WO2021190534A1 - 一种基于三维整形焦斑的复杂型面刀具激光加工方法 - Google Patents
一种基于三维整形焦斑的复杂型面刀具激光加工方法 Download PDFInfo
- Publication number
- WO2021190534A1 WO2021190534A1 PCT/CN2021/082567 CN2021082567W WO2021190534A1 WO 2021190534 A1 WO2021190534 A1 WO 2021190534A1 CN 2021082567 W CN2021082567 W CN 2021082567W WO 2021190534 A1 WO2021190534 A1 WO 2021190534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- tool
- dimensional
- shaping
- focal spot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
Definitions
- the invention belongs to the technical field of laser processing, and specifically relates to a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot.
- the tool profile tends to be complex, and the tool structure design such as chipbreaker, micro-texture, and multiple cutting edges can effectively improve the cutting quality and processing efficiency of the tool.
- Traditional methods such as grinding are becoming more and more difficult to manufacture tools, and there are problems such as inability to manufacture complex tool structure designs.
- Laser processing has the characteristics of non-contact, flexible processing, and no material selectivity, and has become an important method for processing complex surface tools.
- the current laser processing technology has problems such as uncontrollable spot energy and limited spot movement range, resulting in poor laser processing accuracy and low processing efficiency, and cannot meet the processing requirements of complex tools (especially tools with large curvature curved surfaces). .
- the present invention provides a laser processing method for a complex profile tool based on three-dimensional shaping focal spot.
- the method uses a three-dimensional controllable shaping laser focal spot to realize a complex profile tool
- the special-shaped structure is processed by laser with high efficiency and high precision.
- a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot which is characterized in that it comprises the following steps:
- the three-dimensional controllable shaping laser focal spot is used for laser processing of the tool to be processed, with a surface roughness of Ra0.02-0.5 ⁇ m and a machining accuracy of 1-15 ⁇ m;
- the laser in S1 may be any one of nanosecond laser, picosecond laser, and femtosecond laser.
- the cutting tool material in S1 includes any one of cemented carbide cutting tools, ceramic cutting tools, coated cutting tools, and superhard material cutting tools, but is not limited thereto.
- the rotation angle range of the A rotation axis is ⁇ 140°
- the rotation angle range of the C rotation axis is 0-360°.
- the three-dimensional controllable laser focal spot in S3 realizes three-axis linkage through a three-dimensional scanning galvanometer module with three-dimensional linear optical axes U, V, and W and a galvanometer motion control program.
- the moving ranges of the optical axes U, V, and W are respectively 50, 50, and 15 mm;
- the galvanometer module includes a high-precision linear motor driver to drive the scanning galvanometer.
- the shaping of the laser focal spot in S3 is realized by a laser shaping module, which uses a diffractive optical element to spatially shape the laser energy distribution, so as to obtain a high-quality spot.
- the mechanical axis movement combined with the central turntable described in S3 means that the central turntable's A rotation axis or C rotation axis can be stationary or rotate according to the tool profile machining requirements.
- A-rotation axis or the C-rotation axis can be linked with the galvanometer optical axes U, V, and W according to the tool profile machining requirements.
- the main innovations of the present invention are:
- the present invention adopts the combination of a three-dimensional galvanometer module and a shaping module to obtain a high-quality three-dimensional programming controllable shaping laser spot, and realize laser processing of complex profile cutters with special-shaped structures;
- the invention provides a laser processing method for a complex profile tool based on three-dimensional shaping of focal spots.
- a three-dimensional galvanometer module, a shaping module and a motion control program Through a three-dimensional galvanometer module, a shaping module and a motion control program, a high-quality three-dimensional controllable shaping spot is obtained, combined with the mechanical axis of the laser machine tool Movement to realize the laser high-efficiency and high-precision processing and shaping of the complex profile and the special-shaped structure of the tool.
- the method provided by the invention can meet the processing requirements of the surface special-shaped structure of a complex tool (especially a tool with a large curvature curved surface), and has high processing accuracy and processing efficiency.
- Figure 1 is a process flow chart of the present invention.
- a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot which is characterized in that it comprises the following steps:
- the laser in S1 may be a nanosecond laser.
- the tool material in S1 includes cemented carbide tools.
- the rotation angle range of the A rotation axis is ⁇ 140°
- the rotation angle range of the C rotation axis is 0-360°.
