WO2021100173A1 - ロウ付け装置及び熱交換器 - Google Patents
ロウ付け装置及び熱交換器 Download PDFInfo
- Publication number
- WO2021100173A1 WO2021100173A1 PCT/JP2019/045629 JP2019045629W WO2021100173A1 WO 2021100173 A1 WO2021100173 A1 WO 2021100173A1 JP 2019045629 W JP2019045629 W JP 2019045629W WO 2021100173 A1 WO2021100173 A1 WO 2021100173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brazing
- heating
- pipe
- shape measuring
- diameter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
Definitions
- the present invention relates to a brazing device and a heat exchanger provided with a shape measuring device.
- Patent Document 1 discloses a brazing device that uses a radiation thermometer to measure the timing of charging a brazing material into a brazing portion.
- the brazing device of Patent Document 1 measures the infrared rays emitted from the heated brazing portion by using a radiation thermometer, and measures the temperature of the brazing portion.
- the brazing device of Patent Document 1 attempts to measure an appropriate brazing timing by this.
- the brazing device disclosed in Patent Document 1 measures the temperature of the brazing portion using a radiation thermometer. Therefore, in the brazing device of Patent Document 1, for example, when a burner is used when heating the brazing portion, the radiation thermometer may measure the infrared rays of the flame emitted from the burner in contact with the brazing portion. There is. In this case, the radiation thermometer shows a temperature higher than the temperature of the brazed portion. As described above, the measurement result of the radiation thermometer is easily influenced by factors other than the temperature of the brazed portion. Therefore, in the brazing device of Patent Document 1, there is a possibility that an error may occur in the measurement result of the temperature of the brazing portion.
- the present invention has been made to solve the above problems, and provides a brazing device and a heat exchanger that accurately measure the temperature of a brazing portion.
- the brazing device receives a heating device that heats a brazed portion to which a metal pipe is brazed, a light projecting unit that projects light onto the brazing portion, and light projected from the light projecting unit.
- the pre-heating pipe diameter which is the pipe diameter of the metal pipe before the brazed part is heated
- the heating pipe diameter which is the pipe diameter of the metal pipe when the brazed part is heated.
- the calculation means calculates the heating temperature based on the difference between the diameter of the preheating pipe and the diameter of the heating pipe measured by the shape measuring device.
- the pipe diameter of the brazed portion is unlikely to change in the brazing operation except that the brazed portion is heated. Therefore, the amount of change in the pipe diameter of the brazed portion due to heating and the amount of increase in the temperature of the brazed portion have a high correlation. Therefore, the brazing device can accurately measure the temperature of the brazing portion based on the difference between the diameter of the brazing portion before heating and the diameter of the heating pipe.
- FIG. 1 It is a block diagram which shows the brazing apparatus 1 which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the shape measuring apparatus 12 which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the shape measuring apparatus 12 which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the shape measuring apparatus 12 which concerns on Embodiment 1.
- FIG. It is a functional block diagram which shows the control device 13 which concerns on Embodiment 1.
- FIG. It is a flowchart which shows the brazing procedure which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the shape measuring apparatus 212 of the brazing apparatus 201 which concerns on a comparative example.
- FIG. 1 is a configuration diagram showing a brazing device 1 according to the first embodiment.
- the brazing device 1 brazes the metal pipe 32 in the heat exchanger 2 having the heat exchanger main body 31 and the metal pipe 32.
- the heat exchanger main body 31 constitutes the frame of the heat exchanger 2.
- the heat exchanger main body 31 is placed on the carriage 4 when the metal pipe 32 is brazed.
- the metal pipe 32 is a pipe through which the refrigerant flows, and is made of copper, for example.
- the metal pipe 32 has a brazed portion 33.
- the brazing portion 33 is a portion where the brazing material 3 is charged and applied.
- the brazing device 1 includes a heating device 11, a shape measuring device 12, a control device 13, and a notification device 14.
- the brazing device 1 illustrates the case where the metal pipe 32 of the heat exchanger 2 is brazed, but the brazing device 1 is for brazing the heat exchanger main body 31. It may be the one that brazes the metal pipe of another device.
- the heating device 11 includes an arm 21 and a burner 22.
- the arm 21 is installed in a work place where a burner 22 is connected to the tip and brazing is performed.
- the arm 21 has a plurality of joint portions 28, and the angle of the burner 22 can be freely changed and fixed at an arbitrary angle.
- the arm 21 is not limited to the above mode.
- the brazing device 1 does not have to have the arm 21. In this case, the operator holds the burner 22 and brazes the brazing portion 33.
- the burner 22 injects a flame onto the brazed portion 33 of the metal pipe 32 to heat the brazed portion 33.
- the burner 22 can handle a brazed portion having a complicated shape while having a low equipment cost.
- the heating device 11 does not heat the brazing portion 33 by the burner 22, but may heat the brazing portion 33 by irradiating, for example, near infrared rays.
- the shape measuring device 12 includes a light emitting unit 23 and a light receiving unit 24, and the pre-heating pipe diameter, which is the pipe diameter of the metal pipe 32 before the brazing unit 33 is heated, and the brazing unit 33 are heated.
- the heating pipe diameter which is the pipe diameter of the metal pipe 32 at the time, is measured.
- the light projecting unit 23 projects light L onto the brazing unit 33.
- the light L projected by the light projecting unit 23 is, for example, laser light.
- the light receiving unit 24 is provided at a position away from the light projecting unit 23, and receives the light projected from the light projecting unit 23.
- FIG. 2 is a configuration diagram showing a shape measuring device 12 according to the first embodiment.
- a method of measuring the pipe diameter of the brazed portion 33 will be described with reference to FIG.
- the metal pipe 32 is arranged between the light emitting unit 23 and the light receiving unit 24.
- the light projecting unit 23 projects a band-shaped light L.
- the band-shaped light L projected from the light projecting unit 23 reaches the light receiving unit 24 after the LA is partially blocked by the metal pipe 32. That is, the light receiving unit 24 receives the other portion LB of the band-shaped light L projected from the light projecting unit 23 that is not blocked by the metal pipe 32.
