[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021193219A1 - 熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム - Google Patents

熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム Download PDF

Info

Publication number
WO2021193219A1
WO2021193219A1 PCT/JP2021/010511 JP2021010511W WO2021193219A1 WO 2021193219 A1 WO2021193219 A1 WO 2021193219A1 JP 2021010511 W JP2021010511 W JP 2021010511W WO 2021193219 A1 WO2021193219 A1 WO 2021193219A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
resin composition
thermoplastic resin
polyester resin
Prior art date
Application number
PCT/JP2021/010511
Other languages
English (en)
French (fr)
Inventor
松岡佳明
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202180025062.6A priority Critical patent/CN115380060A/zh
Priority to JP2022509967A priority patent/JPWO2021193219A1/ja
Publication of WO2021193219A1 publication Critical patent/WO2021193219A1/ja
Priority to US17/820,097 priority patent/US20220388217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2003/00Use of starch or derivatives as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the present invention relates to a method for producing a thermoplastic resin composition containing a biodegradable resin, a method for producing a molded product, and a film.
  • Biodegradable resins are attracting attention amid calls for the problem of plastic waste and the departure from fossil fuels.
  • aliphatic aromatic polyester typified by polybutylene adipate terephthalate (PBAT) having excellent biodegradability, poly- (3-hydroxybutyrate-co-3-hydroxyhexanoate), and polybutylene succinate (polybutylene succinate).
  • PBS polybutylene adipate terephthalate
  • PBS polycaprolactone
  • PLA polylactic acid
  • PHBH is produced by microbial culture using bio-based raw materials, has an extremely high biodegradation rate, and is decomposed not only under aerobic conditions but also under anaerobic conditions, and not only in soil but also in the sea. It is receiving particular attention.
  • it has been studied to finely disperse and composite starch, which is a natural plant-derived resin and has excellent biodegradability and mechanical property improving effect, in a biodegradable polyester resin.
  • Patent Document 1 describes that 10 to 60 parts by weight of a plasticizer for starch is mixed with 100 parts by weight of a starch substance to soften the starch substance and then finely dispersed in a polyester resin.
  • Patent Document 2 describes homogenizing a mixture containing starch and / or starch derivative and polyester resin by supplying thermal and / or mechanical energy.
  • Cited Document 1 there is a problem that the surface of the molded product becomes sticky due to the bleed-out of an additive such as a plasticizer for starch, and the surface smoothness is inferior. Further, in the case of Cited Document 2, there is a problem that the resin heat generation is large at the time of homogenization and the odor derived from starch becomes strong.
  • the present invention produces a thermoplastic resin composition containing a biodegradable polyester resin and a starch substance, which suppresses odor and provides a molded product having good surface smoothness.
  • a method and a method for producing a molded product are provided.
  • the present invention provides a film in which starch substances are finely dispersed in a biodegradable polyester resin and the surface smoothness is good.
  • the present invention is a method for producing a thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B) in one or more embodiments, wherein the polyester resin (A) and starch are produced.
  • the present invention relates to a method for producing a thermoplastic resin composition, which comprises step 2 of reducing the water content of the melt-kneaded product to 5% by weight or less by dehydrating the melt-kneaded product.
  • the present invention also relates to a method for producing a molded product, which comprises, in one or more embodiments, a step of molding the thermoplastic resin composition produced by the method for producing the thermoplastic resin composition to obtain a molded product.
  • the present invention also contains a thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B) in one or more embodiments, and the number average of the starch substances (B).
  • the present invention relates to a film having a particle size of 3 ⁇ m or less.
  • thermoplastic resin composition containing a biodegradable polyester resin and a starch substance, which suppresses odor and provides a molded product having good surface smoothness.
  • a starch substance is finely dispersed in a biodegradable polyester resin to provide a film having good surface smoothness.
  • the inventor of the present invention has produced a biodegradable polyester resin (A) and starch in the production of a thermoplastic resin composition containing a biodegradable polyester resin and starch.
  • a thermoplastic resin composition containing a biodegradable polyester resin and starch.
  • the similar substance (B) is melt-kneaded, a predetermined amount of water is added and melt-kneaded, and the melt-kneaded product is dehydrated in the subsequent step to suppress the odor and have good smoothness. It has been found that a thermoplastic resin composition from which a molded product can be obtained can be produced.
  • thermoplastic resin composition and its manufacturing method In the method for producing a thermoplastic resin composition, first, the polyester resin (A), the starch substance (B) and water are contained, and 25 parts by weight of water is added to 100 parts by weight of the solid content of the starch substance (B). The mixture of 55 parts by weight or less is melt-kneaded (step 1). In step 1, the mixture containing the polyester resin (A), the starch substance (B) and water contains 25 parts by weight or more and 55 parts by weight or less of water with respect to 100 parts by weight of the solid content of the starch substance (B).
  • the plasticizer for starch is used or not used at the minimum necessary, and the shearing force during melt kneading is not increased more than necessary (for example, the screw rotation speed does not exceed 300 rpm).
  • the substance (B) can be dispersed in the polyester resin (A), and as a result, an odor is suppressed and a molded product having good surface smoothness can be obtained.
  • the mixture preferably contains 28 parts by weight or more and 50 parts by weight or less of water with respect to 100 parts by weight of the solid content of the starch substance (B), and more preferably 30 parts by weight or more and 40 parts by weight or less.
  • the commercially available starch substance (B) usually contains water, in which case, in one or more embodiments of the present invention, the water comprises water derived from the starch substance (B) and added water. Therefore, in the mixture, the water may contain water derived from the starch substance (B).
  • water means added water.
  • the water content (moisture content) of the starch substance (B) is measured at 160 ° C by placing a sample of the starch substance on a moisture meter, and volatilization when the amount of change in volatile content is less than 0.02%. It can be calculated by measuring the minute ratio.
  • the amount of solid content of the starch substance (B) can be calculated based on the water content of the starch substance (B).
  • step 1 a mixture of a polyester resin (A), a starch substance (B), water, and other additives described later may be melt-kneaded, if necessary, and the starch substance (B) may be melt-kneaded in advance.
  • Water water added other than water derived from the starch substance (B)
  • an inorganic filler and if necessary, other additives are mixed to prepare a premixture, and the premixture and a polyester resin (A) are prepared.
  • a mixture mixed with other additives may be melt-kneaded.
  • the polyester-based resin (A) may be any as long as it has biodegradability and is not particularly limited, but is a kind selected from the group consisting of an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit from the viewpoint of suppressing hydrolysis.
  • Examples of the aliphatic dicarboxylic acid unit include an aliphatic dicarboxylic acid and / or a derivative thereof that forms an ester.
  • the aliphatic dicarboxylic acid unit is not particularly limited, and examples thereof include those having 2 or more and 30 or less carbon atoms, preferably 2 or more and 18 or less carbon atoms, and more preferably 4 or more and 10 or less carbon atoms.
  • the aliphatic dicarboxylic acid unit may be linear or branched.
  • aliphatic dicarboxylic acid unit examples include oxalic acid, malonic acid, succinic acid, glutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, ⁇ -ketoglutaric acid, adipic acid, pimeric acid, and azelaic acid. Sevacinic acid, undecanoic acid, dodecanoic acid, brassic acid, fumaric acid, 2,2-dimethylglutaric acid, suberic acid (cork acid), diglycolic acid, oxaloacetate, glutamic acid, aspartic acid, itaconic acid, maleic acid, etc. Be done.
  • the aliphatic dicarboxylic acid and / or its derivative forming an ester may be used alone or in combination of two or more.
  • one or more selected from the group consisting of succinic acid, adipic acid, azelaic acid, sebacic acid, brassic acid, and derivatives thereof forming an ester can be used.
  • one or more selected from the group consisting of succinic acid, adipic acid, sebacic acid and derivatives of each of them forming an ester can be used.
  • Succinic acid, azelaic acid, sebacic acid and brassic acid have the advantage of being obtained from renewable raw materials.
  • the aromatic dicarboxylic acid unit is not particularly limited, but it is preferable to use one or more selected from the group consisting of terephthalic acid and its derivatives forming an ester.
  • Examples of the derivative of terephthalic acid forming an ester include dimethyl terephthalate and the like.
  • a heterocyclic aromatic dicarboxylic acid can also be used, and examples thereof include 2,5-furandicarboxylic acid.
  • the aliphatic diol unit is not particularly limited, but for example, a branched or linear alkanediol having 2 or more and 12 or less carbon atoms, preferably 4 or more and 6 or less carbon atoms can be used.
  • the alkanediol is not particularly limited, but for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, and 1,5-pentanediol.
  • the aliphatic diol unit is not particularly limited, but for example, a cycloalkane diol having 5 or more and 10 or less carbon atoms may be used.
  • a cycloalkanediol examples include cyclopentanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol and 2,2,4.
  • Examples thereof include 4-tetramethyl-1,3-cyclobutanediol.
  • aromatic diol examples include 4,4'-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, bis- (4-hydroxyphenyl) sulfone and the like. Can be mentioned.
  • 1,4-butanediol, 1,3-propanediol and the like are preferable.
  • 1,4-butanediol in combination with adipic acid is preferable
  • 1,3-propanediol in combination with sebacic acid is preferable.
  • 1,3-Propanediol has the advantage that it can be obtained as a renewable raw material.
  • Examples of the aliphatic aromatic polyester resin (A1) include polybutylene adipate terephthalate (PBAT) resin, polybutylene succinate terephthalate resin, polybutylene succinate terephthalate resin, and the like.
  • Examples of the polybutylene adipate terephthalate (PBAT) -based resin include polybutylene adipate terephthalate (PBAT) and polybutylene azelate terephthalate (PBAzT).
  • polybutylene adipate terephthalate (PBAT) is preferably used because it is excellent in physical properties such as tensile elongation at break and moldability.
  • Polybutylene adipate terephthalate refers to a random copolymer of 1,4-butanediol, adipic acid, and terephthalic acid, and among them, as described in JP-A-10-508640.
  • (A) Mainly adipic acid or an ester-forming derivative thereof or a mixture thereof 35 mol% or more and 95 mol% or less, terephthalic acid or an ester-forming derivative thereof or a mixture thereof 5 mol% or more and 65 mol% or less (individual)
  • the mixture consisting of (the total molar% of the monomers is 100 mol%) contains (b) butanediol (however, the molar ratio (a): (b) of (a) and (b) is PBAT obtained by the reaction of 0.4: 1 to 1.5: 1) is preferable.
  • the PBAT for example, a commercially available product such as "Ecoflex" (registered trademark) manufactured by BASF can be used.
  • the aliphatic aromatic polyester resin (A1) is not particularly limited, but for example, the weight average molecular weight is preferably 1000 or more and 100,000 or less, more preferably 9000 or more and 75,000 or less, and 10,000 or more and 50,000 or less. Is even more preferable.
  • the weight average molecular weight of the resin means a polystyrene-equivalent weight average molecular weight measured by gas permeation chromatography (GPC) using chloroform as a solvent.
  • the aliphatic aromatic polyester resin (A1) is not particularly limited, but for example, the melting point is preferably 60 ° C. or higher and 170 ° C. or lower, and more preferably 80 ° C. or higher and 150 ° C. or lower.
  • Examples of the aliphatic polyester resin (A2) include polybutylene succinate (PBS) resin, polycaprolactone (PCL) resin, and polyhydroxyalkanoate resin (excluding polyhydroxybutyrate resin). Can be mentioned.
  • Examples of the polybutylene succinate (PBS) -based resin include polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA).
  • the polyhydroxyalkanoate-based resin other than the polyhydroxybutyrate-based resin means a polyhydroxyalkanoate-based resin that does not contain 3-hydroxybutyrate as a monomer component, and includes, for example, polyglycolic acid, polylactic acid, and poly-4-. A hydroxybutyrate resin or the like can be used.
  • the poly-4-hydroxybutyrate resin may be poly (4-hydroxybutyrate) having only 4-hydroxybutyrate as a repeating unit, or 4-hydroxybutyrate and other hydroxyalkanoates. May be a copolymer of.
  • starch substance (B) one or more selected from the group consisting of starch and its derivatives can be used.
  • starch include corn starch (also referred to as corn starch), wheat starch starch, rice starch, soramame starch, green bean starch, small bean starch, horseshoe starch, sweet potato starch, and tapioca starch.
  • starch derivative include modified starch, and for example, modified starch in which the free OH group of the starch is at least partially substituted can be preferably used.
  • modified starch in which the free OH group of the starch is at least partially substituted can be preferably used.
  • Specific examples thereof include chemical starch modified with an ether group and / or an ester group, hydrophobic starch, hydrophilic starch, hydroxypropyl starch, carboxymethyl starch and the like.
  • the melt-kneaded product is dehydrated to reduce the water content of the melt-kneaded product to 5% by weight or less. If the water content of the melt-kneaded product exceeds 5% by weight, the strands cannot be drawn and pellets of the thermoplastic resin composition cannot be obtained.
  • the water content of the melt-kneaded product is preferably 4.0% by weight or less, more preferably 3.0% by weight or less, still more preferably 2.0% by weight or less. Even more preferably, it is 0.0% by weight or less.
  • the water content (moisture content) of the melt-kneaded product shall be measured by placing a sample on a moisture meter and measuring at 160 ° C., and measuring the volatile content ratio when the volatile content change amount is less than 0.02%. Can be calculated with.
  • the melt-kneaded product obtained in step 2 is further added with an aliphatic polyester resin (A2) and a polyhydroxybutyrate-based resin. It is preferable to include step 3 in which one or more selected from the group consisting of the resin (C) is added and melt-kneaded.
  • the aliphatic polyester resin (A2) and / or the polyhydroxybutyrate resin (C) can be included in the mixture in step 1, but the aliphatic polyester resin (A2) and / or From the viewpoint of suppressing the hydrolysis of the polyhydroxybutyrate resin (C) and further improving the odor of the thermoplastic resin composition, it may be added to the melt-kneaded product obtained in step 2 after step 2. preferable.
  • the polyhydroxybutyrate resin (C) is preferably added to the melt-kneaded product after the step 2.
  • the polyhydroxybutyrate resin (C) may be a poly (3-hydroxybutyrate) having only 3-hydroxybutyrate as a repeating unit, or a combination of 3-hydroxybutyrate and another hydroxyalkanoate. It may be a copolymer. Further, the polyhydroxybutyrate resin (C) may be a mixture of a homopolymer and one or more kinds of copolymers, or may be a mixture of two or more kinds of copolymers.
  • the polyhydroxybutyrate resin (C) preferably has a weight average molecular weight of 300,000 or more and 800,000 or less, more preferably 350,000 or more and 750,000 or less, and 400,000 or more and 70. 10,000 or less is more preferable.
  • the weight average molecular weight is 300,000 or more, the melt tension is not insufficient, the balloon is easily stabilized, and the molding width is not narrowed.
  • the weight average molecular weight is 800,000 or less, the discharge amount can be easily increased and no flow mark or the like is generated.
  • the polyhydroxybutyrate resin (C) preferably contains a copolymer of 3-hydroxybutyrate and another hydroxyalkanoate from the viewpoint of molding width.
  • the copolymer include poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-3-hydroxyvariate), and poly (3-hydroxybutyrate).
  • Rate-co-4-hydroxybutyrate poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) and the like. Be done.
  • Poly (3-hydroxybutyrate) has a melting point and decomposition temperature of around 180 ° C., and decomposition progresses as the resin melts.
  • the melting point is lowered.
  • the melting point of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) containing 6 mol% of 3-hydroxyhexanoate is around 145 ° C, and the molding processing width can be widened to 145 to 180 ° C. can.
  • the copolymer of 3-hydroxybutyrate and other hydroxyalkanoates preferably contains 2 mol% or more and 15 mol% or less of other hydroxyalkanoates, and preferably contains 3 mol% or more and 12 mol% or less. Is more preferable, and from the viewpoint of increasing the crystallization rate and increasing the productivity, it is more preferably contained in an amount of 3 mol% or more and 9 mol% or less, and particularly preferably contained in an amount of 3 mol% or more and 6 mol% or less.
  • the polyhydroxybutyrate resin (C) is a copolymer of 3-hydroxybutyrate and other hydroxyalkanoates from the viewpoint of moldability and molding processing width, and contains 2 mol% or more and 15 mol of other hydroxyalkanoates. % Or less, and the weight average molecular weight is preferably 300,000 or more and 800,000 or less, and more preferably 3 mol% or more and 12 mol% or less of other hydroxyalkanoates and the weight average molecular weight is 350,000 or more and 750,000 or less. It is more preferable that the hydroxy alkanoate is contained in an amount of 3 mol% or more and 12 mol% or less, and the weight average molecular weight is 400,000 or more and 700,000 or less.
  • the polyhydroxybutyrate resin (C) is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from the viewpoint of being industrially easy to produce and having excellent molding processability at low temperatures. Is preferable.
  • Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) has a 3-hydroxybutyrate unit of 85 mol% or more and 98 mol% or less, and 3-hydroxyhexanoate from the viewpoint of the balance between flexibility and strength.
