[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021197060A1 - 头戴显示设备 - Google Patents

头戴显示设备 Download PDF

Info

Publication number
WO2021197060A1
WO2021197060A1 PCT/CN2021/081203 CN2021081203W WO2021197060A1 WO 2021197060 A1 WO2021197060 A1 WO 2021197060A1 CN 2021081203 W CN2021081203 W CN 2021081203W WO 2021197060 A1 WO2021197060 A1 WO 2021197060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
absorbing
head
display device
mounted display
Prior art date
Application number
PCT/CN2021/081203
Other languages
English (en)
French (fr)
Inventor
肖家胜
肖冰
Original Assignee
优奈柯恩(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优奈柯恩(北京)科技有限公司 filed Critical 优奈柯恩(北京)科技有限公司
Priority to US17/907,668 priority Critical patent/US20230194872A1/en
Priority to EP21779644.0A priority patent/EP4113194A4/en
Publication of WO2021197060A1 publication Critical patent/WO2021197060A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the embodiments of the present application relate to the field of smart wearable electronic devices, in particular, to a head-mounted display device.
  • the optical imaging system can be used to magnify the image on the ultra-micro display screen. Projected on the retina, and then presents a large-screen virtual image in the eyes of the viewer.
  • stray light some undesired light (ie, stray light) will irradiate the optical imaging device, causing the image information carried by the stray light to affect the virtual image seen by the user.
  • the image quality reduces the user experience of the head-mounted display device.
  • a head-mounted display device including: an optical imaging device, including an image source element, a spectroscopic element, and a reflective element configured to be aligned with an optical path;
  • the structure and the arrangement position in the optical imaging device are such that the absorption element absorbs at least part of the stray light in the first light region, and passes the real scene light in the second light region, and the first light region is made of human glasses
  • the image position is determined by the two ends of the light-splitting element, the second light region is determined by the position of the human eye, the viewing angle of the human eye, and the end of the light-splitting element away from the image source element, wherein the The position of the human glasses image is a mirror symmetry point of the human eye position with respect to the light splitting element.
  • Fig. 1 shows a schematic structural diagram of an example of an optical imaging device according to an embodiment of the present application.
  • Fig. 2 shows a structural block diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • Fig. 3 shows a schematic diagram of an example of background stray light absorbed by an absorbing element according to an embodiment of the present application.
  • FIG. 4A shows a schematic diagram of an example of the first light region in the optical imaging device according to an embodiment of the present application.
  • FIG. 4B shows a schematic diagram of an example of the second light region in the optical imaging device according to the embodiment of the present application.
  • FIG. 5 shows a schematic diagram of the angle distribution of an example of the included angle between the first light region and the second light region relative to the main optical axis according to an embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • Fig. 7 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • Fig. 8 shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • Fig. 9 shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • Fig. 10A shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • Fig. 10B shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • Fig. 10C shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • Fig. 10D shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • Fig. 12 shows a schematic structural diagram of an absorbing structure provided with a light-absorbing coating according to an embodiment of the present application.
  • Fig. 13 shows a structural block diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • Fig. 14 shows a structural block diagram of an example of an image source element according to an embodiment of the present application.
  • the term “including” and its variations mean open terms, meaning “including but not limited to”.
  • the term “based on” means “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment.”
  • the term “another embodiment” means “at least one other embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other definitions can be included below, whether explicit or implicit. Unless clearly indicated in the context, the definition of a term is consistent throughout the application.
  • light area refers to an area where visible light exists, so that objects or objects in the light area can be seen by the human eye.
  • stray light refers to undesired light that deviates from the imaging optical path.
  • Fig. 1 shows a schematic structural diagram of an example of an optical imaging device according to an embodiment of the present application.
  • the optical imaging device 100 includes an image source element 110, a spectroscopic element 120 and a reflective element 130, and the image source element 110, the spectroscopic element 120 and the reflective element 130 are aligned in optical paths.
  • the image light projected by the image source element 110 (indicated by the solid line in the figure) is enlarged by the beam splitter element 120 and the reflective element 130, so that the eye at the position E can see the virtual image, thereby achieving the alignment of the optical path.
  • Target In the direction of the optical path, the beam splitter element and the reflective element are sequentially arranged downstream of the image source element.
  • the light-splitting element is arranged obliquely below the image source element, for example directly below, and the reflective element is arranged on one side of the light-splitting element. That is, the virtual image light projected by the image source element is sequentially reflected on the light splitting element, reflected on the reflective element, and then transmitted through the light splitting element.
  • the virtual image light passing through the light splitting element can enter the user's eyes.
  • the light splitting element 120 and the light reflecting element 130 may be coated with a transflective film or a polarizing film.
  • the light splitting element 120 and the light reflecting element 130 in the optical imaging device 100 are see-through, so that people can watch the virtual image scene while viewing the real outside world (indicated by the dotted line in the figure), thereby realizing augmented reality (AR ) Display function.
  • the head-mounted display device is configured with the optical imaging device, the head-mounted display device is an AR device.
  • the components in the optical imaging device 100 can also be adjusted to achieve different display functions.
  • the reflective element 130 is adjusted to a non-transparent optical component, so that the optical imaging device 100 can realize a virtual reality (VR) display function.
  • VR virtual reality
  • the head-mounted display device is equipped with the optical imaging device, the head-mounted display device is a VR device.
  • Fig. 2 shows a structural block diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • the head-mounted display device 200 includes an optical imaging device 100 and an absorption element 210, and the absorption element 210 can absorb and eliminate visible light.
  • the absorbing element 210 can eliminate part of the stray light incident into the optical imaging device 100, especially the background stray light Z reflected to the position E of the human eye by the beam splitting element 120.
  • the human eye position E may represent the position of the user's eyes when wearing the head-mounted display device.
  • Fig. 3 shows a schematic diagram of an example of background stray light absorbed by an absorption element according to an embodiment of the present application.
  • the ambient light below the optical imaging device 100 irradiates the beam splitter 120 and is reflected to the position E of the human eye.
  • the human eye can see the virtual image scene and the real image scene, but also The background image information (for example, ground, clothes, etc.) carried by the background stray light appears, which interferes with the image imaging quality.
  • the background image information for example, ground, clothes, etc.
  • the absorbing element 210 by applying the absorbing element 210, at least a part (for example, part or all) of the background stray light Z can be absorbed and eliminated, thereby improving the image display quality.
  • the user when the user wears a head-mounted display device, although the user does not want to see the background image information carried by the background stray light in the imaged image, the user also needs to be able to see the outside directly or perspectively through the naked eye.
  • the structure of the absorbing element 210 and the position relative to the optical imaging device cannot be arbitrarily set to ensure that the real scene light that hits the position E of the human eye cannot be blocked while absorbing at least part of the background stray light.
  • the structure of the absorbing element 210 and the arrangement of the optical imaging device 100 are such that the absorbing element 210 absorbs at least part of the stray light in the first light region and passes the real scene light in the second light region.
  • the stray light may mainly include background stray light.
  • FIG. 4A shows a schematic diagram of an example of the first light region in the optical imaging device according to the embodiment of the present application.
  • the optical imaging device 400 includes an image source element 410, a beam splitter element 420, and a reflective element 430 aligned with an optical path.
  • one end of the light splitting element 420 is attached to the end of the reflective element 430 away from the image source element 410.