- the three-dimensional controllable laser focal spot in S3 realizes three-axis linkage through a three-dimensional scanning galvanometer module with three-dimensional linear optical axes U, V, and W and a galvanometer motion control program.
- the moving ranges of the optical axes U, V, and W are respectively 50, 50, and 15 mm;
- the galvanometer module includes a high-precision linear motor driver to drive the scanning galvanometer.
- the shaping of the laser focal spot in S3 is realized by a laser shaping module, which uses a diffractive optical element to spatially shape the laser energy distribution, so as to obtain a high-quality spot.
- the mechanical axis movement combined with the central turntable described in S3 means that the central turntable's A rotation axis and C rotation axis perform rotational movement according to the tool profile machining requirements.
- a rotation axis and the C rotation axis are linked with the galvanometer optical axes U, V, and W according to the tool profile machining requirements.
- the invention provides a laser processing method for a complex profile tool based on three-dimensional shaping of focal spots.
- a three-dimensional galvanometer module, a shaping module and a motion control program Through a three-dimensional galvanometer module, a shaping module and a motion control program, a high-quality three-dimensional controllable shaping spot is obtained, combined with the mechanical axis of the laser machine tool Movement to realize the laser high-efficiency and high-precision processing and shaping of the complex profile and the special-shaped structure of the tool.
- the method provided by the invention can meet the processing requirements of the surface special-shaped structure of a complex tool (especially a tool with a large curvature curved surface), and has high processing accuracy and processing efficiency.
- a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot which is characterized in that it comprises the following steps:
- the laser in S1 may be a femtosecond laser.
- the tool material in S1 includes ceramic tools.
- the rotation angle range of the A rotation axis is ⁇ 140°
- the rotation angle range of the C rotation axis is 0-360°.
- the three-dimensional controllable laser focal spot in S3 realizes three-axis linkage through a three-dimensional scanning galvanometer module with three-dimensional linear optical axes U, V, and W and a galvanometer motion control program.
- the moving ranges of the optical axes U, V, and W are respectively 50, 50, and 15 mm;
- the galvanometer module includes a high-precision linear motor driver to drive the scanning galvanometer.
- the shaping of the laser focal spot in S3 is realized by a laser shaping module, which uses a diffractive optical element to spatially shape the laser energy distribution, so as to obtain a high-quality spot.
- the mechanical axis movement combined with the central turntable in S3 means that the central turntable's A rotation axis and C rotation axis are stationary according to the tool profile machining requirements.
- A-rotation axis or the C-rotation axis is not linked with the galvanometer optical axes U, V, and W according to the tool profile machining requirements.
- the invention provides a laser processing method for a complex profile tool based on three-dimensional shaping of focal spots.
- a three-dimensional galvanometer module, a shaping module and a motion control program Through a three-dimensional galvanometer module, a shaping module and a motion control program, a high-quality three-dimensional controllable shaping spot is obtained, combined with the mechanical axis of the laser machine tool Movement to realize the laser high-efficiency and high-precision processing and shaping of the complex profile and the special-shaped structure of the tool.
- the method provided by the invention can meet the processing requirements of the surface special-shaped structure of a complex tool (especially a tool with a large curvature curved surface), and has high processing accuracy and processing efficiency.
- a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot which is characterized in that it comprises the following steps:
- the tool to be processed is laser processed using a three-dimensional controllable shaping laser focal spot, with a surface roughness of Ra0.1 ⁇ m and a machining accuracy of 10 ⁇ m;
- the laser in S1 may be a picosecond laser.
- the tool material in S1 includes a coated tool.
- the rotation angle range of the A rotation axis is ⁇ 140°
- the rotation angle range of the C rotation axis is 0-360°.
- the three-dimensional controllable laser focal spot in S3 realizes three-axis linkage through a three-dimensional scanning galvanometer module with three-dimensional linear optical axes U, V, and W and a galvanometer motion control program.
- the moving ranges of the optical axes U, V, and W are respectively 50, 50, and 15 mm;
- the galvanometer module includes a high-precision linear motor driver to drive the scanning galvanometer.
- the shaping of the laser focal spot in S3 is realized by a laser shaping module, which uses a diffractive optical element to spatially shape the laser energy distribution, so as to obtain a high-quality spot.
- the mechanical axis movement combined with the central turntable in S3 means that the central turntable A's rotary axis rotates according to the tool profile processing requirements, and the C rotary axis is stationary.
