[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021117411A1 - 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法 - Google Patents

面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法 Download PDF

Info

Publication number
WO2021117411A1
WO2021117411A1 PCT/JP2020/042261 JP2020042261W WO2021117411A1 WO 2021117411 A1 WO2021117411 A1 WO 2021117411A1 JP 2020042261 W JP2020042261 W JP 2020042261W WO 2021117411 A1 WO2021117411 A1 WO 2021117411A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting laser
surface emitting
mesa structure
substrate
reflector
Prior art date
Application number
PCT/JP2020/042261
Other languages
English (en)
French (fr)
Inventor
高橋 義彦
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021563805A priority Critical patent/JP7570351B2/ja
Priority to US17/773,312 priority patent/US20220393433A1/en
Publication of WO2021117411A1 publication Critical patent/WO2021117411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18325Between active layer and substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the technology according to the present disclosure (hereinafter, also referred to as “the present technology”) relates to a surface emitting laser, a surface emitting laser array, an electronic device, and a method for manufacturing a surface emitting laser.
  • Patent Document 1 discloses a surface-emitting laser in which impurities are heavily doped in a contact region adjacent to a mesa structure in contact with an electrode.
  • a surface emitting laser capable of efficiently injecting an electric current into the active layer while suppressing deterioration of the crystallinity of the layer laminated above the contact region, the surface emitting laser is arranged two-dimensionally. It is an object of the present invention to provide a surface emitting laser array and a method for manufacturing a surface emitting laser.
  • This technology uses the substrate and The mesa structure formed on the substrate and With The mesa structure is With at least a part of the first multilayer film reflector laminated on the substrate, The active layer laminated on the first multilayer film reflector and A second multilayer reflector laminated on the active layer, and Including A surface on which an impurity region is provided straddling a contact region adjacent to the mesa structure in contact with an electrode and a side wall portion of the mesa structure portion formed of the first multilayer film reflector.
  • a light emitting laser Provided is a light emitting laser.
  • the impurity region may be continuous from the contact region to the side wall portion.
  • the mesa structure includes the entire first multilayer film reflector, and the contact region may include a part of the substrate.
  • the mesa structure may include a portion other than the bottom of the first multilayer reflector, and the contact region may include a portion of the bottom of the first multilayer reflector.
  • the mesa structure includes the entire first multilayer reflector, further includes a contact layer disposed between the substrate and the first multilayer reflector, and the contact region is the contact layer. May include a portion of.
  • the contact region may include a part of the substrate.
  • the thickness of the contact layer may be 1 ⁇ m or less.
  • the impurity concentration in the impurity region may be less than 5 ⁇ 10 19 cm -3.
  • Another electrode may come into contact with the surface of the mesa structure on the same side as the side on which the electrode is arranged with respect to the contact region.
  • the substrate may be a semi-insulating substrate or a low-doped substrate.
  • the surface emitting laser may emit light to the side of the substrate opposite to the mesa structure side.
  • an AlGaAs-based compound semiconductor or a GaN-based compound semiconductor may be used.
  • the surface emitting laser may further include a current constriction layer arranged between the first multilayer film reflector and the second multilayer film reflector. At least one of the first and second multilayer reflectors may be a semiconductor multilayer reflector. At least one of the first and second multilayer reflectors may be a dielectric multilayer reflector.
  • the present technology also provides a surface emitting laser array in which the surface emitting lasers are arranged two-dimensionally.
  • the present technology also provides an electronic device including the surface emitting laser array.
  • at least a first multilayer reflector, an active layer, and a second multilayer reflector are laminated in this order on a substrate to form a laminate.
  • a contact layer is laminated between the substrate and the first multilayer reflector before the first multilayer reflector is laminated to form the second mesa structure.
  • the laminate on which the first mesa structure is formed may be etched until at least the contact layer is exposed.
  • At least a first multilayer reflector, an active layer, and a second multilayer reflector are laminated in this order on a substrate to form a laminate.
  • the contact layer is laminated on the substrate to form the mesa structure.
  • the laminate may be etched until at least the contact layer is exposed.
  • FIG. 5 is a cross-sectional view (No. 5) of each step of the first example of the method for manufacturing a surface emitting laser according to the first embodiment of the present technology.
  • 6 is a cross-sectional view (No.
  • FIG. 7 is a cross-sectional view (No. 7) of each step of the first example of the method for manufacturing a surface emitting laser according to the first embodiment of the present technology. It is sectional drawing (8) for each process of the 1st example of the manufacturing method of the surface emitting laser which concerns on 1st Embodiment of this technique. It is sectional drawing (9) for each process of the 1st example of the manufacturing method of the surface emitting laser which concerns on 1st Embodiment of this technique.
  • FIG. 16 is a cross-sectional view (No. 16) of each step of the first example of the method for manufacturing a surface emitting laser according to the first embodiment of the present technology. It is sectional drawing (17) for each process of the 1st example of the manufacturing method of the surface emitting laser which concerns on 1st Embodiment of this technique.
  • FIG. 5 is a cross-sectional view (No. 5) of each step of the second example of the method for manufacturing a surface emitting laser according to the first embodiment of the present technology.
  • 6 is a cross-sectional view (No. 6) of each step of the second example of the method for manufacturing a surface emitting laser according to the first embodiment of the present technology.
  • FIG. 7 is a cross-sectional view (No.
  • FIG. 1 is a cross-sectional view showing a configuration example of the surface emitting laser 10 according to the first embodiment of the present technology.
  • the surface emitting laser 10 includes a substrate 100 and a mesa structure 200 formed on the substrate 100.
  • the upper view of FIG. 1 is a plan view of a region corresponding to the mesa structure 200 of the surface emitting laser 10.
  • a case where a plurality of surface emitting lasers 10 form a surface emitting laser array in which a plurality of surface emitting lasers 10 are two-dimensionally arranged will be described as an example.
  • at least the substrate 100 is shared among the plurality of surface emitting lasers 10, and a plurality of mesa structures 200 are two-dimensionally arranged on the common substrate 100.
  • the surface emitting laser 10 emits light to the side of the substrate 100 opposite to the side of the mesa structure 200. That is, the surface emitting laser 10 is, for example, a back surface emitting type surface emitting laser that emits laser light to the back surface side (lower surface side) of the substrate 100.
  • the substrate 100 is a first conductive type (for example, p-type) GaAs substrate.
  • a substrate having low light absorption for example, a semi-insulating substrate.
  • a low-doped substrate a substrate having a low impurity concentration
  • a semi-insulating substrate is a substrate made of a compound semiconductor such as gallium arsenide or indium phosphide and containing no impurities (non-doped), and has a high resistivity (specific resistance: several M ⁇ / ⁇ ). Refers to the substrate shown.
  • the semi-insulating substrate not only has high electron mobility, but also exhibits high resistance, so that it is possible to suppress leakage current and ground capacitance. Therefore, as the substrate 100, for example, among the first conductive type GaAs substrates, it is particularly preferable to use a semi-insulating semi-insulating substrate or a low-doped substrate.
  • the mesa structure 200 includes a first multilayer film reflector 200a laminated on the substrate 100, an active layer 200b laminated on the first multilayer film reflector 200a, and a first laminated film reflector 200b. 2.
  • the multilayer film reflector 200c and the like are included.
  • a laser cavity is configured by including a first multilayer reflector 200a, an active layer 200b, and a second multilayer reflector 200c.
  • the mesa structure 200 has, for example, a substantially cylindrical shape, but may have other column shapes such as a substantially elliptical column shape and a polygonal column shape.
  • the first and second multilayer reflectors 200a and 200c are, for example, semiconductor multilayer reflectors.
  • the multilayer film reflector is also called a distributed Bragg reflector.
  • a semiconductor multilayer reflector which is a type of multilayer reflector (distributed Bragg reflector), has low light absorption, high reflectance, and conductivity.
  • the first multilayer film reflector 200a is, for example, a first conductive type (for example, p-type) semiconductor multilayer film reflector, in which a plurality of types (for example, two types) of semiconductor layers having different refractive indexes have different oscillation wavelengths. It has a structure in which alternating layers are laminated with an optical thickness of 1/4 wavelength.
  • Each refractive index layer of the first multilayer film reflector 200a is made of a first conductive type (for example, p type) AlGaAs-based compound semiconductor.
  • the active layer 200b has a quantum well structure including a barrier layer and a quantum well layer made of, for example, an AlGaAs-based compound semiconductor.
  • This quantum well structure may be a single quantum well structure (QW structure) or a multiple quantum well structure (MQW structure).
  • the second multilayer reflector 200c is, for example, a second conductive type (for example, n-type) semiconductor multilayer reflector, in which a plurality of types (for example, two types) of semiconductor layers having different refractive indexes have different oscillation wavelengths. It has a structure in which alternating layers are laminated with an optical thickness of 1/4 wavelength.
  • Each refractive index layer of the second multilayer film reflector 200c is made of a second conductive type (for example, n type) AlGaAs-based compound semiconductor.
  • the mesa structure 200 includes a current constriction layer 200d arranged between the first multilayer film reflector 200a and the active layer 200b.
  • Current confinement layer 200d is, for example, has a non-oxidized region 200d1 composed of AlAs of a first conductivity type (e.g., n-type), an oxidized region 200d2 of an oxide of AlAs surrounding the periphery (for example, Al 2 O 3) ..
  • the region adjacent to the mesa structure 200 and the mesa structure 200 (the region between the adjacent mesa structures 200) is covered with a series of insulating films 250 except for a part.
  • the insulating film 250 is made of, for example, SiO 2 , SiN, SiON, or the like.
  • a contact hole CH2 is formed in the insulating film 250 on the top of the mesa structure 200 (more specifically, the upper surface of the second multilayer reflector 200c), and the cathode electrode 300 is provided in the contact hole CH2 with the mesa structure 200. It is provided so as to contact the top of the.
  • the cathode electrode 300 may have a single-layer structure or a laminated structure.
  • the cathode electrode 300 is formed by at least one metal (including an alloy) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In. It is composed of.
  • the cathode electrode 300 has a laminated structure, for example, Ti / Au, Ti / Al, Ti / Al / Au, Ti / Pt / Au, Ni / Au, Ni / Au / Pt, Ni / Pt, Pd / Pt, It is composed of a material such as Ag / Pd.
  • the mesa structure 200 includes, for example, a contact layer 400 made of a GaAs-based material arranged between the substrate 100 and the first multilayer film reflector 200a.
  • the contact layer 400 is shared among the plurality of surface emitting lasers 10.
  • the contact layer 400 is located on the exit side of the mesa structure 200 that constitutes the laser resonator. Therefore, the thickness of the contact layer 400 is preferably 1 ⁇ m or less, more preferably 500 nm or less. When the thickness of the contact layer 400 is 1 ⁇ m or less, the light absorption in the contact layer 400 can be reduced, and thus the decrease in the light output can be suppressed.
  • the mesa structure 200 has, for example, an etching stop layer 500 arranged between the contact layer 400 and the first multilayer film reflector 200a.
  • the etching stop layer 500 is shared among the plurality of surface emitting lasers 10.
  • the upper portion of the etching stop layer 500 constitutes the bottom portion of the mesa structure 200.
  • the region between the adjacent mesa structures 200 on the substrate 100 includes the bottom surface of the contact hole CH1 which is a region not covered by the insulating film 250, and includes the anode electrode 600 and the region. Includes contact area CA in contact.
  • the contact region CA includes a part of the substrate 100 and a part of the contact layer 400.
  • the anode electrode 600 is provided so as to come into contact with the contact layer 400, for example, on the contact region CA, that is, in the contact hole CH1.
  • the anode electrode 600 is connected to an electrode pad (not shown) arranged around the surface emitting laser array by a metal wiring 700 patterned along a plurality of mesa structures 200.
  • the anode electrode 600 may have a single-layer structure or a laminated structure.
  • the anode electrode 600 includes at least one metal (including an alloy) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In. It is composed of.
  • the anode electrode 600 has a laminated structure, for example, Ti / Au, Ti / Al, Ti / Al / Au, Ti / Pt / Au, Ni / Au, Ni / Au / Pt, Ni / Pt, Pd / Pt, It is composed of a material such as Ag / Pd.
  • the cathode electrode 300 is in contact with the surface of the mesa structure 200 on the same side as the side on which the anode electrode 600 is arranged with respect to the contact region CA.
  • An impurity region 800 (a light black portion in FIG. 1) is provided straddling the contact region CA and the side wall portion 200a1 of the portion of the mesa structure 200 formed by the first multilayer film reflector 200a. ..
  • the “impurity region” means a region (high-concentration impurity region) having a higher impurity concentration than other regions (at least peripheral regions). More specifically, the impurity region 800 includes a contact region CA, a side wall portion 200a1, and a region between the contact region CA and the side wall portion 200a1.
  • the impurity region 800 is continuous from the contact region CA to the side wall portion 200a1. That is, the impurity region 800 includes a current path from the anode electrode 600 to the first multilayer film reflector 200a. As an example, the impurity region 800 is continuously formed over the entire circumferential direction of the mesa structure 200. The impurity region 800 may have a discontinuous portion (intermittent portion) in a part of the mesa structure 200 in the circumferential direction. As shown in FIG. 1, the side wall portion 200a1 corresponds to a region (non-oxidizing region 200d1 of the current constriction layer 200d) forming an optical waveguide in a portion of the mesa structure 200 composed of the first multilayer film reflector 200a. It is preferably the outer part of the region).
  • the impurity region 800 is composed of, for example, a metal such as Zn and an ion such as beryllium ion.
  • the impurity region 800 is continuous from the contact region CA to the side wall portion 200a1.
  • the impurity region 800 may have a discontinuous portion (intermittent portion) between the contact region CA and the side wall portion 200a1.
  • the impurity concentration of the impurity region 800 is preferably less than 5x10 19 cm -3 , more preferably less than 5x10 18 cm -3.
  • the impurity concentration of the impurity region 800 is preferably substantially uniform over the entire area of the impurity region 800, but may vary slightly.
