[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021193664A1 - 電極用触媒の製造システムおよび製造方法 - Google Patents

電極用触媒の製造システムおよび製造方法 Download PDF

Info

Publication number
WO2021193664A1
WO2021193664A1 PCT/JP2021/012069 JP2021012069W WO2021193664A1 WO 2021193664 A1 WO2021193664 A1 WO 2021193664A1 JP 2021012069 W JP2021012069 W JP 2021012069W WO 2021193664 A1 WO2021193664 A1 WO 2021193664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode catalyst
electrode
catalyst precursor
container body
drying
Prior art date
Application number
PCT/JP2021/012069
Other languages
English (en)
French (fr)
Inventor
誠 西別当
安宏 関
明伸 竹野谷
聖崇 永森
五十嵐 寛
博紀 椎名
美絵 田村
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to KR1020227035196A priority Critical patent/KR20220151685A/ko
Priority to CN202180016636.3A priority patent/CN115176364A/zh
Priority to JP2022510565A priority patent/JPWO2021193664A1/ja
Priority to EP21775676.6A priority patent/EP4129438A1/en
Priority to US17/801,140 priority patent/US20230079500A1/en
Publication of WO2021193664A1 publication Critical patent/WO2021193664A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/12Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
    • F26B11/16Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices the stirring device moving in a vertical or steeply-inclined plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing system and a manufacturing method of a catalyst for electrodes.
  • PEFC Polymer Electrolyte Fuel Cell
  • an electrode catalyst for PEFC for example, an electrode catalyst in which a platinum (Pt) or a platinum (Pt) alloy, which is a catalyst component for an electrode, is supported on carbon as a carrier is known.
  • a platinum (Pt) or a platinum (Pt) alloy which is a catalyst component for an electrode, is supported on carbon as a carrier.
  • the electrode catalyst contains a large amount of impurities derived from the raw material and impurities mixed from the manufacturing equipment thereof. This may not be possible, or the catalyst layer may corrode, shortening the life of the fuel cell. Therefore, it is preferable to keep the impurity content of the electrode catalyst, particularly the chlorine content, low.
  • the impurities include chemical species belonging to halogen (ions and salts thereof), organic substances (organic acids, salts thereof, condensates of organic acids) and the like.
  • a step of removing chlorine may be performed after the production of the electrode catalyst precursor which is a raw material of the electrode catalyst, and in that case, a step of drying the electrode catalyst precursor after the cleaning step may be performed.
  • a step of drying the electrode catalyst precursor after the cleaning step may be performed.
  • Patent Documents 1 and 2 describe that a shelf-type dryer, a rotary dryer, an air flow dryer, a spray dryer, a stirring dryer, a freeze dryer, and the like can be used as a drying method after cleaning. ing.
  • Patent Documents 1 and 2 describe that a stirring dryer can be used to dry the catalyst for a fuel cell, but there is no description of a specific configuration or operating conditions of the stirring dryer.
  • the present invention has been made in view of such circumstances, and by eliminating the work of the operator for transferring the catalyst precursor for the electrode and shortening the drying time of the catalyst precursor for the electrode, the electrode Provided are an electrode catalyst manufacturing system and a manufacturing method capable of significantly reducing the labor and time for manufacturing the catalyst for the electrode.
  • an electrode catalyst precursor manufacturing apparatus that manufactures an electrode catalyst precursor that is a raw material for an electrode catalyst, A cleaning device for cleaning the catalyst precursor for electrodes and A manufacturing system for manufacturing an electrode catalyst, which comprises a drying device for drying the electrode catalyst precursor washed by the cleaning device by a stirring processing device equipped with a stirring blade having a spiral ribbon rotary blade.
  • the drying device is An introduction step of introducing the catalyst precursor for an electrode into the container body of the stirring processing apparatus, and A drying step of drying the electrode catalyst precursor by heating and depressurizing the container body and stirring and mixing the electrode catalyst precursor in the container body with the stirring blades.
  • an electrode catalyst manufacturing system including means for executing a step of taking out the electrode catalyst precursor in the container body.
  • the electrode catalyst manufacturing system is
  • the stirring blades include a rotating spindle that rotates the stirring blade by being rotated by a driving device, a spiral ribbon rotary blade that stirs and mixes the catalyst precursor for an electrode in the container body, the rotating spindle, and the spiral. Equipped with a rotary wing strut that connects to the ribbon rotary wing, The rotary spindle and the rotary wing strut are formed in a hollow tubular shape.
  • the rotor support column is provided with a gas ejection hole on the lower side of the tip portion, and is provided with a gas ejection hole.
  • the rotating spindle may be connected to the gas flow path.
  • An electrode catalyst precursor manufacturing step for producing an electrode catalyst precursor which is a raw material for an electrode catalyst
  • a cleaning step for cleaning the catalyst precursor for the electrode and Manufacture for producing an electrode catalyst, which comprises a drying step in which the cleaning catalyst precursor for the electrode, which has been washed in the washing step, is dried by a stirring processing apparatus equipped with a stirring blade having a spiral ribbon rotary blade. It ’s a method,
  • the drying step A drying step of drying the electrode catalyst precursor by heating and depressurizing the container body and stirring and mixing the electrode catalyst precursor in the container body with the stirring blades.
  • a method for producing an electrode catalyst which comprises a slow oxidation step of supplying air into the container body and slowly oxidizing the electrode catalyst precursor.
  • the step of taking out the catalyst precursor for the electrode in the container body is further included.
  • the take-out step may include a scraper step of ejecting gas downward from a gas ejection hole provided at the tip of a rotary blade strut that supports the spiral ribbon rotary blade.
  • the stirring type drying device used in the catalyst cake preparation step may be the stirring processing device.
  • a reactor equipped with a stirrer may be used in the reslurry step.
  • the reactor may be the stirring processing device.
  • the water content of the catalyst cake may be less than 80 wt%.
  • the method for producing an electrode catalyst may further include a second analysis step of measuring the water content of the catalyst cake obtained through the catalyst cake preparation step.
  • the work for transferring the electrode catalyst precursor by the operator is eliminated, and the drying time of the electrode catalyst precursor is shortened, thereby containing halogen. It is possible to significantly reduce the labor and time required to produce an electrode catalyst having a low amount, particularly a chlorine content.
  • FIG. 1 is a block diagram showing an outline of a manufacturing system for an electrode catalyst according to the first embodiment.
  • the electrode catalyst manufacturing system 10 comprises an electrode catalyst precursor manufacturing apparatus 12 for manufacturing an electrode catalyst precursor, which is a raw material for the electrode catalyst 1 (see FIG. 18), and an electrode catalyst precursor by a filter press.
  • a drying device that dries the cleaning device 13 for cleaning and the catalyst precursor 41 for electrodes (see FIG. 19) after cleaning that has been cleaned by the cleaning device 13 with a stirring processing device equipped with a stirring blade having a spiral ribbon rotary blade. Has 14 and.
  • the electrode catalyst precursor manufacturing apparatus 12 manufactures an electrode catalyst precursor which is a raw material of the electrode catalyst 1.
  • the electrode catalyst precursor manufacturing apparatus 12 includes a reaction step execution means 21 for executing a reaction step for manufacturing the electrode catalyst precursor.
  • the electrode catalyst precursor which is the raw material of the electrode catalyst 1
  • the carrier 2 (FIG. 14). reference).
  • the method for producing the catalyst precursor for the electrode is not particularly limited as long as the catalyst component of the catalyst 1 for the electrode can be supported on the carrier 2.
  • an impregnation method in which a solution containing the catalyst component of the electrode catalyst 1 is brought into contact with the carrier 2 to impregnate the carrier 2 with the catalyst component, or a reducing agent is added to the solution containing the catalyst component of the electrode catalyst 1.
  • Liquid phase reduction method electrochemical precipitation method such as underpotential precipitation (UPD) method, chemical reduction method, reduction precipitation method using adsorbed hydrogen, surface leaching method of alloy catalyst, substitution plating method, sputtering method, vacuum deposition method, etc.
  • the adopted manufacturing method can be exemplified.
  • the cleaning device 13 cleans the electrode catalyst precursor manufactured by the electrode precursor manufacturing device 12 described above by a filter press. In the cleaning device 13, filtration and dehydration are performed as well as cleaning of the catalyst precursor for electrodes.
  • FIG. 2 shows an example of a cleaning device 13 that performs a filter press.
  • a plurality of dehydrating devices 104 are arranged in parallel in the horizontal direction on a guide rail 103 bridged between the front frame 101 and the rear frame 102. These dehydrators 104 are supported so that they can move horizontally on the guide rail 103.
  • an electric cylinder 105 is supported on the rear frame 102, and the dehydrator 104 is tightened by a pressing member 106 that reciprocates by the driving force of the electric cylinder 105.
  • Such a filter press cleaning device 13 is conventionally known, and for example, the one described in Japanese Patent No. 5950207 is known.
  • the dehydrator 104 those described in Japanese Patent No. 5327,000 are known, for example.
  • the outline of the cleaning flow by the filter press will be described (see FIGS. 3 to 10).
  • the undiluted solution 30 passes through the filter cloth 113 and is filtered, and the filtrate 42 is discharged to the outside.
  • the solid matter captured by the filter cloth 113 is dehydrated while forming a cake layer.
  • the electric cylinder 105 is contracted to open the plurality of filter plates 111 and 111'at the same time, and at the same time, the dehydrated cake 40 is discharged while the filter cloth 113 is moved downward.
  • the cleaning device 13 includes a plate closing process, a press-fitting process, a normal cleaning process, a reverse cleaning process, a plate opening process, a cake peeling process, and a filter cloth cleaning process, respectively.
  • the filter cloth cleaning process execution means 37 The configurations of the steps S21 to S27 also shown in the flow chart of the method for manufacturing the electrode catalyst 1 of FIG. 19 to be described later will be described below.
  • the plate closing step S21 is a step of tightening the filter plates 111 and 111'to form the filter chamber 112, and is executed by the plate closing process executing means 31.
  • FIG. 3 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the plate closing step S21.
  • the plate closing process executing means 31 drives the electric cylinder 105 to move the pressing member 106 toward the front frame 101, thereby bringing the two filter plates 111 and 111'of the dehydrator 104 closer to each other and tightening the filter chamber.
  • the press-fitting step S22 is a step of press-fitting the liquid (stock solution) 30 containing the catalyst precursor for the electrode into the filter chamber 112 from the stock solution supply pipe 114, filtering the liquid, and discharging the filtrate 42 from the filtrate discharge ports 115 and 115'. Yes, it is executed by the press-fitting process execution means 32.
  • FIG. 4 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the press-fitting step S22.
  • the water content of the liquid 30 containing the electrode catalyst precursor is filtered through the filter cloth 113. It oozes out to 116 and is discharged to the outside from the filtrate discharge ports 115 and 115'.
  • the liquid 30 containing the catalyst precursor for the electrode press-fitted into the filter chamber 112 is filtered. That is, the solid component in the liquid 30 containing the catalyst precursor for the electrode remains in the filter chamber 112 as the cake 40 containing the catalyst precursor for the electrode, and the water content of the liquid 30 containing the catalyst precursor for the electrode remains as the filtrate 42 to the outside. It is discharged.
  • the cake 40 containing the catalyst precursor for the electrode is formed so as to have a thickness range experimentally determined in advance.
  • the thickness of the cake 40 is determined experimentally in advance in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • the thickness T of the cake 40 at the time of the press-fitting step S22 is adjusted to 5 to 10 mm.
  • the thickness T of the cake 40 is 10 mm or less, a sufficient cleaning effect can be obtained relatively easily by adjusting the cleaning time of the normal cleaning step and / or the back cleaning step described later.
  • the thickness T of the cake 40 exceeds 10 mm, there is a large tendency that a sufficient cleaning effect cannot be obtained even if the cleaning time of the normal cleaning step and / or the back cleaning step described later is lengthened.
  • the thickness T of the cake 40 is 5 mm or more, cracks are less likely to be formed in the cake, and the washing water does not pass through the cake from the upstream side surface of the cake to the downstream side surface of the cake. There is a greater tendency to prevent the formation of circulating paths.
  • FIG. 5 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the normal cleaning step S23.
  • the cleaning water 43 is flowed from the stock solution supply pipe 114 toward the filtrate discharge ports 115 and 115'by the normal cleaning step execution means 33, and the cake 40 containing the catalyst precursor for the electrode remaining in the filter chamber 112 is washed in the press-fitting step S22. do.
  • the electric conductivity ⁇ of the filtrate measured by the JIS standard test method JIS K0522
  • the halogen content particularly the chlorine content of the catalyst precursor for the electrode can be reduced.
  • the washing water 43 can be switched from room temperature water (for example, 23 ° C.) to warm water (for example, 70 ° C.) when the electric conductivity ⁇ of the filtrate becomes equal to or less than a predetermined value.
  • the predetermined value of the electrical conductivity ⁇ of the filtrate is preferably a value selected from the range of 20 to 40 ⁇ S / cm.
  • the temperature of room temperature water is preferably 20 to 25 ° C.
  • the temperature of the warm water is preferably 60 to 80 ° C.
  • FIG. 6 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the reverse cleaning step S24.
  • the dehydrator 104 includes, for example, at least two filtrate outlets 115, 115'.
  • the cleaning water 43 is flowed from the filtrate discharge port 115 toward the filter chamber 112 by the reverse cleaning step execution means 34, so that the electrode catalyst precursor remaining in the filter chamber 112 is included. Wash cake 40.
  • the filtrate 42 is discharged from, for example, another filtrate discharge port 115'which is different from the filtrate discharge port 115 for supplying the washing water 43.
  • the electric conductivity ⁇ of the filtrate can be further lowered, and the halogen content, particularly the chlorine content, of the catalyst precursor for the electrode can be further reduced.
  • cleaning may be performed with normal temperature water (for example, 23 ° C.), but since the electrical conductivity ⁇ of the filtrate has decreased to some extent at the end of the normal cleaning step S23, warm water (for example, 23 ° C.) is used from the beginning. For example, it is preferable to perform cleaning at 70 ° C.).
  • the temperature of the warm water is preferably 60 to 80 ° C.
  • the plate opening step S25 is a step of opening the filter plates 111, 111'forming the filter chamber 112, and is executed by the plate opening process executing means 35.
  • FIG. 7 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the plate opening step S25.
  • the plate opening process executing means 35 drives the electric cylinder 105 to move the pressing member 106 toward the rear frame 102, thereby releasing the tightening of the dehydrating device 104. In this way, the two filter plates 111 and 111'of the dehydrator 104 are separated from each other, and the filter chamber 112 is opened.
  • the cake peeling step S26 is a step of lowering the filter cloth to peel and drop the cake 40 containing the dehydrated electrode catalyst precursor, and is executed by the cake peeling step executing means 36.
  • FIG. 8 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the cake peeling step S26.
  • the filter cloth washing step S27 is a step of washing the filter cloth 113 with the washing water 43 after the cake peeling step S26, and is executed by the filter cloth washing step executing means 37.
  • FIG. 9 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the filter cloth cleaning step S27. After the cake 40 containing the catalyst precursor for the electrode is peeled off from the filter cloth 113, the filter cloth 113 runs upward and returns to the original position.
  • the cleaning water 43 is supplied from the cleaning water pipe 117 provided below the dehydrator 104 by a filter cloth cleaning pump (not shown) while the filter cloth 113 is traveling upward by the filter cloth cleaning process executing means 37. NS.
  • the filter cloth 113 By spraying the washing water 43 onto the filter cloth 113, the filter cloth 113 is washed, clogging of the filter cloth 113 is prevented, and the catalyst precursor for the electrode and the like adhering to the filter cloth 113 are reliably recovered. That is, since the wastewater during cleaning the filter cloth contains the catalyst precursor for the electrode, it is preferable to collect all of the wastewater. By flowing and recovering the electrode catalyst precursor adhering to the filter cloth 113 in this way, the yield of the electrode catalyst precursor can be increased. Further, for example, the amount of the catalyst precursor for the electrode can be further increased by washing the filter cloth 113 while repeatedly running it up and down.
  • the pressing step may be performed after the normal washing step S23 and / or after the back washing step S24.
  • the squeezing step is a step of further squeezing and dehydrating the cake 40 containing the catalyst precursor for the electrode, and is executed by a squeezing step executing means (not shown).
  • FIG. 10 is an extracted view of one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of an operating state in the squeezing step.
  • the solid content concentration of the cake 40 containing the catalyst precursor for the electrode is increased, and the cake 40 containing the catalyst precursor for the electrode having an extremely low water content is produced.
  • the pressurized water 119 is drained from the diaphragm 118 after the completion of the pressing step, the pressing by the diaphragm 118 is eliminated, and the filter cloth 113 pressed by the diaphragm 118 is easily peeled off from the cake 40, which is preferable.
  • the other filter plate 111 may also have a diaphragm (not shown).
  • pressurized water is also injected into a diaphragm (not shown) provided on the side of the filter plate 111, so that the cake 40 containing the catalyst precursor for the electrode can be squeezed and dehydrated.
  • the pressurized water is drained from the diaphragm after the pressing step is completed, the pressing by the diaphragm (not shown) is eliminated, so that the filter cloth 113 pressed by the diaphragm (not shown) is released from the cake 40. It is preferable because it is easily peeled off.
  • all the dehydrators 104 can perform the same operation, so that the amount processed by one apparatus at one time can be determined. This can be increased, and the production efficiency of the electrode catalyst is improved. Further, since the dehydrator 104 has a large filtration area and a high pressure resistance structure, the processing speed can be improved. Further, since the processing from the introduction of the undiluted solution to the discharge of the cake to the cleaning of the apparatus can be performed fully automatically, the labor and time of the processing in the cleaning process can be reduced. Further, since a resin, a lining material, or the like can be selected as the material of the device, it is possible to improve the corrosion resistance of the device.
  • the electrical conductivity ⁇ measured by the JIS standard test method (JIS K0522) of the filtrate obtained after the normal cleaning step S23 and / or the back cleaning step S24 is equal to or less than a preset set value. Therefore, the processing conditions such as the normal cleaning time in the normal cleaning step S23 and the back cleaning time in the back cleaning step S24 are adjusted. For example, if the cleaning time of the back cleaning step is lengthened to the same level as the cleaning time of the normal cleaning step, the cleaning effect is increased. The same degree means a difference of 0 to 15 minutes (absolute value of the difference between the cleaning time in the normal cleaning process and the cleaning time in the back cleaning process). Further, the filtrate is a liquid that is drained from the filtrate discharge port after cleaning, and it is preferable to use the whole filtrate discharged in the step.
  • the set value of the electrical conductivity ⁇ of the filtrate obtained after the normal cleaning step S23 is preferably a value selected from the range of 20 ⁇ S / cm or less.
  • the set value of the electrical conductivity ⁇ of the filtrate obtained after the backwashing step S24 is preferably a value selected from the range of 10 ⁇ S / cm or less.
  • the cleaning water 43 used in the cleaning device 13 may be pure water such as ultrapure water, but may not be pure water.
  • pH 6 ⁇ 8 JIS standard test method (JIS K0522) electrical conductivity is measured by [rho i uses an ion-exchange water or the like of less than 10 [mu] S / cm.
  • the cleaning method and the filtration method using a filter press are adopted in the cleaning step, but the cleaning method and the filtration method using a conventional centrifuge (not shown) or the like may be adopted. ..
  • FIG. 11 shows a schematic configuration of the drying apparatus 14 according to the present invention.
  • the drying device 14 dries the electrode catalyst precursor washed by the above-mentioned washing device 13 by a stirring processing device 201 provided with a stirring blade 204.
  • the stirring processing device 201 as a drying device mainly includes an inverted conical hollow container-shaped container body 202, a decompression mechanism 203 for reducing the pressure inside the container body 202, and a stirring blade 204.
  • the upper part of the container body 202 is covered with a lid 205 detachably provided on the container body 202, and a jacket 206 for flowing steam S as a heating medium for heating the inside of the container body 202 is provided on the peripheral wall.
  • Support portions 210 and 210 for supporting the container body 202 are provided on the outer surface.
  • Load cells 212 and 212 whose weight changes can be confirmed, are provided on the lower surfaces of the support portions 210 and 210.
  • the container body 202 can be mounted. It is designed to be suspended at the installation location.
  • a stirring blade 204 is provided so as to stir the inside of the container body 202
  • a driving device 207 of the stirring blade 204 is provided on the lid 205 on the upper part of the container body 202, and the container body is placed on the top of the cone which is the lower end of the container body 202.
  • An opening 208 is formed to take out the catalyst precursor for the electrode in 202.
  • An take-out valve 209 is provided in the opening 208, and the take-out valve 209 is operated to open the opening to take out the catalyst precursor for the electrode in the container body 202.
  • the supply port 211 is provided on the lid 205 on the upper part of the container body 202
  • the supply valve 215 is provided on the supply port 211
  • the catalyst precursor for the electrode is opened by operating the supply valve 215 to open the catalyst precursor for the container body. It is designed to supply to 202.
  • the jacket 206 is provided with a heating medium injection port 213 for injecting steam S and a heating medium discharge port 214 for discharging steam S.
  • the container body 202 is provided with a temperature indicator 216, which monitors the temperature of the electrode catalyst precursor in the container body 202 and supplies the amount of steam S to the heating medium injection port 213.
  • a temperature indicator 216 which monitors the temperature of the electrode catalyst precursor in the container body 202 and supplies the amount of steam S to the heating medium injection port 213.
  • the temperature of the electrode catalyst precursor in the container body 202 can be adjusted.
  • the heating medium injection port 213 is configured so that the cooling medium C can be injected in addition to the heating medium
  • the heating medium discharge port 214 is configured so that the cooling medium C can be discharged in addition to the heating medium.
  • FIG. 12 shows a perspective view of the stirring blade 204.
  • the stirring blade 204 has a rotary spindle 222 extending through the center of the lid 205, a spiral ribbon rotary blade 223 attached to the tip of the rotary spindle 222 and rotating together with the rotary spindle 222, and a rotary spindle 222 and a spiral ribbon rotation. It is equipped with an arm 224 as a rotary blade strut connected to the blade 223 and a vortex breaker 225 provided on the rotary spindle 222 above the spiral ribbon rotary blade 223, and includes a rotary spindle 222, a spiral ribbon rotary blade 223, and an arm 224. And the vortex breaker 225 are integrally configured.
  • the rotary spindle 222 is incorporated in the drive device 207 via a seal unit 221 (see FIG. 11).
  • the rotary spindle 222 rotates, and accordingly, the rotary spindle 222 is integrated with the rotary spindle 222.
  • the rotary spindle 222 is formed in a hollow tubular shape, and is connected to the arm 224, which is also formed in a hollow tubular shape, so as to be circulated.
  • the end of the rotating spindle 222 on the drive device 207 side prepared an oxygen gas concentration by mixing a flow path of the gas G for the scraper, for example, nitrogen gas, atmospheric pressure air, nitrogen gas and oxygen gas at an arbitrary ratio.
  • a mixed gas, a mixed gas in which nitrogen gas and air are mixed at an arbitrary ratio to prepare an oxygen gas concentration, and a high-pressure air flow path are circulateably connected.
  • 55 is configured to inject the gas G into the rotating spindle 222.
  • the drive device 207 uses a geared motor or the like, and the rotation speed is adjusted to a predetermined value to rotate the stirring blade 204. Further, the drive device 207 includes a position detection device (not shown) that detects the rotation and position of the stirring blade 204.
  • the seal unit 221 is equipped with, for example, a dry seal and a mechanical seal, and is configured to be capable of processing even when the inside of the container body 202 is in high vacuum or high pressure.
  • the spiral ribbon rotary blade 223 is formed in a spiral shape so as to be arranged with a slight clearance along the inner wall surface of the conical container body 202 when the stirring blade 204 is arranged on the container body 202.
  • the catalyst precursor for the electrode rises along the inner wall surface of the container body 202.
  • the width of the ribbon of the spiral ribbon rotary blade 223 is formed to be wider toward the upper part, and the powder transfer in each cross section in the vertical direction of the container body 202 is configured to be a constant ratio.
  • the spiral ribbon rotary blade 223 employs one single ribbon blade, but the spiral ribbon rotary blade 223 may employ two double ribbon blades. ..
  • the arm 224 supports the spiral ribbon rotor 223, and the spiral ribbon rotor 223 is securely fixed to the rotary spindle 222.