- a rotation axis is linked with the galvanometer optical axes U, V, and W according to the tool profile machining requirements.
- the invention provides a laser processing method for a complex profile tool based on three-dimensional shaping of focal spots.
- a three-dimensional galvanometer module, a shaping module and a motion control program Through a three-dimensional galvanometer module, a shaping module and a motion control program, a high-quality three-dimensional controllable shaping spot is obtained, combined with the mechanical axis of the laser machine tool Movement to realize the laser high-efficiency and high-precision processing and shaping of the complex profile and the special-shaped structure of the tool.
- the method provided by the invention can meet the processing requirements of the surface special-shaped structure of a complex tool (especially a tool with a large curvature curved surface), and has high processing accuracy and processing efficiency.
- a laser processing method for a complex profile tool based on three-dimensional shaping of a focal spot which is characterized in that it comprises the following steps:
- the tool to be processed is laser processed using a three-dimensional controllable shaping laser focal spot, with a surface roughness of Ra0.06 ⁇ m and a machining accuracy of 8 ⁇ m;
- the laser in S1 may be a picosecond laser.
- the tool material in S1 includes a superhard material tool.
- the rotation angle range of the A rotation axis is ⁇ 140°
- the rotation angle range of the C rotation axis is 0-360°.
- the three-dimensional controllable laser focal spot in S3 realizes three-axis linkage through a three-dimensional scanning galvanometer module with three-dimensional linear optical axes U, V, and W and a galvanometer motion control program.
- the moving ranges of the optical axes U, V, and W are respectively 50, 50, and 15 mm;
- the galvanometer module includes a high-precision linear motor driver to drive the scanning galvanometer.
- the shaping of the laser focal spot in S3 is realized by a laser shaping module, which uses a diffractive optical element to spatially shape the laser energy distribution, so as to obtain a high-quality spot.
- the mechanical axis movement combined with the central turntable in S3 means that the central turntable A's rotation axis is stationary according to the tool profile processing requirements, and the C rotation axis performs a rotational movement.
- C rotation axis is linked with the galvanometer optical axes U, V, and W according to the tool profile machining requirements.
- the invention provides a laser processing method for a complex profile tool based on three-dimensional shaping of focal spots.
- a three-dimensional galvanometer module, a shaping module and a motion control program Through a three-dimensional galvanometer module, a shaping module and a motion control program, a high-quality three-dimensional controllable shaping spot is obtained, combined with the mechanical axis of the laser machine tool Movement to realize the laser high-efficiency and high-precision processing and shaping of the complex profile and the special-shaped structure of the tool.
- the method provided by the invention can meet the processing requirements of the surface special-shaped structure of a complex tool (especially a tool with a large curvature curved surface), and has high processing accuracy and processing efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
