WO2021114434A1 - 多视图相机位姿和场景的纯位姿解算方法及系统 - Google Patents
多视图相机位姿和场景的纯位姿解算方法及系统 Download PDFInfo
- Publication number
- WO2021114434A1 WO2021114434A1 PCT/CN2019/130316 CN2019130316W WO2021114434A1 WO 2021114434 A1 WO2021114434 A1 WO 2021114434A1 CN 2019130316 W CN2019130316 W CN 2019130316W WO 2021114434 A1 WO2021114434 A1 WO 2021114434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- view
- global
- pose
- displacement
- views
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000011084 recovery Methods 0.000 claims abstract description 23
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 230000005856 abnormality Effects 0.000 claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims description 103
- 238000005457 optimization Methods 0.000 claims description 21
- 238000004458 analytical method Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 17
- 230000009977 dual effect Effects 0.000 claims description 11
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 5
- 230000017105 transposition Effects 0.000 claims 1
- 238000012216 screening Methods 0.000 abstract 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/60—Rotation of whole images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to the field of computer vision, in particular to a method and system for pure pose calculation of multi-view camera poses and scenes.
- the recovery of camera pose and scene structure is the core part of the motion recovery structure in computer vision.
- the restoration of camera pose and scene structure requires initialization of global parameters and Bundle Adjustment (BA).
- BA Bundle Adjustment
- the purpose of global parameter initialization is to provide initial values for BA cluster adjustment and optimization. It is mainly divided into the initialization of global pose, global displacement and 3D scene point coordinates. The difficulty lies in the initialization of global displacement.
- the traditional global displacement method generally takes the relative displacement of the dual view as the input, and optimizes the global displacement by minimizing the algebraic error. Anomalies will occur in the case of pure camera rotation or collinear motion.
- BA cluster adjustment optimization takes the minimum reprojection error as the optimization goal, and the parameter space includes three-dimensional scene point coordinates, pose parameters and camera parameters.
- the spatial dimension of the optimized parameters is 3m+6n. Since the number of 3D scene points is usually very large, the dimension of the parameter space to be optimized is huge.
- Patent document CN 106408653A discloses a real-time robust bundling adjustment method for large-scale 3D reconstruction.
- the current mainstream method of bundling adjustment is a nonlinear optimization algorithm that considers the sparsity of the parameter Jacobian matrix, but in large-scale scenes Downstream still cannot meet real-time and robustness requirements.
- the purpose of the present invention is to provide a pure pose calculation method and system for multi-view camera poses and scenes.
- the initial value of the view pose is input, including:
- Pure Rotation Recoginition (PRR) step Perform pure rotation abnormality recognition on all views, mark the views with pure rotation abnormalities, and obtain marked and non-marked views;
- GTL Global Translation Linear
- Three-dimensional scene analysis and recovery (Structure Analytical Reconstruction, SAR) step According to the correct solution of the global pose, analyze and recover the coordinates of all 3D points.
- the PRR pure rotation abnormality recognition step includes:
- Step 1 Consider view i, 1 ⁇ i ⁇ N.
- V i is the total of all the view i
- the set of views of the view, X i and X j represent the normalized image coordinates of the point X W on view i and view j, ⁇ 1 and ⁇ 2 are the set thresholds, and R i and t i represent the views, respectively i's global attitude and global displacement, And t i,j respectively represent the relative posture and relative displacement of the dual view (i,j), [X j ] ⁇ represents the antisymmetric matrix formed by the vector X j;
- Step 3 Repeat step 1 to step 2 for all views.
- the GTL global displacement calculation step includes:
- Step 1 For the current 3D point, select the view Where the view Is the left reference view, ⁇ is the right reference view;
- Step 2 For all non-marked views (excluding reference views), follow the shape as Construct GTL global displacement linear constraints.
- the image normalized coordinates of 3D point X W on view i are Where ⁇ represents the equation in homogeneous coordinates, where The superscript T represents the transpose of a matrix or vector.
- Step 3 For other 3D points, repeat steps 1 to 2 to construct a linear equation and solve the global displacement
- Step 5 According to Screen the correct solution for the global displacement t.