  • a gas ejection hole 226 for a scraper is provided on the lower side of the tip of each arm 224, and when the gas G is injected into the rotating spindle 222 from the above-mentioned flow path of the gas G, the inside of the rotating spindle 222 and The gas G is configured to be injected from each gas ejection hole 226 through the inside of each arm 224, and the retention of the electrode catalyst precursor is prevented during the extraction step S35 described later.
  • the vortex breaker 225 rotates in the container body 202 to guide the electrode catalyst precursor that rises along the inner wall surface of the container body 202 to the central portion of the container body 202. Therefore, the circulating flow of the catalyst precursor for the electrode is guided downward at the central portion of the container body 202, and the classification action caused by the turbid flow on the layer surface at the time of free fall is prevented.
  • the vortex breaker 225 is arranged so as to leave a gap between the vortex breaker 225 and the inner surface of the lid 205.
  • the vortex breaker 225 may have a configuration that is integrally arranged so as to be in contact with the inner surface of the lid 205. Even in this case, the above-mentioned classification action can be prevented.
  • Reference numeral 231 is a bug filter, which is provided in the exhaust hole 232 of the lid 205 and evaporates from the catalyst precursor for the electrode in the container body 202 through the bug filter 231. Liquids and gases are discharged.
  • Reference numeral 233 is a condenser, which condenses the liquid flowing from the bag filter 231. The condenser 233 and the exhaust hole 232 of the lid 205 are connected by a connecting pipe 235 via a bag filter 231.
  • And 234 is a vacuum pump, which is connected to the condenser 233 by the suction pipe 236, and by driving this vacuum pump 234, it evaporates from the inside of the container body 202 to the bag filter 231 and the condenser 233 from the electrode catalyst precursor. It is configured to allow the liquid or gas to flow.
  • the connecting pipe 235 is provided with a pressure indicator controller 237 so as to adjust the pressure in the container body 202 when drying under reduced pressure.
  • the control valve 238 provided in the suction pipe 236 is adjusted by the adjustment signal of the pressure indicator controller 237, and the degree of vacuum sucked by the vacuum pump 234 is adjusted.
  • the gas and vapor flowing from the bag filter 231 by the connecting pipe 235 are condensed by the condenser 233, and the easily condensing components are separated from the gas as a condensate.
  • the separated gas is sucked into the vacuum pump 234 by the suction pipe 236 and exhausted from the vacuum pump 234.
  • An air blow nozzle (not shown) may be provided at the bottom of the container body 202, and the container body 202 may be configured to return from the reduced pressure state to the normal pressure state by injecting inert gas or air through the air blow nozzle. ..
  • the drying apparatus 14 performs a gradual oxidation treatment of the introduction step S31, the drying step S32, the cooling step S33, and the cooled electrode catalyst precursor.
  • the introduction step S31 is a step of introducing the washed electrode catalyst precursor into the drying apparatus 14, and is executed by the introduction step execution means 51.
  • the introduction process executing means 51 operates the supply valve 215 of the stirring processing device 201 to open the opening, and the catalyst precursor for the electrode having a predetermined water content is sent from the supply port 211 to the container body 202. Introduce. It is preferable that the water content of the catalyst precursor for the electrode is measured in advance.
  • This method of introducing the catalyst precursor for electrodes may be introduced manually by using a funnel or the like, and as shown in FIG. 13A, a pipe, a belt conveyor, or the like to which the catalyst precursor for electrodes is transferred, or the like.
  • the weight of the introduced catalyst precursor for the electrode is measured by the load cells 212 and 212.
  • a preheating step of injecting steam S into the jacket 206 to preheat the inside of the container body 202 to a predetermined temperature may be performed.
  • the introduction process executing means 51 operates the supply valve 215 to close the opening to seal the container body 202, and the introduction process S31 is completed.
  • the drying step S32 is a step of drying the catalyst precursor for electrodes introduced into the container body 202 (a step of performing so-called vacuum drying), and is executed by the drying step executing means 52.
  • the drying process executing means 52 drives the driving device 207 to rotate the stirring blade 204 and drives the vacuum pump 234 to exhaust the inside of the container body 202. Then, the pressure is reduced, and the operating pressure is adjusted to a predetermined pressure by the pressure indicator controller 237, and the electrode catalyst precursor is stirred and mixed.
  • the rotation speed of the stirring blade 204 is preferably 40 to 80 rotations per minute, and the operating pressure is preferably 5 to 20 kPa (gauge pressure).
  • the drying process executing means 52 injects steam S into the jacket 206 from the heating medium injection port 213 by the temperature indicator controller 216, and heats the container body 202 by the conduction heat transfer of the steam S to heat the inside of the container body 202.
  • the catalyst precursor for the electrode is adjusted to a predetermined temperature (drying temperature) and dried. Further, the heat generated by the stirring of the stirring blade 204 contributes to the drying of the catalyst precursor for the electrode.
  • the drying temperature is preferably a value selected from the range of 50 to 150 ° C.
  • the operating pressure and heating temperature may be changed during the drying process in order to adjust the drying time by measuring the temperature (product temperature) of the catalyst precursor for the electrode and observing the degree of change in the product temperature. ..
  • the circulating flow of the electrode catalyst precursor in the container body 202 in the drying step S32 will be described in more detail.
  • the stirring blade 204 rotates, the electrode catalyst precursor rises along the inner wall surface of the container body 202. do. After that, when the catalyst precursor for the electrode is brought to the center of the container body 202 by the vortex breaker 225 provided above the spiral ribbon rotor 223, the circulation immediately descends from this center and slips into the layer. It is done.
  • the vapor or gas evaporated from the electrode catalyst precursor is sucked by the vacuum pump 234, and the dust is filtered and collected by the bag filter 231. After that, it flows to the condenser 233 through the connecting pipe 235, is cooled by the condenser 233, is liquefied, and the condensate is recovered, and the gas is exhausted by the vacuum pump 234.
  • the weight of the electrode catalyst precursor changes.
  • the weight of the electrode catalyst precursor in the container body 202 at this time is measured by the load cells 212 and 212, the weight and water content of the electrode catalyst precursor at the time of introduction, and the weight of the current electrode catalyst precursor. From, the water content of the current electrode catalyst precursor is calculated.
  • the drying step S32 is completed when the electrode catalyst precursor in the container body 202 has a predetermined water content or less.
  • the predetermined water content is preferably 3 wt%.
  • the value of the water content is described in the wet base display.
  • the configuration may not have the load cell 212.
  • the change in the weight of the electrode catalyst precursor in the container body 202 is subjected to a preliminary test in which the drying conditions (weight of the electrode catalyst precursor charged in the container body 202, drying conditions) in the drying step S32 are the same. It may be performed in advance and grasped in advance. Then, the change in the weight of the catalyst precursor for the electrode in the container body 202 may be easily grasped by monitoring the elapsed time from the start of drying based on the result of the preliminary test.
  • the cooling step S33 is a step of cooling the dried electrode catalyst precursor in the container body 202, and is executed by the cooling step executing means 53.
  • the cooling process executing means 53 discharges the steam S in the jacket 206 from the heating medium discharge port 214 by the temperature indicator controller 216.
  • the cooling process executing means 53 continues to drive the drive device 207 and the vacuum pump 234, rotates the stirring blade 204, exhausts and depressurizes the inside of the container body 202, and continues stirring and mixing of the catalyst precursor for the electrode. ..
  • the rotation speed of the stirring blade 204 is preferably 40 to 80 rotations per minute, and the operating pressure at the time of depressurization is preferably atmospheric pressure.
  • the cooling process executing means 53 injects the cooling medium C from the heating medium discharge port 214 into the jacket 206 by the temperature indicator controller 216, and cools the container main body 202 by the conduction heat transfer of the cooling medium, thereby causing the inside of the container main body 202.
  • the electrode catalyst precursor is cooled to a predetermined temperature.
  • the temperature of the cooling medium C is preferably 10 to 30 ° C.
  • the predetermined temperature is preferably a value selected from the range of 40 ° C. or lower, preferably 10 to 40 ° C.
  • the cooling step is completed when the cooling step executing means 53 detects by the temperature indicator controller 216 that the temperature of the catalyst precursor for the electrode has reached the predetermined temperature.
  • the slow oxidation step S34 is a step of slowly oxidizing the catalyst precursor for the electrode cooled in the container main body 202, and is executed by the slow oxidation step executing means 54.
  • the slow oxidation step execution means 54 discharges the cooling medium C in the jacket 206 from the heating medium injection port 213, stops the drive device 207 and the vacuum pump 234, and operates the supply valve 215 to reduce the pressure in the container body 202. By gradually returning the pressure to normal pressure, the dried electrode catalyst precursor is slowly oxidized.
  • the gradual oxidation step execution means 54 injects high-pressure air from the flow path of the gas G for the scraper into the rotating spindle 222, and injects high-pressure air from each gas ejection hole 226. It may be configured so that the pressure in the container body 202 is gradually returned to the normal pressure.
  • the slow oxidation step executing means 54 may be configured to gradually return the pressure in the container body 202 to the normal pressure by the air blow nozzle. The gradual oxidation step is completed when the gradual oxidation treatment of the catalyst precursor for the electrode in the container body 202 is completed.
  • the pressure inside the container body 202 is gradually returned to normal pressure, and when the inside of the container body 202 is finally returned to the atmosphere of normal pressure air, nitrogen gas is generated from each gas ejection hole 226.
  • a mixed gas in which oxygen gas is mixed at an arbitrary ratio to adjust the oxygen gas concentration, or a mixed gas in which nitrogen gas and air are mixed at an arbitrary ratio and the oxygen gas concentration is adjusted is ejected, and the inside of the container body 202 is ejected. It is preferable to increase the oxygen gas concentration over time while controlling the oxygen gas concentration within the numerical range experimentally determined in advance so that the catalyst precursor for the electrode does not ignite in this step, and finally make the oxygen concentration the same as that of air.
  • the take-out step S35 is a step of taking out the catalyst precursor for the electrode cooled in the container main body 202, and is executed by the take-out step execution means 55.
  • the take-out process executing means 55 takes out the catalyst precursor for the electrode in the container body 202 from the opening 208 by operating the take-out valve 209 to open the opening. .. Since the stirring process device 201 has a simple internal structure of the container body 202, it is possible to reduce the residual powder of the catalyst precursor for the electrode during the extraction step S35.
  • the take-out process executing means 55 performs a scraper step of injecting the gas G into the rotating spindle 222 from the flow path of the gas G for the scraper and injecting the gas G downward from each gas ejection hole 226.
  • the electrode catalyst precursor adhering to the inner wall of the container body 202 and the stirring blade 204 is blown downward to increase the recovery rate of the electrode catalyst precursor.
  • the removal process is completed when all the electrode catalyst precursors in the container body 202 are taken out.
  • the structure of the electrode catalyst produced in the present embodiment is not particularly limited, and the carrier of the conductive carrier (conductive carbon carrier, conductive metal oxide carrier, etc.) may have a structure in which the noble metal catalyst particles are supported. Just do it.
  • the carrier of the conductive carrier may have a structure in which the noble metal catalyst particles are supported.
  • it may be a so-called Pt catalyst, a Pt alloy catalyst (PtCo catalyst, PtNi catalyst, etc.) and a so-called core-shell catalyst having a core-shell structure.
  • a core-shell catalyst in which palladium is used as a constituent element of the core portion 4 and platinum is used as a constituent element of the shell portion 5 is chlorine such as a chloride salt of platinum (Pt) and a chloride salt of palladium (Pd).
  • Materials containing (Cl) seeds are often used as raw materials. According to the electrode catalyst manufacturing system and manufacturing method according to the present embodiment, it is possible to manufacture an electrode catalyst in which the content of these chlorine (Cl)
  • the electrode catalyst 1 having a core-shell structure includes a carrier 2 and a catalyst supported on the carrier 2. Includes particles 3.
  • the catalyst particle 3 includes a core portion 4 and a shell portion 5 formed so as to cover at least a part of the core portion 4.
  • the catalyst particles 3 have a so-called core-shell structure including a core portion 4 and a shell portion 5 formed on the core portion 4.
  • the electrode catalyst 1 has catalyst particles 3 supported on a carrier 2, and the catalyst particles 3 have a core portion 4 as a core and a shell portion 5 as a shell. It has a structure that covers the surface of the particle. Further, the constituent elements (chemical composition) of the core portion 4 and the constituent elements (chemical composition) of the shell portion 5 have different configurations.
  • the electrode catalyst 1A covers the core portion 4, a part of the surface of the core portion 4, the shell portion 5a, and the other surfaces of the core portion 4. It has catalyst particles 3a composed of a shell portion 5b that partially covers the shell portion 5b.
  • the electrode catalyst 1B has a core portion 4 and catalyst particles 3 composed of a shell portion 5 that covers substantially the entire surface of the core portion 4, and the shell portion 5 is the first shell portion 6. It is a two-layer structure including a second shell portion 7 and a second shell portion 7. Further, in FIG.
  • the electrode catalyst 1C is composed of a core portion 4, a shell portion 5a that covers a part of the surface of the core portion 4, and a shell portion 5b that covers a part of the other surface of the core portion 4.
  • the shell portion 5a has a two-layer structure including the first shell portion 6a and the second shell portion 7a, and the shell portion 5b has the first shell portion 6b and the second shell portion 7b. It is a two-layer structure equipped with.
  • the chlorine (Cl) species refers to a chemical species containing chlorine as a constituent element.
  • the chemical species containing chlorine include chlorine atom (Cl), chlorine molecule (Cl 2 ), chlorinated ion (Cl ⁇ ), chlorine radical (Cl ⁇ ), polyatomic chlorine ion, and chlorine compound (X). -Cl, etc., where X is a counter ion) is included.
  • the bromine (Br) species refers to a chemical species containing bromine as a constituent element.
  • chemical species containing bromine include bromine atom (Br), bromine molecule (Br 2 ), bromide ion (Br ⁇ ), bromine radical (Br ⁇ ), polyatomic bromine ion, and bromine compound (X). -Br etc., where X is a counter ion) is included.
  • the method for producing an electrode catalyst according to the present embodiment includes an electrode catalyst precursor production step S1 for producing an electrode catalyst precursor which is a raw material for an electrode catalyst, and an electrode catalyst precursor.
  • Each step S1, S2, S3 is executed by the electrode catalyst precursor manufacturing apparatus 12 of the above-mentioned electrode catalyst manufacturing system 10, the filter press as the cleaning apparatus 13, and the stirring processing apparatus 201 as the drying apparatus 14, respectively. Can be done.
  • the cleaning step S2 includes a plate closing step S21, a press-fitting step S22, a normal cleaning step S23, a reverse cleaning step S24, a plate opening step S25, a cake peeling step S26, and a filter cloth cleaning step. Includes S27.
  • the electrode catalyst precursor 41 after cleaning can be obtained by cleaning, filtering and dehydrating the liquid 30 containing the electrode catalyst precursor produced in the electrode catalyst precursor production step S1. ..
  • the squeezing step may be performed after the normal washing step S23 and / or after the back washing step S24.
  • the configurations of each step S21 to S27 and the pressing step are as described in the above-mentioned ⁇ Electrode catalyst manufacturing system> (cleaning apparatus).
  • the drying step S3 includes an introduction step S31, a drying step S32, a cooling step S33, a slow oxidation step S34, and a take-out step S35.
  • the electrode catalyst 1 after drying can be obtained by drying the electrode catalyst precursor washed in the washing step S2.
  • the configurations of each of the steps S31 to S35 are as described in the above-mentioned ⁇ Electrode catalyst manufacturing system> (drying apparatus).
  • the carrier of this precursor a commercially available conductive hollow carbon carrier ⁇ manufactured by Lion Co., Ltd., trade name "Carbon ECP” (registered trademark) (Ketjen Black EC300J), specific surface area of 750 to 800 m 2 / g ⁇ was used. ..
  • This carrier and a water-soluble Pt salt were dispersed in water.
  • a water-soluble reducing agent was added to the dispersion liquid containing the carrier and the water-soluble Pt salt, and the reduction reaction of the Pt component was allowed to proceed at a predetermined temperature.
  • a liquid containing the catalyst precursor for the electrode used in the present embodiment was prepared.
  • the liquid containing the catalyst precursor for electrodes obtained as described above was dispersed in a kettle without being dried, and used as a stock solution to be treated with a cleaning device.
  • Example 1 ⁇ Manufacturing of catalysts for electrodes> (Example 1) [Treatment by cleaning device (cleaning step)]
  • the liquid containing the catalyst precursor for electrodes obtained in Production Example 1 was introduced into a cleaning apparatus and subjected to cleaning treatment.
  • Table 1 shows the processing time of each step in the cleaning device. First, a press-fitting step was performed in 20 minutes. The thickness of the cake containing the catalyst precursor for the electrode in the press-fitting step was 5 to 10 mm.
  • the thickness of this cake is in the range of the thickness determined in advance by the preliminary experiment in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • a normal cleaning process was performed.
  • the normal washing step first treat with washing water at room temperature (23 ° C.) for 24 minutes, switch to warming water (70 ° C.) when the electrical conductivity ⁇ of the filtrate becomes 40 ⁇ S / cm or less, and use warming water 50. The treatment was carried out for a minute. After the normal washing step, the squeezing step was performed for 5 minutes. Then, a backwashing step was carried out, and in the backwashing step, the treatment was carried out with washing water of warm water (70 ° C.) for 73 minutes. A total of about 2.9 hours of cleaning treatment was performed.
  • Ion-exchanged water was used as the washing water.
  • the electrical conductivity ⁇ i of the ion-exchanged water used at room temperature (23 ° C.) is 7.70 ⁇ S / cm, and the electrical conductivity ⁇ i at heating (70 ° C.) is 4.6 ⁇ S / cm.
  • the capacity of the stirring processing device 201 is selected based on the height of the powder surface in the container body 202 of the stirring processing device 201 when 52 kg of cake is charged, and the effective capacity of the container body 202 is 100 L and the spiral ribbon rotary blade.
  • the 223 adopted a single ribbon blade agitation processing device 201.
  • 52 kg of cake having a water content of about 82% was charged into the container body 202.
  • the drying step S32, the cooling step S33, and the gradual oxidation step S34 were carried out in this order, and the cake was taken out in the taking out step S35, and the time required to obtain an electrode catalyst having a water content of 3 wt% or less was measured.
  • the stirring blade 204 is rotated and the cooling medium C is injected from the heating medium discharge port 214 into the jacket 206.
  • a stirring test was carried out with a catalyst precursor for electrodes while cooling.
  • the thickness of this cake is in a range outside the range of the thickness determined in advance by the preliminary experiment in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • a normal cleaning process was performed.
  • the normal washing step first treat with washing water at room temperature (23 ° C.) for 33 minutes, switch to warming water (70 ° C.) when the electrical conductivity ⁇ of the filtrate becomes 40 ⁇ S / cm or less, and use warming water for 60.
  • the treatment was carried out for a minute.
  • the pressing step was performed for 5 minutes, and then the backwashing step was performed.
  • the conductivity ⁇ of the filtrate did not change from the electrical conductivity ⁇ of the filtrate at the end of the normal cleaning step.
  • the backwashing step was performed for 36 minutes, that is, after a total of about 2.9 hours of washing treatment, the treatment was interrupted.
  • Ion-exchanged water was used as the washing water.
  • the electrical conductivity ⁇ i of the ion-exchanged water used at room temperature (23 ° C.) is 7.70 ⁇ S / cm, and the electrical conductivity ⁇ i at heating (70 ° C.) is 4.6 ⁇ S / cm.
  • drying step The cake containing the catalyst precursor for the electrode obtained after the treatment with the washing device was subjected to a drying step using a dedicated crusher, a shelf vacuum dryer and a hammer mill.
  • a crushing step of crushing the cake with a dedicated crusher 52 kg of an electrode catalyst precursor having a water content of about 80 to 82% was obtained.
  • the cake is taken out from the washing device, and the cake containing the catalyst precursor for the electrode is crushed (coarse crushing of the cake before it is introduced into the shelf vacuum dryer).
  • the shelf vacuum dryer used in Comparative Example 1 is not equipped with a stirring mechanism, so the cake before being introduced into the shelf vacuum dryer using a crusher. It is necessary to roughly crush the cake and place the crushed cake on the shelves evenly.
  • the electrode catalyst precursor is served on 20 bats having a width of 600 mm, a length of 780 mm, and a height of 20 mm.
  • a drying step of drying the electrode catalyst precursor under reduced pressure and a cooling step of cooling the electrode catalyst precursor under reduced pressure were performed by installing the device in a dryer and closing the door.
  • the shelf vacuum dryer used in Comparative Example 1 is not equipped with a stirring mechanism, so that a lump of powder of the electrode catalyst precursor using a hammer mill can be crushed. It will be necessary to grind. In addition, it becomes necessary to take out a mass of powder of the catalyst precursor for the electrode from the shelf vacuum dryer before crushing the hammer mill.
  • Example 1 the electric conductivity ⁇ of the filtrate at the end of the normal washing step was 15.9 ⁇ S / cm, whereas the electric conductivity of the filtrate at the end of the backwashing step was 15.9 ⁇ S / cm. ⁇ decreased to 9.7 ⁇ S / cm. With a cleaning treatment time of less than 3 hours, the electrical conductivity ⁇ of the filtrate could be reduced to 10 ⁇ S / cm or less. On the other hand, in Comparative Example 1, the electric conductivity ⁇ of the filtrate at the end of the normal cleaning step decreased to 19.3 ⁇ S / cm, but even if the reverse cleaning step was performed thereafter, it did not decrease at all from 19.3 ⁇ S / cm. rice field.
  • Example 1 it is not necessary to serve the electrode catalyst precursor in the introduction step S31, and only the electrode catalyst precursor is charged into the container body 202. Therefore, in Comparative Example 1, 2 hours are required. I was able to reduce the time required to do so to 0.4 hours. Further, in Example 1, in the drying step S32 and the cooling step S33, the drying speed is improved as compared with the shelf vacuum dryer due to the high mixing capacity and the heat transfer from the jacket 206, and in Comparative Example 1, 24 hours. I was able to reduce the required area to 3.1 hours. Here, it was confirmed that the obtained electrode catalyst was almost comparable to Comparative Example 1, and that the "friction" associated with stirring and drying had almost no effect on the product quality. Further, in Example 1, in the slow oxidation step S34 and the extraction step S35, a reduction in time could not be confirmed as compared with Comparative Example 1, whereas in Example 1, the crushing step and the crushing step could be omitted.
  • the treatment (cleaning step) by the cleaning device is required.
  • the time can be significantly reduced to 1/5 or less as compared with the processing using a conventional centrifuge.
  • the cake containing the catalyst precursor for the electrode is automatically peeled off, so that the operator can eliminate the work of scraping the catalyst precursor for the electrode, and the labor is greatly reduced. can do.
  • the time required for the treatment by the drying apparatus 14 (drying step S3). Can be significantly reduced to about 1/5 to about 1/6. Further, since the stirring processing device 201 as the drying device 14 according to the present embodiment can automatically perform the drying step S32, the cooling step S33, the gradual oxidation step S34, and the extraction step S35, the labor can be significantly reduced. It is possible to provide a manufacturing method and a manufacturing system of an electrode catalyst that does not involve manual work as much as possible.
  • FIG. 21 is a block diagram showing an outline of the electrode catalyst manufacturing system according to the second embodiment.
  • the electrode catalyst production system 150 in addition to the electrode catalyst precursor production apparatus 12, the cleaning apparatus 13, and the drying apparatus 14 described in the first embodiment, the electrode catalyst 1 after drying and the catalyst cake are prepared. It further has an analyzer 151 for analyzing the physical properties of the WET product, and a reactor 152 for mixing ion-exchanged water with the dried electrode catalyst 1 to form a reslurry.
  • the powdery catalyst may ignite or disappear in the packing work at the time of shipment of the powdery electrode catalyst and the weighing work when the customer uses the electrode catalyst.
  • the WET product in which the electrode catalyst powder is wet with pure water, will be supplied, and demand is expected to increase in the future. ..
  • the electrode catalyst water is set to 1: 4 by weight
  • the WET product does not become a solid but becomes a liquid. Since the electrode catalyst is expensive, it is necessary to recover it as much as possible, but the WET product has dried and adhered to the inner wall of the container while adhering to the device and the container containing the electrode catalyst.
  • a method of taking out the electrode catalyst water as a WET product having a desired weight ratio in the drying step S32 of the first embodiment is also devised, but in this case, the WET product is in a state of not undergoing the gradual oxidation step S34.