  • the human eye position E' is a mirror symmetry point of the human eye position E with respect to the light splitting element 420.
  • the first ray area is determined by the image position E'of the human glasses and the two ends A1 and A2 of the beam splitting element, for example, the area formed by two rays of light passing through the A1 end and the A2 end and hitting the E'position. .
  • the main optical axis of the optical imaging device 400 may be represented by R.
  • the beam splitter 420 may have an angle of 45 degrees with the main optical axis, and the angle between different light directions and the main optical axis R may be used ⁇ to express.
  • the straight line E'A1 can represent the background stray light 401 at the maximum angle to the main optical axis, and the straight line E'A2 can represent the background stray light 402 at the minimum angle to the main optical axis, and the background stray light angle corresponds to the range
  • the light area Q1 of can be used to represent the first light area.
  • the light splitting element 420 has an edge extending in a direction perpendicular to the surface of the paper, and there are a plurality of background stray light 401 and background stray light 402 passing through the edge and the position E'of the portrait image, through which the background stray light passes.
  • the area defined between the first plane of 401 and the second plane of passing these background stray rays 402 defines the first ray area.
  • the absorbing element can absorb at least part of the stray light in the first light region Q1. In this way, the absorbing element can absorb the reflected light emitted to the position of the human eye through the spectroscopic element, thereby eliminating the background image information in the imaged image and improving the image quality.
  • FIG. 4B shows a schematic diagram of an example of the second light region in the optical imaging device according to the embodiment of the present application.
  • the second light region is determined by the human eye position E, the human eye angle of view, and the end A2 of the light splitting element 420 away from the image source element 410.
  • the angle of view of the human eye may indicate the degree of the maximum visual angle of the naked eye of a certain person, for example, the angle of view of the human eye is usually 70°.
  • the maximum line-of-sight direction 403 is determined by the position E of the human eye and the visual angle of the human eye, and the straight line EA2 can represent the minimum line-of-sight direction 404, and the line-of-sight range Q2 between the maximum line-of-sight direction and the minimum line-of-sight direction can be used to represent the second ray area.
  • the absorbing element allows the real scene light in the second light region Q2 to pass. Therefore, the absorbing element will not block the human eyes from viewing the real scene of the external environment, which can improve the user's viewing experience of the head-mounted display device.
  • FIG. 5 shows a schematic diagram of an example of the angle distribution between the first light region and the second light region relative to the main optical axis according to an embodiment of the present application.
  • the included angle interval 510 may indicate the second light region Q2 (ie, the line-of-sight angle range) between 403 and 404, and the included angle interval 520 may indicate the first light rays between 401 and 402.
  • Area ie, stray light angle range. It is not difficult to see that there is an overlapping angle interval between the stray light angle range and the line of sight angle range. Therefore, in order to absorb at least part of the stray light in the first light area without blocking the real scene light in the second light area, the structure of the absorbing element and its position relative to the optical imaging device are particularly important.
  • Fig. 6 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • the head-mounted display device 600 includes an optical imaging device and an absorption element 640
  • the optical imaging device includes an image source element 610, a beam splitter element 620 and a reflective element 630 aligned with an optical path.
  • the plane where the absorption element 640 is located passes through the human eye position E and the end of the light splitting element 620 far away from the image source element 610 (ie, the A2 end).
  • the absorbing element 640 coincides with the minimum line of sight direction, so that the light absorbing element 640 will not block the real scene light in the visual field of the human eye.
  • the area defined by the straight line passing through the human eyeglass image position E'and both ends of the absorbing element covers the first light ray area.
  • the area Q3 defined by the straight line passing through the image position E'of the human glasses and the two ends of the absorbing element includes the area Q1, which can absorb all the background stray light in the stray light range. It should be noted that when the length of the absorbing element 640 is changed, the range of the region Q3 will also change accordingly, but the region Q3 can be at least greater than or equal to the region Q1, so that the background stray light can be completely covered and the imaging quality is guaranteed.
  • the absorbing element 640 has an edge extending in a direction perpendicular to the paper surface, and there are a plurality of straight lines passing through the edge and the position E'of the human eyeglass image, and the area defined between the two planes passing through these straight lines is the area Q3.
  • one end of the absorbing element 640 is attached to the end of the light splitting element 620 away from the image source element 610 (ie, the A2 end), and the A2 end is attached to the end of the reflective element 630 away from the image source element 610.
  • other methods can also be used to arrange the reflective element 630 and the image source element 610 in the optical imaging device.
  • one end of the reflective element 130 is not attached to one end of the light splitting element 120.
  • the reflective element 130 and the light splitting element 120 may be connected by providing a non-transparent bracket.
  • one end of the absorbing element may also be attached to the end of the spectroscopic element away from the image source element or the end of the reflective element away from the image source element, and there is no limitation here.
  • the absorbing element 640 should be able to absorb the stray light in the first light area and pass the real scene light in the second light area.
  • the thickness of the absorbing element 640 can also be adjusted according to the needs of the scene.
  • the thickness of the absorbing element 640 is 0.5 mm to 5 mm.
  • Fig. 7 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • the head-mounted display device 700 includes an optical imaging device and an absorption element 740, and the optical imaging device includes an image source element 710, a spectroscopic element 720, and a reflective element 730 aligned with an optical path.
  • the absorbing element 740 includes a base 741 and a plurality of absorbing structures 742, the plurality of absorbing structures 742 are arranged at intervals in sequence, and the base is transparent.
  • the absorbing structure 742 may be a sheet-like structure arranged obliquely on the base 741, and each sheet-like structure is arranged at intervals.
  • the area determined by the position of the human glasses image and each absorbing structure covers at least a part of the first light area, and the area determined by the human eye position E and at least one gap covers the real scene light of the second light area.
  • the gap It is formed by the spacing between adjacent absorbent structures. Further, the arrangement of the base 741 makes the base 741 transmit real scene light.
  • Fig. 8 shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • the base 741 of the absorbing element 740 is a flat plate structure, and the base plane may have an included angle ⁇ with the main optical axis.
  • the substrate 741 of the absorbing element in FIG. 7 can also be parallel to the main optical axis, which is not limited here.
  • each absorbing structure 742 in the absorbing element 740 has an included angle ⁇ with the main optical axis.
  • each absorbing structure 742 is used to absorb light, and each absorbing structure may be used to define a shading area for the image position E'of the human glasses, and the shading areas corresponding to adjacent absorbing structures 742 are partially overlapped or Just joined, the light shielding area corresponding to each absorbing structure 742 is combined to cover the first light area.
  • it is determined by the first end (for example, the end) of the adjacent first absorption structure and the second end (for example, the head end) of the second absorption structure in each absorption structure arranged at intervals in sequence.
  • the light-absorbing junction area 810 passes through the image position of the human glasses, so that the light-shielding areas corresponding to the respective absorbing structures can cover (or just cover) the first light area after being combined.
  • the first end of the first light absorbing structure and the second end of the second light absorbing structure are close to each other, and the second end of the first light absorbing structure and the first end of the second light absorbing structure are far away from each other.
  • the absorbing structure 742 arranged at intervals from the first end (the end close to the human eye position E) to the second end (the end far away from the human eye position E) of the absorbing element 740 has at least part of the following phases Adjacent to the absorbing structure 742, the first absorbing structure of the adjacent absorbing structure 742 is close to the position E of the human eye.
