[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021106178A1 - ホットスタンプ用めっき鋼板およびホットスタンプ部材 - Google Patents

ホットスタンプ用めっき鋼板およびホットスタンプ部材 Download PDF

Info

Publication number
WO2021106178A1
WO2021106178A1 PCT/JP2019/046720 JP2019046720W WO2021106178A1 WO 2021106178 A1 WO2021106178 A1 WO 2021106178A1 JP 2019046720 W JP2019046720 W JP 2019046720W WO 2021106178 A1 WO2021106178 A1 WO 2021106178A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
elements
layer
hot stamping
plating layer
Prior art date
Application number
PCT/JP2019/046720
Other languages
English (en)
French (fr)
Inventor
優貴 鈴木
宗士 藤田
真木 純
楠見 和久
布田 雅裕
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2019/046720 priority Critical patent/WO2021106178A1/ja
Priority to EP19953893.5A priority patent/EP4067528A1/en
Priority to CN201980102409.5A priority patent/CN114729438B/zh
Priority to MX2022005665A priority patent/MX2022005665A/es
Priority to JP2020527979A priority patent/JP6806289B1/ja
Priority to US17/768,161 priority patent/US20240091842A1/en
Priority to KR1020227015790A priority patent/KR102679515B1/ko
Publication of WO2021106178A1 publication Critical patent/WO2021106178A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • B21D35/007Layered blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hot stamping plated steel sheet and a hot stamping member.
  • a material having high mechanical strength tends to have a reduced shape freezing property in a molding process such as bending process. Therefore, when a material having high mechanical strength is processed into a complicated shape, the processing itself may be difficult.
  • the hot stamping method is a method in which a steel sheet to be formed is heated to a high temperature in the austenite region, pressed by pressing on the steel sheet softened by heating, formed, and then cooled in a state of being restrained by a die.
  • the steel sheet is once heated to a high temperature in the austenite region to soften it, so that it can be easily pressed, and the quenching effect of cooling after molding enhances the mechanical strength of the molded product. be able to. Therefore, the hot stamping method makes it possible to obtain a molded product having good shape freezing property and high mechanical strength.
  • Patent Document 1 describes an aluminum-based galvanized steel sheet for hot stamping, which has an Al-based metal coating containing Al as a main component and Mg and Si on the surface of steel.
  • Patent Document 2 relates to an automobile member, and describes that an oxide film having a thickness of 0.05 to 1 ⁇ m is formed on the surface of an Al—Fe intermetallic compound layer after hot stamping. Further, in Patent Document 2, the Al-plated steel sheet for hot pressing is heated so that the oxide film has a predetermined thickness, and an Al—Fe intermetallic compound layer is formed up to the surface layer after electrodeposition coating. It is described that corrosion resistance after coating is ensured by suppressing coating film defects and deterioration of adhesion.
  • Patent Document 1 does not have sufficient corrosion resistance after painting after hot stamping. It is presumed that this is because the affinity with the coating film and the chemical conversion treatment layer on the uppermost layer is not sufficiently strong due to the influence of the compound composition and the particle size on the outermost surface.
  • the present invention has been made against the background of the above circumstances, and provides a hot stamping member having excellent chemical conversion treatment property and corrosion resistance after painting, and a hot stamping plated steel sheet capable of obtaining the hot stamping member.
  • the purpose is to be described in detail below.
  • the hot stamping plated steel sheet is heated and molded in the hot stamping process to form a hot stamping member.
  • the hot stamp member is practically used by laminating a chemical conversion treatment film represented by a zinc phosphate film on the surface of the member (above the surface film layer), an electrodeposition coating film on the upper layer, and a coating film on the upper layer in some cases. Served.
  • reaction formulas shown in the following formulas (1) to (3) cause an anode dissolution reaction of aluminum, iron, or an intermetal compound between aluminum and iron produced in the hot stamping process. It is presumed that corrosion products are formed and the coating film swells.
  • the present inventors have created a plurality of stable valences of +1 or more in the surface film layer formed on the plating layer in which the metal structure of the plating layer has been finely divided by spraying particles immediately after plating.
  • the above problems were solved by containing a predetermined amount of particles containing possible elements and further keeping the average particle size of the particles containing these elements within a predetermined range. Specifically, it contains particles containing one or more elements selected from Group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W, and the A group elements.
  • Group A elements contained in the particles can form oxides with higher valences after hot stamping.
  • the electron bias (polarity) in the oxide becomes higher, and the interaction with the components in the chemical conversion treatment liquid having the same high polarity, for example, zinc phosphate becomes stronger, so that the chemical conversion treatment property is improved.
  • the improvement in chemical conversion treatment means that the amount of adhesion of the chemical conversion treatment film increases when the hot stamping member is subjected to chemical conversion treatment.
  • the improvement in corrosion resistance after painting means that the swelling width of the coating film in a corrosive environment is small when the hot stamp member is subjected to chemical conversion treatment and the surface on which the coating film is formed by the electrodeposition paint is scratched with a cutter. Means to be.
  • Moisture in a corrosive environment in a corrosive environment after a chemical conversion treatment film, for example, a zinc phosphate film, and an electrodeposition coating film are formed on the upper layer by containing particles containing group A elements in the surface film layer. It is also expected to have the effect of preventing corrosion factors such as salt and salt from reaching the plated metal.
  • the group A element in the inorganic film is contained in the state of particles, the surface area of the surface film layer becomes large, and the time required for heating becomes long at the time of hot stamping. Further, as the amount of the group A element that is close to the atmosphere in which moisture or oxygen is present increases, the group A element tends to be concentrated on the surface of the surface film layer 3. Then, during the chemical conversion treatment after hot stamping, for example, during the phosphoric acid treatment, zinc phosphate is likely to adhere, and the chemical conversion treatment property is improved, so that the adhesion after painting is improved.
  • the present inventor speculates as follows.
  • the average crystal grain size of the plating layer By controlling the average crystal grain size of the plating layer to be small, the crystal grain boundaries can be increased. As a result, the grain boundaries increase even after hot stamping, and the oxide film layer on the surface also has many irregularities, so that the physical and chemical bonds with the electrodeposited coating film after the chemical conversion treatment are strengthened. Inferred.
  • Group A elements are mainly contained in the oxide film layer in the form of oxides.
  • the oxide of the group A element is present on the outermost surface of the hot stamp member to form an oxide film layer.
  • the pH of the chemical conversion treatment liquid at the interface with the treatment liquid rises.
  • the amount of zinc phosphate crystals precipitated increases. That is, so-called chemical conversion processability is enhanced.
  • the adhesion (paint adhesion) of the electrodeposition coating film to be electrodeposited after the chemical conversion treatment is improved. By increasing the adhesion of the electrodeposition coating film, the corrosion resistance after coating is improved.
  • the hot stamping plated steel sheet according to one aspect of the present invention is Steel plate and A plating layer formed on one or both sides of the steel sheet and having an Al content of 60% by mass or more. It is composed of a surface film layer formed on the plating layer.
  • the thickness t of the plating layer is 10 to 60 ⁇ m, and the thickness t is 10 to 60 ⁇ m.
  • the average crystal grain size of the plating layer in the thickness range from the interface between the plating layer and the surface coating layer to a position 2/3 times the thickness t is 2t / 3 or less and 15.0 ⁇ m.
  • the surface coating layer contains particles containing one or more elements selected from Group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W.
  • the total content of the group A elements in the surface film layer is 0.01 to 10.0 g / m 2 .
  • the average particle size of the particles containing the group A element is 0.05 to 3.0 ⁇ m.
  • at least a part of the particles containing the group A element may contain O.
  • the hot stamping plated steel sheet according to (1) or (2) above is The surface coating layer further contains particles containing one or more selected from Group B elements consisting of Zn, Zr and Ti.
  • the total content of the Group B elements in the surface film layer may be 0.01 to 10.0 g / m 2.
  • the total content of Ca, Mg, Sr and Ti in the plating layer is the same as that of the entire plating layer. , In mass%, may be 0.01% to 20%.
  • the hot stamping member according to another aspect of the present invention is a hot stamping member obtained by hot stamping the plated steel sheet for hot stamping according to the above (1) to (4).
  • the surface has an oxide film layer containing one or more elements selected from Group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W, Al and oxygen.
  • FIG. 1 is a diagram showing a hot stamping plated steel sheet 10 (hereinafter, may be simply referred to as a plated steel sheet) according to the present embodiment.
  • the plated steel sheet 10 according to the present embodiment includes a steel sheet 1, a plating layer 2 formed on one or both sides of the steel sheet 1 and containing Al, and a surface coating layer 3 formed on the plating layer 2.
  • Step plate 1 The chemical composition of the steel sheet 1 which is the base material of the hot stamping plated steel sheet 10 according to the present embodiment is not particularly limited.
  • the steel plate 1 according to the present embodiment has high mechanical properties (strength against mechanical deformation and fracture such as tensile strength, yield stress, elongation, drawing, hardness, impact value, fatigue strength) after hot stamping. It is desirable to use the obtained steel plate.
  • the chemical composition of the steel plate 1 is C: 0.10 to 0.60%, Si: 0.01 to 0.60%, Mn: 0. 01 to 3.00%, P: 0.050% or less, S: 0.050% or less, Al: 1.00% or less, Ti: 0.001 to 0.100%, B: 0.0001 to 0. It preferably contains 0100%, N: 0.0100% or less, and the balance is composed of Fe and impurities.
  • “%” regarding the content of an element means “mass%” unless otherwise specified.
  • the preferable chemical composition of the steel sheet 1 according to the present embodiment will be described below.
  • C 0.10 to 0.60% C is included to obtain the desired mechanical strength. If the C content is less than 0.10%, the effect of improving the mechanical strength may not be sufficiently obtained, and the effect of containing C may not be obtained. On the other hand, when the C content exceeds 0.60%, the strength of the steel sheet 1 can be further improved, but the elongation and drawing may decrease. Therefore, the C content is preferably 0.10 to 0.60%. If necessary, the lower limit of the C content may be 0.15% or 0.20%, and the upper limit of the C content may be 0.50% or 0.40%.
  • Si 0.01-0.60%
  • Si is a strength-improving element that improves the mechanical strength, and like C, is contained in order to obtain the desired mechanical strength of the steel sheet 1.
  • Si content is less than 0.01%, it is difficult to exert the strength improving effect, and the mechanical strength may not be sufficiently improved.
  • Si is also an easily oxidizing element, when the Si content exceeds 0.60%, the wettability becomes poor when hot-dip plating is performed due to the influence of the Si oxide formed on the surface layer of the steel sheet 1. It may be reduced and non-plating may occur. Therefore, the Si content is preferably 0.01 to 0.60%.
  • Mn 0.01 to 3.00%
  • Mn is a strength-improving element that improves mechanical strength and is also an element that enhances hardenability. Further, Mn has an effect of preventing embrittlement during heat due to the impurity S. If the Mn content is less than 0.01%, the above effects may not be obtained. On the other hand, since Mn is a ⁇ -forming element, when the Mn content exceeds 3.00%, the residual ⁇ phase may become too large and the strength of the hot stamp member may decrease. Therefore, the Mn content is preferably 0.01 to 3.00%. If necessary, the lower limit of the Mn content may be 0.30% or 0.50%, and the upper limit of the Mn content may be 2.50% or 2.10%.
  • P 0.050% or less
  • P is an element that deteriorates the toughness of the hot stamping member after quenching.
  • the P content is preferably 0.050% or less.
  • the P content is more preferably 0.005% or less.
  • P is mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited, and the lower limit is 0%.
  • the lower limit of the P content may be 0.001% or more, or 0.002% or more.
  • S 0.050% or less
  • S is an element that deteriorates the toughness of the hot stamping member after quenching.
  • the S content is preferably 0.050% or less.
  • the S content is more preferably 0.003% or less.
  • S is mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited, and the lower limit is 0%. However, if the S content is excessively reduced, the manufacturing cost increases. Therefore, the lower limit of the S content may be 0.001% or more.
  • Al 1.00% or less
  • Al is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the hot stamping member after quenching.
  • the Al content is preferably 1.00% or less. Further, in order to obtain the above effect, the Al content is preferably 0.01% or more.
  • Ti 0.001 to 0.100%
  • Ti is a strength-enhancing element that improves mechanical strength. If the Ti content is less than 0.001%, the strength improving effect and the oxidation resistance improving effect may not be obtained. On the other hand, if Ti is excessively contained, for example, carbides and nitrides may be formed to soften the steel. In particular, if the Ti content exceeds 0.100%, the desired mechanical strength may not be obtained. Therefore, the Ti content is preferably 0.001 to 0.100%.
  • B 0.0001 to 0.0100% B has the effect of improving the strength of steel during quenching. If the B content is less than 0.0001%, the above-mentioned strength improving effect may not be sufficiently obtained. On the other hand, if the B content exceeds 0.0100%, inclusions may be formed in the steel, the steel sheet 1 may become brittle, and the fatigue strength may decrease. Therefore, the B content is preferably 0.0001% to 0.0100%.
  • N 0.0100% or less
  • N is an element that deteriorates the toughness of the hot stamping member after quenching.
  • the N content is preferably 0.0100% or less.
  • the lower limit of the N content is not particularly limited, but if the N content is less than 0.0002%, the cost may increase. Therefore, the N content is preferably 0.0002% or more, and more preferably 0.0008% or more.
  • the steel sheet 1 according to the present embodiment further contains one or more elements selected from Cr, Ni, Cu, V, Nb, Sn, Mo, W, Ca and REM shown below. It may be contained.
  • Cr 0-1.0% Cr may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably obtain the strength of the hot stamping member after quenching. Further, Cr causes FeCr 2 O 4 to be generated on the surface of the steel sheet during the heat treatment, suppresses scale formation, and plays a role of reducing FeO in the scale. Since the FeCr 2 O 4 serves as a barrier layer and the supply of Fe into the scale is cut off, the scale thickness can be reduced. If the scale thickness is thin, the scale is difficult to peel off during hot stamping, and has the advantage of being easily peeled off during the scale removal process after hot stamping. However, if the Cr content exceeds 1.0%, the above effects are saturated, causing an increase in cost. Therefore, when Cr is contained, the Cr content is set to 1.0% or less. The Cr content is preferably 0.8% or less. In order to obtain the above effects, the Cr content is preferably 0.01% or more, and more preferably 0.05% or more.
  • Ni 0-2.0% Ni may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably obtain the strength of the hot stamping member after quenching. However, if the Ni content exceeds 2.0%, the above effects are saturated and the cost increases. Therefore, when Ni is contained, the Ni content is set to 2.0% or less. In order to obtain the above effects, the Ni content is preferably 0.1% or more.
  • Cu 0-1.0% Cu may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably obtain the strength of the hot stamping member after quenching. Cu is also an element that improves the pitting corrosion resistance of the steel sheet 1 in a corrosive environment. When the Cu content exceeds 1.0%, the above effects are saturated and the cost increases. Therefore, when Cu is contained, the Cu content is 1.0% or less. In order to obtain the above effects, the Cu content is preferably 0.1% or more.
  • V 0 to 1.0% V may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably obtain the strength of the hot stamping member after quenching. However, if the V content exceeds 1.0%, the above effects are saturated and the cost increases. Therefore, when V is contained, the V content is set to 1.0% or less. In order to obtain the above effects, the V content is preferably 0.1% or more.
  • Nb 0 to 1.0% Since Nb is an element that enhances the hardenability of steel and makes it possible to stably obtain the strength of the hot stamping member after quenching, it may be contained. However, if the Nb content exceeds 1.0%, the above effects are saturated and the cost increases. Therefore, when Nb is contained, the Nb content is set to 1.0% or less. In order to obtain the above effect, it is preferable that Nb is 0.01% or more.
  • Sn 0 to 1.0% Sn may be contained in order to improve the pitting corrosion resistance of the steel sheet 1 in a corrosive environment. However, if the Sn content exceeds 1.0%, the grain boundary strength decreases and the toughness deteriorates. Therefore, when Sn is contained, the Sn content is set to 1.0% or less. In order to obtain the above effects, the Sn content is preferably 0.01% or more.
  • Mo 0-1.0% Mo may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the hot stamping member after quenching. However, if the Mo content exceeds 1.0%, the above effects are saturated and the cost increases. Therefore, when Mo is contained, the Mo content is 1.0% or less. In order to obtain the above effects, the Mo content is preferably 0.1% or more.
  • W 0 to 1.0% W may be contained because it is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the hot stamping member after quenching. It is also an element that improves the pitting corrosion resistance of the steel sheet 1 in a corrosive environment. However, if the W content exceeds 1.0%, the above effects are saturated and the cost increases. Therefore, when W is contained, the W content is set to 1.0% or less. In order to obtain the above effects, the W content is preferably 0.01% or more.
  • Ca 0-0.01% Ca may be contained because it is an element having an effect of refining inclusions in steel and improving toughness and ductility after quenching. However, if the Ca content exceeds 0.01%, the above effects are saturated and the cost increases. Therefore, when Ca is contained, the Ca content is set to 0.01% or less.
  • the Ca content is preferably 0.004% or less. In order to surely obtain the above effect, the Ca content is preferably 0.001% or more, and more preferably 0.002% or more.
  • REM 0-0.3% Like Ca, REM is an element that has the effect of refining inclusions in steel and improving toughness and ductility after quenching, and therefore may be contained. However, if the REM content exceeds 0.3%, the above effects will be saturated and the cost will increase. Therefore, when REM is contained, the REM content is set to 0.3% or less.
  • the REM content is preferably 0.2% or less. In order to surely obtain the above effect, the REM content is preferably 0.001% or more, and more preferably 0.002% or more.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements.
  • REM is added to molten steel using, for example, a Fe—Si—REM alloy, which alloys include, for example, Ce, La, Nd, Pr.
  • the steel sheet 1 according to the present embodiment may contain impurities mixed in the manufacturing process or the like in addition to the above-mentioned elements.
  • a tensile strength of about 1000 MPa or more can be realized by heating and quenching by a hot stamping method.
  • the thickness of the steel plate 1 according to the present embodiment is not particularly limited, but is preferably 0.6 to 2.5 mm.
  • the plating layer 2 according to the present embodiment is formed on one side or both sides of the above-mentioned steel plate 1.
  • the plating layer 2 according to this embodiment contains Al.
  • the plating layer containing Al means a plating layer containing 60% or more of Al in mass%.
  • Si, Fe and Zn may be contained in an amount of about 0.1 to 20%, 0.1 to 10% and 0.1 to 40%, respectively.
  • the lower limit of the respective contents of Si, Fe and Zn is 0%, but the lower limit may be 0.1% as described above.
  • Si has the effect of improving the slidability of the plating layer 2 by suppressing the growth of the alloy layer of Al and Fe (Al—Fe alloy layer).
  • Fe As for Fe, it is conceivable that Fe contained in an apparatus or the like (for example, in the case of a hot-dip galvanizing method, a stainless steel container containing a plating solution) is mixed in the plating layer 2. Zn has the effect of improving the corrosion resistance in the exposed portion of the base iron by lowering the potential of the plating layer 2.
  • the balance of the plating layer 2 consists of less than 0.5% impurities. Examples of impurities include Cu, Na, K, Co and the like.
  • impurities include Cu, Na, K, Co and the like.
  • the content of each element does not have to be within the above range at all points of the plating layer 2, and the average chemical composition of the entire plating layer 2 may be within the above range. Therefore, in the case of production by the hot-dip galvanizing method, the average chemical composition of the entire plating layer 2 can be within the above range by setting the chemical composition of the plating bath within the above range.
  • the thickness t of the plating layer 2 is 10 to 60 ⁇ m. By setting the thickness t of the plating layer 2 to 10 ⁇ m or more, the corrosion resistance of the hot stamping member can be improved. Further, by setting the thickness t of the plating layer to 60 ⁇ m or less, the Al—Fe intermetallic compound layer is formed up to the outermost layer or near the outermost layer, so that the corrosion resistance of the hot stamping member is improved.