- the light receiving unit 24 recognizes the portion where the light L is detected and the portion where the light L is not detected by the difference in luminous intensity, and extracts the position and contour of the brazing unit 33. Then, the shape measuring device 12 measures the pipe diameter based on the extracted contour. In this way, the shape measuring device 12 measures the diameter of the pre-heating pipe and the diameter of the heating pipe without contacting the metal pipe 32.
- FIG. 3 is a configuration diagram showing a shape measuring device 12 according to the first embodiment.
- FIG. 4 is a configuration diagram showing a shape measuring device 12 according to the first embodiment.
- the shape measuring device 12 rotates in the circumferential C direction of the metal pipe 32, and measures the pipe diameter of the brazed portion 33 from a plurality of positions of the metal pipe 32 in the circumferential C direction. Further, the shape measuring device 12 moves in parallel with the shaft A of the metal pipe 32, and measures the pipe diameter of the brazed portion 33 from a plurality of positions along the shaft A of the metal pipe 32.
- the pipe diameter of the brazing portion 33 may be measured from a plurality of positions by providing a plurality of shape measuring devices 12.
- FIG. 5 is a functional block diagram showing the control device 13 according to the first embodiment.
- the control device 13 calculates the heating temperature, which is the temperature during heating of the brazing portion 33, based on the difference between the pre-heating pipe diameter and the heating pipe diameter measured by the shape measuring device 12, and the heating temperature is defined as the threshold temperature.
- the heating device 11 is controlled so as to be.
- the control device 13 includes a calculation means 25, a control means 26, and a notification means 27.
- the calculation means 25, the control means 26, and the notification means 27 are made of an algorithm.
- the control device 13 is also referred to as a CPU (Central Processing Unit, central processing unit, processing device, arithmetic unit, microprocessor, microcomputer or processor) that executes a program stored in dedicated hardware or a storage device (not shown). ).
- the control device 13 is dedicated hardware, the control device 13 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applies to.
- Each of the functional units realized by the control device 13 may be realized by individual hardware, or each functional unit may be realized by one hardware.
- each function executed by the control device 13 is realized by software, firmware, or a combination of software and firmware.
- Software and firmware are written as programs and stored in a storage device (not shown).
- the CPU realizes each function by reading and executing the program stored in the storage device.
- the storage device is, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
- a part of the function of the control device 13 may be realized by dedicated hardware, and a part may be realized by software or firmware.
- the calculation means 25 calculates the heating temperature, which is the temperature during heating of the brazing portion 33, based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe measured by the shape measuring device 12. Generally, when the metal pipe 32 is heated, the diameter of the metal pipe 32 is increased due to thermal expansion. Further, the pipe diameter of the brazing portion 33 is unlikely to change in the brazing operation except that the brazing portion 33 is heated. Therefore, the heating temperature T2 is the pre-heating temperature T1 which is the temperature before heating of the brazing portion 33, the amount of dimensional change ⁇ D of the pipe diameter of the brazing portion 33 due to heating, the pre-heating pipe diameter D, and the coefficient of thermal expansion of the pipe material.
- the temperature T1 before heating may be the room temperature of the work space where brazing is performed. Further, the pre-heating temperature T1 may be the temperature of the brazing portion 33 or another portion of the heat exchanger 2. In this case, the preheating temperature T1 is measured by a thermocouple or a non-contact temperature sensor. When a plurality of pipe diameter values are measured by the shape measuring device 12, the calculation means 25 may calculate the heating temperature T2 using the minimum or maximum value of the pipe diameter, or use the average value. The heating temperature T2 may be calculated. Further, the coefficient of thermal expansion ⁇ of the pipe material uses data or the like published at the time of purchase of the metal pipe 32, and does not require measurement by an operator when brazing.
- the control means 26 controls the heating device 11 so that the heating temperature is within the threshold temperature range.
- the threshold temperature zone is a temperature zone suitable for brazing. That is, the threshold temperature zone is a temperature zone in which the brazing material 3 having a melting point lower than that of the brazing portion 33 melts, but the brazing portion 33 does not melt.
- the heating device 11 is a burner 22
- the heating temperature is adjusted by, for example, changing the gas injection amount of the burner 22 and the distance between the burner 22 and the brazing portion 33. Further, the fine arrangement of the heating device 11 and the like may be adjusted by the operator.
- the notification means 27 causes the notification device 14 to display that the heating temperature has reached the threshold temperature range.
- the notification means 27 may display the heating temperature itself on the notification device 14.
- the notification device 14 is, for example, a display.
- the notification device 14 displays that the heating temperature has reached the threshold temperature range, the heating temperature itself, or the like, and notifies the user. Further, the notification device 14 may display that the heating temperature has reached the threshold temperature range by emitting a voice or turning on the sound.
- FIG. 6 is a flowchart showing a brazing procedure according to the first embodiment.
- the brazing procedure will be described with reference to FIG.
- the heat exchanger main body 31 is set on the carriage 4 (step S1), and the carriage 4 is manually moved to the working position by a belt conveyor or a man (step S2).
- the metal pipe 32 is inserted into the heat exchanger main body 31, and the heat exchanger 2 is assembled (step S3).
- the shape measuring device 12 measures the diameter of the brazed portion 33 before heating (step S4).
- the heating device 11 adjusts the gas flow rate and position of the burner 22 (step S5), and heats the brazing portion 33 (step S6).
- the shape measuring device 12 measures the diameter of the heating pipe of the brazing portion 33 (step S7).
- the calculation means 25 calculates the heating temperature based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe (step S8).
- the notification means 27 notifies that the heating temperature has reached the threshold temperature range (step S10). After that, the burner 22 melts the brazing material 3 charged into the brazing portion 33, and the brazing portion 33 is joined (step S11). Finally, the burner 22 is retracted (step S12), and the brazing device 1 completes the brazing (step S13). If the heating temperature has not reached the threshold temperature range (NO in step S9), the control means 26 readjusts the gas flow rate and position of the burner 22 (step S5).
- Step S4 and S7 Operations other than the measurement of the pre-heating pipe diameter and the heating pipe diameter (steps S4 and S7), the calculation of the heating temperature (step S8), and the notification that the heating temperature has reached the threshold temperature range (step S10) are performed. It may be manual work by a person or a robot.