  • Each absorbent structure 742 has a first end arranged on the first side of the absorbent structure 742 (the end close to the human eye position E), and a second end arranged on the second side of the absorbent structure 742 (far away from the human eye position) The end of E), wherein the first side and the second side are arranged oppositely.
  • the plane of the first end of the first absorbing structure and the second end of the second absorbing structure passes through the image position of the glasses, so that the respective shading areas corresponding to the respective absorbing structures 742 can be combined to cover ( Or just cover) the first light area.
  • the gaps between the adjacent absorbing structures 742 can each form a light-transmitting area for the position E of the human eye, and the light-transmitting areas corresponding to the adjacent gaps are partially overlapped or just joined, and each gap corresponds to The light-transmitting area of is combined to cover the second light area.
  • the plane on which each absorbing structure 742 is located passes through the position E of the human eye, so that the plane on which each absorbing structure 742 is located coincides with the direction of the human eye line of sight without blocking the user's field of vision, and each gap corresponds to each The light-transmitting area can just cover the second light area after being combined.
  • the inclination angle of each absorbing structure with respect to the main optical axis of the optical imaging device is within the range of the line of sight angle.
  • the ⁇ corresponding to each absorbing structure is within the range of the line of sight angle.
  • the minimum line-of-sight angle in the line-of-sight angle range is determined by the position of the human eye and the end of the beam splitting element far from the image source element (for example, 404 in FIG. 4B)
  • the maximum line-of-sight angle in the line-of-sight angle range It is determined by the position of the human eye and the perspective of the human eye (for example, 403 in FIG. 4B). As a result, it can be ensured that the light transmitted through each gap is the light in the direction of the human eye's line of sight.
  • the thickness d and length L of the substrate 741 in the embodiment of the present application may vary with different application scenarios.
  • the thickness d of the base 741 may be between 0.1 mm and 10 mm, and the length L of the base 741 may be between 2 mm and 40 mm.
  • Fig. 9 shows a schematic structural diagram of an example of an absorbing element according to an embodiment of the present application.
  • each included angle ⁇ between the plane where each absorption structure 742 in the absorption element 740 is located and the main optical axis R is equal, that is, the plane where each absorption structure is located is parallel to each other.
  • the separation distance between the absorbing structures 742 in the absorbing element 740 can be diversified.
  • the planes where the two ends of the adjacent absorbent structures are close to each other can pass through the image position of the human glasses.
  • the planes of the two ends close to each other on both sides of the absorbing element 740 of the adjacent absorbing structure may pass through the image position of the human glasses.
  • the substrate of the absorbing element 740 may also use other non-planar shapes (for example, a curved surface or a concave shape substrate may be used), so that the real scene in the second light region can be seen through the position of the human eye.
  • the head-mounted display device further includes an optical path correction element 220, and the optical path correction element may be configured by at least one lens assembly and/or a reflective assembly.
  • the structure of the optical path correction element and its position in the optical imaging device or relative to the optical imaging device allow the optical path correction element to propagate light transmitted through the gaps (for example, parallel transmission) to the position of the human eye. It should be understood that when the arrangement angle, size, and spacing of each absorbing structure change, the structure and position of the optical path correction element may also need to be adjusted accordingly, and the optical path correction element may also be configured to have multiple sequences.
  • the arranged optical path correction structure may not limit the specific structure and position of the optical path correction element.
  • each absorbing structure may be embedded in the substrate.
  • each absorption structure 742 in the absorption element 740 may also be attached to the surface of the base 741.
  • 10A-10D respectively show schematic structural diagrams of different examples of absorbing elements according to embodiments of the present application.
  • each absorbent structure 742 is attached to the upper surface of the base 741, and each absorbent structure is parallel to each other.
  • each absorbent structure 742 is attached to the lower surface of the base 741, and each absorbent structure is parallel to each other.
  • each absorption structure 742 is attached to the upper surface of the base 741, and the absorption structure 742 is not parallel, for example, the plane where the absorption structure 742 is located can pass through the position of the human eye.
  • each absorption structure 742 is attached to the lower surface of the base 741, and the absorption structure 742 is not parallel.
  • each absorption structure can adopt various heights.
  • the height of the absorbent structure may be between 0.2 mm and 20 mm
  • the thickness of the absorbent structure may be between 0.01 and 5 mm
  • the thickness of the substrate may be between 0.1 mm and 10 mm.
  • each absorbing structure can also use a light absorbing coating 743 to achieve a light absorbing function, for example, the light absorbing coating is attached to the absorbing structure 742.
  • the planes where the two adjacent ends of the adjacent light-absorbing coatings on the opposite side pass through the image position of the human glasses, and the planes where the light-absorbing coatings are located pass the position of the human eye.
  • the absorption wavelength band of the light-absorbing coating may include the entire visible light wavelength band to absorb visible light.
  • each absorbing structure 742 in FIGS. 7-10D is also formed as a microstructure array distribution, and the absorbing element may be a holographic optical element or a surface relief grating or the like.
  • FIG. 11 shows a schematic structural diagram of an example of a head-mounted display device according to an embodiment of the present application.
  • the head-mounted display device 1100 includes an optical imaging device and an absorbing element 1140, and the optical imaging device includes an image source element 1110, a spectroscopic element 1120 and a reflective element 1130 aligned with an optical path.
  • the absorbing member 1140 is formed as a curved plate, so the absorbing member 1140 is not limited to a flat plate.
  • the image source element may further include an aberration corrector 111 to realize the correction of aberrations in the optical imaging device together with the beam splitting element and the reflective element, which is more helpful to improve the imaging quality.
  • the aberration corrector may use a lens assembly to reduce the light-emitting angle of the pixels on the image source element, which is more conducive to shielding the stray light under the head-mounted display device, and improves the user experience when wearing it.
  • optical path design methods described above in conjunction with the drawings can also be adjusted.
  • Birdbath, free-form surface prisms and other optical path design methods can be used, which should not be restricted here.
  • the head-mounted display device disclosed in the present application may also be configured to include: an optical imaging device and an absorbing element.
  • the light imaging device includes an image source element, a beam splitter element and a reflective element.
  • the beam splitting element and the reflecting element are sequentially arranged downstream of the image source element.
  • the light-splitting element is arranged obliquely below the image source element, for example directly below, and the reflective element is arranged on one side of the light-splitting element.
  • the virtual image light projected by the image source element is sequentially reflected on the light splitting element, reflected on the reflective element, and then transmitted through the light splitting element.
  • the end of the light splitting element away from the image source element may be connected to the end of the reflective element away from the image source element.
  • One end of the absorbing element is connected to the junction of the light splitting element and the reflecting element.
  • the absorbing element includes a substrate and a plurality of absorbing structures arranged at intervals. The end of the second side (opposite to the first side) of the second side (for example, at least three) of the adjacent absorbing structures intersects the normal line of the light-emitting surface of the image source element line at a point through the plane of the head and end of at least part of the adjacent absorbing structure.
  • the normal to the light exit surface of the image source element passes through the center of the light splitting element.
  • At least a part (for example, at least three) of the adjacent absorbing structures are located on the same straight line with a plane passing through the light splitting element and parallel to the light emitting surface of the image source element.
  • the multiple planes on which the multiple absorbent structures are located are parallel to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种头戴显示设备(200),包括光学成像装置(100)和吸收元件(210)。光学成像装置(100)包括被配置为光路对准的图像源元件(110)、分光元件(120)和反射元件(130);吸收元件(210)的结构以及光学成像装置(100)中的布置位置使得吸收元件(210)吸收第一光线区域中的至少部分的杂散光线,且通过第二光线区域的真实场景光线,第一光线区域是由人眼镜像位置与分光元件(120)的两端来确定的,第二光线区域是由人眼位置与人眼视角和分光元件(120)的远离图像源元件(110)的一端来确定的,其中人眼镜像位置为人眼位置关于分光元件(120)的镜像对称点。