  • the thickness t of the plating layer 2 is preferably 13 ⁇ m or more or 15 ⁇ m or more.
  • the thickness t of the plating layer 2 is preferably 55 ⁇ m or less, 50 ⁇ m or less, or 45 ⁇ m or less.
  • the thickness t of the plating layer 2 can be measured, for example, by quantitatively analyzing a sample from a cross section with a FE-EPMA (field emission electron probe microanalyzer).
  • a sample having a size of 10 mm ⁇ 10 mm is cut out from a portion separated by 10 mm or more in the width direction from the end portion of the plated steel sheet 10, specifically, a portion separated by, for example, 15 mm.
  • An embedded polished sample is obtained by embedding the sample in a resin and polishing it.
  • the content of each element is quantitatively analyzed by point analysis using FE-EPMA at an acceleration voltage of 10 kV and a magnification of 1500 times or more.
  • the layer in which the Al content in the total of the elements excluding mass carbon is 30% by mass or more is defined as the plating layer 2.
  • Point analysis is performed every 1 ⁇ m perpendicular to the steel sheet from the plating surface toward the center of the plate thickness, and it is determined that the point where the Al content is less than 30% by mass is not the plating layer 2. Then, the set of points having an Al content of 30% by mass or more is defined as the plating layer 2, and the thickness t of the plating layer 2 is obtained.
  • the average crystal grain size of the plating layer 2 is 2t / 3 ( ⁇ m). Below, and 15.0 ⁇ m or less.
  • the average crystal grain size of the plating layer 2 is 2t / 3 ( ⁇ m).
  • the area of the crystal grain boundaries becomes large, and the atmosphere such as the atmosphere during hot stamp heating is increased.
  • the boundary area with the gas becomes large.
  • the amount of zinc phosphate crystals precipitated increases. That is, so-called chemical conversion processability is enhanced. Further, this improves the adhesion of the electrodeposition coating film to be electrodeposited after the chemical conversion treatment. By increasing the adhesion of the electrodeposition coating film, the corrosion resistance of the hot stamp member after coating is improved.
  • the corrosion resistance after coating is improved, but even without hot stamping, the average crystal grain size of the plating layer 2 is 2t / 3 ( ⁇ m) or less and 15.0 ⁇ m in the above thickness range. It is presumed that the following means that the grain boundaries increase and the oxide film layer on the surface also has many irregularities, so that the physical and chemical bonds with the electrodeposition coating film after the chemical conversion treatment are strengthened. To. As a result, corrosion resistance after painting is improved.
  • the average crystal grain size of the plating layer 2 can be determined by the following method.
  • a sample is taken from the hot stamping plated steel sheet 10 so that the cross section of the plating layer 2 in the thickness direction is the observation surface.
  • the collected sample is etched with a 3% nitric acid alcohol solution (Nital solution) to reveal grain boundaries, and a steel plate is formed from the interface between the plating layer 2 and the surface coating layer 3 using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the number of intersections with the grain boundaries is set to n, and the value obtained by dividing the line segment length (2t / 3) by n, that is, (2t / 3n) is defined as the average crystal grain size.
  • the average crystal grain size of the plating layer 2 in the thickness range from the interface between the plating layer 2 and the surface coating layer 3 to the position (2t / 3 position) of 2/3 times the thickness t. ..
  • n When n is 0, 2t / 3n cannot be calculated. However, when n is 0, the particle size is larger than 2t / 3 in the observation image, so it is judged that the average crystal particle size is not 2t / 3 or less.
  • the plating layer 2 according to the present embodiment may be formed on the surface of the steel sheet 1 by, for example, a hot-dip galvanizing method. At least a part of the plating layer 2 can be alloyed with Fe in the steel sheet 1 at the time of metal coating in the hot-dip galvanizing method, heating in a hot press, or the like. Therefore, the plating layer 2 according to the present embodiment is not necessarily a single layer having a certain chemical composition, and may include an alloyed layer as appropriate.
  • the plating layer 2 according to the present embodiment contains one or more elements of Ca, Mg, Sr and Ti.
  • the corrosion resistance after hot stamping (hot stamping member) after painting is further improved.
  • the above elements have an anticorrosive effect on the corrosion products generated in the corrosion test process, so that it is possible to delay the arrival of corrosion factors such as water, oxygen, and salt on the plating layer 2. It is considered to be.
  • the total content of Ca, Mg, Sr and Ti is 0.01 to 20% by mass with respect to the entire plating layer 2. It is preferable to have.
  • the total content of the elements is more preferably 0.03 to 10% with respect to the entire plating layer 2.
  • the upper limit may be 6.0%, 4.0% or 2.0%, and the lower limit may be 0.05%, 0.08% or 0.10%.
  • the plating layer 2 according to this embodiment is, for example, a hot-dip plating layer.
  • the components of the plating layer 2 are analyzed by the following method.
  • the surface film layer 3 described later is formed on the plating layer 2
  • the surface film layer 3 is first removed. Specifically, the surface film layer 3 may be removed by polishing.
  • the components of the plating layer 2 are analyzed for the plating layer 2 exposed on the surface by the offline fluorescent X-ray method described in Annex JB of JIS G 3314: 2011.
  • the surface coating layer 3 according to the present embodiment is a layer containing a group A element, which will be described later, formed as an upper layer on the surface of the plating layer 2 described above.
  • a typical form of the surface film layer 3 according to the present embodiment is a coating film, a film by powder coating (powder baking layer), or the like, but the form is not limited to these forms. ..
  • the surface film layer 3 contains particles containing one or more elements selected from group A elements (Sc, V, Mn, Fe, Co, Ce, Nb, Mo, W). These particles are present in the surface coating layer 3 in the state of particles mainly composed of a simple substance of the group A element or in the state of particles mainly composed of a compound (for example, oxide) of the group A element.
  • group A elements Sc, V, Mn, Fe, Co, Ce, Nb, Mo, W.
  • These particles are present in the surface coating layer 3 in the state of particles mainly composed of a simple substance of the group A element or in the state of particles mainly composed of a compound (for example, oxide) of the group A element.
  • the term "mainly" in the present embodiment may include impurities and the like contained when the particles are generated.
  • the structure of the particles differs depending on the method for producing the surface coating layer 3. The detailed configuration will be described later for convenience of explanation.
  • the group A elements in the surface film layer 3 are contained in the following aspects i to v.
  • i A mode of a particle mainly composed of one kind of a single element of group A.
  • ii A mode of a particle mainly composed of one kind of a simple substance of a group A element and a particle mainly composed of another one kind of a simple substance of a group A element.
  • iii A mode of particles mainly composed of one of the compounds of group A elements.
  • iv A mode of a particle mainly composed of one kind of a compound of a group A element and a particle mainly composed of another kind of a compound of a group A element.
  • v A mode of particles mainly composed of a single element of group A (one or more kinds) and particles mainly composed of a compound of group A elements (one or more kinds).
  • the “particles" in the surface film layer 3 exist as particles mainly composed of a single element of group A and / or particles mainly composed of a compound of group A element.
  • a surface film layer 3 is produced, for example, by applying a coating material in which the above-mentioned particles are mixed with an organic binder onto the plating layer 2, and if necessary, drying the applied coating film by heating. .. It is not necessary to particularly limit the organic binder, and a known organic binder or the like can be used.
  • the “particles" in the surface film layer 3 indicate powder particles.
  • a surface coating layer 3 is produced, for example, by applying and baking a coating material obtained by mixing the above-mentioned powder particles with an organic binder onto the plating layer 2.
  • the surface film layer 3 contains particles mainly composed of simple substances and / or compounds of group A elements
  • the surface film layer 3 is subjected to a reaction with water or oxygen at the interface between the surface film layer 3 and the atmosphere after hot stamping.
  • Oxides of group A elements are formed in.
  • an element such as a group A element that can have a plurality of stable valences of +1 or more (for example, +3 valence and +6 valence)
  • the electron bias (polarity) in the oxide becomes high. If a component in the chemical conversion treatment liquid having a relatively high polarity, for example, zinc phosphate, is adhered onto such a surface film layer 3, the interaction between the oxide and zinc phosphate becomes stronger, and the chemical conversion treatment is performed.
  • Elemental substances and compounds of group A are also expected to have the effect of enhancing post-coating corrosion resistance by forming a sparingly soluble compound after being dissolved in water or salt water, which is a corrosion promoting factor, in a corrosive environment.
  • the surface area film layer in which the elemental substance and / or compound of the element A is not present is larger than that of the surface film layer 3.
  • the time required for heating becomes longer during hot stamping.
  • the surface film layer 3 having a large surface area contains the elements of group A, A is closer to the atmosphere in which moisture or oxygen is present than the surface film layer having a small surface area (the above-mentioned particles do not exist). The amount of group elements increases.
  • the group A elements are likely to be concentrated on the surface of the surface film layer 3 after hot stamping.
  • zinc phosphate is likely to adhere to the surface of the surface film layer 3, and the chemical conversion treatment property is improved.
  • the adhesion of the hot stamping plated steel sheet 10 after coating is improved.
  • the total content of group A elements per 1 m 2 of the surface film layer 3 according to the present embodiment is 0.01 to 10.0 g, which is the total content of each group A element per 1 m 2 of the surface film layer 3. / M 2 .
  • the total content of each group A element means the total amount of the masses of all types of group A elements contained in 1 m 2 of the surface film layer 3.
  • the content of the group A element is calculated as follows.
  • the surface film layer 3 contains particles mainly composed of a simple substance Sc, which is an element of group A, or when the surface film layer 3 contains particles mainly composed of scandium chloride, which is a compound of Sc which is an element of group A.
  • the content of the group A element per 1 m 2 of the surface film layer 3 is the content of Sc per 1 m 2 in the surface film layer 3.
  • the above-mentioned "mainly" means that impurities other than the group A elements, which are mixed in during the production of the particles, may be contained.
  • the “particle mainly composed of a simple substance of Sc” refers to a particle composed of a simple substance of Sc and an impurity containing no group A element.
  • the surface coating layer 3 contains particles containing only Sc as a group A element is given as an example, but when these particles also contain other group A elements, each group A in the surface coating layer 3 is used.
  • the weight contained per 1 m 2 of the element is calculated, and the total amount thereof is taken as the content per 1 m 2 of the group A element in the surface coating layer 3.
  • the content of group A elements per 1 m 2 of the surface film layer 3 is calculated as follows.
  • the surface film layer 3 contains particles mainly composed of a simple substance Sc, which is an element of group A, and particles mainly composed of vanadium chloride, which is a compound of V, which is an element of group A, 1 m 2 of the surface film layer 3.
  • the content of the group A element is the total amount of Sc and V contained in 1 m 2 of the surface film layer 3.
  • the total content of group A elements in the surface film layer 3 is 0.01 g / m 2 or more from the viewpoint of maintaining chemical conversion treatment, but 0.1 g / m 2 or more from the viewpoint of improving corrosion resistance after coating. , 0.2 g / m 2 or more or 0.4 g / m 2 or more is particularly preferable.
  • the total content of the group A elements in the surface film layer 3 exceeds 10.0 g / m 2 , the corrosion resistance after coating is saturated, which causes an increase in cost. Therefore, the total content of the group A elements in the surface film layer 3 of the present embodiment is set to 10.0 g / m 2 or less. Considering the addition amount and effect of group A elements, the total content is 6.0 g / m 2 or less, 3.0 g / m 2 or less, or 2.0 g / m 2 or less from the viewpoint of cost effectiveness. Is preferable.
  • the average particle size of the particles containing the group A element in the surface coating layer 3 according to the present embodiment is 0.05 to 3.0 ⁇ m.
  • the chemical conversion treatment property can be improved while maintaining the corrosion resistance of the surface film layer 3.
  • the average particle size of the particles containing the group A element is more than 3.0 ⁇ m, the surface area per volume of the particles mainly composed of the single element of the group A and / or the particles mainly composed of the compound of the group A element is small. , The surface area of the surface layer of the surface film layer 3 becomes insufficient. Therefore, the amount of oxides of the group A elements formed on the surface of the surface film layer 3 after hot stamping becomes insufficient, and the chemical conversion treatment property of the plated steel sheet 10 is not improved. As a result, the desired post-painting corrosion resistance cannot be obtained.
  • the average particle size of the particles containing the group A element is 2.0 ⁇ m or less, 1.5 ⁇ m or less, 1.1 ⁇ m or less, or 0.7 ⁇ m or less. It is preferably 0.5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the average particle size is set to 0.05 ⁇ m or more. If necessary, it may be 0.07 ⁇ m or more, 0.1 ⁇ m or more, or 0.2 ⁇ m or more.
  • group A elements Sc, Mn, Fe, Co, Nb, Mo and W are particularly excellent in corrosion resistance after painting. Although the mechanism is not clear in detail, these elements not only have an action of improving chemical conversion treatment property, but also have an action of adsorbing to the plating layer 2 when dissolved in water, which is a corrosive factor, in a corrosive environment. It is presumed that this is because it has a corrosion-suppressing effect of preventing the reactions of the above-mentioned formulas (1) to (3) from occurring. Therefore, the group A elements may be only Sc, Mn, Fe, Co, Nb and W. If necessary, only specific elements among these elements may be designated as group A elements.
  • Examples of compounds of group A elements include oxides, chlorides, sulfides, fluorides, hydroxides, carbides, nitrides, and the like. Specifically, scandium oxide, scandium bromide, scandium chloride, scandium fluoride, scandium hydroxide, silicon carbide, titanium chloride, barium titanate, vanadyl acetylacetonate, vanadium acetylacetonate, vanadil acetate, vanadil sulfate, five Vanadium oxide, vanadium trioxide, vanadium dioxide, ammonium metavanadate, sodium metavanadate, potassium metavanadate, potassium permanganate, ammonium permanganate, iron oxide, iron nitrate, iron sulfate, iron hydroxide, cobalt chloride, cobalt acetate , Cobalt oxide, cerium oxide, cerium chloride, cerium nitrate, cerium sulfate, cerium acetate, cerium o
  • the surface film layer 3 contains oxygen
  • O oxygen atom
  • the particles containing the group A element in the surface film layer 3 contain oxygen atoms, that is, when the surface film layer 3 contains particles mainly composed of oxides of the group A element, the chemical conversion treatment property of the plated steel sheet 10 is high. Further improve.
  • the fact that at least a part of the particles containing the group A element contains oxygen means that the particles containing all the group A elements in the surface film layer 3 contain 30% or more of the group A elements. Indicates that the particles contain oxygen atoms.
  • the electron bias in the compound in the particles becomes higher (the polarity becomes higher). ..
  • the affinity between the main component in the chemical conversion treatment liquid and the same highly polar component, for example, zinc phosphate and the compound of the group A element becomes higher, so that the chemical conversion treatment is performed. Sex improves.
  • the improvement of the chemical conversion treatment property is expected to have the effect of improving the adhesion of the coating film.
  • the oxygen atom exhibits basicity when dissolved in the chemical conversion treatment liquid.
  • the pH of the chemical conversion treatment liquid near the surface of the surface film layer 3 rises, and the precipitation of components such as zinc phosphate on the surface of the surface film layer 3 is promoted. As a result, the effect of improving the chemical conversion treatment property of the surface film layer 3 is exhibited.
  • particles containing group A elements contain atoms other than oxygen such as sulfur and nitrogen, if the atoms other than oxygen are oxidized by heating at the time of hot stamping, volatile gas is generated and the equipment is installed. There is concern that it may contaminate or reduce the working environment. However, when the particles containing the group A element contain oxygen atoms, the amount of gas volatilized by heating at the time of hot stamping is extremely small.
  • the surface coating layer 3 contains one or more of the group B elements composed of Zn, Zr and Ti, in addition to the particles mainly composed of the simple substance and / or the compound of the group A element.
  • the corrosion resistance after painting after hot stamping can be further improved. This is because when the member after hot stamping is exposed to a corrosive environment, the compound of the group B element exhibits a barrier function against corrosive factors such as water, oxygen, and salt, and becomes a resistance to corrosion. Because.
  • the particles containing the group B element are present in the surface film layer 3 in a state in which the compound of the group B element is the main component.
  • the total content of the group B elements composed of Zn, Zr and Ti is preferably 0.01 to 10.0 g / m 2.
  • the total content of group B elements means the total amount of the masses of all types of group B elements contained in 1 m 2 of the surface film layer 3.
  • the total content of the group B elements is calculated as follows.
  • the total content of the group B elements in the surface film layer 3 is the content of Zn in the surface film layer 3. The amount.
  • the total content of the group B elements in the surface film layer 3 is calculated as follows.
  • the surface film layer 3 contains particles mainly composed of zinc oxide which is a compound of Zn which is a group B element and particles mainly composed of zirconium ammonium carbonate which is a compound of Zr which is a group B element, a group B element.
  • the total content of Zr is the sum of the content of Zn and the content of Zr in the surface film layer 3.
  • Lower limit of the total content of B group element is more preferably 0.03 g / m 2, it was 0.05 g / m 2 or 0.1 g / m 2, more preferably from 0.2 g / m 2.
  • the upper limit of the total content of Group B elements is more preferably 3.0 g / m 2 , 2.0 g / m 2 or 1.0 g / m 2 , and even more preferably 0.8 g / m 2 or 0. It is 7 g / m 2 .
  • Examples of the compound of the group B element include oxides, bromides, chlorides, sulfides, fluorides, hydroxides, carbides, nitrides and the like.
  • the form of the surface coating layer 3 in the case of containing particles mainly composed of a single element of group A and / or particles mainly composed of a compound of group A element and particles mainly composed of a compound of group B element is coated.
  • Typical forms are a film or a film by powder coating (powder baking layer), but the form is not limited to these forms.
  • the surface film layer 3 containing the group B element is a coating film
  • the surface film layer 3 is a coating containing particles mainly composed of a simple substance and / or a compound of the group A element and particles mainly composed of a compound of the group B element. It is a membrane.
  • This coating film may contain organic binders in addition to particles mainly composed of simple substances and / or compounds of group A elements and particles mainly composed of compounds of group B elements.
  • the surface coating layer 3 is a powder baking layer
  • the surface coating layer 3 is a powder baking layer containing particles mainly composed of simple substances and / or compounds of group A elements and particles mainly composed of compounds of group B elements. Is.
  • the powder baking layer may contain an organic binder.
  • the film thickness of the surface film layer 3 according to the present embodiment is not particularly limited, but is preferably 0.1 to 2.5 ⁇ m.
  • the lower limit of the film thickness may be 0.3 ⁇ m, 0.5 ⁇ m or 0.8 ⁇ m, and the upper limit thereof may be 2.2 ⁇ m, 1.8 ⁇ m or 1.5 ⁇ m.
  • the group A elements (or group A elements and B) in the surface coating layer 3 are subjected to the offline fluorescent X-ray fluorescence method described in Annex JB of JIS G 3314: 2011.
  • the content of (group elements) (total amount of each element) can be measured.
  • the intensity of the offline fluorescent X-ray method is measured within a field of view having a diameter of 30 mm.
  • the mass of each A group element and / or each B group element contained per 1 m 2 is calculated using the intensity and the calibration curve of each A group element and / or each B group element prepared in advance. By summing the masses of each of these group A elements and / or each group B element, the content of group A elements and / or group B elements per 1 m 2 of the surface coating layer 3 can be determined.
  • the average particle size of the particles mainly composed of the element A and / or the compound in the surface film layer 3 is measured by the following method.
  • a sample having a size of 20 mm ⁇ 20 mm is cut out from a portion separated from the edge of the plated steel sheet 10 in the width direction by 10 mm or more, specifically, for example, a portion 15 mm away, and the sample surface is used as an observation surface.
  • FE-SEM electrolytic scanning electron microscope
  • the particle size of the particles mainly composed of the element A and / or the compound was determined by the cutting method using the circular test line described in Annex C of JIS G 0551: 2013. Ask.