- the calculation means 25 calculates the heating temperature based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe measured by the shape measuring device 12.
- the pipe diameter of the brazing portion 33 is unlikely to change in the brazing operation except that the brazing portion 33 is heated. Therefore, the amount of change in the pipe diameter of the brazing portion 33 due to heating and the amount of increase in temperature of the brazing portion 33 have a high correlation. Therefore, the brazing device 1 can accurately measure the temperature of the brazing portion 33 based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe of the brazing portion 33.
- the pipe diameter of the brazing portion 33 is measured from a plurality of positions. Therefore, the calculation means 25 uses the value most suitable for the condition in which brazing is performed from the values of the plurality of pipe diameters in the calculation of the heating temperature. Therefore, the brazing device 1 can measure the temperature of the brazing unit 33 more accurately.
- the shape measuring device 12 rotates in the circumferential C direction of the metal pipe 32. Therefore, the pipe diameter of the brazed portion 33 is measured from a plurality of positions in the circumferential C direction of the metal pipe 32. That is, the calculation means 25 uses the value most suitable for the condition in which brazing is performed from the values of the plurality of pipe diameters in the calculation of the heating temperature. Therefore, the brazing device 1 can measure the temperature of the brazing unit 33 more accurately.
- the shape measuring device 12 moves in parallel with the axis of the metal pipe 32. Therefore, the pipe diameter of the brazed portion 33 is measured from a plurality of positions in the direction along the axis A of the metal pipe 32. That is, the calculation means 25 uses the value most suitable for the condition in which brazing is performed from the values of the plurality of pipe diameters in the calculation of the heating temperature. Therefore, the brazing device 1 can measure the temperature of the brazing unit 33 with higher accuracy.
- a plurality of shape measuring devices 12 may be provided.
- the pipe diameter of the brazed portion 33 is measured from a plurality of positions. That is, the calculation means 25 uses the value most suitable for the condition in which brazing is performed from the values of the plurality of pipe diameters in the calculation of the heating temperature. Therefore, the brazing device 1 can measure the temperature of the brazing unit 33 more accurately.
- FIG. 7 is a configuration diagram showing a shape measuring device 212 of the brazing device 201 according to the comparative example.
- the effect of the first embodiment will be described in detail by comparing with the comparative example of FIG.
- the shape measuring device 212 according to the comparative example is different from the first embodiment in that a radiation thermometer that detects infrared rays T emitted from the brazing unit 33 is used for measuring the temperature of the brazing unit 33. Therefore, the shape measuring device 212 according to the comparative example is affected by changes in emissivity due to the color, gloss, roughness, etc. of the tube material when measuring the heating temperature. Therefore, the shape measuring device 212 according to the comparative example needs to measure and set the emissivity even if the materials are the same. In addition, since there are many factors that affect the emissivity, there is a possibility that an error may occur in the measurement result of the heating temperature.
- the calculation means 25 calculates the heating temperature based on the difference between the pre-heating pipe diameter and the heating pipe diameter measured by the shape measuring device 12. Therefore, in the brazing device 1, only the coefficient of thermal expansion needs to be set from the data or the like published at the time of purchasing the metal pipe 32. Therefore, the procedure for measuring the heating temperature is simple. Further, the pipe diameter of the brazing portion 33 is unlikely to change in the brazing operation except that the brazing portion 33 is heated. Therefore, the amount of change in the pipe diameter of the brazing portion 33 due to heating and the amount of increase in temperature of the brazing portion 33 have a high correlation. Therefore, the brazing device 1 can accurately measure the temperature of the brazing portion 33 based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe of the brazing portion 33.
- FIG. 8 is a configuration diagram showing the shape measuring device 112 according to the second embodiment.
- the second embodiment is different from the first embodiment in that the light receiving unit 124 is provided integrally with the light emitting unit 123.
- the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
- the light receiving unit 124 is provided integrally with the light emitting unit 123.
- the light receiving unit 124 receives the light M2 reflected from the brazing unit 33 among the light M1 emitted from the light emitting unit 123.
- the shape measuring device 112 can measure the change in the pipe diameter of the brazing portion 33 from one direction. Therefore, even if the shape measuring device 112 has a portion where the brazing portion 33 overlaps when viewed from one direction, such as a U-shaped metal pipe, the shape measuring device 112 can accurately determine the pipe diameter when viewed from the other direction. Measure. Therefore, the brazing device 101 can accurately measure the temperature of the brazing portion 33 based on the difference between the diameter of the pre-heating pipe and the diameter of the heating pipe, even if the metal pipe 132 has a complicated shape.