- an optional camera pose optimization step is added between the GTL global displacement calculation step and the SAR 3D scene analysis and restoration step:
- the image homogeneous coordinate f i of the 3D point X W on the view i is expressed as
- the camera pose optimization step here can be replaced with other optimization algorithms, such as the classic BA cluster adjustment algorithm.
- the three-dimensional scene point coordinates can either use the output result of the classic BA cluster adjustment algorithm, or use the following SAR 3D scene analysis and restoration steps are obtained.
- the step of analyzing and restoring the SAR 3D scene includes:
- the three-dimensional scene structure in multi-views is reconstructed analytically and weighted by the camera pose.
- the coordinates of all 3D points can be parsed and restored.
- the 3D point coordinates can be recovered using the depth of field analysis in the right view.
- the arithmetic average of the above two 3D point coordinates can also be taken.
- a multi-view camera pose and scene pure pose calculation system includes:
- Pure rotation anomaly recognition module Perform pure rotation anomaly recognition on all views, mark the views with pure rotation anomaly, and get marked view and non-marked view;
- 3D scene recovery module According to the correct solution of the global pose, analyze and recover the coordinates of all 3D points.
- the pure rotation abnormality recognition module includes:
- V i is the total of all the view i
- the set of views of the view, X i and X j represent the normalized image coordinates of the point X W on view i and view j, ⁇ 1 and ⁇ 2 are the set thresholds, and R i and t i represent the views, respectively i's global attitude and global displacement, And t i,j respectively represent the relative posture and relative displacement of the dual view (i,j), [X j ] ⁇ represents the antisymmetric matrix formed by the vector X j;
- Module M13 Repeat the operation of module M11-module M12 for all views.
- the global displacement recovery module includes:
- Module M21 For the current 3D point, select the view Where the view Is the left reference view, ⁇ is the right reference view;
- Module M23 For other 3D points, repeat the operations of Module M21-Module M22 to construct a linear equation and solve the global displacement
- Module M25 According to Screen the correct solution for the global displacement t.
- it also includes a camera pose optimization module:
- the image homogeneous coordinate f i of the 3D point X W on the view i is expressed as
- the camera pose optimization step is replaced with a classic BA bundling adjustment algorithm.
- the 3D scene point coordinates are obtained either by using the output result of the classic BA bundling adjustment algorithm or by using the SAR 3D scene analysis and restoration step.
- the 3D scene recovery module includes:
- the structure of the 3D scene in multi-views is reconstructed analytically and weighted by the camera pose
- the coordinates of all 3D points can be recovered, or the 3D point coordinates can be recovered using the depth of field analysis in the right view, or the arithmetic average of the above two 3D point coordinates.
- the present invention has the following beneficial effects:
- the invention breaks through the bottleneck of traditional initial value and optimization methods, and can greatly improve the robustness and calculation speed of the camera pose and scene structure restoration.
- Figure 1 is a working flow chart of the present invention.
- the present invention provides a multi-view camera pose and scene pure pose calculation method, which uses the initial value of the view pose as input, including:
- Pure Rotation Recoginition (PRR) step Perform pure rotation abnormality recognition on all views, mark the views with pure rotation abnormalities, and obtain marked and non-marked views;
- GTL Global Translation Linear
- Three-dimensional scene analysis and recovery (Structure Analytical Reconstruction, SAR) step According to the correct solution of the global pose, analyze and recover the coordinates of all 3D points.
- the PRR pure rotation abnormality recognition steps include:
- Step 1 Consider view i, 1 ⁇ i ⁇ N.
- Step 3 Repeat step 1 to step 2 for all views.
- the GTL global displacement calculation steps include:
- Step 1 For the current 3D point, select the view Where the view Is the left reference view, ⁇ is the right reference view;
- Step 2 For all non-marked views (excluding reference views), follow the shape as Construct GTL global displacement linear constraints.
- the image normalized coordinates of 3D point X W on view i are Where ⁇ represents the equation in homogeneous coordinates, where The superscript T represents the transpose of a matrix or vector.
- Step 3 For other 3D points, repeat steps 1 to 2 to construct a linear equation and solve the global displacement
- Step 5 According to Screen the correct solution for the global displacement t.