  • the average particle size of the particles mainly composed of simple substances / or compounds of all group A elements in the above observation photograph the particles mainly composed of simple substances and / or compounds of group A elements in the surface coating layer 3 to obtain the average particle size of.
  • the particles containing the group A element (particles mainly composed of a single element and / or a compound of the group A element) in the surface film layer 3 are particles generated by the growth of a single crystal nucleus.
  • the primary particles exist as primary particles, and cases where the primary particles aggregate and exist as secondary particles. Therefore, as for the average particle size of the particles containing the group A element in the present embodiment, the particle size (primary particle size) of one particle is measured when only the primary particles are present, and the second particle is present when the particles are present as secondary particles. Obtained by measuring the particle size (secondary particle size) of the secondary particles.
  • the average value of the major axis and the minor axis of each particle is taken as the average value of all the particles in the visual field.
  • the average particle size is obtained by calculating the particles and calculating the average value thereof.
  • the distinction between primary particles and secondary particles can be determined, for example, from the presence or absence of boundaries (differences in brightness) in the particles from a scanning electron microscope image, or when measured by an electron diffraction image of a transmission electron microscope. If the crystal orientations are the same, they can be regarded as primary particles, and if they are different, they can be judged as different primary particles.
  • Hot stamping material By heating and quenching the above-mentioned hot stamping plated steel sheet 10 by the hot stamping method, a hot stamping member having a tensile strength of about 1000 MPa or more can be obtained. Further, in the hot stamping method, since the press working can be performed in a state of being softened at a high temperature, it can be easily molded.
  • the surface film layer 3 on the outermost surface side of the hot stamping plated steel sheet 10 according to the present embodiment contains a group A element, moisture or oxygen is present at the interface between the surface film layer 3 and the atmosphere after hot stamping.
  • an oxide film layer containing Group A elements is formed on the surface film layer 3.
  • This oxide film layer contains one or more elements selected from Group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W, Al and oxygen. That is, the hot stamping member according to the present embodiment has one or more elements selected from the group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W on the surface, and Al. And an oxide film layer containing oxygen.
  • a hot stamp member In the manufacturing process of an automobile, a hot stamp member has a chemical conversion coating film represented by a zinc phosphate film on the surface of the member (above the surface film layer 3), an electrodeposition coating film on the upper layer, and in some cases, a further upper layer.
  • the coating film is laminated on.
  • the electron bias (polarity) in the oxide becomes high. If a component in the chemical conversion treatment liquid having a relatively high polarity, for example, zinc phosphate, is adhered onto such a surface film layer 3, the interaction between the oxide and zinc phosphate becomes stronger, and the chemical conversion treatment is performed. Improves sex.
  • Elemental substances and compounds of group A are also expected to have the effect of enhancing post-coating corrosion resistance by forming a sparingly soluble compound after being dissolved in water or salt water, which is a corrosion promoting factor, in a corrosive environment.
  • the manufacturing method of the plated steel sheet 10 for hot stamping The manufacturing method of the plated steel sheet 10 according to this embodiment will be described below.
  • the plating layer 2 is formed on one side or both sides of the steel plate 1 by, for example, a hot-dip galvanizing method using the steel plate 1 having a predetermined chemical composition.
  • the plating bath temperature may be 550 to 700 ° C.
  • particles are sprayed on the surface of the plating layer 2.
  • the particles before the plating layer 2 solidifies, the growth of the metal crystals in the plating layer is inhibited, and the particle size of the metal crystal particles in the plating layer 2 can be reduced.
  • the surface film layer 3 is formed on the plating layer 2 by reducing the particle size of the metal crystal particles in the plating layer 2 in this way, the size of the crystal particles in the plating layer 2 affects the plating layer.
  • the crystal particles of the surface coating layer 3 at the interface with 2 become smaller.
  • the growth of the crystal particles of the surface film layer 3 formed on the interface is also inhibited, and the particle size of the particles (elemental substance and / or compound of the group A element) in the surface film layer 3 can be reduced accordingly. Therefore, the surface area of the surface film layer 3 can be increased.
  • the chemical conversion treatment property is improved during the chemical conversion treatment after hot stamping, so that the adhesion after coating is improved.
  • the particles are sprayed onto the surface of the plating layer 2 with metal oxides (titanium oxide, magnesium oxide, vanadium oxide, chromium oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, zirconium oxide, silicon dioxide) having an average particle size of 20 ⁇ m or less.
  • metal oxides titanium oxide, magnesium oxide, vanadium oxide, chromium oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, zirconium oxide, silicon dioxide
  • Zinc oxide, iron oxide, aluminum oxide is preferably sprayed together with the cooling gas at a speed of 30 to 70 m / s.
  • the sprayed particles have the effect of cooling the plated metal in a molten state at the same time as becoming the core of the crystal.
  • the grain boundaries increase even after hot stamping, and the oxide film layer on the surface also has many irregularities, so that the physical and chemical bonds with the electrodeposited coating film after the chemical conversion treatment are strengthened. Inferred.
  • the spray rate of the particles is less than 30 m / s, the number of crystal nuclei is reduced. As a result, the crystal grain size becomes large even after hot stamping, physical and chemical bonds with the electrodeposition coating film cannot be secured, and the paint adhesion and the corrosion resistance after painting are inferior.
  • the spraying speed of the particles is more than 70 m / s, the number of crystals becomes too large due to the spraying of the particles, and the crystals become too small.
  • the hot stamping member according to the present embodiment may be manufactured.
  • Al may be first adhered to the steel sheet 1 by vapor deposition or thermal spraying, and then the group A element may be adhered. As a result, an Al coating layer composed of an Al layer and group A elements is formed.
  • vapor deposition or thermal spraying is performed using a vapor deposition source or a thermal spraying source containing Group A elements, and Al and Group A elements are simultaneously adhered to the steel plate 1. May be good.
  • the ratio of the group A elements in the Al coating layer is preferably 0.001% to 30% by mass.
  • the hot stamping member can be manufactured from the hot stamping plated steel sheet by hot stamping the steel sheet having the Al coating layer.
  • the method for forming the surface film layer 3 is not particularly limited, but the surface film layer 3 can be formed by, for example, the following method.
  • -A solution or suspension containing simple substances of group A elements and / or particles mainly composed of compounds (or particles mainly composed of compounds of group B elements) is applied to the surface of the plating layer 2.
  • the solution or suspension preferably contains an organic binder.
  • a solution or suspension containing a simple substance of a group A element and / or particles mainly composed of a compound (or particles mainly composed of a compound of a group B element in addition to the particles) has a predetermined organic property, if necessary.
  • Binder may be mixed. Examples of the organic binder include polyurethane resins, polyester resins, acrylic resins, silane coupling agents and the like. Most of these organic binders disappear during the hot stamp heating process.
  • Hot stamping is performed on the hot stamping plated steel sheet 10 manufactured as described above.
  • the hot stamped galvanized steel sheet 10 is blanked (punched) as necessary, and then the hot stamped galvanized steel sheet 10 is heated to soften it. Then, the softened hot stamping plated steel sheet 10 is pressed and formed, and then cooled (quenched).
  • the heated and hardened hot stamping member can obtain a high tensile strength of about 1000 MPa or more.
  • a heating method infrared heating or the like can be adopted in addition to a normal electric furnace and a radiant tube furnace.
  • the heating temperature and heating time at the time of hot stamping are preferably 850 to 950 ° C. for 2 minutes or more. If the heating time is shorter than 2 minutes, the tensile strength of the hot stamped parts will not be sufficiently high.
  • the crystal grain boundaries can be increased.
  • the grain boundaries increase even after hot stamp heating, and the upper layer film also has many grain boundaries or irregularities, so that the physical and chemical bonds with the electrodeposition coating film after the chemical conversion treatment are strengthened. Inferred.
  • Table 1 shows the chemical composition of the steel plate used for the hot stamping steel plate of this example.
  • a plating layer was formed on one side or both sides of the steel sheet shown in Table 1 by a hot-dip galvanizing method.
  • the plating bath temperature during hot-dip galvanizing is 550 to 700 ° C., and after immersing the steel plate in the plating bath, a metal oxide (aluminum oxide) with an average particle size of 1 to 10 ⁇ m is used on the surface of the plating layer using a spray nozzle.
  • a metal oxide aluminum oxide
  • Tables 2-1 to 3-7 the reference numerals a1, a4 and a5 in Table 2-3 were not sprayed.
  • the amount of plating adhered was adjusted by a gas wiping method so that the amount of plating adhered was 80 g / m 2 per side.
  • the thickness of the plating layer was as shown in Tables 2-1 to 3-7. Further, as shown in Tables 2-1 to 3-8, a surface film layer containing particles mainly composed of simple substances and / or compounds of group A elements, a surface film layer not containing these, and a simple substance of group A elements.
  • a plated steel plate was obtained by forming a surface coating layer containing particles mainly composed of compounds and / or particles mainly composed of compounds of group B elements on the plating layer. In addition, the composition of the plating layer was changed for some parts.
  • Examples containing particles mainly composed of compounds of group A elements, particles mainly composed of compounds of group A elements, and particles mainly composed of compounds of group B elements (reference numerals A8 to A51, reference numerals a4, a6, a8 and a10).
  • Reference numerals B1 to B85) are obtained by applying a coating material in which compounds such as chlorides and oxides of group A elements and an organic binder are dispersed or dissolved in water with a roll coater, and then dried at a plate temperature of 80 ° C. As a result, a surface film layer was formed.
  • Examples (reference numerals B86 to B112) including particles mainly composed of a simple substance of a group A element and particles mainly composed of a compound of a group B element include particles mainly composed of a simple substance of the group A element and chloride of the group B element.
  • a coating in which a compound such as an oxide and an organic binder were dispersed or dissolved in water was applied with a roll coater, and then dried at a reaching plate temperature of 80 ° C. to form a surface film layer.
  • reference numerals A1 to A7 are examples of inventions in which a surface film layer containing particles mainly composed of simple substances of group A elements is formed, and reference numerals A8 to A15 are compounds of group A elements.
  • This is an example of an invention in which particles mainly containing particles are formed, and the particles form a surface film layer containing no oxygen.
  • Reference numerals A16 to A47 are particles mainly composed of a group A element and a compound containing oxygen, and the surface film layer.
  • A48 to A51 are examples of inventions in which a surface film layer containing two or more kinds of particles mainly composed of group A elements (elemental substances and / or particles mainly composed of a compound) is formed. ..
  • Reference numerals A52 and A53 are examples of inventions in which a surface coating layer containing an organic binder and powder particles containing molybdenum oxide or tungsten oxide is formed.
  • Reference numerals a1 to a3, a7 and a9 in Table 2-3 are comparative examples in which a surface film layer containing no particles mainly composed of a single substance and / or a compound of group A elements is formed, and reference numerals a4, a11 and a12 are used.
  • a comparative example in which the content of group A elements (total amount in terms of elements) was insufficient reference numeral a5 was a comparative example in which the surface film layer was not laminated, and reference numerals a6 and a8 were small thicknesses of the plating layer.
  • Reference numeral a10 is a comparative example in which the average crystal grain size in the plating layer was large.
  • Reference numerals B1 to B112 in Tables 3-1 to 3-8 represent a surface coating layer containing one or more of the particles mainly composed of simple substances and / or compounds of group A elements and the particles mainly composed of compounds of group B elements. This is an example of the formed invention.
  • the compounds are numbered (1), (2), and so on, respectively.
  • the elements constituting the compound of are listed in the table.
  • Reference numerals C1 to C24 in Table 4 are examples of inventions in which the plating composition is changed.
  • the content (or the total amount in terms of elements) of group A elements (or group A elements and group B elements) in the surface film layer was measured by the offline fluorescent X-ray method described in Annex JB of JIS G 3314: 2011.
  • the relationship between the fluorescent X-ray intensity of a known oxide film and its content was prepared in advance as a calibration curve. Since there is a one-to-one correspondence between the fluorescent X-ray intensity and the content in this calibration curve, the content is specified once the fluorescent X-ray intensity is determined.
  • the intensity of the fluorescent X-rays of the group A element and / or the group B element emitted when the sample having a diameter of 30 mm was irradiated with X-rays was measured.
  • the content (g / m 2 ) of each group A element and / or each group B element is calculated, and each group A.
  • the contents of the A group element and / or the B group element were obtained.
  • the contents of the group A elements (or group A elements and group B elements) thus obtained are shown in the table.
  • a sample having a size of 20 mm ⁇ 20 mm was cut out from a portion 10 mm or more away from the end of the plated steel sheet 10, and the sample surface was used as an observation surface.
  • FE-SEM electrolytic radiation scanning electron microscope
  • EDX energy dispersive analyzer
  • the average value of the major axis and the minor axis of each particle is taken as the average value of all the particles in the visual field.
  • the average particle size of the particles mainly composed of the element A and / or the compound in the surface coating layer was determined.
  • the average particle diameters of the obtained particles mainly composed of simple substances and / or compounds of the group A elements are shown in the table.
  • the primary particles and the secondary particles were judged from the presence or absence of a boundary (difference in brightness) in the particles from the scanning electron microscope image.
  • the surface film layer on the plating layer was removed by polishing.
  • the components of the plated layer exposed on the surface were analyzed by the offline fluorescent X-ray method described in Annex JB of JIS G 3314: 2011.
  • the components (plating composition) of the obtained plating layer are shown in the table.
  • the balance of the chemical composition of the plating layer was less than 0.5% impurities.
  • the chemical composition (plating composition) of the plating layer is described as "Al-10% Si" in the table, the plating layer is Al, 10% Si, and less than 0.5%. Indicates that it consists of impurities.
  • the thickness t of the plating layer was measured from the cross section by quantitative analysis with FE-EPMA (field emission electron probe microanalyzer).
  • FE-EPMA field emission electron probe microanalyzer
  • a sample having a size of 10 mm ⁇ 10 mm was cut out from a portion 15 mm in the width direction from the end portion of the plated steel sheet 10.
  • the sample was embedded in a resin and polished to obtain an embedded polishing sample. After carbon was deposited on the embedded sample so that it could be easily energized, the content of each element was quantitatively analyzed by point analysis at an acceleration voltage of 10 kV and a magnification of 1500 times or more using the FE-EPMA magnification.
  • the point where the Al content in the total of the elements excluding mass carbon is 30% by mass is defined as the plating layer.
  • Point analysis is performed every 1 ⁇ m perpendicular to the steel sheet from the plating surface toward the center of the plate thickness, and the point where the Al content is less than 30% by mass is judged not to be the plating layer. Then, the set of points having an Al content of 30% by mass or more was used as the plating layer, and the thickness t of the plating layer was measured. The thickness t of the obtained plating layer is described in the column of "plating thickness" in the table.
  • n When n is 0, 2t / 3n cannot be calculated. However, when n is 0, the particle size is larger than 2t / 3 in the observation image, so it was determined that the average crystal particle size is not 2t / 3 or less. In addition, in calculating the number n of intersections, JIS G 0551: 2013 Annex C.I. As described in 2.2, when the line segment intersects the triple point, n was set to 1.5 at that point.
  • the plated steel sheets shown in Tables 2-1 to 4 were heated at 940 ° C. for 6 minutes, and then molded with a die and cooled with the die to obtain a hot stamp member.
  • the heating was carried out in a moist atmosphere with a dew point of 40 ° C.
  • the obtained hot stamping member was evaluated by examining the chemical conversion treatment property and the corrosion resistance after painting by the following methods.
  • the hot stamping member of the example has one or more elements selected from the group A elements consisting of Sc, V, Mn, Fe, Co, Ce, Nb, Mo and W on the surface, and Al. It had an oxide film layer containing oxygen.
  • Chemical conversion treatment A hot stamp member is cut into 150 mm ⁇ 70 mm, and a test piece is chemical-treated with a chemical conversion treatment liquid (PB-SX35) manufactured by Nihon Parkerizing Co., Ltd., and then the zinc phosphate content is measured by a fluorescent X-ray analyzer. Measured by.
  • the chemical conversion processability was evaluated with the following scores X1 to X4 according to the zinc phosphate content obtained by the measurement. When the score of the chemical conversion processability was X1, X2, or X3, it was judged to be acceptable as having excellent chemical conversion processability. When the score of chemical conversion processability was X4, it was judged to be inferior in chemical conversion processability and rejected.
  • the width (maximum value on one side) of the coating film swelling from the cut flaw after 180 cycles of the corrosion test by the neutral salt spray cycle test method in which the wet environment for 2 hours was one cycle was measured.
  • Corrosion resistance after painting was evaluated with the following scores Y1 to Y4 according to the measurement results. When the score of corrosion resistance after painting was Y1, Y2 or Y3, it was judged to be acceptable as having excellent corrosion resistance after painting. When the score of corrosion resistance after painting was Y4, it was judged as inferior in corrosion resistance after painting and rejected.
  • Y1 Swelling width 0 mm or more and less than 1 mm
  • Y2 Swelling width 1 mm or more and less than 2 mm
  • Y3 Swelling width 2 mm or more and less than 3 mm
  • Y4 Swelling width 3 mm or more
  • the average particle size and the content of group A elements of the particles mainly composed of simple substances and / or compounds of group A elements in the surface coating layer are within the scope of the present invention.
  • Inventive Examples A1 to A53 have excellent chemical conversion treatment properties and post-painting corrosion resistance.
  • Comparative Examples a1 to a12 in Table 2-3 were inferior in chemical conversion treatment property and corrosion resistance after painting. It should be noted that the average crystal grain size of the plating layer in the thickness range up to 2/3 times the thickness t from the interface between the plating layer and the surface coating layer at reference numeral a1 was "-" rather than 2t / 3. It means that it was big.
  • Comparative Examples a1 to a3 since the surface film layer was formed by the compound of Al which does not belong to the group A element, the chemical conversion treatment property and the corrosion resistance after coating were inferior.
  • Comparative Examples a4, a11 and a12 the surface film layer was formed by the compound of Mo belonging to the group A element, but the total content of Mo was too small, so that the chemical conversion treatment property and the corrosion resistance after painting were inferior.
  • Comparative Example a5 since the surface film layer had no group A element, the chemical conversion treatment property and the corrosion resistance after coating were inferior.
  • Comparative Examples a7 and a9 since the surface film layer was formed by a compound of Cr that does not belong to the group A element, the chemical conversion treatment property and the corrosion resistance after coating were inferior.
  • Comparative Examples a6 and a9 the thickness of the plating layer was small, so that the chemical conversion treatment property and the corrosion resistance after coating were inferior.
  • Comparative Example a10 since the average crystal grain size in the plating layer was large, the chemical conversion treatment property and the corrosion resistance after coating were inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明の一態様に係るホットスタンプ用めっき鋼板は、鋼板と、前記鋼板の片面又は両面に形成され、Al含有量が60質量%以上であるめっき層と、前記めっき層上に形成された表面皮膜層とからなる。前記めっき層の厚みtが10~60μmである。前記めっき層と前記表面皮膜層との界面から前記厚みtの2/3倍の位置までの厚さ範囲における前記めっき層の平均結晶粒径が、2t/3以下であり、且つ、15.0μm以下である。前記表面皮膜層が、Sc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素を含む粒子を含有する。前記A群元素の含有量の合計が0.01~10.0g/m2である。前記A群元素を含む前記粒子の平均粒径が0.05~3.0μmである。