  • the unit is preferably 2 mol% or more and 15 mol% or less, more preferably the 3-hydroxybutyrate unit is 88 mol% or more and 97 mol% or less, and the 3-hydroxyhexanoate unit is 3 mol% or more and 12 mol% or less.
  • poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) has a 3-hydroxybutyrate unit of 91 mol% or more and 97 mol% or less, and a 3-hydroxyhexanoate unit of 3 mol. It is more preferable to contain% or more and 9 mol% or less, and it is particularly preferable to contain the 3-hydroxybutyrate unit in an amount of 94 mol% or more and 97 mol% or less and the 3-hydroxyhexanoate unit in an amount of 3 mol% or more and 6 mol% or less.
  • poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) preferably has a weight average molecular weight of 300,000 or more and 800,000 or less, and 350,000 or more and 750,000 or less. More preferably, it is more preferably 450,000 or more and 700,000 or less.
  • poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for example, a commercially available product such as "Kaneka Biodegradable Polymer PHBH (registered trademark)" manufactured by Kaneka Corporation can be used.
  • examples of the grade of Kaneka biodegradable polymer PHBH include X131N, X131A, X331N, X337N, X151A, X151N, X157N and the like.
  • the polyhydroxybutyrate resin (C) is a poly having a different melting point described in International Publication No. 2015/146194 from the viewpoint of improving the crystallization rate, improving the melt processability, and improving the productivity. It is preferable to use a mixture of two or more types of hydroxybutyrate resins. Further, a PHA mixture having different melting points may be simultaneously produced intracellularly as in the method for producing PHA described in International Publication No. 2015/146195, and the obtained PHA mixture may be used. Examples of grades of Kaneka biodegradable polymer PHBH using the production method include M101 and M301.
  • step 3 if necessary, a step of dehydrating the melt-kneaded product obtained in step 3 may be included.
  • the content of water in the finally obtained melt-kneaded product needs to be 5% by weight or less.
  • the water content of the pellets of the obtained thermoplastic resin composition is also 5% by weight or less.
  • melt kneading is not particularly limited and can be carried out by a general kneading method.
  • each of the above components can be added and melt-kneaded using a melt-kneading device such as an extruder, a kneader, or a Banbury mixer.
  • a melt-kneading device such as an extruder, a kneader, or a Banbury mixer.
  • each component can be mixed by using, for example, a super mixer, a Henschel mixer, a floater, or the like in a non-melted state, and then melt-kneaded.
  • thermoplastic resin composition After melt-kneading, the melt-kneaded product (thermoplastic resin composition) is extruded into a strand shape and then cut to form a thermoplastic resin composition having a particle shape such as a columnar shape, an elliptical columnar shape, a spherical shape, a cubic shape, or a rectangular parallelepiped shape. Pellets can be obtained.
  • the extruder used for melt-kneading is not particularly limited, and may be a single-screw extruder or a twin-screw extruder, but a twin-screw extruder is preferable from the viewpoint of versatility and dispersibility. ..
  • a twin-screw extruder has one or more cylinders (also called barrels), two screws located inside the cylinders, one or more raw material supply ports provided in the cylinders, and a cylinder. It is preferable to have one or more provided vent portions.
  • the raw material supply port may have a main feed portion and a side feed portion provided on the side in the extrusion downstream direction from the main feed portion.
  • a pre-blend of polyester resin (A), water and starch substance (B), or polyester resin (A), and water and starch substance (B) is supplied to the main feed section, and the side feed section is provided.
  • the aliphatic aromatic polyester resin (A1) may be supplied at the main feed portion
  • the aliphatic polyester resin (A2) may be supplied at the side feed portion.
  • step 1, step 2 and step 3 may be performed in the same melt-kneading apparatus.
  • step 3 may be performed by another melt-kneading device different from the melt-kneading device that performs steps 1 and 2.
  • a preblend of polyester resin (A), water and starch substance (B), or polyester resin (A), and water and starch substance (B) is supplied to a predetermined melt-kneading facility, and a step is performed.
  • the melt-kneaded product obtained through steps 1 and 2 is cooled and pelletized, and in step 3, the melt-kneaded product pellets are made into a polyhydroxybutyrate resin (C) using another melt-kneading facility. , And the aliphatic polyester resin (A2) may be further melt-mixed.
  • the polyester resin (A) and the starch substance (B) supplied from the main feed portion of the extruder used for melt kneading are preferably 50% by weight or more and 99% by weight or less, and the starch substance (B) is preferably 1% by weight or more and 50% by weight or less.
  • the polyester resin (A) is more preferably 55% by weight or more and 90% by weight or less, the starch substance (B) is more preferably 10% by weight or more and 45% by weight or less, and the polyester resin (A) is 60% by weight. It is more preferably% or more and 80% by weight or less, and the starch substance (B) is 20% by weight or more and 40% by weight or less.
  • M be the total weight of the polyester resin (A) and the starch substance (B), and the aliphatic polyester resin (A2) supplied from the side feed portion of the extruder used for melt kneading the thermoplastic resin composition.
  • M is 30% by weight or more and 85% by weight or less, and S is 15% by weight or more and 70% by weight.
  • M is 40% by weight or more and 80% by weight or less
  • S is more preferably 20% by weight or more and 60% by weight or less
  • M is 60% by weight or more and 80% by weight or less.
  • S is more preferably 20% by weight or more and 40% by weight or less.
  • the main feed section is usually located at the base of the screw.
  • a general full flight screw can be used for the screw configuration of the main feed section.
  • a single-row full flight screw may be used in order to obtain a high discharge rate at a low screw speed.
  • a full flight having a small screw lead for example, a full flight having a screw lead of 0.75 times or less the screw diameter, and a full flight of 0.5 times or less. It is more preferable to use. Further, from the viewpoint of homogeneously gelatinizing starchy substances, it is also possible to use one or more left-handed full-flight screws having a reverse transfer capacity.
  • a more uniform gelatinized state can be obtained by lengthening the residence time by introducing a kneading element having a reverse transfer capacity.
  • the barrel temperature is not particularly limited, but is preferably 130 ° C. or lower, for example. When the barrel temperature is set to 130 ° C. or lower, the water does not boil and flow back to the main feed part, the water required for gelatinization does not decrease, and a sufficient gelatinized state can be easily obtained, and the surface of the molded product is easily obtained. Easy to improve smoothness.
  • the melting point of the polyester resin (A) is set to Tm in order to apply a high shear stress to the barrel temperature.
  • Tm-40 ° C the temperature within the range of "Tm-40 ° C” to "Tm + 40 ° C”. It is more preferably “Tm-30 ° C” to "Tm + 30 ° C", further preferably “Tm-30 ° C” to "Tm + 20 ° C", and particularly preferably "Tm-20 ° C” to "Tm + 10 ° C”.
  • the melting point in the present invention is determined by using the differential scanning calorimetry method.
  • the barrel temperature in step 1 is "Tm-40 ° C.” or higher, the molding load does not increase, the discharge amount can be easily increased, and the productivity can be easily increased. Further, when the barrel set temperature in step 1 is "Tm + 40 ° C.” or less, the surface smoothness of the molded product can be easily improved.
  • the melt kneading is preferably performed by setting the cylinder temperature to 180 ° C. or lower from the viewpoint of suppressing thermal decomposition of the aliphatic polyester resin.
  • the temperature may be 160 ° C. or lower from the viewpoint of further suppressing the temperature of the molten resin and suppressing thermal decomposition. If the extruder can withstand a high molding load, the cylinder temperature can be further lowered, and the temperature can be 140 ° C. or lower, further 120 ° C. or lower.
  • the screw rotation speed during melt-kneading is not particularly limited.
  • the screw rotation speed is 50 rpm. It is preferably 250 rpm or less, more preferably 70 rpm or more and 180 rpm or less, and further preferably 90 rpm or more and 160 rpm or less.
  • the discharge amount is increased by increasing the screw rotation speed while keeping the "discharge amount / screw rotation speed" constant.
  • the optimum screw rotation speed may shift to the higher side.
  • the discharge amount of the melt-kneaded product during melt-kneading is not particularly limited, but is, for example, 3 kg / hr or more and 30 kg / hr or less from the viewpoint of giving sufficient shear heat energy and easily obtaining a molded product having excellent surface smoothness. It may be 5 kg / hr or more and 20 kg / hr or less, or 7 kg / hr or more and 15 kg / hr or less.
  • the discharge amount has a general theoretical formula, for example, the discharge amount has a good correspondence with the square-cube law of the screw diameter.
  • (69 mm) 2.5 / (27 mm) 2.5 10.44, which is about 10.44 times or more the discharge rate of a 27 mm extruder. It is possible to mold with.
  • Dehydration of the melt-kneaded product can be performed, for example, at one or more dehydration vacuum vents provided in the cylinder.
  • the step 1 is to perform melt mixing in a closed system in which water does not boil or volatilize under pressure, and then release the pressure and dehydrate the extruder.
  • a thermoplastic resin composition can be obtained in the same manner as in the case of use. After that, the process may proceed to step 3 if necessary.
  • the obtained melt of the thermoplastic resin composition is pelleted by a general method, for example, a twin-screw taper extruder, a twin-screw extruder, a single-screw extruder, a feeder luder, or the like. Can be transformed into.
  • the thermoplastic resin composition is a polyester resin (A) and a starch substance (B) in a total of 100% by weight.
  • the polyester resin (A) is 99% by weight or less and the starch substance (B) is 1% by weight or more, the biodegradability of the molded product is good, and the polyester resin (A) is 50% by weight or more.
  • the starch substance (B) is 50% by weight or less, the surface smoothness of the molded product is likely to be improved.
  • the starch substance (B) usually contains water, and in one or more embodiments of the present invention, the amount of the starch substance (B) in the thermoplastic resin composition excludes the water content. It means the amount of solid content. When a starch substance containing no water is used, the amount of solid content of the starch substance is the same as the amount of the starch substance.
  • the thermoplastic resin composition has an aliphatic aromatic polyester resin (A1), an aliphatic polyester resin (A2), and the like.
  • the aliphatic aromatic polyester resin (A1) is 50% by weight or more and 99% by weight or less, and the starch substance.
  • (B) is contained in an amount of 1% by weight or more and 50% by weight or less, and the aliphatic polyester resin (A2) and the polyhydroxybutyrate resin (C) are contained in a total of 0% by weight or more and 49% by weight or less, more preferably. 50% by weight or more and 90% by weight or less of the aliphatic aromatic polyester resin (A1), 5% by weight or more and 45% by weight or less of the starch substance (B), the aliphatic polyester resin (A2) and the polyhydroxybutyrate type.
  • a total of 5% by weight or more and 45% by weight or less of the resin (C) is contained, more preferably 50% by weight or more and 80% by weight or less of the aliphatic aromatic polyester resin (A1), and 10% by weight of the starch substance (B).
  • 50% by weight or more and 70% by weight or less, starch substance (B) is 15% by weight or more and 40% by weight or less, and aliphatic polyester resin (A2) and polyhydroxybutyrate resin (C) are 15% by weight in total. Includes 30% by weight or more and 30% by weight or less.
  • thermoplastic resin composition may be used as necessary for other components such as polyvinyl acetate, polyethylene vinyl acetate copolymer, polyvinyl alcohol, polyethylene vinyl alcohol-based resin, cellulose-based resin, etc., as long as the effects of the present invention are not impaired.
  • Rubbers such as resins and natural rubbers, thermoplastics such as resin plastics and starch plastics, fillers such as inorganic fillers and organic fillers, compatibilizers, crystal nucleating agents, antioxidants, Anti-blocking agent, UV absorber, light-resistant agent, antioxidant, heat stabilizer, colorant, flame-retardant agent, mold release agent, antistatic agent, antifogging agent, surface wetting improver, incineration aid, pigment, lubricant, Other additives such as dispersion aids, surfactants, slip agents, antioxidants and end sealants may be included. The other additives may contain only one type, or may contain two or more types.
  • thermoplastic resin composition when the thermoplastic resin composition is 100% by weight, other resins may be contained in an amount of 20% by weight or less, plasticizers may be contained in an amount of 5% by weight or less, and fillers may be contained in an amount of 10% by weight or less.
  • Other additives other than plasticizers and fillers include, for example, resin components (polyester resin (A) and starch substance (B), or polyester resin (A), starch substance (B) and poly.
  • resin components polyyester resin (A) and starch substance (B)
  • polyester resin (A) polyester resin
  • starch substance (B) starch substance
  • poly When the total amount of the hydroxybutyrate resin (C) is 100 parts by weight, 5 parts by weight or less can be used.
  • the plasticizer for starch is not particularly limited as long as it is mixed with a starch substance to reduce its viscosity, but alcohols are preferable, and alcohols having a divalent value or higher are particularly preferable.
  • the boiling point of the starch plasticizer is not particularly limited, but is preferably 120 ° C. or higher, more preferably 160 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • at least one selected from the group consisting of glycerin, glycerin dimer, glycerin trimer, glycerin tetramer, thermoplastic, sorbitol, pentaerythritol, propylene glycol and ethylene glycol is a starch substance.
  • plasticizers are substances that are easily compatible with water and alcohols, and the amount of elution in water and 20% ethanol at high temperatures required for food contact applications is a specified value.
  • the addition amount is preferably 3 parts by weight, more preferably 2 parts by weight, still more preferably 1 part by weight, and particularly preferably not added.
  • the crystal nucleating agent is not particularly limited, and for example, a known substance can be used.
  • the crystal nucleating agent includes inorganic substances such as pentaerythritol, boron nitride, titanium oxide, talc, layered silicate, calcium carbonate, sodium chloride and metal phosphate; natural products such as erythritol, galactitol, mannitol and arabitol.
  • Derived sugar alcohol compounds polyvinyl alcohol, chitin, chitosan, polyethylene oxide, aliphatic carboxylic acid amide, aliphatic carboxylic acid salt, aliphatic alcohol, aliphatic carboxylic acid ester, dimethyl adipate, dibutyl adipate, diisodecyl adipate and dibutyl sebacate
  • Sorbitol-based derivatives such as sorbitol; compounds containing nitrogen-containing heteroaromatic nuclei such as pyridine, triazine and imidazole; phosphate ester compounds, bisamides of higher fatty acids and metal salts of higher fatty acids; branched polylactic acid, etc. Can be exemplified. Pentaerythritol is preferable from the viewpoint of highly increasing the crystallization rate. These crystal nucleating agents may be used alone or in combination of two or more.
  • lubricant one or more selected from the group consisting of metal salts of aliphatic carboxylic acids and fatty acid amides may be used, and fatty acid amides are preferable, and the fatty acid amides are specifically oleic acid amides.
  • Elcaic acid amide bechenic acid amide, stearic acid amide, palmitic acid amide, N-stearyl behenic acid amide, N-stearyl erucic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, ethylene bis erucic acid amide, ethylene bis Examples thereof include lauric acid amide, ethylene biscapric acid amide, p-phenylene bisstearic acid amide, and a polycondensate of ethylene diamine, stearic acid and sebacic acid. Above all, it is particularly preferable to use erucic acid amide. By using the erucic acid amide, the friction between the thermoplastic resin composition or its molded product and the apparatus or the like can be further suppressed, and the mouth opening property of the film can be further improved.
  • inorganic particles such as silica, talc, calcium carbonate, barium sulfate, and magnesium silicate can be used.
  • the silica is preferably wet silica from the viewpoint of dispersibility.
  • pigment a commonly used pigment can be used. In film and bag applications, it is suitable not only for coloring but also for applications that require concealment to make the contents invisible.
  • the other additives may be included in the thermoplastic resin composition in step 1 or may be included in the thermoplastic resin composition in step 3.
  • thermoplastic resin composition has excellent biodegradability and mechanical properties, agriculture, fishery, forestry, gardening, medicine, sanitary goods, food industry, clothing, non-clothing, packaging, automobiles, building materials, etc. It can be suitably used in other fields, for example, textile products such as vegetation nets, gardening nets, insect repellent nets, young tree nets, incentive strings, windbreak nets, cash register bags, shopping bags, fruit and vegetable bags, rubber bags.
  • Compost bag multi-film for agriculture, smoked sheet for forestry, binding tape including flat yarn, vegetation mat, weed proof bag, weed proof net, weed proof sheet, curing sheet, slope protection sheet, ash control sheet, Drain sheet, water retention sheet, sludge / hedro dehydration bag, tunnel film, bird-proof sheet, seedling raising pot, seed string tape, germination sheet, house lining sheet, root-proof sheet, print laminate, fertilizer bag, feed bag, sample Bags, clay bags, animal damage prevention nets, medical films, wrap films, paper bags, shrink films, shrink labels, envelopes with windows, hand-cut tape, easy peel packaging, egg packs, HDD packaging, compost bags, recording media packaging , Shopping bags, wrapping films, release films, porous films, container bags, credit cards, cash cards, ID carts, drain bags, wrapping films for plants, diaper back sheets, packaging sheets, film products, blister packages, It can be used as a molded body molded into a shape suitable for applications such as cups and lids. Of these,