  • the cleaning step S2 since the cleaning step S2 only cleans and filters the catalyst precursor for the electrode, there is a possibility that the uniformity of the water content of the WET product becomes uneven. For this reason, the supply of WET products has difficulty in handling and recoverability at both the manufacturer and the supply destination to the customer.
  • the catalyst precursor for the electrode after cleaning is dried so that the oxidized state of the catalyst particle surface of the catalyst for the electrode is sufficiently stable in the atmosphere. Further, ion-exchanged water is mixed with the dried electrode catalyst 1 to make the water content of the slurry containing the electrode catalyst uniform, and then the slurry is dried to a level that can be solid (pellet-shaped, cake-shaped).
  • the water content of the WET product is adjusted to the target numerical range to prepare a plurality of solid catalyst cakes, and by supplying the WET product with a desired weight ratio, the powdery catalyst is ignited. The risk of disappearance is surely prevented, and the handleability and recoverability are improved at both the manufacturer and the supply destination to the customer mentioned above.
  • the surface of the catalyst carrier is subjected to various chemistry from each reagent used in the synthesis, products produced in each synthesis reaction, by-products, and impurities. Be affected.
  • the type, total amount, and abundance per unit area of the surface functional groups of the catalyst carrier are different.
  • the affinity (wetting property) of the catalyst with water changes depending on the type of catalyst (type of carrier) and the type of synthetic reaction process adopted. Therefore, the water content (range of water content) that can be made into a solid state with excellent handleability and recoverability is experimentally determined in advance for each catalyst.
  • the analyzer 151 analyzes the physical properties of the electrode catalyst 1 obtained through the drying step S3 of the first embodiment.
  • the analyzer 151 includes a first physical property analysis executing means 153 that executes the first physical property analysis step S36 of the electrode catalyst 1 taken out in the taking-out step S35 of the first embodiment.
  • this first physical property analysis step S36 it is preferable to analyze at least the catalyst loading amount, the water content (wt%), and the catalyst particle size of the electrode catalyst 1.
  • a method of extracting a part of the powder of the electrode catalyst 1 taken out in the taking-out step S35 and analyzing the physical properties with the analyzer 151 is adopted, but other analysis methods may also be used.
  • the reactor 152 After the first physical property analysis step S36, the reactor 152 reslurries the electrode catalyst 1 dried by the drying apparatus 14. In the present embodiment, the reactor 152 is used to slurry the electrode catalyst 1, and while the required equipment is increased by one, the electrode catalyst 1 is slurried more quickly and reliably. ..
  • the reactor 152 includes a resally step execution means 154 that executes a resally step S40 for resallying the electrode catalyst 1 taken out in the extraction step S35.
  • a method of reslurrying in the reslurry step S40 a method of reslurrying using a reactor equipped with a stirrer, for example, a kettle equipped with a stirrer can be adopted.
  • the reslurry step execution means 154 is a means for executing the introduction step S41, the mixing step S42, and the take-out step S43, respectively.
  • the mixing process executing means 157 and the taking-out process executing means 158 are provided.
  • each step S41 to S43 is executed in normal temperature, atmospheric pressure, or atmosphere, and nitrogen or the like is used. Not as a special gas atmosphere.
  • Each process S41 to S43 will be described below.
  • the introduction step S41 is a step of introducing the electrode catalyst 1 dried by the drying apparatus 14 and the ion-exchanged water for mixing into the reactor 152, and is executed by the introduction step executing means 156.
  • the method of introducing the electrode catalyst 1 and the ion-exchanged water may be introduced manually by using a reactor or the like as in the introduction step S31, and the electrode catalyst 1 and the ion-exchanged water are transferred.
  • a pipe, a belt conveyor, or the like may be provided in the reactor 152 and introduced directly without human intervention.
  • Pure water can be used for the ion-exchanged water, and it is preferable to use "ultra pure water".
  • R represents the specific resistance
  • represents the electrical conductivity measured by the JIS standard test method (JIS K0552).
  • the "ultrapure water” preferably has a water quality equivalent to or higher than that of "A3" specified in JIS K0557 "Water used for water / drainage test", but it is preferable.
  • the water is not particularly limited as long as it has an electrical conductivity that satisfies the relationship represented by this formula (1).
  • the "Milli Q series” manufactured by Merck Co., Ltd.
  • “Elix UV series” manufactured by Nippon Millipore Co., Ltd.
  • the ion-exchanged water does not necessarily have to be pure water, for example, ion-exchanged water having a pH of 6 to 8 and having an electrical conductivity ⁇ i of less than 10 ⁇ S / cm as measured by the JIS standard test method (JIS K0522). Can also be used.
  • the weight ratio of the electrode catalyst 1 and the ion-exchanged water introduced in the introduction step S41 is preferably such that the mixture of the electrode catalyst 1 and the ion-exchanged water becomes a liquid slurry, for example, by weight ratio.
  • the optimum ratio of the catalyst for the electrode: ion-exchanged water is experimentally determined from the range of 1: 2 to 1: 3.5 according to the catalyst type.
  • the amount of ion-exchanged water to be introduced is calculated from the results such as the catalyst loading amount and water content of the electrode catalyst 1 analyzed in the physical property analysis step and the amount of the electrode catalyst 1 to be introduced. Will be determined.
  • the amount of the electrode catalyst 1 to be introduced may be measured manually, and the weight of the electrode catalyst 1 is measured at the start and end of the extraction step S35 of the first embodiment.
  • the amount of the electrode catalyst 1 may be calculated by measuring with 212 and using the result.
  • the mixing step S42 is a step of mixing the introduced electrode catalyst 1 and ion-exchanged water in the reactor 152, and is executed by the mixing step executing means 157.
  • the mixing step executing means 157 drives the stirring device of the reactor 152 to stir and mix the electrode catalyst 1 and the ion-exchanged water at room temperature and atmospheric pressure.
  • the ratio of the electrode catalyst 1 and the ion-exchanged water to the mixture becomes a liquid slurry, there is no risk that the electrode catalyst 1 will ignite or disappear during mixing even at room temperature and atmospheric pressure. , The mixture can be stirred and mixed more uniformly.
  • the mixing step S42 is completed when the electrode catalyst 1 and the ion-exchanged water are mixed and become uniform, and the slurry 159 containing the electrode catalyst is prepared.
  • the driving time and the number of rotations of the stirring device are not described in detail here because they differ depending on the capacity and type of the reactor 152, the amount of the introduced electrode catalyst 1 and the ion-exchanged water, and the like.
  • the take-out step S43 is a step of taking out the slurry 159 containing the electrode catalyst prepared in the reactor 152, and is executed by the take-out step execution means 158. After that, the slurry 159 containing the removed electrode catalyst is introduced again into the drying device 14. Therefore, when the slurry 159 containing the electrode catalyst is manually introduced into the drying apparatus 14, the slurry 159 containing the electrode catalyst may be once taken out to another container or the like. When the slurry is directly introduced into the drying device 14 without human intervention, a tube or the like is connected to the drying device 14, and a slurry 159 containing an electrode catalyst is connected from the reactor 152 to the drying device 14 via the tube or the like. May be transferred. The take-out step S43 is completed when all the slurry 159 containing the electrode catalyst in the reactor 152 is taken out.
  • the extraction process execution means 158 is not described in detail here because it differs depending on the type of the reactor 152 and the like.
  • the drying device 14 dries the slurry 159 containing the electrode catalyst reslurryed in the reslurry step S40 with a stirring processing device 201 provided with stirring blades 204 to prepare a plurality of solid catalyst cakes.
  • the drying device 14 used in this step may be the drying device 14 used in the drying step S3 of the first embodiment, or may be another drying device 14. Since the structure of the stirring processing device 201 as the drying device is the same as that of the first embodiment, the description thereof will be omitted.
  • the introduction step S31', the drying step S32', the cooling step S33', and the cooled WET are performed in the same manner as in the drying step S3 of the first embodiment. It includes a slow oxidation step S34'that slow-oxidizes the product and a take-out step S35' that takes out the slow-oxidized WET product.
  • the operating conditions of the steps S31'to S35' are the same as those of the steps S31 to S35 of the drying step S3 of the first embodiment. Therefore, the main operation of the steps S31'to S35'is described in the first step. It is the same as the main operation of each step S31 to S35 of the drying step S3 of the embodiment.
  • the weight of the slurry 159 changes as steam or gas evaporates from the slurry 159 in the container body 202.
  • the weight of the slurry 159 in the container body 202 at this time is measured by the load cells 212 and 212, and the weight of the slurry 159 at the time of introduction and the weight ratio of the electrode catalyst 1 determined in the introduction step S41 to the ion-exchanged water.
  • the weight of the current slurry 159 the water content of the current slurry 159 is calculated.
  • the drying step S32' is completed when the slurry 159 in the container body 202 has a water content of less than a predetermined value and becomes a solid (pellet-like, cake-like) WET product.
  • the water content of the WET product can be made uniform.
  • the predetermined water content is preferably less than 80 wt%, and the WET product does not adhere to the container body 202 and the stirring blade 204.
  • the cooling medium C in the jacket 206 is discharged from the heating medium injection port 213, the drive device 207 and the vacuum pump 234 are stopped, and the supply valve 215 is operated, as in the case of the drying step S3.
  • the WET product of the catalyst cake is gradually oxidized. Therefore, the working time can be significantly shortened and automated as compared with the conventional box-type shelf type vacuum dryer. Further, since the slow oxidation step S34'can also be automated, the slow oxidation step can be carried out more reliably.
  • the gradual oxidation step is completed when the gradual oxidation treatment of the WET product of the catalyst cake in the container body 202 is completed.
  • the analyzer 151 analyzes the physical properties of the WET product obtained through the catalyst cake preparation step S50.
  • the analyzer 151 includes a second physical property analysis executing means 161 for executing the second physical characteristic analysis step S60 of the WET product taken out in the taking-out step S35'.
  • this second physical property analysis step S60 it is preferable to analyze at least the water content (wt%) of the WET product.
  • a method of extracting a part of the WET product taken out in the taking-out step S35'and analyzing the physical properties with the analyzer 151 is adopted, but other analysis methods may also be used.
  • the first accommodating step is a step of accommodating the WET product of the catalyst cake taken out in the taking-out step S35'in a container or a bag.
  • the container or bag used in this first storage step is made of plastic and has an antistatic agent coated on the inside.
  • the WET product taken out in the taking-out step S35' is housed in this plastic packaging container or packaging bag.
  • This first storage step is carried out in the air, and the WET product is stored in a packaging container or a packaging bag while acclimatizing to the atmosphere.
  • a plastic packaging container or packaging bag is installed in advance below the opening 208 in the extraction step S35', and the WET product is dropped from the inside of the container body 202 into the packaging container or the packaging bag. It may be carried out so as to be directly contained in the container, or it may be carried out so as to be housed in a plastic packaging container or a packaging bag after being taken out once in the taking-out step S35'.
  • the container used at this time is a stainless steel UN can (a container with the "UN inspection certificate (UN mark)" that has passed the container performance test conducted by the Japan Ship Equipment Certification Association in accordance with international standards: dangerous goods transport container) And the inside is coated with an antistatic agent.
  • This UN can is preferably made of SUS316, can accommodate substances classified into UN number: 3178, product name: other flammable substances, UN classification: 4.1, and has a container grade of 2 or 3. Is preferable. After the completion of the second storage step, the UN can is transferred and supplied to the customer.
  • the above-mentioned UN can is used instead of the plastic packaging container or packaging bag in the first storage step.
  • the UN can used is configured to contain the WET product in a sealed manner.
  • Example 2 [Treatment with reactor (reslurry step)]
  • the powder of the electrode catalyst 1 obtained after the treatment by the drying apparatus was introduced into a dropping funnel resembling a reactor 152, and resally step S40 was performed.
  • the volume of the dropping funnel was selected based on the liquid level in the reactor 152 when 100 g of the powder of the electrode catalyst 1 and 400 ml of ion-exchanged water were introduced in the introduction step S41, and the effective volume of the dropping funnel was 2 L.
  • a dropping funnel having a stirring blade having a diameter of 8 cm was adopted.
  • the diameter of the liquid surface was 16 cm.
  • the introduction step S41 100 g of the electrode catalyst 1 powder and 400 ml of ion-exchanged water were introduced into the dropping funnel. Immediately after the introduction, approximately 1/4 of the powder of the electrode catalyst 1 settled on the bottom of the dropping funnel, and the other powders of the electrode catalyst 1 were deposited on the liquid surface of the ion-exchanged water. When the mixture was allowed to stand for 30 minutes without driving the stirrer as it was, most of the powder of the electrode catalyst 1 settled in the ion-exchanged water, while a part of the powder of the electrode catalyst 1 was still ions. About 2 to 3 cm was deposited on the surface of the exchanged water. The deposited powder of the electrode catalyst 1 was in a moist state because it absorbed ion-exchanged water.
  • the process proceeds to the mixing step S42, and the stirring device is driven so that the stirring blade becomes 60 rpm (60 rpm), and the electrode catalyst 1 and the ion-exchanged water are stirred and mixed at room temperature and atmospheric pressure. rice field. Immediately after stirring, the electrode catalyst 1 and the ion-exchanged water were not immediately mixed. After 30 minutes, the electrode catalyst 1 and the ion-exchanged water are mixed and stirred only in the center of the dropping funnel along the axis of the rotating stirring blade, while the electrode near the inner wall of the dropping funnel is stirred.
  • the outer peripheral parts of the catalyst 1 and the ion-exchanged water maintained the wet powder state in which the powder of the electrode catalyst 1 was moist, as in the case before the transition of the mixing step S42. Then, after 60 minutes have passed, the wet powder on the outer periphery of the electrode catalyst 1 and the ion-exchanged water is wetted, that is, the portion where the electrode catalyst 1 and the ion-exchanged water are mixed and agitated expands, and the electrode catalyst 1 and the ion-exchanged water are mixed and agitated.
  • the powder of these electrode catalysts 1 scattered in a spherical shape decreased, while the electrode catalyst 1 near the inner wall of the dropping funnel and the edge of the ion-exchanged water were mainly used.
  • the powder of the electrode catalyst 1 was scattered in a spherical shape and did not form a complete slurry.
  • the number of rotations of the stirring blade is further increased, and the stirring device is driven so that the stirring blade becomes 80 rpm with 100 g of the powder of the electrode catalyst 1 and 500 ml of ion-exchanged water, and the stirring blade is used for the electrode at room temperature and atmospheric pressure.
  • the catalyst 1 and the ion-exchanged water were stirred and mixed.
  • there was no dramatic change compared to when the stirring blade was at 60 rpm and the powder of the electrode catalyst 1 and the powder of the electrode catalyst 1 were scattered around the edge of the electrode catalyst 1 and the ion-exchanged water. , No significant effect of increasing the number of rotations of the stirring blade to stir could be found.
  • the stirring device is driven so that the stirring blade becomes 250 rpm with 100 g of the powder of the electrode catalyst 1 and 500 ml of ion-exchanged water, and the electrode catalyst 1 is operated at room temperature and atmospheric pressure. And ion-exchanged water were stirred and mixed. As a result, most of the spherical powder of the electrode catalyst 1 disappeared at the edges of the electrode catalyst 1 and the ion-exchanged water, and the powder changed to a complete slurry.
  • Example 3 [Treatment with a drying device (drying step)]
  • the cake containing the catalyst precursor for the electrode obtained after the treatment by the filter press as a cleaning device was introduced into the stirring treatment device 201 as a drying device, and the drying step S3 was performed.
  • the introduction step S31 4.98 kg of cake having a water content of 72.1 wt% and an apparent density of 540 kg / m 3 (apparent density after tapping was 700 kg / m 3 ) was introduced.
  • the water content (moisture content) of a cake or slurry is a value obtained by dividing the weight of water contained in the cake by the weight of the catalyst powder contained in the cake + the weight of water, and the weight of water is the measurement container.
  • the vacuum pump 234 is driven to reduce the pressure inside the container body 202 to 12.3 kPa with a gauge pressure, the stirring blade 204 is rotated at a rotation speed of 85 rpm, and the heating medium injection port 213 to the jacket 206.
  • the cooling step S33 and the gradual oxidation step S34 were carried out in this order, and in the extraction step S35, the water content was 2.2 wt% and the apparent density was 450 kg / m 3 (the apparent density after tapping was 480 kg / m 3 ). I was able to take out 1.4 kg of the cake.
  • the amount of the electrode catalyst adhered to the container body 202 was 6.8 g, and the amount of the electrode catalyst precursor taken out as a sample for measurement or the like was 46 g.
  • the amount of the condensate discharged through the bag filter 231 and condensed by the capacitor 233 and recovered was 3.1 kg.
  • Example 4 The slurry obtained by reslurrying the electrode catalyst obtained after the treatment with the kettle as the reactor 152 was introduced into the stirring treatment device 201 as the drying device, and the drying step S3 was performed.
  • introduction step S31 11.25 kg of a slurry having a water content of 93.3 wt% was introduced.
  • the water content of the slurry is calculated by setting the water content of the powder of the electrode catalyst to 5 wt% and adding it to the weight of the ion-exchanged water introduced in the reslurry step S40.
  • the vacuum pump 234 is driven to reduce the pressure inside the container body 202 to 12.3 kPa with a gauge pressure, the stirring blade 204 is rotated at a rotation speed of 85 rpm, and the heating medium injection port 213 to the jacket 206.
  • Steam S is injected into the container body 202 to set the heating temperature t 4 of the container body 202 to 110 ° C., the temperature inside the container body 202 t 5 , the temperature of the catalyst precursor for electrodes (measured product temperature) t 6 , and the water content of the cake.
  • the time course of C 2 was measured 170 minutes.
  • a graph and a table of the measurement results are shown in FIG. 25 (Run2 drying curve).
  • the temperature t 5 in the container body 202 rises from about 20 ° C. to about 50 ° C., and the temperature t 6 of the catalyst precursor for the electrode also changes from 20.2 ° C. to 52.5 ° C. Rose.
  • the cooling step S33 and the gradual oxidation step S34 were carried out in this order, and in the extraction step S35, the water content was 41.1 wt% and the apparent density was 840 kg / m 3 (the apparent density after tapping was 900 kg / m 3 ). I was able to take out 1.1 kg of the cake.
  • the amount of the electrode catalyst adhered to the container body 202 was 317 g, and the amount of the electrode catalyst precursor taken out as a sample for measurement or the like was 45 g.
  • the amount of the condensate discharged through the bag filter 231 and condensed by the capacitor 233 and recovered was 9.3 kg.
  • Electrode catalyst precursor production The electrode catalyst precursor is produced by a kettle in step S1 and filtered, washed and dehydrated by a filter press in cleaning step S2 to have a water content of 60 to 80 wt%. A body is obtained, and the electrode catalyst precursor is dried and roughly pulverized by a stirring treatment device 201 in the drying step S3 to obtain an electrode catalyst having a water content of 1 to 5 wt%, and the electrode catalyst is pulverized by a crusher. A process of pulverizing to obtain powder of an electrode catalyst.
  • Electrode catalyst precursor production The electrode catalyst precursor is produced by a kettle in step S1 and filtered, washed and dehydrated by a centrifuge in cleaning step S2 to produce an electrode catalyst having a water content of 60 to 80 wt%. A precursor is obtained, and the electrode catalyst precursor is dried and roughly pulverized by a stirring treatment device 201 in the drying step S3 to obtain an electrode catalyst having a water content of 1 to 5 wt%, and the electrode catalyst is crushed by a crusher. The process of obtaining powder of the electrode catalyst by crushing with.
  • the wetting catalyst cake which is the cake of the catalyst precursor for the electrode having a water content of 72.1 wt%, obtained by filtering, washing and dehydrating with a centrifuge in the washing step S2 is stirred.
  • the drying step S32 of the drying step S3 the water content of the wetting catalyst cake becomes 5.0 wt% in 240 minutes, and the target 5.0 wt% electrode catalyst in the step (2) is 240. I was able to create it in minutes.
  • the powder of the electrode catalyst obtained in the step (1) is reslurryed by a kettle as a reactor 152, and the slurry containing the electrode catalyst is dehydrated by a centrifuge.
  • a slurry having a moisture content of 93.3 wt% used in Example 4 is prepared by a kettle, and this slurry is dehydrated by a centrifuge to prepare a wet catalyst cake having a moisture content of 72.1 wt%. did it.
  • the catalyst for the electrode having a water content of 60 to 80 wt% obtained in the step (3) is dried and roughly pulverized by the stirring treatment device 201 to carry out an electrode having a water content of 20 to 75 wt%.
  • the water content of the wetting catalyst cake in the drying step S32 of the drying step S3 is 5 to 120 minutes.
  • the water content was further lowered to 20.3 to 69.8 wt%, and the catalyst for the electrode having the target water content of 20 to 75 wt% in the step (4) could be prepared in 5 to 120 minutes. Further, the water content of the wetting catalyst cake became 31.3 to 69.8 wt% in 5 to 95 minutes, and the electrode catalyst having a water content of 30 to 70 wt%, which was a preferable target in the step (4), was applied in 5 to 95 minutes. I was able to create it.
  • the powder of the catalyst for the electrode obtained in the step (1) is resurrected by a kettle as a reactor 152, and the slurry containing the catalyst for the electrode is dehydrated by a filter press.
  • An electrode catalyst having a water content of 60 to 80 wt% is obtained, and the electrode catalyst is dried and roughly pulverized by a stirring treatment device 201 in the drying step S3 to obtain an electrode catalyst having a water content of 20 to 75 wt%, preferably a water content.
  • dehydration time can be shortened. It will be understood by the form. Therefore, dehydration is performed by a filter press to prepare a wet catalyst cake having a water content of 72.1 wt%, and then drying and coarse pulverization are performed by a stirring treatment device 201 to obtain the same result as in the step (4). It is assumed that it can be done.
  • the powder of the electrode catalyst obtained in the step (1) is resurrected by a kettle as a reactor 152, and the slurry containing the electrode catalyst is directly introduced into the stirring processing apparatus 201.
  • the stirring treatment apparatus 201 when the slurry having a water content of 93.3 wt% reslurried by the kettle is introduced into the stirring treatment apparatus 201, as shown in FIG. 25, 87 to 170 minutes in the drying step S32'of the catalyst cake preparation step S50.
  • the moisture content of the wetting catalyst cake becomes 41.1 to 74.7 wt%, which further lowers the moisture content, which takes a little longer than the step (4).
  • a catalyst for an electrode having a water content of 30 to 70 wt% could be prepared in 87 to 170 minutes.
  • the powder of the electrode catalyst and the ion-exchanged water obtained in the step (1) were introduced into the stirring treatment device 201 to form a reslurry, and the electrode catalyst in the stirring treatment device 201 was used.
  • the present invention has been described above based on the embodiments and examples, the present invention can be modified in various ways.
  • the electrode catalyst precursor manufacturing apparatus 12 reaction step, electrode catalyst precursor manufacturing apparatus step S1 and the cleaning apparatus 13 (cleaning step S2) are not particularly limited, and various modifications are adopted. be able to.
  • the structure thereof is not limited to that shown in FIG. 2, and the structure of the filter chamber 112 is not limited to that shown in FIGS. 3 to 10.
  • Various modified examples can be adopted as long as they have a structure capable of obtaining the same action and effect in each of the steps S21 to S27 and the pressing step.
  • the structure of the drying device 14 is not limited to that shown in FIG. 11, and the structure of the container body 202 is not limited to that shown in FIGS. 11 to 13, and the drying step S3 according to the present embodiment is not limited to that shown in FIGS.
  • various modified examples can be adopted.
  • Electrode catalyst 2 Carrier 3 Catalyst particles 4 Core part 5 Shell part 10
  • Electrode catalyst manufacturing system 12 Electrode catalyst precursor manufacturing device 13
  • Cleaning device 14 Drying device 201 Stirring processing device 202 Container body 204 Stirring blade 222 Rotating spindle 223 Spiral ribbon rotary wing 224 arm (rotary wing strut) 226 Gas ejection hole 152 Reactor S1 Electrode catalyst precursor manufacturing step S2 Cleaning step S3 Drying step S31 Introduction step S32 Drying step S33 Cooling step S34 Slow oxidation step S35 Extraction step S36 First physical property analysis step (first analysis step) S40 squirrel rally step S50 catalyst cake preparation step S60 second physical characteristic analysis step (second analysis step)
  • the work for transferring the electrode catalyst precursor by the operator is eliminated, and the drying time of the electrode catalyst precursor is shortened, thereby containing halogen. It is possible to significantly reduce the labor and time required to produce an electrode catalyst having a low amount, particularly a chlorine content.
  • the present invention is a manufacturing system and manufacturing method for electrode catalysts that can be applied not only to the electrical equipment industry such as fuel cells, fuel cell automobiles, and mobile mobiles, but also to ENE-FARM, cogeneration systems, and the like, and energy. Contribute to the development of industry and environmental technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