  • FIGS. 2 to 24 are flowcharts for explaining the first example of the method for manufacturing the surface emitting laser 10.
  • 4 to 24 are cross-sectional views (process cross-sectional views) for each process of the first example of the method for manufacturing the surface emitting laser 10.
  • a plurality of surface emitting laser arrays are simultaneously generated on one wafer which is a base material of the substrate 100 by a semiconductor manufacturing method (at this time, a plurality of surface emitting lasers 10 of each surface emitting laser array). Is also generated at the same time).
  • a series of a plurality of surface emitting laser arrays are separated from each other to obtain a plurality of chip-shaped surface emitting laser arrays (surface emitting laser array chips).
  • the laminated body 1000 is generated. Specifically, by a chemical vapor deposition (CVD) method, for example, an organometallic vapor deposition (MOCVD) method, as shown in FIG. 4, a contact layer 400, an etching stop layer 500, and a first multilayer are formed on the substrate 100.
  • CVD chemical vapor deposition
  • MOCVD organometallic vapor deposition
  • a contact layer 400, an etching stop layer 500, and a first multilayer are formed on the substrate 100.
  • the film reflector 200a, the selected oxide layer 210, the active layer 200b, and the second multilayer film reflector 200c are laminated in this order.
  • the laminate 1000 is etched (for example, wet etching) to form the first mesa structure 150.
  • the resist pattern R1 is formed on the laminate 1000 taken out from the growth chamber by photolithography.
  • the second multilayer film reflector 200c, the active layer 200b, the selected oxide layer 210, and the first multilayer film reflection A part of the mirror 200a is selectively removed.
  • the first mesa structure 150 is formed.
  • the etching here was performed until the bottom surface of the etching was located in the first multilayer film reflector 200a (to a depth at which the etching stop layer 500 was not exposed).
  • the resist pattern R1 is removed.
  • an insulating film 240 made of, for example, SiO 2 is formed on the first mesa structure 150 and the region 350 adjacent thereto. Specifically, the insulating film 240 is formed over substantially the entire area of the laminate 1000 on which the first mesa structure 150 is formed.
  • the region 350 adjacent to the first mesa structure 150 is also referred to as an “adjacent region 350”.
  • the adjacent region 350 is between two adjacent first mesa structures 150 in a plan view.
  • the insulating film 240 formed in the adjacent region 350 is removed.
  • the resist pattern R2 is formed by photolithography in a region other than the region 350 adjacent to the first mesa structure 150.
  • the insulating film 240 formed in the adjacent region 350 is removed by etching using, for example, a hydrofluoric acid-based etchant.
  • the resist pattern R2 is removed.
  • impurities are diffused from the region 350 adjacent to the first mesa structure 150 to form the impurity region 800.
  • impurities such as Zn are injected from the adjacent region 350 and diffused.
  • the impurity injection rate and injection time are adjusted so that the impurity region 800 diffuses to the first multilayer film reflector 200a, the etching stop layer 500, the contact layer 400, and the substrate 100.
  • the insulating film 240 serves as a mask when impurities are diffused.
  • SiO 2 is used as the material of the insulating film 240, pore diffusion occurs from Ga at the SiO 2 interface due to diffusion, decompression, and heating, and impurities are likely to diffuse over a wide range.
  • the remaining insulating film 240 is removed. Specifically, the insulating film 240 formed in a region other than the adjacent region 350 is removed by using, for example, a hydrofluoric acid-based echant.
  • the laminate 1000 is further etched (for example, wet etching) to form a mesa structure 200 which is a second mesa structure instead of the first mesa structure 150.
  • a resist pattern R3 is formed in a region other than the adjacent region 350 by photolithography.
  • a sulfuric acid-based etchant is used to selectively remove the first multilayer film reflector 200a in the adjacent region 350.
  • the mesa structure 200 is formed.
  • the resist pattern R3 is removed.
  • the etching was stopped when the etching stop layer 500 was removed and the contact layer 400 was exposed.
  • the mesa structure 200 is also referred to as a “second mesa structure 200”.
  • the peripheral portion of the selected oxide layer 210 (see FIG. 16) is oxidized to generate the current constriction layer 200d.
  • the second mesa structure 200 is exposed to a water vapor atmosphere, the selected oxide layer 210 is oxidized (selectively oxidized) from the side surface, and the non-oxidized region 200d1 is surrounded by the oxidized region 200d2.
  • a layer 200d is formed.
  • the insulating film 250 is formed on the second mesa structure 200 and the contact region CA adjacent thereto. Specifically, the insulating film 250 is formed over substantially the entire area of the laminated body 1000.
  • the contact region CA is between two adjacent second mesa structures 200 in plan view.
  • the insulating film 250 on the second mesa structure 200 and the contact region CA adjacent to the second mesa structure 200 is removed to form a contact hole.
  • a resist pattern R4 is formed by photolithography in a region other than the contact region CA adjacent to the second mesa structure 200 and the top of the second mesa structure 200.
  • the insulating film 250 on the contact region CA and the insulating film 250 on the top of the second mesa structure 200 are removed by wet etching for electrode contact. Contact holes CH1 and CH2 are formed. Then, as shown in FIG. 21, the resist pattern R4 is removed.
  • the anode electrode 600 is provided in the contact region CA adjacent to the second mesa structure 200.
  • an Au / Ti film is formed in the contact region CA by, for example, an EB vapor deposition method, and the anode electrode 600 is formed in the contact hole CH1 by lifting off the resist and, for example, Au / Ti on the resist. To do.
  • the cathode electrode 300 is provided on the top of the second mesa structure 200. Specifically, for example, by forming an Au / Ti film on the top of the second mesa structure 200 by the EB vapor deposition method and lifting off the resist and Au / Ti on the resist, the second mesa structure is formed. A cathode electrode 300 is formed in the contact hole CH2 on the top of the 200.
  • a metal wiring 700 for connecting the anode electrode 600 provided in the contact region CA adjacent to the second mesa structure 200 and the electrode pad is formed.
  • processing such as annealing, thinning by polishing the back surface of the wafer (the surface opposite to the surface on the second mesa structure 200 side), and non-reflective coating on the back surface of the wafer is performed, and the surface is formed on one wafer.
  • a plurality of surface emitting laser arrays in which a plurality of surface emitting lasers 10 are two-dimensionally arranged are formed. After that, it is separated into a plurality of surface emitting laser array chips by dicing.
  • steps S11 and S12 may be reversed.
  • FIGS. 25 to 44 are flowcharts for explaining a second example of the method for manufacturing the surface emitting laser 10.
  • 27 to 44 are cross-sectional views (process cross-sectional views) for each process of the second example of the method for manufacturing the surface emitting laser 10.
  • a plurality of surface emitting laser arrays are simultaneously generated on one wafer which is a base material of the substrate 100 by a semiconductor manufacturing method (at this time, a plurality of surface emitting lasers 10 of each surface emitting laser array). Is also generated at the same time).
  • the plurality of surface emitting laser arrays are separated from each other to generate a plurality of chip-shaped surface emitting laser arrays (surface emitting laser array chips).
  • the laminated body 1000 is generated. Specifically, by a chemical vapor deposition (CVD) method, for example, an organometallic vapor deposition (MOCVD) method, as shown in FIG. 27, a contact layer 400, an etching stop layer 500, and a first multilayer are formed on the substrate 100.
  • CVD chemical vapor deposition
  • MOCVD organometallic vapor deposition
  • a contact layer 400, an etching stop layer 500, and a first multilayer are formed on the substrate 100.
  • the film reflector 200a, the selected oxide layer 210, the active layer 200b, and the second multilayer film reflector 200c are laminated in this order.
  • the laminate 1000 is etched (for example, wet etching) to form the mesa structure 200.
  • a resist pattern R1' is formed on the laminate 1000 taken out from the growth chamber by photolithography.
  • a mask for example, using a sulfuric acid-based etchant, a second multilayer reflector 200c, an active layer 200b, a selected oxide layer 210, and a first multilayer film are used.
  • the reflector 200a is selectively removed.
  • the mesa structure 200 is formed.
  • the etching was stopped when the etching stop layer 500 was removed and the contact layer 400 was exposed.
  • the resist pattern R1' is removed.
  • an insulating film 240 made of, for example, SiO 2 is formed on the mesa structure 200 and the contact region CA adjacent thereto. Specifically, the insulating film 240 is formed over substantially the entire area of the laminated body 1000.
  • the contact region CA is between two adjacent mesa structures 200 in a plan view.
  • the insulating film 240 formed on the contact region CA is removed. Specifically, as shown in FIG. 32, a resist pattern R2'is formed by photolithography in a region other than the contact region CA adjacent to the mesa structure 200. Next, as shown in FIG. 33, the insulating film 240 formed on the contact region CA is removed by wet etching using the resist pattern R2'as a mask. Then, as shown in FIG. 34, the resist pattern R2'is removed.
  • impurities are diffused from the contact region CA adjacent to the mesa structure 200 to form the impurity region 800.
  • impurities such as Zn are injected from the contact region CA and diffused.
  • the impurity injection rate and injection time are adjusted so that the impurity region 800 diffuses to the contact layer 400, the substrate 100, the etching stop layer 500, and the side wall portion 200a1 of the first multilayer film reflector 200a.
  • the insulating film 240 serves as a mask when impurities are diffused.
  • the impurities are diffused from the first multilayer film reflector 200a in the region 350 adjacent to the first mesa structure 150 after the first etching, the impurities are the selected oxide layer 210. Can also be spread.
  • the contact layer 400 is etched until it is exposed to form the second mesa structure 200, and then the impurities are diffused from the contact region CA, so that the impurities are diffused to the selected oxide layer 210. It is unlikely to be done.
  • the remaining insulating film 240 is removed. Specifically, the insulating film 240 formed in a region other than the contact region CA is removed.
  • the peripheral portion of the selected oxide layer 210 (see FIG. 36) is oxidized to generate the current constriction layer 200d.
  • the mesa structure 200 is exposed to a water vapor atmosphere, the selected oxide layer 210 is oxidized (selectively oxidized) from the side surface, and the current constriction layer 200d in which the non-oxidized region 200d1 is surrounded by the oxidized region 200d2 is formed.
  • the insulating film 250 is formed on the mesa structure 200 and the contact region CA adjacent thereto. Specifically, the insulating film 250 is formed over substantially the entire area of the laminate 1000 on which the mesa structure 200 is formed.
  • the contact region CA is between two adjacent mesa structures 200 in a plan view.
  • the insulating film 250 on the mesa structure 200 and the contact region CA adjacent to the mesa structure 200 is removed to form a contact hole.
  • a resist pattern R3' is formed by photolithography in a region other than the contact region CA adjacent to the mesa structure 200 and the top of the mesa structure 200.
  • the insulating film 250 on the contact region CA and the insulating film 250 on the top of the mesa structure 200 are removed by wet etching to remove the contact hole for the electrode contact. CH1 and CH2 are formed.
  • the anode electrode 600 is provided on the contact region CA adjacent to the mesa structure 200.
  • an Au / Ti film is formed in the contact region CA by an EB vapor deposition method, and the resist and Au / Ti on the resist are lifted off to form an anode electrode 600 in the contact hole CH1.
  • the cathode electrode 300 is provided on the top of the mesa structure 200. Specifically, for example, an Au / Ti film is formed on the top of the mesa structure 200 by the EB vapor deposition method, and the resist and Au / Ti on the resist are lifted off to make a contact on the top of the mesa structure 200. A cathode electrode 300 is formed in the hole CH2.
  • a metal wiring 700 for connecting the anode electrode 600 provided in the contact region CA adjacent to the mesa structure 200 and the electrode pad is formed.
  • processing such as annealing, thinning of the substrate by polishing the back surface of the substrate 100 (the surface opposite to the surface on the second mesa structure 200 side), and non-reflective coating on the back surface of the substrate 100 is performed, and one sheet is formed.
  • a plurality of surface emitting laser arrays in which a plurality of surface emitting lasers 10 are two-dimensionally arranged are formed on the wafer. After that, it is separated into a plurality of surface emitting laser array chips by dicing.
  • steps S30 and S31 may be reversed.
  • the contact region CA is provided from the electrode pads arranged around the surface emitting laser array via the metal wiring 700 and the anode electrode 600. Current is injected into.
  • the current injected into the contact region CA is injected into the active layer 200b via the low resistance impurity region 800 and the first multilayer film reflector 200a.
  • the active layer 200b emits light and the light is amplified while being repeatedly reflected between the first and second multilayer film reflectors 200a and 200c to satisfy the oscillation conditions, it is used as laser light from the substrate 100 side. Be ejected.
  • the surface emitting laser 10 comprises a substrate 100 and a mesa structure 200 formed on the substrate 100. Be prepared.
  • the mesa structure 200 includes a first multilayer film reflector 200a laminated on the substrate 100, an active layer 200b laminated on the first multilayer film reflector 200a, and a second multilayer film 200b laminated on the active layer 200b. Includes a multilayer film reflector 200c and the like.
  • An impurity region 800 is provided across the contact region CA adjacent to the mesa structure 200, which is in contact with the anode electrode 600, and the side wall portion 200a1 of the portion of the mesa structure 200, which is composed of the first multilayer film reflector 200a. Has been done. As a result, the resistance of the current path from the contact region CA to the active layer 200b from the contact region CA to the side wall portion 200a1 is reduced, so that the current can be efficiently injected into the active layer 200b. In this case, even if the impurity concentration in the impurity region 800 is relatively low, the current can be efficiently injected into the active layer 200b. As a result, according to the surface emitting laser 10, the current can be efficiently injected into the active layer 200b while suppressing the deterioration of the crystallinity of the layer laminated above the contact region CA.
  • the impurity region 800 is continuous from the contact region CA to the side wall portion 200a1. As a result, the resistance is lowered in the entire area between the contact region CA and the side wall portion 200a1, so that the current can be injected into the active layer 200b more efficiently.
  • the mesa structure 200 includes the entire first multilayer film reflector 200a, and the contact region CA includes a part of the substrate 100.
  • the mesa structure 200 includes the entire first multilayer reflector 200a, and the surface emitting laser 10 further includes a contact layer 400 arranged between the substrate 100 and the first multilayer reflector 200a, and contacts.
  • Region CA includes a portion of the contact layer 400. Further, the contact area includes a part of the substrate 100.
