WO2021187724A1 - 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법 - Google Patents
수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법 Download PDFInfo
- Publication number
- WO2021187724A1 WO2021187724A1 PCT/KR2020/018245 KR2020018245W WO2021187724A1 WO 2021187724 A1 WO2021187724 A1 WO 2021187724A1 KR 2020018245 W KR2020018245 W KR 2020018245W WO 2021187724 A1 WO2021187724 A1 WO 2021187724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid metal
- conductive
- conductive ink
- microparticles
- hydrogen
- Prior art date
Links
- 229910001338 liquidmetal Inorganic materials 0.000 title claims abstract description 168
- 239000011859 microparticle Substances 0.000 title claims abstract description 82
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title abstract 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 90
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 70
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 59
- 229920000642 polymer Polymers 0.000 claims description 59
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 39
- 239000005977 Ethylene Substances 0.000 claims description 39
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 239000003999 initiator Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 18
- 239000010419 fine particle Substances 0.000 claims description 14
- -1 styrene-ethylene-butylene-styrene Chemical class 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- 229920002635 polyurethane Polymers 0.000 claims description 12
- 239000004814 polyurethane Substances 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- SPAHBIMNXMGCMI-UHFFFAOYSA-N [Ga].[In] Chemical compound [Ga].[In] SPAHBIMNXMGCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000006023 eutectic alloy Substances 0.000 claims description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 7
- 229920006132 styrene block copolymer Polymers 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 150000002978 peroxides Chemical group 0.000 claims description 5
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910000846 In alloy Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 3
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 claims description 3
- 230000005496 eutectics Effects 0.000 claims description 3
- 229910001084 galinstan Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 33
- 239000000758 substrate Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000976 ink Substances 0.000 description 94
- 238000007639 printing Methods 0.000 description 30
- 239000010410 layer Substances 0.000 description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 24
- 150000003254 radicals Chemical class 0.000 description 21
- 238000012360 testing method Methods 0.000 description 16
- 238000002161 passivation Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 239000012634 fragment Substances 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001723 carbon free-radicals Chemical class 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 229920002689 polyvinyl acetate Polymers 0.000 description 4
- 239000011118 polyvinyl acetate Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 3
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- ZHPNWZCWUUJAJC-UHFFFAOYSA-N fluorosilicon Chemical compound [Si]F ZHPNWZCWUUJAJC-UHFFFAOYSA-N 0.000 description 2
- 229920005560 fluorosilicone rubber Polymers 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229920001054 Poly(ethylene‐co‐vinyl acetate) Polymers 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229920005839 ecoflex® Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 238000002272 high-resolution X-ray photoelectron spectroscopy Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000003707 silyl modified polymer Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/037—Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/033—Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/102—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
Definitions
- the present invention relates to conductive liquid metal microparticles comprising a hydrogen-doped liquid metal oxide, a conductive ink comprising the same, and a method for manufacturing the same, and more particularly, to a conductive liquid metal microparticle comprising a hydrogen-doped liquid metal oxide.
- the present invention relates to a conductive ink capable of manufacturing an electrode line having high conductivity and negligible resistance change in the presence of mechanical damage or deformation, and excellent interaction between elastic substrates, and a method for manufacturing the same.
- stretchable electronics have attracted attention over the past decade as a promising next-generation electronic device.
- One of the major technical challenges of stretchable electronics is forming stretchable circuit lines.
- Flexible circuit lines simultaneously require properties such as metal conductivity, negligible resistance change from deformation or mechanical damage, electrical stability under harsh environmental conditions, complex circuit line fabrication, passivation, and good adhesion to elastic substrates.
- Liquid metals have been studied as an alternative to rigid metal conductors due to their unique properties such as flowability, extreme stretchability and metallic conductivity (34,000 S/cm).
- the oxide layer (Ga 2 O 3 ) formed quickly on the surface of the liquid metal is insulating, the electrode composed of the liquid metal is non-conductive. Therefore, in order to activate the conduction of the electrode, it is necessary to remove the surface oxide layer by chemical etching or destroy the oxide layer by mechanical scratching. In addition, there is a problem that the interaction between the liquid metal and the stretchable substrate is very poor.
- Three-dimensional structures such as planar multilayer induction coils for tactile sensing applications, and 3D antenna structures for wireless communication.
- One of the major technical problems of the electronic device having a three-dimensional structure is that it is difficult for a passive component to separate the lower and upper circuit lines.
- An object of the present invention is to solve the above problems, and to provide a conductive ink for forming a circuit line having negligible resistance change in metal conductivity, deformation or mechanical damage, and excellent adhesion to an elastic substrate.
- Another object of the present invention is to provide a conductive ink using a liquid metal that does not need to destroy the oxide layer using chemical etching or mechanical scratching.
