[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021107580A1 - Ni기 합금 플럭스 코어드 와이어 - Google Patents

Ni기 합금 플럭스 코어드 와이어 Download PDF

Info

Publication number
WO2021107580A1
WO2021107580A1 PCT/KR2020/016750 KR2020016750W WO2021107580A1 WO 2021107580 A1 WO2021107580 A1 WO 2021107580A1 KR 2020016750 W KR2020016750 W KR 2020016750W WO 2021107580 A1 WO2021107580 A1 WO 2021107580A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
based alloy
cored wire
weight
content
Prior art date
Application number
PCT/KR2020/016750
Other languages
English (en)
French (fr)
Inventor
임희대
길웅
백성현
Original Assignee
주식회사 세아에삽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세아에삽 filed Critical 주식회사 세아에삽
Priority to EP20892161.9A priority Critical patent/EP4066985A4/en
Priority to JP2022532014A priority patent/JP2023504438A/ja
Priority to CN202080082962.XA priority patent/CN114845835A/zh
Publication of WO2021107580A1 publication Critical patent/WO2021107580A1/ko
Priority to US17/752,931 priority patent/US20220288724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys

Definitions

  • the present invention relates to a Ni-based alloy flux-cored wire, and more particularly, to obtain an excellent bead shape by adjusting the content of Mn and Nb, as well as excellent arc stability and spatter suppression, good strength, defect resistance, It relates to a Ni-based alloy flux-cored wire capable of obtaining a weld metal having crack resistance.
  • Ni-based alloy is a precipitation hardening alloy using the precipitation phenomenon of an austenite phase having a regular lattice (FCC). It has the best performance among superalloys and is subject to high temperature and high stress such as blades, disks, and combustion chambers of gas turbines. It is widely used as a structural material for major parts. And it has tough and strong properties even at a temperature of 980°C or higher, and it is particularly resistant to oxidation and corrosion and is strong in phosphoric acid solution. Therefore, it is used for piping for chemical and pollution prevention facilities, and for offshore valve equipment.
  • FCC regular lattice
  • a welding material containing a Ni-based alloy as a component is used for welding, for example, a Ni-based alloy used as a structural member of a chemical plant or a petroleum-related facility, or a highly corrosion-resistant austenitic stainless steel.
  • a welding material containing a Ni-based alloy as a component is used for welding 9% Ni steel or the like used as a structural member for storage tanks of LNG, liquid nitrogen, and liquid oxygen and the like.
  • Inconel 625 alloy (Ni-Cr-Mo-Nb alloy) has excellent weldability, and the applied welding technique is mainly GTAW (Gas Tungsten Arc Welding), SMAW (Shielded Metal Arc Welding), GMAW (Gas Metal Some welding techniques such as Arc Welding), SAW (Submerged Arc Welding), and FCAW (Flux-Cored Arc Welding) are being used.
  • GTAW Gas Tungsten Arc Welding
  • SMAW Steded Metal Arc Welding
  • GMAW Gas Metal Some welding techniques such as Arc Welding), SAW (Submerged Arc Welding), and FCAW (Flux-Cored Arc Welding) are being used.
  • An object of the present invention is to provide a Ni-based alloy flux cored wire in order to solve the above problems.
  • the composition of the entire wire including the sheath component and the flux component contained in the sheath is in weight % based on the total flux cored wire,
  • SiO 2 0.5 ⁇ 3.0%, Na 2 O, K 2 O, MgO, at least one of CaO: 0.1 ⁇ 3.0%, Al 2 O 3 , at least one of TiO 2 and ZrO 2 : 5.0 ⁇ 12.0% and
  • Ni-based alloy flux-cored wire satisfying the following [Relational Expression 1] and [Relational Expression 2].
  • the amount of the deposited metal component obtained by the flux-cored wire is, in weight %
  • Ni-based alloy flux-cored wire in which a component of the deposited metal satisfies the following [Relational Equation 3].
  • the Ni-based alloy flux-cored wire of the present invention can obtain a weld metal having an excellent bead shape in full-fine welding of Ni-based alloy, 9% Ni steel, and high corrosion-resistant austenitic stainless steel, and has good strength and defect resistance. , there is an effect that a weld metal having crack resistance can be obtained.
  • FIG. 1 is a photograph of cracks in a weld bead according to one component example of the present invention.
  • the flux-cored wire is a Ni-based alloy flux-cored wire in which the outer shell of the Ni-based alloy is filled with flux.
  • the weld metal refers to a metal transferred from a filler metal (wire), which is a metal material added during welding, to a weld zone.
  • Ni-based flux-cored wire in which a flux is contained in an outer sheath, wherein the composition of the entire wire contains a predetermined amount of Ni, Cr, Mn, and Nb per total weight of the wire.
  • the composition of the entire wire including the sheath component and the flux component contained in the sheath is % by weight based on the total flux cored wire.
  • each component may be added as metal powder and alloy powder from flux, other than those included in the Ni-based alloy shell.
  • Cr chromium
  • Cr may be added for the purpose of improving the strength and corrosion resistance of the weld metal.
  • Cr content is less than 15% by weight, corrosion resistance deteriorates and a constant strength of the weld metal cannot be obtained.
  • Cr may combine with C to form carbide, and if the Cr content exceeds 22 wt%, chromium carbide may be excessively formed to deteriorate the toughness of the weld metal. Therefore, the Cr content in the flux-cored wire is set to 15 to 22 wt% based on the total weight of the wire. More preferably, it is 16 to 18% by weight.
  • Molybdenum (Mo) is a component that combines with carbon (C) to form a carbide, and is a component that plays an advantageous role in abrasion resistance, hardness and corrosion resistance. If the content of Mo is less than 5% by weight, it is difficult to expect the above-described effect, whereas if it exceeds 10% by weight, it is precipitated as a Laves phase, resulting in a decrease in crack resistance.
  • the content of Mo it is preferable to limit the content of Mo to 5 to 10% by weight based on the total weight of the wire. More preferably, it is 5-8 weight%.
  • Carbon (C) has an effect of improving the strength of the weld metal, but there is a problem of reducing toughness by forming carbides when added excessively. Therefore, the content of C is set to 0.1% or less per the total weight of the wire.
  • the lower limit of C is not particularly limited, but is preferably 0.1 wt% or less in order to prevent deterioration of the toughness of the weld metal.
  • Mn manganese
  • Mn has an effect of detoxifying S as it combines with S, which reduces crack resistance by combining with Ni, and has the effect of improving mechanical properties by encouraging deoxidation of welds.
  • Mn when Mn is less than 0.01% by weight, the bonding with S is not sufficient, so the effect of improving crack resistance cannot be expected, and it is not preferable because sufficient deoxidation effect is not obtained.
  • Mn when it exceeds 3.0% by weight, it is undesirable because the slag melting point is lowered due to the formation of MnO, and the pre-washing performance and peelability are lowered. Therefore, Mn is set to 0.01 to 3.0% by weight based on the total weight of the wire. More preferably, it may be 0.5 to 3.0 wt%.
  • Nb niobium
  • Niobium may be added for the purpose of improving the strength of the weld metal.
  • Niobium (Nb) may have a precipitation strengthening effect by combining with carbon or nitrogen to form carbides, nitrides, and carbonitrides.
  • the content increases, there is a problem in that it precipitates into a Laves phase, resulting in a decrease in crack resistance.
  • Nb is not added or is limited to 2.9 wt% or less. Preferably, it may be added in an amount of 2 wt% or less, more preferably 0.5 wt% or less. It is characterized in that workability and physical properties can be secured by controlling Mn while limiting the content of Nb.
  • Iron (Fe) is an element that is indispensable in a welding material or a base material in a Ni-based alloy, and is a component that secures the ductility of the metal. If the content is less than 3.0% by weight, the ductility of the weld metal cannot be secured, and if it exceeds 9.0% by weight, the high-temperature cracking resistance is deteriorated. Therefore, in the present invention, it is preferable to limit the content of Fe to 3.0 to 9.0 wt% based on the total weight of the wire. In addition, when Cu is included, since Fe forms a compound with Cu (copper) and causes cracks, it is preferable to control the content of Cu together with the Fe content.
  • Silicon (Si) is a component that improves the deoxidation action and weldability.
  • the content is less than 0.01, the deoxidation ability is insufficient, and when it exceeds 0.5 wt%, the crack susceptibility increases according to the generation of the Laves phase, which is not preferable. Therefore, it is preferable to limit the content of Si to 0.01 to 0.5% by weight or less.
  • P (phosphorus) and S (sulfur) are one of the main elements that affect high-temperature cracking, and can cause high-temperature cracking by generating low-melting-point compounds.
  • it may further include P or S, and the total content of P+S is preferably less than 0.01% by weight.
  • the remaining component of the present invention is nickel (Ni).
  • Ni stabilizes the austenite structure and combines with Nb to form precipitates to increase tensile strength.