Description

ホットスタンプ用めっき鋼板およびホットスタンプ部材
 本発明は、ホットスタンプ用めっき鋼板およびホットスタンプ部材に関する。
 近年、環境保護と地球温暖化の防止のために、化学燃料の消費を抑制することが要請されている。この要請は、様々な製造業に対して影響を与えている。例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではない。自動車製造業では、車体の軽量化などによる燃費の向上等が求められている。しかし、自動車製造業では、製品の品質上、単に車体の軽量化を実現することは許されず、適切な安全性を確保する必要がある。
 自動車の構造の多くは、鉄、特に鋼板により形成されており、この鋼板の重量を低減することが、車体の軽量化のために重要である。しかしながら、上述の通り、単に鋼板の重量を低減することは許されず、鋼板の機械的強度を確保することも要請される。このような鋼板に対する要請は、自動車製造業のみならず、様々な製造業でも要請されている。そのため、鋼板の機械的強度を高めることにより、従来の鋼板より板厚を薄くしても機械的強度を維持又は高めることができる鋼板について、研究開発が行われている。
 一般的に、高い機械的強度を有する材料は、曲げ加工等の成形加工において、形状凍結性が低下する傾向にある。そのため、高い機械的強度を有する材料を複雑な形状に加工する場合、加工そのものが困難となる場合がある。この成形性についての問題を解決する手段の一つとして、いわゆる「ホットスタンプ法(熱間プレス法、ホットプレス法、高温プレス法、あるいはダイクエンチ法とも称される)」が挙げられる。ホットスタンプ法は、成形対象である鋼板をオーステナイト領域の高温に加熱して、加熱により軟化した鋼板に対してプレス加工を行って成形した後に、金型で拘束した状態で冷却する方法である。ホットスタンプ法によれば、鋼板を一旦オーステナイト領域の高温に加熱して軟化させるため、容易にプレス加工することができ、更に、成形後の冷却による焼入れ効果により、成形品の機械的強度を高めることができる。従って、ホットスタンプ法により、良好な形状凍結性と高い機械的強度とを有する成形品を得ることが可能となる。
 しかし、ホットスタンプ法を鋼板に適用した場合、耐食性を必要とする部材等では、加工後に部材表面に防錆処理や金属被覆を施す必要がある。この場合、表面清浄化工程および表面処理工程などが必要となるため、生産性が低下する。
 特許文献1には、鋼の表面にAlを主体とし、MgとSiとを含有するAl系金属被覆を有するホットスタンプ用アルミ系めっき鋼板が記載されている。
 特許文献2には、自動車部材に関するものであり、ホットスタンプ後のAl-Fe金属間化合物層の表面に、0.05~1μm厚みの酸化膜を形成することが記載されている。また、特許文献2には、酸化膜が所定の厚みとなるように、熱間プレス用Alめっき鋼板を加熱し、表層までAl-Fe金属間化合物層を形成させることにより、電着塗装後の塗膜欠陥や密着性低下を抑制して、塗装後耐食性を確保することが記載されている。
日本国特開2003-034845号公報 日本国特開2009-293078号公報
 特許文献1に記載の方法では、ホットスタンプ後の塗装後耐食性が十分ではない。これは、最表面の化合物組成や粒径の影響により、その上層の塗膜や化成処理層との親和力が十分強くなっていないためであると推察される。
 特許文献2に記載のように、Al-Fe金属間化合物層の構造や厚みを制御しても、十分な塗装後耐食性は得ることは難しい。これは、酸化膜と化成処理剤との反応性低下によって、化成処理皮膜の付着量の減少などが生じるためであると推定される。
 上述のように、従来の技術では、めっき鋼板をホットスタンプしてホットスタンプ部材とした際、十分な塗装後耐食性を確保することが難しいという課題があった。
 本発明は以上の事情を背景としてなされたもので、優れた化成処理性と塗装後耐食性とを有するホットスタンプ部材、およびこのホットスタンプ部材を得ることができるホットスタンプ用めっき鋼板を提供することを目的とする。
 鋼板上に、めっき層及び表面皮膜層を形成させたホットスタンプ用めっき鋼板を使用する自動車の製造工程の中で、ホットスタンプ用めっき鋼板は、ホットスタンプ工程で加熱・成形されてホットスタンプ部材となる。ホットスタンプ部材は、部材表面(表面皮膜層の上)に、りん酸亜鉛皮膜で代表される化成処理皮膜、その上層に電着塗膜、場合によってはさらに上層に塗膜を積層されて実用に供される。
 腐食環境下では、下記の式(1)~(3)に示すような反応式により、アルミや鉄、あるいはホットスタンプ工程で生成されるアルミと鉄との金属間化合物のアノード溶解反応が生じることによって、腐食生成物が形成され、塗膜膨れが進行すると推察される。
 Al→Al3++3e                 ・・・(1)
 Fe→Fe2++2e                 ・・・(2)
 FeAl→xFe+yAl+(2x+3y)e    ・・・(3)
 本発明者らは、めっき直後の粒子吹き付けによりめっき層の金属組織の細粒化処理が施されためっき層上に形成させる表面皮膜層の中に、+1以上の安定な価数を複数種(例えば+3価と+6価等)とり得る元素を含む粒子を所定量含有させ、更にこれら元素を含む粒子の平均粒径を所定の範囲内にすることによって、上記課題の解決を図った。具体的には、Sc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素を含む粒子を含有し、前記A群元素の含有量が、A群元素の含有量の合計が0.01~10.0g/mであり、且つ前記A群元素を含む前記粒子の平均粒径が0.05~3.0μmである表面皮膜層をめっき層上に形成することによって、上記課題の解決を図った。
 粒子に含まれるA群元素は、ホットスタンプ後、より高い価数を有する酸化物を形成することができる。その結果、酸化物内での電子の偏り(極性)がより高くなり、同じく極性の高い化成処理液中の成分、例えばりん酸亜鉛との相互作用が強くなることによって、化成処理性が向上する。なお、化成処理性が向上するとは、ホットスタンプ部材に化成処理を施した場合に、化成処理皮膜の付着量が大きくなることを意味する。また、塗装後耐食性が向上するとは、ホットスタンプ部材に化成処理を施し、電着塗料により塗膜を形成した表面にカッターで疵を入れた場合において、腐食環境での塗膜の膨れ幅が小さくなることを意味する。化成処理性が高くなり、化成処理皮膜の付着量が大きくなれば、化成処理皮膜と電着塗膜との密着性が高くなり、塗装後耐食性が向上する。
 表面皮膜層が、A群元素を含む粒子を含むことにより、その上層に化成処理皮膜、例えばりん酸亜鉛皮膜、さらに上層に電着塗膜を形成させた後の腐食環境において、腐食環境における水分や塩分といった腐食因子がめっき金属に到達することを防ぐ作用も期待される。
 また、無機皮膜中のA群元素が粒子の状態で含有されることにより、表面皮膜層の表面積が大きくなり、ホットスタンプの際、加熱に要する時間が長くなる。また、水分あるいは酸素が存在する雰囲気との距離が近いA群元素の量が多くなることで、表面皮膜層3の表面にA群元素が濃化し易くなる。すると、ホットスタンプ後の化成処理の際、例えばりん酸処理の際にりん酸亜鉛が付着しやすくなり、化成処理性が向上することで、塗装後密着性が向上する。
 めっき層の金属組織の細粒化により、ホットスタンプ部材の塗装密着性が向上するメカニズムについては不明確な点があるが、本発明者は以下のように推察している。めっき層の平均結晶粒径を小さく制御することで、結晶粒界を多くすることができる。その結果、ホットスタンプ加熱後も粒界が多くなり、表面の酸化膜層も凹凸が多くなるために、化成処理した後の電着塗膜との物理的・化学的結合が強固になるものと推察される。
 A群元素は主に酸化物の形態で酸化膜層に含まれる。このようなホットスタンプ部材の最表面(酸化膜層の表面)に対して化成処理が施される際、ホットスタンプ部材の最表面にA群元素の酸化物が存在することで酸化膜層と化成処理液との界面における化成処理液のpHが上昇する。これによりリン酸亜鉛結晶の析出量が多くなる。すなわち、いわゆる化成処理性が高められる。また、リン酸亜鉛結晶の析出量が多くなることで、化成処理後に電着塗装される電着塗膜の密着性(塗料密着性)が向上する。電着塗膜の密着性が高まることで、塗装後耐食性が向上する。
 本発明は、以上のような知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ用めっき鋼板は、
 鋼板と、
 前記鋼板の片面又は両面に形成され、Al含有量が60質量%以上であるめっき層と、
 前記めっき層上に形成された表面皮膜層とからなり、
 前記めっき層の厚みtが10~60μmであり、
 前記めっき層と前記表面皮膜層との界面から前記厚みtの2/3倍の位置までの厚さ範囲における前記めっき層の平均結晶粒径が、2t/3以下であり、且つ、15.0μm以下であり、
 前記表面皮膜層が、Sc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素を含む粒子を含有し、
 前記表面皮膜層における前記A群元素の含有量の合計が0.01~10.0g/mであり、
 前記A群元素を含む前記粒子の平均粒径が0.05~3.0μmである。
(2)上記(1)に記載のホットスタンプ用めっき鋼板は、前記A群元素を含む前記粒子の少なくとも一部が、Oを含有してもよい。
(3)上記(1)または(2)に記載のホットスタンプ用めっき鋼板は、
 前記表面皮膜層が、さらに、Zn、ZrおよびTiからなるB群元素から選ばれる1種または2種以上を含む粒子を含有し、
 前記表面皮膜層における前記B群元素の含有量の合計が0.01~10.0g/mであってもよい。
(4)上記(1)~(3)のいずれか一項に記載のホットスタンプ用めっき鋼板は、前記めっき層におけるCa、Mg、SrおよびTiの含有量の合計が、前記めっき層全体に対し、質量%で、0.01%~20%であってもよい。
(5)本発明の別の態様に係るホットスタンプ部材は、上記(1)~(4)に記載のホットスタンプ用めっき鋼板をホットスタンプして得られるホットスタンプ部材であって、
  表面にSc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素と、Alと、酸素とを含む酸化膜層を有する。
 本発明に係る上記態様によれば、優れた化成処理性と塗装後耐食性とを有するホットスタンプ部材、およびこのホットスタンプ部材を得ることができるホットスタンプ用めっき鋼板を提供することができる。
本実施形態に係るホットスタンプ用めっき鋼板の断面図である。 本実施形態に係るホットスタンプ用めっき鋼板の、めっき層の平均結晶粒径の測定方法を示す模式図である。
 以下に、本発明の好適な実施形態について詳細に説明する。
 図1は、本実施形態に係るホットスタンプ用めっき鋼板10(以下、単にめっき鋼板と記載する場合がある)を示す図である。本実施形態に係るめっき鋼板10は、鋼板1と、鋼板1の片面又は両面に形成され、Alを含有するめっき層2と、めっき層2上に形成された表面皮膜層3とからなる。
(鋼板1)
 本実施形態に係るホットスタンプ用めっき鋼板10の母材となる鋼板1の化学成分は特に限定されるものではない。しかし、本実施形態に係る鋼板1としては、ホットスタンプ後に高い機械的特性(引張強度、降伏応力、伸び、絞り、硬さ、衝撃値、疲労強度等の機械的な変形及び破壊に対する強度)が得られる鋼板を使用することが望ましい。
 ホットスタンプ後において高い機械的強度を得るために、鋼板1の化学成分は、質量%で、C:0.10~0.60%、Si:0.01~0.60%、Mn:0.01~3.00%、P:0.050%以下、S:0.050%以下、Al:1.00%以下、Ti:0.001~0.100%、B:0.0001~0.0100%、N:0.0100%以下を含有し、残部がFe及び不純物からなることが好ましい。なお、元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。本実施形態に係る鋼板1の好ましい化学成分について、以下に説明する。
C:0.10~0.60%
 Cは、所望の機械的強度を得るために含有させる。C含有量が0.10%未満の場合には、機械的強度を向上させる効果が十分に得られず、Cを含有させる効果が得られない場合がある。一方、C含有量が0.60%を超える場合には、鋼板1の強度をより向上させることができるものの、伸びおよび絞りが低下する場合がある。従って、C含有量は、0.10~0.60%が好ましい。必要に応じて、C含有量の下限を0.15%又は0.20%としてもよく、C含有量の上限を0.50%又は0.40%としてもよい。
Si:0.01~0.60%
 Siは、機械的強度を向上させる強度向上元素であり、Cと同様に、鋼板1の所望の機械的強度を得るために含有させる。Si含有量が0.01%未満の場合には、強度向上効果が発揮され難く、機械的強度が十分に向上しない場合がある。一方、Siは易酸化性元素でもあるため、Si含有量が0.60%を超える場合には、鋼板1の表層に形成したSi酸化物の影響により、溶融めっきを行う際に、濡れ性が低下し、不めっきが生じる場合がある。従って、Si含有量は、0.01~0.60%が好ましい。
Mn:0.01~3.00%
 Mnは、機械的強度を向上させる強度向上元素であり、焼入れ性を高める元素でもある。更にMnは、不純物であるSによる熱間での脆化を防止する効果を有する。Mn含有量が0.01%未満の場合には、上述の効果が得られない場合がある。一方、Mnはγ形成元素であるため、Mn含有量が3.00%を超える場合には、残留γ相が多くなり過ぎてホットスタンプ部材の強度が低下する場合がある。従って、Mn含有量は、0.01~3.00%が好ましい。必要に応じて、Mn含有量の下限を0.30%又は0.50%としてもよく、Mn含有量の上限を2.50%又は2.10%としてもよい。
P:0.050%以下
 Pは、焼入れ後のホットスタンプ部材の靱性を劣化させる元素である。特にP含有量が0.050%を超えると、ホットスタンプ部材の靱性が著しく劣化する場合がある。従って、P含有量は0.050%以下が好ましい。また、P含有量は、0.005%以下であることがより好ましい。
 Pは溶鋼製造時にスクラップ等から不純物として混入するが、その下限を特に制限する必要はなく、その下限は0%である。ただし、P含有量を過剰に低減すると、製造コストが増加する。そのため、P含有量の下限は0.001%以上、又は0.002%以上であってもよい。
S:0.050%以下
 Sは、焼入れ後のホットスタンプ部材の靱性を劣化させる元素である。特に、S含有量が0.050%を超えると、ホットスタンプ部材の靱性が著しく劣化する場合がある。従って、S含有量は0.050%以下が好ましい。また、S含有量は、0.003%以下であることがより好ましい。
 Sは溶鋼製造時にスクラップ等から不純物として混入するが、その下限を特に制限する必要はなく、その下限は0%である。ただし、S含有量を過剰に低減すると、製造コストが増加する。そのため、S含有量の下限は0.001%以上であってもよい。
Al:1.00%以下
 Alは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して確保することを可能にする元素である。しかし、Al含有量が1.00%を超えると、上記の効果が飽和するとともにコストの増加を引き起こす。従って、Al含有量は1.00%以下とすることが好ましい。また、上記の効果を得るためには、Al含有量を0.01%以上とすることが好ましい。
Ti:0.001~0.100%
 Tiは、機械的強度を向上させる強度強化元素である。Ti含有量が0.001%未満であると、強度向上効果や耐酸化性向上効果が得られない場合がある。一方、Tiを過剰に含有させると、例えば、炭化物や窒化物を形成して、鋼を軟質化させる場合がある。特に、Ti含有量が0.100%を超えると、所望の機械的強度を得られない場合がある。従って、Ti含有量は、0.001~0.100%が好ましい。
B:0.0001~0.0100%
 Bは、焼入れ時に鋼の強度を向上させる効果を有する。B含有量が0.0001%未満であると、上記の強度向上効果が十分に得られない場合がある。一方、B含有量が0.0100%を超えると、鋼中に介在物が形成され、鋼板1が脆化し、疲労強度が低下する場合がある。従って、B含有量は、0.0001%~0.0100%が好ましい。
N:0.0100%以下
 Nは、焼入れ後のホットスタンプ部材の靱性を劣化させる元素である。特に、N含有量が0.0100%を超えると、鋼中に粗大な窒化物が形成され、鋼板1の局部変形能や靱性が著しく劣化する。従って、N含有量は0.0100%以下が好ましい。N含有量の下限は特に限定する必要はないが、N含有量を0.0002%未満とすると、コストが上昇する場合がある。そのため、N含有量は0.0002%以上とすることが好ましく、0.0008%以上とすることがより好ましい。
 本実施形態に係る鋼板1には、上記の元素に加えてさらに、下記に示すCr、Ni、Cu、V、Nb、Sn、Mo、W、CaおよびREMから選択される1種以上の元素を含有させてもよい。
Cr:0~1.0%
 Crは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して得ることを可能にする元素であるため、含有させてもよい。また、Crは、熱処理時に鋼板表面にFeCrを生成させ、スケール生成を抑制するとともに、スケール中のFeOを減少させる役割を果たす。このFeCrがバリア層となり、スケール中へのFeの供給が遮断されるため、スケール厚さを薄くすることができる。スケール厚さが薄いと、スケールが熱間成形時には剥離し難く、ホットスタンプ成形後のスケール除去処理時には剥離しやすいというメリットもある。しかし、Cr含有量が1.0%を超えると上記の効果は飽和し、コストの増加を引き起こす。従って、Crを含有させる場合、Cr含有量は1.0%以下とする。Cr含有量は0.8%以下であることが好ましい。上記の効果を得るためには、Cr含有量は0.01%以上であることが好ましく、0.05%以上であることがより好ましい。