- Another object of the present invention is to provide a conductive ink capable of manufacturing a stretchable electrode maintaining the same conductivity in a wide range of temperature and humidity, and a method for manufacturing the same.
- a conductive ink capable of manufacturing a stretchable electrode capable of 3D circuit printing, a strain sensor including the same, and a method for manufacturing the same.
- a core comprising a liquid metal; and a shell comprising a hydrogen-doped liquid metal oxide surrounding the core.
- the shell may further include a liquid metal oxide.
- the hydrogen-doped liquid metal oxide may be represented by the formula (1).
- M is a liquid metal
- x 0 ⁇ x ⁇ 1
- z is 0 ⁇ z ⁇ 1.
- the liquid metal may include at least one selected from the group consisting of gallium (Ga), indium (In), tin (Sn), gold (Au), and alloys thereof.
- the alloy may include at least one selected from the group consisting of a gallium indium eutectic alloy (EGaIn, Eutectic Gallium-Indium alloy), and Galinstan.
- a gallium indium eutectic alloy EGaIn, Eutectic Gallium-Indium alloy
- Galinstan Galinstan
- the conductive liquid metal microparticles may further include an elastic polymer coupled to the shell and positioned in an outward direction.
- the elastic polymer may include an ethylene (-C-C-) segment (moiety) in the chain.
- the elastic polymer includes at least one selected from the group consisting of (ethylene-vinyl acetate) copolymer (PEVA), styrene-ethylene-butylene-styrene block copolymer (SEBS), and aliphatic polyurethane. can do.
- PEVA ethylene-vinyl acetate copolymer
- SEBS styrene-ethylene-butylene-styrene block copolymer
- aliphatic polyurethane aliphatic polyurethane.
- the diameter of the conductive liquid metal fine particles may be 1 to 10 ⁇ m.
- the thickness of the shell may be 0.5 to 10 nm.
- an elastic polymer the conductive liquid metal fine particles; and a solvent; is provided.
- the elastic polymer may include an ethylene (-C-C-) segment (moiety) in the chain.
- the elastic polymer includes at least one selected from the group consisting of (ethylene-vinyl acetate) copolymer (PEVA), styrene-ethylene-butylene-styrene block copolymer (SEBS), and aliphatic polyurethane. can do.
- PEVA ethylene-vinyl acetate copolymer
- SEBS styrene-ethylene-butylene-styrene block copolymer
- aliphatic polyurethane aliphatic polyurethane.
- the solvent may include at least one selected from the group consisting of toluene, tetrahydrofuran (THF), hexane, and heptane.
- the conductive ink further includes a radical initiator, the radical initiator is a peroxide-based compound, and the peroxide-based compound is dicumyl peroxide or dibenzoyl peroxide. And it may include at least one selected from the group consisting of di-tert-butyl peroxide.
- step (a) may be performed at a temperature of 70 to 100 °C.
- the mixed solution may contain 5 to 90% by volume (v/v%) of the liquid metal microparticles based on 100% by volume of the elastic polymer.
- step (b) ultrasonically treating the mixed solution to react the elastic polymer with the radical initiator to generate hydrogen radicals (H ⁇ ) and forming a core including the liquid metal ; (b-2) oxidizing the liquid metal on the surface of the core to form a liquid metal oxide surrounding the core; And (b-3) forming a conductive liquid metal fine particle shell is formed, including the hydrogen radical (H and) the liquid hydrogen doping by combining with oxygen in the metal oxide (hydrogen-doped), a liquid metal oxide; may include.
- the method for producing the conductive ink comprises the steps of (b-4) bonding the elastic polymer to the shell after step (b-3) to form conductive liquid metal microparticles containing the polymer bonded to the shell; may additionally include.
- the conductive liquid metal microparticles of the present invention can maintain conductivity without destroying the oxide layer using chemical etching or mechanical scratches by doping hydrogen into the natural oxide layer formed on the surface of the liquid metal microparticles.
- the conductive ink of the present invention can form a circuit line having negligible resistance change in metal conductivity, deformation or mechanical damage and excellent adhesion to an elastic substrate by including the conductive liquid metal microparticles.
- the conductive ink of the present invention it is possible to manufacture a stretchable electrode maintaining the same conductivity in a wide range of temperature and humidity.
- a stretchable electrode capable of 3D circuit printing and a strain sensor including the same can be manufactured using the conductive ink of the present invention.
- FIG. 1 shows a manufacturing process of a conductive ink according to an embodiment of the present invention.
- Figure 2 shows the high-resolution XPS spectrum (O 1s, Ga 3d, In 3d) of the liquid metal microparticles in Example 1.
- Figure 3a shows the APT element distribution on the surface of the conductive liquid metal microparticles in Example 1.