- An optional camera pose optimization step is added between the GTL global displacement calculation step and the SAR 3D scene analysis and restoration step:
- the image homogeneous coordinate f i of the 3D point X W on the view i is expressed as
- the camera pose optimization steps here can be replaced with other optimization algorithms, such as the classic BA cluster adjustment algorithm.
- the 3D scene point coordinates can use the output result of the classic BA cluster adjustment algorithm, or use SAR 3D The scene analysis recovery step is obtained.
- SAR 3D scene analysis and restoration steps include:
- the three-dimensional scene structure in multi-views is reconstructed analytically and weighted by the camera pose.
- the coordinates of all 3D points can be parsed and restored.
- the 3D point coordinates can be recovered using the depth of field analysis in the right view.
- the arithmetic average of the above two 3D point coordinates can also be taken.
- the present invention also provides a multi-view camera pose and scene pure pose solution system, including:
- Pure rotation anomaly recognition module Perform pure rotation anomaly recognition on all views, mark the views with pure rotation anomaly, and get marked view and non-marked view;
- 3D scene recovery module According to the correct solution of the global pose, analyze and recover the coordinates of all 3D points.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
一种多视图相机位姿和场景的纯位姿解算方法及系统,包括:纯旋转异常识别步骤:对所有视图进行纯旋转异常识别,对纯旋转异常的视图进行标记,得到标记视图和非标记视图;全局位移线性计算步骤:从非标记视图中选择一幅作为参考视图,构建约束tr=0,构建全局位移线性约束,求解全局位移(I),根据tr 和(I)恢复标记视图的全局位移,并筛选全局位移的正确解;三维场景解析恢复步骤:根据全局位姿的正确解,解析恢复所有3D点的坐标。能够大幅度提升多视图相机位姿与场景结构恢复的计算效率及鲁棒性。
Description
本发明涉及计算机视觉领域,具体地,涉及一种多视图相机位姿和场景的纯位姿解算方法及系统。
一直以来,相机位姿与场景结构的恢复是计算机视觉中运动恢复结构的核心部分。在传统的多视图几何描述下,相机位姿和场景结构的恢复需要进行全局参数的初始化和集束调整(Bundle Adjustment,BA)。一方面,全局参数初始化的目的是为BA集束调整优化提供初值,主要分为全局姿态、全局位移和三维场景点坐标的初始化,其中难点在于全局位移的初始化方面。传统的全局位移方法一般以双视图相对位移为输入,通过代数误差最小来优化全局位移,在相机纯旋转或共线运动等情况下会出现异常。另一方面,BA集束调整优化以重投影误差最小为优化目标,参数空间包括三维场景点坐标、位姿参数及相机参数等。对于m个三维场景点和n幅图像的情形,优化参数的空间维数为3m+6n。由于三维场景点的数目通常很大,造成待优化的参数空间维数巨大。
专利文献CN 106408653A公开了一种面向大规模三维重建的实时鲁棒的集束调整方法,目前集束调整的主流方法是考虑参数雅克比(Jacobian)矩阵稀疏性的非线性优化算法,但在大尺度场景下仍然不能满足实时及鲁棒性需求。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种多视图相机位姿和场景的纯位姿解算方法及系统。