  • the thickness of the contact layer 400 is 1 ⁇ m or less. In this case, the resistance of the contact layer 400 itself becomes high, but the light absorption by the contact layer 400 can be suppressed. Even if the resistance of the contact layer 400 itself becomes high, the resistance of the contact layer 400 does not become so high or becomes low substantially in the current path because the low resistance impurity region 800 extends to the contact layer 400.
  • the impurity concentration of the impurity region 800 is less than 5x10 19 cm -3. As a result, deterioration of crystallinity of the layers laminated above the contact region CA (for example, the first multilayer reflector 200a, the active layer 200b, and the second multilayer reflector 200c) can be more reliably suppressed. it can.
  • Another cathode electrode 300 comes into contact with the surface of the mesa structure 200 on the same side as the side on which the anode electrode 600 is arranged with respect to the contact region CA. As a result, it is possible to suppress an increase in the size of the surface emitting laser 10 as compared with the case where both electrodes are arranged on opposite surfaces, for example.
  • the substrate 100 is a semi-insulating substrate or a low-doped substrate. Thereby, the light absorption by the substrate 100 can be suppressed.
  • the surface emitting laser 10 emits light to the side of the substrate 100 opposite to the side of the mesa structure 200.
  • the cathode electrode 300 can be arranged larger than, for example, a surface emitting laser that emits light from the top of the mesa structure, and a current can flow in a wider range of the mesa structure, resulting in an increase in light output. Can be planned.
  • An AlGaAs-based compound semiconductor is used for the surface emitting laser 10.
  • the surface emitting laser 10 further includes a current constriction layer 200d arranged between the first multilayer film reflector 200a and the second multilayer film reflector 200c. Since the current constriction layer 200d has a function of confining light and electrons in a narrow region, the surface emitting laser 10 can reduce the threshold current of laser oscillation.
  • the first and second multilayer reflectors 200a and 200c are both semiconductor multilayer reflectors. Thereby, at least the conductivity of the current path from the contact region CA to the active layer 200b can be improved.
  • the surface emitting laser array in which the surface emitting lasers 10 are arranged two-dimensionally, a surface emitting laser array with high efficiency and low power consumption can be realized.
  • the first multilayer film reflecting mirror 200a, the active layer 200b, and the second multilayer film reflecting mirror 200c are laminated in this order on the substrate 100 to form the laminated body 1000.
  • the contact layer 400 is laminated on the substrate 100 before the first multilayer film reflector 200a is laminated on the substrate 100, and the second mesa structure 200 is formed.
  • the laminate 1000 is etched until at least the contact layer 400 is exposed.
  • the anode electrode 600 can be provided on the contact layer 400.
  • At least the first multilayer film reflecting mirror 200a, the active layer 200b, and the second multilayer film reflecting mirror 200c are laminated in this order on the substrate 100 to form the laminated body 1000.
  • the mesa structure 200 is formed by one etching, the man-hours can be reduced. Further, since the impurities are injected from the contact region CA adjacent to the mesa structure 200, it is possible to suppress the impurities from diffusing to the selected oxide layer 210.
  • the contact layer 400 is laminated on the substrate 100 before the first multilayer film reflector 200a is laminated on the substrate 100 to form the mesa structure 200. Then, the laminate 1000 is etched until the contact layer 400 is exposed. As a result, the anode electrode 600 can be provided on the contact layer 400.
  • the surface emitting laser 20 according to the second embodiment has the same configuration as the surface emitting laser 10 according to the first embodiment, except that it does not have the contact layer 400. .. That is, in the surface emitting laser 20, the mesa structure 220 includes the entire first multilayer film reflector 200a, and the contact region CA1 includes a part of the substrate 100. Here, the contact region CA1 also includes a part of the etching stop layer 500. In the surface emitting laser 20, the upper surface (bottom surface of the contact hole CH1) of the contact region CA1 (here, between two adjacent mesa structures 20 in a plan view) adjacent to the mesa structure 220 is located in the substrate 100.
  • the impurity region 820 includes a part of the substrate 100, a part of the etching stop layer 500, and a side wall portion 200a1 of the first multilayer film reflector 200a.
  • the surface emitting laser 20 can also be produced by a manufacturing method according to the first and second examples of the manufacturing method of the surface emitting laser 10 (however, excluding the step of laminating the contact layer 400). According to the surface emitting laser 20 according to the second embodiment, the same effect as that of the surface emitting laser 10 can be obtained, and the man-hours at the time of manufacturing can be reduced because the contact layer 400 is not laminated. 3. 3. ⁇ Surface emitting laser according to the third embodiment of the present technology> As shown in FIG.
  • the surface emitting laser 30 according to the third embodiment does not have the contact layer 400 and the etching stop layer 500, unlike the surface emitting laser 10 according to the first embodiment.
  • the mesa structure 230 includes a portion other than the bottom portion (lower portion) of the first multilayer film reflector 200a (including the upper portion of the first multilayer film reflector 200a), and the contact region CA2 , Includes a portion of the bottom of the first multilayer reflector 200a.
  • the mesa structure 230 is substantially the same as the first mesa structure 150 described in the first example of the method for manufacturing the surface emitting laser 10.
  • the upper surface (bottom surface of the contact hole CH1) of the contact region CA2 (here, between two adjacent mesa structures 230 in a plan view) adjacent to the mesa structure 230 is the first multilayer. It is located in the membrane reflector 200a.
  • the contact region CA2 includes a part of the substrate 100 and a part of the lower part of the first multilayer film reflector 200a.
  • the contact region CA2 does not have to include a part of the substrate 100. According to the surface emitting laser 20, the same effect as that of the surface emitting laser 10 can be obtained, and the man-hours at the time of manufacturing can be further reduced as compared with the second embodiment because the contact layer 400 and the etching stop layer 500 are not laminated. it can.
  • the impurity region 830 includes the lower portion of the first multilayer film reflector 200a, the side wall portion 200a1, and a part of the substrate 100.
  • the surface emitting laser 30 can be manufactured by a method according to the first example of the method for manufacturing the surface emitting laser 10 described above (however, the region 350 adjacent to the first mesa structure 150 is the contact region CA2). it can.
  • the bottom surface (etching bottom surface) of the contact hole CH1 which is the top surface of the contact region CA3 is located in the etching stop layer 500.
  • the impurity region 850 includes a part of the etching stop layer 500, a part of the contact layer 400, a part of the substrate 100, and a side wall portion 200a1 of the first multilayer film reflector 200a. Also in the surface emitting laser 10A, the impurity region 850 reduces the resistance of the current path from the contact region CA3 to the side wall portion 200a1, so that the current can efficiently flow from the anode electrode 600 to the active layer 200b. ..
  • the bottom surface (etched bottom surface) of the contact hole CH1 which is the upper surface of the contact region CA4 is located in the contact layer 400.
  • the impurity region 860 includes a part of the etching stop layer 500, a part of the contact layer 400, a part of the substrate 100, and a side wall portion 200a1 of the first multilayer film reflector 200a. Also in the surface emitting laser 10B, the impurity region 860 reduces the resistance of the current path from the contact region CA4 to the side wall portion 200a1, so that the current can efficiently flow from the anode electrode 600 to the active layer 200b. ..
  • the bottom surface (etched bottom surface) of the contact hole CH1 which is the upper surface of the contact region CA5 is located in the substrate 100.
  • the impurity region 870 includes a part of the etching stop layer 500, a part of the contact layer 400, a part of the substrate 100, and a side wall portion 200a1 of the first multilayer film reflector 200a. Also in the surface emitting laser 10C, the impurity region 870 reduces the resistance of the current path from the contact region CA5 to the side wall portion 200a1, so that the current can efficiently flow from the anode electrode 600 to the active layer 200b. ..
  • both the first and second multilayer reflectors 200a and 200c are semiconductor multilayer reflectors, but the present invention is not limited to this.
  • the first multilayer film reflector 200a may be a semiconductor multilayer film reflector
  • the second multilayer film reflector 200c may be a dielectric multilayer film reflector.
  • a dielectric multilayer mirror is also a type of distributed Bragg reflector.
  • the first multilayer film reflector 200a may be a dielectric multilayer film reflector
  • the second multilayer film reflector 200c may be a semiconductor multilayer film reflector.
  • both the first and second multilayer reflectors 200a and 200b may be dielectric multilayer reflectors.
  • the semiconductor multilayer film reflector has low light absorption and has conductivity. From this point of view, the semiconductor multilayer reflector is suitable for the first multilayer reflector 200a which is on the exit side (back surface side) and on the current path from the anode electrode 600 to the active layer 200b. On the other hand, the dielectric multilayer film reflector has extremely little light absorption. From this point of view, the dielectric multilayer film reflector is suitable for the first multilayer film reflector 200 on the exit side (back surface side).
  • a back surface emitting type surface emitting laser that emits laser light from the substrate side has been described as an example, but the present technology has a surface emitting type surface that emits laser light from the mesa structure side. It can also be applied to light emitting lasers.
  • the electrode provided on the top of the mesa structure is formed into an annular shape or a frame shape to form an outlet inside the electrode, or the electrode provided on the top of the mesa structure is set to the oscillation wavelength.
  • the surface emitting laser 10 using an AlGaAs-based compound semiconductor has been described as an example, but the present technology can also be applied to, for example, a surface emitting laser using a GaN-based compound semiconductor. ..
  • a GaN-based semiconductor multilayer film reflector may be used for at least one of the first and second multilayer film reflectors 200a and 200b, or the first and second multilayer film reflectors 200a and 200b may be used.
  • a GaN-based dielectric multilayer film reflector may be used for at least one of them.
  • Examples of the GaN-based compound semiconductor used for at least one of the first and second multilayer film reflectors 200a and 200b include GaN / AlGaN and the like.
  • the surface emitting laser array in which the surface emitting lasers 10 are two-dimensionally arranged has been described as an example, but the present invention is not limited to this. This technique can be applied to a surface emitting laser array in which surface emitting lasers 10 are arranged one-dimensionally, a single surface emitting laser 10, and the like.
  • the surface emitting laser according to each of the above-described embodiments of the present technology and each of the above-described modifications can be applied to an electronic device that emits laser light, such as a TOF (Time Of Flight) sensor.
  • a TOF sensor When applied to a TOF sensor, for example, it can be applied to a distance image sensor by a direct TOF measurement method and a distance image sensor by an indirect TOF measurement method.
  • the distance image sensor by the direct TOF measurement method since the arrival timing of the photon is obtained directly in the time domain in each pixel, an optical pulse having a short pulse width is transmitted from the light source, and an electric pulse is generated by the light receiving element.
  • the present disclosure can be applied to the light source at that time. Further, in the indirect TOF method, the flight time of light is measured by utilizing a semiconductor element structure in which the amount of detection and accumulation of carriers generated by light changes depending on the arrival timing of light. The present disclosure can also be applied as a light source when such an indirect TFO method is used.
  • the surface emitting laser according to this technology is the TOF sensor mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, etc. It may be realized as a light source.
  • the surface emitting laser according to the present technology may be realized as a light source of a device (for example, a laser printer, a laser copying machine, a projector, a head-mounted display, a head-up display, etc.) that forms or displays an image by a laser beam.
  • a device for example, a laser printer, a laser copying machine, a projector, a head-mounted display, a head-up display, etc.
  • the present technology can also have the following configurations.
  • This technology uses a substrate and The mesa structure formed on the substrate and With The mesa structure is With at least a part of the first multilayer film reflector laminated on the substrate, The active layer laminated on the first multilayer film reflector and A second multilayer reflector laminated on the active layer, and Including A surface on which an impurity region is provided straddling a contact region adjacent to the mesa structure in contact with an electrode and a side wall portion of the mesa structure portion formed of the first multilayer film reflector. Luminous laser.
  • the surface emitting laser according to (1) or (2) wherein the mesa structure includes the entire first multilayer film reflector, and the contact region includes a part of the substrate.
  • the mesa structure includes a portion other than the bottom portion of the first multilayer film reflector, and the contact region includes a part of the bottom portion of the first multilayer film reflector, (1) or.
  • the surface emitting laser according to (2) (5)
  • the mesa structure includes the entire first multilayer film reflecting mirror, further includes a contact layer arranged between the substrate and the first multilayer film reflecting mirror, and the contact region comprises a contact layer.
  • the surface emitting laser according to (1) or (2) which comprises a part of the contact layer.
  • the surface emitting laser further includes a current constriction layer arranged between the first multilayer film reflector and the second multilayer film reflector, according to (1) to (12). The surface emitting laser according to any one.
  • An electronic device including the surface emitting laser array according to (16).
  • a step of providing an electrode on a region adjacent to the second mesa structure and A method for manufacturing a surface emitting laser including. (19) In the step of forming the laminated body, a contact layer is laminated between the substrate and the first multilayer film reflector before the first multilayer reflector is laminated on the substrate, and the second mesa structure is formed. The method for producing a surface emitting laser according to (18), wherein in the step of forming the first mesa structure, the laminated body on which the first mesa structure is formed is etched until at least the contact layer is exposed. (20) A step of laminating at least a first multilayer film reflector, an active layer, and a second multilayer film reflector on a substrate in this order to form a laminate.
  • a contact layer is laminated between the substrate and the first multilayer film reflector before laminating the first multilayer film reflector to form the mesa structure.
  • 10 Surface emitting laser, 100: Substrate, 150: First mesa structure, 200: Second mesa structure (mesa structure), 200a: First multilayer film reflector, 200b: Active layer, 200c: Second Multilayer film reflector, 200d: current constriction layer, 400: contact layer, 600: anode electrode (electrode), 800: impurity region, 1000: laminate, CA, CA1, CA2, CA3, CA4, CA5: contact region.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