Description

头戴显示设备 技术领域
本申请的实施例涉及智能穿戴电子设备领域,具体地,涉及一种头戴显示设备。
背景技术
随着科学技术的不断发展,头戴式显示设备被广泛地应用在人们的日常生活、娱乐和工作当中,通过头戴式显示设备可以利用光学成像系统放大超微显示屏上的图像来将影像投射于视网膜上,进而在观看者眼中呈现大屏幕虚拟图像。
目前,头戴显示设备在显示虚拟图像的时候,一些非期望的光线(即,杂散光)会照射到光学成像器件上,导致杂散光所携带的图像信息会影响用户所看到的虚拟图像的成像质量,降低了头戴显示设备的用户体验。
针对上述问题,目前业界暂无较佳的解决方案。
发明内容
根据本申请实施例的一个方面,提供了一种头戴显示设备,包括:光学成像装置,包括被配置为光路对准的图像源元件、分光元件和反射元件;吸收元件,所述吸收元件的结构以及所述光学成像装置中的布置位置使得所述吸收元件吸收第一光线区域中的至少部分杂散光线,且通过第二光线区域的真实场景光线,所述第一光线区域是由人眼镜像位置与所述分光元件的两端来确定的,所述第二光线区域是由人眼位置与人眼视角和所述分光元件的远离所述图像源元件的一端来确定的,其中所述人眼镜像位置为所述人眼位置关于所述分光元件的镜像对称点。
附图说明
通过参照下面的附图,可以实现对于本申请的实施例内容的本质和优点的进一步理解。在附图中,类似组件或特征可以具有相同的附图标记。附图是用来提供对本发明实施例的进一步理解,并且构成本申请的一部分,与下面的具体实施方式一起用于解释本申请的实施例,但并不构成对本申请的实施例的限制。在附图中:
图1示出了根据本申请实施例的光学成像装置的一示例的结构示意图。
图2示出了根据本申请实施例的头戴显示设备的一示例的结构框图。
图3示出了根据本申请实施例的被吸收元件所吸收的背景杂散光线的一示例的示意图。
图4A示出了根据本申请实施例的光学成像装置中的第一光线区域的一示例的示意图。
图4B示出了根据本申请实施例的光学成像装置中的第二光线区域的一示例的示意图。
图5示出了根据本申请实施例的第一光线区域和第二光线区域相对于主光轴的夹角的一示例的角度分布示意图。
图6示出了根据本申请实施例的头戴显示设备的一示例的结构示意图。
图7示出了根据本申请实施例的头戴显示设备的一示例的结构示意图。
图8示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图9示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图10A示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图10B示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图10C示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图10D示出了根据本申请实施例的吸收元件的一示例的结构示意图。
图11示出了根据本申请实施例的头戴显示设备的一示例的结构示意图。
图12示出了根据本申请实施例的具备吸光涂层的吸收结构的结构示意图。
图13示出了根据本申请实施例的头戴显示设备的一示例的结构框图。
图14示出了根据本申请实施例的图像源元件的一示例的结构框图。
具体实施方式
以下将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对本申请的限制。可以在不脱离本申请的实施例内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还 是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个申请中是一致的。
术语“光线区域”表示存在可见光线的区域,使得通过人眼可以看到光线区域中的物体或对象。术语“杂散光线”表示偏离成像光路以外的非期望的光线。
图1示出了根据本申请的实施例的光学成像装置的一示例的结构示意图。
如图1所示的光学成像装置100,该光学成像装置100包括图像源元件110、分光元件120和反射元件130,并且图像源元件110、分光元件120和反射元件130光路对准。这样,由图像源元件110投射的图像光线(图中使用实线来表示)经过分光元件120和反光元件130的放大处理,使得位于位置E的眼睛能够看到虚拟图像,从而达到光路对准的目标。在光路方向上,分光元件和反射元件依次布置在图像源元件的下游。例如,分光元件倾斜布置在图像源元件的下方,例如正下方,反射元件布置在分光元件的一侧。也即,图像源元件投射出的虚拟图像光线依次在分光元件上反射,在反射元件上反射,再透射分光元件。透过分光元件的虚拟图像光线可以进入用户的眼睛。可选地,分光元件120和反光元件130可以镀有半透半反射膜或者偏振膜。光学成像装置100中的分光元件120和反光元件130是可透视的,使得人在观看到外界真实场景(图中使用虚线来表示)的同时还能观看到虚拟图像场景,从而实现增强现实(AR)显示功能。当头戴显示设备配置了该光学成像装置时,该头戴显示设备为AR设备。
需说明的是,还可以将光学成像装置100中的元件进行调整,以实现不同的显示功能。例如,将反光元件130调整为非视透的光学组件,使得光学成像装置100可以实现虚拟现实(VR)显示功能。当头戴显示设备配置了此光学成像装置时,该头戴显示设备为VR设备。
图2示出了根据本申请的实施例的头戴显示设备的一示例的结构框图。
如图2所示,头戴显示设备200包括光学成像装置100和吸收元件210,吸收元件210可以吸收并消除可见光线。这里,吸收元件210可以消除射入光学成像装置100中的部分杂散光线,尤其是通过分光元件120反射至人眼位置E的背景杂散光线Z。应理解的是,人眼位置E可以表示用户在佩戴头戴显示设备时其眼睛所在的位置。
图3示出了根据本申请的实施例的被吸收元件所吸收的背景杂散光线的一示例的示意图。
如图3所示,在光学成像装置100的下方的环境光线照射到分光元件120上,并被反射至人眼位置E,此时人眼除了能够看见虚拟图像场景和真实图像场景之外,还出现了背景杂散光所携带的背景图像信息(例如,地面、衣服等等),干扰了图像成像质量。
在本申请实施例中,通过应用吸收元件210,能够对背景杂散光Z中的至少一部分 (例如,部分或全部)进行吸收并消除,从而提高图像显示质量。
在一些应用场景中,在用户佩戴头戴显示设备时,虽然用户不希望看到成像图像中存在因背景杂散光所携带的背景图像信息,但是用户还需要通过肉眼能够直接或透视地看到外部(例如,设备下方)环境中的真实场景光线。因此,吸收元件210的结构和相对光学成像装置的位置不能随意设置,以保障在吸收至少部分的背景杂散光的同时还不能遮挡射到人眼位置E的真实场景光线。
可选地,吸收元件210的结构和光学成像装置100的布置使得吸收元件210至少吸收第一光线区域中至少部分的杂散光线,且通过第二光线区域的真实场景光线。这里,杂散光线主要可以包括背景杂散光线。
图4A示出了根据本申请的实施例的光学成像装置中的第一光线区域的一示例的示意图。