根据本发明提供的一种多视图相机位姿和场景的纯位姿解算方法,以视图姿态初值为输入,包括:
纯旋转异常识别(Pure Rotation Recoginition,PRR)步骤:对所有视图进行纯旋转异常识别,对纯旋转异常的视图进行标记,得到标记视图和非标记视图;
全局位移线性计算(Global Translation Linear,GTL)步骤:从非标记视图中选择一幅作为参考视图,构建约束t
r=0,构建全局位移线性约束,求解全局位移
根据t
r和
恢复标记视图的全局位移,并筛选全局位移的正确解;
三维场景解析恢复(Structure Analytical Reconstruction,SAR)步骤:根据全局位姿的正确解,解析恢复所有3D点的坐标。
优选地,所述PRR纯旋转异常识别步骤包括:
步骤1:考虑视图i,1≤i≤N,对于视图j∈V
i,利用双视图(i,j)上的所有图像匹配点对(X
i,X
j)以及相对姿态R
i,j,计算θ
i,j=||[X
j]×R
i,jX
i||,并构成集合Θ
i,j和
记集合Θ
i中大于δ
1的比例为γ
i。
其中,若3D点X
W=(x
W,y
W,z
W)
T在n(≤N)幅视图中可视,对于i=1,2,…,n,V
i为所有与视图i共视的视图构成的集合,X
i和X
j分别表示点X
W在视图i和视图j上的归一化图像坐标,δ
1和δ
2为设定的阈值,R
i和t
i分别表示视图i的全局姿态和全局位移,
和t
i,j分别表示双视图(i,j)的相对姿态和相对位移,[X
j]
×表示由向量X
j构成的反对称矩阵;
步骤3:对所有视图重复步骤1-步骤2。
优选地,所述GTL全局位移计算步骤包括:
3D点X
W在视图i上的图像归一化坐标有
其中
~表示齐次坐标下的等式,其中
上标T表示矩阵或向量的转置。为了线性求解全局位移,可以定义不同的目标函数形式,典型如
和[X
i]×Y
i=0,其中I
3表示三维单位矩阵,e
3表示单位矩阵的第三列向量e
3=(0,0,1)
T。另外,由于相对位移t
i,j关于全局位移具有不同形式,典型如t
i,j=R
j(t
i-t
j)和t
i,j=t
j-R
i,jt
i,因此矩阵B、C和D也相应 地具有不同形式:
优选地,在所述GTL全局位移计算步骤与所述SAR三维场景解析恢复步骤之间还增添一个可选的相机位姿优化步骤:
3D点X
W在视图i上的图像齐次坐标f
i表示为
其中
为3D点在视图i上的图像坐标且第三元素为1,对于该3D点的所有视图,构成重投影误差向量ε,对于所有3D点,构成误差向量Σ,全局位姿优化的目标函数描述为arg minΣ
TΣ,据此进行全局位姿的优化求解。需要指出的是,此处的相机位姿优化步骤可以替换为其他优化算法,如经典BA集束调整算法,此时三维场景点坐标既可以使用经典BA集束调整算法的输出结果,也可以利用如下的SAR三维场景解析恢复步骤得到。
优选地,所述SAR三维场景解析恢复步骤包括:
多视图下三维场景结构通过相机位姿进行解析加权重建。
在右基准视图中的景深计算为
据此可解析恢复出所有3D点的坐标。同理,可以利用右视图景深解析恢复3D点坐标。当然,也可以取以上两种3D点坐标的算数平均。
根据本发明提供的一种多视图相机位姿和场景的纯位姿解算系统,包括:
纯旋转异常识别模块:对所有视图进行纯旋转异常识别,对纯旋转异常的视图进行标记,得到标记视图和非标记视图;
三维场景恢复模块:根据全局位姿的正确解,解析恢复所有3D点的坐标。
优选地,所述纯旋转异常识别模块包括:
模块M11:考虑视图i,1≤i≤N,对于视图j∈V
i,利用双视图(i,j)上的所有图像匹配点对(X
i,X
j)以及相对姿态R
i,j,计算θ
i,j=||[X
j]×R
i,jX
i||,并构成集合Θ
i,j和
记集合Θ
i中大于δ
1的比例为γ
i;
其中,若3D点X
W=(x
W,y
W,z
W)
T在n(≤N)幅视图中可视,对于i=1,2,…,n,V
i为所有与视图i共视的视图构成的集合,X
i和X
j分别表示点X
W在视图i和视图j上的归一化图像坐标,δ
1和δ
2为设定的阈值,R
i和t
i分别表示视图i的全局姿态和全局位移,
和t
i,j分别表示双视图(i,j)的相对姿态和相对位移,[X
j]
×表示由向量X
j构成的反对称矩阵;
模块M13:对所有视图重复模块M11-模块M12的操作。
优选地,所述全局位移恢复模块包括:
另外,由于相对位移t
i,j关于全局位移具有不同形式,因此矩阵B、C和D也相应地具有不同形式:
优选地,还包括相机位姿优化模块:
3D点X
W在视图i上的图像齐次坐标f
i表示为
其中
为3D点在视图i上的图像坐标且第三元素为1,对于该3D点的所有视图,构成重投影误差向量ε,对于所有3D点,构成误差向量Σ,全局位姿优化的 目标函数描述为arg minΣ
TΣ,据此进行全局位姿的优化求解;
或者,将所述相机位姿优化步骤替换为经典BA集束调整算法,此时三维场景点坐标既使用经典BA集束调整算法的输出结果,或利用SAR三维场景解析恢复步骤得到。
优选地,所述三维场景恢复模块包括:
多视图下三维场景结构通过相机位姿进行解析加权重建;
在右基准视图中的景深计算为
据此解析恢复出所有3D点的坐标,或利用右视图景深解析恢复3D点坐标,或取以上两种3D点坐标的算数平均。