作業者による電極用触媒前駆体を移すための作業をなくし、且つ、電極用触媒前駆体の乾燥時間を短縮することができる電極用触媒の製造システムおよび製造方法を提供する。電極用触媒の製造システム10が、電極用触媒前駆体製造装置12と、洗浄装置13と、乾燥装置14とを有し、乾燥装置14が、電極用触媒前駆体を容器本体202に導入する導入工程S31と、容器本体202を加熱すると共に減圧し、電極用触媒前駆体を攪拌羽根204により攪拌混合することにより乾燥させる乾燥工程S32と、容器本体202を冷却すると共に減圧し、前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより冷却させる冷却工程S33と、容器本体202内に空気を供給し電極用触媒前駆体を徐酸化処理する徐酸化工程S34と、容器本体202内の電極用触媒前駆体を取り出す取出し工程S35とを実行する手段を備える構成とした。

Description

電極用触媒の製造システムおよび製造方法
 本発明は、電極用触媒の製造システムおよび製造方法に関する。
 いわゆる固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、作動温度が室温から80℃程度である。また、PEFCは、燃料電池本体を構成する部材に安価な汎用プラスチック等を採用することができるので、軽量化が可能となる。さらに、PEFCは、固体高分子電解質膜の薄膜化が可能であり、電気抵抗を小さくすることができ、発電ロスを比較的容易に少なくすることができる。このようにPEFCは、多くの利点を有しているので、燃料電池自動車、家庭用コジェネレーションシステム等への応用が可能となっている。
 PEFC用の電極用触媒としては、例えば担体であるカーボンに電極用触媒成分である白金(Pt)又は白金(Pt)合金が担持された電極用触媒が知られている。こうした電極用触媒を燃料電池用の電極用触媒として使用する場合、電極用触媒に、その原料に由来する不純物やその製造設備から混入する不純物の含有量が多いと、十分な触媒活性を得ることができなかったり、触媒層の腐食が発生し、燃料電池の寿命が短縮してしまったりする。そのため、電極用触媒の不純物の含有量、特に塩素含有量を低く抑えることが好ましい。ここで、不純物としては、ハロゲンに属する化学種(イオンやその塩など)、有機物(有機酸、その塩、有機酸の縮合物)などが挙げられる。
 こうした理由から、電極用触媒の原料である電極用触媒前駆体の製造後に、塩素を除去する工程が行われる場合があり、その場合は、洗浄工程後の電極用触媒前駆体を乾燥する工程が行われる。例えば、特許文献1および2には、洗浄後の乾燥方法に関して、棚式乾燥機、回転乾燥機、気流乾燥機、噴霧乾燥機  撹拌乾燥機、凍結乾燥機などを使用することができると記載されている。
特開2013-158674号公報 特開2014-42910号公報
 例えば、棚式乾燥機を用いて電極用触媒前駆体を乾燥する場合は、乾燥を効率的に行うために、湿った電極用触媒前駆体の塊を細かく解砕してから棚式乾燥機に入れて乾燥し、乾燥後も、乾燥した電極用触媒前駆体の塊を細かく粉砕する工程が行われることがあった。この従来の電極用触媒前駆体の乾燥方法では、洗浄後の湿った電極用触媒前駆体を解砕する専用の解砕機と、乾燥させた電極用触媒前駆体を粉砕するハンマーミルとを必要とし、解砕機から乾燥機、乾燥機からハンマーミルへと、電極用触媒前駆体を移すための作業が必要とされていた。しかし電極用触媒前駆体を構成する白金は高い活性を有し、急激に空気中の酸素に触れると燃焼する恐れがあるため、慎重な作業が要求されていた。また棚式乾燥機で電極用触媒前駆体を乾燥する方法では、電極用触媒前駆体を静置して輻射伝熱により乾燥する方式のため乾燥速度が遅く長時間を費やしてしまうという問題もあった。特許文献1および2では、燃料電池用触媒の乾燥に撹拌乾燥機を用いることができることが記載されているが、撹拌乾燥機の具体的構成、運転条件の記載はない。
 本発明は、このような事情に鑑みてなされたものであり、作業者による電極用触媒前駆体を移すための作業をなくし、且つ、電極用触媒前駆体の乾燥時間を短縮することで、電極用触媒を製造するための手間と時間を大幅に低減することができる電極用触媒の製造システムおよび製造方法を提供する。
 本発明はかかる課題を解決するため、
 電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置と、
 前記電極用触媒前駆体を洗浄する洗浄装置と、
 前記洗浄装置により洗浄された前記電極用触媒前駆体を、螺旋リボン回転翼を有する攪拌羽根を備えた攪拌処理装置により乾燥する乾燥装置とを有する、電極用触媒を製造するための製造システムであって、
 前記乾燥装置は、
 前記電極用触媒前駆体を前記攪拌処理装置の容器本体に導入する導入工程と、
 前記容器本体を加熱すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を乾燥させる乾燥工程と、
 前記容器本体を冷却すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を冷却させる冷却工程と、
 前記容器本体内に空気を供給し、前記電極用触媒前駆体を徐酸化処理する徐酸化工程と、
 前記容器本体内の前記電極用触媒前駆体を取り出す取出し工程とを実行する手段を備える電極用触媒の製造システムを提供する。
 前記電極用触媒の製造システムは、
 前記攪拌羽根は、駆動装置により回転することで当該攪拌羽根を回転させる回転主軸と、前記容器本体内で前記電極用触媒前駆体を攪拌混合する前記螺旋リボン回転翼と、前記回転主軸および前記螺旋リボン回転翼と接続する回転翼支柱とを備え、
 前記回転主軸および前記回転翼支柱は中空の管状に形成され、
 前記回転翼支柱は、先端部の下側にガス噴出孔が設けられ、
 前記回転主軸は、ガスの流路に接続される場合がある。
 また、本発明は、
 電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップと、
 前記電極用触媒前駆体を洗浄する洗浄ステップと、
 前記洗浄ステップで洗浄された洗浄後の前記電極用触媒前駆体を、螺旋リボン回転翼を有する攪拌羽根を備えた攪拌処理装置により乾燥する乾燥ステップとを含む、電極用触媒を製造するための製造方法であって、
 前記乾燥ステップは、
 前記容器本体を加熱すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を乾燥させる乾燥工程と、
 前記容器本体を冷却すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を冷却させる冷却工程と、
 前記容器本体内に空気を供給し、前記電極用触媒前駆体を徐酸化処理する徐酸化工程とを含む電極用触媒の製造方法を提供する。
 前記電極用触媒の製造方法において、
 前記容器本体内の前記電極用触媒前駆体を取り出す取出し工程を更に含み、
 前記取出し工程は、前記螺旋リボン回転翼を支持する回転翼支柱の先端に設けられたガス噴出孔から下向きにガスを噴出させるスクレーパー工程を含む場合がある。
 前記電極用触媒の製造方法において、
 前記乾燥ステップを経て得られる前記電極用触媒前駆体の物性分析を実施する第1分析工程と、
 前記乾燥ステップを経て得られる前記電極用触媒前駆体とイオン交換水とを混合して再びスラリーを調製するリスラリーステップと、
 前記リスラリーステップを経て得られる前記スラリーを乾燥させ、所定の範囲の含水率に調節された複数の固体状の触媒ケーキを調製する触媒ケーキ調製ステップと、
を更に含む場合がある。
 前記電極用触媒の製造方法において、前記触媒ケーキ調製ステップにおいて使用する撹拌式乾燥装置が、前記攪拌処理装置である場合がある。
 前記電極用触媒の製造方法において、前記リスラリーステップにおいて撹拌装置を具備する反応器を使用する場合がある。
 前記電極用触媒の製造方法において、前記反応器が前記攪拌処理装置である場合がある。
 前記電極用触媒の製造方法において、前記触媒ケーキの含水率が80wt%未満である場合がある。
 前記電極用触媒の製造方法において、前記触媒ケーキ調製ステップを経て得られる前記触媒ケーキの含水率を測定する第2分析工程を更に含む場合がある。
 本発明の電極用触媒の製造システムおよび製造方法によれば、作業者による電極用触媒前駆体を移すための作業をなくし、且つ、電極用触媒前駆体の乾燥時間を短縮することで、ハロゲン含有量、特に塩素含有量を低く抑えた電極用触媒を製造するための手間と時間を大幅に低減することができる。
本発明の電極用触媒の製造システムの好適な一実施形態を示すブロック図である。 本発明の電極用触媒の製造システムおよび製造方法の洗浄装置の好適な一実施形態を示す側面図である。 本発明の電極用触媒の製造システムおよび製造方法の閉板工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の圧入工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の正洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の逆洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の開板工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法のケーキ剥離工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法のろ布洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の圧搾工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の乾燥装置の好適な一実施形態を示す概略図である。 本発明の電極用触媒の製造システムおよび製造方法の乾燥装置の攪拌羽根の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の乾燥ステップにおける乾燥装置の動作状態の好適な一実施形態を示す概略図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造方法の流れの好適な一実施形態を示すフロー図である。 本発明の電極用触媒の製造方法の洗浄ステップの流れの好適な一実施形態を示すフロー図である。 本発明の電極用触媒の製造方法の乾燥ステップの流れの好適な一実施形態を示すフロー図である。 本発明の電極用触媒の製造システムの好適なさらなる実施形態を示すブロック図である。 本発明の電極用触媒の製造方法のリスラリーステップの流れの好適な一実施形態を示すフロー図である。 本発明の電極用触媒の製造方法のリスラリーステップの混合試験で使用した滴下漏斗の模式図である。 本発明の乾燥工程における、容器本体の加熱温度と、容器本体の槽内温度と、電極用触媒前駆体の温度と、ケーキの含水率と、の経時的な変化を示すグラフである。 本発明の乾燥工程における、容器本体の加熱温度と、容器本体の槽内温度と、電極用触媒前駆体の温度と、ケーキの含水率と、の経時的な変化を示すグラフである。
 以下、図面を参照して、本発明の電極用触媒の製造システムおよび製造方法の好ましい実施形態について説明する。
<電極用触媒の製造システム>
 図1は、第1の実施形態に係る電極用触媒の製造システムの概略を示すブロック図である。電極用触媒の製造システム10は、電極用触媒1(図18を参照)の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置12と、電極用触媒前駆体をフィルタープレスにより洗浄する洗浄装置13と、洗浄装置13により洗浄された洗浄後の電極用触媒前駆体41(図19を参照)を、螺旋リボン回転翼を有する攪拌羽根を備えた攪拌処理装置により乾燥する乾燥装置14とを有する。
(電極用触媒前駆体製造装置)
 電極用触媒前駆体製造装置12は、電極用触媒1の原料である電極用触媒前駆体を製造する。電極用触媒前駆体製造装置12は、電極用触媒前駆体を製造するための反応工程を実行する反応工程実行手段21を含む。反応工程では、電極用触媒1の原料である電極用触媒前駆体が、電極用触媒1の触媒成分(コア部4、シェル部5)を担体2に担持させることにより製造される(図14を参照)。電極用触媒前駆体の製造方法は、担体2に電極用触媒1の触媒成分を担持させることができる方法であれば、特に制限されるものではない。例えば、担体2に電極用触媒1の触媒成分を含有する溶液を接触させ、担体2に触媒成分を含浸させる含浸法、電極用触媒1の触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
(洗浄装置)
 洗浄装置13は、上記の電極用前駆体製造装置12で製造された電極用触媒前駆体をフィルタープレスにより洗浄する。当該洗浄装置13では、電極用触媒前駆体の洗浄とともにろ過および脱水も行われる。
 図2は、フィルタープレスを行う洗浄装置13の一例を示すものである。同図に示す洗浄装置13は、フロントフレーム101とリアフレーム102に橋架したガイドレール103上に、複数の脱水装置104が水平方向に並列に配置されている。これらの脱水装置104は、ガイドレール103上を水平方向に移動し得るように支持される。リアフレーム102には例えば電動シリンダ105が支架し、電動シリンダ105の駆動力で往復移動する押圧部材106により脱水装置104が締め付けられる。このようなフィルタープレスの洗浄装置13は従来公知であり、例えば特許第5950207号公報に記載されたものが知られている。特に脱水装置104については、例えば特許第5327000号公報に記載されたものが知られている。
 フィルタープレスによる洗浄の流れの概略を説明する(図3~図10を参照)。まず閉板したろ板111,111’間のろ室112に原液30を供給すると、原液30がろ布113を通過してろ過され、ろ液42が外部に排出される。ろ布113で捕捉された固形物はケーキ層を形成しながら脱水される。脱水終了後、電動シリンダ105を収縮して複数のろ板111,111’を一斉に開板すると同時に、ろ布113を下降走行させながら、脱水されたケーキ40を排出する。
 洗浄装置13は、図1のブロック図に示すように、閉板工程と、圧入工程と、正洗浄工程と、逆洗浄工程と、開板工程と、ケーキ剥離工程と、ろ布洗浄工程とをそれぞれ実行する手段である、閉板工程実行手段31と、圧入工程実行手段32と、正洗浄工程実行手段33と、逆洗浄工程実行手段34と、開板工程実行手段35と、ケーキ剥離工程実行手段36と、ろ布洗浄工程実行手段37とを備える。後述する図19の電極用触媒1の製造方法のフロー図にも示す各工程S21~S27の構成について以下に説明する。
[閉板工程]
 閉板工程S21は、ろ板111,111’を締め付けてろ室112を形成する工程であり、閉板工程実行手段31により実行される。図3は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、閉板工程S21における動作状態の好適な一実施形態を示す。閉板工程実行手段31は、電動シリンダ105を駆動して押圧部材106をフロントフレーム101側に移動させることにより、脱水装置104の2枚のろ板111,111’を接近させて締め付け、ろ室112を形成する。
[圧入工程]
 圧入工程S22は、電極用触媒前駆体を含む液(原液)30を原液供給管114からろ室112に圧入してろ過し、ろ液42をろ液排出口115,115’から排出する工程であり、圧入工程実行手段32により実行される。図4は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、圧入工程S22における動作状態の好適な一実施形態を示す。圧入工程実行手段32により、電極用触媒前駆体を含む液30を原液供給管114からろ室112に圧入すると、電極用触媒前駆体を含む液30の水分は、ろ布113を介してろ過床116にしみだし、ろ液排出口115,115’から外部に排出される。これにより、ろ室112に圧入された電極用触媒前駆体を含む液30はろ過される。すなわち、電極用触媒前駆体を含む液30中の固形成分は電極用触媒前駆体を含むケーキ40としてろ室112に残留し、電極用触媒前駆体を含む液30の水分はろ液42として外部に排出される。
 また、この圧入工程S22においては、電極用触媒前駆体を含むケーキ40について、予め実験的に決定された厚さの範囲となるように形成する。ケーキ40の厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に決定される。
 ここで、使用する電極触媒が、担体として導電性カーボンを使用する場合、圧入工程S22時のケーキ40の厚さTは5~10mmに調整されていることが好ましい。ケーキ40の厚さTが10mm以下であると後述する正洗浄工程および/または逆洗浄工程の洗浄時間を調節することにより比較的容易に十分な洗浄効果を得ることができる。ケーキ40の厚さTが10mmを超えると、後述する正洗浄工程および/または逆洗浄工程の洗浄時間を長くしても、十分な洗浄効果が得られない傾向が大きくなる。
 また、ケーキ40の厚さTが5mm以上とするとケーキに亀裂が形成されにくくでき、洗浄水がケーキの上流の側の面からケーキの下流側の面に向けて当該ケーキ内を通過せずに流通してしまうパスが形成されることを防止できる傾向が大きくなる。
[正洗浄工程]
 正洗浄工程S23は、洗浄水43を原液供給管114からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後にろ液排出口115,115’から排出させる工程であり、正洗浄工程実行手段33により実行される。図5は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、正洗浄工程S23における動作状態の好適な一実施形態を示す。正洗浄工程実行手段33により、原液供給管114からろ液排出口115,115’に向けて洗浄水43を流し、圧入工程S22でろ室112に残留した電極用触媒前駆体を含むケーキ40を洗浄する。これにより、JIS規格試験法(JIS K0522)により測定されるろ液の電気伝導率ρを下げ、電極用触媒前駆体のハロゲン含有量、特に塩素含有量を低減することができる。
 正洗浄工程S23では、洗浄中に、ろ液の電気伝導率ρが所定の値以下になった時点で、洗浄水43の温度を切り替えることが好ましい。例えば、ろ液の電気伝導率ρが所定の値以下になった時点で洗浄水43を常温水(例えば23℃)から加温水(例えば70℃)に切り替えることができる。前記ろ液の電気伝導率ρの所定の値は、20~40μS/cmの範囲から選択される値とすることが好ましい。常温水の温度は、20~25℃とすることが好ましい。加温水の温度は60~80℃とすることが好ましい。
[逆洗浄工程]
 逆洗浄工程S24は、洗浄水43をろ液排出口115からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後に、洗浄水43を供給するろ液排出口115とは異なる別のろ液排出口115’から排出する工程であり、逆洗浄工程実行手段34により実行される。図6は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、逆洗浄工程S24における動作状態の好適な一実施形態を示す。脱水装置104は例えば少なくとも2つのろ液排出口115,115’を備える。正洗浄工程S23とは逆に、逆洗浄工程実行手段34により、ろ液排出口115からろ室112に向けて洗浄水43を流すことで、ろ室112に残留した電極用触媒前駆体を含むケーキ40を洗浄する。ろ液42は、例えば、洗浄水43を供給するろ液排出口115とは異なる別のろ液排出口115’から排出される。逆洗浄工程S24を行うことで、ろ液の電気伝導率ρをさらに下げ、電極用触媒前駆体のハロゲン含有量、特に塩素含有量をより低減することができる。
 逆洗浄工程S24では、常温水(例えば23℃)での洗浄を行ってもよいが、正洗浄工程S23の終了時点でろ液の電気伝導率ρがある程度低下しているので、初めから加温水(例えば70℃)での洗浄を行うことが好ましい。加温水の温度は60~80℃とすることが好ましい。
[開板工程]
 開板工程S25は、ろ室112を形成するろ板111,111’を開く工程であり、開板工程実行手段35により実行される。図7は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、開板工程S25における動作状態の好適な一実施形態を示す。開板工程実行手段35は、電動シリンダ105を駆動して、押圧部材106をリアフレーム102側に移動させることにより、脱水装置104の締め付けを解除する。こうして脱水装置104の2枚のろ板111,111’が引き離され、ろ室112が開かれる。
[ケーキ剥離工程]
 ケーキ剥離工程S26は、ろ布を下降させて脱水された電極用触媒前駆体を含むケーキ40を剥離落下させる工程であり、ケーキ剥離工程実行手段36により実行される。図8は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、ケーキ剥離工程S26における動作状態の好適な一実施形態を示す。ケーキ剥離工程実行手段36により、脱水装置104の2枚のろ板111,111’が所定の距離まで引き離されると、電極用触媒前駆体を含むケーキ40を保持していたろ布113が下方へ走行する。こうして電極用触媒前駆体を含むケーキ40はろ布113から自動的に剥離される。
[ろ布洗浄工程]
 ろ布洗浄工程S27は、ケーキ剥離工程S26後に、洗浄水43でろ布113を洗浄する工程であり、ろ布洗浄工程実行手段37により実行される。図9は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、ろ布洗浄工程S27における動作状態の好適な一実施形態を示す。電極用触媒前駆体を含むケーキ40がろ布113から剥離された後、ろ布113は上方に走行し、元の位置まで戻る。ろ布洗浄工程実行手段37により、ろ布113が上方に走行中に、ろ布洗浄用のポンプ(図示せず)で脱水装置104の下方に設けられた洗浄水管117から洗浄水43が供給される。この洗浄水43をろ布113に噴射することによりろ布113を洗浄し、ろ布113の目詰まりを防止するとともに、ろ布113に付着した電極用触媒前駆体等を確実に回収する。すなわち、ろ布洗浄時の排水は、電極用触媒前駆体を含むため、全て回収することが好ましい。このようにして、ろ布113に付着した電極用触媒前駆体を流して回収することで、電極用触媒前駆体の収率を高めることができる。また、例えばろ布113を上下に繰り返し走行させながら洗浄することで、電極用触媒前駆体の回収量をさらに高めることもできる。