如图4A所示,光学成像装置400包括光路对准的图像源元件410、分光元件420和反射元件430。在本申请的示例中,分光元件420的一端附接到反射元件430的远离图像源元件410的一端。人眼镜像位置E’为人眼位置E关于分光元件420的镜像对称点。这里,第一光线区域是由人眼镜像位置E’与分光元件的两端A1和A2来确定的,例如由分别通过A1端和A2端的且射到E’位置的两道光线所形成的区域。也即,由通过人眼镜像位置E’和分光元件的两端A1和A2的平面来确定。在本文中,光学成像装置400的主光轴可以用R来表示,例如分光元件420可以与主光轴之间呈45度夹角,以及不同的光线方向与主光轴R的夹角可以用α来表示。直线E’A1可以表示与主光轴呈最大角度的背景杂散光线401,以及直线E’A2可以表示与主光轴呈最小角度的背景杂散光线402,并且背景杂散光线角度范围所对应的光线区域Q1可以用来表示第一光线区域。可以理解的,分光元件420具有沿与纸面垂直的方向延伸的边沿,有多条通过边沿和人眼镜像位置E’的背景杂散光线401和背景杂散光线402,通过这些背景杂散光线401的第一平面和通过这些背景杂散光线402的第二平面之间限定的区域限定第一光线区域。
在本申请的实施例中,吸收元件可以吸收第一光线区域Q1中的至少部分的杂散光线。由此,吸收元件可以将通过分光元件射到人眼位置的反射光线进行吸收,从而消除成像图像中的背景图像信息,并提高了成像质量。
图4B示出了根据本申请的实施例的光学成像装置中的第二光线区域的一示例的示意图。
如图4B所示,第二光线区域是由人眼位置E与人眼视角和分光元件420的远离图像源元件410的一端A2来确定的。这里,人眼视角可以表示确定的人的肉眼最大可视 角度的度数,例如人的人眼视角通常为70°。进而,通过人眼位置E和人眼视角确定最大视线方向403,并且直线EA2可以表示最小视线方向404,在最大视线方向和最小视线方向之间的人眼视线范围Q2可以用来表示第二光线区域。
在本申请的实施例中,吸收元件使第二光线区域Q2的真实场景光线通过。由此,吸收元件不会遮挡人眼观看外界环境的真实场景,可以提高头戴显示设备的用户观看体验。
图5示出了根据本申请的实施例的第一光线区域和第二光线区域相对于主光轴的夹角的一示例的角度分布示意图。
如图5所示,夹角区间510可以表示介于403和404之间的第二光线区域Q2(即,视线角度范围),夹角区间520可以表示介于401和402之间的第一光线区域(即,杂散光角度范围)。不难看出,在杂散光角度范围和视线角度范围之间存在重合的角度区间。因此,为了实现既吸收至少部分第一光线区域的杂散光线又不遮挡第二光线区域的真实场景光线,使得吸收元件的结构以及其相对光学成像装置的位置显得尤为重要。
图6示出了根据本申请的实施例的头戴显示设备的一示例的结构示意图。
如图6所示,头戴显示设备600包括光学成像装置和吸收元件640,该光学成像装置包括光路对准的图像源元件610、分光元件620和反射元件630。在本申请的一个示例中,吸收元件640所处的平面通过人眼位置E和分光元件620的远离图像源元件610的一端(即A2端)。也就是说,吸收元件640与最小视线方向重合,使得吸光元件640不会遮挡人眼视野范围内的真实场景光线。此外,由通过人眼镜像位置E’和吸收元件的两端的直线所确定的区域覆盖第一光线区域。参照图6中的示例,由通过人眼镜像位置E’和吸收元件的两端的直线所确定的区域Q3包含了区域Q1,由此能够吸收所有在杂散光范围内的背景杂散光线。需说明的是,当变换吸收元件640的长度时,区域Q3的范围也会相应发生变化,但区域Q3至少可以大于或等于区域Q1,使得背景杂散光线能够被完全覆盖,保障了成像质量。可以理解的,吸收元件640具有沿与纸面垂直的方向延伸的边沿,有多条通过边沿和人眼镜像位置E’直线,通过这些直线的两个平面之间限定的区域为区域Q3。
在如图6的示例中,吸收元件640的一端与分光元件620的远离图像源元件610的一端(即A2端)附接,并且A2端与反射元件630的远离图像源元件610的一端附接。需说明的是,也可以采用其他的方式来布置光学成像装置中的反射元件630和图像源元件610。示例性地,参照如图1的示例,反射元件130的一端并未与分光元件120的一端附接,例如在反射元件130与分光元件120之间可以通过设置非透光支架来连接。此时,吸收元件的一端还可以附接到分光元件的远离图像源元件的一端或者反射元件的 远离图像源元件的一端,在此可不加限制。但是,无论采用何种布置方式,都应要使得吸收元件640能够吸收第一光线区域的杂散光线且使第二光线区域的真实场景光线通过。
吸收元件640的厚度也可以是随着场景需求而进行调整的。在本申请的一个示例中,吸收元件640的厚度为0.5mm~5mm。
图7示出了根据本申请的实施例的头戴显示设备的一示例的结构示意图。
如图7所示,头戴显示设备700包括光学成像装置和吸收元件740,该光学成像装置包括光路对准的图像源元件710、分光元件720和反射元件730。在本申请的一个示例中,吸收元件740包括基底741和多个吸收结构742,多个吸收结构742顺序间隔布置,基底是可透视的。例如,吸收结构742可以为倾斜布置在基底741上的片状结构,各个片状结构间隔布置。由人眼镜像位置和每个吸收结构所确定的区域覆盖第一光线区域的至少一部分,并且由人眼位置E和至少一个间隙所确定的区域覆盖第二光线区域的真实场景光线,这里,间隙是由相邻的吸收结构之间的间隔而形成的。进一步地,基底741的布置使得基底741透过真实场景光线。
图8示出了根据本申请的实施例的吸收元件的一示例的结构示意图。
如图8所示,吸收元件740的基底741是平板结构,该基底平面可以与主光轴之间具有夹角γ。在图7中吸收元件的基底741还可以与主光轴平行,在此可以不作限制。此外,吸收元件740中的各个吸收结构742与主光轴之间具有夹角β,通过布置或调整各个吸收结构742的夹角β和间隙大小可以实现吸收第一光线区域的杂散光线,并且通过第二光线区域的真实场景光线。
可选地,各个吸收结构742用于吸收光线,并且各个吸收结构可以各自用于限定针对人眼镜像位置E’的遮光区域,并且相邻的吸收结构742所对应的遮光区域是存在部分重合或刚好接合的,进而各个吸收结构742所对应的遮光区域通过组合来覆盖第一光线区域。参照图8中的示例,由顺序间隔布置的各个吸收结构中相邻的第一吸收结构的第一端(例如,末端)与第二吸收结构的第二端(例如,首端)所确定的吸光接合区域810通过人眼镜像位置,使得各个吸收结构相对应的各个遮光区域经组合后能覆盖(或正好覆盖)第一光线区域。这里,第一吸光结构的第一端与第二吸光结构的第二端彼此靠近,且第一吸光结构的第二端与第二吸光结构的第一端彼此远离。
在一个示例中,从吸收元件740第一端(接近人眼位置E的端部)到第二端(远离人眼位置E的端部)依次间隔布置的吸收结构742中具有至少部分如下的相邻的吸收结构742,相邻的吸收结构742中第一吸收结构靠近人眼位置E。每个吸收结构742具有布置在吸收结构742的第一侧的第一端(接近人眼位置E的端部),和布置在吸收结构742的第二侧的第二端(远离近人眼位置E的端部),其中,第一侧和第二侧相对布 置。通过第一吸收结构的第一端与第二吸收结构的第二端的平面(图中直线810所示)通过人眼镜像位置,使得各个吸收结构742相对应的各个遮光区域经组合后能覆盖(或正好覆盖)第一光线区域。