与现有技术相比,本发明具有如下的有益效果:
本发明突破传统初值和优化方法的瓶颈,可大幅度提升相机位姿与场景结构恢复的鲁棒性及计算速度。
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明的工作流程图。
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
如图1所示,本发明提供的一种多视图相机位姿和场景的纯位姿解算方法,以视图姿态初值为输入,包括:
纯旋转异常识别(Pure Rotation Recoginition,PRR)步骤:对所有视图进行纯旋转异常识别,对纯旋转异常的视图进行标记,得到标记视图和非标记视图;
全局位移线性计算(Global Translation Linear,GTL)步骤:从非标记视图中选择一幅作为参考视图,构建约束t
r=0,构建全局位移线性约束,求解全局位移
根据t
r和
恢复标记视图的全局位移,并筛选全局位移的正确解;
三维场景解析恢复(Structure Analytical Reconstruction,SAR)步骤:根据全局位姿的正确解,解析恢复所有3D点的坐标。
PRR纯旋转异常识别步骤包括:
步骤1:考虑视图i,1≤i≤N,对于视图j∈V
i,利用双视图(i,j)上的所有图像匹配点对(X
i,X
j)以及相对姿态R
i,j,计算θ
i,j=||[X
j]×R
i,jX
i||,并构成集合Θ
i,j和
记集合Θ
i中大于δ
1的比例为γ
i。
其中,若3D点X
W=(x
W,y
W,z
W)
T在n(≤N)幅视图中可视,对于i=1,2,…,n,V
i为所有与视图i共视的视图构成的集合,X
i和X
j分别表示点X
W在视图i和视图j上的归一化图像坐标,δ
1和δ
2为设定的阈值,R
i和t
i分别表示视图i的全局姿态和全局位移,
和t
i,j分别表示双视图(i,j)的相对姿态和相对位移,[X
j]×表示由向量X
j构成的反对称矩阵;
步骤3:对所有视图重复步骤1-步骤2。
GTL全局位移计算步骤包括:
3D点X
W在视图i上的图像归一化坐标有
其中
~表示齐次坐标下的等式,其中
上标T表示矩阵或向量的转置。为了线性求解全局位移,可以定义不同的目标函数形式,典型如
和[X
i]
×Y
i=0,其中I
3表 示三维单位矩阵,e
3表示单位矩阵的第三列向量e
3=(0,0,1)
T。另外,由于相对位移t
i,j关于全局位移具有不同形式,典型如t
i,j=R
j(t
i-t
j)和t
i,j=t
j-R
i,jt
i,因此矩阵B、C和D的也相应地具有不同形式:
在GTL全局位移计算步骤与所述SAR三维场景解析恢复步骤之间还增添一个可选的相机位姿优化步骤:
3D点X
W在视图i上的图像齐次坐标f
i表示为
其中
为3D点在视图i上的图像坐标且第三元素为1,对于该3D点的所有视图,构成重投影误差向量ε,对于所有3D点,构成误差向量Σ,全局位姿优化的目标函数描述为arg minΣ
TΣ,据此进行全局位姿的优化求解。需要指出的是,此处的相机位姿优化步骤可以替换为其他优化算法,如经典BA集束调整算法,此时三维场景点坐标既可以使用经典BA集束调整算法的输出结果,也可以利用SAR三维场景解析恢复步骤得到。
SAR三维场景解析恢复步骤包括:
多视图下三维场景结构通过相机位姿进行解析加权重建。
在右基准视图中的景深计算为
据此可解析恢复出所有3D点的坐标。同理,可以利用右视图景深解析恢复3D点坐标。当然,也可以取以上两种3D点坐标的算数平均。
在上述一种多视图相机位姿和场景的纯位姿解算方法的基础上,本发明还提供一种多视图相机位姿和场景的纯位姿解算系统,包括:
纯旋转异常识别模块:对所有视图进行纯旋转异常识别,对纯旋转异常的视图进行标记,得到标记视图和非标记视图;
三维场景恢复模块:根据全局位姿的正确解,解析恢复所有3D点的坐标。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
Claims (10)
- 根据权利要求1所述的多视图相机位姿和场景的纯位姿解算方法,其特征在于,所述纯旋转异常识别步骤包括:步骤11:考虑视图i,1≤i≤N,对于视图j∈V i,利用双视图(i,j)上的所有图像匹配点对(X i,X j)以及相对姿态R i,j,计算θ i,j=||[X j] ×R i,jX i||,并构成集合Θ i,j和 记集合Θ i中大于δ 1的比例为γ i;其中,若3D点X W=(x W,y W,z W) T在n(≤N)幅视图中可视,对于i=1,2,…,n,V i为所有与视图i共视的视图构成的集合,X i和X j分别表示点X W在视图i和视图j上的归一化图像坐标,δ 1和δ 2为设定的阈值,R i和t i分别表示视图i的全局姿态和全局位移, 和t i,j分别表示双视图(i,j)的相对姿态和相对位移,[X j] ×表示由向量X j构成的反对称矩阵;步骤13:对所有视图重复步骤11-步骤12。
- 根据权利要求2所述的多视图相机位姿和场景的纯位姿解算方法,其特征在于,所述全局位移恢复步骤包括:另外,由于相对位移t i,j关于全局位移具有不同形式,因此矩阵B、C和D也相应地具有不同形式:
- 根据权利要求6所述的多视图相机位姿和场景的纯位姿解算系统,其特征在于,所述纯旋转异常识别模块包括:模块M11:考虑视图i,1≤i≤N,对于视图j∈V i,利用双视图(i,j)上的所有图像匹配点对(X i,X j)以及相对姿态R i,j,计算θ i,j=||[X j] ×R i,jX i||,并构成集合Θ i,j和 记集合Θ i中大于δ 1的比例为γ i;其中,若3D点X W=(x W,y W,z W) T在n(≤N)幅视图中可视,对于i=1,2,…,n,V i为所有与视图i共视的视图构成的集合,X i和X j分别表示点X W在视图i和视图j上的归一化图像坐标,δ 1和δ 2为设定的阈值,R i和t i分别表示视图i的全局姿态和全局位移, 和t i,j分别表示双视图(i,j)的相对姿态和相对位移,[X j] ×表示由向量X j构成的反对称矩阵;模块M13:对所有视图重复模块M11-模块M12的操作。
- 根据权利要求7所述的多视图相机位姿和场景的纯位姿解算系统,其特征在于,所述全局位移恢复模块包括:另外,由于相对位移t i,j关于全局位移具有不同形式,因此矩阵B、C和D也相应地具有不同形式:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/785,015 US12094162B2 (en) | 2019-12-11 | 2019-12-31 | Pure pose solution method and system for multi-view camera pose and scene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911267354.1A CN111161355B (zh) | 2019-12-11 | 2019-12-11 | 多视图相机位姿和场景的纯位姿解算方法及系统 |
CN201911267354.1 | 2019-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114434A1 true WO2021114434A1 (zh) | 2021-06-17 |
Family
ID=70556977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/130316 WO2021114434A1 (zh) | 2019-12-11 | 2019-12-31 | 多视图相机位姿和场景的纯位姿解算方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12094162B2 (zh) |
CN (1) | CN111161355B (zh) |
WO (1) | WO2021114434A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113408435A (zh) * | 2021-06-22 | 2021-09-17 | 华侨大学 | 一种安全监控方法、装置、设备和存储介质 |
CN113408433A (zh) * | 2021-06-22 | 2021-09-17 | 华侨大学 | 一种智能监控的手势识别方法、装置、设备和存储介质 |
CN117456531A (zh) * | 2023-12-25 | 2024-01-26 | 乐山职业技术学院 | 多视图纯旋转异常识别和自动标记训练方法、设备和介质 |
CN118310420A (zh) * | 2024-04-12 | 2024-07-09 | 河南省科学院物理研究所 | 一种基于机器视觉的三维测量系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113947621B (zh) * | 2021-10-22 | 2024-12-24 | 上海交通大学 | 多视图相机位移和三维场景点坐标的估计方法及系统 |
CN115861434B (zh) * | 2022-11-14 | 2024-03-22 | 中国人民解放军海军工程大学 | 用于超大场景测量多视角相机的位姿估计方法 |
CN117689899B (zh) * | 2024-02-04 | 2024-05-24 | 南昌虚拟现实研究院股份有限公司 | 一种手势采集装置参数点检方法、系统、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106289188A (zh) * | 2016-08-05 | 2017-01-04 | 航天恒星科技有限公司 | 一种基于多视角航空影像的测量方法及系统 |
CN106408653A (zh) * | 2016-09-06 | 2017-02-15 | 合肥工业大学 | 一种面向大规模三维重建的实时鲁棒的集束调整方法 |
CN107507277A (zh) * | 2017-07-31 | 2017-12-22 | 北京康邦科技有限公司 | 三维点云重构方法和装置、服务器及可读存储介质 |
CN108038902A (zh) * | 2017-12-07 | 2018-05-15 | 合肥工业大学 | 一种面向深度相机的高精度三维重建方法和系统 |