- Figure 3b shows the APT element profile of C, GaO, GaOH and InOH on the surface of the conductive liquid metal microparticles in Example 1.
- Figure 4a shows the APT element distribution on the surface of the liquid metal microparticles in Comparative Example 1.
- Figure 4b shows the elemental profile of the surface of the liquid metal microparticles in Comparative Example 1.
- FIG. 7A is a cross-sectional SEM photograph of a stretchable electrode printed with the conductive ink of Example 1.
- FIG. 7B shows a cross-sectional SEM photograph when the stretchable electrode printed with the conductive ink of Example 1 was etched with HCl.
- 7c is a SEM photograph of the upper surface of the electrode when the stretchable electrode printed with conductive ink is uniaxially stretched by 500%.
- Figure 8a shows the conductivity according to the size of the liquid metal microparticles of Examples 1 and 9 to 12.
- Figure 8b shows the resistance change when the stretchable electrode formed by printing the conductive ink of Example 1 is uniaxially stretched for 1,000 cycles at 100% and 500% strain ( ⁇ ).
- Figure 8c shows a state when the stretchable electrode formed by printing the conductive ink of Example 1 is connected to the LED and then uniaxially stretched at various strains.
- 9A is a photograph of a state in which the stretchable electrode formed by printing the conductive ink of Example 1 is scratched with tweezers.
- Figure 9b shows the resistance change of the stretchable electrode formed by printing the conductive ink of Example 1 while being cut with a sharp razor blade
- FIG. 10 shows a cross-sectional SEM image of a stretchable electrode formed by printing the conductive ink of Example 14;
- 11A shows the change in resistance for 12 weeks at various temperatures (-20°C, 25°C, 100°C) of the stretchable electrode formed by printing the conductive ink of Example 14.
- 11B shows the resistance change for 30 days at 90% moisture of an electrode formed by printing the inks of Example 14 and Comparative Example 1.
- FIG. 11B shows the resistance change for 30 days at 90% moisture of an electrode formed by printing the inks of Example 14 and Comparative Example 1.
- FIG. 12 is a three-dimensional stretchable electrode circuit using a stretchable electrode formed by printing a conductive ink according to an embodiment of the present invention, a schematic diagram of the electrode circuit, and a cross-sectional schematic diagram of the stretchable electrode at the intersection of the stretchable electrode.
- FIG. 13 is a schematic diagram illustrating a method of manufacturing a strain sensor by printing a conductive ink according to an embodiment of the present invention.
- FIG. 15A shows the resistance change during repeated uniaxial stretching of Device Example 2.
- FIG. 15B is a graph showing the change in inductance when the device Example 2 is repeatedly uniaxially stretched, and the diagram inserted in FIG. 15B is a graph showing the measured inductance versus the strain of Device Example 2.
- FIG. 15B is a graph showing the change in inductance when the device Example 2 is repeatedly uniaxially stretched, and the diagram inserted in FIG. 15B is a graph showing the measured inductance versus the strain of Device Example 2.
- first, second, etc. may be used to describe various elements, but the elements are not limited by the terms.
- the above terms are used only for the purpose of distinguishing one component from another.
- a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
- a component when it is said that a component is “formed” or “stacked” on another component, it may be formed or laminated directly attached to the front surface or one surface on the surface of the other component. It should be understood that other components may be present in the .
- liquid metal microparticles containing the hydrogen-doped liquid metal oxide of the present invention, the conductive ink containing the same, and a method for manufacturing the same will be described in detail.
- this is provided as an example, and the present invention is not limited thereto, and the present invention is only defined by the scope of the claims to be described later.
- the present invention includes a core comprising a liquid metal including a liquid metal; and a shell surrounding the core and comprising a hydrogen-doped liquid metal oxide.
- liquid metal oxide layer (Ga 2 O 3 ) is rapidly formed on the surface, so it cannot maintain the conductivity of the liquid metal and becomes an insulator. By being hydrogen-doped, the conductivity of liquid metal can be maintained.
- the shell may further include a liquid metal oxide.
- the hydrogen-doped liquid metal oxide may be represented by the formula (1).
- M is a liquid metal
- x 0 ⁇ x ⁇ 1
- z is 0 ⁇ z ⁇ 1.
- the liquid metal may include at least one selected from the group consisting of gallium (Ga), indium (In), tin (Sn), gold (Au), and alloys thereof.
- the alloy may include at least one selected from the group consisting of a gallium indium eutectic alloy (EGaIn, Eutectic Gallium-Indium alloy) and Galinstan, and preferably include a gallium indium eutectic alloy. .
- a gallium indium eutectic alloy EGaIn, Eutectic Gallium-Indium alloy
- Galinstan a gallium indium eutectic alloy
- the conductive liquid metal microparticles may further include an elastic polymer coupled to the shell and positioned in an outward direction.