一种基于三维整形焦斑的复杂型面刀具激光加工方法,包括以下步骤:S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.02-0.5μm,加工精度1-15μm;S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。该方法利用三维可控的整形激光焦斑,可以实现复杂型面刀具异型结构的激光高效高精度加工成型,能够满足复杂刀具表面异型结构的加工需求。
Description
本发明属于激光加工技术领域,具体涉及一种基于三维整形焦斑的复杂型面刀具激光加工方法。
随着对难加工材料加工质量和加工效率要求的不断提高,刀具型面趋于复杂,同时断屑槽、微织构、多刀刃等刀具结构设计能够有效提高刀具切削加工质量和加工效率。磨削加工等传统方法进行刀具制造愈发困难,且存在复杂刀具结构设计无法制造等问题。
激光加工具有无接触、加工灵活、无材料选择性等特点,成为加工复杂型面刀具的重要手段。然而,目前的激光加工技术存在光斑能量不可控、光斑运动范围受限等问题,导致激光加工精度差、加工效率低,无法满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求。
发明内容
为克服现有技术的不足导致的上述问题,本发明提供了一种基于三维整形焦斑的复杂型面刀具激光加工方法,该方法利用三维可控的整形激光焦斑,可以实现复杂型面刀具异型结构的激光高效高精度加工成型。
本发明的技术方案为:
一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.02-0.5μm,加工精度1-15μm;
S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
进一步的,S1中所述激光可为纳秒激光、皮秒激光、飞秒激光中的任一种。
进一步的,S1中所述刀具材料包括硬质合金刀具、陶瓷刀具、涂层刀具、超硬材料刀具中的任一种,但不限于此。
进一步的,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
进一步的,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
进一步的,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
进一步的,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
进一步的,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴或C旋转轴可根据刀具型面加工需求静止不动或者旋转运动。
进一步的,所述A旋转轴或C旋转轴可根据刀具型面加工需求与振镜光学轴U、V、W进行联动。
本发明的主要创新点在于:
1.本发明采用了三维振镜模块与整形模组的结合,获得高质量三维编程可控的整形激光光斑,实现复杂型面刀具异型结构的激光加工;
2.通过机械轴AC旋转轴与三维光学轴U、V、W的联动,从而有效提高三维整形激光光斑加工复杂大曲率曲面的加工精度与加工效率。
本发明的有益效果在于:
本发明提供一种基于三维整形焦斑的复杂型面刀具激光加工方法,通过三维振镜模块、整形模组以及运动控制程序,获得高质量的三维可控的整形光斑,并结合激光机床机械轴运动,实现复杂型面刀具异型结构的激光高效高精度加工成型。本发明提供的方法能够满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求,且加工精度和加工效率高。
图1为本发明的加工流程图。
为使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.5μm,加工精度15μm;
S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
进一步的,S1中所述激光可为纳秒激光。
进一步的,S1中所述刀具材料包括硬质合金刀具。
进一步的,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
进一步的,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
进一步的,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
进一步的,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
进一步的,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴和C旋转轴根据刀具型面加工需求进行旋转运动。
进一步的,所述A旋转轴和C旋转轴根据刀具型面加工需求与振镜光学轴U、V、W进行联动。
本发明提供一种基于三维整形焦斑的复杂型面刀具激光加工方法,通过三维振镜模块、整形模组以及运动控制程序,获得高质量的三维可控的整形光斑,并结合激光机床机械轴运动,实现复杂型面刀具异型结构的激光高效高精度加工成型。本发明提供的方法能够满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求,且加工精度和加工效率高。
实施例2
一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.02μm,加工精度1μm;
S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
进一步的,S1中所述激光可为飞秒激光。
进一步的,S1中所述刀具材料包括陶瓷刀具。
进一步的,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
进一步的,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
进一步的,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
进一步的,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
进一步的,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴和C旋转轴根据刀具型面加工需求静止不动。
进一步的,所述A旋转轴或C旋转轴根据刀具型面加工需求不与振镜光学轴U、V、W进行联动。
本发明提供一种基于三维整形焦斑的复杂型面刀具激光加工方法,通过三维振镜模块、整形模组以及运动控制程序,获得高质量的三维可控的整形光斑,并结合激光机床机械轴运动,实现复杂型面刀具异型结构的激光高效高精度加工成型。本发明提供的方法能够满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求,且加工精度和加工效率高。
实施例3
一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.1μm,加工精度10μm;
S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
进一步的,S1中所述激光可为皮秒激光。
进一步的,S1中所述刀具材料包括涂层刀具。
进一步的,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
进一步的,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
进一步的,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