此外,相邻吸收结构742之间的各个间隙可以各自形成针对人眼位置E的透光区域,并且相邻的间隙所对应的透光区域是存在部分重合或刚好接合的,进而各个间隙所对应的透光区域通过组合来覆盖第二光线区域。参照图8中的示例,各个吸收结构742所处的平面通过人眼位置E,使得各个吸收结构742所处平面正好与人眼视线方向重合而不会遮挡用户视野,并且各个间隙相对应的各个透光区域经组合后能正好覆盖第二光线区域。
在本申请的一个示例中,各个吸收结构相对于光学成像装置的主光轴的倾斜角度是在视线角度范围内的。参照图8中的示例,各个吸收结构所对应的β是在视线角度范围内的。如上面所描述的,视线角度范围中的最小视线角度是由人眼位置和分光元件的远离图像源元件的一端来确定的(例如,图4B中的404),视线角度范围中的最大视线角度是由人眼位置和人眼视角来确定的(例如,图4B中的403)。由此,能够保障各个间隙所透出的光线均是在人眼视线方向上的光线。
需说明的是,本申请实施例中的基底741的厚度d和长度L可以是随着应用场景的不同而变化。在本申请的一个示例中,基底741的厚度d可以是介于0.1mm到10mm之间的,以及基底741的长度L可以是介于2mm到40mm之间的。
图9示出了根据本申请的实施例的吸收元件的一示例的结构示意图。
如图9所示,吸收元件740中各个吸收结构742所处的平面与主光轴R的各个夹角β都相等,即各个吸收结构所处的平面相互平行。需说明的是,为了实现在吸收第一光线区域的杂散光线的同时也对第二光线区域的真实场景光线进行透射,吸收元件740中各个吸收结构742之间的间隔距离可以是多样化的或变化的,例如相邻吸收结构的相互靠近的两端所在的平面可以通过人眼镜像位置。例如,相邻吸收结构的位于吸收元件740两侧的相互靠近的两端所在的平面可以通过人眼镜像位置。并且,吸收元件740的基底也可以选用其他非平面形状(例如,可以采用弧面或凹陷形状的基底),以使得通过人眼位置能够看到第二光线区域中的真实场景。
在本申请的一个示例中,头戴显示设备还包括光路校正元件220,该光路校正元件可以是由至少一个透镜组件和/或反射组件配置而成的。并且,光路校正元件的结构以及在光学成像装置中的位置或相对光学成像装置的位置使得光路校正元件将从各个间隙透过(例如,平行透过)的光线光传播至人眼位置。应理解的是,当各个吸收结构的布置角度、大小和间距等参数发生变化时,光路校正元件的结构和位置可能也需要相应地 进行调整,并且光路校正元件还可以被配置成具有多个顺序排列的光路校正结构,因此可以不限制关于光路校正元件的具体的结构和位置。
如图7-9中所描述的吸收元件的示例,各个吸收结构可以是内嵌于基底的。可替换地,吸收元件740中的各个吸收结构742也可以是附接于基底741的表面。
图10A-10D分别示出了根据本申请的实施例的吸收元件的不同示例的结构示意图。
如图10A所示,各个吸收结构742附接于基底741的上表面,并且各个吸收结构相互平行。如图10B所示,各个吸收结构742附接于基底741的下表面,并且各个吸收结构相互平行。如图10C所示,各个吸收结构742附接于基底741的上表面,并且吸收结构742不平行,例如吸收结构742所在的平面均可以通过人眼位置。如图10D所示,各个吸收结构742附接于基底741的下表面,并且吸收结构742不平行。这里,各个吸收结构可以采用各种高度。在一个示例中,吸收结构的高度可以是介于0.2mm到20mm,吸收结构的厚度可以介于0.01到5mm,基底厚度可以是介于0.1mm到10mm。
此外,各个吸收结构还可以采用吸光涂层743来实现吸光功能,例如吸光涂层依附在吸收结构742。在本申请的一个示例中,相邻的吸光涂层位于相对侧的互相靠近的两端所在的平面通过人眼镜像位置,并且各个吸光涂层所在的平面通过人眼位置。这里,吸光涂层的吸收波段可以包括整个可见光波段,以吸收可见光。
在一些实施方式中,图7-10D中的各个吸收结构742还被形成为微结构阵列分布,并且吸收元件可以采用全息光学元件或表面浮雕光栅等。
图11示出了根据本申请的实施例的头戴显示设备的一示例的结构示意图。
如图11所示,头戴显示设备1100包括光学成像装置和吸收元件1140,该光学成像装置包括光路对准的图像源元件1110、分光元件1120和反射元件1130。这里,吸收元件1140被形成为弯曲的板,因此吸收元件1140并不局限于平板。
需说明的是,在上面各图中所示出的光学成像装置中的元件及元件的结构和布置都仅用作示例,并且还可以采用更多的其他未于此所列出的元件或结构进行补充。在本申请的一个示例中,图像源元件还可以包括像差校正器111,以实现与分光元件和反射元件共同校正光学成像装置中的像差,更有助于提高成像质量。可选地,像差校正器可以采用透镜组件,以减小图像源元件上像素的发光角度,更有利于遮挡在头戴显示设备下方的杂散光,改善了用户佩戴时的体验感。
此外,在上面结合各附图所描述的光路设计方式也可以进行调整,例如可以采用Birdbath、自由曲面棱镜等光路设计方式,在此应不加限制。
例如,本申请公开的头戴显示设备,还可以配置为包括:光学成像装置和吸收元件。光线成像装置包括图像源元件、分光元件和反射元件。在光路方向上,分光元件和 反射元件依次布置在图像源元件的下游。例如,分光元件倾斜布置在图像源元件的下方,例如正下方,反射元件布置在分光元件的一侧。图像源元件投射出的虚拟图像光线依次在分光元件上反射,在反射元件上反射,再透射分光元件。分光元件远离图像源元件的一端可以与反射元件远离图像源元件的一端连接。吸收元件的一端与分光元件和反射元件的连接处相连,吸收元件包括基底和多个间隔布置的吸收结构,每个吸收结构具有位于基底的第一侧(靠近分光元件)的首端和位于基底的第二侧(与第一侧相对)的末端,通过至少部分(例如至少三个)相邻吸收结构的首端和末端的平面与图像源元件线的出光面的法线相交于一点。
可选的,图像源元件的出光面的法线通过分光元件的中心。
在一个实施例中,至少部分(例如至少三个)相邻吸收结构所在的平面均与通过分光元件的且与图像源元件的出光面平行的平面相交于同一直线。
在一个实施例中,多个吸收结构所在的多个平面相互平行。
上面结合附图阐述的具体实施方式描述了示例性实施例,但并不表示可以实现本申请的所有实施例。在整个本申请中使用的术语“示例性”意味着“用作示例、实例或例示”,并不意味着比其它实施例“优选”或“具有优势”。出于提供对所描述技术的理解的目的,具体实施方式包括具体细节。然而,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的实施例的概念造成难以理解,公知的结构和装置以框图形式示出。
本公开内容的上述描述被提供来使得本领域任何普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容进行的各种修改是显而易见的,并且,也可以在不脱离本公开内容的保护范围的情况下,将本文所定义的一般性原理应用于其它变型。因此,本公开内容并不限于本文所描述的示例和设计,而是与符合本文公开的原理和新颖性特征的最广范围相一致。