[圧搾工程]
 尚、正洗浄工程S23の後、および/または、逆洗浄工程S24の後に、圧搾工程を行ってもよい。圧搾工程は、電極用触媒前駆体を含むケーキ40をさらに圧搾脱水する工程であり、圧搾工程実行手段(図示せず)により実行される。図10は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、圧搾工程における動作状態の好適な一実施形態を示す。圧搾工程実行手段により、一方のろ板111’に設けられたダイアフラム118の中に加圧水119を注入することで、電極用触媒前駆体を含むケーキ40をさらに圧搾脱水する。圧搾工程により、電極用触媒前駆体を含むケーキ40の固形分濃度が高められ、含水率の極めて低い電極用触媒前駆体を含むケーキ40が生成される。
 ここで、圧搾工程の終了後にダイアフラム118から加圧水119を抜くように構成すると、ダイアフラム118による押圧がなくなるため、ダイアフラム118により押圧されていたろ布113がケーキ40から剥離されやすくなるので好ましい。
 なお、この圧搾工程においては、他方のろ板111にもダイアフラム(図示せず)を具備する構成を有していてもよい。この場合、ろ板111の側に設けられたダイアフラム(図示せず)の中にも加圧水を注入し、電極用触媒前駆体を含むケーキ40を圧搾脱水できるようになる。この場合にも、圧搾工程の終了後、ダイアフラムから加圧水を抜くように構成すると、ダイアフラム(図示せず)による押圧がなくなるため、ダイアフラム(図示せず)により押圧されていたろ布113がケーキ40から剥離されやすくなるので好ましい。
 上記では1つの脱水装置104について説明したが、図2のような洗浄装置13によれば、全ての脱水装置104が同じ動作をすることができるので、一台の装置で一度に処理する量を増大させることができ、電極用触媒の生産効率が向上する。また上記脱水装置104は、ろ過面積が大きく、高耐圧構造であるので、処理速度を向上することができる。また、原液の導入からケーキの排出を経て装置の洗浄まで全自動で処理することができるので、洗浄工程における処理の手間と時間を低減することができる。さらに、装置の材料として樹脂やライニング材等を選定することができるので、装置の高耐食化が可能である。
[ろ液の電気伝導率ρ]
 正洗浄工程S23を経た後、および/または、逆洗浄工程S24を経た後に得られるろ液のJIS規格試験法(JIS K0522)により測定される電気伝導率ρが、予め設定された設定値以下となるように、正洗浄工程S23の正洗浄時間や、逆洗浄工程S24の逆洗浄時間等の処理条件を調整する。例えば、逆洗浄工程の洗浄時間を、正洗浄工程の洗浄時間と同程度に長くすると洗浄効果が増大する。同程度とは、0~15分の違い(正洗浄工程の洗浄時間と逆洗浄工程の洗浄時間との差の絶対値)であることを意味する。また、ろ液は、洗浄後にろ液排出口から排水される液であり、その工程で排出される全ろ液を使用することが好ましい。
 正洗浄工程S23を経た後に得られるろ液の電気伝導率ρの設定値は、20μS/cm以下の範囲から選択される値とすることが好ましい。逆洗浄工程S24を経た後に得られるろ液の電気伝導率ρの設定値は、10μS/cm以下の範囲から選択される値とすることが好ましい。ろ液の電気伝導率ρが10μS/cm以下であれば、燃料電池用の電極用触媒として実用できる程度に電極用触媒前駆体に含まれる塩素(Cl)種や臭素(Br)種の濃度が低減されている。
 洗浄装置13で使用する洗浄水43は、超純水等の純水を使用することもできるが、純水でなくてもよい。例えばpH6~8、JIS規格試験法(JIS K0522)により測定される電気伝導率ρが10μS/cm未満のイオン交換水等を使用することができる。
 なお本実施形態では、洗浄工程において、フィルタープレスを使用した洗浄方法およびろ過方法を採用したが、従来の遠心分離機(図示せず)等を使用した洗浄方法およびろ過方法を採用してもよい。
(乾燥装置)
 図11は本発明に係る乾燥装置14の概略構成を示している。乾燥装置14は、上記の洗浄装置13で洗浄された電極用触媒前駆体を、攪拌羽根204を備えた攪拌処理装置201により乾燥する。乾燥装置としての攪拌処理装置201は、逆円錐形の中空容器状の容器本体202と、容器本体202の内部を減圧する減圧機構203と、攪拌羽根204と、を主に備えている。容器本体202は、上部が、容器本体202に着脱可能に設けられる蓋205で覆われており、周壁には、容器本体202の内部を加熱する加熱媒体としてのスチームSを流すジャケット206が設けられ、外側面に容器本体202を支持する支持部210,210が設けられている。支持部210,210の下面には重量変化が確認可能なロードセル212,212が設けられており、ロードセル212,212を介して支持部210,210を設置場所に設置することで、容器本体202が設置場所に吊設されるようになっている。
 また容器本体202の内部を攪拌するように攪拌羽根204が設けられ、攪拌羽根204の駆動装置207が容器本体202上部の蓋205に設けられ、容器本体202の下端である円錐頂部に、容器本体202内の電極用触媒前駆体を取り出す開口部208が形成される。この開口部208には取出バルブ209が設けられ、当該取出バルブ209を操作して開口することにより容器本体202内の電極用触媒前駆体を取り出す構成となっている。そして、供給口211が容器本体202上部の蓋205に設けられ、この供給口211に供給バルブ215が設けられて、当該供給バルブ215を操作して開口することにより電極用触媒前駆体を容器本体202に供給するようになっている。
 またジャケット206には、スチームSを注入する加熱媒体注入口213と、スチームSを排出する加熱媒体排出口214とが設けられている。そして容器本体202には、温度指示調節計216が設けられており、これにより容器本体202内の電極用触媒前駆体の温度の監視を行ない、加熱媒体注入口213に供給されるスチームSの量と加熱媒体排出口214から排出されるスチームSの量とを調節することにより、容器本体202内の電極用触媒前駆体の温度を調節できるようになっている。また、加熱媒体注入口213は加熱媒体に加えて冷却媒体Cも注入できるように構成されており、加熱媒体排出口214は加熱媒体に加えて冷却媒体Cも排出できるように構成されている。
 図12は攪拌羽根204の斜視図を示している。攪拌羽根204は、蓋205の中心を貫通して延びている回転主軸222と、回転主軸222の先端に取付けられ、回転主軸222と共に回転する螺旋リボン回転翼223と、回転主軸222および螺旋リボン回転翼223と接続する回転翼支柱としてのアーム224と、螺旋リボン回転翼223の上方で回転主軸222に設けられる渦流ブレーカ225と、を備えており、回転主軸222、螺旋リボン回転翼223、アーム224および渦流ブレーカ225が一体に構成されている。
 回転主軸222は、シールユニット221(図11参照)を介して駆動装置207に組み込まれており、この駆動装置207を駆動させることにより回転主軸222が回転し、それに伴い、回転主軸222と一体に構成された螺旋リボン回転翼223、アーム224および渦流ブレーカ225を回転させる。したがって駆動装置207により回転主軸222が回転することで、回転主軸222が攪拌羽根204を回転させる構成となっている。また回転主軸222は中空の管状に形成されており、同じく中空の管状に形成されたアーム224と流通可能に連結されている。そして回転主軸222の駆動装置207側の端部が、スクレーパー用の気体Gの流路、例えば窒素ガス、常圧空気、窒素ガスと酸素ガスとを任意の割合で混合し酸素ガス濃度を調製した混合ガス、窒素ガスと空気とを任意の割合で混合し酸素ガス濃度を調製した混合ガス、高圧空気の流路に流通可能に接続され、例えば後述する徐酸化工程実行手段54や取出し工程実行手段55により、当該気体Gを回転主軸222に注入するように構成されている。
 図11を参照すると、駆動装置207はギアドモータ等を使用しており、回転数を所定の値に調整して攪拌羽根204を回転させるようになっている。また駆動装置207は攪拌羽根204の回転及び位置を検出する位置検出装置(図示せず)を備えている。シールユニット221は、例えばドライシールおよびメカニカルシールを装着しており、容器本体202内が高真空または高圧の時でも処理の対応ができるように構成されている。
 螺旋リボン回転翼223は、容器本体202に攪拌羽根204が配置されたときに、円錐形状の容器本体202の内壁面に沿って、僅かなクリアランスを保って配置されるような螺旋状に形成されており、容器本体202内で螺旋リボン回転翼223が回転することで、電極用触媒前駆体が容器本体202の内壁面に沿って上昇する。また上部へ行くほど螺旋リボン回転翼223のリボンの幅が広くなるように形成され、容器本体202垂直方向の各断面における粉体搬送が一定比率となるように構成されている。なお本実施形態では図12に示されるように、螺旋リボン回転翼223が1本のシングルリボン翼を採用しているが、螺旋リボン回転翼223が2本のダブルリボン翼を採用してもよい。
 図12を参照すると、アーム224は螺旋リボン回転翼223を支持しており、回転主軸222に螺旋リボン回転翼223を確実に固定している。また各アーム224の先端部の下側にはスクレーパー用のガス噴出孔226が設けられており、上述した気体Gの流路から気体Gが回転主軸222に注入されると、回転主軸222内および各アーム224内を通って各ガス噴出孔226から気体Gが噴射するように構成されており、後述する取出し工程S35のときに電極用触媒前駆体の滞留を防止するようになっている。
 渦流ブレーカ225は、容器本体202内で回転することで、容器本体202の内壁面に沿って上昇する電極用触媒前駆体を容器本体202の中央部に導く。そのため電極用触媒前駆体の循環流が容器本体202の中央部で下方へ導かれ、自然落下時の層表面での濁流が原因の分級作用が防止される。
 なお、図12においては、渦流ブレーカ225は、蓋205の内側の面との間に隙間が空くようにして配置されている。しかし、本発明においては、渦流ブレーカ225は、蓋205の内側の面に接するように一体的に配置されている構成を有していてもよい。この場合でも上述の分級作用の防止を図ることができる。
 図11に戻って、減圧機構203について説明すると、231はバグフィルタであり、蓋205の排気孔232に設けられ、このバグフィルタ231を介して、容器本体202内で電極用触媒前駆体から蒸発した液体や気体が排出される。また233は凝縮器であるコンデンサであり、バグフィルタ231から流れてきた液体を凝縮するものである。このコンデンサ233と蓋205の排気孔232とは、バグフィルタ231を介して接続配管235により接続される。そして234は真空ポンプであり、吸引配管236によりコンデンサ233と接続しており、この真空ポンプ234を駆動することにより、容器本体202内からバグフィルタ231及びコンデンサ233に、電極用触媒前駆体から蒸発した液体や気体が流れるように構成されている。また接続配管235には、減圧乾燥を行なう場合に容器本体202内の圧力を調節するように、圧力指示調節計237が設けられている。圧力指示調節計237の調節信号により、吸引配管236に設けられた調節弁238を調節し、真空ポンプ234で吸引する真空度を調節するようになっている。なお接続配管235によりバグフィルタ231から流れてきた気体および蒸気はコンデンサ233で凝縮処理され、凝縮しやすい成分は凝縮液として気体と分離される。分離された気体が吸引配管236により真空ポンプ234に吸気されて、この真空ポンプ234から排気される。なお、容器本体202下部にエアブローノズル(図示せず)を設け、このエアブローノズルにより不活性ガスや空気を入れることにより、容器本体202を減圧状態から常圧状態に戻すように構成してもよい。
 乾燥装置14は、図1のブロック図および図20のフローチャートに示すように、導入工程S31と、乾燥工程S32と、冷却工程S33と、冷却された電極用触媒前駆体を徐酸化処理する徐酸化工程S34と、徐酸化処理された電極用触媒前駆体を取出す取出し工程S35とをそれぞれ実行する手段である、導入工程実行手段51と、乾燥工程実行手段52と、冷却工程実行手段53と、徐酸化工程実行手段54と、取出し工程実行手段55とを備えている。各工程S31~S35について以下に説明する。
[導入工程]
 導入工程S31は、洗浄された電極用触媒前駆体を乾燥装置14内に導入する工程であり、導入工程実行手段51により実行される。図13Aを参照して説明すると、導入工程実行手段51は、攪拌処理装置201の供給バルブ215を操作して開口させ、所定の含水率の電極用触媒前駆体を供給口211から容器本体202に導入する。電極用触媒前駆体の前記含水率は事前に計測されていることが好ましい。この電極用触媒前駆体を導入する方法は、漏斗などを用いて人の手による作業で導入されてもよく、図13Aに示すように、電極用触媒前駆体が移送される管やベルトコンベア等から、人の手を介さずに直接導入されてもよい。ここで、導入された電極用触媒前駆体の重量がロードセル212,212により計測される。なお、この導入工程S31の前に、ジャケット206にスチームSを注入して容器本体202内を所定の温度に予熱する予熱工程が行なわれてもよい。その後、導入工程実行手段51は供給バルブ215を操作して閉口させて容器本体202を密閉し、導入工程S31が完了する。
[乾燥工程]
 乾燥工程S32は、容器本体202内に導入された電極用触媒前駆体を乾燥させる工程(いわゆる真空乾燥を実施する工程)であり、乾燥工程実行手段52により実行される。図13Bに図11等を併せて参照して説明すると、乾燥工程実行手段52は、駆動装置207を駆動させて攪拌羽根204を回転させると共に、真空ポンプ234を駆動させて容器本体202内を排気及び減圧し、圧力指示調節計237により操作圧力を所定の圧力に調整して電極用触媒前駆体を攪拌混合する。前記攪拌羽根204の回転速度は、毎分40~80回転とすることが好ましく、また前記操作圧力は、5~20kPa(ゲージ圧)とすることが好ましい。また乾燥工程実行手段52は、温度指示調節計216により加熱媒体注入口213からジャケット206にスチームSを注入し、当該スチームSの伝導伝熱により容器本体202を加熱することで容器本体202内の電極用触媒前駆体を所定の温度(乾燥温度)に調節して乾燥させる。さらに攪拌羽根204の攪拌による発熱が、電極用触媒前駆体の乾燥に寄与する。前記乾燥温度は、50~150℃の範囲から選択される値とすることが好ましい。なお、操作圧力及び加熱温度は、電極用触媒前駆体の温度(品温)を測定し当該品温の変化の度合いをみて乾燥時間の調節のために乾燥工程の最中に変更してもよい。
 乾燥工程S32における容器本体202内の電極用触媒前駆体の循環流について、さらに詳細に説明すると、攪拌羽根204が回転することにより、電極用触媒前駆体が容器本体202の内側壁面に沿って上昇する。その後、電極用触媒前駆体が、螺旋リボン回転翼223の上方に設けられた渦流ブレーカ225により容器本体202の中央部に寄せられると、この中央部から直ちに下降して層内に潜り込むという循環が行なわれる。
 また電極用触媒前駆体から蒸発した蒸気や気体は真空ポンプ234により吸引され、バグフィルタ231により粉塵が濾過捕集される。その後、接続配管235を通ってコンデンサ233に流れ、コンデンサ233により冷却され凝縮液化されて凝縮液が回収されると共に、真空ポンプ234により気体が排気される。このようにして電極用触媒前駆体から蒸気や気体が蒸発することで、電極用触媒前駆体の重量が変化する。このときの容器本体202内の電極用触媒前駆体の重量はロードセル212,212により計測されており、導入時の電極用触媒前駆体の重量及び含水率、及び現在の電極用触媒前駆体の重量から、現在の電極用触媒前駆体の含水率が算出される。容器本体202内の電極用触媒前駆体が所定の含水率以下になったときに乾燥工程S32が完了する。前記所定の含水率は3wt%とすることが好ましい。以下、含水率の値はウェットベースの表示で記載する。
 なお、本発明の場合、ロードセル212を有しない構成であってもよい。この場合、容器本体202内の電極用触媒前駆体の重量の変化は、乾燥工程S32における乾燥条件(容器本体202内投入する電極用触媒前駆体の重量、乾燥条件)を同一にした予備試験を予め行い、予め把握しておいてもよい。そして、予備試験の結果に基づいて乾燥開始からの経過時間などをモニタすることなどで容器本体202内の電極用触媒前駆体の重量の変化を簡易的に把握できるようにしてもよい。
[冷却工程]
 冷却工程S33は、容器本体202内で乾燥させた電極用触媒前駆体を冷却させる工程であり、冷却工程実行手段53により実行される。図13Cに図11等を併せて参照して説明すると、冷却工程実行手段53は温度指示調節計216により加熱媒体排出口214からジャケット206内のスチームSを排出する。ここで冷却工程実行手段53は駆動装置207および真空ポンプ234の駆動を継続させ、攪拌羽根204を回転させると共に容器本体202内を排気及び減圧して、電極用触媒前駆体の攪拌混合を継続する。この時の前記攪拌羽根204の回転速度は、毎分40~80回転とすることが好ましく、また前記減圧時の操作圧力は、大気圧とすることが好ましい。また冷却工程実行手段53は、温度指示調節計216により加熱媒体排出口214からジャケット206へ冷却媒体Cを注入させ、冷却媒体の伝導伝熱により容器本体202を冷却することで容器本体202内の電極用触媒前駆体を所定の温度に冷却する。冷却媒体Cの温度は10~30℃とすることが好ましく、前記所定の温度は、40℃以下、好ましくは10~40℃の範囲から選択される値とすることが好ましい。冷却工程実行手段53が温度指示調節計216により、電極用触媒前駆体が前記所定の温度になったことを検出したときに冷却工程が完了する。
[徐酸化工程]
 徐酸化工程S34は、容器本体202内で冷却された電極用触媒前駆体を徐酸化処理する工程であり、徐酸化工程実行手段54により実行される。徐酸化工程実行手段54は、加熱媒体注入口213からジャケット206内の冷却媒体Cを排出し、駆動装置207および真空ポンプ234を停止し、供給バルブ215を操作して容器本体202内の圧力を少しずつ常圧に戻すことにより、乾燥した電極用触媒前駆体の徐酸化を行なう。なお、スクレーパー用の気体Gが高圧空気の場合は、徐酸化工程実行手段54が高圧空気をスクレーパー用の気体Gの流路から回転主軸222に注入し、各ガス噴出孔226から高圧空気を噴射させることにより容器本体202内の圧力を少しずつ常圧に戻すように構成してもよい。また容器本体202下部にエアブローノズルが設けられている場合は、徐酸化工程実行手段54が当該エアブローノズルにより容器本体202内の圧力を少しずつ常圧に戻すように構成してもよい。容器本体202内の電極用触媒前駆体の徐酸化処理が完了したときに徐酸化工程が完了する。
 なお、徐酸化工程S34では、容器本体202内の圧力を少しずつ常圧に戻し、容器本体202内を最終的に常圧の空気の雰囲気に戻す際に、各ガス噴出孔226から窒素ガスと酸素ガスとを任意の割合で混合し酸素ガス濃度を調製した混合ガス、又は、窒素ガスと空気とを任意の割合で混合し酸素ガス濃度を調製した混合ガスを噴出させ、容器本体202内の酸素ガス濃度を本工程中で電極用触媒前駆体が発火しないよう予め実験的に求められた数値範囲に制御しながら経時的に増加させ、最終的に空気と同じ酸素濃度にすることが好ましい。
[取出し工程]
 取出し工程S35は、容器本体202内で冷却された電極用触媒前駆体を取出す工程であり、取出し工程実行手段55により実行される。図13Dに図11等を併せて参照して説明すると、取出し工程実行手段55は、取出バルブ209を操作して開口することにより、開口部208から容器本体202内の電極用触媒前駆体を取り出す。攪拌処理装置201は容器本体202の内部構造がシンプルであるため、取出し工程S35のときに電極用触媒前駆体の残粉を少なくすることができる。また、このとき取出し工程実行手段55は、スクレーパー用の気体Gの流路から気体Gを回転主軸222に注入させ、各ガス噴出孔226から気体Gを下向きに噴射させるスクレーパー工程を実施することにより、容器本体202内壁や攪拌羽根204に付着した電極用触媒前駆体を下方に吹き飛ばし、電極用触媒前駆体の回収率を高める。容器本体202内の電極用触媒前駆体を全て取り出したときに取出し工程が完了する。
<電極用触媒>
 本実施形態で製造する電極用触媒の構造は特に限定されず、導電性担体(導電性カーボン担体、導電性金属酸化物担体など)の担体に貴金属触媒粒子が担持された構造を有していればよい。例えば、いわゆるPt触媒、Pt合金触媒(PtCo触媒、PtNi触媒など)及びコア・シェル構造を有するいわゆるコア・シェル触媒であってもよい。
 例えば、コア部4の構成元素としてパラジウム、シェル部5の構成元素として白金を採用した構成のコア・シェル触媒は、白金(Pt)の塩化物塩、パラジウム(Pd)の塩化物塩などの塩素(Cl)種を含む材料が原料として使用される場合が多い。本実施形態に係る電極用触媒の製造システムおよび製造方法によれば、これらの塩素(Cl)種の含有量を低減した電極用触媒を製造することができる。
 電極用触媒の構造の一例について図を参照してより詳しく説明すると、コア・シェル構造を有する電極用触媒1は、図14に示すように、担体2と、当該担体2上に担持された触媒粒子3とを含む。触媒粒子3は、コア部4と、コア部4の少なくとも一部を被覆するように形成されたシェル部5とを備える。触媒粒子3はコア部4とコア部4上に形成されるシェル部5とを含むいわゆるコア・シェル構造を有する。