Ni:0~2.0%
 Niは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して得ることを可能にする元素であるため、含有させてもよい。しかし、Ni含有量が2.0%を超えると、上記の効果が飽和してコストが増加する。従って、Niを含有させる場合、Ni含有量は2.0%以下とする。上記の効果を得るためには、Ni含有量を0.1%以上とすることが好ましい。
Cu:0~1.0%
 Cuは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して得ることを可能にする元素であるため、含有させてもよい。また、Cuは、腐食環境において鋼板1の耐孔食性を向上させる元素でもある。Cu含有量が1.0%を超えると、上記の効果が飽和してコストが増加する。従って、Cuを含有させる場合、Cu含有量は1.0%以下とする。上記の効果を得るためには、Cu含有量を0.1%以上とすることが好ましい。
V:0~1.0%
 Vは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して得ることを可能にする元素であるため、含有させてもよい。しかし、V含有量が1.0%を超えると、上記の効果が飽和してコストが増加する。従って、Vを含有させる場合、V含有量は1.0%以下とする。上記の効果を得るためには、V含有量を0.1%以上とすることが好ましい。
Nb:0~1.0%
 Nbは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して得ることを可能にする元素であるため、含有させてもよい。しかし、Nb含有量が1.0%を超えると、上記の効果が飽和してコストが増加する。従って、Nbを含有させる場合、Nb含有量は1.0%以下とする。上記の効果を得るためには、Nbを0.01%以上とすることが好ましい。
Sn:0~1.0%
 Snは、腐食環境において鋼板1の耐孔食性を向上させるため、含有させてもよい。しかし、Sn含有量が1.0%を超えると粒界強度が低下し、靭性が劣化する。従って、Snを含有させる場合、Sn含有量は1.0%以下とする。上記の効果を得るためには、Sn含有量を0.01%以上とすることが好ましい。
Mo:0~1.0%
 Moは、鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Mo含有量が1.0%を超えると、上記の効果が飽和してコストが増加する。従って、Moを含有させる場合、Mo含有量は1.0%以下とする。上記の効果を得るためには、Mo含有量を0.1%以上とすることが好ましい。
W:0~1.0%
 Wは鋼の焼入れ性を高め、かつ焼入れ後のホットスタンプ部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。また、腐食環境において鋼板1の耐孔食性を向上させる元素でもある。しかし、W含有量が1.0%を超えると、上記の効果が飽和してコストが増加する。従って、Wを含有させる場合、W含有量は1.0%以下とする。上記の効果を得るためには、W含有量を0.01%以上とすることが好ましい。
Ca:0~0.01%
 Caは、鋼中の介在物を微細化し、焼入れ後の靱性および延性を向上させる効果を有する元素であるため、含有させてもよい。しかし、Ca含有量が0.01%を超えると、上記の効果が飽和して、コストが増加する。従って、Caを含有する場合、Ca含有量は0.01%以下とする。Ca含有量は0.004%以下であることが好ましい。上記の効果を確実に得るためには、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
REM:0~0.3%
 REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の靱性および延性を向上させる効果を有する元素であるため、含有させてもよい。しかし、REM含有量が0.3%を超えると、上記の効果は飽和して、コストが増加する。従って、REMを含有させる場合、REM含有量は0.3%以下とする。REM含有量は0.2%以下であることが好ましい。上記の効果を確実に得るためには、REM含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、前記REMの含有量はこれらの元素の含有量の合計を意味する。REMは、例えばFe-Si-REM合金を使用して溶鋼に添加され、この合金には、例えば、Ce、La、Nd、Prが含まれる。
 なお、本実施形態に係る鋼板1は、上述の元素以外にも、製造工程などで混入される不純物を含んでもよい。前記の化学成分を有する鋼板1に後述するめっき層2と表面皮膜層3とを形成した場合、ホットスタンプ法による加熱・焼入れにより、約1000MPa以上の引張強度を実現することができる。
 本実施形態に係る鋼板1の板厚については特に限定されないが、0.6~2.5mmとすることが好ましい。
(めっき層2)
 本実施形態に係るめっき層2は、上述した鋼板1の片面又は両面に形成される。本実施形態に係るめっき層2は、Alを含有する。本実施形態において、Alを含有するめっき層とは、質量%で60%以上のAlを含有するめっき層を意味する。めっき層2におけるAl以外の元素としては、Si、FeおよびZnがそれぞれ0.1~20%、0.1~10%、0.1~40%程度含まれていてもよい。Si、FeおよびZnのそれぞれの含有量の下限は0%であるが、その下限を前記のとおり0.1%としてもよい。特にSiは、AlとFeの合金層(Al-Fe合金層)の成長を抑制することにより、めっき層2の摺動性を向上させる効果がある。Feは機器等(例えば溶融めっき法の場合、めっき液が含まれるステンレス製容器等)に含まれるFeがめっき層2に混入することが考えられる。Znは、めっき層2の電位を低下させることで地鉄の露出した部位における耐食性を向上させる効果がある。めっき層2の残部は0.5%未満の不純物からなる。不純物として、Cu、Na、K、Co等が挙げられる。なお、ここで各元素の含有量は、めっき層2のすべての箇所において、上記範囲内にある必要はなく、めっき層2全体の平均的な化学組成が、上記範囲内にあればよい。このため、溶融めっき法で製造する場合、めっき浴の化学組成を上記範囲内とすることで、めっき層2全体の平均的な化学組成を上記範囲内とすることができる。
 めっき層2の厚みtは、10~60μmとする。めっき層2の厚みtを10μm以上とすることで、ホットスタンプ部材の耐食性を向上することができる。また、めっき層の厚みtを60μm以下とすることで、Al-Fe金属間化合物層が最表層または最表層近くまで形成されるので、ホットスタンプ部材の耐食性が向上する。めっき層2の厚みtは、13μm以上又は15μm以上とすることが好ましい。また、めっき層2の厚みtは、55μm以下、50μm以下又は45μm以下とすることが好ましい。
 めっき層2の厚みtは、例えば試料を断面からFE-EPMA(電界放出型電子線マイクロアナライザ)で定量分析することにより測定できる。
 本実施形態では、めっき鋼板10の端部から幅方向に10mm以上離れた部分、具体的には例えば15mm離れた箇所から10mm×10mmの大きさの試料を切り出す。その試料を樹脂に埋め込み、研磨することにより埋込研磨試料を得る。通電しやすいよう埋込研磨試料に炭素を蒸着した上で、FE-EPMAを用いて加速電圧10kV、倍率1500倍以上で点分析することで各元素の含有量を定量分析する。質量炭素を除く元素の合計に占めるAl含有量が、30質量%以上となる層をめっき層2とする。めっき表面から板厚中心に向かって鋼板と垂直に1μmごとに点分析し、Al含有量が30質量%未満となった点をめっき層2ではないと判断する。そして、Al含有量が30質量%以上である点の集合をめっき層2とし、めっき層2の厚みtを求める。
 めっき層2と表面皮膜層3との界面から厚みtの2/3倍の位置(2t/3位置)までの厚さ範囲において、めっき層2の平均結晶粒径は、2t/3(μm)以下、かつ15.0μm以下である。この厚さ範囲において、めっき層2の平均結晶粒径を2t/3(μm)以下、かつ15.0μm以下とすることで、結晶粒界の面積が大きくなり、ホットスタンプ加熱時に大気等の雰囲気ガスとの界面積が大きくなる。これにより、りん酸亜鉛結晶の析出量が多くなる。すなわち、いわゆる化成処理性が高められる。また、これにより、化成処理後に電着塗装される電着塗膜の密着性が向上する。電着塗膜の密着性が高まることで、ホットスタンプ部材の塗装後耐食性が向上する。
 ホットスタンプ後には、上述の通り、塗装後耐食性が向上するが、ホットスタンプしない場合でも、上記厚さ範囲において、めっき層2の平均結晶粒径が2t/3(μm)以下、かつ15.0μm以下であることで、粒界が多くなり、表面の酸化膜層も凹凸が多くなるために、化成処理した後の電着塗膜との物理的・化学的結合が強固になるものと推察される。その結果、塗装後耐食性が向上する。
 めっき層2の平均結晶粒径は、以下の方法により求めることができる。
 ホットスタンプ用めっき鋼板10から、めっき層2の厚み方向断面が観察面となるように試料を採取する。採取した試料を、3%硝酸アルコール液(ナイタール液)でエッチングすることで結晶粒界を現出させ、走査型電子顕微鏡(SEM)を用いてめっき層2と表面皮膜層3との界面から鋼板1までが含まれるように画像を撮像する。この写真に対し、図2に示すように、めっき層2と表面皮膜層(不図示)との界面から厚み方向に長さ2t/3(t=めっき層の厚み(μm))の線分を引いて、粒界との交点の数をnとし、線分長(2t/3)をnで除した値、すなわち(2t/3n)を平均結晶粒径とする。このような線分を図2中(a)、(b)、(c)のように、任意の位置に5μm間隔で3本引き、それぞれの線分の位置で平均結晶粒径を求め、それらを平均した値を、めっき層2と表面皮膜層3との界面から厚みtの2/3倍の位置(2t/3位置)までの厚さ範囲における、めっき層2の平均結晶粒径とする。
 nが0の場合は、2t/3nを計算できない。しかし、nが0の場合は、観察画像において粒径が2t/3よりも大きい場合であるので、平均結晶粒径は2t/3以下ではないと判断する。
 また、交点の数nの算出においては、JIS G 0551:2013の付属書C.2.2に記載されるように、線分が3重点と交わる場合、その点ではnを1.5とする。
 本実施形態に係るめっき層2は、例えば溶融めっき法により鋼板1の表面に形成されてもよい。溶融めっき法における金属被覆時や熱間プレスにおける加熱時などにおいて、めっき層2の少なくとも一部は、鋼板1中のFeと合金化し得る。そのため、本実施形態に係るめっき層2は、必ずしも一定の化学成分を有する単一の層であるとは限らず、適宜、合金化した層を含んでも良い。
 本実施形態に係るめっき層2には、Ca、Mg、SrおよびTiのうちの1種または2種以上の元素が含まれることが好ましい。めっき層2中に上記元素が含まれると、ホットスタンプ後(ホットスタンプ部材)の塗装後耐食性がより向上する。詳細なメカニズムは明らかではないが、上記元素は腐食試験過程で生成する腐食生成物に対する防食効果を有するため、水や酸素、塩分等の腐食因子がめっき層2へ到達することを遅らせることができるものと考えられる。
 ホットスタンプ後(ホットスタンプ部材)の塗装後耐食性を向上させるために、Ca、Mg、SrおよびTiの含有量の合計が、めっき層2全体に対し、質量%で、0.01~20%であることが好ましい。上記元素の含有量の合計は、めっき層2全体に対し0.03~10%であることがより好ましい。その上限を6.0%、4.0%又は2.0%してもよく、その下限を0.05%、0.08%又は0.10%としてもよい。
 本実施形態に係るめっき層2は、例えば溶融めっき層の形態である。
(めっき層2の分析方法)
 本実施形態においてめっき層2の成分は、以下の方法により分析する。
 本実施形態に係るめっき鋼板10は、めっき層2上に後述する表面皮膜層3が形成されているため、まず表面皮膜層3を除去する。具体的には、研磨により表面皮膜層3を除去すればよい。表面に露出しためっき層2に対して、JIS G 3314:2011の附属書JBに記載のオフライン蛍光X線法により、めっき層2の成分を分析する。
(表面皮膜層3)
 本実施形態に係る表面皮膜層3は、上述しためっき層2の表面に上層として形成される、後述するA群元素を含有する層である。本実施形態に係る表面皮膜層3の形態としては、塗膜、さらには粉体塗装による膜(粉体焼き付け層)等の形態が代表的であるが、これらの形態に限定されるものではない。
 表面皮膜層3は、A群元素(Sc、V、Mn、Fe、Co、Ce、Nb、Mo、W)から選ばれた1種又は2種以上の元素を含む粒子を含有する。この粒子は、A群元素の単体を主体とする粒子の状態、あるいは、A群元素の化合物(例えば酸化物)を主体とする粒子の状態で表面皮膜層3中に存在する。本実施形態における「主体とする」とは、粒子が生成される際に含まれる不純物等も含んでよいものとする。粒子の構造は表面皮膜層3の製造方法により異なる。その詳細な構成については説明の便宜上、後述する。
 表面皮膜層3中のA群元素は、次のi~vの態様で含まれる。
i:A群元素の単体の1種を主体とする粒子の態様。
ii:A群元素の単体の1種を主体とする粒子およびA群元素の単体の別の1種を主体とする粒子の態様。
iii:A群元素の化合物の1種を主体とする粒子の態様。
iv:A群元素の化合物の1種を主体とする粒子およびA群元素の化合物の別の1種を主体とする粒子の態様。
v:A群元素の単体を主体とする粒子(1種以上)およびA群元素の化合物を主体とする粒子(1種以上)の態様。
 表面皮膜層3が塗膜である場合、表面皮膜層3における「粒子」は、A群元素の単体を主体とする粒子および/またはA群元素の化合物を主体とする粒子として存在する。このような表面皮膜層3はたとえば、有機性のバインダに上述の粒子を混合した塗料をめっき層2上に塗布し、必要に応じて加熱により塗布された塗膜を乾燥させることで製造される。有機性のバインダを特に限定する必要はなく、公知の有機性バインダなどを使用できる。
 表面皮膜層3が粉体焼き付けにより製造されたものである場合、表面皮膜層3における「粒子」とは、粉体粒子を示す。このような表面皮膜層3は例えば、有機性のバインダに上述の粉体粒子を混合した塗料をめっき層2上に塗布および焼き付けすることで製造される。
 表面皮膜層3にA群元素の単体および/または化合物を主体とする粒子を含む場合、ホットスタンプ後に、表面皮膜層3と雰囲気との界面において、水分あるいは酸素との反応により、表面皮膜層3にA群元素の酸化物が形成される。A群元素のように+1以上の安定な価数を複数種(例えば+3価と+6価等)取り得る元素の場合、酸化物内での電子の偏り(極性)が高くなる。このような表面皮膜層3上に同じく極性の比較的高い化成処理液中の成分、例えばりん酸亜鉛を付着させれば、酸化物とりん酸亜鉛との相互作用が強くなることで、化成処理性が向上する。また、化成処理性が高くなれば、化成処理皮膜と電着塗膜との密着性が高くなり、塗装後耐食性が向上する。A群元素の単体および化合物は、腐食環境において、腐食促進因子である水や塩水に溶解後、難溶性化合物を形成することによって塗装後耐食性を高める効果も期待される。
 また、表面皮膜層3には、A群元素の単体および/または化合物が、これらを主体とする粒子の状態で存在するため、A群元素の単体および/または化合物の粒子が存在しない表面皮膜層と比べ、表面皮膜層3の表面積が大きくなる。表面皮膜層3の表面積が大きくなると、ホットスタンプの際、加熱に要する時間が長くなる。また、表面積の大きい表面皮膜層3にA群元素が含まれているため、表面積の小さい(先述の粒子が存在しない)表面皮膜層と比べ、水分あるいは酸素が存在する雰囲気との距離が近いA群元素の量が多くなる。これにより、ホットスタンプ後に表面皮膜層3の表面にA群元素が濃化し易くなる。すると、ホットスタンプ後の化成処理の際、例えばりん酸処理の際に、表面皮膜層3の表面にりん酸亜鉛が付着しやすくなり、化成処理性が向上する。これにより、ホットスタンプ用めっき鋼板10の塗装後密着性が向上する。
 本実施形態に係る表面皮膜層3の1mあたりにおけるA群元素の含有量の合計は、表面皮膜層3の1mあたりにおける各A群元素の含有量の合計で0.01~10.0g/mである。各A群元素の含有量の合計とは、表面皮膜層3の1mあたりに含まれる全ての種類のA群元素の質量を合計した量を意味する。
 例えば、表面皮膜層3が、A群元素としてScのみを含む粒子を含む場合は以下のようにA群元素の含有量を算出する。表面皮膜層3が、A群元素であるScの単体を主体とする粒子を含む場合、または表面皮膜層3がA群元素であるScの化合物である塩化スカンジウムを主体とする粒子を含む場合、いずれの場合においても、表面皮膜層3の1mあたりにおけるA群元素の含有量は、表面皮膜層3中の1mあたりのScの含有量である。なお、上述の「主体とする」とは、粒子の製造時に混入される、A群元素以外の不純物が含有されていてもよいことを示す。このため、「Scの単体を主体とする粒子」とは、Scの単体と、A群元素を含有しない不純物とからなる粒子を示す。上記例では、表面皮膜層3が、A群元素としてScのみを含む粒子を含む場合を例として挙げたが、これら粒子が他のA群元素も含む場合は、表面皮膜層3における各A群元素の1mあたりに含まれる重量を計算し、それらを合計した量を表面皮膜層3中のA群元素の1mあたりにおける含有量とする。
 例えば、表面皮膜層3が、A群元素としてScを含む粒子およびVを含む粒子を含む場合は、以下のように表面皮膜層3の1mあたりにおけるA群元素の含有量を算出する。表面皮膜層3が、A群元素であるScの単体を主体とする粒子と、A群元素であるVの化合物である塩化バナジウムを主体とする粒子とを含む場合、表面皮膜層3の1mあたりにおけるA群元素の含有量は、表面皮膜層3の1mあたりに含まれるScとVとの合計量である。