- brazing device 1 brazing device, 2 heat exchanger, 3 brazing material, 4 trolley, 11 heating device, 12 shape measuring device, 13 control device, 14 notification device, 21 arm, 22 burner, 23 floodlight section, 24 light receiving section, 25 Calculation means, 26 control means, 27 notification means, 28 joints, 31 heat exchanger body, 32 metal pipes, 33 brazing parts, 101 brazing devices, 112 shape measuring devices, 123 light emitting parts, 124 light receiving parts, 201 Rowing device, 212 shape measuring device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
ロウ付け装置は、金属配管のロウ付けがされるロウ付け部を加熱する加熱装置と、ロウ付け部に光を投射する投光部と、投光部から投射された光を受ける受光部とを有し、ロウ付け部が加熱される前における金属配管の配管径である加熱前配管径と、ロウ付け部が加熱されている際における金属配管の配管径である加熱配管径とを測定する形状測定装置と、形状測定装置が測定した加熱前配管径と加熱配管径との差に基づき、ロウ付け部が加熱されている際の温度である加熱温度を算出し、加熱温度が閾値温度帯の範囲内となるように加熱装置を制御する制御装置と、を備える。
Description
本発明は、形状測定装置を備えるロウ付け装置及び熱交換器に関する。
従来、熱交換器の配管のロウ付けを行うロウ付け装置が知られている。このようなロウ付け装置には、ロウ材をロウ付け部に投入する適切なタイミングを計る方法として、種々の方法が採用されうる。特許文献1には、放射温度計を用いて、ロウ材をロウ付け部に投入するタイミングを計るロウ付け装置が開示されている。特許文献1のロウ付け装置は、放射温度計を用いることで、加熱されているロウ付け部から発せられる赤外線を測定し、ロウ付け部の温度を計測する。特許文献1のロウ付け装置は、これにより、適切なロウ付けのタイミングを計ろうとするものである。
しかしながら、特許文献1に開示されたロウ付け装置は、放射温度計を用いて、ロウ付け部の温度を計測する。このため、特許文献1のロウ付け装置において、例えば、ロウ付け部を加熱する際にバーナーが用いられた場合、放射温度計は、ロウ付け部に当たっているバーナーから発せられる火炎の赤外線を測定する虞がある。この場合、放射温度計は、ロウ付け部の温度よりも高温を示してしまう。このように、放射温度計は、ロウ付け部の温度以外の要素に計測結果が左右されやすい。したがって、特許文献1のロウ付け装置は、ロウ付け部の温度の計測結果に誤差が出てしまう虞がある。
本発明は、上記のような課題を解決するためになされたもので、ロウ付け部の温度を精度よく計測するロウ付け装置及び熱交換器を提供するものである。
本発明に係るロウ付け装置は、金属配管のロウ付けがされるロウ付け部を加熱する加熱装置と、ロウ付け部に光を投射する投光部と、投光部から投射された光を受ける受光部とを有し、ロウ付け部が加熱される前における金属配管の配管径である加熱前配管径と、ロウ付け部が加熱されている際における金属配管の配管径である加熱配管径とを測定する形状測定装置と、形状測定装置が測定した加熱前配管径と加熱配管径との差に基づき、ロウ付け部が加熱されている際の温度である加熱温度を算出し、加熱温度が閾値温度帯の範囲内となるように加熱装置を制御する制御装置と、を備える。
本発明によれば、算出手段は、形状測定装置が計測した加熱前配管径と加熱配管径との差に基づいて、加熱温度を算出する。ここで、ロウ付け部の配管径は、ロウ付け作業において、ロウ付け部が加熱されること以外によっては、変化しづらい。このため、加熱によるロウ付け部の配管径の変化量とロウ付け部の温度の上昇量とは、高い相関を有する。したがって、ロウ付け装置は、ロウ付け部の加熱前配管径と加熱配管径との差に基づいて、ロウ付け部の温度を精度よく計測することができる。
実施の形態1.
(ロウ付け装置1及び熱交換器2)
以下、実施の形態1に係るロウ付け装置1について、図面を参照しながら説明する。図1は、実施の形態1に係るロウ付け装置1を示す構成図である。図1に示すように、ロウ付け装置1は、熱交換器本体31及び金属配管32を有する熱交換器2において、金属配管32のロウ付けを行うものである。熱交換器本体31は、熱交換器2の枠体を構成するものである。熱交換器本体31は、金属配管32がロウ付けされる際に、台車4に載置される。金属配管32は、冷媒が流れる配管であり、例えば、銅製である。金属配管32は、ロウ付け部33を有する。ロウ付け部33は、ロウ材3が投入及び塗布される部分である。ロウ付け装置1は、加熱装置11、形状測定装置12、制御装置13及び報知装置14を有する。なお、本実施の形態1において、ロウ付け装置1は、熱交換器2の金属配管32のロウ付けを行う場合について例示をしているが、熱交換器本体31のロウ付けを行うものであってもよいし、他の機器の金属配管のロウ付けを行うものであってもよい。
(ロウ付け装置1及び熱交換器2)
以下、実施の形態1に係るロウ付け装置1について、図面を参照しながら説明する。図1は、実施の形態1に係るロウ付け装置1を示す構成図である。図1に示すように、ロウ付け装置1は、熱交換器本体31及び金属配管32を有する熱交換器2において、金属配管32のロウ付けを行うものである。熱交換器本体31は、熱交換器2の枠体を構成するものである。熱交換器本体31は、金属配管32がロウ付けされる際に、台車4に載置される。金属配管32は、冷媒が流れる配管であり、例えば、銅製である。金属配管32は、ロウ付け部33を有する。ロウ付け部33は、ロウ材3が投入及び塗布される部分である。ロウ付け装置1は、加熱装置11、形状測定装置12、制御装置13及び報知装置14を有する。なお、本実施の形態1において、ロウ付け装置1は、熱交換器2の金属配管32のロウ付けを行う場合について例示をしているが、熱交換器本体31のロウ付けを行うものであってもよいし、他の機器の金属配管のロウ付けを行うものであってもよい。
(加熱装置11)
加熱装置11は、アーム21及びバーナー22からなる。アーム21は、先端にバーナー22が接続され、ロウ付けが行われる作業場所に設置される。アーム21は、複数の関節部28を有しており、バーナー22の角度を自在に変更し、任意の角度で固定する。なお、アーム21は、上記の態様に限定されるものではない。また、ロウ付け装置1は、アーム21を有していなくてもよい。この場合、作業者がバーナー22を握持して、ロウ付け部33に対し、ロウ付けを行う。バーナー22は、金属配管32のロウ付け部33に対して、火炎を噴射し、ロウ付け部33を加熱するものである。バーナー22は、設備コストが安価でありながら、複雑な形状のロウ付け部に対応が可能である。なお、加熱装置11は、バーナー22によってロウ付け部33を加熱するものではなく、例えば、近赤外線を照射することによってロウ付け部33を加熱するものであってもよい。