コンタクト領域の上方に積層される層の結晶性の悪化を抑制しつつ活性層に効率良く電流を注入することができる面発光レーザ、該面発光レーザが2次元配列された面発光レーザアレイ及び面発光レーザの製造方法を提供する。 本技術は、基板100と、前記基板100上に形成されたメサ構造200と、を備え、前記メサ構造200は、前記基板100上に積層された第1の多層膜反射鏡200aの少なくとも一部と、前記第1の多層膜反射鏡200a上に積層された活性層200bと、前記活性層200b上に積層された第2の多層膜反射鏡200cと、を含み、前記メサ構造200に隣接する、電極600と接触するコンタクト領域CAと、前記メサ構造200の、前記第1の多層膜反射鏡200aで構成される部分の側壁部と、に跨って不純物領域800が設けられている、面発光レーザを提供する。

Description

面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法
 本開示に係る技術(以下「本技術」とも呼ぶ)は、面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法に関する。
 従来、基板と該基板上に形成されたメサ構造とを有する面発光レーザが知られている。
 例えば特許文献1には、メサ構造に隣接する、電極と接触するコンタクト領域に不純物が高濃度にドーピングされた面発光レーザが開示されている。
特開平10-223975号公報
 しかしながら、特許文献1に開示されている面発光レーザでは、コンタクト領域の上方の位置(コンタクト領域よりも基板から離れた位置)に積層される層の結晶性の悪化を抑制しつつ活性層に効率良く電流を注入することができなかった。
 そこで、本技術は、コンタクト領域の上方に積層される層の結晶性の悪化を抑制しつつ活性層に効率良く電流を注入することができる面発光レーザ、該面発光レーザが2次元配列された面発光レーザアレイ及び面発光レーザの製造方法を提供することを目的とする。
 本技術は、基板と、
 前記基板上に形成されたメサ構造と、
 を備え、
 前記メサ構造は、
 前記基板上に積層された第1の多層膜反射鏡の少なくとも一部と、
 前記第1の多層膜反射鏡上に積層された活性層と、
 前記活性層上に積層された第2の多層膜反射鏡と、
 を含み、
 前記メサ構造に隣接する、電極と接触するコンタクト領域と、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部と、に跨って不純物領域が設けられている、面発光レーザを提供する。
 前記不純物領域は、前記コンタクト領域から前記側壁部にかけて連続していてもよい。
 前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、前記コンタクト領域は、前記基板の一部を含んでいてもよい。
 前記メサ構造は、前記第1の多層膜反射鏡の底部以外の部分を含み、前記コンタクト領域は、前記第1の多層膜反射鏡の前記底部の一部を含んでいてもよい。
 前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、前記基板と前記第1の多層膜反射鏡との間に配置されたコンタクト層を更に備え、前記コンタクト領域は、前記コンタクト層の一部を含んでいてもよい。
 前記コンタクト領域は、前記基板の一部を含んでいてもよい。
 前記コンタクト層の厚さが1μm以下であってもよい。
 前記不純物領域の不純物濃度は、5x1019cm-3未満であってもよい。
 前記メサ構造の、前記コンタクト領域に対して前記電極が配置される側と同じ側の面に別の電極が接触してもよい。
 前記基板は、半絶縁性基板又は低ドープ基板であってもよい。
 前記面発光レーザは、前記基板の、前記メサ構造側とは反対側へ光を出射するものであってもよい。
 前記面発光レーザは、AlGaAs系化合物半導体又はGaN系化合物半導体が用いられていてもよい。
 前記面発光レーザは、前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に配置された電流狭窄層を更に備えていてもよい。
 前記第1及び第2の多層膜反射鏡の少なくとも一方は、半導体多層膜反射鏡であってもよい。
 前記第1及び第2の多層膜反射鏡の少なくとも一方は、誘電体多層膜反射鏡であってもよい。
 本技術は、前記面発光レーザが2次元配列されている面発光レーザアレイも提供する。
 本技術は、前記面発光レーザアレイを備える電子機器も提供する。
 本技術は、基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体を少なくとも前記第1多層膜反射鏡の側面の一部が露出するまでエッチングして第1のメサ構造を形成する工程と、
 前記第1のメサ構造及び該第1のメサ構造に隣接する領域に絶縁膜を成膜する工程と、
 前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
 前記隣接する領域から、前記第1のメサ構造の、前記第1多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
 さらに前記積層体を少なくとも 前記第1の多層膜反射鏡の側面の他部が露出するまでエッチングして前記第1のメサ構造に代わる第2のメサ構造を形成生成する工程と、
 前記第2のメサ構造に隣接する領域上に電極を設ける工程と、
 を含む、面発光レーザの製造方法も提供する。
 前記積層体を生成する工程では、前記基板上にと前記第1の多層膜反射鏡を積層する前に前記基板上にとの間にコンタクト層を積層し、前記第2のメサ構造を形成する工程では、前記第1のメサ構造が形成された前記積層体を少なくとも前記コンタクト層が露出するまでエッチングしてもよい。
 本技術は、基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体を少なくとも前記第1多層膜反射鏡の側面の少なくとも一部が露出するまでエッチングしてメサ構造を形成する工程と、
 前記メサ構造及び該メサ構造に隣接する領域に絶縁膜を成膜する工程と、
 前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
 前記隣接する領域から、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
 前記隣接する領域上に電極を設ける工程と、
 を含む、面発光レーザの製造方法も提供する。
 前記積層体を生成する工程では、前記基板上にと前記第1の多層膜反射鏡を積層する前に前記基板上にとの間にコンタクト層を積層し、前記メサ構造を形成する工程では、前記積層体を少なくとも前記コンタクト層が露出するまでエッチングしてもよい。
本技術の第1の実施形態に係る面発光レーザの構成例を示す断面図である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例を説明するためのフローチャートの前半である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例を説明するためのフローチャートの後半である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その1)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その2)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その3)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その4)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その5)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その6)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その7)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その8)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その9)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その10)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その11)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その12)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その13)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その14)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その15)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その16)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その17)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その18)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その19)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その20)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例の工程毎の断面図(その21)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例を説明するためのフローチャートの前半である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例を説明するためのフローチャートの後半である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その1)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その2)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その3)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その4)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その5)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その6)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その7)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その8)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その9)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その10)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その11)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その12)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その13)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その14)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その15)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その16)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その17)である。 本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例の工程毎の断面図(その18)である。 本技術の第2の実施形態に係る面発光レーザの構成例を示す断面図である。 本技術の第3の実施形態に係る面発光レーザの構成例を示す断面図である。 本技術の第1実施形態の変形例1に係る面発光レーザの構成例を示す断面図である。 本技術の第1実施形態の変形例2に係る面発光レーザの構成例を示す断面図である。 本技術の第1実施形態の変形例3に係る面発光レーザの構成例を示す断面図である。
 以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本明細書において、本技術に係る面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法の各々が複数の効果を奏することが記載される場合でも、本技術に係る面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法の各々は、少なくとも1つの効果を奏すればよい。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。
 また、以下の順序で説明を行う。
1.本技術の第1の実施形態に係る面発光レーザ
(1)本技術の第1の実施形態に係る面発光レーザの構成
(2)本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例
(3)本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例
(4)本技術の第1の実施形態に係る面発光レーザの作用
(5)本技術の第1の実施形態に係る面発光レーザの効果
2.本技術の第2の実施形態に係る面発光レーザ
3.本技術の第3の実施形態に係る面発光レーザ
4.本技術に係る面発光レーザの変形例
5.本技術を適用した面発光レーザの使用例
電子機器への応用例
1.<本技術の第1実施形態に係る面発光レーザ>
・ 面発光レーザの構成
 図1は、本技術の第1の実施形態に係る面発光レーザ10の構成例を示す断面図である。以下では、便宜上、図1等の断面図における上方を上、下方を下として説明する。
 面発光レーザ10は、図1に示すように、基板100と、該基板100上に形成されたメサ構造200と、を備えている。なお、図1上図は、面発光レーザ10のメサ構造200に対応する領域の平面図である。
 以下では、複数の面発光レーザ10が2次元配列された面発光レーザアレイを構成している場合を例にとって説明する。