  • thermoplastic resin composition As a method for producing a molded product from the thermoplastic resin composition, a general molding method can be used, and examples thereof include a blow molding method, an injection molding method, and an extrusion molding method.
  • extrusion molding method examples include an inflation molding method capable of obtaining a film-shaped or bag-shaped molded body, a T-die molding capable of obtaining a film (sheet), and the like.
  • the thermoplastic resin composition can also be single-layer molded or multi-layer molded by a general manufacturing method.
  • the thermoplastic resin composition of the present invention for the outer layer and using polyvinyl alcohol, polyethylene vinyl alcohol, or the like having biodegradability and barrier properties for the inner layer, the biodegradability and barrier properties can be enhanced.
  • a biodegradable resin that solidifies quickly for example, polybutylene succinate, polylactic acid, etc. for the outer layer and using the thermoplastic resin composition of the present invention for the inner layer, the balance between biodegradability and productivity is improved. be able to.
  • the film thickness is not particularly limited, but may be, for example, 5 ⁇ m or more and 500 ⁇ m or less, 10 ⁇ m or more and 300 ⁇ m or less, 15 ⁇ m or more and 150 ⁇ m or less, or 10 ⁇ m or more. It may be 120 ⁇ m or less.
  • the film may be tubular.
  • the inventor of the present invention has set the number average particle size of the starch substance (B) to 3 ⁇ m in a film containing a thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B).
  • the starch substance (B) is finely dispersed in the biodegradable polyester resin (A) to improve the mechanical strength and the smoothness.
  • the number average particle size of the starch substance (B) tends to be 3 ⁇ m or less in the film containing the thermoplastic resin composition obtained in one or more embodiments of the present invention described above.
  • the odor derived from the starch substance (B) is suppressed.
  • the number average particle size of the starch substance (B) in the film is obtained by cutting out an ultrathin section (thickness 80 to 100 nm) at a substantially central portion in the thickness direction of the film, and transmitting electrons. Using a microscope, the observation direction is the direction that coincides with the thickness direction of the film (the direction perpendicular to the film surface), and 100 particles of the dust substance (B) are randomly extracted, and the individual starch substances (the direction perpendicular to the film surface) are extracted at random. The particle size of B) was measured, and the number average particle size was calculated based on the measurement.
  • the particle size is defined as the diameter of a circle corresponding to the two-dimensional shape generated from the cross section.
  • the particle size (d) was calculated by the following formula (1).
  • the number average particle size of the starch substance (B) is preferably 2.5 ⁇ m or less, more preferably 2.0 ⁇ m or less, still more preferably 1.5 ⁇ m or less. It is even more preferably 0 ⁇ m or less, and particularly preferably 0.50 ⁇ m or less. As a result, the fine dispersibility of the starch substance (B) is enhanced, and the mechanical strength is likely to be enhanced.
  • the lower limit of the number average particle size of the starch substance (B) is better, and is not particularly limited. For example, from the viewpoint of productivity, it may be 5 ⁇ m or more, or 10 ⁇ m or more. ..
  • the film preferably has a tear strength of 150 N / mm or more, more preferably 160 N / mm or more, and 170 N, as measured according to JIS P 8116. It is more preferably / mm or more, and particularly preferably 180 N / mm or more.
  • the higher the upper limit of the tear strength is, the better, and it is not particularly limited.
  • it may be 500 N / mm or less, or 300 N / mm or less.
  • the thickness of the film is not particularly limited, but may be, for example, 5 ⁇ m or more and 500 ⁇ m or less, 10 ⁇ m or more and 300 ⁇ m or less, 15 ⁇ m or more and 150 ⁇ m or less, or 10 ⁇ m or more and 120 ⁇ m or less. May be good.
  • the film may be tubular.
  • the film may be a single-layer film or a laminated film having two or more layers.
  • all layers contain a thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B), and the number average particle diameter of the starch substance (B) is 3 ⁇ m.
  • the thermoplastic resin composition containing the biodegradable polyester resin (A) and the starch substance (B) is contained only in the outer layer, and the number average particle size of the starch substance (B) is set to 3 ⁇ m or less. good.
  • biodegradability and barrier properties can be enhanced by using polyvinyl alcohol, polyethylene vinyl alcohol, or the like having biodegradability and barrier properties for the inner layer.
  • the film is not particularly limited, but can be suitably produced by using, for example, the thermoplastic resin composition of one or more embodiments of the present invention described above.
  • the molding method is not particularly limited, and a known film molding method such as inflation molding or T-die molding can be used.
  • the thickness of the film was calculated by measuring the center of the film in the resin flow direction (hereinafter, also referred to as the MD direction) with a thickness gauge at intervals of 50 mm to a length of 400 mm and calculating the arithmetic mean.
  • an ultrathin section 4 (thickness 80 to 100 nm) in a substantially central portion (plane) 3 with respect to the thickness direction 2 of the film 1 is cut out, and a transmission electron microscope is used to cut out the ultrathin section 4 (thickness 80 to 100 nm), and the thickness direction 2 of the film 1 is used.
  • the direction that coincides with (the direction perpendicular to the surface of the film 1) is set as the observation direction 5, 100 particles of the dust substance are randomly extracted, the particle size of each dust substance is measured, and then the particle size is measured. The number average particle size was calculated based on this.
  • the particle size is defined as the diameter of a circle corresponding to the two-dimensional shape generated from the cross section.
  • the particle size (d) was calculated by the following formula (1).
  • Example 1 (Compound by twin-screw extruder)
  • Water is supplied from the main feed section 2 provided in the cylinder 2 at 0.28 kg / hr, compounded at a screw rotation speed of 250 rpm, and passed through a water tank filled with water at 25 ° C.
  • the strands were solidified and cut with a pelletizer to obtain pellets of the thermoplastic resin composition.
  • the water content of the melt-kneaded product was 0.4% by weight.
  • the melt-kneaded product was dehydrated by a dehydration vacuum vent provided in the cylinder 9. (Film formation by T-die molding)
  • the pellets of the thermoplastic resin composition obtained above were dried at 60 ° C. for 24 hours in a dehumidifying dryer.
  • Example 2 Pellets and films (thickness 100 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.40 kg / hr. The water content of the melt kneaded product was 0.5% by weight.
  • Example 3 Pellets and films (thickness 100 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.53 kg / hr. The water content of the melt-kneaded product was 0.6% by weight.
  • Example 4 Pellets and films (thickness 100 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.63 kg / hr. The water content of the melt kneaded product was 0.7% by weight.
  • Example 5 Pellets and films (thickness 101 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.81 kg / hr. The water content of the melt-kneaded product was 0.8% by weight.
  • thermoplastic resin composition Pellets and films (thickness 101 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0 kg / hr, that is, water was not supplied. The water content of the melt-kneaded product was 0.2% by weight.
  • thermoplastic resin composition Pellets and films (thickness 100 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.18 kg / hr. The water content of the melt-kneaded product was 0.2% by weight.
  • thermoplastic resin composition Pellets and films (thickness 100 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 0.22 kg / hr. The water content of the melt-kneaded product was 0.3% by weight.
  • thermoplastic resin composition Pellets and films (thickness 99 ⁇ m) of the thermoplastic resin composition were prepared in the same manner as in Example 1 except that the amount of water supplied was changed to 1.02 kg / hr. The water content of the melt kneaded product was 0.9% by weight.
  • Example 6> (Preparation of starch pre-blend) A starch pre-blend was prepared in advance using a 75 L super mixer manufactured by Kawata Co., Ltd. Specifically, 8.01 kg of cornstarch (containing 12.3% by weight of water) was charged into a super mixer, and 1.2 kg of water was added little by little over 3 minutes under stirring at a rotation speed of 200 rpm. Stirring was once stopped, 0.054 kg of silica was added, and the mixture was mixed at a rotation speed of 200 rpm for another 1 minute to obtain a starch preblend having a water content of 23.7% by weight (amount of starch preblend produced). Was the amount equivalent to 3 hours of compounding).
  • thermoplastic resin composition The water content of the melt kneaded product was 0.5% by weight.
  • the melt-kneaded product was dehydrated by a dehydration vacuum vent provided in the cylinder 9. (Film formation by T-die molding) A film having a thickness of 99 ⁇ m was obtained in the same manner as in Example 1.
  • Example 7 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 101 ⁇ m) were prepared in the same manner as in Example 6 except that the screw rotation speed was changed to 190 rpm in the compounding by the twin-screw extruder. The water content of the melt kneaded product was 0.5% by weight.
  • Example 8> A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 101 ⁇ m) were prepared in the same manner as in Example 6 except that the screw rotation speed was changed to 135 rpm in the compounding by the twin-screw extruder. The water content of the melt kneaded product was 0.5% by weight.
  • Example 9 The starch pre-preparation was the same as in Example 8 except that the valve of the dehydration vacuum vent was adjusted in the compounding by the twin-screw extruder to make the water content of the melt-kneaded product after step 2 1.5% by weight. Blends, pellets of thermoplastic resin compositions and films (thickness 101 ⁇ m) were made. In the compounding step using a twin-screw extruder, the strands at the die outlet were slightly foamed, but pellets could be obtained without any problem.
  • Example 10 The starch pre-preparation was the same as in Example 8 except that the valve of the dehydration vacuum vent was adjusted in the compounding by the twin-screw extruder to make the water content of the melt-kneaded product after step 2 2.6% by weight. Blends, pellets of thermoplastic resin compositions and films (thickness 101 ⁇ m) were made. In the compounding step using a twin-screw extruder, the strands at the die outlet were foamed, but pellets could be obtained.
  • Example 11 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 100 ⁇ m) were prepared in the same manner as in Example 6 except that PBAT was changed to FZ91PB and the barrel temperature condition was changed to Temp2.
  • Example 12 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 99 ⁇ m) were prepared in the same manner as in Example 6 except that PBAT was changed to FZ92PB and the barrel temperature condition was changed to Temp2.
  • Example 13 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 100 ⁇ m) were prepared in the same manner as in Example 6 except that PBAT was changed to Capa6500 and the barrel temperature condition was changed to Temp2.
  • Example 14 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 100 ⁇ m) were prepared in the same manner as in Example 6 except that PBAT was changed to Capa6800 and the barrel temperature condition was changed to Temp2.
  • Example 15 (Preparation of starch pre-blend)
  • the starch preblend was prepared in the same manner as in Example 6 except that the amount of cornstarch charged was changed to 6.39 kg, the amount of water charged was changed to 0.96 kg, and the amount of silica charged was changed to 0.042 kg. Obtained.
  • (Compound by twin-screw extruder) TEM26SS (L / D 60) manufactured by Toshiba Machine Co., Ltd.
  • the main feed unit 1 is attached to the cylinder 1
  • the main feed unit 2 is attached to the cylinder 2
  • the side feed unit is attached to the cylinder 11
  • a vent unit is attached to the cylinder 14
  • PBAT is supplied from the main feed portion 1 provided in the cylinder 1 at 3.73 kg / hr under the barrel temperature condition Temp1
  • the starch preblend is supplied to the cylinder 2 at 2.464 kg / hr.
  • the pellet of the thermoplastic resin composition was supplied in the same manner as in Example 6 except that the X131N was supplied from the main feed portion 2 provided in the cylinder 11 and the X131N was supplied from the side feed portion provided in the cylinder 11 at 1.4 kg / hr. Obtained.
  • melt-kneaded product was dehydrated by the dehydration vacuum vents provided in the cylinder 9 and the cylinder 14.
  • the water content of the finally obtained melt kneaded product was 0.5% by weight.
  • Example 16 Pellets and films (thickness 99 ⁇ m) of starch preblend were prepared in the same manner as in Example 15 except that X131N was changed to M101. The water content of the finally obtained melt-kneaded product and the melt-kneaded product after step 2 was 0.5% by weight.
  • Example 17 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 100 ⁇ m) were prepared in the same manner as in Example 15 except that X131N was changed to X151N. The water content of the finally obtained melt-kneaded product and the melt-kneaded product after step 2 was 0.5% by weight.
  • Example 18 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 101 ⁇ m) were prepared in the same manner as in Example 15 except that X131N was changed to FD92PB. The water content of the finally obtained melt-kneaded product and the melt-kneaded product after step 2 was 0.5% by weight.
  • Example 19 A starch preblend, a pellet of a thermoplastic resin composition, and a film (thickness 101 ⁇ m) were prepared in the same manner as in Example 15 except that X131N was changed to Capa6800. The water content of the finally obtained melt-kneaded product and the melt-kneaded product after step 2 was 0.5% by weight.
  • Example 20 Starch preblend, thermoplastic resin composition pellets and film (thickness) as in Example 6, except that 7.83 kg of chemical cornstarch was used instead of 8.01 kg of cornstarch and 1.38 kg instead of 1.2 kg of water. 100 ⁇ m) was prepared.
  • Example 1 to 20 and Comparative Examples 1 to 4 the surface smoothness and odor of the film were measured and evaluated as described above, and the results are shown in Tables 3 to 7 below. Tables 3 to 7 also show the production conditions and formulations of the thermoplastic resin compositions.
  • the amount of water with respect to 100 parts by weight of the solid content of the starch substance (B) is 25.
  • the weight was 55 parts by weight or more
  • the smoothness of the obtained film was good, and there was almost no odor.
  • the film smoothness of Examples 2 to 3 is superior to that of Examples 1, 4 and 5, and 30 parts by weight or more and 40 parts by weight or less of water is added to 100 parts by weight of the solid content of the starch substance (B). It was found that the film smoothness was better when mixed.
  • Example 8 It was found that the odor of the film was less noticeable in Example 8 than in Examples 6 to 7, and the odor was better when the screw rotation speed during melt kneading was 160 rpm or less. It was found that the film smoothness of Example 2 was better than that of Examples 11 to 14, and the film smoothness was more excellent when the aliphatic aromatic polyester resin (A1) was used. Compared with Examples 2 and 6, the odor of the film was less noticeable in Examples 15 to 19, and the melt-kneaded product obtained in Step 2 was further added with the aliphatic polyester resin (A2) and polyhydroxy. It was found that the odor became better when the step 3 of adding one or more selected from the group consisting of the butyrate resin (C) and melt-kneading was included. ..
  • the number average particle size of the starch substance (B) in the film is 3 ⁇ m or less, the starch substance (B) is highly finely dispersed in the polyester resin (A), and the surface thereof is formed. The smoothness was also good.
  • the film of the example had a good tear strength.
  • the number average particle size of the starch substance (B) exceeds 3 ⁇ m, and the fine dispersibility is inferior.
  • the film of the comparative example had a low tear strength.
  • thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B).
  • Step 1 of melting and kneading A method for producing a thermoplastic resin composition, which comprises a step 2 in which the water content of the melt-kneaded product is reduced to 5% by weight or less by dehydrating the melt-kneaded product after the step 1.
  • the biodegradable polyester resin (A) is composed of one or more dicarboxylic acid units selected from the group consisting of an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit, and an aliphatic diol unit and an aromatic diol unit.
  • Aliphatic aromatic polyester resin (A1) containing one or more diol units selected from the group
  • aliphatic polyester resin (A2) containing an aliphatic dicarboxylic acid unit and an aliphatic diol unit (however, polyhydroxybuty).
  • the method for producing a thermoplastic resin composition according to [1] which is one or more selected from the group consisting of (excluding rate-based resins).
  • the biodegradable polyester resin (A) is at least one selected from the group consisting of polybutylene adipate terephthalate resin, polybutylene succinate resin and polycaprolactone resin, [1] to [ 3] The method for producing a thermoplastic resin composition according to any one of.
  • thermoplastic resin composition according to [3] or [4], wherein the polyhydroxybutyrate resin (C) is poly- (3-hydroxybutyrate-co-3-hydroxyhexanoate). Manufacturing method.
  • the polyester resin (A) is The method for producing a thermoplastic resin composition according to any one of [1] to [5], wherein the content is 50% by weight or more and 99% by weight or less, and the starch substance (B) is 1% by weight or more and 50% by weight or less. ..
  • the total weight of the biodegradable polyester resin (A) and the starch substance (B) supplied from the main feed portion of the extruder used for melt kneading is M, and the extruder used for melt kneading
  • M is 30% by weight.
  • a method for producing a molded product which comprises a step of molding the thermoplastic resin composition produced by the method for producing a thermoplastic resin composition according to any one of [1] to [7] to obtain a molded product.
  • thermoplastic resin composition containing a biodegradable polyester resin (A) and a starch substance (B) is contained.
  • the film according to [12] which has a tear strength of 150 N / mm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、1以上の実施形態において、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物の製造方法であって、ポリエステル系樹脂(A)、でん粉類物質(B)及び水を含み、でん粉類物質(B)の固形分100重量部に対して水が25重量部以上55重量部以下である混合物を溶融混練する工程1と、工程1の後に、溶融混錬物を脱水することで、溶融混錬物の水の含有量を5重量%以下にする工程2を含む熱可塑性樹脂組成物の製造方法に関する。 本発明は、また、1以上の実施形態において、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有し、でん粉類物質(B)の数平均粒子径が3μm以下であるフィルムに関する。