Claims (15)

  1. 一种头戴显示设备,包括:
    光学成像装置,包括被配置为光路对准的图像源元件、分光元件和反射元件;
    吸收元件,所述吸收元件的结构以及相对所述光学成像装置的位置使得所述吸收元件吸收第一光线区域中的至少部分的杂散光线,且通过第二光线区域的真实场景光线,所述第一光线区域是由人眼镜像位置与所述分光元件的两端来确定的,所述第二光线区域是由人眼位置与人眼视角和所述分光元件的远离所述图像源元件的一端来确定的,其中所述人眼镜像位置为所述人眼位置关于所述分光元件的镜像对称点。
  2. 如权利要求1所述的头戴显示设备,其中,所述吸收元件包括基底和多个吸收结构,所述多个所述吸收结构顺序间隔布置,
    由所述人眼镜像位置和每个所述吸收结构所确定的区域至少覆盖所述第一光线区域的一部分,并且由所述人眼位置和至少一个间隙所确定的区域覆盖所述第二光线区域的真实场景光线,其中所述间隙是由相邻的吸收结构之间的间隔而形成的;
    所述基底的布置使得所述基底透过所述真实场景光线。
  3. 如权利要求2所述的头戴显示设备,其中,所述多个吸收结构相对于所述光学成像装置的主光轴的倾斜角度在视线角度范围内,
    所述视线角度范围中的最小视线角度由所述人眼位置和所述分光元件的所述远离所述图像源元件的一端来确定,所述视线角度范围中的最大视线角度由所述人眼位置和所述人眼视角来确定。
  4. 如权利要求2或3所述的头戴显示设备,其中,所述多个吸收结构中相邻的第一吸收结构的第一端和第二吸收结构的第二端所在的平面通过所述人眼镜像位置,所述第一吸收结构的第一端与所述第二吸收结构的第二端分别位于所述吸收元件的两侧且彼此靠近,且所述第一吸收结构的第二端与所述第二吸收结构的第一端分别位于所述吸收元件的两侧且彼此远离。
  5. 如权利要求4所述的头戴显示设备,其中,所述多个吸收结构所处的多个平面均通过所述人眼位置,或所述多个吸收结构所处的平面相互平行。
  6. 如权利要求2至5中任一项所述的头戴显示设备,其中,所述多个吸收结构附接于所述基底的表面,或所述多个吸收结构内嵌于所述基底。
  7. 如权利要求2至6中任一项所述的头戴显示设备,其中,所述多个吸收结构被形成为微结构阵列分布。
  8. 如权利要求1至7中任一项所述的头戴显示设备,其中,所述吸收元件被形成 为平板或者弯曲的板。
  9. 如权利要求2至8中任一项所述的头戴显示设备,其中,所述吸收结构包括吸光涂层。
  10. 如权利要求9所述的头戴式显示设备,其中,所述吸光涂层的吸收波段包括整个可见光波段。
  11. 如权利要求1至10中任一项所述的头戴显示设备,其中,所述吸收元件的一端附接到所述分光元件的远离所述图像源元件的一端和/或所述反射元件的远离所述图像源元件的一端。
  12. 如权利要求1至11中任一项所述的头戴显示设备,其中,在光路方向上,所述分光元件和所述反射元件依次布置在所述图像源元件的下游。
  13. 如权利要求2或3所述的头戴显示设备,其中,所述基底包括靠近所述分光元件的第一侧和与第一侧相对的第二侧,每个吸收结构具有位于所述基底的第一侧的首端和位于所述基底的第二侧的末端,通过至少部分相邻吸收结构的首端和末端的平面与所述图像源元件线的出光面的法线相交于一点。
  14. 如权利要求13所述的头戴显示设备,其中,所述至少部分吸收结构所在的平面均与通过所述分光元件的且与所述图像源元件的出光面平行的平面相交于同一直线。
  15. 如权利要求1所述的头戴显示设备,其中,所述吸收元件所处的平面通过所述人眼位置和所述分光元件的所述远离所述图像源元件的一端,并且由所述人眼镜像位置和所述吸收元件的两端所确定的区域覆盖所述第一光线区域。
PCT/CN2021/081203 2020-03-31 2021-03-17 头戴显示设备 WO2021197060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/907,668 US20230194872A1 (en) 2020-03-31 2021-03-17 Head-mounted display device
EP21779644.0A EP4113194A4 (en) 2020-03-31 2021-03-17 VISIO-HELD TYPE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010243452.8 2020-03-31
CN202010243452.8A CN111290127B (zh) 2020-03-31 2020-03-31 头戴显示设备