 すなわち、電極用触媒1は、担体2に担持された触媒粒子3を有しており、この触媒粒子3は、コア部4を核(コア)とし、シェル部5がシェルとなってコア部4の表面を被覆する構造を備える。また、コア部4の構成元素(化学組成)と、シェル部5の構成元素(化学組成)は異なる構成となっている。
 コア・シェル構造の具体例をさらに例示すると、図15では、電極用触媒1Aが、コア部4と、コア部4の表面の一部を被覆するシェル部5aおよびコア部4の他の表面の一部を被覆するシェル部5bから構成される触媒粒子3aを有する。また図16では、電極用触媒1Bが、コア部4と、コア部4の表面の略全域を被覆するシェル部5から構成される触媒粒子3を有し、シェル部5が第1シェル部6と第2シェル部7とを備えた二層構造である。さらに図17では、電極用触媒1Cが、コア部4と、コア部4の表面の一部を被覆するシェル部5a、およびコア部4の他の表面の一部を被覆するシェル部5bから構成される触媒粒子3aを有し、シェル部5aが第1シェル部6aと第2シェル部7aとを備えた二層構造であり、シェル部5bが第1シェル部6bと第2シェル部7bとを備えた二層構造である。
 本実施形態において、塩素(Cl)種とは、構成成分元素として塩素を含む化学種をいう。具体的には、塩素を含む化学種には、塩素原子(Cl)、塩素分子(Cl)、塩素化物イオン(Cl)、塩素ラジカル(Cl・)、多原子塩素イオン、塩素化合物(X-Cl等、ここで、Xは対イオン)が含まれる。
 本実施形態において、臭素(Br)種とは、構成成分元素として臭素を含む化学種をいう。具体的には、臭素を含む化学種には、臭素原子(Br)、臭素分子(Br)、臭素化物イオン(Br)、臭素ラジカル(Br・)、多原子臭素イオン、臭素化合物(X-Br等、ここで、Xは対イオン)が含まれる。
<電極用触媒の製造方法>
 図18に示すように、本実施形態に係る電極用触媒の製造方法は、電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップS1と、電極用触媒前駆体製造ステップS1で製造された電極用触媒前駆体を含む液30をフィルタープレスにより洗浄する洗浄ステップS2と、洗浄ステップS2で洗浄された電極用触媒前駆体を、螺旋リボン回転翼223を有する攪拌羽根204を備えた攪拌処理装置201により乾燥する乾燥ステップS3とを含む。各ステップS1,S2,S3は、上述の電極用触媒の製造システム10の電極用触媒前駆体製造装置12、洗浄装置13としてのフィルタープレス、および、乾燥装置14としての攪拌処理装置201でそれぞれ実行されることができる。
 洗浄ステップS2は、図19に示すように、閉板工程S21と、圧入工程S22と、正洗浄工程S23と、逆洗浄工程S24と、開板工程S25と、ケーキ剥離工程S26と、ろ布洗浄工程S27とを含む。洗浄ステップS2では、電極用触媒前駆体製造ステップS1で製造された電極用触媒前駆体を含む液30を洗浄、ろ過および脱水することにより、洗浄後の電極用触媒前駆体41を得ることができる。また、正洗浄工程S23の後、および/または、逆洗浄工程S24の後に、圧搾工程を実行してもよい。各工程S21~S27および圧搾工程の構成は上述の<電極用触媒の製造システム>(洗浄装置)で説明した通りである。
 乾燥ステップS3は、図20に示すように、導入工程S31と、乾燥工程S32と、冷却工程S33と、徐酸化工程S34と、取出し工程S35とを含む。乾燥ステップS3では、洗浄ステップS2で洗浄された電極用触媒前駆体を乾燥することにより、乾燥後の電極用触媒1を得ることができる。各工程S31~S35の構成は上述の<電極用触媒の製造システム>(乾燥装置)で説明した通りである。
 ここに記述される実施例は本発明の実施形態を例示するものであり、本発明の範囲を限定するものとして解釈されるべきではない。
<電極用触媒前駆体の製造(反応工程、電極用触媒前駆体製造ステップ)>
(製造例1)
[電極用触媒前駆体を含む液(原液)の調製]
 電極用触媒として、Pt粒子担持カーボン触媒(以下、「Pt/C触媒」という。N.E.CHEMCAT社製、Pt担持率50wt%、商品名:「SA50BK」)を使用した。まずその前駆体を含む液を調製した。
 この前駆体の担体には、市販の導電性中空カーボン担体{ライオン株式会社製、商品名「カーボンECP」(登録商標)(ケッチェンブラックEC300J)、比表面積750~800m/g}を使用した。
 この担体と水溶性Pt塩とを水中に分散させた。次に、担体と水溶性Pt塩を含む分散液に水溶性還元剤を添加し所定の温度でPt成分の還元反応を進行させた。これにより、本実施形態で使用する電極用触媒前駆体を含む液を調製した。
 上述のようにして得られた電極用触媒前駆体を含む液を乾燥させずにケトルに分散させて、洗浄装置で処理する原液として使用した。
<電極用触媒の製造>
(実施例1)
[洗浄装置による処理(洗浄ステップ)]
 製造例1で得られた電極用触媒前駆体を含む液を洗浄装置に導入し、洗浄処理を行った。洗浄装置における各工程の処理時間を表1に示す。まず、20分間で圧入工程を行った。圧入工程における電極用触媒前駆体を含むケーキの厚さは5~10mmとした。
 このケーキの厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予備実験により予め決定された厚さの範囲である。
 次に、正洗浄工程を行った。正洗浄工程では、まず常温(23℃)の洗浄水で24分間処理し、ろ液の電気伝導率ρが40μS/cm以下になった時点で加温水(70℃)に切り替え、加温水で50分間処理を行った。正洗浄工程の後、5分間で圧搾工程を行った。その後、逆洗浄工程を行い、当該逆洗浄工程では、加温水(70℃)の洗浄水で73分間処理を行った。合計で約2.9時間の洗浄処理を行った。
 洗浄水はイオン交換水を使用した。使用したイオン交換水の常温(23℃)時の電気伝導率ρは7.70μS/cm、加温(70℃)時の電気伝導率ρは4.6μS/cmである。
[乾燥装置による処理(乾燥ステップ)]
 洗浄装置による処理後に得られた電極用触媒前駆体を含むケーキを乾燥装置としての攪拌処理装置201に導入し、乾燥ステップS3を行った。
 なお、本実施例1では、撹拌機構を有する攪拌処理装置201を使用した電極用触媒前駆体を含むケーキの乾燥を実施するため、後述の比較例1で実施する電極用触媒前駆体を含むケーキの解砕(棚段真空乾燥機に導入する前のケーキの粗粉砕)は不要である。即ち、後述の比較例1における解砕工程は不要になる。
 攪拌処理装置201における各工程の処理時間を表2に示す。
 導入工程S31においてケーキ52kgを仕込むときの攪拌処理装置201の容器本体202内の粉面高さを基に攪拌処理装置201の容量を選定し、容器本体202の有効容量が100Lで螺旋リボン回転翼223がシングルリボン翼の攪拌処理装置201を採用した。
 まず導入工程S31で含水率が約82%のケーキ52kgを容器本体202内に仕込むケーキ仕込を行った。
 その後、乾燥工程S32、冷却工程S33、徐酸化工程S34と順に行ない、取出し工程S35でケーキの取出しを行ない、含水率が3wt%以下の電極用触媒を得るために必要とする時間を測定した。
 また、攪拌乾燥に伴う「摩擦」が製品に影響を与えないか確認するために、冷却工程S33では攪拌羽根204を回転させると共に、加熱媒体排出口214からジャケット206へ冷却媒体Cを注入し、冷却しながら電極用触媒前駆体での攪拌試験を実施した。
(比較例1)
[洗浄装置による処理(洗浄ステップ)]
 製造例1で得られた電極用触媒前駆体を含む液を洗浄装置に導入し、洗浄処理を行った。洗浄装置における各工程の処理時間を表1に示す。まず、40分間で圧入工程を行った。圧入工程における電極用触媒前駆体を含むケーキの厚さは11~15mmとした。
 このケーキの厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予備実験により予め決定された厚さの範囲から外れた範囲にある。
 次に、正洗浄工程を行った。正洗浄工程では、まず常温(23℃)の洗浄水で33分間処理し、ろ液の電気伝導率ρが40μS/cm以下になった時点で加温水(70℃)に切り替え、加温水で60分間処理を行った。正洗浄工程の後、圧搾工程を5分間行い、続いて、逆洗浄工程を行ったが、ろ液の伝導率ρが、正洗浄工程終了時のろ液の電気伝導率ρから変化がなかったため、逆洗浄工程を36分間行った後、すなわち合計約2.9時間の洗浄処理後、処理を中断した。
 洗浄水はイオン交換水を使用した。使用したイオン交換水の常温(23℃)時の電気伝導率ρは7.70μS/cm、加温(70℃)時の電気伝導率ρは4.6μS/cmである。
[乾燥装置による処理(乾燥ステップ)]
 洗浄装置による処理後に得られた電極用触媒前駆体を含むケーキについて、専用の解砕機、棚段真空乾燥機およびハンマーミルを用いて、乾燥ステップを行った。
 まずケーキを専用の解砕機で解砕する解砕工程で、含水率が約80~82%の電極用触媒前駆体52kgを得た。
 この解砕工程では、ケーキを洗浄装置から取出し、電極用触媒前駆体を含むケーキの解砕(棚段真空乾燥機に導入する前のケーキの粗粉砕)を行う。実施例1の攪拌処理装置201と異なり、本比較例1で使用する棚段真空乾燥機には撹拌機構が装備されていないので解砕機を使用して棚段真空乾燥機に導入する前のケーキの粗粉砕を行い、棚にケーキの解砕物を略均等に配分して配置する必要がある。
 その後の導入工程で、この電極用触媒前駆体を、幅600mm、長さ780mm、高さ20mmのバット20枚に配膳するケーキ配膳を行ない、電極用触媒前駆体が配膳されたバットを棚段真空乾燥機に設置して扉を閉め、減圧下で電極用触媒前駆体を乾燥させる乾燥工程、および減圧下で電極用触媒前駆体を冷却させる冷却工程を行なった。
 冷却工程の後、扉をゆっくりと開く徐酸化工程を行ない、その後の取出し工程で、棚段真空乾燥機からバットを取り出して電極用触媒前駆体を取り出した。
 その後、この取り出した電極用触媒前駆体をハンマーミルで粉砕する粉砕工程を行なって、含水率が3wt%以下の電極用触媒を得るために必要とする時間を測定した。
 実施例1の攪拌処理装置201と異なり、本比較例1で使用する棚段真空乾燥機には撹拌機構が装備されていないので、ハンマーミルを使用した電極用触媒前駆体の粉体の塊を粉砕することが必要になる。また、ハンマーミルの粉砕前に棚段真空乾燥機から電極用触媒前駆体の粉体の塊を取り出す必要が生じる。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
 表1に示すように、実施例1では、正洗浄工程終了時のろ液の電気伝導率ρが15.9μS/cmであったのに対し、逆洗浄工程終了時のろ液の電気伝導率ρは9.7μS/cmまで低下した。3時間未満の洗浄処理時間で、ろ液の電気伝導率ρを10μS/cm以下まで低下させることができた。一方、比較例1では、正洗浄工程終了時のろ液の電気伝導率ρは19.3μS/cmまで低下したが、その後、逆洗浄工程を行っても、19.3μS/cmから全く下がらなかった。
Figure JPOXMLDOC01-appb-T000002
<評価結果>
 表2に示すように、実施例1において、導入工程S31では電極用触媒前駆体を配膳する必要が無く、容器本体202に電極用触媒前駆体を仕込むだけなので、比較例1では2時間必要とするところを0.4時間まで短縮できた。
 また実施例1において、乾燥工程S32および冷却工程S33では、高い混合能力とジャケット206からの伝熱により、棚段真空乾燥機と比較して乾燥速度が向上しており、比較例1では24時間必要とするところを3.1時間まで短縮できた。
 ここで、得られた電極用触媒は比較例1と殆ど遜色なく、攪拌乾燥に伴う「摩擦」が製品品質に殆ど影響を与えないことが確認できた。更に、実施例1において、徐酸化工程S34、取出し工程S35では比較例1と比較して時間の短縮は確認できなかった一方で、実施例1では解砕工程および粉砕工程を省略できた。
(比較例2)
[洗浄装置による処理(洗浄ステップ)]
 製造例1で得られた電極用触媒前駆体を含む液を遠心分離機に導入し、洗浄処理を行った。JIS規格試験法(JIS K0522)により測定されるろ液の電気伝導率ρが10μS/cm以下になるまで洗浄を繰り返し、得られた電極用触媒前駆体を超純水に分散させて分散液を調製し、当該分散液をろ過した。ろ過により得られたろ物を乾燥装置で、温度70℃、空気中、24時間の条件下で乾燥し、電極用触媒を得た。表3に、実施例1および比較例2の洗浄装置による処理(洗浄ステップ)の処理時間を比較して示す。なお表2では、原料フィード~固液分離までの処理時間と、ケーキ洗浄および脱水に要する時間とを分けて示している。
Figure JPOXMLDOC01-appb-T000003
<評価結果>
 従来のように遠心分離機を使用して洗浄した比較例2では、ろ液の電気伝導率ρを10μS/cm以下まで低下させるには、3回実施した結果、15~19時間を要した。
 したがって、実施例1と比較例1および2とを比較したときに理解されるように、本実施形態の電極用触媒の製造システムおよび製造方法によれば、洗浄装置による処理(洗浄ステップ)に要する時間を、従来の遠心分離機を使用した処理に比べて、1/5以下に大幅に短縮することができる。さらに、本実施形態に係る洗浄装置では、電極用触媒前駆体を含むケーキが自動で剥離されるので、作業者が電極用触媒前駆体を掻き取る作業をなくすことができ、手間も大幅に低減することができる。
 また実施例1と比較例1とを比較したときに理解されるように、本実施形態の電極用触媒の製造システムおよび製造方法によれば、乾燥装置14による処理(乾燥ステップS3)に要する時間を約1/5~約1/6に大幅に短縮することができる。さらに、本実施形態に係る乾燥装置14としての攪拌処理装置201は乾燥工程S32、冷却工程S33、徐酸化工程S34および取出し工程S35を全て自動で行なうことができるため、手間も大幅に低減することができ、可能な限り人の手による作業を介さない電極用触媒の製造方法及び製造システムを提供することができる。
 <電極用触媒の製造システム>
 図21は、第2の実施形態に係る電極用触媒の製造システムの概略を示すブロック図である。電極用触媒の製造システム150は、第1の実施形態で説明した電極用触媒前駆体製造装置12、洗浄装置13および乾燥装置14に加えて、乾燥後の電極用触媒1や触媒ケーキ調製後のWET品を物性分析する分析装置151と、乾燥後の電極用触媒1にイオン交換水を混合させてリスラリー化する反応器152とをさらに有している。
 従来、粉末状の電極用触媒の出荷時の梱包作業や、顧客による電極用触媒使用時の計量作業において、粉末状の触媒の発火、消失の懸念が課題となっており、この電極用触媒の発火、消失対策や将来的な梱包、納入形態において、電極用触媒の粉体を純水で濡らした状態であるWET品での供給が想定され、今後、需要が増大することが見込まれている。しかしながら、例えば重量比で電極用触媒:水を1:4にすると、WET品が固体状とならず液状になってしまう。電極用触媒は高価であるため可能な限り回収する必要があるが、装置や電極用触媒を収容する容器にWET品が粘着したまま乾燥し容器内壁に付着してしまっていた。また第1の実施形態の乾燥工程S32で電極用触媒:水を所望の重量比のWET品にして取り出す方法も考案されるが、この場合、徐酸化工程S34を経ていない状態のWET品となり、電極用触媒の触媒粒子表面の酸化状態を大気中で十分に安定な状態とできなくなる恐れ、ひいては水素酸化反応、酸素還元反応に対する初期活性が異なる電極用触媒となってしまう恐れがある。またこの場合、洗浄ステップS2では電極用触媒前駆体を洗浄およびろ過するだけであるので、WET品の水分量の均一性にムラが出てしまう可能性があった。このような理由により、WET品での供給は製造元、顧客への供給先の双方で取扱い性、回収性に難があった。
 そこで本実施形態では、洗浄後の電極用触媒前駆体を乾燥させ、電極用触媒の触媒粒子表面の酸化状態を大気中で十分に安定な状態とさせる。また、乾燥後の電極用触媒1にイオン交換水を混合させ、電極用触媒を含むスラリーの水分量を均一にしてから固体状(ペレット状、ケーキ状)とできる水準まで乾燥させる。これにより、狙いとなる数値範囲までWET品の水分量を調節して複数の固体状の触媒ケーキに調製しており、所望の重量比のWET品で供給することにより、粉末状の触媒の発火、消失の恐れを確実に防止し、また上記した製造元、顧客への供給先の双方で取扱い性、回収性を向上させている。なお固体状の触媒ケーキについては、触媒の合成プロセスの中で、その触媒担体の表面は、合成に使用される各試薬、各合成反応で生成する生成物、副生成物、不純物から様々な化学作用を受ける。その結果、触媒担体の表面官能基の種類、総量、単位面積当たりの存在量が異なってくる。これにより、触媒の種類(担体の種類)、採用する合成反応プロセスの種類により、触媒の水に対する親和性(濡れ性)は変化する。したがって、取扱い性・回収性に優れた固体状とできる含水率(含水率の範囲)は、各触媒毎に予め実験的に求められるものである。
(分析装置)
 分析装置151は、第1の実施形態の乾燥ステップS3を経て得られる電極用触媒1を物性分析する。分析装置151では、第1の実施形態の取出し工程S35で取出された電極用触媒1の第1の物性分析ステップS36を実行する第1の物性分析実行手段153を含む。この第1の物性分析ステップS36では、少なくとも電極用触媒1の触媒担持量、含水率(wt%)、および触媒粒子径を分析することが好ましい。なお本実施形態では、取出し工程S35で取出された電極用触媒1の粉体の一部を抜き取り、分析装置151で物性分析する方法を採用しているが、他の分析方法でもよい。
(反応器)
 反応器152は、第1の物性分析ステップS36の後に、上記の乾燥装置14で乾燥された電極用触媒1をリスラリー化する。本実施形態では反応器152を使用して電極用触媒1をリスラリー化しており、必要とする設備が1つ多くなる一方で、電極用触媒1のリスラリー化をより迅速、確実に実行している。反応器152では、取出し工程S35で取出された電極用触媒1をリスラリー化するためのリスラリーステップS40を実行するリスラリーステップ実行手段154を含む。リスラリーステップS40におけるリスラリー化の方法としては、撹拌装置を具備する反応器、例えば撹拌器の付いたケトルを使用したリスラリー化の方法を採用することができる。
 リスラリーステップ実行手段154は、図21のブロック図および図22のフローチャートに示すように、導入工程S41と、混合工程S42と、取出し工程S43とをそれぞれ実行する手段である、導入工程実行手段156と、混合工程実行手段157と、取出し工程実行手段158とを備えている。本実施形態では、使用する電極用触媒の触媒粒子表面の酸化状態を大気中で安定な状態に保持するため、各工程S41~S43を常温、大気圧、大気中で実行しており、窒素などの特別なガス雰囲気としていない。各工程S41~S43について以下に説明する。
[導入工程]
 導入工程S41は、乾燥装置14で乾燥された電極用触媒1と、混合用のイオン交換水とを反応器152内に導入する工程であり、導入工程実行手段156により実行される。電極用触媒1やイオン交換水を導入する方法は、導入工程S31と同様に、漏斗などを用いて人の手による作業で導入されてもよく、電極用触媒1やイオン交換水が移送される管やベルトコンベア等を反応器152に設けて、人の手を介さずに直接導入されてもよい。
 イオン交換水については純水を使用することができ、「超純水」を使用することが好ましい。「超純水」は、
R=1/ρ・・・(1)
の式で表される比抵抗R(JIS規格試験法(JIS K0552)により測定される電気伝導率の逆数)が3.0MΩ・cm以上である水である。なお上記式(1)において、Rは比抵抗を表し、ρはJIS規格試験法(JIS K0552)により測定される電気伝導率を表す。また「超純水」は、JIS K0557「用水・排水の試験に用いる水」に規定されている「A3」のに相当する水質又はそれ以上の清浄な水質を有していることが好ましいが、この式(1)で表される関係を満たす電気伝導率を有している水であれば、特に限定されず、例えば、この「超純水」として、「Milli Qシリーズ」(メルク株式会社製)や「Elix UV シリーズ」(日本ミリポア株式会社製)の超純水製造装置を使用して 製造される超純水を使用してもよい。なおイオン交換水については、必ずしも純水でなくてもよく、例えばpH6~8であって、JIS規格試験法(JIS K0522)により測定される電気伝導率ρiが10μS/cm未満のイオン交換水等も使用することができる。
 導入工程S41で導入される電極用触媒1とイオン交換水との重量比は、電極用触媒1とイオン交換水と混合物が液状のスラリーになるくらいの比率であることが好ましく、例えば重量比で電極用触媒:イオン交換水が1:2~1:3.5の範囲の中から触媒種に応じて実験的に最適な比率を定める。本実施形態では、物性分析工程で物性分析された電極用触媒1の触媒担持量や含水率などの結果と、導入される電極用触媒1の分量とから導入されるイオン交換水の分量が算出され、決定される。なお導入される電極用触媒1の分量は、人の手による作業で計測してもよく、第1の実施形態の取出し工程S35の開始時および終了時において電極用触媒1の重量をロードセル212,212により計測し、その結果を使用して電極用触媒1の分量を算出してもよい。
[混合工程]
 混合工程S42は、導入された電極用触媒1とイオン交換水とを反応器152内で混合する工程であり、混合工程実行手段157により実行される。混合工程実行手段157は、反応器152の撹拌装置を駆動させ、常温、大気圧で電極用触媒1とイオン交換水とを撹拌混合する。本実施形態では、電極用触媒1とイオン交換水と混合物が液状のスラリーになるくらいの比率であるため、常温、大気圧でも混合中に電極用触媒1が発火、消失する恐れがなく、また、より均一に前記混合物を撹拌混合することができる。電極用触媒1とイオン交換水が混合されて均一になり、電極用触媒を含むスラリー159が調製されたときに混合工程S42が完了する。なお撹拌装置の駆動時間や回転数については、反応器152の容量や種類、導入された電極用触媒1およびイオン交換水の分量等により異なるため、ここでは詳述しない。
[取出し工程]