Description

熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム
 本発明は、生分解性樹脂を含む熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルムに関する。
 プラスチックのゴミ問題、化石燃料からの脱却が叫ばれる中、生分解性樹脂、特にバイオベースの生分解性樹脂が注目されている。その中で、生分解性に優れるポリブチレンアジペートテレフタレート(PBAT)に代表される脂肪族芳香族ポリエステル、ポリ-(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)、ポリブチレンサクシネート(PBS)、ポリカプロラクトン(PCL)、及びポリ乳酸(PLA)に代表される脂肪族ポリエステルが注目されている。特にPHBHはバイオベース原料を用い微生物培養で製造され、かつ、生分解速度が極めて速く、好気性条件下だけでなく、嫌気性条件下でも、また、土壌だけでなく海でも分解されることから特に注目されている。加えて、天然植物由来樹脂であり、優れた生分解性と機械特性改良効果を有するでん粉を生分解性のポリエステル系樹脂中に微分散・複合化させることが検討されてきた。
 特許文献1には、でん粉類物質100重量部に対してでん粉用可塑剤10~60重量部を混合してでん粉類物質を軟化させた後、ポリエステル系樹脂中に微分散させることが記載されている。特許文献2には、でん粉及び/又はでん粉誘導体、ポリエステル系樹脂を含む混合物を熱的及び/又は機械的エネルギーを供給することによって均質化することが記載されている。
特開2009-155530号公報 特表2011-500934号公報
 しかしながら、引用文献1の場合、でん粉用可塑剤等の添加剤のブリードアウトによって成形体の表面がべとつき、表面平滑性が劣るという問題があった。また、引用文献2の場合、均質化の際に樹脂発熱が大きく、でん粉由来の臭気が強くなるという問題があった。
 本発明は、上記従来の問題を解決するため、生分解性のポリエステル系樹脂及びでん粉類物質を含み、臭気が抑制され、表面平滑性が良好な成形体が得られる熱可塑性樹脂組成物の製造方法、成形体の製造方法を提供する。
 また、本発明は、上記従来の問題を解決するため、でん粉類物質が生分解性のポリエステル系樹脂中に微分散されており、表面平滑性が良好なフィルムを提供する。
 本発明は、1以上の実施形態において、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物の製造方法であって、ポリエステル系樹脂(A)、でん粉類物質(B)及び水を含み、でん粉類物質(B)の固形分100重量部に対して水が25重量部以上55重量部以下である混合物を溶融混練する工程1と、工程1の後に、溶融混錬物を脱水することで、溶融混錬物の水の含有量を5重量%以下にする工程2を含むことを特徴とする熱可塑性樹脂組成物の製造方法に関する。
 本発明は、また、1以上の実施形態において、前記熱可塑性樹脂組成物の製造方法で製造された熱可塑性樹脂組成物を成形して成形体を得る工程を含む成形体の製造方法に関する。
 本発明は、また、1以上の実施形態において、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有し、でん粉類物質(B)の数平均粒子径が3μm以下であることを特徴とするフィルムに関する。
 本発明の熱可塑性樹脂組成物の製造方法によれば、生分解性のポリエステル系樹脂及びでん粉類物質を含み、臭気が抑制され、表面平滑性が良好な成形体が得られる熱可塑性樹脂組成物を得ることができる。
 また、本発明によれば、でん粉類物質が生分解性のポリエステル系樹脂中に微分散され、表面平滑性が良好なフィルムを提供することができる。
フィルム中のでん粉類物質(B)の粒子径を測定する方法を示す模式的説明図である。
 本発明の発明者は、上記課題を解決すべく鋭意検討した結果、生分解性のポリエステル系樹脂及びでん粉を含む熱可塑性樹脂組成物の作製において、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を溶融混錬する際に、所定量の水を添加して溶融混錬し、その後の工程において溶融混錬物を脱水することで、臭気が抑制され、平滑性が良好な成形体が得られる熱可塑性樹脂組成物を製造し得ることを見出した。
 (熱可塑性樹脂組成物及びその製造方法)
 熱可塑性樹脂組成物の製造方法において、まず、ポリエステル系樹脂(A)、でん粉類物質(B)及び水を含み、でん粉類物質(B)の固形分100重量部に対して水が25重量部以上55重量部以下である混合物を溶融混練する(工程1)。工程1において、ポリエステル系樹脂(A)、でん粉類物質(B)及び水を含む混合物が、でん粉類物質(B)の固形分100重量部に対して水を25重量部以上55重量部以下含むことにより、でん粉用可塑剤を必要最低限用いるか或いは用いることなく、かつ溶融混錬時のせん断力を必要以上に高めなくても(例えば、スクリュー回転数300rpmを超えなくても)、でん粉類物質(B)をポリエステル系樹脂(A)中に分散させることができ、ひいては、臭気が抑制され、表面平滑性が良好な成形体が得られる。前記混合物は、でん粉類物質(B)の固形分100重量部に対して水を28重量部以上50重量部以下含むことが好ましく、より好ましくは30重量部以上40重量部以下含む。市販のでん粉類物質(B)は、通常水を含んでおり、この場合、本発明の1以上の実施形態において、水は、でん粉類物質(B)由来の水と、添加した水を含む。そのため、前記混合物において、水はでん粉類物質(B)由来の水を含むことがある。なお、水を含まないでん粉類物質(B)を用いる場合は、本発明の1以上の実施形態において、水は、添加した水を意味する。でん粉類物質(B)の水の含有量(水分量)は、水分計にでん粉類物質のサンプルをのせ、160℃にて測定し、揮発分変化量が0.02%を下回ったときの揮発分比率を測定することで算出することができる。でん粉類物質(B)の水分量に基づいて、でん粉類物質(B)の固形分の量を算出することができる。
 工程1において、ポリエステル系樹脂(A)、でん粉類物質(B)及び水、並びに必要に応じて後述するその他の添加剤を混合した混合物を溶融混錬してもよく、予めでん粉類物質(B)、水(でん粉類物質(B)由来に水以外の添加した水)及び無機充填剤、必要に応じてその他の添加剤を混合した予備混合物を準備し、該予備混合物とポリエステル系樹脂(A)及び必要に応じてその他の添加剤とを混合した混合物を溶融混錬してもよい。
 ポリエステル系樹脂(A)は、生分解性を有するものであればよく、特に限定されないが、加水分解を抑制する観点から、脂肪族ジカルボン酸単位及び芳香族ジカルボン酸単位からなる群から選ばれる一種以上のジカルボン酸単位と、脂肪族ジオール単位及び芳香族ジオール単位からなる群から選ばれる一種以上のジオール単位を含む脂肪族芳香族ポリエステル系樹脂(A1)、並びに脂肪族ジカルボン酸単位と脂肪族ジオール単位を含む脂肪族ポリエステル系樹脂(A2)(但し、ポリヒドロキシブチレート系樹脂以外を除く。)からなる群から選ばれる1種以上であることが好ましい。
 脂肪族ジカルボン酸単位としては、脂肪族ジカルボン酸及び/又はエステルを形成するその誘導体が挙げられる。脂肪族ジカルボン酸単位としては、特に限定されないが、例えば、2以上30以下の炭素原子、好ましくは2以上18以下の炭素原子、より好ましくは4以上10以下の炭素原子を有するものが挙げられる。脂肪族ジカルボン酸単位は、線状であってもよく、分岐状であってもよい。
 脂肪族ジカルボン酸単位として、具体的には、シュウ酸、マロン酸、コハク酸、グルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、α-ケトグルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ウンデカン酸、ドデカン酸、ブラシル酸、フマル酸、2,2-ジメチルグルタル酸、スベリン酸(コルク酸)、ジグリコール酸、オキサロ酢酸、グルタミン酸、アスパラギン酸、イタコン酸及びマレイン酸等が挙げられる。
 前記脂肪族ジカルボン酸及び/又はエステルを形成するその誘導体は、1種を単独で用いてもよく、2種以上を併用してもよい。好ましくは、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ブラシル酸、及びエステルを形成するそれらの各々の誘導体からなる群から選ばれる一種以上を用いることができる。より好ましくは、コハク酸、アジピン酸、セバシン酸及びエステルを形成するそれらの各々の誘導体からなる群から選ばれる一種以上を用いることができる。コハク酸、アゼライン酸、セバシン酸及びブラシル酸は、再生可能な原料から得られるという利点を有する。
 芳香族ジカルボン酸単位としては、特に限定されないが、テレフタル酸及びエステルを形成するその誘導体からなる群から選ばれる一種以上を用いることが好ましい。エステルを形成するテレフタル酸の誘導体としては、例えばジメチルテレフタレート等が挙げられる。また、芳香族ジカルボン酸単位としては、複素環式芳香族ジカルボン酸を用いることもでき、例えば2,5-フランジカルボン酸等が挙げられる。
 脂肪族ジオール単位としては、特に限定されないが、例えば2以上12以下の炭素原子、好ましくは4以上6以下の炭素原子を有する分岐状又は線状のアルカンジオールを用いることができる。
 前記アルカンジオールとしては、特に限定されないが、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,4-ジメチル-2-エチルヘキサン-1,3-ジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-イソブチル-1,3-プロパンジオール、及び2,2,4-トリメチル-1,6-ヘキサンジオール等が挙げられる。
 脂肪族ジオール単位としては、特に限定されないが、例えば5以上10以下の炭素原子を有するシクロアルカンジオールを用いてもよい。 前記シクロアルカンジオールとしては、例えば、シクロペンタンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール及び2,2,4,4-テトラメチル-1,3-シクロブタンジオール等が挙げられる。
 芳香族ジオールとしては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス-(4-ヒドロキシフェニル)スルホン等が挙げられる。
 前記ジオール単位としては、1,4-ブタンジオール、1,3-プロパンジオール等が好ましい。特に、アジピン酸との組合せにおける1,4-ブタンジオールが好ましく、セバシン酸との組合せにおける1,3-プロパンジオールが好ましい。1,3-プロパンジオールは、再生可能な原料として得られるという利点を有する。
 脂肪族芳香族ポリエステル系樹脂(A1)としては、例えば、ポリブチレンアジペートテレフタレート(PBAT)系樹脂、ポリブチレンセバケートテレフタレート系樹脂、ポリブチレンサクシネートテレフタレート系樹脂等が挙げられる。ポリブチレンアジペートテレフタレート(PBAT)系樹脂としては、ポリブチレンアジペートテレフタレート(PBAT)、ポリブチレンアゼレートテレフタレート(PBAzT)等が挙げられる。特に、引張破断伸び等の物性や成形性に優れる点で、ポリブチレンアジペートテレフタレート(PBAT)を用いることが好ましい。
 ポリブチレンアジペートテレフタレート(PBAT)とは、1,4-ブタンジオールとアジピン酸とテレフタル酸のランダム共重合体のことをいい、なかでも、特表平10-508640号公報等に記載されているような、(a)主としてアジピン酸もしくはそのエステル形成性誘導体またはこれらの混合物35モル%以上95モル%以下、テレフタル酸もしくはそのエステル形成性誘導体またはこれらの混合物5モル%以上65モル%以下(個々のモノマーのモル%の合計は100モル%である)からなる混合物に、(b)ブタンジオールが含まれている混合物(ただし(a)と(b)とのモル比(a):(b)が0.4:1~1.5:1)の反応により得られるPBATが好ましい。PBATとしては、例えば、BASF社製「エコフレックス」(登録商標)等の市販品を用いることができる。
 脂肪族芳香族ポリエステル系樹脂(A1)は、特に限定されないが、例えば重量平均分子量が1000以上100000以下であることが好ましく、9000以上75000以下であることがより好ましく、10000以上50000以下であることがさらに好ましい。本発明の1以上の実施形態において、樹脂の重量平均分子量は、ガスパーミエーションクロマトグラフィー法(GPC)によってクロロホルムを溶媒として用いて測定されたポリスチレン換算重量平均分子量を意味する。
 脂肪族芳香族ポリエステル系樹脂(A1)は、特に限定されないが、例えば融点が60℃以上170℃以下であることが好ましく、80℃以上150℃以下であることがより好ましい。
 脂肪族ポリエステル系樹脂(A2)としては、例えば、ポリブチレンサクシネート(PBS)系樹脂、ポリカプロラクトン(PCL)系樹脂、及びポリヒドロキシアルカノエート系樹脂(ポリヒドロキシブチレート系樹脂を除く。)等が挙げられる。前記ポリブチレンサクシネート(PBS)系樹脂としては、例えば、ポリブチレンサクシネート(PBS)やポリブチレンサクシネートアジペート(PBSA)等が挙げられる。ポリヒドロキシブチレート系樹脂以外のポリヒドロキシアルカノエート系樹脂は、モノマー成分として3-ヒドロキシブチレートを含まないポリヒドロキシアルカノエート系樹脂を意味し、例えば、ポリグリコール酸、ポリ乳酸、ポリ-4-ヒドロキシブチレート系樹脂等を用いることができる。
 ポリ-4-ヒドロキシブチレート系樹脂としては、4-ヒドロキシブチレートのみを繰り返し単位とするポリ(4-ヒドロキシブチレート)であってもよいし、4-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体であってもよい。
 でん粉類物質(B)としては、でん粉及びその誘導体からなる群から選ばれる一種以上を用いることができる。でん粉としては、具体的には、トウモロコシ澱粉(コーンスターチとも称される。)、小麦粉澱粉、米澱粉、ソラマメ澱粉、緑豆澱粉、小豆澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉等が挙げられる。でん粉の誘導体としては、化工でん粉が挙げられ、例えば、でん粉の遊離OH基が少なくとも部分的に置換された化工でん粉を好適に用いることができる。具体的には、例えば、エーテル基及び/又はエステル基で修飾された化工でん粉、疎水化でん粉、親水化でん粉、ヒドロキシプロピルでん粉、カルボキシメチルでん粉等が挙げられる。
 次に、工程2において、溶融混錬物を脱水することで、溶融混錬物の水の含有量を5重量%以下にする。溶融混錬物の水の含有量が5重量%を超えると、ストランドを引くことができず、熱可塑性樹脂組成物のペレットを得ることができない。前記溶融混錬物の水の含有量は4.0重量%以下であることが好ましく、3.0重量%以下であることがより好ましく、2.0重量%以下であることがさらに好ましく、1.0重量%以下であることがさらにより好ましい。溶融混錬物の水の含有量(水分量)は、水分計にサンプルをのせ、160℃にて測定し、揮発分変化量が0.02%を下回ったときの揮発分比率を測定することで、算出することができる。
 本発明の1以上の実施形態の熱可塑性樹脂組成物の製造方法において、工程2の後に、工程2で得られた溶融混錬物にさらに脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)からなる群から選ばれる一種以上を加えて溶融混練する工程3を含むことが好ましい。工程2の後に、脂肪族ポリエステル系樹脂(A2)及び/又はポリヒドロキシブチレート系樹脂(C)を加えることにより、でん粉類物質由来の臭気をさらに改善することができる。なお、脂肪族ポリエステル系樹脂(A2)及び/又はポリヒドロキシブチレート系樹脂(C)は、工程1において、混合物に含ませることも可能であるが、脂肪族ポリエステル系樹脂(A2)及び/又はポリヒドロキシブチレート系樹脂(C)の加水分解を抑制することや熱可塑性樹脂組成物の臭気をさらに改善する観点から、工程2の後に、工程2で得られた溶融混錬物に加えることが好ましい。特に、ポリヒドロキシブチレート系樹脂(C)は、工程2の後に溶融混錬物に加えることが好ましい。
 ポリヒドロキシブチレート系樹脂(C)は、3-ヒドロキシブチレートのみを繰り返し単位とするポリ(3-ヒドロキシブチレート)であってもよいし、3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体であってもよい。また、ポリヒドロキシブチレート系樹脂(C)は、単独重合体と1種以上の共重合体との混合物であってもよく、2種以上の共重合体の混合物であってもよい。