 この場合には、複数の面発光レーザ10間で少なくとも基板100を共有し、共通の基板100上に複数のメサ構造200が2次元配列された状態となっている。
 面発光レーザ10は、一例として、基板100の、メサ構造200側とは反対側へ光を出射する。すなわち、面発光レーザ10は、一例として、基板100の裏面側(下面側)へレーザ光を出射する裏面出射型の面発光レーザである。
 基板100は、一例として、第1導電型(例えばp型)のGaAs基板である。
 ここで、基板100は、後述するようにレーザ共振器を構成するメサ構造200の出射側に位置するため、光吸収性の低い基板(光出力の低下を抑制できる基板)、例えば半絶縁性基板又は低ドープ基板(不純物濃度が低い基板)であることが好ましい。
 半絶縁性基板とは、ヒ化ガリウムやリン化インジウム等の化合物半導体を材料とする、不純物を含まない(ドーピングされていない)基板であって、高抵抗(比抵抗:数MΩ/□)を示す基板をいう。半絶縁性基板は、高い電子移動度を持っているだけでなく、高抵抗を示すためリーク電流や対地容量を抑えることも可能である。
 そこで、基板100として、例えば第1導電型のGaAs基板の中でも、特に、半絶縁半絶縁性基板又は低ドープ基板を用いることが好ましい。
 メサ構造200は、基板100上に積層された第1の多層膜反射鏡200aと、第1の多層膜反射鏡200a上に積層された活性層200bと、該活性層200b上に積層された第2の多層膜反射鏡200cと、を含む。
 第1の多層膜反射鏡200aと活性層200bと第2の多層膜反射鏡200cとを含んで、レーザ共振器が構成される。
 メサ構造200は、例えば略円柱形状であるが、例えば略楕円柱形状、多角柱形状等の他の柱形状であってもよい。
 第1及び第2の多層膜反射鏡200a、200cは、一例として、いずれも半導体多層反射鏡である。多層膜反射鏡は、分布型ブラッグ反射鏡(Distributed Bragg Reflector)とも呼ばれる。多層膜反射鏡(分布ブラッグ反射鏡)の一種である半導体多層膜反射鏡は、光吸収が少なく、高反射率及び導電性を有する。
 第1の多層膜反射鏡200aは、一例として、第1導電型(例えばp型)の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層が発振波長の1/4波長の光学厚さで交互に積層された構造を有する。第1の多層膜反射鏡200aの各屈折率層は、第1導電型(例えばp型)のAlGaAs系化合物半導体からなる。
 活性層200bは、例えばAlGaAs系化合物半導体からなる障壁層及び量子井戸層を含む量子井戸構造を有する。この量子井戸構造は、単一量子井戸構造(QW構造)であってもよいし、多重量子井戸構造(MQW構造)であってもよい。
 第2の多層膜反射鏡200cは、一例として、第2導電型(例えばn型)の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層が発振波長の1/4波長の光学厚さで交互に積層された構造を有する。第2の多層膜反射鏡200cの各屈折率層は、第2導電型(例えばn型)のAlGaAs系化合物半導体からなる。
 さらに、メサ構造200は、第1の多層膜反射鏡200aと活性層200bとの間に配置された電流狭窄層200dを含む。
 電流狭窄層200dは、一例として、第1導電型(例えばn型)のAlAsからなる非酸化領域200d1と、その周囲を取り囲むAlAsの酸化物(例えばAl)からなる酸化領域200d2を有する。
 メサ構造200及びメサ構造200に隣接する領域(隣り合うメサ構造200間の領域)は、一部を除いて一連の絶縁膜250で覆われている。絶縁膜250は、例えばSiO、SiN、SiON等からなる。
 メサ構造200の頂部(より詳細には第2の多層膜反射鏡200cの上面)上の絶縁膜250には、コンタクトホールCH2が形成されており、該コンタクトホールCH2にカソード電極300がメサ構造200の頂部に接触するように設けられている。
 カソード電極300は、単層構造であってもよいし、積層構造であってもよい。
 カソード電極300は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
 カソード電極300が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
 さらに、メサ構造200は、一例として、基板100と第1の多層膜反射鏡200aとの間に配置されたGaAs系の材料からなるコンタクト層400を含む。コンタクト層400は、複数の面発光レーザ10間で共有されている。
 コンタクト層400は、レーザ共振器を構成するメサ構造200の出射側に位置する。このため、コンタクト層400の厚さは、1μm以下であることが好ましく、500nm以下であることがより好ましい。コンタクト層400の厚さが1μm以下であることにより、コンタクト層400での光吸収を低減でき、ひいては光出力の低下を抑制できる。
 さらに、メサ構造200は、一例として、コンタクト層400と第1の多層膜反射鏡200aとの間に配置されたエッチング停止層500を有する。エッチング停止層500は、複数の面発光レーザ10間で共有されている。
 エッチング停止層500の上部は、メサ構造200の底部を構成する。
 基板100上における隣り合うメサ構造200間の領域(該メサ構造200に隣接する部分)は、絶縁膜250で覆われていない領域であるコンタクトホールCH1の底面を含んで構成され、アノード電極600と接触するコンタクト領域CAを含む。
 コンタクト領域CAは、基板100の一部及びコンタクト層400の一部を含む。
 アノード電極600は、例えばコンタクト領域CA上、すなわちコンタクトホールCH1内にコンタクト層400に接触するように設けられている。
 アノード電極600は、複数のメサ構造200に沿ってパターンニングされた金属配線700により、面発光レーザアレイの周辺に配置された電極パッド(不図示)と接続されている。
 アノード電極600は、単層構造であってもよいし、積層構造であってもよい。
 アノード電極600は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
 アノード電極600が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
 メサ構造200の、コンタクト領域CAに対してアノード電極600が配置される側と同じ側の面にカソード電極300が接触している。
 コンタクト領域CAと、メサ構造200の、第1の多層膜反射鏡200aで構成される部分の側壁部200a1と、に跨って不純物領域800(図1における薄い黒塗りの部分)が設けられている。本明細書中、「不純物領域」は、他の領域(少なくとも周辺の領域)よりも不純物濃度が高い領域(高濃度不純物領域)を意味する。
 詳述すると、不純物領域800は、コンタクト領域CAと、側壁部200a1と、コンタクト領域CAと側壁部200a1との間の領域とを含む。
 不純物領域800は、コンタクト領域CAから側壁部200a1にかけて連続している。すなわち、不純物領域800は、アノード電極600から第1の多層膜反射鏡200aまでの電流経路を含む。
 不純物領域800は、一例としてメサ構造200の周方向の全域に亘って連続して形成されている。なお、不純物領域800は、メサ構造200の周方向の一部に不連続部分(断続部分)を有していてもよい。
 側壁部200a1は、図1に示すように、メサ構造200の、第1の多層膜反射鏡200aで構成される部分の光導波路を形成する領域(電流狭窄層200dの非酸化領域200d1に対応する領域)の外側の部分であることが好ましい。
 不純物領域800は、例えばZn等の金属、ベリリウムイオン等のイオンを含んで構成されている。
 不純物領域800は、コンタクト領域CAから側壁部200a1にかけて連続している。なお、不純物領域800は、コンタクト領域CAと側壁部200a1との間で不連続部分(断続部分)を有していてもよい。
 不純物領域800の不純物濃度は、5x1019cm-3未満であることが好ましく、5x1018cm-3未満であることがより好ましい。
 不純物領域800の不純物濃度は、不純物領域800の全域に亘って、ほぼ均一であることが好ましいが、多少ばらつきがあってもよい。
(2)本技術の第1の実施形態に係る面発光レーザの製造方法の第1の例
 以下、図2~図24を参照して、面発光レーザ10の製造方法の第1の例について説明する。図2及び図3は、面発光レーザ10の製造方法の第1の例を説明するためのフローチャートである。図4~図24は、面発光レーザ10の製造方法の第1の例の工程毎の断面図(工程断面図)である。ここでは、一例として、半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザアレイを同時に生成する(この際、各面発光レーザアレイの複数の面発光レーザ10も同時に生成される)。次いで、一連一体の複数の面発光レーザアレイを互いに分離して、チップ状の複数の面発光レーザアレイ(面発光レーザアレイチップ)を得る。
 最初のステップS1では、積層体1000を生成する。
 具体的には、化学気層成長(CVD)法、例えば有機金属気層成長(MOCVD)法により、図4に示すように、基板100上にコンタクト層400、エッチング停止層500、第1の多層膜反射鏡200a、被選択酸化層210、活性層200b及び第2の多層膜反射鏡200cをこの順に順次積層する。
 次のステップS2では、積層体1000をエッチング(例えばウェットエッチング)して第1のメサ構造150を形成する。
 具体的には、図5に示すように、成長室から取り出した積層体1000上にフォトリソグラフィによりレジストパターンR1を形成する。次いで、図6に示すように、このレジストパターンR1をマスクとして、例えば硫酸系のエッチャントを用いて第2の多層膜反射鏡200c、活性層200b、被選択酸化層210及び第1の多層膜反射鏡200aの一部を選択的に除去する。これにより、第1のメサ構造150が形成される。ここでのエッチングは、エッチング底面が第1の多層膜反射鏡200a内に位置するまで(エッチング停止層500が露出しない深さまで)行った。その後、図7に示すように、レジストパターンR1を除去する。
 次のステップS3では、図8に示すように、第1のメサ構造150及びこれに隣接する領域350に、例えばSiOからなる絶縁膜240を成膜する。
 具体的には、第1のメサ構造150が形成された積層体1000の略全域に絶縁膜240を成膜する。以下では、第1のメサ構造150に隣接する領域350を「隣接領域350」とも呼ぶ。ここでは、隣接領域350は、平面視において、隣り合う2つの第1のメサ構造150の間にある。
 次のステップS4では、隣接する領域350に成膜された絶縁膜240を除去する。
 具体的には、図9に示すように、第1のメサ構造150に隣接する領域350以外の領域にフォトリソグラフィによりレジストパターンR2を形成する。次いで、このレジストパターンR2をマスクとして、図10に示すように、隣接領域350に成膜された絶縁膜240を例えばフッ酸系のエッチャントを用いてエッチングにより除去する。その後、図11に示すように、レジストパターンR2を除去する。
 次のステップS5では、図12に示すように、第1のメサ構造150に隣接する領域350から不純物を拡散し、不純物領域800を形成する。
 具体的には、隣接領域350から例えばZn等の不純物を注入し、拡散させる。例えば、不純物領域800が、第1の多層膜反射鏡200a、エッチング停止層500、コンタクト層400及び基板100まで拡散するように不純物の注入速度及び注入時間を調整する。この際、絶縁膜240が不純物拡散時のマスクとなる。例えば絶縁膜240の材料にSiOを用いると、拡散と減圧と加熱によってSiO界面のGaから空孔拡散が生じ、不純物が広範囲に拡散しやすくなる。
 次のステップS6では、図13に示すように、残りの絶縁膜240を除去する。
 具体的には、隣接領域350以外の領域に形成された絶縁膜240を例えばフッ酸系のエチャントを用いて除去する。
 次のステップS7では、さらに積層体1000をエッチング(例えばウェットエッチング)して第1のメサ構造150に代わる第2のメサ構造であるメサ構造200を形成する。
 具体的には、図14に示すように、隣接領域350以外の領域にフォトリソグラフィによりレジストパターンR3を形成する。次いで、このレジストパターンR3をマスクとして、図15に示すように、例えば硫酸系のエッチャントを用いて隣接領域350の第1の多層膜反射鏡200aを選択的に除去する。これにより、メサ構造200が形成される。その後、図16に示すように、レジストパターンR3を除去する。ここでのエッチングは、エッチング停止層500が除去され、コンタクト層400が露出したところでエッチングを止めた。以下では、メサ構造200を「第2のメサ構造200」とも呼ぶ。
 次のステップS8では、図17に示すように、被選択酸化層210(図16参照)の周囲部を酸化して電流狭窄層200dを生成する。
 具体的には、第2のメサ構造200を水蒸気雰囲気中にさらし、被選択酸化層210を側面から酸化(選択酸化)して、非酸化領域200d1の周りが酸化領域200d2で取り囲まれた電流狭窄層200dを形成する。
 次のステップS9では、図18に示すように、第2のメサ構造200上及びこれに隣接するコンタクト領域CA上に絶縁膜250を成膜する。
 具体的には、積層体1000の略全域に絶縁膜250を成膜する。ここでは、コンタクト領域CAは、平面視において、隣り合う2つの第2のメサ構造200の間にある。
 次のステップS10では、第2のメサ構造200上及び第2のメサ構造200に隣接するコンタクト領域CA上の絶縁膜250を除去してコンタクトホールを形成する。
 具体的には、図19に示すように、第2のメサ構造200に隣接するコンタクト領域CA及び第2のメサ構造200の頂部以外の領域にフォトリソグラフィによりレジストパターンR4を形成する。次いで、このレジストパターンR4をマスクとして、図20に示すように、コンタクト領域CA上の絶縁膜250及び第2のメサ構造200の頂部上の絶縁膜250をウェットエッチングにより除去して電極コンタクト用のコンタクトホールCH1、CH2を形成する。その後、図21に示すように、レジストパターンR4を除去する。
 次のステップS11では、図22に示すように、第2のメサ構造200に隣接するコンタクト領域CAにアノード電極600を設ける。
 具体的には、例えば、EB蒸着法により、コンタクト領域CAに例えばAu/Ti膜を成膜し、レジスト及びレジスト上の例えばAu/Tiをリフトオフすることにより、コンタクトホールCH1にアノード電極600を形成する。
 次のステップS12では、図23に示すように、第2のメサ構造200の頂部上にカソード電極300を設ける。
 具体的には、例えば、EB蒸着法により、第2のメサ構造200の頂部上にAu/Ti膜を成膜し、レジスト及びレジスト上のAu/Tiをリフトオフすることにより、第2のメサ構造200の頂部上のコンタクトホールCH2にカソード電極300を形成する。