US20190130590A1 (en) * | 2017-10-30 | 2019-05-02 | Samsung Electronics Co., Ltd. | Method and apparatus for processing image |
CN109993113A (zh) * | 2019-03-29 | 2019-07-09 | 东北大学 | 一种基于rgb-d和imu信息融合的位姿估计方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102970517B (zh) * | 2012-11-28 | 2015-08-19 | 四川长虹电器股份有限公司 | 基于异常情景识别的云台镜头自主控制方法 |
US10499996B2 (en) * | 2015-03-26 | 2019-12-10 | Universidade De Coimbra | Methods and systems for computer-aided surgery using intra-operative video acquired by a free moving camera |
US9633250B2 (en) * | 2015-09-21 | 2017-04-25 | Mitsubishi Electric Research Laboratories, Inc. | Method for estimating locations of facial landmarks in an image of a face using globally aligned regression |
JP2018036770A (ja) * | 2016-08-30 | 2018-03-08 | 富士通株式会社 | 位置姿勢推定装置、位置姿勢推定方法、及び位置姿勢推定プログラム |
CN107330934B (zh) * | 2017-05-23 | 2021-12-07 | 上海交通大学 | 低维度的集束调整计算方法与系统 |
CN108225319B (zh) * | 2017-11-30 | 2021-09-07 | 上海航天控制技术研究所 | 基于目标特征的单目视觉快速相对位姿估计系统及方法 |
CN108280858B (zh) * | 2018-01-29 | 2022-02-01 | 重庆邮电大学 | 多视图重建中的一种线性全局相机运动参数估计方法 |
US11704787B2 (en) * | 2020-11-06 | 2023-07-18 | Wipro Limited | Method and system for determining stock in an inventory |
CN112697044B (zh) * | 2020-12-17 | 2021-11-26 | 北京航空航天大学 | 一种基于无人机平台的静态刚性物体视觉测量方法 |
CN113962853B (zh) * | 2021-12-15 | 2022-03-15 | 武汉大学 | 一种旋转线阵扫描图像位姿自动化精密解算方法 |
-
2019
- 2019-12-11 CN CN201911267354.1A patent/CN111161355B/zh active Active
- 2019-12-31 WO PCT/CN2019/130316 patent/WO2021114434A1/zh active Application Filing
- 2019-12-31 US US17/785,015 patent/US12094162B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106289188A (zh) * | 2016-08-05 | 2017-01-04 | 航天恒星科技有限公司 | 一种基于多视角航空影像的测量方法及系统 |
CN106408653A (zh) * | 2016-09-06 | 2017-02-15 | 合肥工业大学 | 一种面向大规模三维重建的实时鲁棒的集束调整方法 |
CN107507277A (zh) * | 2017-07-31 | 2017-12-22 | 北京康邦科技有限公司 | 三维点云重构方法和装置、服务器及可读存储介质 |
US20190130590A1 (en) * | 2017-10-30 | 2019-05-02 | Samsung Electronics Co., Ltd. | Method and apparatus for processing image |
CN108038902A (zh) * | 2017-12-07 | 2018-05-15 | 合肥工业大学 | 一种面向深度相机的高精度三维重建方法和系统 |
CN109993113A (zh) * | 2019-03-29 | 2019-07-09 | 东北大学 | 一种基于rgb-d和imu信息融合的位姿估计方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113408435A (zh) * | 2021-06-22 | 2021-09-17 | 华侨大学 | 一种安全监控方法、装置、设备和存储介质 |