  • the Ni content may be limited to 45 to 60 wt%.
  • the Ni content is less than 40% by weight, the structure may become unstable and toughness may deteriorate while the content of other elements is relatively increased.
  • the Ni content exceeds 60% by weight, the addition amount of Cr, Mo, etc. is relatively low, and corrosion resistance or strength may be deteriorated. Therefore, in the flux-cored wire, the Ni content is preferably 45 to 60% by weight based on the total weight of the wire. More preferably, it may be 50 to 60% by weight.
  • SiO 2 0.5 to 3.0 wt%
  • SiO 2 serves to increase the flowability and weld bead spreadability of the welding slag as a slag former. In order to have this effect, it is preferably added in an amount of 0.5 wt% or more. In addition, when it exceeds 3.0 wt%, the Si content in the weld metal increases, resulting in lowering of crack resistance, so it is preferable to limit SiO2 to 0.5 to 3.0 wt%.
  • At least one of Na 2 O and K 2 O 0.1 to 3.0 wt%
  • the alkali metal oxide should be added in an amount of 0.1 wt % or more to reduce the ionization potential of the arc during melting to facilitate arc generation, and to maintain a stable arc during welding. In addition, when it exceeds 3.0 wt%, since welding fume may be excessively generated due to high vapor pressure, it is preferable to limit the alkali metal oxide to 0.1 to 3.0 wt%.
  • the alkali metal oxide may include one or more of Na 2 O and K 2 O.
  • At least one of Al 2 O 3 , TiO 2 and ZrO 2 5.0 to 12.0 wt%
  • Al, Ti, and Zr oxides may be added to increase the melting point of the slag to improve the workability of the full-fine welding. If the sum of Al, Ti, and Zr oxides is less than 5.0% by weight, the amount of slag is not sufficient and the slag enveloping property is deteriorated. If it exceeds 12.0% by weight, slag winding defects may occur, so it is limited to 5.0 to 12.0% by weight. This is preferable.
  • the flux-cored wire of the present invention may further include Ti in an amount of 0.2 wt% or less.
  • Ti can increase the strength due to the precipitation hardening effect in the Ni-based alloy and reduce the amount of pore generation by acting as a deoxidation component. When Ti exceeds 0.2 wt%, it is undesirable to inhibit the low-temperature impact toughness and crack resistance of the welded portion due to excessive precipitation.
  • the Ni-based alloy flux-cored wire of the present invention it is preferable to control the addition amount of each oxide to satisfy the following [Relational Expression 1]. Specifically, it is preferable to manage so that the value defined by [Relational Expression 1] is less than 0.5. If it is 0.5 or more, weldability may deteriorate due to deterioration of weldability and cracking properties.
  • the flux component of the flux-cored wire according to the present invention may further contain 0.1 wt% or less of MnO and 0.1 to 1.5 wt% of a fluorine compound in terms of F.
  • unintended impurities from raw materials or the surrounding environment may inevitably be incorporated in the normal manufacturing process.
  • the deposited metal component obtained by the flux-cored wire is, by weight, C: 0.1% or less ( 0% by weight), Si: 0.01 to 0.5%, Mn: 0.01 to 3.0%, Cr: 15.0 to 20.0%, Nb: 0 to 3.5% (except for 0% by weight), Mo: 5.0 to 15.0% , Fe: 3.0 to 9.0%, the balance Ni, and an unavoidable impurity, and provides a Ni-based alloy flux-cored wire that satisfies the following [Relational Equation 3] in which the component of the deposited metal satisfies.
  • composition of the flux-cored wire alloy according to the present invention full-fine welding is possible, and a weld metal having excellent strength and toughness can be obtained.
  • Each component may be added as metal powder and alloy powder from flux, other than those included in the Ni-based alloy shell.
  • Cr of the deposited metal obtained by the flux-cored wire according to the present invention may be 15 to 20% by weight. Cr may be added for the purpose of improving the strength and corrosion resistance of the weld metal. When the Cr content is less than 15% by weight, corrosion resistance deteriorates and a constant strength of the weld metal cannot be obtained. On the other hand, Cr may combine with C to form carbides, and if the Cr content exceeds 20 wt%, the toughness of the weld metal may be deteriorated, and growth may be reduced.
  • Mo may be 5 to 15% by weight.
  • Molybdenum (Mo) is a component that combines with carbon (C) to form a carbide, and is a component that plays an advantageous role in abrasion resistance, hardness and corrosion resistance. If the content of such Mo is less than 5% by weight, it is difficult to expect the above-described effects, whereas when it exceeds 15% by weight, there is a problem in that crack resistance is deteriorated. More preferably, it may be 5 to 8% by weight.
  • C may be 0.1% by weight or less.
  • Carbon (C) has an effect of improving the strength of the weld metal, but there is a problem of reducing toughness by forming carbides when added excessively. Therefore, the content of C is preferably 0.1% or less in order to prevent deterioration of the toughness of the weld metal.
  • Mn may be 0.01 to 3.0 wt%.
  • Mn is added to improve the bead shape of the weld metal, and to improve defect resistance and crack resistance.
  • the present invention can prevent the deterioration of toughness by limiting the content of Nb as described below while improving the crack resistance by increasing the content of Mn.
  • Mn when Mn is less than 0.01% by weight, the bonding with S is not sufficient, so the effect of improving crack resistance cannot be expected, and it is not preferable because sufficient deoxidation effect is not obtained.
  • it exceeds 3.0 weight% peelability will fall and it is unpreferable. More preferably, it may be 0.5 to 3.0 wt%.
  • Nb may be 0 to 3.5% by weight (except when it is 0% by weight). Nb may be added for the purpose of improving the strength of the weld metal. Niobium (Nb) may have a precipitation strengthening effect by combining with carbon or nitrogen to form carbides, nitrides, and carbonitrides. However, as the content increases, there is a problem in that the crack resistance of the weld metal is deteriorated. Therefore, in the present invention, Nb is not added or is limited to 3.5 wt% or less. Preferably, it may be added in an amount of 2.9 wt% or less, more preferably 2.0 wt% or less. A feature of the present invention is that a certain strength can be maintained by controlling the content of Mn while limiting the content of Nb.
  • Fe may be 3.0 to 9.0 wt%.
  • Fe is an element indispensable in the welding material or the base material in the Ni-based alloy.
  • Iron (Fe) is an element essential in the welding material or the base material in the Ni-based alloy, and is a component that secures the ductility of the metal. If the content is less than 3.0% by weight, the ductility of the weld metal cannot be secured, and when it exceeds 9.0% by weight, the high-temperature cracking resistance is lowered, which is not preferable. Therefore, in the present invention, it is preferable to limit the content of Fe to 3.0 to 9.0 wt% based on the total weight of the wire.
  • Cu when Cu is additionally included, since Fe forms a compound with Cu (copper) and causes cracks, it is preferable to control the content of Cu as well as the Fe content.
  • Si may be 0.01 to 0.5 wt% or less. If the content is less than 0.01% by weight, the deoxidation power decreases, and if it exceeds 0.5% by weight, the crack susceptibility increases according to the generation of the Laves phase, which is not preferable. Therefore, it is preferable to limit the Si content to 0.5 wt% or less.
  • Ti may further include 0.2 wt% or less. Ti can increase the strength due to the precipitation hardening effect in the Ni-based alloy and reduce the amount of pore generation by acting as a deoxidation component. When Ti exceeds 0.2 wt%, it is undesirable to inhibit the low-temperature impact toughness and crack resistance of the weld zone due to excessive precipitation.
  • the balance may be Ni and unavoidable impurities.
  • the composition so that the value defined by [Relational Expression 3] is less than 7.0. If it is 7.0 or higher, it is difficult to secure excellent weld quality due to deterioration of weldability and crack resistance.
  • Ni-based alloy flux-cored wire does not contain W (tungsten) and contains high amounts of Cr (chromium) and Mn (manganese) while limiting the content of Nb (niobium) to achieve slag peelability and crack resistance. It is characterized in that it improves properties and secures physical properties such as strength.
  • Flux-cored wires having components as shown in Table 1 were prepared. It demonstrates below based on each component example.
  • FCAW Flux Cored Arc Welding
  • crack resistance and bead appearance could be improved by increasing the manganese content even when the content of niobium was 2.5 wt% or more.
  • FIG. 1 is a photograph of cracks in a weld bead according to one component example of the present invention.
  • Fig. 1 (a) is a photograph of a weld bead according to Component Example 15, (b) Component Example 17, (c) Component Example 18, and (d) Component Example 20.
  • Ni-based alloy flux-cored wire according to the present invention has excellent high-temperature cracking resistance by controlling the content of manganese and niobium, and at the same time has impact toughness and strength. It has improved characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