 最後のステップS13では、図24に示すように、第2のメサ構造200に隣接するコンタクト領域CAに設けられたアノード電極600と電極パッドとを接続する金属配線700を形成する。その後、アニール、ウェハの裏面(第2のメサ構造200側の面とは反対側の面)を研磨することによる薄膜化、ウェハの裏面に対する無反射コート等の処理がなされ、1枚のウェハ上に複数の面発光レーザ10が2次元配列された面発光レーザアレイが複数形成される。その後、ダイシングにより、複数の面発光レーザアレイチップに分離される。
 なお、上記ステップS11、S12の順序は、逆でもよい。
(2)本技術の第1の実施形態に係る面発光レーザの製造方法の第2の例
 以下、図25~図44を参照して、面発光レーザ10の製造方法の第2の例について説明する。図25及び図26は、面発光レーザ10の製造方法の第2の例を説明するためのフローチャートである。図27~図44は、面発光レーザ10の製造方法の第2の例の工程毎の断面図(工程断面図)である。ここでは、一例として、半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザアレイを同時に生成する(この際、各面発光レーザアレイの複数の面発光レーザ10も同時に生成される)。次いで、複数の面発光レーザアレイを互いに分離して、チップ状の複数の面発光レーザアレイ(面発光レーザアレイチップ)を生成する。
 最初のステップS21では、積層体1000を生成する。
 具体的には、化学気層成長(CVD)法、例えば有機金属気層成長(MOCVD)法により、図27に示すように、基板100上にコンタクト層400、エッチング停止層500、第1の多層膜反射鏡200a、被選択酸化層210、活性層200b及び第2の多層膜反射鏡200cをこの順に順次積層する。
 次のステップS22では、積層体1000をエッチング(例えばウェットエッチング)してメサ構造200を形成する。
 具体的には、図28に示すように、成長室から取り出した積層体1000上にフォトリソグラフィによりレジストパターンR1´を形成する。次いで、図29に示すように、このレジストパターンR1´をマスクとして、例えば硫酸系のエッチャントを用いて第2の多層膜反射鏡200c、活性層200b、被選択酸化層210及び第1の多層膜反射鏡200aを選択的に除去する。これにより、メサ構造200が形成される。ここでのエッチングは、エッチング停止層500が除去され、コンタクト層400が露出したところでエッチングを止めた。その後、図30に示すように、レジストパターンR1´を除去する。
 次のステップS23では、図31に示すように、メサ構造200上及びこれに隣接するコンタクト領域CA上に、例えばSiOからなる絶縁膜240を成膜する。具体的には、積層体1000の略全域に絶縁膜240を成膜する。ここでは、コンタクト領域CAは、平面視において、隣り合う2つのメサ構造200の間にある。
 次のステップS24では、コンタクト領域CA上に成膜された絶縁膜240を除去する。具体的には、図32に示すように、メサ構造200に隣接するコンタクト領域CA以外の領域にフォトリソグラフィによりレジストパターンR2´を形成する。次いで、図33に示すように、このレジストパターンR2´をマスクとして、コンタクト領域CA上に成膜された絶縁膜240をウェットエッチングにより除去する。その後、図34に示すように、レジストパターンR2´を除去する。
 次のステップS25では、図35に示すように、メサ構造200に隣接するコンタクト領域CAから不純物を拡散し、不純物領域800を形成する。
 具体的には、コンタクト領域CAから例えばZn等の不純物を注入し、拡散させる。例えば、不純物領域800が、コンタクト層400、基板100、エッチング停止層500及び第1の多層膜反射鏡200aの側壁部200a1まで拡散するように不純物の注入速度及び注入時間を調整する。この際、絶縁膜240が不純物拡散時のマスクとなる。例えば絶縁膜240の材料にSiOを用いると、拡散と減圧と加熱によってSiO界面のGaから空孔拡散が生じ、不純物が広範囲に拡散しやすくなる。
 なお、上記第1の例では、1回目のエッチング後に第1のメサ構造150に隣接する領域350の第1の多層膜反射鏡200aから不純物を拡散しているため、不純物が被選択酸化層210にも拡散される可能性がある。
 これに対し、第2の例では、コンタクト層400が露出するまでエッチングし、第2のメサ構造200を形成した後、コンタクト領域CAから不純物を拡散させるため、不純物が被選択酸化層210まで拡散する可能は低い。
 次のステップS26では、図36に示すように、残りの絶縁膜240を除去する。具体的には、コンタクト領域CA以外の領域に形成された絶縁膜240を除去する。
 次のステップS27では、図37に示すように、被選択酸化層210(図36参照)の周囲部を酸化して電流狭窄層200dを生成する。具体的には、メサ構造200を水蒸気雰囲気中にさらし、被選択酸化層210を側面から酸化(選択酸化)して、非酸化領域200d1の周りが酸化領域200d2で取り囲まれた電流狭窄層200dを形成する。
 次のステップS28では、図38に示すように、メサ構造200上及びこれに隣接するコンタクト領域CA上に絶縁膜250を成膜する。具体的には、メサ構造200が形成された積層体1000の略全域に絶縁膜250を成膜する。ここでは、コンタクト領域CAは、平面視において、隣り合う2つのメサ構造200の間にある。
 次のステップS29では、メサ構造200上及びメサ構造200に隣接するコンタクト領域CAの絶縁膜250を除去してコンタクトホールを形成する。具体的には、図39に示すように、メサ構造200に隣接するコンタクト領域CA及びメサ構造200の頂部以外の領域にフォトリソグラフィによりレジストパターンR3´を形成する。次いで、このレジストパターンR3´をマスクとして、図40に示すように、コンタクト領域CA上の絶縁膜250及びメサ構造200の頂部上の絶縁膜250をウェットエッチングにより除去して電極コンタクト用のコンタクトホールCH1、CH2を形成する。その後、図41に示すように、レジストパターンR3´を除去する。
 次のステップS30では、図42に示すように、メサ構造200に隣接するコンタクト領域CA上にアノード電極600を設ける。具体的には、例えば、EB蒸着法により、コンタクト領域CAにAu/Ti膜を成膜し、レジスト及びレジスト上のAu/Tiをリフトオフすることにより、コンタクトホールCH1にアノード電極600を形成する。
 次のステップS31では、図43に示すように、メサ構造200の頂部上にカソード電極300を設ける。具体的には、例えば、EB蒸着法により、メサ構造200の頂部上にAu/Ti膜を成膜し、レジスト及びレジスト上のAu/Tiをリフトオフすることにより、メサ構造200の頂部上のコンタクトホールCH2にカソード電極300を形成する。
 最後のステップS32では、図44に示すように、メサ構造200に隣接するコンタクト領域CAに設けられたアノード電極600と電極パッドとを接続する金属配線700を形成する。その後、アニール、基板100の裏面(第2のメサ構造200側の面とは反対側の面)を研磨することによる基板薄膜化、基板100の裏面に対する無反射コート等の処理がなされ、1枚のウェハ上に複数の面発光レーザ10が2次元配列された面発光レーザアレイが複数形成される。その後、ダイシングにより、複数の面発光レーザアレイチップに分離される。
 なお、上記ステップS30、S31の順序は、逆でもよい。
(3)本技術の第1の実施形態に係る面発光レーザの作用
 面発光レーザ10では、面発光レーザアレイの周辺に配置された電極パッドから金属配線700、アノード電極600を介してコンタクト領域CAに電流が注入される。コンタクト領域CAに注入された電流は、低抵抗な不純物領域800、第1の多層膜反射鏡200aを経て、活性層200bに注入される。これにより、活性層200bが発光し、その光が第1及び第2の多層膜反射鏡200a、200c間で繰り返し反射しながら増幅して発振条件を満たしたときに、基板100側からレーザ光として射出される。
(4)本技術の第1の実施形態に係る面発光レーザの効果
 本技術の第1の実施形態に係る面発光レーザ10は、基板100と、基板100上に形成されたメサ構造200とを備える。メサ構造200は、基板100上に積層された第1の多層膜反射鏡200aと、第1の多層膜反射鏡200a上に積層された活性層200bと、活性層200b上に積層された第2の多層膜反射鏡200cとを含む。メサ構造200に隣接する、アノード電極600と接触するコンタクト領域CAと、メサ構造200の、第1の多層膜反射鏡200aで構成される部分の側壁部200a1と、に跨って不純物領域800が設けられている。
 これにより、コンタクト領域CAから活性層200bへ至る電流経路のうちコンタクト領域CAから側壁部200a1までの部分が低抵抗化されているので、活性層200bに効率良く電流を注入することができる。
 この場合には、不純物領域800の不純物濃度を比較的低くしても、活性層200bに効率良く電流を注入することができる。
 結果として、面発光レーザ10によれば、コンタクト領域CAの上方に積層される層の結晶性の悪化を抑制しつつ活性層200bに効率良く電流を注入することができる。
 一方、例えば特許文献1に開示されている面発光レーザでは、コンタクト領域に高濃度の不純物がドープされているため、コンタクト領域の上方に積層される層の結晶性が悪化していた。また、当該面発光レーザでは、コンタクト領域にのみ不純物がドープされているため、コンタクト領域から活性層へ至る電流経路上において低抵抗化されていない部分が多く、活性層に効率良く電流を注入することができなかった。
 不純物領域800は、コンタクト領域CAから側壁部200a1にかけて連続している。これにより、コンタクト領域CAと側壁部200a1との間の全域で低抵抗化されているため、活性層200bに電流を更に効率良く注入することができる。
 メサ構造200は、第1の多層膜反射鏡200aの全体を含み、コンタクト領域CAは、基板100の一部を含む。
 メサ構造200は、第1の多層膜反射鏡200aの全体を含み、面発光レーザ10は、基板100と第1の多層膜反射鏡200aとの間に配置されたコンタクト層400を更に備え、コンタクト領域CAは、コンタクト層400の一部を含む。さらに、コンタクト領域は、基板100の一部を含む。
 コンタクト層400の厚さが1μm以下である。この場合、コンタクト層400自体の抵抗は高くなるがコンタクト層400による光吸収を抑えることができる。コンタクト層400自体の抵抗が高くなっても、低抵抗な不純物領域800がコンタクト層400に及んでいるため、電流経路において実質的にコンタクト層400の抵抗はあまり高くならない、もしくは低くなる。
 不純物領域800の不純物濃度は、5x1019cm-3未満である。これにより、コンタクト領域CAの上方に積層される層(例えば第1の多層膜反射鏡200a、活性層200b及び第2の多層膜反射鏡200c)の結晶性の悪化をより確実に抑制することができる。
 メサ構造200の、コンタクト領域CAに対してアノード電極600が配置される側と同じ側の面に別のカソード電極300が接触する。これにより、例えば両電極が反対側の面に配置される場合に比べて、面発光レーザ10の大型化を抑制できる。
 基板100は、半絶縁性基板又は低ドープ基板である。これにより、基板100による光吸収を抑制することができる。
 面発光レーザ10は、基板100の、メサ構造200側とは反対側へ光を出射する。これにより、例えばメサ構造の頂部から光を出射する面発光レーザに比べて、カソード電極300を大きく配置することができ、メサ構造のより広範囲に電流を流すことができ、結果として光出力の増加を図ることができる。
 面発光レーザ10には、AlGaAs系化合物半導体が用いられている。
 面発光レーザ10は、第1の多層膜反射鏡200aと第2の多層膜反射鏡200cとの間に配置された電流狭窄層200dを更に備える。電流狭窄層200dは光及び電子を狭い領域に閉じ込める作用を有するため、面発光レーザ10がレーザ発振の閾値電流の低減を図ることができる。
 第1及び第2の多層膜反射鏡200a、200cは、いずれも半導体多層反射鏡である。これにより、少なくともコンタクト領域CAから活性層200bへ至る電流経路の導電性を向上することができる。
 面発光レーザ10が2次元配列されている面発光レーザアレイによれば、高効率且つ低消費電力の面発光レーザアレイを実現できる。
 面発光レーザ10の製造方法の第1の例は、基板100上に少なくとも第1の多層膜反射鏡200a、活性層200b及び第2の多層膜反射鏡200cをこの順に積層して積層体1000を生成する工程と、積層体1000を少なくとも第1の多層膜反射鏡200aの側面の一部が露出するまでエッチングして第1のメサ構造150を形成する工程と、第1のメサ構造150及び該第1のメサ構造150に隣接する領域350に絶縁膜240を成膜する工程と、隣接する領域350に成膜された絶縁膜240を除去する工程と、隣接する領域から、第1のメサ構造150の、第1の多層膜反射鏡200aで構成される部分の側壁部200a1まで不純物を拡散させる工程と、さらに積層体1000を第1の多層膜反射鏡200aの側面の他部が露出するまでエッチングして第1のメサ構造150に代わる第2のメサ構造200を生成する工程と、第2のメサ構造200に隣接する領域上にアノード電極600を設ける工程と、を含む。
 この場合、第1のメサ構造150に隣接する領域350の第1の多層膜反射鏡200aから不純物が注入されるので、第1の多層膜反射鏡200aの第1のメサ構造150を構成する部分の側壁部200a1に不純物を十分に行き渡らせることができる。
 第1の例において、積層体1000を生成する工程では、基板100上に第1の多層膜反射鏡200aを積層する前に基板100上にコンタクト層400を積層し、第2のメサ構造200を形成する工程では、積層体1000を少なくともコンタクト層400が露出するまでエッチングする。
 これにより、コンタクト層400上にアノード電極600を設けることができる。
 面発光レーザ10の製造方法の第2の例は、基板100上に少なくとも第1の多層膜反射鏡200a、活性層200b及び第2の多層膜反射鏡200cをこの順に積層して積層体1000を生成する工程と、積層体1000を少なくとも第1の多層膜反射鏡200aの側面の少なくとも一部が露出するまでエッチングしてメサ構造200を形成する工程と、メサ構造200及び該メサ構造200に隣接する領域350に絶縁膜240を成膜する工程と、隣接する領域350に成膜された絶縁膜240を除去する工程と、隣接する領域350から、メサ構造200の、第1の多層膜反射鏡200aで構成される部分の側壁部200a1まで不純物を拡散させる工程と、隣接する領域350上にアノード電極600を設ける工程と、を含む。
 この場合、メサ構造200を1回のエッチングにより形成するので、工数を削減できる。
 また、メサ構造200に隣接するコンタクト領域CAから不純物を注入するので、不純物が被選択酸化層210まで拡散するのを抑制することができる。