 取出し工程S43は、反応器152内で調製された電極用触媒を含むスラリー159を取出す工程であり、取出し工程実行手段158により実行される。その後、取出された電極用触媒を含むスラリー159は乾燥装置14に再度導入される。そのため、乾燥装置14に人の手による作業で導入される場合は、電極用触媒を含むスラリー159が一旦別の容器等に取出されてもよい。また乾燥装置14に人の手を介さずに直接導入される場合は、乾燥装置14に管等が連結され、この管等を介して反応器152から乾燥装置14に電極用触媒を含むスラリー159が移送されてもよい。反応器152内の電極用触媒を含むスラリー159を全て取り出したときに取出し工程S43が完了する。なお取出し工程実行手段158については、反応器152の種類等により異なるため、ここでは詳述しない。
(乾燥装置)
 乾燥装置14は、リスラリーステップS40でリスラリー化された電極用触媒を含むスラリー159を、攪拌羽根204を備えた攪拌処理装置201で乾燥させ、複数の固体状の触媒ケーキを調製する。この工程で使用する乾燥装置14は、第1の実施形態の乾燥ステップS3で使用した乾燥装置14でもよく、他の乾燥装置14でもよい。乾燥装置としての攪拌処理装置201の構造については第1の実施形態と同様であるので、その説明を省略する。
 固体状の触媒ケーキを調製する触媒ケーキ調製ステップS50は、第1の実施形態の乾燥ステップS3と同様に、導入工程S31’と、乾燥工程S32’と、冷却工程S33’と、冷却されたWET品を徐酸化処理する徐酸化工程S34’と、徐酸化処理されたWET品を取出す取出し工程S35’とを含む。各工程S31’~S35’の動作条件は第1の実施形態の乾燥ステップS3の各工程S31~S35と同様にしており、そのため各工程S31’~S35’の主な作用については、第1の実施形態の乾燥ステップS3の各工程S31~S35の主な作用と同様である。
 乾燥工程S32’で、容器本体202内のスラリー159から蒸気や気体が蒸発することで、スラリー159の重量が変化する。このときの容器本体202内のスラリー159の重量はロードセル212,212により計測されており、導入時のスラリー159の重量及び導入工程S41で決定された電極用触媒1とイオン交換水との重量比、及び現在のスラリー159の重量から、現在のスラリー159の含水率が算出される。容器本体202内のスラリー159が所定の含水率以下になり、固体状(ペレット状、ケーキ状)のWET品となったときに乾燥工程S32’が完了する。このように、水分量が均一であるスラリー159を乾燥させて触媒ケーキのWET品を調製することにより、このWET品の水分量を均一にすることができる。ここで、前記所定の含水率は80wt%未満であることが好ましく、容器本体202や攪拌羽根204にWET品が粘着しない。
 徐酸化工程S34’で、乾燥ステップS3の時と同様に、加熱媒体注入口213からジャケット206内の冷却媒体Cを排出し、駆動装置207および真空ポンプ234を停止し、供給バルブ215を操作して容器本体202内の圧力を少しずつ常圧に戻すことにより、触媒ケーキのWET品の徐酸化を行なう。そのため、従来の箱型棚式真空乾燥機と比較して、作業時間を大幅に短縮・自動化できる。さらに徐酸化工程S34’も自動化できるため、より確実に徐酸化工程を実施できる。容器本体202内の触媒ケーキのWET品の徐酸化処理が完了したときに徐酸化工程が完了する。
(分析装置)
 分析装置151は、触媒ケーキ調製ステップS50を経て得られるWET品を物性分析する。分析装置151では、取出し工程S35’で取出されたWET品の第2の物性分析ステップS60を実行する第2の物性分析実行手段161を含む。この第2の物性分析ステップS60では、少なくともWET品の含水率(wt%)を分析することが好ましい。なお本実施形態では、取出し工程S35’で取出されたWET品の一部を抜き取り、分析装置151で物性分析する方法を採用しているが、他の分析方法でもよい。
[第1収容工程]
 第1収容工程は、取出し工程S35’で取出された触媒ケーキのWET品を容器または袋に収容する工程である。この第1収容工程で使用する、収容する容器または袋はプラスチック製であり、内側に帯電防止剤が塗工されている。第2の物性分析工程の実行後、取出し工程S35’で取出されたWET品がこのプラスチック製の包装容器または包装袋に収容される。この第1収容工程は大気中で実行され、WET品を大気に慣らしながら包装容器または包装袋に収容している。この工程では、取出し工程S35’でプラスチック製の包装容器または包装袋を開口部208の下方に予め設置しておき、容器本体202内からこの包装容器内または包装袋内にWET品を落下させるように直接収容するように実行してもよく、取出し工程S35’で一旦取出してから、プラスチック製の包装容器または包装袋に収容するように実行してもよい。
 その後、触媒ケーキのWET品を収容したプラスチック製の包装容器または包装袋をさらに容器に収容する。この時に使用する容器はステンレス製のUN缶(国際基準に伴い日本船用品検定協会が行う容器性能試験に合格した“UN検査証(UNマーク)”が表示されている容器:危険物運搬容器)であり、内側に帯電防止剤が塗工されている。このUN缶はSUS316製であることが好ましく、国連番号:3178、品名:その他の可燃性物質、国連分類:4.1に区分される物質を収容可能で、容器等級が2又は3であることが好ましい。第2収容工程の完了後に、このUN缶が移送され、顧客へと供給される。
[第2収容工程]
 第2収容工程では、別の態様として、第1収容工程のプラスチック製の包装容器または包装袋の代わりに上記のUN缶を使用している。この場合、使用されるUN缶はWET品を密閉収容できるように構成される。
(実施例2)
[反応器による処理(リスラリーステップ)]
 乾燥装置による処理後に得られた電極用触媒1の粉体を、反応器152に見立てた滴下漏斗に導入し、リスラリーステップS40を行った。
 導入工程S41において電極用触媒1の粉体100gおよびイオン交換水400mlを導入するときの反応器152内の液面高さを基に滴下漏斗の容量を選定し、滴下漏斗の有効容量が2Lで、図23に示されるように、撹拌装置の撹拌羽根の直径が8cmの滴下漏斗を採用した。なお、この滴下漏斗に電極用触媒1の粉体100gおよびイオン交換水400mlを導入したときの液面の直径は16cmである。
 まず導入工程S41で、電極用触媒1の粉体100gおよびイオン交換水400mlの滴下漏斗への導入を行った。導入直後は電極用触媒1の粉体の略1/4が滴下漏斗の底に沈殿し、その他の電極用触媒1の粉体はイオン交換水の液面上に堆積した。このまま撹拌装置を駆動させずに30分静置したところ、電極用触媒1の粉体の大部分がイオン交換水の中に沈降した一方で、電極用触媒1の粉体の一部がまだイオン交換水の液面上に2~3cm程度堆積していた。なお、この堆積していた電極用触媒1の粉体は、イオン交換水を吸水しており湿った状態であった。
 この状態から混合工程S42に移行し、撹拌羽根が60rpm(毎分60回転)になるように撹拌装置を駆動させて、常温、大気圧で電極用触媒1とイオン交換水との撹拌混合を行なった。撹拌直後は電極用触媒1とイオン交換水とがすぐには混ざり合わない状態であった。30分経過後、回転している撹拌羽根の軸に沿った滴下漏斗の中心部のみ、電極用触媒1とイオン交換水とが混ざり合って撹拌される一方で、滴下漏斗の内壁近傍である電極用触媒1およびイオン交換水の外周部は、混合工程S42の移行前と同様に、電極用触媒1の粉体が湿った湿潤粉体の状態を維持していた。そして60分経過後、この電極用触媒1およびイオン交換水の外周部の湿潤粉体の濡れ、すなわち電極用触媒1とイオン交換水とが混ざり合って撹拌された部分が拡大し、電極用触媒1およびイオン交換水の中心部および外周部の一部がスラリー化し始めている一方で、この外周部の大部分が、やはり混合工程S42の移行前と同様に、電極用触媒1の粉体が湿ったケーキ状のままであった。
 この状態から、イオン交換水をさらに100ml導入し、電極用触媒1の粉体100gおよびイオン交換水500mlで撹拌羽根が60rpmになるように撹拌装置を駆動させて、常温、大気圧で電極用触媒1とイオン交換水との撹拌混合を行なった。30分経過後、滴下漏斗内の電極用触媒1およびイオン交換水の全体がスラリー状になった一方で、粘度が非常に高い状態であり、電極用触媒1の粉体が球状で点在していた。そして60分経過後、球状で点在していたこれらの電極用触媒1の粉体は減少した一方で、滴下漏斗の内壁近傍である電極用触媒1およびイオン交換水の縁の部分を中心に電極用触媒1の粉体が球状で点在しており、完全なスラリー状には至っていなかった。
 この状態から、撹拌羽根の回転数をさらに増加させ、電極用触媒1の粉体100gおよびイオン交換水500mlで撹拌羽根が80rpmになるように撹拌装置を駆動させて、常温、大気圧で電極用触媒1とイオン交換水との撹拌混合を行なった。しかしながら、撹拌羽根が60rpmのときと比較して劇的な変化はなく、やはり電極用触媒1およびイオン交換水の縁の部分を中心に電極用触媒1の粉体が球状で点在しており、撹拌する撹拌羽根の回転数を増加させた顕著な効果を見つけることができなかった。その後、撹拌羽根の回転数をさらに増加させ、電極用触媒1の粉体100gおよびイオン交換水500mlで撹拌羽根が250rpmになるように撹拌装置を駆動させて、常温、大気圧で電極用触媒1とイオン交換水との撹拌混合を行なった。その結果、球状で点在していた電極用触媒1の粉体は、電極用触媒1およびイオン交換水の縁の部分も大部分が消滅し、完全なスラリー状に変化した。
<評価結果>
 電極用触媒1の粉体とイオン交換水との比率が1:4(粉体:イオン交換水=1:4)の場合は、電極用触媒1とイオン交換水との撹拌混合を行なっても、全体が均一に湿潤してスラリー化させることは困難であった。
 また電極用触媒1の粉体とイオン交換水との比率が1:5(粉体:イオン交換水=1:5)の場合、撹拌羽根の回転数が60rpmであるときは電極用触媒1およびイオン交換水をスラリー化させることは困難であり、撹拌羽根の回転数が80rpmであっても、電極用触媒1およびイオン交換水を完全にスラリー化させることはできなかった。攪拌処理装置201の攪拌羽根204を想定して撹拌羽根の回転数を80rpmに設定しており、そのため、反応器152を使用せずに乾燥装置14でリスラリーステップS40を実行することが困難であることが分かった。
 電極用触媒1の粉体とイオン交換水との比率が1:5(粉体:イオン交換水=1:5)の場合、撹拌羽根の回転数が80rpmを超えた250rpmであるときは電極用触媒1およびイオン交換水を完全なスラリー化ができた。
(実施例3)
[乾燥装置による処理(乾燥ステップ)]
 洗浄装置としてフィルタープレスによる処理後に得られた電極用触媒前駆体を含むケーキを乾燥装置としての攪拌処理装置201に導入し、乾燥ステップS3を行った。
 導入工程S31において、含水率が72.1wt%であり、見掛密度が540kg/m(タッピング後の見掛密度が700kg/m)のケーキを4.98kg導入した。以下、ケーキやスラリーの含水率(水分率)は、ケーキに含まれる水分の重量を、ケーキに含まれる触媒粉体の重量+水分の重量で割った値であり、水分の重量は、測定容器を温度70℃、空気中、70分の条件下で加熱し、赤外線水分計により、この測定容器内の水を含有しているケーキの測定前後の重量変化を測定することにより検出している。
 乾燥工程S32において、真空ポンプ234を駆動させて容器本体202内をゲージ圧で12.3kPaに減圧し、攪拌羽根204を毎分85回転の回転速度で回転させ、加熱媒体注入口213からジャケット206にスチームSを注入して容器本体202の加熱温度tを110℃にして、容器本体202の槽内温度t、電極用触媒前駆体の温度(実測品温)t、ケーキの含水率Cの経時変化を180分間測定した。この測定結果のグラフおよび表を図24に示している(Run1乾燥曲線)。
 この180分間の乾燥工程S32で、容器本体202の槽内温度が18.8℃から77.8℃に上昇し、電極用触媒前駆体の温度も19.7℃から108.9℃に上昇した。その後、冷却工程S33、徐酸化工程S34と順に行ない、取出し工程S35において、含水率が2.2wt%であり、見掛密度が450kg/m(タッピング後の見掛密度が480kg/m)のケーキを1.4kg取出すことができた。
 また容器本体202内の電極用触媒の付着量は6.8gであり、測定用などでサンプルとして取出した電極用触媒前駆体の量は46gだった。そしてバグフィルタ231を介して排出され、コンデンサ233で凝縮されて回収された凝縮液の量は3.1kgであった。
(実施例4)
 反応器152としてのケトルによる処理後に得られた、電極用触媒をリスラリー化したスラリーを乾燥装置としての攪拌処理装置201に導入し、乾燥ステップS3を行った。
 導入工程S31において、含水率が93.3wt%のスラリーを11.25kg導入した。ここでスラリーの含水率は、電極用触媒の粉体の含水率を5wt%とし、リスラリーステップS40で導入したイオン交換水の重量と合わせて計算することにより算出している。
 乾燥工程S32において、真空ポンプ234を駆動させて容器本体202内をゲージ圧で12.3kPaに減圧し、攪拌羽根204を毎分85回転の回転速度で回転させ、加熱媒体注入口213からジャケット206にスチームSを注入して容器本体202の加熱温度tを110℃にして、容器本体202の槽内温度t、電極用触媒前駆体の温度(実測品温)t、ケーキの含水率Cの経時変化を170分間測定した。この測定結果のグラフおよび表を図25に示している(Run2乾燥曲線)。
 この170分間の乾燥工程S32で、容器本体202の槽内温度tが約20℃から約50℃に上昇し、電極用触媒前駆体の温度tも20.2℃から52.5℃に上昇した。その後、冷却工程S33、徐酸化工程S34と順に行ない、取出し工程S35において、含水率が41.1wt%であり、見掛密度が840kg/m(タッピング後の見掛密度が900kg/m)のケーキを1.1kg取出すことができた。
 また容器本体202内の電極用触媒の付着量は317gであり、測定用などでサンプルとして取出した電極用触媒前駆体の量は45gだった。そしてバグフィルタ231を介して排出され、コンデンサ233で凝縮されて回収された凝縮液の量は9.3kgであった。
<評価結果>
[電極用触媒の製造]
(1)電極用触媒前駆体製造ステップS1でケトルにより電極用触媒前駆体の製造を行ない、洗浄ステップS2でフィルタープレスによりろ過、洗浄および脱水を行なって含水率60~80wt%の電極用触媒前駆体を取得し、この電極用触媒前駆体において乾燥ステップS3で攪拌処理装置201により乾燥、粗粉砕を行なって含水率1~5wt%の電極用触媒を取得し、この電極用触媒を粉砕機により粉砕を行なって電極用触媒の粉体を取得する工程。
 この工程において、洗浄ステップS2でフィルタープレスによりろ過、洗浄および脱水を行なって取得した含水率72.1wt%の電極用触媒前駆体のケーキである湿潤化触媒ケーキを攪拌処理装置201に導入すると、図24に示されるように乾燥ステップS3の乾燥工程S32において145分で湿潤化触媒ケーキの含水率が5.0wt%となり、(1)の工程で目標となる5.0wt%の電極用触媒を145分で作成できた。
(2)電極用触媒前駆体製造ステップS1でケトルにより電極用触媒前駆体の製造を行ない、洗浄ステップS2で遠心分離機によりろ過、洗浄および脱水を行なって含水率60~80wt%の電極用触媒前駆体を取得し、この電極用触媒前駆体において乾燥ステップS3で攪拌処理装置201により乾燥、粗粉砕を行なって含水率1~5wt%の電極用触媒を取得し、この電極用触媒を粉砕機により粉砕を行なって電極用触媒の粉体を取得する工程。
 比較例としてのこの工程において、洗浄ステップS2で遠心分離機によりろ過、洗浄および脱水を行なって取得した含水率72.1wt%の電極用触媒前駆体のケーキである湿潤化触媒ケーキを攪拌処理装置201に導入すると、乾燥ステップS3の乾燥工程S32において、240分で湿潤化触媒ケーキの含水率が5.0wt%となり、(2)の工程で目標となる5.0wt%の電極用触媒を240分で作成できた。
[電極用触媒の粉体から湿潤化触媒ケーキの製造]
(3)リスラリーステップS40で、(1)の工程で得られた電極用触媒の粉体を反応器152としてのケトルによりリスラリー化し、この電極用触媒を含むスラリーを遠心分離器により脱水を行なって含水率60~80wt%の電極用触媒を取得する工程。
 この工程において、ケトルにより実施例4で使用する含水率が93.3wt%のスラリーを作成し、このスラリーを遠心分離器により脱水を行なって、含水率72.1wt%の湿潤化触媒ケーキを作成できた。
(4)触媒ケーキ調製ステップS50で、(3)の工程で得られた含水率60~80wt%の電極用触媒を攪拌処理装置201により乾燥、粗粉砕を行なって含水率20~75wt%の電極用触媒、好ましくは含水率30~70wt%の電極用触媒を取得する工程。
 この工程において、含水率72.1wt%の湿潤化触媒ケーキを攪拌処理装置201に導入すると、図24に示されるように乾燥ステップS3の乾燥工程S32において5~120分で湿潤化触媒ケーキの含水率が20.3~69.8wt%となってさらに含水率が低くなり、(4)の工程で目標となる含水率20~75wt%の電極用触媒を5~120分で作成できた。また5~95分で湿潤化触媒ケーキの含水率が31.3~69.8wt%となり、(4)の工程で好ましい目標となる含水率30~70wt%の電極用触媒を5~95分で作成できた。
(5)リスラリーステップS40で、(1)の工程で得られた電極用触媒の粉体を反応器152としてのケトルによりリスラリー化し、この電極用触媒を含むスラリーをフィルタープレスにより脱水を行なって含水率60~80wt%の電極用触媒を取得し、この電極用触媒において乾燥ステップS3で攪拌処理装置201により乾燥、粗粉砕を行なって含水率20~75wt%の電極用触媒、好ましくは含水率30~70wt%の電極用触媒を取得する工程。
 (1)と(2)との比較により、遠心分離機の代わりにフィルタープレスを使用して脱水を行なうことができ、この場合は脱水の時間短縮が可能であることが上述した第1の実施形態により理解されよう。そのため、フィルタープレスにより脱水を行なって含水率72.1wt%の湿潤化触媒ケーキを作成し、その後で攪拌処理装置201により乾燥、粗粉砕を行なって、(4)の工程と同様の結果を得ることができると想定される。
(6)リスラリーステップS40で、(1)の工程で得られた電極用触媒の粉体を反応器152としてのケトルによりリスラリー化し、この電極用触媒を含むスラリーを攪拌処理装置201に直接導入し、攪拌処理装置201により乾燥、粗粉砕を行なって含水率20~75wt%の電極用触媒、好ましくは含水率30~70wt%の電極用触媒を取得する工程。
 この工程において、ケトルによりリスラリー化した含水率が93.3wt%のスラリーを攪拌処理装置201に導入すると、図25に示されるように、触媒ケーキ調製ステップS50の乾燥工程S32’において87~170分で湿潤化触媒ケーキの含水率が41.1~74.7wt%となってさらに含水率が低くなり、(4)の工程よりも多少時間がかかってしまうが、(6)の工程で目標となる含水率30~70wt%の電極用触媒を87~170分で作成できた。
(参考例)
(7)攪拌処理装置201に(1)の工程で得られた電極用触媒の粉体およびイオン交換水を攪拌処理装置201に導入してリスラリー化し、この攪拌処理装置201内の電極用触媒を含むスラリーを当該攪拌処理装置201により乾燥、粗粉砕を行なって含水率20~75wt%の電極用触媒、好ましくは含水率30~70wt%の電極用触媒を取得する工程。
 この工程において、上述したように攪拌処理装置201を使用して電極用触媒の粉体およびイオン交換水をリスラリー化することができなかった。
 以上、本発明を実施形態および実施例に基づいて説明したが、本発明は種々の変形実施をすることができる。特に、電極用触媒前駆体製造装置12(反応工程、電極用触媒前駆体製造装置ステップS1)、および、洗浄装置13(洗浄ステップS2)については、特に限定されず、種々の変形例を採用することができる。
 例えば洗浄装置13において、その構造は図2に示すものに限定されず、ろ室112の構造も図3~図10に示すものに限定されるものではなく、本実施形態に係る洗浄ステップS2の各工程S21~S27および圧搾工程において同様の作用効果を得られる構造のものであれば、種々の変形例を採用することができる。また乾燥装置14においても、その構造は図11に示すものに限定されず、容器本体202の構造も図11~図13に示すものに限定されるものではなく、本実施形態に係る乾燥ステップS3の各工程S31~S35において同様の作用効果を得られる構造のものであれば、種々の変形例を採用することができる。
 1 電極用触媒
 2 担体
 3 触媒粒子
 4 コア部
 5 シェル部
 10 電極用触媒の製造システム
 12 電極用触媒前駆体製造装置
 13 洗浄装置
 14 乾燥装置
 201 攪拌処理装置
 202 容器本体
 204 攪拌羽根
 222 回転主軸
 223 螺旋リボン回転翼
 224 アーム(回転翼支柱)
 226 ガス噴出孔
 152 反応器
 S1 電極用触媒前駆体製造ステップ
 S2 洗浄ステップ
 S3 乾燥ステップ
 S31 導入工程
 S32 乾燥工程
 S33 冷却工程
 S34 徐酸化工程
 S35 取出し工程
 S36 第1の物性分析ステップ(第1分析工程)
 S40 リスラリーステップ
 S50 触媒ケーキ調製ステップ
 S60 第2の物性分析ステップ(第2分析工程)
 本発明の電極用触媒の製造システムおよび製造方法によれば、作業者による電極用触媒前駆体を移すための作業をなくし、且つ、電極用触媒前駆体の乾燥時間を短縮することで、ハロゲン含有量、特に塩素含有量を低く抑えた電極用触媒を製造するための手間と時間を大幅に低減することができる。
 したがって、本発明は、燃料電池や燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファームやコジェネレーションシステム等に適用することができる電極用触媒の製造システムおよび製造方法であり、エネルギー産業や環境技術関連の発達に寄与する。