 表面皮膜層3におけるA群元素の含有量の合計が0.01g/m未満となると、ホットスタンプ後の表面皮膜層3の表面に十分な量のA群元素の酸化物が形成されず、化成処理性が不十分となる。このため、表面皮膜層3におけるA群元素の含有量の合計が0.01g/m未満の場合は、めっき鋼板10に化成処理を行っても表面皮膜層3の表面に十分な量の化成処理皮膜が形成されない。このため、電着塗膜は化成処理皮膜3と十分な密着性を保つことができなくなり、塗装後耐食性が劣位となる。よって、表面皮膜層3におけるA群元素の含有量の合計は化成処理性を保つ観点から0.01g/m以上とするが、塗装後耐食性向上の観点からは、0.1g/m以上、0.2g/m以上又は0.4g/m以上であることが特に好ましい。
 一方、表面皮膜層3におけるA群元素の含有量の合計が10.0g/m超となると、塗装後耐食性が飽和してコスト増加の原因となる。このため、本実施形態の表面皮膜層3におけるA群元素の含有量の合計は10.0g/m以下とする。なお、A群元素の添加量と効果とを勘案すると、費用対効果の面からその含有量の合計は6.0g/m以下、3.0g/m以下又は2.0g/m以下が好ましい。
 本実施形態に係る表面皮膜層3中のA群元素を含む粒子の平均粒径は0.05~3.0μmである。A群元素を含む粒子の平均粒径が上記範囲内であることにより、表面皮膜層3の耐食性を保ったまま化成処理性を向上させることができる。
 A群元素を含む粒子の平均粒径が3.0μm超であると、A群元素の単体を主体とする粒子および/またはA群元素の化合物を主体とする粒子の体積当たりの表面積が小さいため、表面皮膜層3の表層の表面積が不十分となる。このため、ホットスタンプ後に表面皮膜層3の表面に形成されるA群元素の酸化物量が不十分となってしまい、めっき鋼板10の化成処理性が向上しない。その結果、所望の塗装後耐食性が得られない。表面皮膜層3の表面積向上による化成処理性の向上の観点から、A群元素を含む粒子の平均粒径は、2.0μm以下、1.5μm以下、1.1μm以下又は0.7μm以下であることが好ましく、0.5μm以下であることが特に好ましい。一方、平均粒径が0.05μm未満であると、A群元素の単体を主体とする粒子および/またはA群元素の化合物間を主体とする粒子の表面積が大きくなり過ぎて、それらが腐食環境において水や塩分の侵入経路となる。このために所望の塗装後耐食性が得られない。このため、A群元素を含む粒子の平均粒径は、0.05μm以上とする。必要に応じて、0.07μm以上、0.1μm以上又は0.2μm以上としてもよい。
 A群元素のうちSc、Mn、Fe、Co、Nb、MoおよびWは塗装後耐食性に特に優れる。そのメカニズムは詳細には明らかではないが、これらの元素は、化成処理性を向上させる作用を奏するだけでなく、腐食環境において、腐食因子である水に溶解した際、めっき層2への吸着作用に優れるために、上述した式(1)~式(3)の反応が起きるのを防ぐという、腐食抑制作用を奏するためと推測される。このため、A群元素を、Sc、Mn,Fe、Co、Nb及びWだけとしてもよい。必要に応じ、これらの元素の中の特定の元素だけを、A群元素としてもよい。
 A群元素の化合物の例としては、酸化物、塩化物、硫化物、フッ化物、水酸化物、炭化物、窒化物、等が挙げられる。具体的には、酸化スカンジウム、臭化スカンジウム、塩化スカンジウム、フッ化スカンジウム、水酸化スカンジウム、炭化ケイ素、塩化チタン、チタン酸バリウム、バナジルアセチルアセトナート、バナジウムアセチルアセトネート、酢酸バナジル、硫酸バナジル、五酸化バナジウム、三酸化バナジウム、二酸化バナジウム、メタバナジン酸アンモニウム、メタバナジン酸ソーダ、メタバナジン酸カリウム、過マンガン酸カリウム、過マンガン酸アンモニウム、酸化鉄、硝酸鉄、硫酸鉄、水酸化鉄、塩化コバルト、酢酸コバルト、酸化コバルト、酸化セリウム、塩化セリウム、硝酸セリウム、硫酸セリウム、酢酸セリウム、シュウ酸セリウム、水酸化セリウム、酸化ニオブ、ニオブ酸カリウム、ニオブ酸リチウム、窒化ニオブ、酸化モリブデン、モリブデン酸アンモニウム、モリブデン酸カリウム、酸化タングステン、タングステン酸アンモニウム、タングステン酸カリウム、硫化タングステンや上記化合物の水和物等が挙げられるが、これらに限定されるものではない。
 表面皮膜層3中には酸素が含まれることが好ましいため、A群元素を含む粒子は、少なくとも一部が酸素原子(O)を含むことが好ましい。表面皮膜層3中のA群元素を含む粒子が酸素原子を含有する場合、すなわち、表面皮膜層3がA群元素の酸化物を主体とする粒子を含む場合、めっき鋼板10の化成処理性がより一層向上する。なお、本実施形態において、A群元素を含む粒子の少なくとも一部が酸素を含有するとは、表面皮膜層3中の全てのA群元素を含む粒子に対して30%以上のA群元素を含む粒子が酸素原子を含有することを示す。
 A群元素を含む粒子の少なくとも一部が酸素原子を含有する場合に、化成処理性がより一層向上することの詳細なメカニズムについては不明な点があるが、本発明者らは、以下のように推測している。
 A群元素の化合物(酸化物)を主体とする粒子が、電気陰性度が比較的高い酸素原子を含有することによって、粒子中の化合物内で電子の偏りがより高くなる(極性が高くなる)。粒子中の化合物内で電子の偏りがより高くなると、化成処理液中の主成分で同じく極性の高い成分、例えばりん酸亜鉛とA群元素の化合物との親和性が高くなることで、化成処理性が向上する。また、化成処理性の向上により、塗膜の密着性が向上する効果も期待される。さらに、A群元素を含む粒子の少なくとも一部が酸素原子を含有する場合、酸素原子が化成処理液に溶解する時に塩基性を示す。このため、表面皮膜層3表面付近の化成処理液のpHが上がり、表面皮膜層3表面へのりん酸亜鉛等の成分の析出が促進される。これにより表面皮膜層3の化成処理性を向上させる効果が発現する。また、A群元素を含む粒子が硫黄や窒素などの酸素以外の原子を含有する場合に、上記酸素以外の原子がホットスタンプ時の加熱により酸化されると、揮発性ガスが発生して設備を汚染させたり作業環境を低下させることが懸念される。しかし、A群元素を含む粒子が酸素原子を含有する場合には、ホットスタンプ時の加熱で揮発するガスの量は極めて少ない。
 本実施形態に係る表面皮膜層3は、前記A群元素の単体および/または化合物を主体とする粒子に加えて、さらに、Zn、ZrおよびTiからなるB群元素の1種または2種以上を含む粒子を含有することにより、ホットスタンプ後の塗装後耐食性を、より向上させることができる。これは、上記B群元素が、ホットスタンプ後の部材が腐食環境に曝された際に、その化合物が水や酸素、塩分等の腐食因子に対してバリア機能を発現し、腐食に対する抵抗となるからである。なお、本実施形態においてB群元素を含む粒子は、B群元素の化合物を主体とする状態で表面皮膜層3中に存在する。
 本実施形態に係る表面皮膜層3では、Zn、ZrおよびTiからなるB群元素の含有量の合計が0.01~10.0g/mであることが好ましい。B群元素の含有量の合計とは、表面皮膜層3の1mあたりに含まれる全ての種類のB群元素の質量を合計した量を意味する。
 例えば、表面皮膜層3が、B群元素としてZnのみを含む粒子を含む場合は、以下のようにB群元素の含有量の合計を算出する。表面皮膜層3がB群元素であるZnの化合物である酸化亜鉛を主体とする粒子を含む場合、表面皮膜層3におけるB群元素の含有量の合計は、表面皮膜層3中のZnの含有量である。
 また、表面皮膜層3がB群元素としてZnを含む粒子およびZrを含む粒子を含む場合は、以下のように表面皮膜層3におけるB群元素の含有量の合計を算出する。表面皮膜層3がB群元素であるZnの化合物である酸化亜鉛を主体とする粒子と、B群元素であるZrの化合物である炭酸ジルコニウムアンモニウムを主体とする粒子とを含む場合、B群元素の含有量の合計は、表面皮膜層3中のZnの含有量とZrの含有量との合計である。
 B群元素の含有量の合計を上記範囲内とすることにより、ホットスタンプ後の塗装後耐食性を、より向上させることができる。B群元素の含有量の合計の下限は、より好ましくは0.03g/m、0.05g/m又は0.1g/mであり、さらに好ましくは0.2g/mである。B群元素の含有量の合計の上限は、より好ましくは3.0g/m、2.0g/m又は1.0g/mであり、さらに好ましくは0.8g/m又は0.7g/mである。
 B群元素(Zn、Zr、Ti)の化合物としては、酸化物、臭化物、塩化物、硫化物、フッ化物、水酸化物、炭化物、窒化物等が挙げられる。具体的には、酸化亜鉛、塩化亜鉛、硫化亜鉛、フッ化亜鉛、りん酸亜鉛、りん酸水素二亜鉛水酸化亜鉛、酸化ジルコニウム、フッ化ジルコニウム、ヘキサフルオロジルコニウム酸アンモニウム(六フッ化ジルコン酸アンモニウム)、炭酸ジルコニウムアンモニウム、酸化チタン、フルオロチタン酸、ヘキサフルオロチタン酸アンモニウム等が挙げられるが、これらに限定されるものではない。
 A群元素の単体を主体とする粒子および/またはA群元素の化合物を主体とする粒子に加えてB群元素の化合物を主体とする粒子を含有する場合の表面皮膜層3の形態は、塗膜、あるいは粉体塗装による膜(粉体焼き付け層)等の形態が代表的であるが、これらの形態に限定されるものではない。
 B群元素を含む表面皮膜層3が塗膜の場合、表面皮膜層3は、A群元素の単体および/または化合物を主体とする粒子とB群元素の化合物を主体とする粒子とを含む塗膜である。この塗膜には、A群元素の単体および/または化合物を主体とする粒子とB群元素の化合物を主体とする粒子との他に、有機性のバインダを含んでもよい。
 表面皮膜層3が粉体焼き付け層の場合、表面皮膜層3は、A群元素の単体および/または化合物を主体とする粒子とB群元素の化合物を主体とする粒子とを含む粉体焼き付け層である。この場合も、粉体焼き付け層に有機性のバインダを含んでもよい。
 本実施形態に係る表面皮膜層3の膜厚は特に限定されないが、0.1~2.5μmとすることが好ましい。その膜厚の下限を0.3μm、0.5μm又は0.8μmとしてもよく、その上限を2.2μm、1.8μm又は1.5μmとしてもよい。
(表面皮膜層3の分析方法)
 表面皮膜層3が塗膜もしくは粉体焼き付け層である場合、JIS G 3314:2011の附属書JBに記載のオフライン蛍光X線法により、表面皮膜層3におけるA群元素(もしくはA群元素およびB群元素)の含有量(各元素の合計量)を測定することができる。具体的には、直径30mmの視野内でオフライン蛍光X線法の強度を計測する。次いで、その強度と、予め作成した各A群元素および/または各B群元素の検量線を用いて1mあたりに含まれる各A群元素および/または各B群元素の質量を算出する。これらの各A群元素および/または各B群元素の質量を合計することにより、表面皮膜層3の1mあたりのA群元素および/またはB群元素の含有量を求めることができる。
 表面皮膜層3中のA群元素の単体および/または化合物を主体とする粒子の平均粒径は、以下の方法により測定する。
 めっき鋼板10の端から幅方向に10mm以上離れた部分、具体的には例えば15mm離れた箇所から、20mm×20mmの大きさの試料を切り出し、その試料表面を観察面とする。電解放射型走査電子顕微鏡(FE-SEM)を用いて、加速電圧15kV、倍率10000倍で、100μm×100μmの観察視野を5視野以上観察する。外付けのエネルギー分散型分析装置(EDX)を用いて、観察視野内の粒子を分析することで、その粒子がA群元素の単体/または化合物を主体とする粒子であるか否かを判断する。上記観察視野を撮影した観察写真を用いて、JIS G 0551:2013の附属書Cに記載の円形試験線による切断法により、A群元素の単体および/または化合物を主体とする粒子の粒径を求める。上記観察写真における全てのA群元素の単体/または化合物を主体とする粒子の粒径の平均を算出することで、表面皮膜層3中のA群元素の単体および/または化合物を主体とする粒子の平均粒径を得る。
 なお、本実施形態において、表面皮膜層3中のA群元素を含む粒子(A群元素の単体および/または化合物を主体とする粒子)は、単一の結晶核の成長によって生成した粒子である一次粒子として存在する場合と、一次粒子同士が凝集して二次粒子として存在する場合とがある。そのため、本実施形態におけるA群元素を含む粒子の平均粒径は、一次粒子のみで存在する場合には粒子一つの粒径(一次粒径)を測定し、二次粒子として存在する場合は二次粒子の粒径(二次粒径)を測定することで得る。
 走査型電子顕微鏡像で撮影した断面像の100μm×100μmの観察視野において、各粒子(A群元素の単体/または化合物を主体とする粒子)の長径および短径の平均値を視野内のすべての粒子について算出し、それらの平均値を算出することによって平均粒径を求める。
 一次粒子と二次粒子との区別は、例えば走査型電子顕微鏡像から、粒子中で境界(明度の差)の存在有無から判断するか、透過型電子顕微鏡の電子回折像で測定した際に、結晶方位が同一方位のもの同士であれば一次粒子とみなし、異なっていれば互いに異なる一次粒子と判断することができる。
(ホットスタンプ部材)
 上述したホットスタンプ用めっき鋼板10に、ホットスタンプ法による加熱および焼入れを行うことにより、約1000MPa以上の引張強度を有するホットスタンプ部材を得ることができる。また、ホットスタンプ法においては、高温で軟化した状態でプレス加工を行うことができるので、容易に成形することができる。
 本実施形態に係るホットスタンプ用めっき鋼板10は、最表層側の表面皮膜層3にA群元素を含有しているため、ホットスタンプ後に、表面皮膜層3と雰囲気との界面において、水分あるいは酸素との反応により、表面皮膜層3にA群元素を含む酸化膜層が形成される。この酸化膜層は、Sc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素と、Alと、酸素とを含む。つまり、本実施形態に係るホットスタンプ部材は、表面にSc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素と、Alと、酸素とを含む酸化膜層を有する。ホットスタンプ部材は、自動車の製造工程の中で、部材表面(表面皮膜層3の上)に、りん酸亜鉛皮膜で代表される化成処理皮膜、その上層に電着塗膜、場合によってはさらに上層に塗膜を積層される。A群元素では、酸化物内での電子の偏り(極性)が高くなる。このような表面皮膜層3上に同じく極性の比較的高い化成処理液中の成分、例えばりん酸亜鉛を付着させれば、酸化物とりん酸亜鉛との相互作用が強くなることで、化成処理性が向上する。また、化成処理性が高くなると、化成処理皮膜と電着塗膜との密着性が高くなり、塗装後耐食性が向上する。A群元素の単体および化合物は、腐食環境において、腐食促進因子である水や塩水に溶解後、難溶性化合物を形成することによって塗装後耐食性を高める効果も期待される。
(ホットスタンプ用めっき鋼板10の製造方法)
 本実施形態に係るめっき鋼板10の製造方法を以下に説明する。
 所定の化学成分を有する鋼板1を用いて、例えば溶融めっき法により、鋼板1の片面又は両面にめっき層2を形成する。めっき浴温は550~700℃とすればよい。
 上記の方法により鋼板1の片面又は両面にめっきを塗布した直後に、めっき層2の表面に粒子を吹き付ける。めっき層2が凝固する前に粒子を吹き付けることによってめっき層の金属結晶の成長が阻害され、めっき層2中の金属結晶粒子の粒径を小さくすることができる。このようにめっき層2中の金属結晶粒子の粒径が小さくなることにより、そのめっき層2上に表面皮膜層3を形成すると、めっき層2の結晶粒子の大きさに影響されて、めっき層2との界面における表面皮膜層3の結晶粒子が小さくなる。これにより、界面上に形成される表面皮膜層3の結晶粒子も成長が阻害され、それに伴い表面皮膜層3中の粒子(A群元素の単体および/または化合物)の粒径を小さくすることができ、表面皮膜層3の表面積を大きくすることができる。表面皮膜層3の表面積が大きくなると、ホットスタンプ後の化成処理の際、化成処理性が向上することで、塗装後密着性が向上する。
 めっき層2表面への粒子の吹き付けは、平均粒径20μm以下の金属酸化物(酸化チタン、酸化マグネシウム、酸化バナジウム、酸化クロム、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ジルコニウム、二酸化ケイ素、酸化亜鉛、酸化鉄、酸化アルミニウム)を、冷却ガスとともに秒速30~70mで吹き付けることが好ましい。吹き付けられた粒子は、結晶の核となるのと同時に溶融状態のめっき金属を冷却する効果を有する。めっき層中の平均結晶粒径を小さく制御することで、結晶粒界を多くすることができる。その結果、ホットスタンプ加熱後も粒界が多くなり、表層の酸化膜層も凹凸が多くなるために、化成処理した後の電着塗膜との物理的・化学的結合が強固になるものと推察される。粒子の吹き付け速度が30m/s未満の場合、結晶の核の数が少なくなる。その結果、ホットスタンプ後においても結晶粒径が大きくなって、電着塗膜との物理的・化学的結合を確保できず、塗料密着性、塗装後耐食性が劣る。一方、粒子の吹き付け速度が70m/s超であると、粒子の吹き付けにより結晶の数が多くなり過ぎて、結晶が小さくなり過ぎるために、上層皮膜を付与し、化成処理、電着塗膜を付与しても、腐食試験液等への溶解速度が相対的に速くなるために、塗料密着性、塗装後耐食性に劣る。なお、めっき層2表面に均一に粒子を吹き付けるために、スプレーノズルを使用することが望ましいが、これに限定されない。
 溶融めっきの代わりに、鋼板1の表面に蒸着や溶射によってAl及びA群元素を付着させることで、A群元素を含むAl被覆層を形成し、更に、このAl被覆層を有する鋼板をホットスタンプすることで、本実施形態に係るホットスタンプ部材を製造してもよい。
 また、Al被覆層を形成する方法の一例として、蒸着や溶射によって、鋼板1に対して先にAlを付着させ、ついで、A群元素を付着させてもよい。これにより、Al層とA群元素とからなるAl被覆層が形成される。
 また、Al被覆層を形成する方法の別の例として、A群元素を含ませた蒸着源または溶射源を用いて蒸着又は溶射を行って、Al及びA群元素を同時に鋼板1に付着させてもよい。Al被覆層におけるA群元素の割合は、0.001%~30質量%であることが好ましい。