进一步的,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
进一步的,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴根据刀具型面加工需求进行旋转运动,C旋转轴静止不动。
进一步的,所述A旋转轴根据刀具型面加工需求与振镜光学轴U、V、W进行联动。
本发明提供一种基于三维整形焦斑的复杂型面刀具激光加工方法,通过三维振镜模块、整形模组以及运动控制程序,获得高质量的三维可控的整形光斑,并结合激光机床机械轴运动,实现复杂型面刀具异型结构的激光高效高精度加工成型。本发明提供的方法能够满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求,且加工精度和加工效率高。
实施例4
一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.06μm,加工精度8μm;
S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
进一步的,S1中所述激光可为皮秒激光。
进一步的,S1中所述刀具材料包括超硬材料刀具。
进一步的,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
进一步的,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
进一步的,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
进一步的,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
进一步的,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴根据刀具型面加工需求静止不动,C旋转轴进行旋转运动。
进一步的,所述C旋转轴根据刀具型面加工需求与振镜光学轴U、V、W进行联动。
本发明提供一种基于三维整形焦斑的复杂型面刀具激光加工方法,通过三维振镜模块、整形模组以及运动控制程序,获得高质量的三维可控的整形光斑,并结合激光机床机械轴运动,实现复杂型面刀具异型结构的激光高效高精度加工成型。本发明提供的方法能够满足复杂刀具(特别是具有大曲率曲面刀具)表面异型结构的加工需求,且加工精度和加工效率高。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。需注意的是,本发明中所未详细描述的技术特征,均可以通过本领域任一现有技术实现。
Claims (9)
- 一种基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,包括以下步骤:S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;S3.根据刀具型面设计,结合中心转台的机械轴运动,利用三维可控的整形激光焦斑对待加工刀具进行激光加工,表面粗糙度Ra0.02-0.5μm,加工精度1-15μm;S4.完成刀具激光加工后对加工刀具形状尺寸进行检测。
- 根据权利要求1所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S1中所述激光可为纳秒激光、皮秒激光、飞秒激光中的任一种。
- 根据权利要求1所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S1中所述刀具材料包括硬质合金刀具、陶瓷刀具、涂层刀具、超硬材料刀具中的任一种。
- 根据权利要求1所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S2中所述激光机床的中心转台的A旋转轴和C旋转轴,所述A旋转轴的旋转角度范围为±140°,所述C旋转轴的旋转角度范围为0-360°。
- 根据权利要求1所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S3中所述三维可控激光焦斑是通过具有三维直线光学轴U、V、W的三维扫描振镜模块和振镜运动控制程序实现三轴联动。
- 根据权利要求5所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,所述光学轴U、V、W移动范围分别为50,50和15mm;所述振镜模块包括高精密直线电机驱动器驱动扫描振镜。
- 根据权利要求6所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S3中所述整形激光焦斑是通过激光整形模组实现的,所述激光整形模组是采用衍射光学元件对激光能量分布进行空间整形,从而获得高质量光斑。
- 根据权利要求7所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,S3中所述的结合中心转台的机械轴运动是指中心转台A旋转轴或C旋转轴可根据刀具型面加工需求静止不动或者旋转运动。
- 根据权利要求8所述的基于三维整形焦斑的复杂型面刀具激光加工方法,其特征在于,所述A旋转轴或C旋转轴可根据刀具型面加工需求与振镜光学轴U、V、W进行联动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010219036.4A CN111375900A (zh) | 2020-03-25 | 2020-03-25 | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 |
CN202010219036.4 | 2020-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021190534A1 true WO2021190534A1 (zh) | 2021-09-30 |
Family
ID=71215533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/082567 WO2021190534A1 (zh) | 2020-03-25 | 2021-03-24 | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111375900A (zh) |
WO (1) | WO2021190534A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114682918A (zh) * | 2022-05-17 | 2022-07-01 | 南京航空航天大学 | 一种表面微织构皮秒激光加工装置及方法 |
CN115533754A (zh) * | 2022-09-16 | 2022-12-30 | 华侨大学 | 加工石材的工业机器人的烧结金刚石刀具整形方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111375900A (zh) * | 2020-03-25 | 2020-07-07 | 广东工业大学 | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 |
CN112207427A (zh) * | 2020-10-28 | 2021-01-12 | 汇专科技集团股份有限公司 | 一种激光车削加工机床 |
CN114200890A (zh) * | 2021-11-03 | 2022-03-18 | 广东工业大学 | 一种激光加工装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014133242A (ja) * | 2013-01-09 | 2014-07-24 | Lps Works Co Ltd | レーザ加工方法及びレーザ加工装置 |