 第2の例において、積層体1000を生成する工程では、基板100上に第1の多層膜反射鏡200aを積層する前に基板100上にコンタクト層400を積層し、メサ構造200を形成する工程では、積層体1000をコンタクト層400が露出するまでエッチングする。
 これにより、コンタクト層400上にアノード電極600を設けることができる。
2.<本技術の第2の実施形態に係る面発光レーザ>
 第2の実施形態に係る面発光レーザ20は、図45に示すように、コンタクト層400を有していない点を除いて、第1の実施形態に係る面発光レーザ10と同様の構成を有する。
 すなわち、面発光レーザ20も、メサ構造220が第1の多層膜反射鏡200aの全体を含み、コンタクト領域CA1が基板100の一部を含む。ここでは、コンタクト領域CA1は、エッチング停止層500の一部も含む。
 面発光レーザ20では、メサ構造220に隣接するコンタクト領域CA1(ここでは、平面視において隣り合う2つのメサ構造20間にある)の上面(コンタクトホールCH1の底面)が基板100内に位置している。
 面発光レーザ20では、不純物領域820が、基板100の一部、エッチング停止層500の一部及び第1の多層膜反射鏡200aの側壁部200a1を含む。
 面発光レーザ20も、面発光レーザ10の製造方法の第1及び第2の例に準じた製造方法(但し、コンタクト層400を積層する工程を除く)で製造することができる。
 第2の実施形態に係る面発光レーザ20によれば、面発光レーザ10と同様の効果を奏するとともに、コンタクト層400を積層しない分、製造時の工数を減らすことができる。
3.<本技術の第3の実施形態に係る面発光レーザ>
 第3の実施形態に係る面発光レーザ30は、図46に示すように、第1の実施形態に係る面発光レーザ10と異なり、コンタクト層400及びエッチング停止層500を有していない。
 さらに、面発光レーザ30では、メサ構造230は、第1の多層膜反射鏡200aの底部(下部)以外の部分を含み(第1の多層膜反射鏡200aの上部を含み)、コンタクト領域CA2は、第1の多層膜反射鏡200aの底部の一部を含む。メサ構造230は、面発光レーザ10の製造方法の第1の例で説明した第1のメサ構造150と実質的に同一である。
 すなわち、面発光レーザ30では、メサ構造230に隣接するコンタクト領域CA2(ここでは、平面視において隣り合う2つのメサ構造230の間にある)の上面(コンタクトホールCH1の底面)が第1の多層膜反射鏡200a内に位置している。ここでは、コンタクト領域CA2は、基板100の一部及び第1の多層膜反射鏡200aの下部の一部を含む。なお、コンタクト領域CA2は、基板100の一部を含まなくてもよい。
 面発光レーザ20によれば、面発光レーザ10と同様の効果を奏するとともに、コンタクト層400及びエッチング停止層500を積層しない分、製造時の工数を上記第2の実施形態よりもさらに減らすことができる。
 面発光レーザ30では、不純物領域830が、第1の多層膜反射鏡200aの下部及び側壁部200a1、基板100の一部を含む。
 面発光レーザ30は、上述した面発光レーザ10の製造方法の第1の例に準じた方法(但し、第1のメサ構造150に隣接する領域350がコンタクト領域CA2となる)により製造することができる。
4.<本技術に係る面発光レーザの変形例>
 本技術は、上記各実施形態に限定されることなく、種々の変形が可能である。
 例えば、図47に示す第1実施形態の変形例1に係る面発光レーザ10Aでは、コンタクト領域CA3の上面であるコンタクトホールCH1の底面(エッチング底面)がエッチング停止層500内に位置している。
 変形例1では、不純物領域850が、エッチング停止層500の一部、コンタクト層400の一部、基板100の一部及び第1の多層膜反射鏡200aの側壁部200a1を含む。
 面発光レーザ10Aにおいても、不純物領域850により、コンタクト領域CA3から側壁部200a1までの電流経路の低抵抗化が図られているので、アノード電極600から活性層200bへ電流を効率良く流すことができる。
 例えば、図48に示す第1実施形態の変形例2に係る面発光レーザ10Bでは、コンタクト領域CA4の上面であるコンタクトホールCH1の底面(エッチング底面)がコンタクト層400内に位置している。
 変形例2では、不純物領域860が、エッチング停止層500の一部、コンタクト層400の一部、基板100の一部及び第1の多層膜反射鏡200aの側壁部200a1を含む。
 面発光レーザ10Bにおいても、不純物領域860により、コンタクト領域CA4から側壁部200a1までの電流経路の低抵抗化が図られているので、アノード電極600から活性層200bへ電流を効率良く流すことができる。
 例えば、図49に示す第1実施形態の変形例3に係る面発光レーザ10Cでは、コンタクト領域CA5の上面であるコンタクトホールCH1の底面(エッチング底面)が基板100内に位置している。
 変形例3では、不純物領域870が、エッチング停止層500の一部、コンタクト層400の一部、基板100の一部及び第1の多層膜反射鏡200aの側壁部200a1を含む。
 面発光レーザ10Cにおいても、不純物領域870により、コンタクト領域CA5から側壁部200a1までの電流経路の低抵抗化が図られているので、アノード電極600から活性層200bへ電流を効率良く流すことができる。
 上記各実施形態及び各変形例では、第1及び第2の多層膜反射鏡200a、200cのいずれも半導体多層膜反射鏡であるが、これに限らない。
 例えば、第1の多層膜反射鏡200aが半導体多層膜反射鏡であり、且つ、第2の多層膜反射鏡200cが誘電体多層膜反射鏡であってもよい。誘電体多層膜反射鏡も、分布ブラッグ反射鏡の一種である。
 例えば、第1の多層膜反射鏡200aが誘電体多層膜反射鏡であり、且つ、第2の多層膜反射鏡200cが半導体多層膜反射鏡であってもよい。
 例えば、第1及び第2の多層膜反射鏡200a、200bのいずれも誘電体多層膜反射鏡であってもよい。
 半導体多層膜反射鏡は、光吸収が少なく、且つ、導電性を有する。この観点からは、半導体多層膜反射鏡は、出射側(裏面側)にあり、且つ、アノード電極600から活性層200bまでの電流経路上にある第1の多層膜反射鏡200aに好適である。
 一方、誘電体多層膜反射鏡は、光吸収が極めて少ない。この観点からは、誘電体多層膜反射鏡は、出射側(裏面側)にある第1の多層膜反射鏡200に好適である。
 上記各実施形態及び各変形例では、基板側からレーザ光を出射する裏面出射型の面発光レーザを例にとって説明したが、本技術は、メサ構造側からレーザ光を出射する表面出射型の面発光レーザにも適用可能である。
 この場合には、例えばメサ構造の頂部上に設けられる電極を環状又は枠状とすることにより該電極の内側に出射口を形成するか、もしくはメサ構造の頂部上に設けられる電極を発振波長に対して透明な電極とすることが好ましい。
 上記各実施形態及び各変形例では、AlGaAs系化合物半導体を用いた面発光レーザ10を例にとって説明したが、本技術は、例えば、GaN系化合物半導体を用いた面発光レーザにも適用可能である。
 具体的には、第1及び第2の多層膜反射鏡200a、200bの少なくとも一方にGaN系半導体多層膜反射鏡を用いてもよいし、第1及び第2の多層膜反射鏡200a、200bの少なくとも一方にGaN系誘電体多層膜反射鏡を用いてもよい。
 第1及び第2の多層膜反射鏡200a、200bの少なくとも一方に用いられるGaN系化合物半導体としては、例えばGaN/AlGaN等が挙げられる。
 上記各実施形態及び各変形例では、面発光レーザ10が2次元配列された面発光レーザアレイを例にとって説明したが、これに限らない。本技術は、面発光レーザ10が1次元配列された面発光レーザアレイ、単一の面発光レーザ10等にも適用可能である。
5.<本技術を適用した面発光レーザの使用例>
 本技術の上記各実施形態及び上記各変形例に係る面発光レーザは、例えば、TOF(Time Of Flight)センサなど、レーザ光を出射する電子機器へ適用することができる。TOFセンサへ適用する場合は、例えば、直接TOF計測法による距離画像センサ、間接TOF計測法による距離画像センサへ適用することが可能である。直接TOF計測法による距離画像センサでは、フォトンの到来タイミングを各画素において直接時間領域で求めるため、短いパルス幅の光パルスを光源から送信し、受光素子で電気的パルスを生成する。その際の光源に本開示を適用することができる。また、間接TOF法では、光で発生したキャリアーの検出と蓄積量が、光の到来タイミングに依存して変化する半導体素子構造を利用して光の飛行時間を計測する。本開示は、そのような間接TFO法を用いる場合の光源としても適用することが可能である。
 本技術に係る面発光レーザは、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される上記TOFセンサの光源として実現されてもよい。
 本技術に係る面発光レーザは、レーザ光により画像を形成又は表示する機器(例えばレーザプリンタ、レーザ複写機、プロジェクタ、ヘッドマウントディスプレイ、ヘッドアップディスプレイ等)の光源として実現されてもよい。
 また、本技術は、以下のような構成をとることもできる。
(1)本技術は、基板と、
 前記基板上に形成されたメサ構造と、
 を備え、
 前記メサ構造は、
 前記基板上に積層された第1の多層膜反射鏡の少なくとも一部と、
 前記第1の多層膜反射鏡上に積層された活性層と、
 前記活性層上に積層された第2の多層膜反射鏡と、
 を含み、
 前記メサ構造に隣接する、電極と接触するコンタクト領域と、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部と、に跨って不純物領域が設けられている、面発光レーザ。
(2)前記不純物領域は、前記コンタクト領域から前記側壁部にかけて連続している、(1)に記載の面発光レーザ。
(3)前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、前記コンタクト領域は、前記基板の一部を含んでいる、(1)又は(2)に記載の面発光レーザ。
(4)前記メサ構造は、前記第1の多層膜反射鏡の底部以外の部分を含み、前記コンタクト領域は、前記第1の多層膜反射鏡の前記底部の一部を含む、(1)又は(2)に記載の面発光レーザ。
(5)前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、前記基板と前記第1の多層膜反射鏡との間に配置されたコンタクト層を更に備え、前記コンタクト領域は、前記コンタクト層の一部を含む、(1)又は(2)に記載の面発光レーザ。
(6)前記コンタクト領域は、前記基板の一部を含んでいる、請求項(5)に記載の面発光レーザ。
(7)前記コンタクト層の厚さが1μm以下である、(5)又は(6)に記載の面発光レーザ。
(8)前記不純物領域の不純物濃度は、5x1019cm-3未満である、(1)~(7)のいずれか1つに記載の面発光レーザ。
(9)前記メサ構造の、前記コンタクト領域に対して前記電極が配置される側と同じ側の面に別の電極が接触している、(1)~(8)のいずれか1つに記載の面発光レーザ。
(10)前記基板は、半絶縁性基板又は低ドープ基板である、(1)~(9)のいずれか1つに記載の面発光レーザ。
(11)前記面発光レーザは、前記基板の、前記メサ構造側とは反対側へ光を出射する、(1)~(10)のいずれか1つに記載の面発光レーザ。
(12)前記面発光レーザは、AlGaAs系化合物半導体又はGaN系化合物半導体が用いられている、(1)~(11)のいずれか1つに記載の面発光レーザ。
(13)前記面発光レーザは、前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に配置された電流狭窄層を更に備えている、(1)~(12)のいずれか1つに記載の面発光レーザ。
(14)前記第1及び第2の多層膜反射鏡の少なくとも一方は、半導体多層反射鏡である、(1)~(13)のいずれか1つに記載の面発光レーザ。
(15)前記第1及び第2の多層膜反射鏡の少なくとも一方は、誘電体多層膜反射鏡である、(1)~(13)のいずれか1つに記載の面発光レーザ。
(16)(1)~(15)のいずれか1つに記載の面発光レーザが2次元配列されている面発光レーザアレイ。
(17)(16)に記載の面発光レーザアレイを備える電子機器。
(18)基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体を少なくとも前記第1多層膜反射鏡の側面の一部が露出するまでエッチングして第1のメサ構造を形成する工程と、
 前記第1のメサ構造及び該第1のメサ構造に隣接する領域に絶縁膜を成膜する工程と、
 前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
 前記隣接する領域から、前記第1のメサ構造の、前記第1多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
 さらに前記積層体を少なくとも 前記第1の多層膜反射鏡の側面の他部が露出するまでエッチングして前記第1のメサ構造に代わる第2のメサ構造を形成生成する工程と、
 前記第2のメサ構造に隣接する領域上に電極を設ける工程と、
 を含む、面発光レーザの製造方法。
(19)前記積層体を生成する工程では、前記基板上にと前記第1の多層膜反射鏡を積層する前に前記基板上にとの間にコンタクト層を積層し、前記第2のメサ構造を形成する工程では、前記第1のメサ構造が形成された前記積層体を少なくとも前記コンタクト層が露出するまでエッチングする、(18)に記載の面発光レーザの製造方法。
(20)基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体を少なくとも前記第1多層膜反射鏡の側面の少なくとも一部が露出するまでエッチングしてメサ構造を形成する工程と、
 前記メサ構造及び該メサ構造に隣接する領域に絶縁膜を成膜する工程と、
 前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
 前記隣接する領域から、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
 前記隣接する領域上に電極を設ける工程と、
 を含む、面発光レーザの製造方法。
(21)前記積層体を生成する工程では、前記基板上にと前記第1の多層膜反射鏡を積層する前に前記基板上にとの間にコンタクト層を積層し、前記メサ構造を形成する工程では、前記積層体を少なくとも前記コンタクト層が露出するまでエッチングする、(20)に記載の面発光レーザの製造方法。
 10:面発光レーザ、100:基板、150:第1のメサ構造、200:第2のメサ構造(メサ構造)、200a:第1の多層膜反射鏡、200b:活性層、200c:第2の多層膜反射鏡、200d:電流狭窄層、400:コンタクト層、600:アノード電極(電極)、800:不純物領域、1000:積層体、CA、CA1、CA2、CA3、CA4、CA5:コンタクト領域。