加熱装置11は、アーム21及びバーナー22からなる。アーム21は、先端にバーナー22が接続され、ロウ付けが行われる作業場所に設置される。アーム21は、複数の関節部28を有しており、バーナー22の角度を自在に変更し、任意の角度で固定する。なお、アーム21は、上記の態様に限定されるものではない。また、ロウ付け装置1は、アーム21を有していなくてもよい。この場合、作業者がバーナー22を握持して、ロウ付け部33に対し、ロウ付けを行う。バーナー22は、金属配管32のロウ付け部33に対して、火炎を噴射し、ロウ付け部33を加熱するものである。バーナー22は、設備コストが安価でありながら、複雑な形状のロウ付け部に対応が可能である。なお、加熱装置11は、バーナー22によってロウ付け部33を加熱するものではなく、例えば、近赤外線を照射することによってロウ付け部33を加熱するものであってもよい。
(形状測定装置12)
形状測定装置12は、投光部23及び受光部24からなり、ロウ付け部33が加熱される前における金属配管32の配管径である加熱前配管径及び、ロウ付け部33が加熱されている際における金属配管32の配管径である加熱配管径を測定する。投光部23は、ロウ付け部33に光Lを投射するものである。投光部23が投射する光Lは、例えば、レーザー光である。受光部24は、投光部23と離れた位置に設けられ、投光部23から投射された光を受けるものである。
形状測定装置12は、投光部23及び受光部24からなり、ロウ付け部33が加熱される前における金属配管32の配管径である加熱前配管径及び、ロウ付け部33が加熱されている際における金属配管32の配管径である加熱配管径を測定する。投光部23は、ロウ付け部33に光Lを投射するものである。投光部23が投射する光Lは、例えば、レーザー光である。受光部24は、投光部23と離れた位置に設けられ、投光部23から投射された光を受けるものである。
図2は、実施の形態1に係る形状測定装置12を示す構成図である。ここで、ロウ付け部33の配管径の測定方法について、図2を用いて説明する。まず、金属配管32は、投光部23と受光部24との間に配置される。次に、投光部23は、帯状の光Lを投射する。そして、投光部23から投射された帯状の光Lは、金属配管32によって一部LAが遮られ、受光部24に届く。即ち、受光部24は、投光部23から投射された帯状の光Lのうち、金属配管32に遮られなかった他部LBを受ける。この際に、受光部24は、光Lを検知した部分と光Lを検知しなかった部分とを光度差によって認識し、ロウ付け部33の位置及び輪郭を抽出する。そして、形状測定装置12は、抽出された輪郭をもとに配管径を測定する。このように、形状測定装置12は、加熱前配管径及び加熱配管径の測定を金属配管32に接触せずに行う。
図3は、実施の形態1に係る形状測定装置12を示す構成図である。図4は、実施の形態1に係る形状測定装置12を示す構成図である。図3に示すように、形状測定装置12は、金属配管32の円周C方向に回転し、ロウ付け部33の配管径を金属配管32の円周C方向の複数の位置から測定する。また、形状測定装置12は、金属配管32の軸Aに並行して動き、ロウ付け部33の配管径を金属配管32の軸Aに沿った複数の位置から測定する。なお、ロウ付け部33の配管径は、図4に示すように、形状測定装置12が複数台設けられることで、複数の位置から測定されるようにしてもよい。
(制御装置13)
図5は、実施の形態1に係る制御装置13を示す機能ブロック図である。制御装置13は、形状測定装置12が計測した加熱前配管径と加熱配管径との差に基づき、前記ロウ付け部33の加熱中の温度である加熱温度を算出し、加熱温度が閾値温度となるように加熱装置11を制御する。図5に示すように、制御装置13は、算出手段25、制御手段26及び報知手段27を有する。算出手段25、制御手段26及び報知手段27は、アルゴリズムからなる。
図5は、実施の形態1に係る制御装置13を示す機能ブロック図である。制御装置13は、形状測定装置12が計測した加熱前配管径と加熱配管径との差に基づき、前記ロウ付け部33の加熱中の温度である加熱温度を算出し、加熱温度が閾値温度となるように加熱装置11を制御する。図5に示すように、制御装置13は、算出手段25、制御手段26及び報知手段27を有する。算出手段25、制御手段26及び報知手段27は、アルゴリズムからなる。
制御装置13は、専用のハードウェア又は記憶装置(図示せず)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ又はプロセッサともいう)で構成される。制御装置13が専用のハードウェアである場合、制御装置13は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。制御装置13が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
制御装置13がCPUの場合、制御装置13が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶装置(図示せず)に格納される。CPUは、記憶装置に格納されたプログラムを読み出して実行することにより、各機能を実現する。ここで、記憶装置は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリである。なお、制御装置13の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
(算出手段25)
算出手段25は、形状測定装置12が測定した加熱前配管径と加熱配管径との差に基づき、ロウ付け部33の加熱中の温度である加熱温度を算出する。概して、金属配管32は、加熱されることで、熱膨張により配管径が拡大する。また、ロウ付け部33の配管径は、ロウ付け作業において、ロウ付け部33が加熱されること以外によっては、変化しづらい。このため、加熱温度T2は、ロウ付け部33の加熱前の温度である加熱前温度T1、加熱によるロウ付け部33の配管径の寸法変化量ΔD、加熱前配管径D及び管材の熱膨張係数αとの間に成立する関係式T2=ΔD/(α×D)+T1から算出される。なお、加熱前温度T1は、ロウ付けを行う作業空間の室温であってもよい。また、加熱前温度T1は、ロウ付け部33又は熱交換器2の他の部分の温度であってもよい。この場合、加熱前温度T1は、熱電対又は非接触式の温度センサによって測定される。なお、形状測定装置12によって複数の配管径の値が測定された場合、算出手段25は、配管径の最小値又は最大値を用いて加熱温度T2を算出してもよいし、平均値を用いて加熱温度T2を算出してもよい。また、管材の熱膨張係数αは、金属配管32の購入時に公開されているデータ等が用いられ、ロウ付けを行う際に、作業者による計測を要しない。