 ポリヒドロキシブチレート系樹脂(C)は、成形性の観点から、重量平均分子量が30万以上80万以下であることが好ましく、35万以上75万以下であることがより好ましく、40万以上70万以下がさらに好ましい。例えば、インフレーション成形の場合、重量平均分子量が30万以上であると、溶融張力が不足せず、バルーンが安定しやすく、成形加工幅が狭くならない。また、重量平均分子量が80万以下であると、吐出量を上げられやすく、フローマーク等が発生することもない。
 ポリヒドロキシブチレート系樹脂(C)は、成形加工幅の観点から、3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体があることが好ましい。前記共重合体としては、例えば、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバリレート)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタデカノエート)等が挙げられる。ポリ(3-ヒドロキシブチレート)は、融点と分解温度は180℃前後であり、樹脂の溶融とともに分解も進んでおり、成形加工幅が狭く成形しにくい傾向があるが、共重合体とすることで、融点が低下する。例えば、3-ヒドロキシヘキサノエートを6mol%含むポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)の融点は145℃前後となり、145~180℃と成形加工幅を広くすることができる。
 3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体は、成形加工幅の観点から、他のヒドロキシアルカノエートを2mol%以上15mol%以下含むことが好ましく、3mol%以上12mol%以下含むことがより好ましく、結晶化速度を早くし、生産性を上げるという観点から、3mol%以上9mol%以下含むことがさらに好ましく、3mol%以上6mol%以下含むことが特に好ましい。
 ポリヒドロキシブチレート系樹脂(C)は、成形性及び成形加工幅の観点から、3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体であり、他のヒドロキシアルカノエートを2mol%以上15mol%以下含み、重量平均分子量が30万以上80万以下であることが好ましく、他のヒドロキシアルカノエートを3mol%以上12mol%以下含み、重量平均分子量が35万以上75万以下であることがより好ましく、他のヒドロキシアルカノエートを3mol%以上12mol%以下含み、重量平均分子量が40万以上70万以下であることがさらに好ましい。
 ポリヒドロキシブチレート系樹脂(C)は、工業的に生産が容易であり、低温での成形加工性に優れる観点から、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)であることが好ましい。ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)は、柔軟性と強度のバランスの観点から、3-ヒドロキシブチレート単位を85mol%以上98mol%以下と、3-ヒドロキシヘキサノエート単位を2mol%以上15mol%以下含むことが好ましく、3-ヒドロキシブチレート単位を88mol%以上97mol%以下と、3-ヒドロキシヘキサノエート単位を3mol%以上12mol%以下含むことがより好ましい。ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)は、生産性が高い観点から、3-ヒドロキシブチレート単位を91mol%以上97mol%以下と、3-ヒドロキシヘキサノエート単位を3mol%以上9mol%以下含むことがさらに好ましく、3-ヒドロキシブチレート単位を94mol%以上97mol%以下と、3-ヒドロキシヘキサノエート単位を3mol%以上6mol%以下含むことが特に好ましい。ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)は、成形加工性の観点から、重量平均分子量が30万以上80万以下であることが好ましく、35万以上75万以下であることがより好ましく、45万以上70万以下であることがさらに好ましい。
 ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)としては、例えば、株式会社カネカ製の「カネカ生分解性ポリマーPHBH(登録商標)」等の市販品を用いることができる。例えば、カネカ生分解性ポリマーPHBHのグレードとしては、X131N、X131A、X331N、X337N、X151A、X151N、X157N等が挙げられる。
 ポリヒドロキシブチレート系樹脂(C)は、結晶化速度を向上させ、溶融加工性を改善し、生産性を向上させる観点から、国際公開公報2015/146194号に記載されている異なる融点を有するポリヒドロキシブチレート系樹脂を2種類以上混合して用いることが好ましい。また、国際公開公報2015/146195号に記載されているPHAの製造方法のように融点の異なるPHA混合品を細胞内で同時生産し、得られたPHA混合品を用いてもよい。該製造方法を用いたカネカ生分解性ポリマーPHBHのグレード例としてはM101、M301等が挙げられる。
 工程3の後に、必要に応じて、工程3で得られた溶融混錬物を脱水する工程を含んでもよい。最終的に得られる溶融混錬物における水の含有量を5重量%以下にする必要がある。これにより、得られる熱可塑性樹脂組成物のペレットの水の含有量も5重量%以下となる。
 本発明の1以上の実施態様の製造方法において、溶融混錬は、特に限定されず、一般的な混練方法で行うことができる。例えば、上記各成分を添加し、押出機、ニーダー、バンバリーミキサー等の溶融混練装置を用いて溶融混練することができる。また、溶融混練する前に、溶融させない状態で、例えば、スーパーミキサー、ヘンシェルミキサー、フローター等を用いて、各成分を混合させた後、溶融混練することもできる。溶融混錬後に、溶融混錬物(熱可塑性樹脂組成物)をストランド状に押し出してからカットして、円柱状、楕円柱状、球状、立方体状、直方体状等の粒子形状の熱可塑性樹脂組成物のペレットを得ることができる。
 溶融混練に用いる押出機としては、特に限定されず、単軸押出機であってもよく、二軸押出機であってもよいが、汎用性及び分散性の観点から、二軸押出機が好ましい。二軸押出機は、1個以上のシリンダー(バレルとも称される。)と、シリンダーの内部に配置された2本のスクリューと、シリンダーに設けられた1箇所以上の原料供給口と、シリンダーに設けられた1箇所以上のベント部を有することが好ましい。原料供給口は、メインフィード部と、メインフィード部より押出下流方向側に設けられたサイドフィード部を有してもよい。メインフィード部にて、ポリエステル系樹脂(A)、水及びでん粉類物質(B)、或いは、ポリエステル系樹脂(A)、及び水とでん粉類物質(B)のプレブレンドを供給し、サイドフィード部にて、ポリヒドロキシブチレート系樹脂(C)を供給することができる。また、ポリエステル系樹脂(A)の中、脂肪族芳香族ポリエステル系樹脂(A1)はメインフィード部にて供給し、脂肪族ポリエステル系樹脂(A2)はサイドフィード部にて供給してもよい。
 本発明の1以上の実施態様の製造方法において、工程3を含む場合、工程1、工程2及び工程3は、同じ溶融混練装置にて行ってもよい。或いは、本発明の1以上の実施態様の製造方法において、工程3を、工程1及び2を行う溶融混練装置とは異なる他の溶融混練装置で行ってもよい。例えば、ポリエステル系樹脂(A)、水及びでん粉類物質(B)、或いは、ポリエステル系樹脂(A)、及び水とでん粉類物質(B)のプレブレンドを所定の溶融混練設備に供給し、工程1、工程2を経て得られた溶融混練物を冷却、ペレット化し、更に、工程3にて、別の溶融混練設備を用いて、溶融混練物のペレットを、ポリヒドロキシブチレート系樹脂(C)、及び脂肪族ポリエステル系樹脂(A2)と更に溶融混合しても良い。
 熱可塑性樹脂組成物を成形してなる成形体の表面平滑性をより高める観点から、溶融混錬に用いる押出機のメインフィード部から供給されるポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量を100重量%としたときに、ポリエステル系樹脂(A)は50重量%以上99重量%以下であり、でん粉類物質(B)は1重量%以上50重量%以下であることが好ましく、ポリエステル系樹脂(A)は55重量%以上90重量%以下であり、でん粉類物質(B)は10重量%以上45重量%以下であることがより好ましく、ポリエステル系樹脂(A)は60重量%以上80重量%以下であり、でん粉類物質(B)は20重量%以上40重量%以下であることがさらに好ましい。
 熱可塑性樹脂組成物を成形してなる成形体の表面平滑性をより高め、かつ焼けたような臭気をより効果的に抑える観点から、溶融混錬に用いる押出機のメインフィード部から供給されるポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量をMとし、熱可塑性樹脂組成物の溶融混錬に用いる押出機のサイドフィード部から供給される脂肪族ポリエステル系樹脂(A2)とポリヒドロキシブチレート系樹脂(C)の合計重量をSとし、MとSの合計を100重量%とした場合、Mは30重量%以上85重量%以下であり、Sは15重量%以上70重量%以下であることが好ましく、Mは40重量%以上80重量%以下であり、Sは20重量%以上60重量%以下であることがより好ましく、Mは60重量%以上80重量%以下であり、Sは20重量%以上40重量%以下であることがさらに好ましい。
 メインフィード部は、通常、スクリュー根本に配置される。メインフィード部のスクリュー構成は一般的なフルフライトスクリューを用いることができる。低スクリュー回転数で高吐出量とするために、一条フルフライトスクリューを用いてもよい。メインフィード部にて原料を供給した後、メインフィード部の押出方向下流において、ニーディングゾーンに入る前に原料を予熱することができる(以下において、予熱ゾーンとも記す)。予熱工程では、ポリエステル系樹脂(A)を適切に予熱することや、適切な水分を含むでん粉類物質(B)を予熱及び糊化することができる。でん粉物質の糊化を十分に進める観点から、スクリューリードが小さいフルフライト、例えばスクリューリードがスクリュー直径の0.75倍以下のフルフライトを使用することが好ましく、0.5倍以下のフルフライトを使用することがより好ましい。また、でん粉類物質を均質に糊化させる観点から、逆戻の搬送能力を持つ左ネジレのフルフライトスクリューを1か所以上用いることもできる。同様の目的から、部分的にバレルとシールリング表面の隙間が広いシールリング、トーピード部を設けたり、トーピード部とフィン部を交互に設けたダルメージ構造、送りのニーディングエレメント、直交のニーディングエレメント、逆戻の搬送能力を持つニーディングエレメントを導入したりして、滞留時間を長くすることでより均質な糊化状態を得ることができる。予熱ゾーンにおいて、バレル温度は、特に限定されないが、例えば130℃以下であることが好ましい。バレル温度を130℃以下に設定すると、水分が沸騰してメインフィード部に逆流することがなく、糊化に必要な水分が減少せず、十分な糊化状態が得られやすく、成形体の表面平滑性を高めやすい。
 ポリエステル樹脂(A)と適切な水分量を含むでん粉類物質(B)を溶融混合する工程1において、バレル温度は、高いせん断応力をかけるために、ポリエステル系樹脂(A)の融点をTmとした場合、「Tm-40℃」~「Tm+40℃」の範囲内に設定することが好ましい。より好ましくは「Tm-30℃」~「Tm+30℃」、さらに好ましくは「Tm-30℃」~「Tm+20℃」、特に好ましくは「Tm-20℃」~「Tm+10℃」である。本発明における融点は示差走査熱量測定法を用いて求められる。工程1のバレル温度が「Tm-40℃」以上であると、成形負荷が大きくならず、吐出量を上げられやすく、生産性を高めやすい。また、工程1のバレル設定温度が「Tm+40℃」以下であると、成形品の表面平滑性を高めやすい。
 また、溶融混練は、脂肪族ポリエステル系樹脂を用いる場合は、脂肪族ポリエステル系樹脂の熱分解を抑制する観点から、シリンダー温度を180℃以下に設定して行うことが好ましい。シリンダー部においては、溶融樹脂温度を更に抑え、熱分解を抑制する観点から、160℃以下であってもよい。高成形負荷に耐えられる押出機であれば、さらにシリンダー温度を下げることができ、140℃以下、更には、120℃以下にすることができる。
 溶融混練時のスクリュー回転数は、特に限定されないが、例えば、樹脂の熱分解を抑制しつつ、溶融混練可能な観点から、吐出量7kg/hrにてスクリュー径27mmの押出機を用いる場合、50rpm以上250rpm以下であることが好ましく、70rpm以上180rpm以下であることがより好ましく、90rpm以上160rpm以下であることがさらに好ましい。吐出量を上げる場合は、「吐出量/スクリュー回転数」を一定にしたまま、スクリュー回転数を上げることで達成される。スクリュー直径の大きな押出機を用いる場合は、最適スクリュー回転数は高い側にシフトする場合がある。
 溶融混練時の溶融混練物の吐出量は、特に限定されないが、例えば、十分なせん断熱エネルギーを与え、表面平滑性の優れた成形品を得やすい観点から、3kg/hr以上30kg/hr以下であってもよく、5kg/hr以上20kg/hr以下であってもよく、7kg/hr以上15kg/hr以下であってもよい。より大きなスクリュー径を用いる場合の吐出量は一般的な理論式、例えば吐出量はスクリュー直径の2~3乗則と良好な対応関係がある。例えば、2.5乗則を用いて、58mmの押出機に適用した場合、(69mm)2.5/(27mm)2.5=10.44となり、27mmの押出機の吐出量の10.44倍前後または以上で成形することが可能である。
 溶融混錬物の脱水は、例えば、シリンダーに設けた1箇所以上の脱水真空ベント部にて行うことができる。
 ニーダー、バンバリーミキサーのようなバッチ式ミキサーを用いる場合、工程1は、加圧下で水が沸騰、揮発しない閉鎖系で溶融混合を行い、その後、圧力を開放、脱水する工程2を経て押出機を用いた場合と同様に熱可塑性樹脂組成物を得ることができる。その後、必要に応じて工程3へと進んでも良い。工程2、または工程3の後、得られた熱可塑性樹脂組成物の溶融体を一般的な方法、例えば、2軸テーパー押出機、2軸押出機、1軸押出機、フィーダールーダー等により、ペレット化することができる。
 前記熱可塑性樹脂組成物は、表面平滑性及び生分解性のバランスを高める観点から、ポリエステル系樹脂(A)及びでん粉類物質(B)の合計を100重量%としたときに、ポリエステル系樹脂(A)50重量%以上99重量%以下、でん粉類物質(B)1重量%以上50重量%以下を含むことが好ましく、ポリエステル系樹脂(A)を55重量%以上95重量%以下、でん粉類物質(B)を5重量%以上45重量%以下含むことがより好ましく、さらに好ましくはポリエステル系樹脂(A)を60重量%以上90重量%以下、でん粉類物質(B)を10重量%以上40重量%以下含むことが好ましく、特に好ましくはポリエステル系樹脂(A)を60重量%以上80重量%以下、でん粉類物質(B)を20重量%以上40重量%以下含む。ポリエステル系樹脂(A)が99重量%以下、でん粉類物質(B)が1重量%以上であると、成形体の生分解性が良好であり、ポリエステル系樹脂(A)が50重量%以上、でん粉類物質(B)が50重量%以下であると、成形体の表面平滑性が向上しやすい。上述したとおり、でん粉類物質(B)は、通常水を含んでおり、本発明の1以上の実施形態において、熱可塑性樹脂組成物におけるでん粉類物質(B)の量は、水分量を除いた固形分の量を意味する。なお、水を含まないでん粉類物質を用いる場合は、でん粉類物質の固形分の量はでん粉類物質の量と同じとなる。
 前記熱可塑性樹脂組成物は、溶融混錬性、生分解性、機械特性及び成形性を高度にバランスさせる観点から、脂肪族芳香族ポリエステル系樹脂(A1)、脂肪族ポリエステル系樹脂(A2)、でん粉類物質(B)及びポリヒドロキシブチレート系樹脂(C)の合計を100重量%としたときに、脂肪族芳香族ポリエステル系樹脂(A1)を50重量%以上99重量%以下、でん粉類物質(B)を1重量%以上50重量%以下、脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)を合計で0重量%以上49重量%以下含むことが好ましく、より好ましくは脂肪族芳香族ポリエステル系樹脂(A1)を50重量%以上90重量%以下、でん粉類物質(B)を5重量%以上45重量%以下、脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)を合計で5重量%以上45重量%以下含み、さらに好ましくは脂肪族芳香族ポリエステル系樹脂(A1)を50重量%以上80重量%以下、でん粉類物質(B)を10重量%以上40重量%以下、脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)を合計で10重量%以上40重量%以下含み、さらに好ましくは脂肪族芳香族ポリエステル系樹脂(A1)を50重量%以上70重量%以下、でん粉類物質(B)を15重量%以上40重量%以下、脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)を合計で15重量%以上30重量%以下含む。