 その後、ホットスタンプ用めっき鋼板10の場合と同様に、Al被覆層を有する鋼板にホットスタンプを施すことで、ホットスタンプ用めっき鋼板から、ホットスタンプ部材を製造できる。
 表面皮膜層3の形成方法は、特に限定されないが、例えば以下の方法により表面皮膜層3を形成することができる。
・A群元素の単体および/または化合物を主体とする粒子(または、それに加えてB群元素の化合物を主体とする粒子)を含有する溶液、あるいは懸濁液をめっき層2の表面に塗布し、必要に応じ乾燥処理を行い、塗膜として表面皮膜層3を形成する方法。ここで、溶液または懸濁液は、有機性のバインダーを含むことが好ましい。
・めっき層2を形成した鋼板1に、A群元素の単体および/または化合物を主体とする粒子(または、それ加えてB群元素の化合物を主体とする粒子)の粉末を用いて、粉体塗装により粉体焼き付け層として表面皮膜層3を形成する方法。
 A群元素の単体および/または化合物を主体とする粒子(または、それに加えてB群元素の化合物を主体とする粒子)を含有する溶液あるいは懸濁液には、必要に応じて所定の有機性のバインダを混合してもよい。有機性バインダとしては、例えば、ポリウレタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、シランカップリング剤等が挙げられる。これらの有機性バインダの大部分はホットスタンプ加熱工程で消失する。
(ホットスタンプ部材の製造方法)
 以上のようにして製造されたホットスタンプ用めっき鋼板10に対して、ホットスタンプを実施する。ホットスタンプ法では、ホットスタンプ用めっき鋼板10を必要に応じてブランキング(打ち抜き加工)した後、ホットスタンプ用めっき鋼板10を加熱して軟化させる。そして、軟化したホットスタンプ用めっき鋼板10をプレス加工して成形し、その後、冷却(焼入れ)される。加熱及び焼入れされたホットスタンプ部材は、約1000MPa以上の高い引張強度が得られる。加熱方法としては、通常の電気炉、ラジアントチューブ炉に加え、赤外線加熱等を採用することが可能である。
 ホットスタンプ時の加熱温度と加熱時間とは、大気雰囲気の場合、850~950℃で2分以上とすることが好ましい。加熱時間が2分より短いと、ホットスタンプ部品の引張強度が十分高くならない。
 加熱時間の上限を限定する必要はないが、10分以下であることが好ましい。10分より長いと生産性が低くなり、経済的に不利となるためである。
 めっき層中の平均結晶粒径を小さく制御することで、結晶粒界を多くすることができる。その結果、ホットスタンプ加熱後も粒界が多くなり、上層皮膜も粒界あるいは凹凸が多くなるために、化成処理した後の電着塗膜との物理的・化学的結合が強固になるものと推察される。
 以下に本発明の実施例について説明するが、実施例での条件は本発明の実施可能性及び効果を確認するために採用した例に過ぎず、本発明はこの条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 本実施例のホットスタンプ用鋼鈑に使用した鋼鈑の化学成分を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の鋼板に対し、溶融めっき法により鋼板の片面又は両面にめっき層を形成した。溶融めっきの際のめっき浴温は550~700℃とし、めっき浴に鋼板を浸漬させた後、スプレーノズルを用いて、めっき層の表面に平均粒径1~10μmの金属酸化物(酸化アルミニウム)を、表2-1~3-7に示す条件で吹き付けた。ただし、表2-3の符号a1、a4およびa5については、吹き付けを行わなかった。吹き付けについて表中には、吹き付けを行った例を「有」と記載し、吹き付けを行わなかった例を「無」と記載した。
 その後、めっきの付着量が片面あたり80g/mとなるように、ガスワイピング法でめっきの付着量を調整した。このとき、めっき層の厚さは表2-1~3-7に示す通りであった。さらに、表2-1~3-8に示すように、A群元素の単体および/または化合物を主体とする粒子を含む表面皮膜層、もしくはこれらを含まない表面皮膜層、さらにA群元素の単体および/または化合物を主体とする粒子並びにB群元素の化合物を主体とする粒子を含む表面皮膜層をめっき層上に形成することで、めっき鋼板を得た。また、一部については、めっき層の組成を変化させた。
 A群元素の単体を主体とする粒子を含む例(符号A1~A7)は、A群元素の単体を主体とする粒子及び有機性バインダを水に分散あるいは溶解させた塗料をロールコーターで塗布した後、到達板温80℃で乾燥させることにより、表面皮膜層を形成した。
 A群元素の化合物を主体とする粒子、もしくはA群元素の化合物を主体とする粒子およびB群元素の化合物を主体とする粒子を含む例(符号A8~A51、符号a4、a6、a8およびa10~12、符号B1~B85)は、A群元素の塩化物、酸化物等の化合物及び有機性バインダを水に分散あるいは溶解した塗料をロールコーターで塗布した後、到達板温80℃で乾燥させることにより、表面皮膜層を形成した。
 A群元素の単体を主体とする粒子およびB群元素の化合物を主体とする粒子を含む例(符号B86~B112)は、A群元素の単体を主体とする粒子およびB群元素の塩化物、酸化物等の化合物及び有機性バインダを水に分散あるいは溶解した塗料をロールコーターで塗布した後、到達板温80℃で乾燥させることにより、表面皮膜層を形成した。
 A群元素を含む粒子を含有しない例(符号a1~a3、a7およびa9)は、酸化アルミニウム及び有機性バインダを水に分散あるいは溶解した塗料をロールコーターで塗布した後、到達板温80℃で乾燥させることにより、表面皮膜層を形成した。表2-2の符号A52およびA53は、A群元素を含む粒子及び有機性バインダを含有する粉体粒子を混合した塗料をめっき層上に吹き付けた後200℃まで加熱させることにより、表面皮膜層を形成した。
 表2-1~2-2において、符号A1~A7は、A群元素の単体を主体とする粒子を含む表面皮膜層を形成した発明例であり、符号A8~A15は、A群元素の化合物を主体とする粒子を含むが、この粒子が酸素を含まない表面皮膜層を形成した発明例であり、符号A16~A47は、A群元素および酸素を含む化合物を主体とする粒子で表面皮膜層を形成した発明例であり、符号A48~A51は、A群元素を主体とする粒子(単体および/または化合物を主体とする粒子)の2種以上を含む表面皮膜層を形成した発明例である。符号A52およびA53は、有機性バインダ及び酸化モリブデンまたは酸化タングステンを含む粉体粒子を含む表面皮膜層を形成した発明例である。
 なお、A群元素の単体および/または化合物を主体とする粒子の2種以上を含む表面皮膜層を形成した例(符号A48~A51)については、各単体もしくは各化合物に、(1)、(2)…の番号を付し、それぞれの元素などを表中に記載した。
 表2-3の符号a1~a3、a7およびa9は、A群元素の単体および/または化合物を主体とする粒子を含まない表面皮膜層を形成した比較例であり、符号a4、a11およびa12は、A群元素の含有量(元素換算の合計量)が不足した比較例であり、符号a5は表面皮膜層を積層しなかった比較例であり、符号a6およびa8は、めっき層の厚みが小さかった比較例であり、符号a10は、めっき層における平均結晶粒径が大きかった比較例である。
 表3-1~3-8の符号B1~B112は、A群元素の単体および/または化合物を主体とする粒子並びにB群元素の化合物を主体とする粒子の1種以上を含む表面皮膜層を形成した発明例である。なお、B群元素の化合物を主体とする粒子を2種以上含む例(符号B41~B85およびB95~B112)については、各化合物に、(1)、(2)…の番号を付し、それぞれの化合物を構成する元素などを表中に記載した。
 表4の符号C1~C24は、めっき組成を変化させた発明例である。
 表2-1~表4に記載のめっき鋼板の分析結果は、それぞれ以下の方法により得た。
(表面皮膜層の分析方法)
 JIS G 3314:2011の附属書JBに記載のオフライン蛍光X線法により、表面皮膜層におけるA群元素(もしくはA群元素およびB群元素)の含有量(元素換算の合計量)を測定した。まず、既知の酸化物皮膜の蛍光X線強度と、その含有量との関係を検量線として予め作成した。この検量線においては蛍光X線強度と含有量は1対1に対応しているため、蛍光X線強度が定まれば含有量が特定される。次いで、直径30mmの試料にX線を照射したときに放出されるA群元素および/またはB群元素の蛍光X線の強度を測定した。先述した検量線から、この蛍光X線の強度に対応する含有量を計算することにより、各A群元素および/または各B群元素の含有量(g/m)を算出し、各A群元素および/または各B群元素の含有量(g/m)の合計量を算出することで、A群元素および/またはB群元素の含有量を得た。このようにして得られたA群元素(もしくはA群元素およびB群元素)の含有量を表中に示す。なお、表面皮膜層中のA群元素を含む粒子のうち、30%以上が酸素原子を含有した場合、「酸素原子含有」の欄に「有」と記載した。
 めっき鋼板10の端部から10mm以上離れた部分から20mm×20mmの大きさの試料を切り出し、その試料表面を観察面とした。電解放射型走査型電子顕微鏡(FE-SEM)を用いて、100μm×100μmの観察視野を5視野観察した。FE-SEMに外付けされたエネルギー分散型分析装置(EDX)を用いて、観察視野内の粒子を分析し、その粒子がA群元素の単体/または化合物を主体とする粒子であるか否かを判断した。その粒子が主体とする元素を表中の「元素」の欄に記載した。また、その粒子が主体とする元素が単体の状態で含まれた場合は表中の「単体または化合物」の欄に「単体」と記載し、その元素が化合物の状態で含まれた場合はその欄に化合物の種類を記載した。
 走査型電子顕微鏡像で撮影した断面像の100μm×1005μmの観察視野において、各粒子(A群元素の単体/または化合物を主体とする粒子)の長径および短径の平均値を視野内のすべての粒子について算出し、それらの平均値を算出することによって表面皮膜層中のA群元素の単体および/または化合物を主体とする粒子の平均粒径を求めた。得られたA群元素の単体および/または化合物を主体とする粒子の平均粒径を表中に示す。
 一次粒子と二次粒子とは、走査型電子顕微鏡像から、粒子中で境界(明度の差)の存在有無から判断した。
(めっき層の分析方法)
 研磨により、めっき層上の表面皮膜層を除去した。表面に露出しためっき層に対して、JIS G 3314:2011の附属書JBに記載のオフライン蛍光X線法により、めっき層の成分を分析した。得られためっき層の成分(めっき組成)を表中に示す。めっき層の化学成分の残部は、0.5%未満の不純物であった。例えば、表中に、めっき層の化学成分(めっき組成)について「Al-10%Si」と記載されている例は、めっき層が、Alと、10%のSiと、0.5%未満の不純物とからなることを示す。
(めっき層の厚みtの測定方法)
 めっき層の厚みtは、断面からFE-EPMA(電界放出型電子線マイクロアナライザ)で定量分析することにより測定した。試料をめっき鋼板10の端部から幅方向に15mm離れた箇所から10mm×10mmの大きさの試料を切り出した。その試料を樹脂に埋め込み、研磨することにより埋込研磨試料を得た。通電しやすいよう埋込試料に炭素を蒸着した上で、FE-EPMA倍率を用いて加速電圧10kV、倍率1500倍以上で点分析することで各元素の含有量を定量分析した。質量炭素を除く元素の合計に占めるAl含有量が30質量%となる点をめっき層とする。めっき表面から板厚中心に向かって鋼板と垂直に1μmごとに点分析し、Al含有量が30質量%未満となった点をめっき層ではないと判断する。そして、Al含有量が30質量%以上である点の集合をめっき層とし、めっき層の厚みtを測定した。得られためっき層の厚みtは、表中の「めっき厚」の表中の欄に記載した。
(めっき層の平均結晶粒径の測定方法)
 ホットスタンプ用めっき鋼板から、めっき層の厚み方向断面が観察面となるように試料を採取した。採取した試料を、3%硝酸アルコール液(ナイタール液)でエッチングすることで結晶粒界を現出させ、走査型電子顕微鏡(SEM)を用いてめっき層の最表面から鋼板までが含まれるように画像を撮像した。このとき、EDX(エネルギー分散型X線分析)により、Al含有量が60質量%以上である層をめっき層と判断した。この写真に対し、図2に示すように、めっき層2と表面皮膜層(不図示)との界面から厚み方向に長さ2t/3(t=めっき層の厚み(μm))の線分を引いて、粒界との交点の数をnとし、線分長(2t/3)をnで除した値、すなわち(2t/3n)を平均結晶粒径とした。このような線分を図2中(a)、(b)、(c)のように、任意の位置に5μm間隔で3本引き、それぞれの線分の位置で平均結晶粒径を求め、それらを平均値した値を、めっき層と表面皮膜層との界面から厚みtの2/3倍の位置(2t/3位置)までの厚さ範囲における、めっき層の平均結晶粒径とした。
 nが0の場合は、2t/3nを計算できない。しかし、nが0の場合は、観察画像において粒径が2t/3よりも大きい場合であるので、平均結晶粒径は2t/3以下ではないと判断した。
 また、交点の数nの算出においては、JIS G 0551:2013の付属書C.2.2に記載されるように、線分が3重点と交わる場合、その点ではnを1.5とした。
 表2-1~表4に記載のめっき鋼板を940℃で6分間加熱した後、金型で成形すると同時にその金型で冷却し、ホットスタンプ部材を得た。加熱は、露点40℃の湿潤雰囲気で行った。
 得られたホットスタンプ部材について、下記の方法により、化成処理性および塗装後耐食性を調べ、評価した。なお、実施例のホットスタンプ部材は、表面にSc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素と、Alと、酸素とを含む酸化膜層を有していた。
(1)化成処理性
 ホットスタンプ部材を150mm×70mmに切断し、日本パーカライジング社製の化成処理液(PB-SX35)で試験片を化成処理した後、りん酸亜鉛含有量を蛍光X線分析装置により測定した。測定して得られたりん酸亜鉛含有量に応じて、以下の評点X1~X4で化成処理性を評価した。化成処理性の評点がX1、X2、又はX3の場合を、化成処理性に優れるとして合格と判定した。化成処理性の評点がX4の場合を、化成処理性に劣るとして不合格と判定した。
[りん酸亜鉛含有量による化成処理性評点]
 X1:0.7g/m以上
 X2:0.3g/m以上、0.7g/m未満
 X3:0.1g/m以上、0.3g/m未満
 X4:0.1g/m未満
(2)塗装後耐食性
 ホットスタンプ部材を150mm×70mmに切断し、日本パーカライジング社製の化成処理液(PB-SX35)で試験片を化成処理した後、日本ペイント(株)社製電着塗料(パワーニックス110)を塗膜厚が20μmとなるように塗装して、170℃で焼き付けた。日本工業規格JIS H 8502に規定する方法に準拠して、試験片の塗装後耐食性を調べた。具体的には、各試料にりん酸化成処理、カチオン電着塗装(厚さ20ミクロン)を行った後、塗膜にカッターで疵を入れ、2時間の5%塩水噴霧、4時間の乾燥、2時間の湿潤環境を1サイクルとする中性塩水噴霧サイクル試験法による腐食試験の180サイクル後のカット疵からの塗膜膨れの幅(片側最大値)を測定した。その測定結果に応じて、以下の評点Y1~Y4で塗装後耐食性を評価した。塗装後耐食性の評点がY1、Y2またはY3の場合を、塗装後耐食性に優れるとして合格と判定した。塗装後耐食性の評点がY4の場合を、塗装後耐食性に劣るとして不合格と判定した。
[塗装後耐食性評点]
 Y1:膨れ幅0mm以上、1mm未満
 Y2:膨れ幅1mm以上、2mm未満
 Y3:膨れ幅2mm以上、3mm未満
 Y4:膨れ幅3mm以上
 以上の方法により評価した化成処理性および塗装後耐食性の評価結果を、表中に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表2-1~2-2に示すように、表面皮膜層のA群元素の単体および/または化合物を主体とする粒子の平均粒径およびA群元素の含有量が本発明の範囲内である発明例A1~A53は、優れた化成処理性および塗装後耐食性を有する。
 一方、表2-3の比較例a1~a12は、いずれも化成処理性および塗装後耐食性が劣った。なお、符号a1で、めっき層と表面皮膜層との界面から厚みtの2/3倍まで厚さ範囲のめっき層の平均結晶粒径が「-」となったのは、2t/3よりも大きかったことを意味する。
 比較例a1~a3はいずれも、A群元素に属さないAlの化合物によって表面皮膜層を形成したため、化成処理性および塗装後耐食性が劣った。
 比較例a4、a11およびa12は、A群元素に属するMoの化合物によって表面皮膜層を形成したが、Moの含有量の合計が過少であったため、化成処理性および塗装後耐食性が劣った。
 比較例a5は、表面皮膜層にA群元素がないため、化成処理性および塗装後耐食性が劣った。
 比較例a7およびa9は、A群元素に属さないCrの化合物によって表面皮膜層を形成したため、化成処理性および塗装後耐食性が劣った。
 比較例a6およびa9は、めっき層の厚みが小さかったため、化成処理性および塗装後耐食性が劣った。
 比較例a10は、めっき層における平均結晶粒径が大きかったため、化成処理性および塗装後耐食性が劣った。
 表3-1~3-8に示すように、表面皮膜層が、A群元素の単体および/または化合物を主体とする粒子と、B群元素の化合物を主体とする粒子とを含有する場合には、表面皮膜層がA群元素の単体および/または化合物を主体とする粒子のみを含有する場合に比べて、化成処理性及び塗装後耐食性について同等以上の優れた結果を示した。
 表4に示すように、めっき層にCa、Mg、Sr、Tiのいずれかを加えた発明例C1~C24は、めっき層にこれらの元素を加えなかった場合に比べて、化成処理性および塗装後耐食性に優れることが確認された。
 以上、本発明の好ましい実施形態および実施例について説明したが、これらの実施形態、実施例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。
 1  鋼板
 2  めっき層
 3  表面皮膜層
 10 ホットスタンプ用めっき鋼板