 

Claims (10)

  1.  電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置と、
     前記電極用触媒前駆体を洗浄する洗浄装置と、
     前記洗浄装置により洗浄された前記電極用触媒前駆体を、螺旋リボン回転翼を有する攪拌羽根を備えた攪拌処理装置により乾燥する乾燥装置とを有する、電極用触媒を製造するための製造システムであって、
     前記乾燥装置は、
     前記電極用触媒前駆体を前記攪拌処理装置の容器本体に導入する導入工程と、
     前記容器本体を加熱すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を乾燥させる乾燥工程と、
     前記容器本体を冷却すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を冷却させる冷却工程と、
     前記容器本体内に空気を供給し、前記電極用触媒前駆体を徐酸化処理する徐酸化工程と、
     前記容器本体内の前記電極用触媒前駆体を取り出す取出し工程とを実行する手段を備える電極用触媒の製造システム。
  2.  前記攪拌羽根は、駆動装置により回転することで当該攪拌羽根を回転させる回転主軸と、前記容器本体内で前記電極用触媒前駆体を攪拌混合する前記螺旋リボン回転翼と、前記回転主軸および前記螺旋リボン回転翼と接続する回転翼支柱とを備え、
     前記回転主軸および前記回転翼支柱は中空の管状に形成され、
     前記回転翼支柱は、先端部の下側にガス噴出孔が設けられ、
     前記回転主軸は、ガスの流路に接続されることを特徴とする請求項1に記載の電極用触媒の製造システム。
  3.  電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップと、
     前記電極用触媒前駆体を洗浄する洗浄ステップと、
     前記洗浄ステップで洗浄された洗浄後の前記電極用触媒前駆体を、螺旋リボン回転翼を有する攪拌羽根を備えた攪拌処理装置により乾燥する乾燥ステップとを含む、電極用触媒を製造するための製造方法であって、
     前記乾燥ステップは、
     前記容器本体を加熱すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を乾燥させる乾燥工程と、
     前記容器本体を冷却すると共に減圧し、前記容器本体内の前記電極用触媒前駆体を前記攪拌羽根により攪拌混合することにより、前記電極用触媒前駆体を冷却させる冷却工程と、
     前記容器本体内に空気を供給し、前記電極用触媒前駆体を徐酸化処理する徐酸化工程とを含む電極用触媒の製造方法。
  4.  前記容器本体内の前記電極用触媒前駆体を取り出す取出し工程を更に含み、
     前記取出し工程は、前記螺旋リボン回転翼を支持する回転翼支柱の先端に設けられたガス噴出孔から下向きにガスを噴出させるスクレーパー工程を含む請求項3に記載の電極用触媒の製造方法。
  5.  前記乾燥ステップを経て得られる前記電極用触媒前駆体の物性分析を実施する第1分析工程と、
     前記乾燥ステップを経て得られる前記電極用触媒前駆体とイオン交換水とを混合して再びスラリーを調製するリスラリーステップと、
     前記リスラリーステップを経て得られる前記スラリーを乾燥させ、所定の範囲の含水率に調節された複数の固体状の触媒ケーキを調製する触媒ケーキ調製ステップと、
    を更に含む請求項3に記載の電極用触媒の製造方法。
  6.  前記触媒ケーキ調製ステップにおいて使用する撹拌式乾燥装置が、前記攪拌処理装置である請求項5に記載の電極用触媒の製造方法。
  7.  前記リスラリーステップにおいて撹拌装置を具備する反応器を使用する請求項5又は6に記載の電極用触媒の製造方法。
  8.  前記反応器が前記攪拌処理装置である請求項7に記載の電極用触媒の製造方法。
  9.  前記触媒ケーキの含水率が80wt%未満である請求項5~8の何れか1項に記載の電極用触媒の製造方法。
  10.  前記触媒ケーキ調製ステップを経て得られる前記触媒ケーキの含水率を測定する第2分析工程を更に含む請求項5~9の何れか1項に記載の電極用触媒の製造方法。
PCT/JP2021/012069 2020-03-23 2021-03-23 電極用触媒の製造システムおよび製造方法 WO2021193664A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227035196A KR20220151685A (ko) 2020-03-23 2021-03-23 전극용 촉매의 제조 시스템 및 제조 방법
CN202180016636.3A CN115176364A (zh) 2020-03-23 2021-03-23 电极用催化剂的制造系统和制造方法
JP2022510565A JPWO2021193664A1 (ja) 2020-03-23 2021-03-23
EP21775676.6A EP4129438A1 (en) 2020-03-23 2021-03-23 Production system and production method for catalyst for electrode
US17/801,140 US20230079500A1 (en) 2020-03-23 2021-03-23 Electrode catalyst production system and production method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-050941 2020-03-23
JP2020-050942 2020-03-23
JP2020050942 2020-03-23
JP2020050941 2020-03-23
JP2020-161815 2020-09-28
JP2020161815 2020-09-28

Publications (1)

Publication Number Publication Date
WO2021193664A1 true WO2021193664A1 (ja) 2021-09-30

Family

ID=77892209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012069 WO2021193664A1 (ja) 2020-03-23 2021-03-23 電極用触媒の製造システムおよび製造方法

Country Status (6)

Country Link
US (1) US20230079500A1 (ja)
EP (1) EP4129438A1 (ja)
JP (1) JPWO2021193664A1 (ja)
KR (1) KR20220151685A (ja)
CN (1) CN115176364A (ja)
WO (1) WO2021193664A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116764509B (zh) * 2023-06-26 2023-12-19 无锡熙源工程技术有限公司 一种铁钼催化剂的生产工艺及其生产装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203284A (ja) * 2006-01-04 2007-08-16 Mitsubishi Rayon Co Ltd パラジウム担持触媒及びその製造方法
JP2007214130A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 燃料電池用担持触媒とその製造方法、該担持触媒を含む燃料電池用電極、及び該電極を備える燃料電池
JP2008293768A (ja) * 2007-05-24 2008-12-04 Toyota Motor Corp 燃料電池用触媒インクの乾燥方法
JP2012220041A (ja) * 2011-04-04 2012-11-12 Renaissance Energy Investment:Kk 乾燥装置
JP2013158674A (ja) 2012-02-03 2013-08-19 Toyo Ink Sc Holdings Co Ltd 炭素触媒の製造方法、及び該触媒を用いた燃料電池
JP5327000B2 (ja) 2009-11-04 2013-10-30 株式会社石垣 加圧脱水装置および加圧脱水方法
JP2014042910A (ja) 2012-08-01 2014-03-13 Toyo Ink Sc Holdings Co Ltd 炭素触媒造粒体、炭素触媒造粒体の製造方法、及び該炭素触媒造粒体を用いた触媒インキ並びに燃料電池
JP5950207B2 (ja) 2012-12-25 2016-07-13 株式会社石垣 フィルタープレス
JP2016221477A (ja) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 コアシェル触媒の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015006A1 (ja) 2011-07-26 2013-01-31 東洋製罐株式会社 液垂れ防止性に優れた容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203284A (ja) * 2006-01-04 2007-08-16 Mitsubishi Rayon Co Ltd パラジウム担持触媒及びその製造方法
JP2007214130A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 燃料電池用担持触媒とその製造方法、該担持触媒を含む燃料電池用電極、及び該電極を備える燃料電池
JP2008293768A (ja) * 2007-05-24 2008-12-04 Toyota Motor Corp 燃料電池用触媒インクの乾燥方法
JP5327000B2 (ja) 2009-11-04 2013-10-30 株式会社石垣 加圧脱水装置および加圧脱水方法
JP2012220041A (ja) * 2011-04-04 2012-11-12 Renaissance Energy Investment:Kk 乾燥装置
JP2013158674A (ja) 2012-02-03 2013-08-19 Toyo Ink Sc Holdings Co Ltd 炭素触媒の製造方法、及び該触媒を用いた燃料電池
JP2014042910A (ja) 2012-08-01 2014-03-13 Toyo Ink Sc Holdings Co Ltd 炭素触媒造粒体、炭素触媒造粒体の製造方法、及び該炭素触媒造粒体を用いた触媒インキ並びに燃料電池
JP5950207B2 (ja) 2012-12-25 2016-07-13 株式会社石垣 フィルタープレス
JP2016221477A (ja) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 コアシェル触媒の製造方法

Also Published As

Publication number Publication date
JPWO2021193664A1 (ja) 2021-09-30
KR20220151685A (ko) 2022-11-15
US20230079500A1 (en) 2023-03-16
EP4129438A1 (en) 2023-02-08
CN115176364A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
JP7442872B2 (ja) リチウム電池を再利用する方法
US4693879A (en) Ultrasonic vibration sieving apparatus and process for purifying carbon black by using the apparatus
WO2021193664A1 (ja) 電極用触媒の製造システムおよび製造方法
KR101419930B1 (ko) 셀룰로오스 에테르의 제조 방법
JP2007197682A (ja) アルカリセルロース及びセルロースエーテルの製造方法
JP2021153042A (ja) 電極用触媒の製造システムおよび製造方法
CN213273579U (zh) 一种酿酒酒糟压滤烘干机构
WO2021193661A1 (ja) 電極用触媒の製造システムおよび製造方法
CA2544323A1 (en) Method and apparatus for manufacturing lignophenol derivative
JP6970183B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
KR101869981B1 (ko) 알칼리셀룰로오스 및 셀룰로오스에테르의 제조 방법
CN215439687U (zh) 一种用于石墨烯生产的装置
CN205653247U (zh) 一种三合一装置
WO2023223814A1 (ja) 密閉型ろ過装置、及び密閉型ろ過装置を用いた処理方法
JPH02301503A (ja) 金属粉末の製造方法および装置
CN220793650U (zh) 一种聚丙烯生产用原料干燥装置
CN218480839U (zh) 滤饼干燥装置
CN214210506U (zh) 一种凹凸棒石复配腐植酸制备金属钝化材料的装置
CN221122919U (zh) 一种固体分散体制剂干燥装置
JP7539554B2 (ja) 非水電解質二次電池用炭素前駆体の製造方法及び非水電解質二次電池用炭素質材料の製造方法
CN215538825U (zh) 一种固液分离用的过滤装置
CN220441796U (zh) 一种茶叶杀青机
CN116282016B (zh) 提升活性炭电导率和有效孔含量的方法
CN215139832U (zh) 一种在平面上将固体树脂与胶状树脂分离回收的装置
CN216745271U (zh) 一种油茶生产用的高效烘干装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775676

Country of ref document: EP

Effective date: 20221024