 前記熱可塑性樹脂組成物は、本発明の効果を阻害しない範囲において、必要に応じて、ポリ酢酸ビニル、ポリエチレン酢酸ビニル共重合体、ポリビニルアルコール、ポリエチレンビニルアルコール系樹脂、セルロース系樹脂等のその他の樹脂、天然ゴムなどのゴム類、並びに樹脂用可塑剤及びでん粉用可塑剤等の可塑剤類、無機充填剤及び有機充填剤等の充填剤類、相溶化剤、結晶核剤、酸化防止剤、アンチブロッキング剤、紫外線吸収剤、耐光剤、酸化防止剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、顔料、滑剤、分散助剤、界面活性剤、スリップ剤、加水分解防止剤及び末端封止剤等のその他の添加剤を含んでもよい。その他の添加剤は、1種のみが含まれていてもよいし、2種以上が含まれていてもよい。例えば、熱可塑性樹脂組成物を100重量%とした場合、その他の樹脂は20重量%以下、可塑剤類は5重量%以下、充填剤類は10重量%以下で含まれていてもよい。可塑剤類及び充填剤類の除くその他の添加剤は、例えば、樹脂成分(ポリエステル系樹脂(A)及びでん粉類物質(B)、或いはポリエステル系樹脂(A)、でん粉類物質(B)及びポリヒドロキシブチレート系樹脂(C))の合計量を100重量部とした場合、5重量部以下用いることができる。
 前記でん粉用可塑剤としては、でん粉類物質と混合されて、その粘度を下げるものであれば特に限定はないが、アルコール類が好ましく、2価以上のアルコール類が特に好ましい。でん粉用可塑剤の沸点は特に限定はないが、120℃以上が好ましく、160℃以上がさらに好ましく、200℃以上が特に好ましい。具体的には、グリセリン、グリセリン二量体、グリセリン三量体、グリセリン四量体、ポリグリセリン、ソルビトール、ペンタエリスリトール、プロピレングリコール及びエチレングリコールからなる群より選ばれる少なくとも1種が、でん粉類物質との親和性が高く、熱可塑性樹脂との混合時に熱可塑性樹脂への移行が少ないこと、成形体とした時のブリードアウトが少ないこと等の点で好ましい。しかし、このような可塑剤は、分子量が低いことに加え、水、アルコール類となじみやすい物質であり、食品接触用途で要求される高温下、水中、20%エタノール中での溶出量が規定値を超える場合が多く、樹脂とでん粉類物質の合計を100重量部とした場合、添加量が好ましくは3重量部、より好ましくは2重量部、さらに好ましくは1重量部、特に好ましくは添加しない。
 前記結晶核剤としては、特に限定されず、例えば、公知の物質を用いることができる。前記結晶核剤としては、ペンタエリスリトール、窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム及び金属リン酸塩などの無機物;エリスリトール、ガラクチトール、マンニトール及びアラビトールのような天然物由来の糖アルコール化合物;ポリビニルアルコール、キチン、キトサン、ポリエチレンオキシド、脂肪族カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール、脂肪族カルボン酸エステル、ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート及びジブチルセバケートのようなジカルボン酸誘導体;インジゴ、キナクリドン及びキナクリドンマゼンタのような官能基C=Oと、NH、SおよびOから選ばれる官能基とを分子内に有する環状化合物;ビスベンジリデンソルビトールやビス(p-メチルベンジリデン)ソルビトールのようなソルビトール系誘導体;ピリジン、トリアジン及びイミダゾールのような窒素含有ヘテロ芳香族核を含む化合物;リン酸エステル化合物、高級脂肪酸のビスアミドおよび高級脂肪酸の金属塩;分岐状ポリ乳酸などが例示できる。結晶化速度を高度に高める観点から、ペンタエリスリトールが好ましい。これらの結晶核剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
 前記滑剤としては、脂肪族カルボン酸の金属塩及び脂肪酸アミドからなる群から選ばれる1種以上を用いてもよく、脂肪酸アミドが好ましく、前記脂肪酸アミドとしては、具体的には、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、ステアリン酸アミド、パルミチン酸アミド、N-ステアリルベヘン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド、エチレンビスカプリン酸アミド、p-フェニレンビスステアリン酸アミド、エチレンジアミンとステアリン酸とセバシン酸の重縮合物等が挙げられる。中でも、特にエルカ酸アミドを用いることが好ましい。エルカ酸アミドを用いることにより、熱可塑性樹脂組成物やその成形体と、装置等との間の摩擦をより抑制することができ、フィルムの口開き性をより向上させることができる。
 前記無機充填剤としては、シリカ、タルク、炭酸カルシウム、硫酸バリウム、珪酸マグネシウム等の無機粒子を用いることができる。前記シリカは、分散性の観点から湿式シリカであることが好ましい。
 前記顔料としては一般的に使用されているものが使用できる。フィルム、袋系用途においては、色を付けるだけでなく、中身を見えなくする隠蔽性が要求される用途において好適である。
 前記その他の添加剤は、工程1で熱可塑性樹脂組成物に含ませてもよく、工程3で熱可塑性樹脂組成物に含ませてもよい。
 (成形体及びその製造方法)
 前記熱可塑性樹脂組成物は、優れた生分解性と機械特性を有しているため、農業、漁業、林業、園芸、医学、衛生品、食品産業、衣料、非衣料、包装、自動車、建材、その他の分野に好適に用いることができ、例えば、植生ネット、園芸ネット、防虫ネット、幼齢木ネット、誘因紐、防風網などの繊維製品、レジ袋、ショッピングバッグ、フルーツアンドベジタブルバッグ、ゴム袋、コンポストバッグ、農業用マルチフィルム、林業用燻蒸シート、フラットヤーン等を含む結束テープ、植生マット、防草袋、防草ネット、防草シート、養生シート、法面保護シート、飛灰抑えシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、トンネル用フィルム、防鳥シート、育苗用ポット、種紐テープ、発芽シート、ハウス内張シート、防根シート、プリントラミネート、肥料袋、飼料袋、試料袋、土嚢、獣害防止ネット、医療用フィルム、ラップフィルム、紙ラミ、シュリンクフィルム、シュリンクラベル、窓付き封筒、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバッグ、ラッピングフィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカート、水切り袋、植木の根巻フィルム、おむつのバックシート、包装用シート、フィルム製品、ブリスターパッケージ、カップ、フタ等の用途に好適な形状に成形された成形体として用いることができる。中でも、フィルム状や袋状の成形体が好ましい。
 前記熱可塑性樹脂組成物にて成形体を製造する方法としては、一般的な成形方法を用いることができる、例えばブロー成形方法、射出成形方法、押出成形方法等が挙げられる。
 押出成形方法としては、フィルム状や袋状の成形体を得ることができるインフレーション成形方法やフィルム(シート)を得ることができるTダイ成形等が挙げられる。
 前記熱可塑性樹脂組成物は、また、一般的な製造方法で、単層成形又は多層成形することができる。例えば、本発明の熱可塑性樹脂組成物を外層に用い、生分解性及びバリア性を有するポリビニルアルコール及びポリエチレンビニルアルコール等を内層に用いることで、生分解性とバリア性を高めることができる。また、固化の早い生分解性樹脂、例えばポリブチレンサクシネート及びポリ乳酸等を外層に用い、本発明の熱可塑性樹脂組成物を内層に用いることで、生分解性と生産性のバランスを向上させることができる。
 成形体がフィルムの場合、フィルム厚みは、特に限定されないが、例えば、5μm以上500μm以下であってもよく、10μm以上300μm以下であってもよく、15μm以上150μm以下であってもよく、10μm以上120μm以下であってもよい。フィルムは、筒状であってもよい。
 (フィルム)
 本発明の発明者は、生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有するフィルムにおいて、でん粉類物質(B)の数平均粒子径を3μm以下にすることで、でん粉類物質(B)が生分解性のポリエステル系樹脂(A)中に微分散されて機械的強度が良好になるとともに、平滑性も良好になることを見出した。特に、上述した本発明の1以上の実施形態で得られた熱可塑性樹脂組成物を含有するフィルムにおいて、でん粉類物質(B)の数平均粒子径を3μm以下になりやすいことを見出した。また、上述した本発明の1以上の実施形態で得られた熱可塑性樹脂組成物を含有するフィルムは、でん粉類物質(B)由来の臭気が抑制されている。
 本発明の1以上の実施形態において、フィルム中のでん粉類物質(B)の数平均粒子径は、フィルムの厚み方向の略中央部分の超薄切片(厚み80~100nm)を切り出し、透過型電子顕微鏡を用い、フィルムの厚み方向と一致する方向(フィルム表面に対して垂直な方向)を観察方向とし、100個のでん粉類物質(B)の粒子をランダムに抽出し、個々のでん粉類物質(B)の粒子径を測定し、それに基づいて数平均粒子径を算出した。球状粒子の場合、粒子の寸法は横断面から生じる二次元形状に対応する円の直径を粒子径とした。また、非球形粒子の場合、粒子径(d)は以下の式(1)により計算した。d1及びd2は粒子が内接又は近接しうる楕円の内径及び外径である。
 [式1]
               d=√(d1×d2)
 前記フィルムは、でん粉類物質(B)の数平均粒子径が2.5μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.5μm以下であることがさらに好ましく、1.0μm以下であることがさらにより好ましく、0.50μm以下であることが特に好ましい。これにより、でん粉類物質(B)の微分散性が高まり、機械的強度も高まりやすい。前記フィルムにおいて、でん粉類物質(B)の数平均粒子径の下限は低いほどよく、特に限定されないが、例えば、生産性の観点から、5μm以上であってもよく、10μm以上であってもよい。
 前記フィルムは、機械的強度、特に引裂強度が高いという観点から、JIS P 8116に準じて測定した引裂強度は150N/mm以上であることが好ましく、160N/mm以上であることがより好ましく、170N/mm以上であることがさらに好ましく、180N/mm以上であることが特に好ましい。前記フィルムにおいて、引裂強度の上限は高いほどよく、特に限定されないが、例えば、生産性の観点から、500N/mm以下であってもよく、300N/mm以下であってもよい。
 前記フィルムの厚みは、特に限定されないが、例えば、5μm以上500μm以下であってもよく、10μm以上300μm以下であってもよく、15μm以上150μm以下であってもよく、10μm以上120μm以下であってもよい。フィルムは、筒状であってもよい。
 前記フィルムは、単層フィルムでもよく、2以上の層を有する積層フィルムでもよい。積層フィルムの場合、全ての層に生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有させ、でん粉類物質(B)の数平均粒子径を3μm以下にしてもよい。或いは、外層のみに生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有させ、でん粉類物質(B)の数平均粒子径を3μm以下にしてもよい。この場合、内層には生分解性及びバリア性を有するポリビニルアルコール及びポリエチレンビニルアルコール等を用いることで、生分解性とバリア性を高めることができる。
 前記フィルムは、特に限定されないが、例えば上述した本発明の1以上の実施形態の熱可塑性樹脂組成物を用いることで好適に作製することができる。成形方法は、特に限定されず、インフレーション成形やTダイ成形等の公知のフィルム成形方法を用いることができる。
 以下に実施例と比較例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 (使用した原料)
 下記表1に使用した原料の詳細を記載した。
Figure JPOXMLDOC01-appb-T000001
 以下、実施例及び比較例で用いた測定・評価方法を説明する。
 (でん粉類物質の水分量)
 加熱乾燥式水分計(株式会社エー・アンド・デイ製、型番「MX-50」)にでん粉類物質のサンプルをのせ、160℃にて測定し、揮発分変化量が0.02%を下回ったときの揮発分比率を測定し、でん粉類物質の水分量(水の含有量)を算出した。
 (溶融混錬物の水分量)
 二軸押出機ダイ出口のストランドから1.0~1.5gのサンプルを取得し、30秒後に加熱乾燥式水分計(株式会社エー・アンド・デイ製、型番「MX-50」)にのせ、160℃にて測定し、揮発分変化量が0.02%を下回ったときの揮発分比率を測定し、溶融混錬物の水分量(水の含有量)を算出した。
 (フィルム厚み)
 フィルムの厚みは、樹脂流れ方向(以下において、MD方向とも記す)のフィルムの中心を50mm間隔で400mmの長さまで厚み計にて測定し算術平均で算出した。
 (フィルムの表面平滑性)
 フィルム(長さ1m)の表面を手の平でなぞり凹凸を確認し、以下の4段階の基準に基づいてフィルムの表面平滑性を評価した。
A:凹凸がなく、実用上問題ない
B:凹凸はあるが、実用上問題はない
C:凸凹があり、実用上問題がある
D:凸凹が多数あり、実用上問題がある
 (数平均粒子径)
 図1に示すように、フィルム1の厚み方向2に対して略中央部分(面)3における超薄切片4(厚み80~100nm)を切り出し、透過型電子顕微鏡を用い、フィルム1の厚み方向2と一致する方向(フィルム1の表面に対して垂直な方向)を観察方向5とし、100個のでん粉類物質の粒子をランダムに抽出し、個々のでん粉類物質の粒子径を測定した後、それに基づいて数平均粒子径を算出した。球状粒子の場合、粒子の寸法は横断面から生じる二次元形状に対応する円の直径を粒子径とした。また、非球形粒子の場合、粒子径(d)は以下の式(1)により計算した。d1及びd2は粒子が内接又は近接しうる楕円の内径及び外径である。
[式1]
               d=√(d1×d2)
 (臭気)
 成形直後のフィルムを鼻にあて、でん粉類物質の焼けたにおいを確認し、以下の4段階の基準に基づいて臭気を評価した。
A:焼けた臭気は感じられない
B:弱い焼けた臭気がある
C:焼けた臭気がある
D:強く焼けた臭気がある
 (引裂強度)
 フィルムを23℃、相対湿度50%雰囲気下にて1週間保存した後、JIS P 8116に規定された標準エルメンドルフ引裂試験機に準拠する機能、構造を有する軽荷重引裂度試験機(熊谷理機工業株式会社製:NO.2037特殊仕様機)によってMD方向について測定される値をフィルムの厚さで除し、フィルムの引裂強度(エルメンドルフ引裂強度)とした。
 <実施例1>
 (二軸押出機によるコンパウンド化)
 東芝機械製TEM26SS(L/D=60)を表2に示すスクリュー構成にし、シリンダー1にメインフィードユニット1を取り付け、シリンダー2にメインフィードユニット2を取り付け、シリンダー9に脱水ベンドユニットを取り付け、バレル温度条件Temp1にて、PBATを4.66kg/hrにて、及びコーンスターチ(水分を12.3重量%含む。)を2.67kg/hrにてシリンダー1に設けたメインフィード部1から供給し、水(イオン交換水、以下同様。)を0.28kg/hrにてシリンダー2に設けたメインフィード部2から供給し、スクリュー回転数250rpmでコンパウンド化し、25℃の水で満たした水槽に通してストランドを固化し、ペレタイザーで裁断することにより、熱可塑性樹脂組成物のペレットを得た。溶融混錬物の水の含有量は0.4重量%であった。なお、コンパウンド化中、溶融混錬物の脱水は、シリンダー9に設けた脱水真空ベントにて行った。
 (Tダイ成形によるフィルム化)