算出手段25は、形状測定装置12が測定した加熱前配管径と加熱配管径との差に基づき、ロウ付け部33の加熱中の温度である加熱温度を算出する。概して、金属配管32は、加熱されることで、熱膨張により配管径が拡大する。また、ロウ付け部33の配管径は、ロウ付け作業において、ロウ付け部33が加熱されること以外によっては、変化しづらい。このため、加熱温度T2は、ロウ付け部33の加熱前の温度である加熱前温度T1、加熱によるロウ付け部33の配管径の寸法変化量ΔD、加熱前配管径D及び管材の熱膨張係数αとの間に成立する関係式T2=ΔD/(α×D)+T1から算出される。なお、加熱前温度T1は、ロウ付けを行う作業空間の室温であってもよい。また、加熱前温度T1は、ロウ付け部33又は熱交換器2の他の部分の温度であってもよい。この場合、加熱前温度T1は、熱電対又は非接触式の温度センサによって測定される。なお、形状測定装置12によって複数の配管径の値が測定された場合、算出手段25は、配管径の最小値又は最大値を用いて加熱温度T2を算出してもよいし、平均値を用いて加熱温度T2を算出してもよい。また、管材の熱膨張係数αは、金属配管32の購入時に公開されているデータ等が用いられ、ロウ付けを行う際に、作業者による計測を要しない。
(制御手段26)
制御手段26は、加熱温度が閾値温度帯の範囲内となるように加熱装置11を制御する。閾値温度帯は、ロウ付けに適した温度帯である。即ち、閾値温度帯は、ロウ付け部33より融点の低いロウ材3が溶融する一方で、ロウ付け部33が溶融しない温度帯である。加熱温度は、加熱装置11がバーナー22である場合、例えば、バーナー22のガス噴射量及びバーナー22とロウ付け部33との距離を変更することで調整される。また、加熱装置11の細かい配置等は、作業者によって調整されるようにしてもよい。
制御手段26は、加熱温度が閾値温度帯の範囲内となるように加熱装置11を制御する。閾値温度帯は、ロウ付けに適した温度帯である。即ち、閾値温度帯は、ロウ付け部33より融点の低いロウ材3が溶融する一方で、ロウ付け部33が溶融しない温度帯である。加熱温度は、加熱装置11がバーナー22である場合、例えば、バーナー22のガス噴射量及びバーナー22とロウ付け部33との距離を変更することで調整される。また、加熱装置11の細かい配置等は、作業者によって調整されるようにしてもよい。
(報知手段27)
報知手段27は、加熱温度が閾値温度帯に達したことを報知装置14に表示させる。なお、報知手段27は、加熱温度そのものを報知装置14に表示させてもよい。
報知手段27は、加熱温度が閾値温度帯に達したことを報知装置14に表示させる。なお、報知手段27は、加熱温度そのものを報知装置14に表示させてもよい。
(報知装置14)
報知装置14は、例えば、ディスプレイである。報知装置14は、加熱温度が閾値温度帯に達したこと又は加熱温度そのもの等を表示し、報知を行うものである。また、報知装置14は、音声を発したり、点灯したりすることで、加熱温度が閾値温度帯に達したことを表示するものであってもよい。
報知装置14は、例えば、ディスプレイである。報知装置14は、加熱温度が閾値温度帯に達したこと又は加熱温度そのもの等を表示し、報知を行うものである。また、報知装置14は、音声を発したり、点灯したりすることで、加熱温度が閾値温度帯に達したことを表示するものであってもよい。
(ロウ付けの手順)
図6は、実施の形態1に係るロウ付けの手順を示すフローチャートである。図6を用いて、ロウ付けの手順について説明する。まず、熱交換器本体31は、台車4にセットされ(ステップS1)、台車4がベルトコンベア又は人手によって作業位置まで移動される(ステップS2)。次に、金属配管32が熱交換器本体31に挿入され、熱交換器2が組み立てられる(ステップS3)。ここで、形状測定装置12は、ロウ付け部33の加熱前配管径を測定する(ステップS4)。そして、加熱装置11は、バーナー22のガス流量及び位置が調整され(ステップS5)、ロウ付け部33を加熱する(ステップS6)。ロウ付け部33が加熱されている際に、形状測定装置12は、ロウ付け部33の加熱配管径を測定する(ステップS7)。この際に、算出手段25は、加熱前配管径と加熱配管径との差に基づき、加熱温度を算出する(ステップS8)。
図6は、実施の形態1に係るロウ付けの手順を示すフローチャートである。図6を用いて、ロウ付けの手順について説明する。まず、熱交換器本体31は、台車4にセットされ(ステップS1)、台車4がベルトコンベア又は人手によって作業位置まで移動される(ステップS2)。次に、金属配管32が熱交換器本体31に挿入され、熱交換器2が組み立てられる(ステップS3)。ここで、形状測定装置12は、ロウ付け部33の加熱前配管径を測定する(ステップS4)。そして、加熱装置11は、バーナー22のガス流量及び位置が調整され(ステップS5)、ロウ付け部33を加熱する(ステップS6)。ロウ付け部33が加熱されている際に、形状測定装置12は、ロウ付け部33の加熱配管径を測定する(ステップS7)。この際に、算出手段25は、加熱前配管径と加熱配管径との差に基づき、加熱温度を算出する(ステップS8)。
加熱温度が閾値温度帯に達した場合(ステップS9のYES)、報知手段27は、加熱温度が閾値温度帯に達したことを報知する(ステップS10)。その後、バーナー22は、ロウ付け部33に投入されたロウ材3を溶融させ、ロウ付け部33が接合される(ステップS11)。最後に、バーナー22が退避され(ステップS12)、ロウ付け装置1は、ロウ付けを完了する(ステップS13)。また、加熱温度が閾値温度帯に達していない場合(ステップS9のNO)、制御手段26は、バーナー22のガス流量及び位置を再度調整する(ステップS5)。なお、加熱前配管径及び加熱配管径の測定(ステップS4及びS7)、加熱温度の算出(ステップS8)及び加熱温度が閾値温度帯に達したことの報知(ステップS10)以外の動作は、作業者の手作業によるものであっても、ロボットによるものであってもよい。
本実施の形態1によれば、算出手段25は、形状測定装置12が計測した加熱前配管径と加熱配管径との差に基づいて、加熱温度を算出する。ここで、ロウ付け部33の配管径は、ロウ付け作業において、ロウ付け部33が加熱されること以外によっては、変化しづらい。このため、加熱によるロウ付け部33の配管径の変化量とロウ付け部33の温度の上昇量とは、高い相関を有する。したがって、ロウ付け装置1は、ロウ付け部33の加熱前配管径と加熱配管径との差に基づいて、ロウ付け部33の温度を精度よく計測することができる。
また、本実施の形態1によれば、ロウ付け部33の配管径は、複数の位置から測定される。このため、算出手段25は、複数の配管径の値からロウ付けが行われる条件に最も適した値を加熱温度の算出に用いる。したがって、ロウ付け装置1は、ロウ付け部33の温度をより精度よく計測することができる。
また、本実施の形態1によれば、形状測定装置12は、金属配管32の円周C方向に回転する。このため、ロウ付け部33の配管径は、金属配管32の円周C方向において複数の位置から測定される。即ち、算出手段25は、複数の配管径の値からロウ付けが行われる条件に最も適した値を加熱温度の算出に用いる。したがって、ロウ付け装置1は、ロウ付け部33の温度をより精度よく計測することができる。