본 발명은 Ni기 합금 플럭스 코어드 와이어에 관한 것으로, 더욱 상세하게는 Mn 및 Nb의 함량 조정으로 우수한 비드형상이 얻어짐과 더불어, 아크안정성 및 스패터 억제성이 우수하고, 양호한 강도, 내결함성, 내균열성을 갖는 용접금속을 얻을 수 있는 Ni기 합금 플럭스 코어드 와이어에 관한 것이다. 본 발명의 Ni기 합금 플럭스 코어드 와이어는 Ni기 합금, 9% Ni강 및 고내식 오스테나이트계 스테인레스강 등의 전자세 용접에 있어서, 비드 형상이 우수한 용접 금속을 얻을 수 있고, 양호한 강도, 내결함성, 내균열성을 가지는 용접금속을 확보할 수 있는 효과가 있다.

Description

Ni기 합금 플럭스 코어드 와이어
본 발명은 Ni기 합금 플럭스 코어드 와이어에 관한 것으로, 더욱 상세하게는 Mn 및 Nb의 함량 조정으로 우수한 비드형상이 얻어짐과 더불어, 아크안정성 및 스패터 억제성이 우수하고, 양호한 강도, 내결함성, 내균열성을 갖는 용접금속을 얻을 수 있는 Ni기 합금 플럭스 코어드 와이어에 관한 것이다.
20세기 들어와서 항공우주 산업, 원자력 산업, 파워플랜트 산업, 석유화학 산업 등의 첨단산업 분야에서 초내열 합금이 기본적인 구조재료로 많이 사용되고 있다. 그 중 Ni기 합금은 규칙적격자(FCC)를 갖는 오스테나이트 상의 석출현상을 이용한 석출경화형합금으로서 초내열합금 중에서도 그 성능이 가장 우수하며 가스터빈의 블레이드, 디스크, 연소실 등과 같은 고온, 고응력을 받는 주요부품의 구조용 재료로 널리 사용되고 있다. 그리고 980℃ 이상의 온도에서도 질기고 강한 성질이 있으며, 특히 산화, 부식에 잘 견디고 인산용액에 강하다. 따라서 화학용 및 오염방지 시설용 배관, 밸프 해상장비에 사용된다.
Ni기 합금을 성분으로 하는 용접 재료는, 예컨대, 화학 플랜트나 석유 관련 설비 등의 구조 부재로서 사용되는 Ni기 합금이나 고내식 오스테나이트계 스테인레스강 등의 용접에 이용되고 있다. 또는, Ni기 합금을 성분으로 하는 용접 재료는, LNG, 액체 질소, 또한 액체 산소 등의 저장 탱크 등의 구조 부재로서 사용되는 9% Ni강 등의 용접에 이용되고 있다.
많은 Ni기 합금 중에서 Inconel 625 합금(Ni-Cr-Mo-Nb 합금)은 용접성이 탁월하며 적용되는 용접기법은 주로 GTAW(Gas Tungsten Arc Welding)이 사용되고 SMAW(Shielded Metal Arc Welding), GMAW(Gas Metal Arc Welding), SAW(Submerged Arc Welding), FCAW(Flux-Cored Arc Welding) 등의 용접기법이 일부 사용되고 있다.
FCAW용 용접재료의 개발은 다른 용접재료에 비하여 개발이 늦었으며, 최근에 와서야 Vertical-up 용접 자세까지 가능한 용접재료가 개발되어 점차 사용빈도가 높아지고 있는 실정이다. 최근, Ni기 합금과 같은 특수 용접 재료에 대하여, 피복 아크 용접이나 TIG 용접에 비하여, 보다 높은 작업 능률을 기대할 수 있는 Ni기 합금 플럭스 코어드 와이어를 이용한 가스 실드 아크 용접이 확대되고 있다.
그러나 Ni기 합금 플럭스 코어드 와이어를 이용한 가스 실드 아크 용접에 있어서, Ni기 합금은 용접 금속의 융점이 낮기 때문에 응고된 슬래그와의 계면에 가스가 트랩되기 쉬워, 용접 금속에 피트(pit)가 발생하기 쉽다는 문제가 있다. 또한 슬래그 박리성이 저하되는 것을 방지하기 위하여 대한민국 등록특허 제10-1708997호, 대한민국 등록특허 제10-1760828호와 같이 망간(Mn)의 함량을 극소량으로 제한해야 하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, Ni기 합금 플럭스 코어드 와이어를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은,
Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 22.0%, Nb : 0 ~ 2.9%(0 중량%인 경우 제외), Mo : 5.0 ~ 10.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고,
SiO2 : 0.5 ~ 3.0%, Na2O, K2O, MgO, CaO 중 1종 이상: 0.1 ~ 3.0%, Al2O3, TiO2 및 ZrO2 중 1종 이상: 5.0 ~ 12.0%를 포함하며,
하기 [관계식 1]과 [관계식 2]를 만족하는 Ni기 합금 플럭스 코어드 와이어를 제공한다.
[관계식 1]
0.1Na2O+{K2O+0.5(MgO+Al2O3)}/{CaO+1.6(TiO2+SiO2)+0.2(ZrO2)} < 0.5
[관계식 2]
0.01 중량% Mn ≤ Nb 중량% ≤ (0.01 중량% Mn)+3.3
또한, 상기 목적을 달성하기 위하여 본 발명은,
Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 20.0%, Nb : 0 ~ 3.5%(0 중량%인 경우 제외), Mo : 5.0 ~15.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고,
상기 용착 금속의 성분이 하기 [관계식 3]을 만족하는 Ni기 합금 플럭스 코어드 와이어를 제공한다.
[관계식 3]
[Fe+{15(2.8Nb+0.85Mn)}]/(Cr+Mo) < 7.0
본 발명의 Ni기 합금 플럭스 코어드 와이어는 Ni기 합금, 9% Ni강 및 고내식 오스테나이트계 스테인레스강 등의 전자세 용접에 있어서, 비드 형상이 우수한 용접 금속을 얻을 수 있고, 양호한 강도, 내결함성, 내균열성을 가지는 용접금속을 얻을 수 있는 효과가 있다.
도 1은 본 발명의 일 성분예에 따른 용접 비드의 크랙 사진이다.
이하 본 발명에 대하여 보다 상세히 설명한다.
본 명세서에 있어서 플럭스 코어드 와이어는, Ni기 합금의 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어이다.
본 명세서에 있어서 용접 금속이란, 용접을 실시했을 때에 용접 중에 용착 금속과 용융 모재가 용융되어 응고된 금속을 말한다.
본 명세서에 있어서 용착 금속이란 용접 중에 부가되는 금속재료인 용가재(와이어)로부터 용접부로 이행된 금속을 말한다.
본 발명의 일 측면에 따르면, 플럭스가 외피에 내포되는 플럭스 코어드 와이어로서, 와이어 전체의 조성이 와이어 전체 중량당 Ni, Cr, Mn, Nb를 소정량 함유하는 Ni기 플럭스 코어드 와이어를 제공한다.
더 구체적으로는, Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로, C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 22.0%, Nb : 0 ~ 2.9%(0 중량%인 경우 제외), Mo : 5.0 ~ 10.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고, SiO2 : 0.5 ~ 3.0%, Na2O, K2O, MgO, CaO 중 1종 이상: 0.1 ~ 3.0%, Al2O3, TiO2 및 ZrO2 중 1종 이상: 5.0 ~ 12.0%를 포함하며, 하기 [관계식 1]과 [관계식 2]를 만족하는 Ni기 합금 플럭스 코어드 와이어를 제공한다.
[관계식 1]
0.1Na2O+{K2O+0.5(MgO+Al2O3)}/{CaO+1.6(TiO2+SiO2)+0.2(ZrO2)} < 0.5
[관계식 2]
0.01 중량% Mn ≤ Nb 중량% ≤ (0.01 중량% Mn)+3.3
이하, 플럭스 코어드 와이어의 성분 한정 이유에 대하여 설명한다. 이하에서 특별한 언급이 없는 한, 각 조성의 함량은 중량%를 의미한다. 각 성분은 Ni기 합금외피에 포함되는 것 외, 플럭스로부터의 금속분 및 합금분으로 첨가될 수 있다.
Cr : 15 ~ 22 중량%