Publications (1)

Publication Number Publication Date
WO2021197060A1 true WO2021197060A1 (zh) 2021-10-07

Family

ID=71027295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081203 WO2021197060A1 (zh) 2020-03-31 2021-03-17 头戴显示设备

Country Status (4)

Country Link
US (1) US20230194872A1 (zh)
EP (1) EP4113194A4 (zh)
CN (1) CN111290127B (zh)
WO (1) WO2021197060A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290127B (zh) * 2020-03-31 2022-11-15 优奈柯恩(北京)科技有限公司 头戴显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180014567A (ko) * 2016-08-01 2018-02-09 연세대학교 산학협력단 증강현실 또는 혼합현실의 구현이 가능한 머리 장착형 디스플레이 장치 및 방법
CN107884934A (zh) * 2017-11-10 2018-04-06 联想(北京)有限公司 头戴式显示设备及其控制方法
US20190155031A1 (en) * 2016-06-28 2019-05-23 Hologram Industries Research Gmbh Display apparatus for superimposing a virtual image into the field of vision of a user
CN209542958U (zh) * 2018-12-12 2019-10-25 深圳创维新世界科技有限公司 抗干扰增强现实显示系统及ar眼镜
CN111290127A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 头戴显示设备
CN211577567U (zh) * 2020-03-31 2020-09-25 优奈柯恩(北京)科技有限公司 头戴显示设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195160A (ja) * 1997-09-19 1999-04-09 Seiko Epson Corp 頭部装着型表示装置
JP2017161564A (ja) * 2016-03-07 2017-09-14 セイコーエプソン株式会社 導光装置及び虚像表示装置
CN108459412B (zh) * 2017-02-21 2020-09-01 宏碁股份有限公司 虚拟实境显示装置
KR102485447B1 (ko) * 2017-08-09 2023-01-05 삼성전자주식회사 광학 윈도우 시스템 및 이를 포함하는 투시형 디스플레이 장치
CN207148439U (zh) * 2017-09-14 2018-03-27 潍坊歌尔电子有限公司 增强现实头戴设备
CN108227205A (zh) * 2018-02-02 2018-06-29 深圳惠牛科技有限公司 一种头戴显示光学系统及头戴显示设备
KR20200032467A (ko) * 2018-09-18 2020-03-26 삼성전자주식회사 외부 광의 투과율을 조절할 수 있는 광학 부재를 포함하는 전자 장치 및 그의 동작 방법
CN110095870B (zh) * 2019-05-28 2022-04-19 京东方科技集团股份有限公司 光学显示系统、显示控制装置和增强现实设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190155031A1 (en) * 2016-06-28 2019-05-23 Hologram Industries Research Gmbh Display apparatus for superimposing a virtual image into the field of vision of a user
KR20180014567A (ko) * 2016-08-01 2018-02-09 연세대학교 산학협력단 증강현실 또는 혼합현실의 구현이 가능한 머리 장착형 디스플레이 장치 및 방법
CN107884934A (zh) * 2017-11-10 2018-04-06 联想(北京)有限公司 头戴式显示设备及其控制方法
CN209542958U (zh) * 2018-12-12 2019-10-25 深圳创维新世界科技有限公司 抗干扰增强现实显示系统及ar眼镜
CN111290127A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 头戴显示设备
CN211577567U (zh) * 2020-03-31 2020-09-25 优奈柯恩(北京)科技有限公司 头戴显示设备

Also Published As

Publication number Publication date
EP4113194A1 (en) 2023-01-04
CN111290127B (zh) 2022-11-15
CN111290127A (zh) 2020-06-16
US20230194872A1 (en) 2023-06-22
EP4113194A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
CN206741082U (zh) 与头戴式显示器一同使用的设备以及该头戴式显示器
CN206479716U (zh) 一种用于与头戴显示器一起使用的设备以及头戴显示器
JP6019918B2 (ja) 虚像表示装置
EP2740004B1 (en) Method and apparatus for a near-to-eye display
CN104423044B (zh) 虚像显示装置
CN103984098B (zh) 虚像显示装置
US8503087B1 (en) Structured optical surface
US9915823B1 (en) Lightguide optical combiner for head wearable display
US8867139B2 (en) Dual axis internal optical beam tilt for eyepiece of an HMD
CN110554500B (zh) 头戴式显示装置
US20220011570A1 (en) Optic and Assembly for Reduced Reflections
CN106662745A (zh) 近眼显示系统的紧致体系结构
WO2023207953A1 (zh) 显示装置及可穿戴显示设备
US10609364B2 (en) Pupil swim corrected lens for head mounted display
US12099187B2 (en) AR optical system and AR display device
US10895750B2 (en) Conical optical combiner
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
WO2021197060A1 (zh) 头戴显示设备
CN211577567U (zh) 头戴显示设备
WO2022068662A1 (zh) 一种显示设备模组及头戴式显示设备
US11754837B2 (en) Optical device for augmented reality having external light leakage prevention function
KR20230046885A (ko) 비구면을 사용해 폭을 줄인 증강현실용 기하 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021779644

Country of ref document: EP

Effective date: 20220929

NENP Non-entry into the national phase

Ref country code: DE