CN204321413U (zh) * | 2014-11-25 | 2015-05-13 | 深圳信息职业技术学院 | 一种三维激光加工设备 |
CN107127459A (zh) * | 2017-06-01 | 2017-09-05 | 深圳光韵达激光应用技术有限公司 | 一种金刚石刀具的激光精确加工方法 |
CN107443075A (zh) * | 2016-05-31 | 2017-12-08 | 中国科学院福建物质结构研究所 | 一种复合激光加工的五轴超振声数控机床 |
CN208391288U (zh) * | 2018-06-29 | 2019-01-18 | 华中科技大学 | 一种大型复杂曲面动态聚焦激光加工系统 |
CN109676258A (zh) * | 2019-01-21 | 2019-04-26 | 南京航空航天大学 | 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法 |
CN111375900A (zh) * | 2020-03-25 | 2020-07-07 | 广东工业大学 | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202123321U (zh) * | 2011-05-18 | 2012-01-25 | 苏州德龙激光有限公司 | 用于加工大幅面导光板的装置 |
CN206764133U (zh) * | 2016-10-21 | 2017-12-19 | 华中科技大学 | 一种激光加工头及其构成的激光精密制造装备 |
CN109676257A (zh) * | 2019-01-23 | 2019-04-26 | 深圳信息职业技术学院 | 一种三维曲面激光抛光方法和装备 |
-
2020
- 2020-03-25 CN CN202010219036.4A patent/CN111375900A/zh active Pending
-
2021
- 2021-03-24 WO PCT/CN2021/082567 patent/WO2021190534A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014133242A (ja) * | 2013-01-09 | 2014-07-24 | Lps Works Co Ltd | レーザ加工方法及びレーザ加工装置 |
CN204321413U (zh) * | 2014-11-25 | 2015-05-13 | 深圳信息职业技术学院 | 一种三维激光加工设备 |
CN107443075A (zh) * | 2016-05-31 | 2017-12-08 | 中国科学院福建物质结构研究所 | 一种复合激光加工的五轴超振声数控机床 |
CN107127459A (zh) * | 2017-06-01 | 2017-09-05 | 深圳光韵达激光应用技术有限公司 | 一种金刚石刀具的激光精确加工方法 |
CN208391288U (zh) * | 2018-06-29 | 2019-01-18 | 华中科技大学 | 一种大型复杂曲面动态聚焦激光加工系统 |
CN109676258A (zh) * | 2019-01-21 | 2019-04-26 | 南京航空航天大学 | 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法 |
CN111375900A (zh) * | 2020-03-25 | 2020-07-07 | 广东工业大学 | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114682918A (zh) * | 2022-05-17 | 2022-07-01 | 南京航空航天大学 | 一种表面微织构皮秒激光加工装置及方法 |
CN115533754A (zh) * | 2022-09-16 | 2022-12-30 | 华侨大学 | 加工石材的工业机器人的烧结金刚石刀具整形方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111375900A (zh) | 2020-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021190534A1 (zh) | 一种基于三维整形焦斑的复杂型面刀具激光加工方法 | |
WO2021190532A1 (zh) | 一种激光车铣复合加工刀具的方法 | |
WO2022095748A1 (zh) | 一种纳米金刚石刀具及其制备方法和应用 | |
CN104290002A (zh) | 一种柱面镜的加工方法 | |
CN105772763B (zh) | 一种单晶金刚石刀具加工方法以及单晶金刚石刀具 | |
CN114571064B (zh) | 一种激光诱导氧化辅助铣削的复合加工装置及方法 | |
CN109500604B (zh) | 五维手动位移平台、含有五维手动位移平台的车削辅助系统及车削辅助系统的调试方法 | |
WO2021190533A1 (zh) | 一种大曲率曲面激光加工成型方法 | |
WO2021208485A1 (zh) | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 | |
CN105269284A (zh) | 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法 | |
CN104999176A (zh) | 刃口的加工方法 | |
CN109129031B (zh) | 慢速伺服磨削自由曲面的砂轮路径生成方法 | |
CN109420787A (zh) | 铜靶材加工方法 | |
WO2021190529A1 (zh) | 一种实现以铣代磨加工的pcd刀具、其制备方法及应用 | |
CN213827472U (zh) | 一种激光车削加工机床 | |
JP2017047555A (ja) | 脆性材料の回転切削用工具および回転切削方法 | |
CN110280840B (zh) | 一种圆柱面菲涅尔透镜一次成型超精密加工方法 | |
CN107263219A (zh) | 玻璃面板的加工方法及光伏/光热器件 | |
CN109807720A (zh) | 一种微透镜阵列光学元件的范成式加工方法 | |
JP4466956B2 (ja) | ダイヤモンド工具の製造方法 | |
Wu et al. | Fabrication of microstructured surfaces by five-axis ultra precision machine tool | |
Qu et al. | Design of binderless grinding wheel with positive rake angle and fabrication used femtosecond laser ablation for grinding soft and brittle crystals | |
CN109954978A (zh) | 针对纳米孪晶金刚石刀具的飞秒激光加工系统及基于该系统的加工方法 | |
CN114309684A (zh) | 菲涅尔透镜制作刀具、加工方法以及菲涅尔透镜模芯制备方法 | |
CN112975408B (zh) | 多激光多轴车削-cnc铣削复合加工方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775159 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775159 Country of ref document: EP Kind code of ref document: A1 |