Cr(크롬)은 용접 금속의 강도 및 내식성을 향상시키는 목적에서 첨가할 수 있다. Cr 함유량이 15중량% 미만이면, 내식성이 열화되고, 용접 금속의 일정한 강도를 얻을 수 없다. 한편, Cr은 C와 결합하여 탄화물을 형성시킬 수 있고, Cr 함유량이 22 중량%를 초과하면 크롬탄화물이 과도하게 형성되어 용접 금속의 인성이 열화될 수 있다. 따라서, 플럭스 코어드 와이어에 있어서의 Cr 함유량은 와이어 전체 중량당 15∼22 중량%로 한다. 보다 바람직하게는 16 ~ 18 중량%이다.
Mo : 5 ~ 10 중량%
몰리브덴(Mo)은 탄소(C)와 결합하여 탄화물을 형성하는 성분으로서, 내마모성, 경도 및 내부식성에 유리한 역할을 하는 성분이다. 이러한 Mo의 함량이 5 중량% 미만이면 상술한 효과를 기대하기 어려우며, 반면에 10 중량%를 초과하게 되면 라베스 상(Laves Phase)으로 석출되어 내균열성이 저하를 초래하는 문제가 있다.
따라서, 본 발명에서는 Mo의 함량을 와이어 전체 중량당 5 ~ 10 중량%로 제한함이 바람직하다. 보다 바람직하게는 5 ~ 8 중량%이다.
C : 0.1 중량% 이하(0 중량%인 경우 제외)
탄소(C)는, 용접 금속의 강도를 향상하는 효과가 있지만, 과잉하게 첨가하면 탄화물을 생성하여 인성을 저하시키는 문제점이 있다. 따라서 C의 함량은 와이어 전체 중량당 0.1% 이하로 한다. 아울러, C의 하한은 특히 한정하지 않지만 용접 금속의 인성 저하를 방지하기 위하여 0.1 중량%이하인 것이 바람직하다.
Mn : 0.01 ~ 3.0 중량%
Mn(망간)은 용접 금속의 비드 형상의 개선화 내결함성, 내균열성을 향상시키기 위하여 첨가한다. 기존의 Ni기 플럭스 코어드 와이어에서 급격한 인성저하를 막기 위하여 Mn의 함량을 제한하였으나 본 발명은 Mn의 함량을 증가시켜 내균열성을 향상하면서도 하기에 설명하는 바와 같이 Nb의 함량을 제한하여 인성 저하를 방지함에 특징이 있다.
Mn은 Ni과 결합하여 내균열성을 저하시키는 S와 결합함에 따라 S를 무해화 시키는 효과가 있고, 용접부의 탈산을 조장하여 기계적 성질을 개선시키는 효과가 있다. 본 발명에서 Mn이 0.01 중량% 미만이면 S와의 결합이 충분하지 않아 내균열성 향상의 효과를 기대할 수 없고, 충분한 탈산효과가 얻어지지 않아 바람직하지 못하다. 또한, 3.0 중량% 초과하면 MnO의 형성으로 인한 슬래그 융점 저하로 전자세 작업성능과 박리성이 저하하여 바람직하지 못하다. 따라서 Mn은 와이어 전체 중량 당 0.01 ~ 3.0 중량%로 한다. 더욱 바람직하게는 0.5 ~ 3.0 중량%일 수 있다.
Nb : 0 ~ 2.9 중량%(0 중량%인 경우 제외)
Nb(니오븀)는 용접 금속의 강도를 향상시킬 목적에서 첨가할 수 있다. 니오븀(Nb)은 탄소 또는 질소와 결합하여 탄화물, 질화물, 탄질화물을 형성하여 석출강화효과를 가질 수 있다. 그러나 그 함량이 증가할수록 라베스상(Laves Phase)으로 석출되어 내균열성의 저하를 초래하는 문제가 있다.
따라서 본 발명에서는 Nb을 첨가하지 않거나 2.9 중량% 이하로 제한한다. 바람직하게는 2 중량% 이하, 더욱 바람직하게는 0.5 중량%이하로 첨가할 수 있다. Nb의 함량을 제한하면서도 Mn을 조절하여 작업성과 물성을 확보할 수 있음에 특징이 있다.
Fe : 3.0 ~ 9.0 중량%
철(Fe)은 Ni계 합금에서 용접재료 또는 모재에서 필수 불가결하게 함유되는 원소로 금속의 연성을 확보하는 성분이다. 그 함량이 3.0 중량% 미만이면 용접 금속의 연성을 확보 할 수 없고, 9.0 중량% 초과하면 내고온균열성이 저하된다. 따라서 본 발명에서는 Fe의 함량을 와이어 전체 중량당 3.0 ~ 9.0 중량%로 제한함이 바람직하다. 아울러 Cu를 포함하는 경우 Fe이 Cu(구리)와 화합물(compound)를 형성하여 균열을 야기하므로 Fe 함량과 더불어 Cu의 함량을 조절함이 바람직하다.
Si : 0.01 ~ 0.5 중량%
실리콘(Si)은 탈산 작용 및 용접성을 향상시키는 성분으로, 그 함량이 0.01 미만이면 탈산 능력이 미비하고, 0.5 중량%를 초과하게 되면 라베스상 생성에 따라 균열감수성이 증가하여 바람직하지 못하다. 따라서 Si의 함량을 0.01 ~ 0.5 중량% 이하로 제한함이 바람직하다.
P+S : 0.01 중량% 미만(0 중량%인 경우 제외)
P(인) 및 S(황)은 고온균열에 영향을 미치는 주요 원소 중 하나로, 저융점 화합물을 발생시켜 고온균열을 발생시킬 수 있다. 본 발명의 경우 P 또는 S를 더 포함할 수 있고, P+S의 총 함량은 0.01 중량% 미만인 것이 바람직하다.
본 발명의 나머지 성분은 니켈(Ni)이다.
Ni는 오스테나이트 조직을 안정화시키고, Nb와 결합하여 석출물을 생성하여 인장 강도를 상승시키는 효과가 있다. 바람직하게는 Ni 함량을 45 ~ 60 중량%로 제한할 수 있다. Ni 함유량이 40 중량% 미만이면, 상대적으로 다른 원소의 함유량이 증가하면서 조직이 불안정해져 인성이 열화될 수 있다. Ni 함유량이 60중량%를 초과하면, 상대적으로 Cr, Mo 등의 첨가량이 낮아져, 내식성이나 강도가 열화될 수 있다. 따라서, 플럭스 코어드 와이어에 있어서 Ni 함유량은 와이어 전체 중량당 45 ∼ 60 중량%로 함이 바람직하다. 보다 바람직하게는 50 ~ 60 중량%일 수 있다.
SiO2 : 0.5 ~ 3.0 중량%
SiO2는 슬래그 형성제로서 용접 슬래그의 유동성 및 용접 비드 퍼짐성을 증가시키는 역할을 한다. 이러한 효과를 가지기 위하여 0.5 중량% 이상으로 첨가함이 바람직하다. 또한 3.0 중량%를 초과하는 경우 용접금속 내 Si 함량이 증가하여 내균열성 저하를 초래하므로 SiO2는 0.5 ~ 3.0 중량%로 제한함이 바람직하다.
Na2O 및 K2O 중 1종 이상 : 0.1 ~ 3.0 중량%
알칼리 금속 산화물은 0.1 중량% 이상 첨가되어야 용점 중 아크의 이온화 포텐셜을 저하시켜 아크의 발생을 용이하게 해주며, 용접 중 안정된 아크를 유지할 수 있다. 또한 3.0 중량%를 초과하는 경우 높은 증기압으로 인하여 용접 흄(fume)이 과다하게 발생할 수 있으므로 알칼리 금속 산화물은 0.1 ~ 3.0 중량%로 제한함이 바람직하다. 알칼리 금속 산화물은 Na2O 및 K2O 중 1종 이상을 포함할 수 있다.
Al2O3, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 12.0 중량%
Al, Ti, Zr 산화물은 슬래그의 융점을 높여 전자세 용접의 작업성을 양호하게 하기 위하여 첨가할 수 있다. Al, Ti, Zr 산화물 첨가량의 합이 5.0 중량% 미만이면 슬래그의 양이 충분하지 않아 슬래그 포피성이 열화되고, 12.0 중량%를 초과하면 슬래그 권취 결함이 발생할 수 있으므로 5.0 ~ 12.0 중량%로 제한함이 바람직하다.
본 발명의 플럭스 코어드 와이어는 Ti를 0.2 중량% 이하로 더 포함할 수 있다. Ti는 Ni계 합금에서 석출 경화 효과로 강도를 증가시키고, 탈산성분으로 작용하여 기공발생량을 감소시킬 수 있다. Ti가 0.2 중량% 초과하는 경우 과도한 석출에 의한 용접부의 저온 충격인성과 내균열성을 저해하여 바람직하지 못하다.
한편 본 발명의 Ni기 합금 플럭스 코어드 와이어는 하기 [관계식 1]을 만족하도록 각 산화물의 첨가량을 제어함이 바람직하다. 구체적으로 [관계식 1]에 의해 정의되는 값이 0.5 미만이 되도록 관리함이 바람직하다. 0.5 이상인 경우 용접성 및 균열성 저하로 인하여 용접부 품질이 저하될 수 있다.
[관계식 1]
0.1Na2O+{K2O+0.5(MgO+Al2O3)}/{CaO+1.6(TiO2+SiO2)+0.2(ZrO2)} < 0.5
또한 본 발명에서는 하기 [관계식 2]를 만족하도록 Mn과 Nb의 함량을 제어함이 바람직하다. 하기 [관계식 2]를 만족하지 못하는 화학조성의 경우, Mn과 Nb의 함량에 따라 유해상이 발생하여 용접부의 양호한 물리적 성질을 확보하기 어렵다.