Claims (5)

  1.  鋼板と、
     前記鋼板の片面又は両面に形成され、Al含有量が60質量%以上であるめっき層と、
     前記めっき層上に形成された表面皮膜層とからなり、
     前記めっき層の厚みtが10~60μmであり、
     前記めっき層と前記表面皮膜層との界面から前記厚みtの2/3倍の位置までの厚さ範囲における前記めっき層の平均結晶粒径が、2t/3以下であり、且つ、15.0μm以下であり、
     前記表面皮膜層が、Sc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素を含む粒子を含有し、
     前記表面皮膜層における前記A群元素の含有量の合計が0.01~10.0g/mであり、
     前記A群元素を含む前記粒子の平均粒径が0.05~3.0μmである
    ことを特徴とするホットスタンプ用めっき鋼板。
  2.  前記A群元素を含む前記粒子の少なくとも一部が、Oを含有することを特徴とする請求項1に記載のホットスタンプ用めっき鋼板。
  3.  前記表面皮膜層が、さらに、Zn、ZrおよびTiからなるB群元素から選ばれる1種または2種以上を含む粒子を含有し、
     前記表面皮膜層における前記B群元素の含有量の合計が0.01~10.0g/mであることを特徴とする請求項1又は2に記載のホットスタンプ用めっき鋼板。
  4.  前記めっき層におけるCa、Mg、SrおよびTiの含有量の合計が、前記めっき層全体に対し、質量%で、0.01~20%であるすることを特徴とする請求項1~3のいずれか一項に記載のホットスタンプ用めっき鋼板。
  5.  請求項1~4に記載のホットスタンプ用めっき鋼板をホットスタンプして得られるホットスタンプ部材であって、
     表面にSc、V、Mn、Fe、Co、Ce、Nb、MoおよびWからなるA群元素から選ばれる1種又は2種以上の元素と、Alと、酸素とを含む酸化膜層を有することを特徴とするホットスタンプ部材。
PCT/JP2019/046720 2019-11-29 2019-11-29 ホットスタンプ用めっき鋼板およびホットスタンプ部材 WO2021106178A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2019/046720 WO2021106178A1 (ja) 2019-11-29 2019-11-29 ホットスタンプ用めっき鋼板およびホットスタンプ部材
EP19953893.5A EP4067528A1 (en) 2019-11-29 2019-11-29 Plated steel sheet for hot stamping and hot-stamped member
CN201980102409.5A CN114729438B (zh) 2019-11-29 2019-11-29 热冲压用镀覆钢板及热冲压构件
MX2022005665A MX2022005665A (es) 2019-11-29 2019-11-29 Lamina de acero enchapada para estampado en caliente y miembro estampado en caliente.
JP2020527979A JP6806289B1 (ja) 2019-11-29 2019-11-29 ホットスタンプ用めっき鋼板
US17/768,161 US20240091842A1 (en) 2019-11-29 2019-11-29 Plated steel sheet for hot stamping and hot-stamped member
KR1020227015790A KR102679515B1 (ko) 2019-11-29 2019-11-29 핫 스탬프용 도금 강판 및 핫 스탬프 부재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046720 WO2021106178A1 (ja) 2019-11-29 2019-11-29 ホットスタンプ用めっき鋼板およびホットスタンプ部材

Publications (1)

Publication Number Publication Date
WO2021106178A1 true WO2021106178A1 (ja) 2021-06-03

Family

ID=73992982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046720 WO2021106178A1 (ja) 2019-11-29 2019-11-29 ホットスタンプ用めっき鋼板およびホットスタンプ部材

Country Status (7)

Country Link
US (1) US20240091842A1 (ja)
EP (1) EP4067528A1 (ja)
JP (1) JP6806289B1 (ja)
KR (1) KR102679515B1 (ja)
CN (1) CN114729438B (ja)
MX (1) MX2022005665A (ja)
WO (1) WO2021106178A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135982A1 (ja) * 2022-01-13 2023-07-20 日本製鉄株式会社 めっき鋼板
WO2023135981A1 (ja) * 2022-01-13 2023-07-20 日本製鉄株式会社 ホットスタンプ成形品
WO2024048504A1 (ja) * 2022-08-29 2024-03-07 日本製鉄株式会社 ホットスタンプ用アルミニウムめっき鋼板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117965968B (zh) * 2024-01-15 2024-09-20 重庆赛力斯新能源汽车设计院有限公司 一种压铸铝合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034845A (ja) 2001-06-25 2003-02-07 Nippon Steel Corp 耐食性,耐熱性に優れたホットプレス用アルミ系めっき鋼板およびそれを使用した自動車用部材
JP2005238286A (ja) * 2004-02-26 2005-09-08 Nippon Steel Corp Al系めっき鋼板を使用した高強度自動車部材の熱間プレス方法
JP2009293078A (ja) 2008-06-05 2009-12-17 Nippon Steel Corp 塗装後耐食性に優れた自動車部材及び熱間プレス用Alめっき鋼板
JP2013221202A (ja) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI123645B (fi) * 2010-04-20 2013-08-30 Beneq Oy Aerosoliavusteinen kaasukasvatusjärjestelmä
DE102011001140A1 (de) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
BR112013025401B1 (pt) * 2011-04-01 2020-05-12 Nippon Steel Corporation Peça estampada a quente de alta resistência e método de produção da mesma
CN105121691B (zh) * 2013-04-18 2018-01-26 新日铁住金株式会社 热压用镀覆钢板、镀覆钢板的热压方法及汽车零件
KR102297297B1 (ko) * 2016-12-23 2021-09-03 주식회사 포스코 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
RU2019125494A (ru) * 2017-03-27 2021-04-28 Ниппон Стил Корпорейшн Алюминированный стальной лист
KR102518795B1 (ko) * 2018-11-30 2023-04-10 닛폰세이테츠 가부시키가이샤 알루미늄 도금 강판, 핫 스탬프 부재 및 핫 스탬프 부재의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034845A (ja) 2001-06-25 2003-02-07 Nippon Steel Corp 耐食性,耐熱性に優れたホットプレス用アルミ系めっき鋼板およびそれを使用した自動車用部材
JP2005238286A (ja) * 2004-02-26 2005-09-08 Nippon Steel Corp Al系めっき鋼板を使用した高強度自動車部材の熱間プレス方法
JP2009293078A (ja) 2008-06-05 2009-12-17 Nippon Steel Corp 塗装後耐食性に優れた自動車部材及び熱間プレス用Alめっき鋼板
JP2013221202A (ja) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135982A1 (ja) * 2022-01-13 2023-07-20 日本製鉄株式会社 めっき鋼板
WO2023135981A1 (ja) * 2022-01-13 2023-07-20 日本製鉄株式会社 ホットスタンプ成形品
WO2024048504A1 (ja) * 2022-08-29 2024-03-07 日本製鉄株式会社 ホットスタンプ用アルミニウムめっき鋼板
JP7553876B2 (ja) 2022-08-29 2024-09-19 日本製鉄株式会社 ホットスタンプ用アルミニウムめっき鋼板

Also Published As

Publication number Publication date
JPWO2021106178A1 (ja) 2021-12-02
JP6806289B1 (ja) 2021-01-06
CN114729438B (zh) 2024-04-09
EP4067528A4 (en) 2022-10-05
CN114729438A (zh) 2022-07-08
MX2022005665A (es) 2022-06-09
KR20220078691A (ko) 2022-06-10
US20240091842A1 (en) 2024-03-21
EP4067528A1 (en) 2022-10-05
KR102679515B1 (ko) 2024-07-01

Similar Documents

Publication Publication Date Title
KR101974182B1 (ko) 열간 프레스용 도금 강판 및 도금 강판의 열간 프레스 방법
JP6806289B1 (ja) ホットスタンプ用めっき鋼板
JP6813133B2 (ja) アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法
TWI317383B (en) High-strength alloyed aluminum-system plated steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance
US20200189233A1 (en) Hot stamped member
WO2013157522A1 (ja) Al系めっき鋼板、Al系めっき鋼板の熱間プレス方法及び自動車部品
WO2014171417A1 (ja) 熱間プレス用めっき鋼板、めっき鋼板の熱間プレス方法及び自動車部品
JP6763477B2 (ja) Al系めっき鋼板
WO2011152381A1 (ja) 切断端面耐食性及び加工部耐食性に優れた溶融アルミニウム合金めっき鋼材とその製造方法
WO2022039275A1 (ja) ホットスタンプ部品
JP7453583B2 (ja) Alめっきホットスタンプ鋼材
JP2020125510A (ja) 突合せ溶接用アルミニウムめっき鋼板、突合せ溶接部材及び熱間プレス成形品
KR101621631B1 (ko) 도장 후 내식성이 우수한 합금화 용융 아연 도금 강판
JP2011219823A (ja) 有機複合Mg系めっき鋼板
JPWO2019186891A1 (ja) 亜鉛系めっき鋼板および熱処理鋼材
JP7440771B2 (ja) ホットスタンプ成形体
WO2021019829A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
EP3208362B1 (en) Plated steel sheet and fuel tank
WO2024195860A1 (ja) Sn-Zn系合金めっき鋼材、バッテリーケースおよび燃料タンク
WO2023074114A1 (ja) 熱間プレス部材
EP4206363A1 (en) Hot-pressed member and steel sheet for hot-pressing, and manufacturing method for hot-pressed member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020527979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768161

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20227015790

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019953893

Country of ref document: EP

Effective date: 20220629