Claims (21)

  1.  基板と、
     前記基板上に形成されたメサ構造と、
     を備え、
     前記メサ構造は、
     前記基板上に積層された第1の多層膜反射鏡の少なくとも一部と、
     前記第1の多層膜反射鏡上に積層された活性層と、
     前記活性層上に積層された第2の多層膜反射鏡と、
     を含み、
     前記メサ構造に隣接する、電極と接触するコンタクト領域と、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部と、に跨って不純物領域が設けられている、面発光レーザ。
  2.  前記不純物領域は、前記コンタクト領域から前記側壁部にかけて連続している、請求項1に記載の面発光レーザ。
  3.  前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、
     前記コンタクト領域は、前記基板の一部を含む、請求項1に記載の面発光レーザ。
  4.  前記メサ構造は、前記第1の多層膜反射鏡の底部以外の部分を含み、
     前記コンタクト領域は、前記第1の多層膜反射鏡の前記底部の一部を含む、
     請求項1に記載の面発光レーザ。
  5.  前記メサ構造は、前記第1の多層膜反射鏡の全体を含み、
     前記基板と前記第1の多層膜反射鏡との間に配置されたコンタクト層を更に備え、
     前記コンタクト領域は、前記コンタクト層の一部を含む、請求項1に記載の面発光レーザ。
  6.  前記コンタクト領域は、前記基板の一部を含む、請求項5に記載の面発光レーザ。
  7.  前記コンタクト層の厚さが1μm以下である、請求項5に記載の面発光レーザ。
  8.  前記不純物領域の不純物濃度は、5x1019cm-3未満である、請求項1に記載の面発光レーザ。
  9.  前記メサ構造の、前記コンタクト領域に対して前記電極が配置される側と同じ側の面に別の電極が接触する、請求項1に記載の面発光レーザ。
  10.  前記基板は、半絶縁性基板又は低ドープ基板である請求項1に記載の面発光レーザ。
  11.  前記基板の、前記メサ構造側とは反対側へ光を出射する、請求項1に記載の面発光レーザ。
  12.  AlGaAs系化合物半導体又はGaN系化合物半導体が用いられている、請求項1に記載の面発光レーザ。
  13.  前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に配置された電流狭窄層を更に備える、請求項1に記載の面発光レーザ。
  14.  前記第1及び第2の多層膜反射鏡の少なくとも一方は、半導体多層膜反射鏡である、請求項1に記載の面発光レーザ。
  15.  前記第1及び第2の多層膜反射鏡の少なくとも一方は、誘電体多層膜反射鏡である、請求項1に記載の面発光レーザ。
  16.  請求項1に記載の面発光レーザが2次元配列されている面発光レーザアレイ。
  17.  請求項16に記載の面発光レーザアレイを備える電子機器。
  18.  基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
     前記積層体を少なくとも前記第1多層膜反射鏡の側面の一部が露出するまでエッチングして第1のメサ構造を形成する工程と、
     前記第1のメサ構造及び該第1のメサ構造に隣接する領域に絶縁膜を成膜する工程と、
     前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
     前記隣接する領域から、前記第1のメサ構造の、前記第1多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
     さらに前記積層体を少なくとも前記第1の多層膜反射鏡の側面の他部が露出するまでエッチングして前記第1のメサ構造に代わる第2のメサ構造を形成する工程と、
     前記第2のメサ構造に隣接する領域上に電極を設ける工程と、
     を含む、面発光レーザの製造方法。
  19.  前記積層体を生成する工程では、前記基板上に前記第1の多層膜反射鏡を積層する前に前記基板上にコンタクト層を積層し、
     前記第2のメサ構造を形成する工程では、前記第1のメサ構造が形成された前記積層体を少なくとも前記コンタクト層が露出するまでエッチングする、請求項18に記載の面発光レーザの製造方法。
  20.  基板上に少なくとも第1の多層膜反射鏡、活性層及び第2の多層膜反射鏡をこの順に積層して積層体を生成する工程と、
     前記積層体を少なくとも前記第1多層膜反射鏡の側面の少なくとも一部が露出するまでエッチングしてメサ構造を形成する工程と、
     前記メサ構造及び該メサ構造に隣接する領域に絶縁膜を成膜する工程と、
     前記隣接する領域に成膜された前記絶縁膜を除去する工程と、
     前記隣接する領域から、前記メサ構造の、前記第1の多層膜反射鏡で構成される部分の側壁部まで不純物を拡散させる工程と、
     前記隣接する領域上に電極を設ける工程と、
     を含む、面発光レーザの製造方法。
  21.  前記積層体を生成する工程では、前記基板上に前記第1の多層膜反射鏡を積層する前に前記基板上にコンタクト層を積層し、
     前記メサ構造を形成する工程では、前記積層体を少なくとも前記コンタクト層が露出するまでエッチングする、請求項20に記載の面発光レーザの製造方法。
     
PCT/JP2020/042261 2019-12-11 2020-11-12 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法 WO2021117411A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563805A JP7570351B2 (ja) 2019-12-11 2020-11-12 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法
US17/773,312 US20220393433A1 (en) 2019-12-11 2020-11-12 Surface emission laser, surface emission laser array, electronic equipment, and surface emission laser manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-223552 2019-12-11
JP2019223552 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021117411A1 true WO2021117411A1 (ja) 2021-06-17

Family

ID=76329771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042261 WO2021117411A1 (ja) 2019-12-11 2020-11-12 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法

Country Status (3)

Country Link
US (1) US20220393433A1 (ja)
JP (1) JP7570351B2 (ja)
WO (1) WO2021117411A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149087A1 (ja) * 2022-02-01 2023-08-10 ソニーグループ株式会社 面発光レーザ、面発光レーザアレイ及び光源装置
WO2023233850A1 (ja) * 2022-05-30 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 面発光素子
WO2024185305A1 (ja) * 2023-03-09 2024-09-12 ソニーセミコンダクタソリューションズ株式会社 面発光レーザアレイ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613626B (zh) * 2023-07-21 2023-09-26 南昌凯迅光电股份有限公司 一种AuSn电极背面出光VCSEL芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110202A (ja) * 1991-10-17 1993-04-30 Nec Corp 面発光素子の製造方法
JPH10209565A (ja) * 1997-01-27 1998-08-07 Fuji Xerox Co Ltd 横方向電流注入型面発光半導体レーザ装置、その製造方法および半導体レーザアレイ
JP2015177000A (ja) * 2014-03-14 2015-10-05 株式会社リコー 面発光レーザ、面発光レーザ素子及び原子発振器
JP2016225630A (ja) * 2016-05-31 2016-12-28 トリルミナ コーポレーション デジタル出力用レーザアレイを組み合わせるためのシステムおよび方法
WO2019107273A1 (ja) * 2017-11-30 2019-06-06 ソニーセミコンダクタソリューションズ株式会社 面発光半導体レーザ
US20190319429A1 (en) * 2018-04-13 2019-10-17 Nikolay Ledentsov Micropillar optoelectronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110202A (ja) * 1991-10-17 1993-04-30 Nec Corp 面発光素子の製造方法
JPH10209565A (ja) * 1997-01-27 1998-08-07 Fuji Xerox Co Ltd 横方向電流注入型面発光半導体レーザ装置、その製造方法および半導体レーザアレイ
JP2015177000A (ja) * 2014-03-14 2015-10-05 株式会社リコー 面発光レーザ、面発光レーザ素子及び原子発振器
JP2016225630A (ja) * 2016-05-31 2016-12-28 トリルミナ コーポレーション デジタル出力用レーザアレイを組み合わせるためのシステムおよび方法
WO2019107273A1 (ja) * 2017-11-30 2019-06-06 ソニーセミコンダクタソリューションズ株式会社 面発光半導体レーザ
US20190319429A1 (en) * 2018-04-13 2019-10-17 Nikolay Ledentsov Micropillar optoelectronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149087A1 (ja) * 2022-02-01 2023-08-10 ソニーグループ株式会社 面発光レーザ、面発光レーザアレイ及び光源装置
WO2023233850A1 (ja) * 2022-05-30 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 面発光素子
WO2024185305A1 (ja) * 2023-03-09 2024-09-12 ソニーセミコンダクタソリューションズ株式会社 面発光レーザアレイ

Also Published As

Publication number Publication date
JP7570351B2 (ja) 2024-10-21
US20220393433A1 (en) 2022-12-08
JPWO2021117411A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2021117411A1 (ja) 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
US7965750B2 (en) Semiconductor light emitting device
RU2633643C2 (ru) Vcsel с внутрирезонаторными контактами
US20110164646A1 (en) Laser diode array, method of manufacturing same, printer, and optical communication device
US10033158B1 (en) Semiconductor laser, laser assembly and method of making a semiconductor laser
WO2021192672A1 (ja) 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法
US8218596B2 (en) Vertical cavity surface emitting laser and method of manufacturing the same
JP5190038B2 (ja) 面発光レーザ
US20230006421A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method of producing vertical cavity surface emitting laser element
TWI721841B (zh) 紅外線led元件
JP4087152B2 (ja) 面発光半導体レーザ素子及びレーザアレイ
US7871841B2 (en) Method for manufacturing semiconductor light-emitting device
US7453915B2 (en) Optical semiconductor element and method for manufacturing the same
US20220393436A1 (en) Vertical cavity light-emitting element and manufacturing method of the same
JP4879094B2 (ja) 半導体発光素子及びその製造方法
WO2019107273A1 (ja) 面発光半導体レーザ
JP2003158340A (ja) 面発光半導体レーザ素子
JP2006190762A (ja) 半導体レーザ
JP2817515B2 (ja) 半導体レーザ装置およびその製造方法
JP2017005197A (ja) 面発光レーザ、面発光レーザアレイ、レーザ加工機、レーザ点火装置、表示装置、及び面発光レーザアレイの製造方法。
JP2012195477A (ja) 面発光半導体レーザ装置及びその製造方法
JP2006339419A (ja) 面発光型半導体レーザおよびその製造方法
JP2018182154A (ja) 面発光型半導体発光素子およびその製造方法
JPH098399A (ja) 面型光スイッチング素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899429

Country of ref document: EP

Kind code of ref document: A1