[관계식 2] 0.01 중량% Mn ≤ Nb 중량% ≤ (0.01 중량% Mn)+3.3
본 발명에 따른 플럭스 코어드 와이어의 플럭스 성분은, MnO를 0.1중량% 이하, 불소 화합물을 F 환산량으로 0.1 ~ 1.5 중량%를 더 포함할 수 있다. 상술한 성분 외에도 통상의 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않은 불순물이 불가피하게 혼입될 수 있다.
본 발명의 다른 측면에 따르면, Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로, C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 20.0%, Nb : 0 ~ 3.5%(0 중량%인 경우 제외), Mo : 5.0 ~15.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고, 상기 용착 금속의 성분이 하기 [관계식 3]을 만족하는 Ni기 합금 플럭스 코어드 와이어를 제공한다.
[관계식 3]은 [Fe+{15(2.8Nb+0.85Mn)}]/(Cr+Mo) < 7.0 이다.
본 발명에 따른 플럭스 코어드 와이어 합금 조성에 따라 전자세 용접이 가능하며, 강도 및 인성이 우수한 용착 금속을 얻을 수 있다. 각 성분은 Ni기 합금외피에 포함되는 것 외, 플럭스로부터의 금속분 및 합금분으로 첨가될 수 있다.
본 발명에 따른 플럭스 코어드 와이어에 의해 얻어지는 용착 금속의 Cr은 15 ~ 20 중량%일 수 있다. Cr은 용접 금속의 강도 및 내식성을 향상시키는 목적에서 첨가할 수 있다. Cr 함유량이 15중량% 미만이면, 내식성이 열화되고, 용접 금속의 일정한 강도를 얻을 수 없다. 한편, Cr은 C와 결합하여 탄화물을 형성시킬 수 있고, Cr 함유량이 20 중량%를 초과하면 용접 금속의 인성이 열화되고, 성장이 저하될 수 있다.
Mo은 5 ~ 15 중량%일 수 있다. 몰리브덴(Mo)은 탄소(C)와 결합하여 탄화물을 형성하는 성분으로서, 내마모성, 경도 및 내부식성에 유리한 역할을 하는 성분이다. 이러한 Mo의 함량이 5 중량% 미만이면 상술한 효과를 기대하기 어려우며, 반면에 15 중량%를 초과하게 되면 내균열성의 저하를 초래하는 문제가 있다. 보다 바람직하게는 5 ~ 8 중량%일 수 있다.
C는 0.1 중량% 이하일 수 있다. 탄소(C)는, 용접 금속의 강도를 향상하는 효과가 있지만, 과잉하게 첨가하면 탄화물을 생성하여 인성을 저하시키는 문제점이 있다. 따라서 C의 함량은 용접 금속의 인성 저하를 방지하기 위하여 0.1% 이하인 것이 바람직하다.
Mn은 0.01 ~ 3.0 중량%일 수 있다. Mn은 용접 금속의 비드 형상의 개선화 내결함성, 내균열성을 향상시키기 위하여 첨가한다. 본 발명은 Mn의 함량을 증가하여 내균열성을 향상시키면서도 하기에 설명하는 바와 같이 Nb의 함량을 제한하여 인성저하를 방지할 수 있다. 본 발명에서 Mn이 0.01 중량% 미만이면 S와의 결합이 충분하지 않아 내균열성 향상의 효과를 기대할 수 없고, 충분한 탈산효과가 얻어지지 않아 바람직하지 못하다. 또한, 3.0 중량% 초과하면 박리성이 저하하여 바람직하지 못하다. 더욱 바람직하게는 0.5 ~ 3.0 중량%일 수 있다.
Nb은 0 ~ 3.5 중량%(0 중량%인 경우 제외)일 수 있다. Nb는 용접 금속의 강도를 향상시킬 목적에서 첨가할 수 있다. 니오븀(Nb)은 탄소 또는 질소와 결합하여 탄화물, 질화물, 탄질화물을 형성하여 석출강화효과를 가질 수 있다. 그러나 그 함량이 증가할수록 용접 금속의 내균열성 저하를 초래하는 문제가 있다. 따라서 본 발명에서는 Nb을 첨가하지 않거나 3.5 중량% 이하로 제한한다. 바람직하게는 2.9 중량% 이하, 더욱 바람직하게는 2.0 중량%이하로 첨가할 수 있다. Nb의 함량을 제한하면서도 Mn의 함량을 조절하여 일정강도를 유지할 수 있음에 본 발명의 특징이 있다.
Fe는 3.0 ~ 9.0 중량%일 수 있다. Fe는 Ni계 합금에서 용접재료 또는 모재에서 필수 불가결하게 함유되는 원소로 철(Fe)은 Ni계 합금에서 용접재료 또는 모재에서 필수 불가결하게 함유되는 원소로 금속의 연성을 확보하는 성분이다. 그 함량이 3.0 중량% 미만이면 용접 금속의 연성을 확보 할 수 없고, 9.0 중량% 초과하면 내고온균열성이 저하되어 바람직하지 못하다. 따라서, 본 발명에서는 Fe의 함량을 와이어 전체 중량당 3.0 ~ 9.0 중량%로 제한함이 바람직하다. 아울러 Cu를 추가적으로 포함하는 경우, Fe이 Cu(구리)와 화합물를 형성하여 균열을 야기하므로 Fe 함량과 더불어 Cu의 함량도 조절함이 바람직하다.
Si는 0.01 ~ 0.5 중량% 이하일 수 있다. 그 함량이 0.01 중량% 미만이면 탈산력이 감소하고, 0.5 중량%를 초과하게 되면 라베스상 생성에 따라 균열감수성이 증가하여 바람직하지 못하다. 따라서 Si의 함량을 0.5 중량% 이하로 제한함이 바람직하다.
Ti는 0.2 중량% 이하로 더 포함할 수 있다. Ti는 Ni계 합금에서 석출 경화 효과로 강도를 증가시키고, 탈산성분으로 작용하여 기공발생량을 감소시킬 수 있다. Ti가 0.2 중량% 초과하는 경우 과도한 석출에 의한 용접부의 저온 충격인성과 내균열성을 저해하여 바람직하지 못하다.
잔부는 Ni 및 불가피한 불순물일 수 있다.
한편 본 발명의 Ni기 합금 플럭스 코어드 와이어에 따른 용착 금속의 성분이 하기 [관계식 3]을 만족하도록 제어함이 바람직하다.
[관계식 3] [Fe+{15(2.8Nb+0.85Mn)}]/(Cr+Mo) < 7.0
구체적으로 [관계식 3]에 의해 정의되는 값이 7.0 미만이 되도록 조성함이 바람직하다. 7.0 이상인 경우 용접성 및 내균열성 저하로 인하여 우수한 용접부 품질을 확보하기 어렵다.
본 발명에 따른 Ni기 합금 플럭스 코어드 와이어는 W(텅스텐)을 포함하지 않고, 높은 함량의 Cr(크롬)과 Mn(망간)을 포함하면서도 Nb(니오븀)의 함량을 제한하여 슬래그 박리성과 내균열성을 개선하고, 강도 등의 물성을 확보하는 점에 특징이 있다.
이하, 본 발명을 실시예를 들어 상세히 설명하기로 하나 본 발명의 권리범위가 하기 실시예에 의하여 한정되는 것은 아니다.
표 1에 나타낸 바와 같은 성분을 가지는 플럭스 코어드 와이어를 준비하였다. 각 성분예를 기준으로 이하 설명한다.
C Si Mn Nb Cr Mo Fe P+S Ti 식1 식2 식3
1 0.01 0.05 0.55 2.85 16.90 6.97 8.33 0.008 0.000 0.04 5.65
2 0.01 0.05 1.22 2.81 16.93 6.92 8.36 0.008 0.000 0.04 5.95
3 0.01 0.05 1.42 2.82 16.95 6.87 8.25 0.008 0.000 0.04 6.08
4 0.01 0.05 1.96 2.83 16.81 7.01 8.31 0.008 0.000 0.04 6.38
5 0.01 0.05 2.17 2.80 16.94 6.88 8.29 0.008 0.000 0.04 6.45
6 0.01 0.05 2.66 2.87 16.95 6.87 8.32 0.008 0.000 0.04 6.66
7 0.01 0.05 2.57 2.80 16.87 6.81 8.26 0.008 0.000 0.04 6.70
8 0.01 0.05 2.74 2.81 16.84 6.83 8.32 0.008 0.000 0.04 6.81
9 0.01 0.05 3.10 2.88 16.87 6.96 8.21 0.008 0.000 0.04 7.08
10 0.01 0.05 3.52 2.82 17.02 6.82 8.21 0.008 0.000 0.04 7.20
11 0.01 0.05 3.92 2.79 16.98 7.19 8.15 0.008 0.000 0.04 7.25
12 0.01 0.05 2.17 0.00 17.08 6.80 8.23 0.008 0.000 0.04 1.50