また、更に、本実施の形態1によれば、形状測定装置12は、金属配管32の軸に並行して動く。このため、ロウ付け部33の配管径は、金属配管32の軸Aに沿う方向において複数の位置から測定される。即ち、算出手段25は、複数の配管径の値からロウ付けが行われる条件に最も適した値を加熱温度の算出に用いる。したがって、ロウ付け装置1は、ロウ付け部33の温度を更に精度よく計測することができる。
なお、形状測定装置12は、複数台設けられてもよい。この場合、ロウ付け部33の配管径は、複数の位置から測定される。即ち、算出手段25は、複数の配管径の値からロウ付けが行われる条件に最も適した値を加熱温度の算出に用いる。したがって、ロウ付け装置1は、ロウ付け部33の温度をより精度よく計測することができる。
図7は、比較例に係るロウ付け装置201の形状測定装置212を示す構成図である。本実施の形態1の効果について、図7の比較例と比較することで詳細に説明する。比較例に係る形状測定装置212は、ロウ付け部33の温度の計測に、ロウ付け部33から放射される赤外線Tを検知する放射温度計を用いる点で本実施の形態1と相違する。このため、比較例に係る形状測定装置212は、加熱温度を計測する際に、管材の色、光沢及び粗さ等による放射率の変化の影響を受ける。したがって、比較例に係る形状測定装置212は、同一の素材であったとしても、放射率を計測し、設定する必要がある。また、放射率に影響を与える要素が多いため、加熱温度の計測結果には、誤差が生じる虞がある。
これに対して、本実施の形態1によれば、算出手段25は、形状測定装置12が計測した加熱前配管径と加熱配管径との差に基づいて、加熱温度を算出する。このため、ロウ付け装置1は、金属配管32の購入時に公開されているデータ等から熱膨張率のみが設定されればよい。したがって、加熱温度を計測する手順は、簡便である。また、ロウ付け部33の配管径は、ロウ付け作業において、ロウ付け部33が加熱されること以外によっては、変化しづらい。このため、加熱によるロウ付け部33の配管径の変化量とロウ付け部33の温度の上昇量とは、高い相関を有する。したがって、ロウ付け装置1は、ロウ付け部33の加熱前配管径と加熱配管径との差に基づいて、ロウ付け部33の温度を精度よく計測することができる。
実施の形態2.
図8は、実施の形態2に係る形状測定装置112を示す構成図である。図8に示すように、本実施の形態2は、受光部124が投光部123と一体的に設けられている点で実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
図8は、実施の形態2に係る形状測定装置112を示す構成図である。図8に示すように、本実施の形態2は、受光部124が投光部123と一体的に設けられている点で実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
(形状測定装置112)
受光部124は、投光部123と一体的に設けられている。受光部124は、投光部123から照射された光M1のうち、ロウ付け部33から反射した光M2を受ける。
受光部124は、投光部123と一体的に設けられている。受光部124は、投光部123から照射された光M1のうち、ロウ付け部33から反射した光M2を受ける。
本実施の形態2によれば、投光部123と一体的に設けられ、投光部123から照射された光M1のうち、ロウ付け部33から反射した光M2を受ける。即ち、形状測定装置112は、ロウ付け部33の配管径の変化を一方向から測定することができる。このため、形状測定装置112は、U字形状の金属配管のように一方向から見た際にロウ付け部33が重なる部分がある場合でも、他の方向から見ることで、配管径を正確に測定する。したがって、ロウ付け装置101は、複雑な形状の金属配管132であっても、加熱前配管径と加熱配管径との差に基づいて、ロウ付け部33の温度を精度よく計測することができる。
1 ロウ付け装置、2 熱交換器、3 ロウ材、4 台車、11 加熱装置、12 形状測定装置、13 制御装置、14 報知装置、21 アーム、22 バーナー、23 投光部、24 受光部、25 算出手段、26 制御手段、27 報知手段、28 関節部、31 熱交換器本体、32 金属配管、33 ロウ付け部、101 ロウ付け装置、112 形状測定装置、123 投光部、124 受光部、201 ロウ付け装置、212 形状測定装置。
Claims (8)
- 金属配管のロウ付けがされるロウ付け部を加熱する加熱装置と、
前記ロウ付け部に光を投射する投光部と、前記投光部から投射された光を受ける受光部とを有し、前記ロウ付け部が加熱される前における前記金属配管の配管径である加熱前配管径と、前記ロウ付け部が加熱されている際における前記金属配管の配管径である加熱配管径とを測定する形状測定装置と、
前記形状測定装置が測定した前記加熱前配管径と前記加熱配管径との差に基づき、前記ロウ付け部が加熱されている際の温度である加熱温度を算出し、前記加熱温度が閾値温度帯の範囲内となるように前記加熱装置を制御する制御装置と、を備える
ロウ付け装置。 - 前記受光部は、
前記投光部と離れた位置に設けられる
請求項1に記載のロウ付け装置。 - 前記受光部は、
前記投光部と一体的に設けられ、前記投光部から照射された光のうち、前記ロウ付け部から反射した光を受ける
請求項1又は2に記載のロウ付け装置。 - 前記形状測定装置は、
前記ロウ付け部の配管径を複数の位置から測定する
請求項1~3のいずれか1項に記載のロウ付け装置。 - 前記形状測定装置は、
前記金属配管の円周方向に回転する
請求項4に記載のロウ付け装置。 - 前記形状測定装置は、
前記金属配管の軸に並行して動く
請求項4又は5に記載のロウ付け装置。 - 前記形状測定装置は、
複数台設けられる
請求項4~6のいずれか1項に記載のロウ付け装置。 - 請求項1~7のいずれか1項に記載のロウ付け装置を用いてロウ付けされた前記金属配管を備える
熱交換器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/045629 WO2021100173A1 (ja) | 2019-11-21 | 2019-11-21 | ロウ付け装置及び熱交換器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/045629 WO2021100173A1 (ja) | 2019-11-21 | 2019-11-21 | ロウ付け装置及び熱交換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100173A1 true WO2021100173A1 (ja) | 2021-05-27 |
Family
ID=75980414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045629 WO2021100173A1 (ja) | 2019-11-21 | 2019-11-21 | ロウ付け装置及び熱交換器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021100173A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7440788B1 (ja) | 2022-08-26 | 2024-02-29 | ダイキン工業株式会社 | 熱交換器の製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0172526U (ja) * | 1987-11-02 | 1989-05-16 | ||
