2020002140A1 (en) Catalyst based on amine derivatives and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002137A1 (en) Catalyst based on a beta-oxygen ester and use thereof in a hydrotreating and/or hydrocracking process
WO2020002135A1 (en) Ascorbic acid derivative-based catalyst and use thereof in a hydroprocessing and/or hydrocracking process
WO2021121981A1 (en) Method for preparing a hydrotreating and/or hydrocracking catalyst by co-mulling in a melt, and catalyst obtained in the use thereof
WO2024017585A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
WO2024017586A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
FR3121367A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst by hydrothermal synthesis and addition of an organic compound
WO2020002138A1 (en) C5 or c6 acid ester-based catalyst and use thereof in a hydroprocessing and/or hydrocracking process
WO2020002136A1 (en) Catalyst based on a beta-substituted ester and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002139A1 (en) Catalyst additivated with alkyl lactate, preparation thereof and use thereof in a hydrotreating and/or hydrocracking process
FR3083141A1 (en) 5-METHYL-2 (3H) -FURANONE CATALYST AND USE THEREOF IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812366

Country of ref document: EP

Kind code of ref document: A1