13 0.01 0.05 2.17 0.29 17.01 6.92 8.26 0.008 0.000 0.04 2.02
14 0.01 0.05 2.17 0.85 16.81 6.87 8.32 0.008 0.000 0.04 3.03
15 0.01 0.05 2.17 1.32 16.85 6.92 8.26 0.008 0.000 0.04 3.84
16 0.01 0.05 2.17 1.79 17.00 6.87 8.30 0.008 0.000 0.04 4.65
17 0.01 0.05 2.17 2.85 16.90 6.97 8.33 0.008 0.000 0.04 6.52
18 0.01 0.05 2.17 3.11 16.85 6.94 8.54 0.008 0.000 0.04 7.02
19 0.01 0.05 2.17 3.52 16.88 6.88 8.29 0.008 0.000 0.04 7.74
20 0.01 0.05 2.17 3.81 16.80 6.90 8.32 0.008 0.000 0.04 × 8.27
21 0.01 0.05 0.56 0.85 16.81 6.87 8.32 0.008 0.010 0.20 2.16
22 0.01 0.05 0.56 2.51 16.92 6.82 8.39 0.008 0.010 0.40 5.09
23 0.01 0.05 2.57 2.80 16.87 6.81 8.26 0.008 0.010 0.50 6.69
24 0.01 0.05 2.12 2.87 16.80 6.85 8.25 0.008 0.010 0.60 6.59
25 0.01 0.05 4.20 4.07 16.82 6.96 8.35 0.008 0.010 0.10 × 9.79
26 0.01 0.05 2.15 2.71 23.82 6.90 8.25 0.008 0.010 0.10 4.86
27 0.01 0.05 2.17 2.89 16.92 10.72 8.23 0.008 0.010 0.20 5.69
28 0.01 0.05 2.16 2.79 15.01 3.07 8.25 0.008 0.010 0.10 7.03
29 0.01 0.05 2.52 3.23 15.94 3.17 8.26 0.008 0.010 0.10 9.21
30 0.01 0.05 2.17 2.85 16.88 6.89 13.09 0.008 0.010 0.10 6.75
각 용접재료에 대하여 플럭스 코어드 아크 용접(FCAW; Flux Cored Arc Welding)을 실시하였다. FCAW의 경우 100% CO2 보호 가스에서 입열량 8.0 ~ 12.0 KJ/cm로 용접을 실시하였다. FCAW용 와이어 직경은 1.2mm인 것을 사용하였다. 판 두께 7mm의 A36 강판의 개선면에 개선각도가 30°가 되도록 사면을 형성하고, 이 개선부를 공시 와이어로 버터링하여 버터링층을 형성하였다. 이후 버터링된 모재끼리 루트 갭이 12mm가 되도록 배치하고, 개선이 좁아지는 측에 마찬가지로 표면을 버터링한 덧대기쇠(강재)를 배치하였다. 이 개선에 준하여 용접하고 용접 이음부를 제조하였다.
이후 얻어진 용접 이음부의 아크안정성, 슬래그 박리성을 고려하여 전자세 용접성을 육안으로 비교 판단하였으며, ◎(우수), ○(양호), △(미흡), ×(불량)의 4 단계로 구분하여 평가하였다. 아울러 내균열성, 비드 외관의 기공 여부도 육안으로 비교하여 ◎(우수), ○(양호), △(미흡), ×(불량)으로 평가하여 그 결과를 표 2에 나타내었다.
내균열성 아크안정성 스패터억제 비드외관 슬래그박리
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 × ×
19 × ×
20 × ×
21
22
23
24 × × × ×
25 × × ×
26
27 ×
28
29 ×
30 ×
표 2를 참고하여 설명하면, 본 발명에 따른 Mn 및 Nb의 함량을 가지는 플럭스 코어드 와이어의 용접 이음부는 내균열성과 비드 외관이 개선됨을 확인할 수 있었다. 구체적으로 내균열성을 향상시키면서 비드 외관 및 슬래그 박리성이 개선 가능한 망간과 니오븀의 함량 범위를 확인할 수 있었다.
성분예 1 내지 11을 참고하여 설명하면, 니오븀의 함량을 2.5 중량% 이상으로 포함하는 경우에도 망간의 함량을 높여 내균열성과 비드외관을 개선할 수 있었다.
성분예 12 내지 20을 참고하여 설명하면, 망간의 함량이 2 중량%를 초과함에도 니오븀의 함량을 2.9 중량% 이하로 제한하는 경우 내균열성 및 슬래그 박리성에 문제가 없는 것을 확인할 수 있었다.
또한 관계식 1과 관련한 성분예 24를 참고하여 설명하면, 관계식 1의 값이 0.5를 초과하는 경우 내균열성 뿐만 아니라 아크 안정성, 비드 외관, 슬래그 박리성에서 문제가 나타나 바람직하지 않음을 확인하였다.
한편, 니오븀의 함량에 따른 크랙비율을 확인하였다. 니오븀 함량이 상이한 성분예 13 내지 20에 따른 비드의 크레이터 크랙 비율과 비드 크랙 비율을 하기 표 3에 나타내었다. 또한 도 1은 본 발명의 일 성분예에 따른 용접 비드의 크랙 사진이다. 도 1의 (a)는 성분예 15, (b)는 성분예 17, (c)는 성분예 18, (d)는 성분예 20에 따른 용접 비드의 사진이다.
총 비드길이
(mm)
크레이터 크랙
(mm)
비드 크랙
(mm)
크레이터 크랙비율
(%)
비드 크랙비율
(%)
13 145 15 0 10 0
14 140 20 15 25 11
15 140 20 20 28 14
16 140 17 38 39 27
17 140 15 55 50 39
18 145 15 85 69 59
19 140 15 85 71 61
20 140 15 90 75 64
표 3 및 도 1을 참고하여 설명하면, 니오븀의 함량을 조절함에 따라 크랙 비율을 현저하게 감소시킬 수 있었다. 특히 성분예 17과 성분예 18의 크랙 비율을 비교하면, 본 발명의 니오븀 함량범위의 상한인 2.9 중량%를 기준으로 크랙의 비율이 20% 정도 차이가 나는 것을 확인할 수 있었다.
또한 얻어진 용접 이음부의 항복강도(YS, MPa), 인장강도(TS, MPa), 연신율(E.L, %), -196℃의 샤르피 충격흡수에너지(J)를 측정한 결과를 하기 표 4에 나타내었다.
항복강도 인장강도 연신율 충격인성
1 441 750 37 52
2 424 740 38 58
3 440 747 38 60
4 439 734 39 57
5 437 744 38 65
6 448 740 39 56
7 435 729 38 52
8 424 735 39 60
9 407 687 42 65
10 402 676 42 69
11 419 666 41 60
12 427 720 38 64
13 429 731 38 60
14 420 737 38 58
15 423 740 38 55
16 429 749 39 54
17 433 752 38 54
18 438 759 37 50
19 442 770 37 48
20 449 787 37 52
21 429 722 40 55
22 437 744 38 65
23 442 745 37 62
24 436 741 38 57
25 460 797 35 47
26 442 760 37 55
27 440 737 38 60
28 428 712 39 50
29 449 785 35 48
30 439 733 38 58
표 4를 참고하여 설명하면, 종래의 Ni기 합금 플럭스 코어드 와이어와 달리 망간의 함량은 증가하고 니오븀의 함량은 감소되었음에도 강도 등의 물성값이 유지됨을 확인할 수 있다. 텅스텐을 포함하지 않으면서 니오븀을 구성으로 하여 강도를 확보하였다. 종래 플럭스 코어드 와이어에 비하여 상대적으로 낮은 니오븀의 함량에 따른 강도 확보의 문제는 크롬의 함량을 높여 개선할 수 있음을 확인하였다.
본 발명에 따른 Ni기 합금 플럭스 코어드 와이어는 망간 및 니오븀의 함량을 조절하여 우수한 내고온균열성을 확보함과 동시에 충격인성, 강도를 가져 종래의 와이어가 가지고 있었던 Ni합금의 균열발생 문제 및 작업성을 개선한 특징이 있다.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (3)