JPH08255819A (ja) * | 1995-03-17 | 1996-10-01 | Toshiba Corp | 温度測定方法及びその装置 |
JPH11132729A (ja) * | 1997-10-30 | 1999-05-21 | Anritsu Corp | 寸法測定装置 |
JP2001248995A (ja) * | 2000-03-03 | 2001-09-14 | Zexel Valeo Climate Control Corp | 熱交換器 |
JP2001269705A (ja) * | 2000-03-27 | 2001-10-02 | Sumitomo Metal Ind Ltd | 金属管の定径圧延装置および定径圧延方法 |
JP2010151503A (ja) * | 2008-12-24 | 2010-07-08 | Toto Sekisui Kk | 外径測定装置 |
JP2014122734A (ja) * | 2012-12-20 | 2014-07-03 | Mitsubishi Electric Corp | 熱交換器及び熱交換器の製造方法 |
JP2018065175A (ja) * | 2016-10-19 | 2018-04-26 | 株式会社ケー・デー・イー | ロウ付け装置 |
-
2019
- 2019-11-21 WO PCT/JP2019/045629 patent/WO2021100173A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0172526U (ja) * | 1987-11-02 | 1989-05-16 | ||
JPH08255819A (ja) * | 1995-03-17 | 1996-10-01 | Toshiba Corp | 温度測定方法及びその装置 |
JPH11132729A (ja) * | 1997-10-30 | 1999-05-21 | Anritsu Corp | 寸法測定装置 |
JP2001248995A (ja) * | 2000-03-03 | 2001-09-14 | Zexel Valeo Climate Control Corp | 熱交換器 |
JP2001269705A (ja) * | 2000-03-27 | 2001-10-02 | Sumitomo Metal Ind Ltd | 金属管の定径圧延装置および定径圧延方法 |
JP2010151503A (ja) * | 2008-12-24 | 2010-07-08 | Toto Sekisui Kk | 外径測定装置 |
JP2014122734A (ja) * | 2012-12-20 | 2014-07-03 | Mitsubishi Electric Corp | 熱交換器及び熱交換器の製造方法 |
JP2018065175A (ja) * | 2016-10-19 | 2018-04-26 | 株式会社ケー・デー・イー | ロウ付け装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7440788B1 (ja) | 2022-08-26 | 2024-02-29 | ダイキン工業株式会社 | 熱交換器の製造方法 |
WO2024042772A1 (ja) * | 2022-08-26 | 2024-02-29 | ダイキン工業株式会社 | 熱交換器の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI724175B (zh) | 溫度測量系統及用於測量工件的溫度的設備 | |
US9114473B2 (en) | Robotic pre-heat and inter-pass welding | |
US20140361099A1 (en) | System and Method for Thermal Control of Flow Through a Conduit | |
ES2974274T3 (es) | Detección y análisis de energía térmica para procesos de soldadura | |
WO2021100173A1 (ja) | ロウ付け装置及び熱交換器 | |
JP4217255B2 (ja) | 鋼板の温度測定方法および温度測定装置、ならびに鋼板の温度制御方法 | |
KR20180131928A (ko) | 가우징 및 이산화탄소 용접이 가능한 전기용접기 | |
JP2609373B2 (ja) | 熱処理制御方法および温度制御装置 | |
JP3903883B2 (ja) | 誘導加熱調理器 | |
KR20170094491A (ko) | 반사 내부 링 | |
WO2001085436A2 (en) | Ir welding of fluoropolymers | |
JP7162776B2 (ja) | 銅部材用自動トーチろう付装置及び銅部材用自動トーチろう付方法 | |
JP6584254B2 (ja) | 乾燥方法及び乾燥装置 | |
CN109952475A (zh) | 热空气枪 | |
US20130228613A1 (en) | Method Of And System For Brazing Aluminum Workpieces Using A Flame And Monitoring Of The Flame Color | |
JP6932540B2 (ja) | 加熱装置及び加熱方法 | |
JP4878234B2 (ja) | 鋼板の温度測定方法および温度測定装置、ならびに鋼板の温度制御方法 | |
JP2014215084A (ja) | 加熱対象物の温度測定方法 | |
JP2019209338A (ja) | 加熱炉及び加熱炉内におけるワーク温度取得方法 | |
JP2005233790A (ja) | 鋼板の温度測定方法および装置 | |
WO2020022093A1 (ja) | 加熱装置及び加熱方法 | |
WO2024232146A1 (ja) | シーム位置検出方法、溶接鋼管の製造方法、溶接鋼管の品質管理方法、シーム位置検出装置および溶接鋼管の製造設備 | |
JP2024063549A (ja) | 溶接鋼管の熱処理設備、溶接鋼管の製造設備、溶接鋼管の熱処理方法および溶接鋼管の製造方法 | |
JPH08338764A (ja) | 放射率補正機能を有する放射温度計の較正装置 | |
CN112142296A (zh) | 用于控制玻璃元件在热成型期间的碱排放的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19953544 Country of ref document: EP Kind code of ref document: A1 |