 上記で得られた熱可塑性樹脂組成物のペレットを除湿乾燥機にて60℃で24時間乾燥させたペレットを用いた。東洋精機製ラボプラストミル3S150に一軸押出機D2020型、TダイT150C型(リップ幅250μm)、フィルム引取装置FT2W20型(ロール温度30℃、引取速度2m)を用いて、成形温度条件C1/C2/C3/ダイ=160℃/170℃/180℃/180℃にて厚さ99μmのフィルムを得た。
 <実施例2>
 水の供給量を0.40kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。溶融混錬物の水の含有量は0.5重量%であった。
 <実施例3>
 水の供給量を0.53kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。溶融混錬物の水の含有量は0.6重量%であった。
 <実施例4>
 水の供給量を0.63kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。溶融混錬物の水の含有量は0.7重量%であった。
 <実施例5>
 水の供給量を0.81kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。溶融混錬物の水の含有量は0.8重量%であった。
 <比較例1>
 水の供給量を0kg/hrに変更した、すなわち水を供給しない以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。溶融混錬物の水の含有量は0.2重量%であった。
 <比較例2>
 水の供給量を0.18kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。溶融混錬物の水の含有量は0.2重量%であった。
 <比較例3>
 水の供給量を0.22kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。溶融混錬物の水の含有量は0.3重量%であった。
 <比較例4>
 水の供給量を1.02kg/hrに変更した以外は、実施例1と同様にして熱可塑性樹脂組成物のペレット及びフィルム(厚さ99μm)を作製した。溶融混錬物の水の含有量は0.9重量%であった。
 <実施例6>
 (でん粉プレブレンドの作製)
 株式会社カワタ製75Lスーパーミキサーを用いて、事前にでん粉プレブレンドを作製した。具体的には、コーンスターチ(水分を12.3重量%含む)8.01kgをスーパーミキサーに仕込み、回転数200rpmの攪拌下で1.2kgの水を3分かけて少しずつ添加した。一旦、攪拌を停止し、シリカを0.054kg添加し、回転数200rpmでさらに1分間混合し、水の含有量が23.7重量%であるでん粉プレブレンドを得た(でん粉プレブレンドの作製量は、コンパウンド化3時間相当の量とした)。
 (二軸押出機によるコンパウンド化)
 東芝機械製TEM26SS(L/D=60)を表2に示すスクリュー構成にし、シリンダー1にメインフィードユニット1を取り付け、シリンダー2にメインフィードユニット2を取り付け、バレル温度条件Temp1にて、PBATを4.66kg/hrにてシリンダー1に設けたメインフィード部1から供給し、でん粉プレブレンドを3.088kg/hrにてシリンダー2に設けたメインフィード部2から供給し、スクリュー回転数250rpmでコンパウンド化し、25℃の水で満たした水槽に通してストランドを固化し、ペレタイザーで裁断することにより、熱可塑性樹脂組成物のペレットを得た。溶融混錬物の水の含有量は0.5重量%であった。なお、コンパウンド化工程中、溶融混錬物の脱水は、シリンダー9に設けた脱水真空ベントにて行った。
 (Tダイ成形によるフィルム化)
 実施例1と同様にして厚さ99μmのフィルムを得た。
 <実施例7>
 二軸押出機によるコンパウンド化においてスクリュー回転数を190rpmに変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。溶融混錬物の水の含有量は0.5重量%であった。
 <実施例8>
 二軸押出機によるコンパウンド化においてスクリュー回転数を135rpmに変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。溶融混錬物の水の含有量は0.5重量%であった。
 <実施例9>
 二軸押出機によるコンパウンド化において脱水真空ベントのバルブを調節し、工程2後の溶融混錬物の水の含有量を1.5重量%にした以外は、実施例8と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。なお、二軸押出機によるコンパウンド化工程において、ダイ出口のストランドが微発泡したが、問題なくペレットを得ることができた。
 <実施例10>
 二軸押出機によるコンパウンド化において脱水真空ベントのバルブを調節し、工程2後の溶融混錬物の水の含有量を2.6重量%にした以外は、実施例8と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。なお、二軸押出機によるコンパウンド化工程において、ダイ出口のストランドが発泡したが、ペレットを得ることができた。
 <比較例5>
 二軸押出機によるコンパウンド化において脱水真空ベントのバルブを調節し、工程2後の溶融混錬物の水の含有量を6.7重量%にした以外は、実施例8と同様にしてでん粉プレブレンド及び熱可塑性樹脂組成物のペレットを作製したところ、ダイ出口のストランドが激しく発泡し、ストランドを引くことができず、ペレットを得ることができなかった。
 <実施例11>
 PBATをFZ91PBに、バレル温度条件をTemp2に変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。
 <実施例12>
 PBATをFZ92PBに、バレル温度条件をTemp2に変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ99μm)を作製した。
 <実施例13>
 PBATをCapa6500に、バレル温度条件をTemp2に変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。
 <実施例14>
 PBATをCapa6800に、バレル温度条件をTemp2に変更した以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。
 <実施例15>
 (でん粉プレブレンドの作製)
 でん粉プレブレンドを作製時に、コーンスターチの仕込み量を6.39kg、水の仕込み量を0.96kg、シリカの仕込み量を0.042kgに変更した以外は、実施例6同様にして、でん粉プレブレンドを得た。
 (二軸押出機によるコンパウンド化)
 東芝機械製TEM26SS(L/D=60)を表2のスクリュー構成にし、シリンダー1にメインフィードユニット1を取り付け、シリンダー2にメインフィードユニット2を取り付け、シリンダー11にサイドフィードユニットを、シリンダー9及びシリンダー14にベントユニットを取り付け、バレル温度条件Temp1にて、PBATを3.73kg/hrにてシリンダー1に設けたメインフィード部1から供給し、でん粉プレブレンドを2.464kg/hrにてシリンダー2に設けたメインフィード部2から供給し、X131Nを1.4kg/hrにてシリンダー11に設けたサイドフィード部から供給した以外は、実施例6と同様にして、熱可塑性樹脂組成物のペレットを得た。なお、コンパウンド化工程中、溶融混錬物の脱水は、シリンダー9及びシリンダー14に設けた脱水真空ベントにて行った。最終的に得られた溶融混錬物の水の含有量は0.5重量%であった。工程2後の溶融混錬物、すなわち、シリンダー11のサイドフィードからX131Nを供給する前に採収した溶融混錬物の水の含有量も0.5重量%であった。
 (Tダイ成形によるフィルム化)
 成形温度条件C1/C2/C3/ダイ=135/145/155/165℃に変更した以外は、実施例1と同様にして、厚さ100μmのフィルムを得た。
 <実施例16>
 X131NをM101に変更した以外は、実施例15と同様にしてでん粉プレブレンド、のペレット及びフィルム(厚さ99μm)を作製した。最終的に得られた溶融混錬物及び工程2後の溶融混錬物の水の含有量はいずれも0.5重量%であった。
 <実施例17>
 X131NをX151Nに変更した以外は、実施例15と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。最終的に得られた溶融混錬物及び工程2後の溶融混錬物の水の含有量はいずれも0.5重量%であった。
 <実施例18>
 X131NをFD92PBに変更した以外は、実施例15と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。最終的に得られた溶融混錬物及び工程2後の溶融混錬物の水の含有量はいずれも0.5重量%であった。
 <実施例19>
 X131NをCapa6800に変更した以外は、実施例15と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ101μm)を作製した。最終的に得られた溶融混錬物及び工程2後の溶融混錬物の水の含有量はいずれも0.5重量%であった。
 <比較例6>
 二軸押出機によるコンパウンド化において脱水真空ベントのバルブを調節し、工程2後の溶融混錬物の水の含有量を5.4重量%にした以外は、実施例15と同様にしてでん粉プレブレンド及び熱可塑性樹脂組成物のペレットを作製したところ、ダイ出口のストランドが激しく発泡し、ストランドを引くことができず、ペレットを得ることができなかった。比較例5よりも激しい発泡が観察された。また、溶融粘度が低く、水分の少ない場合に比べて加水分解が進んだと推測した。
 <実施例20>
 コーンスターチ8.01kgの代わりに化工コーンスターチ7.83kg、水1.2kgではなく1.38kgを用いた以外は、実施例6と同様にしてでん粉プレブレンド、熱可塑性樹脂組成物のペレット及びフィルム(厚さ100μm)を作製した。
Figure JPOXMLDOC01-appb-T000002
 実施例1~20及び比較例1~4において、フィルムの表面平滑性及び臭気を上述したとおりに測定評価し、その結果を下記表3~7に示した。表3~7には、熱可塑性樹脂組成物の製造条件及び配合も示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記表3~6のデータから分かるように、ポリエステル系樹脂(A)、でん粉類物質(B)及び水を含む混合物において、でん粉類物質(B)の固形分100重量部に対する水の量を25重量部以上55重量部以下にした実施例では、得られたフィルムの平滑性が良好であるとともに、臭気もほとんどなく良好であった。実施例2~3のフィルム平滑性が実施例1、4、及び5に比べて優れており、でん粉類物質(B)の固形分100重量部に対して水を30重量部以上40重量部以下混合した方が、フィルム平滑性がより良好になることが分かった。実施例6~7に比べて実施例8の方が、フィルムの臭気がより感じにくく、溶融混錬時のスクリュー回転数が160rpm以下である場合、臭気がより良好になることが分かった。実施例2の方が実施例11~14に比べて、フィルム平滑性がより良好であり、脂肪族芳香族ポリエステル系樹脂(A1)を用いた場合、フィルム平滑性がより優れることが分かった。実施例2及び6に比べて、実施例15~19の方が、フィルムの臭気がより感じにくく、工程2で得られた溶融混錬物にさらに脂脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)からなる群から選ばれる一種以上を加えて溶融混練する工程3を含む場合、臭気がより良好になることが分かった。    
 一方、上記表7のデータから分かるように、でん粉類物質(B)の固形分100重量部に対して水を25重量部より少なく含む混合物を溶融混錬した比較例1~3及びでん粉類物質(B)の固形分100重量部に対して水を55重量部より多く含む混合物を溶融混錬した比較例4では、フィルム平滑性が悪かった。また、工程2の後の溶融混錬物の水の含有量が5重量%を超えると比較例5及び6では、ダイ出口のストランドが激しく発泡し、ストランドを引くことができず、熱可塑性樹脂組成物のペレットを得ることができなかった。
 また、実施例では、フィルムにおけるでん粉類物質(B)の数平均粒子径が3μm以下であり、でん粉類物質(B)がポリエステル系樹脂(A)中に高度に微分散されているとともに、表面平滑性も良好であった。また、実施例のフィルムは、引裂強度も良好であった。
 これに対し、比較例のフィルムでは、でん粉類物質(B)の数平均粒子径が3μmを超えており、微分散性に劣る。また、比較例のフィルムは、引裂強度も低かった。
 本発明は、特に限定されないが、例えば以下の1以上の態様を含む。
 [1] 生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物の製造方法であって、
 生分解性のポリエステル系樹脂(A)、でん粉類物質(B)及び水を含み、でん粉類物質(B)の固形分100重量部に対して水が25重量部以上55重量部以下である混合物を溶融混練する工程1と、
 工程1の後に、溶融混錬物を脱水することで、溶融混錬物の水の含有量を5重量%以下にする工程2を含むことを特徴とする熱可塑性樹脂組成物の製造方法。
 [2] 生分解性のポリエステル系樹脂(A)は、脂肪族ジカルボン酸単位及び芳香族ジカルボン酸単位からなる群から選ばれる一種以上のジカルボン酸単位と、脂肪族ジオール単位及び芳香族ジオール単位からなる群から選ばれる一種以上のジオール単位を含む脂肪族芳香族ポリエステル系樹脂(A1)、並びに脂肪族ジカルボン酸単位と脂肪族ジオール単位を含む脂肪族ポリエステル系樹脂(A2)(但し、ポリヒドロキシブチレート系樹脂以外を除く。)からなる群から選ばれる1種以上である、[1]に記載の熱可塑性樹脂組成物の製造方法。
 [3] 工程2で得られた溶融混錬物にさらに脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)からなる群から選ばれる一種以上を加えて溶融混練する工程3を含む、[2]に記載の熱可塑性樹脂組成物の製造方法。
 [4] 生分解性のポリエステル系樹脂(A)が、ポリブチレンアジペートテレフタレート系樹脂、ポリブチレンサクシネート系樹脂及びポリカプロラクトン系樹脂からなる群から選ばれる1種以上である、[1]~[3]のいずれかに記載の熱可塑性樹脂組成物の製造方法。
 [5] ポリヒドロキシブチレート系樹脂(C)が、ポリ-(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)である、[3]又は[4]に記載の熱可塑性樹脂組成物の製造方法。
 [6] 溶融混錬に用いる押出機のメインフィード部から供給されるポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量を100重量%としたときに、ポリエステル系樹脂(A)は50重量%以上99重量%以下であり、でん粉類物質(B)は1重量%以上50重量%以下である、[1]~[5]のいずれかに記載の熱可塑性樹脂組成物の製造方法。
 [7] 溶融混錬に用いる押出機のメインフィード部から供給される生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量をMとし、溶融混錬に用いる押出機のサイドフィード部から供給される脂肪族ポリエステル系樹脂(A2)とポリヒドロキシブチレート系樹脂(C)の合計重量をSとし、MとSの合計を100重量%とした場合、Mは30重量%以上85重量%以下であり、Sは15重量%以上70重量%以下である、[3]~[6]のいずれかに記載の熱可塑性樹脂組成物の製造方法。
 [8] [1]~[7]のいずれかに記載の熱可塑性樹脂組成物の製造方法で製造された熱可塑性樹脂組成物を成形して成形体を得る工程を含む成形体の製造方法。
 [9] 前記成形体はフィルムである、[8]に記載の成形体の製造方法。
 [10] 前記フィルムにおいて、でん粉類物質(B)の数平均粒子径が3μm以下である、[9]に記載の成形体の製造方法。
 [11] 前記フィルムの引裂強度が150N/mm以上である、[9]又は[10]に記載の成形体の製造方法。
 [12] 生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有し、
 でん粉類物質(B)の数平均粒子径が3μm以下であることを特徴とする、フィルム。
 [13] 引裂強度が150N/mm以上である、[12]に記載のフィルム。
 1 フィルム
 2 厚み方向
 3 厚み方向の略中央部分
 4 超薄切片
 5 観察方向