  1. Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
    C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 22.0%, Nb : 0 ~ 2.9%(0 중량%인 경우 제외), Mo : 5.0 ~ 10.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고,
    SiO2 : 0.5 ~ 3.0%, Na2O, K2O, MgO, CaO 중 1종 이상: 0.1 ~ 3.0%, Al2O3, TiO2 및 ZrO2 중 1종 이상: 5.0 ~ 12.0%를 포함하며,
    하기 [관계식 1]과 [관계식 2]를 만족하는 Ni기 합금 플럭스 코어드 와이어:
    [관계식 1]
    0.1Na2O+{K2O+0.5(MgO+Al2O3)}/{CaO+1.6(TiO2+SiO2)+0.2(ZrO2)} < 0.5
    [관계식 2]
    0.01 중량% Mn ≤ Nb 중량% ≤ (0.01 중량% Mn)+3.3
  2. 제 1 항에 있어서,
    상기 플럭스 성분은,
    MnO를 0.1중량% 이하(0 중량%인 경우 제외), 불소 화합물을 F 환산량으로 0.1 ~ 1.5 중량%를 더 포함하는 것을 특징으로 하는 Ni기 합금 플럭스 코어드 와이어.
  3. Ni기 합금 외피에 플럭스가 충전된 Ni기 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
    C : 0.1% 이하(0 중량%인 경우 제외), Si : 0.01 ~ 0.5%, Mn : 0.01 ~ 3.0%, Cr : 15.0 ~ 20.0%, Nb : 0 ~ 3.5%(0 중량%인 경우 제외), Mo : 5.0 ~15.0%, Fe : 3.0 ~ 9.0%, 잔부 Ni, 및 불가피한 불순물을 포함하고,
    상기 용착 금속의 성분이 하기 [관계식 3]을 만족하는 Ni기 합금 플럭스 코어드 와이어:
    [관계식 3]
    [Fe+{15(2.8Nb+0.85Mn)}]/(Cr+Mo) < 7.0
PCT/KR2020/016750 2019-11-29 2020-11-25 Ni기 합금 플럭스 코어드 와이어 WO2021107580A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20892161.9A EP4066985A4 (en) 2019-11-29 2020-11-25 NI-BASED ALLOY CORED WIRE
JP2022532014A JP2023504438A (ja) 2019-11-29 2020-11-25 Ni基合金フラックス入りワイヤ
CN202080082962.XA CN114845835A (zh) 2019-11-29 2020-11-25 镍基合金药芯焊丝
US17/752,931 US20220288724A1 (en) 2019-11-29 2022-05-25 Ni-based alloy flux-cored wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0157246 2019-11-29
KR1020190157246A KR102197134B1 (ko) 2019-11-29 2019-11-29 Ni기 합금 플럭스 코어드 와이어