CN113408433A (zh) * | 2021-06-22 | 2021-09-17 | 华侨大学 | 一种智能监控的手势识别方法、装置、设备和存储介质 |
CN113408433B (zh) * | 2021-06-22 | 2023-12-05 | 华侨大学 | 一种智能监控的手势识别方法、装置、设备和存储介质 |
CN113408435B (zh) * | 2021-06-22 | 2023-12-05 | 华侨大学 | 一种安全监控方法、装置、设备和存储介质 |
CN117456531A (zh) * | 2023-12-25 | 2024-01-26 | 乐山职业技术学院 | 多视图纯旋转异常识别和自动标记训练方法、设备和介质 |
CN117456531B (zh) * | 2023-12-25 | 2024-03-19 | 乐山职业技术学院 | 多视图纯旋转异常识别和自动标记训练方法、设备和介质 |
CN118310420A (zh) * | 2024-04-12 | 2024-07-09 | 河南省科学院物理研究所 | 一种基于机器视觉的三维测量系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111161355B (zh) | 2023-05-09 |
US20230041433A1 (en) | 2023-02-09 |
CN111161355A (zh) | 2020-05-15 |
US12094162B2 (en) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021114434A1 (zh) | 多视图相机位姿和场景的纯位姿解算方法及系统 | |
CN110120011B (zh) | 一种基于卷积神经网络和混合分辨率的视频超分辨方法 | |
CN110619676B (zh) | 一种基于神经网络的端到端的三维人脸重建方法 | |
CN111401452B (zh) | 一种基于偏微分算子的等变卷积网络模型的图像分类方法 | |
Wang et al. | Vplnet: Deep single view normal estimation with vanishing points and lines | |
CN110728628A (zh) | 一种基于条件生成对抗网络的人脸去遮挡方法 | |
CN112132023A (zh) | 基于多尺度上下文增强网络的人群计数方法 | |
CN102708370B (zh) | 一种多视角图像前景目标提取方法及装置 | |
CN110310277B (zh) | 基于深度特征和ntv-rpca的织物疵点检测方法 | |
CN103150713A (zh) | 利用图像块分类稀疏表示与自适应聚合的图像超分辨方法 | |
CN108280858B (zh) | 多视图重建中的一种线性全局相机运动参数估计方法 | |
CN112734890A (zh) | 基于三维重建的人脸替换方法及装置 | |
CN101901472A (zh) | 一种基于矩阵秩最小化的非刚性鲁棒批量图像对齐方法 | |
CN110717936A (zh) | 一种基于相机姿态估计的图像拼接方法 | |
Hang et al. | Spatial-temporal adaptive graph convolutional network for skeleton-based action recognition | |
Zhang et al. | Multi-task convnet for blind face inpainting with application to face verification | |
CN106204477A (zh) | 基于在线低秩背景建模的视频序列背景恢复方法 | |
Yuan et al. | Parallax-aware network for light field salient object detection | |
CN111539288B (zh) | 一种双手姿势的实时检测方法 | |
CN105844674B (zh) | 基于三元数小波变换的彩色图像融合系统及方法 | |
CN113240584B (zh) | 一种基于图片边缘信息的多任务手势图片超分辨率方法 | |
CN110147809A (zh) | 图像处理方法及装置、存储介质及图像设备 | |
Fan et al. | LiDAR-HMR: 3D Human Mesh Recovery from LiDAR | |
CN114037867B (zh) | 一种基于宽度学习的风机叶片表面损伤分类识别方法 | |
CN116778072A (zh) | 一种基于时序多深度平面场的平面视频光场化方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19955684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19955684 Country of ref document: EP Kind code of ref document: A1 |