Claims (13)

  1.  生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物の製造方法であって、
     生分解性のポリエステル系樹脂(A)、でん粉類物質(B)及び水を含み、でん粉類物質(B)の固形分100重量部に対して水が25重量部以上55重量部以下である混合物を溶融混練する工程1と、
     工程1の後に、溶融混錬物を脱水することで、溶融混錬物の水の含有量を5重量%以下にする工程2を含むことを特徴とする、熱可塑性樹脂組成物の製造方法。
  2.  生分解性のポリエステル系樹脂(A)は、脂肪族ジカルボン酸単位及び芳香族ジカルボン酸単位からなる群から選ばれる一種以上のジカルボン酸単位と、脂肪族ジオール単位及び芳香族ジオール単位からなる群から選ばれる一種以上のジオール単位を含む脂肪族芳香族ポリエステル系樹脂(A1)、並びに脂肪族ジカルボン酸単位と脂肪族ジオール単位を含む脂肪族ポリエステル系樹脂(A2)(但し、ポリヒドロキシブチレート系樹脂以外を除く。)からなる群から選ばれる1種以上である、請求項1に記載の熱可塑性樹脂組成物の製造方法。
  3.  工程2で得られた溶融混錬物にさらに脂肪族ポリエステル系樹脂(A2)及びポリヒドロキシブチレート系樹脂(C)からなる群から選ばれる一種以上を加えて溶融混練する工程3を含む、請求項2に記載の熱可塑性樹脂組成物の製造方法。
  4.  生分解性のポリエステル系樹脂(A)が、ポリブチレンアジペートテレフタレート系樹脂、ポリブチレンサクシネート系樹脂及びポリカプロラクトン系樹脂からなる群から選ばれる1種以上である、請求項1~3のいずれかに記載の熱可塑性樹脂組成物の製造方法。
  5.  ポリヒドロキシブチレート系樹脂(C)が、ポリ-(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)である、請求項3又は4に記載の熱可塑性樹脂組成物の製造方法。
  6.  溶融混錬に用いる押出機のメインフィード部から供給されるポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量を100重量%としたときに、ポリエステル系樹脂(A)は50重量%以上99重量%以下であり、でん粉類物質(B)は1重量%以上50重量%以下である、請求項1~5のいずれかに記載の熱可塑性樹脂組成物の製造方法。
  7.  溶融混錬に用いる押出機のメインフィード部から供給される生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)の合計重量をMとし、溶融混錬に用いる押出機のサイドフィード部から供給される脂肪族ポリエステル系樹脂(A2)とポリヒドロキシブチレート系樹脂(C)の合計重量をSとし、MとSの合計を100重量%とした場合、Mは30重量%以上85重量%以下であり、Sは15重量%以上70重量%以下である、請求項3~6のいずれかに記載の熱可塑性樹脂組成物の製造方法。
  8.  請求項1~7のいずれかに記載の熱可塑性樹脂組成物の製造方法で製造された熱可塑性樹脂組成物を成形して成形体を得る工程を含む、成形体の製造方法。
  9.  前記成形体はフィルムである、請求項8に記載の成形体の製造方法。
  10.  前記フィルムにおいて、でん粉類物質(B)の数平均粒子径が3μm以下である請求項9に記載の成形体の製造方法。
  11.  前記フィルムの引裂強度が150N/mm以上である、請求項9又は10に記載の成形体の製造方法。
  12.  生分解性のポリエステル系樹脂(A)及びでん粉類物質(B)を含む熱可塑性樹脂組成物を含有し、
     でん粉類物質(B)の数平均粒子径が3μm以下であることを特徴とする、フィルム。
  13.  JIS P 8116に準じて測定した引裂強度が150N/mm以上である、請求項12に記載のフィルム。
PCT/JP2021/010511 2020-03-27 2021-03-16 熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム WO2021193219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180025062.6A CN115380060A (zh) 2020-03-27 2021-03-16 热塑性树脂组合物的制造方法、成型体的制造方法及膜
JP2022509967A JPWO2021193219A1 (ja) 2020-03-27 2021-03-16
US17/820,097 US20220388217A1 (en) 2020-03-27 2022-08-16 Manufacturing method for thermoplastic resin composition, manufacturing method for shaped body, and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058808 2020-03-27
JP2020-058808 2020-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/820,097 Continuation US20220388217A1 (en) 2020-03-27 2022-08-16 Manufacturing method for thermoplastic resin composition, manufacturing method for shaped body, and film

Publications (1)

Publication Number Publication Date
WO2021193219A1 true WO2021193219A1 (ja) 2021-09-30

Family

ID=77892069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010511 WO2021193219A1 (ja) 2020-03-27 2021-03-16 熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム

Country Status (4)

Country Link
US (1) US20220388217A1 (ja)
JP (1) JPWO2021193219A1 (ja)
CN (1) CN115380060A (ja)
WO (1) WO2021193219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232367B1 (ja) 2022-03-29 2023-03-02 東洋インキScホールディングス株式会社 農業資材用熱可塑性樹脂組成物及び農業資材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158485A (ja) * 1996-10-04 1998-06-16 Daicel Chem Ind Ltd 生分解性脂肪族ポリエステル樹脂−でん粉組成物
US6191196B1 (en) * 1999-04-12 2001-02-20 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable polymer compositions, methods for making same and articles therefrom
CN1613901A (zh) * 2003-11-07 2005-05-11 李小鲁 含淀粉的全生物降解的吹塑成型树脂组合物及其制备方法
KR20090008099A (ko) * 2007-09-05 2009-01-21 유영선 물성이 개선된 생분해성 수지 조성물 및 그의 제조 방법
US20090324917A1 (en) * 2008-06-30 2009-12-31 Kimberly-Clark Worldwide, Inc. Biodegradable Packaging Film
JP2011026538A (ja) * 2008-12-26 2011-02-10 Mitsubishi Chemicals Corp 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法
JP2013028701A (ja) * 2011-07-28 2013-02-07 Mitsubishi Chemicals Corp 樹脂組成物の製造方法
JP2013510210A (ja) * 2009-11-05 2013-03-21 ノバモント・ソシエタ・ペル・アチオニ 少なくとも1つの天然源のポリマーと生分解性ポリエステル類との混合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225584B2 (ja) * 2004-12-28 2013-07-03 株式会社カネカ グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物
US8148439B2 (en) * 2005-03-25 2012-04-03 Meredian, Inc. Foamed thermoplastic resin particles and method of producing the foamed particles
JP5500823B2 (ja) * 2006-09-01 2014-05-21 株式会社カネカ 熱可塑性エラストマー組成物
JP7011647B2 (ja) * 2017-03-29 2022-01-26 株式会社カネカ 生分解性ポリエステルフィルムの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158485A (ja) * 1996-10-04 1998-06-16 Daicel Chem Ind Ltd 生分解性脂肪族ポリエステル樹脂−でん粉組成物
US6191196B1 (en) * 1999-04-12 2001-02-20 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable polymer compositions, methods for making same and articles therefrom
CN1613901A (zh) * 2003-11-07 2005-05-11 李小鲁 含淀粉的全生物降解的吹塑成型树脂组合物及其制备方法
KR20090008099A (ko) * 2007-09-05 2009-01-21 유영선 물성이 개선된 생분해성 수지 조성물 및 그의 제조 방법
US20090324917A1 (en) * 2008-06-30 2009-12-31 Kimberly-Clark Worldwide, Inc. Biodegradable Packaging Film
JP2011026538A (ja) * 2008-12-26 2011-02-10 Mitsubishi Chemicals Corp 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法
JP2013510210A (ja) * 2009-11-05 2013-03-21 ノバモント・ソシエタ・ペル・アチオニ 少なくとも1つの天然源のポリマーと生分解性ポリエステル類との混合物
JP2013028701A (ja) * 2011-07-28 2013-02-07 Mitsubishi Chemicals Corp 樹脂組成物の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232367B1 (ja) 2022-03-29 2023-03-02 東洋インキScホールディングス株式会社 農業資材用熱可塑性樹脂組成物及び農業資材
WO2023188943A1 (ja) * 2022-03-29 2023-10-05 東洋インキScホールディングス株式会社 農業資材用熱可塑性樹脂組成物及び農業資材
JP2023146286A (ja) * 2022-03-29 2023-10-12 東洋インキScホールディングス株式会社 農業資材用熱可塑性樹脂組成物及び農業資材

Also Published As

Publication number Publication date
US20220388217A1 (en) 2022-12-08
JPWO2021193219A1 (ja) 2021-09-30
CN115380060A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Karkhanis et al. Water vapor and oxygen barrier properties of extrusion-blown poly (lactic acid)/cellulose nanocrystals nanocomposite films
CN111051394B (zh) 包含生物实体的液体组合物及其用途
US8927632B2 (en) Polylactic acid based film
EP2607415B1 (en) Porous film
US20090312456A1 (en) Masterbatch and polymer composition
US20220041823A1 (en) Polyhydroxyalkanoate resin composition, molded body of the same, and film or sheet of the same
CN102257068A (zh) 可生物降解的包装膜
EP3953127B1 (fr) Procédé de préparation de granulés plastiques biosources et biodegradables
Zhang et al. Mechanical properties and crystallization behavior of poly (lactic acid) blended with dendritic hyperbranched polymer
WO2021193219A1 (ja) 熱可塑性樹脂組成物の製造方法、成形体の製造方法、及びフィルム
US20160046774A1 (en) Film
JP7011647B2 (ja) 生分解性ポリエステルフィルムの製造方法
JP7525281B2 (ja) 熱可塑性樹脂組成物及びその成形体
JP6102315B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
JP7360450B2 (ja) ポリエステル系樹脂組成物の製造方法
JP3430125B2 (ja) マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
Koca et al. Blown film extrusion of poly (lactic) acid/poly (3‐hydroxybutyrate‐4‐hydroxybutyrate) blends for improved toughness and processability
JP6692236B2 (ja) 脂肪族ポリエステル樹脂組成物の製造方法
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
JP7549484B2 (ja) インフレーション成形体
JP2022185793A (ja) 樹脂組成物及び樹脂フィルム
US10836900B2 (en) Method for producing aliphatic polyester resin composition
JPH11275986A (ja) 分解性農業用マルチフィルム
JPH11279271A (ja) 樹脂ペレットの製造方法
JP2014156540A (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022509967

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774523

Country of ref document: EP

Kind code of ref document: A1