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/752,931 Continuation US20220288724A1 (en) 2019-11-29 2022-05-25 Ni-based alloy flux-cored wire

Publications (1)

Publication Number Publication Date
WO2021107580A1 true WO2021107580A1 (ko) 2021-06-03

Family

ID=74087587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016750 WO2021107580A1 (ko) 2019-11-29 2020-11-25 Ni기 합금 플럭스 코어드 와이어

Country Status (6)

Country Link
US (1) US20220288724A1 (ko)
EP (1) EP4066985A4 (ko)
JP (1) JP2023504438A (ko)
KR (1) KR102197134B1 (ko)
CN (1) CN114845835A (ko)
WO (1) WO2021107580A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117381B (zh) * 2023-04-12 2023-08-18 西安热工研究院有限公司 双沉淀强化Ni-Cr焊丝及其制造方法和焊接工艺
CN116329809B (zh) * 2023-05-29 2023-09-08 西安热工研究院有限公司 镍基非晶药芯焊丝及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203350A (ja) * 2006-02-02 2007-08-16 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
JP2010500178A (ja) * 2006-08-08 2010-01-07 ハンチントン、アロイス、コーポレーション 溶接に使用するための溶接合金および製品、溶接物ならびに溶接物の製造方法
US20120055903A1 (en) * 2010-09-06 2012-03-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored welding wire and method for arc overlay welding using the same
KR101708997B1 (ko) 2014-05-14 2017-02-21 가부시키가이샤 고베 세이코쇼 Ni기 합금 플럭스 코어드 와이어
KR101760828B1 (ko) 2015-08-18 2017-07-24 현대종합금속 주식회사 Ni계 플럭스 코어드 와이어 용접재료
KR20180076088A (ko) * 2016-12-27 2018-07-05 현대종합금속 주식회사 이종용접용 전자세 용접이 가능한 Ni계 플럭스 코어드 와이어 용접재료
KR20190087846A (ko) * 2018-01-17 2019-07-25 현대종합금속 주식회사 극저온 Ni 합금강용 Ni기 플럭스 코어드 와이어

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314382A (ja) * 1996-05-29 1997-12-09 Kobe Steel Ltd Ni基合金溶接用フラックス入りワイヤ
JPH11197883A (ja) * 1998-01-16 1999-07-27 Nippon Steel Corp Ni基合金フラックス入りワイヤ
JP4447078B2 (ja) * 1998-08-10 2010-04-07 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2000343277A (ja) * 1999-06-04 2000-12-12 Nippon Steel Corp 全姿勢溶接性に優れたNi基合金フラックス入りワイヤ
JP5361516B2 (ja) * 2009-04-27 2013-12-04 日鐵住金溶接工業株式会社 硬化肉盛用メタル系ガスシールドアーク溶接用フラックス入りワイヤ
JP5198481B2 (ja) * 2010-01-09 2013-05-15 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP5968855B2 (ja) * 2013-10-31 2016-08-10 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
KR101965666B1 (ko) * 2017-08-11 2019-04-04 현대종합금속 주식회사 극저온용 전자세 용접 가능한 플럭스 코어드 와이어
JP7010675B2 (ja) * 2017-11-24 2022-01-26 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203350A (ja) * 2006-02-02 2007-08-16 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
JP2010500178A (ja) * 2006-08-08 2010-01-07 ハンチントン、アロイス、コーポレーション 溶接に使用するための溶接合金および製品、溶接物ならびに溶接物の製造方法
US20120055903A1 (en) * 2010-09-06 2012-03-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored welding wire and method for arc overlay welding using the same
KR101708997B1 (ko) 2014-05-14 2017-02-21 가부시키가이샤 고베 세이코쇼 Ni기 합금 플럭스 코어드 와이어
KR101760828B1 (ko) 2015-08-18 2017-07-24 현대종합금속 주식회사 Ni계 플럭스 코어드 와이어 용접재료
KR20180076088A (ko) * 2016-12-27 2018-07-05 현대종합금속 주식회사 이종용접용 전자세 용접이 가능한 Ni계 플럭스 코어드 와이어 용접재료
KR20190087846A (ko) * 2018-01-17 2019-07-25 현대종합금속 주식회사 극저온 Ni 합금강용 Ni기 플럭스 코어드 와이어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4066985A4

Also Published As

Publication number Publication date
CN114845835A (zh) 2022-08-02
EP4066985A1 (en) 2022-10-05
KR102197134B1 (ko) 2020-12-31
US20220288724A1 (en) 2022-09-15
EP4066985A4 (en) 2023-08-09
JP2023504438A (ja) 2023-02-03

Similar Documents

Publication Publication Date Title
JP3758040B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP5389000B2 (ja) Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
KR100920549B1 (ko) 가스 실드 아크 용접용 플럭스 함유 와이어
JP5977998B2 (ja) Ni基合金溶接金属、帯状電極及び溶接方法
KR101568515B1 (ko) 내열강용 용접재료
JP2010110817A (ja) 低水素系被覆アーク溶接棒
JP5097499B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
CN108602163B (zh) 焊接用Ni基合金实芯焊丝和Ni基合金焊接金属
JP3815984B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
WO2021107580A1 (ko) Ni기 합금 플럭스 코어드 와이어
JP5744816B2 (ja) サブマージアーク溶接用ボンドフラックス
JP7215911B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2021107581A1 (ko) Lng 탱크 제작용 스테인리스강 용접 와이어
KR20160078846A (ko) 극저온 인성, 내열성 및 내균열성이 우수한 플럭스 코어드 아크 용접 재료
WO2021107579A1 (ko) Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어
JPS62220300A (ja) 低水素系被覆ア−ク溶接棒
WO2021172079A1 (ja) Ni基合金フラックス入りワイヤ
WO2022172666A1 (ja) フラックス入りワイヤ
WO2024166573A1 (ja) フラックス入りワイヤ
KR100502572B1 (ko) 가스 보호형 내열강용 플럭스 충전 복합와이어
KR20230132902A (ko) 극저온용 고망간강 용접을 위한 스테인리스강 플럭스 코어드 와이어
KR20210033810A (ko) 극저온 충격인성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어
JPH01299792A (ja) 耐高温割れ性に優れたNi基合金被覆アーク溶接棒
KR20170027064A (ko) 내결함성이 우수한 9%Ni강용 피복 아크 용접봉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892161

Country of ref document: EP

Effective date: 20220629