- the elastic polymer may include an ethylene (-C-C-) segment (moiety) in the chain.
- the ethylene segment may contain 40 to 99% by weight based on 100% by weight of the elastic polymer, preferably 60 to 95% by weight, and more preferably 80 to 90% by weight.
- hydrogen doping is not sufficient to the oxide on the surface of the liquid metal microparticle, so the conductivity is low when used as a stretchable electrode, which is not preferable, and exceeds 99% by weight It is not preferable because it is not an elastic polymer because elasticity is lost when it is included.
- the elastic polymer includes at least one selected from the group consisting of (ethylene-vinyl acetate) copolymer (PEVA), styrene-ethylene-butylene-styrene block copolymer (SEBS), and aliphatic polyurethane. and preferably (ethylene-vinyl acetate) copolymer.
- PEVA ethylene-vinyl acetate copolymer
- SEBS styrene-ethylene-butylene-styrene block copolymer
- aliphatic polyurethane ethylene-vinyl acetate copolymer
- the diameter of the conductive liquid metal fine particles may be 1 to 10 ⁇ m, preferably 3 to 5 ⁇ m.
- the diameter of the conductive liquid metal microparticles is less than 1 ⁇ m, the conductivity is low and undesirable, and when it exceeds 10 ⁇ m, the thickness of the shell (liquid metal oxide) is thin compared to the total diameter of the liquid metal microparticles when handling the shell (hydrogen doping) When proceeding), the liquid metal of the core is damaged and leaked, which is not preferable because it is difficult to form the conductive liquid metal microparticles of the present invention.
- the thickness of the shell may be 0.5 to 10 nm, preferably 1 to 5 nm, more preferably 3 to 5 nm.
- the thickness of the shell is less than 0.5 nm, the liquid metal microparticles are unstable, which is not preferable, and when it exceeds 10 nm, the conductive effect exhibited by hydrogen doping as the thickness of the liquid metal oxide as the shell becomes thick is insignificant.
- the present invention is an elastic polymer; the conductive liquid metal fine particles; and a solvent; provides a conductive ink comprising.
- the elastic polymer may include an ethylene (-C-C-) segment (moiety) in the chain.
- the ethylene segment may include 40 to 99% by weight based on 100% by weight of the elastic polymer, preferably 60 to 95% by weight, more preferably 80 to 90% by weight. have.
- the elastic polymer contains less than 40% by weight of the ethylene segment, hydrogen doping is not sufficient to the oxide on the surface of the liquid metal microparticle, so the conductivity is low when used as a stretchable electrode, which is not preferable, and exceeds 99% by weight It is not preferable because it has no elasticity and it is difficult to manufacture a stretchable electrode using the conductive ink.
- the elastic polymer includes at least one selected from the group consisting of (ethylene-vinyl acetate) copolymer (PEVA), styrene-ethylene-butylene-styrene block copolymer (SEBS), and aliphatic polyurethane. and preferably (ethylene-vinyl acetate) copolymer.
- PEVA ethylene-vinyl acetate copolymer
- SEBS styrene-ethylene-butylene-styrene block copolymer
- aliphatic polyurethane ethylene-vinyl acetate copolymer
- the solvent may include at least one selected from the group consisting of toluene, tetrahydrofuran (THF), hexane, and heptane, preferably toluene and tetrahydrofuran. At least one selected from the group consisting of, more preferably, toluene may be included.
- THF tetrahydrofuran
- hexane hexane
- heptane preferably toluene and tetrahydrofuran.
- At least one selected from the group consisting of, more preferably, toluene may be included.
- the conductive ink may further include a radical initiator.
- the radical initiator may be a peroxide-based compound, preferably dicumyl peroxide, dibenzoyl peroxide, di-tert-butyl peroxide ) may include at least one selected from the group consisting of, and more preferably include dicumyl peroxide.
- FIG. 1 shows a manufacturing process of a conductive ink according to an embodiment of the present invention.
- the present invention comprises the steps of (a) preparing a mixed solution by mixing an elastic polymer, a liquid metal, a radical initiator and a solvent; and (b) sonicating the mixed solution to prepare a conductive ink containing the conductive liquid metal microparticles.
- the step (a) may be performed at a temperature of 70 to 100 °C.
- the step (a) is performed at a temperature of less than 70° C., it is not preferable because the radical initiator is not activated and cannot generate radicals, and when it exceeds 100° C., it is not preferable because an addition reaction may occur.
- the mixed solution may contain 5 to 90% by volume (v/v%) of the liquid metal based on 100% by volume of the elastic polymer, preferably 10 to 40% by volume (v/v%) , and more preferably 20 to 30% by volume (v/v%).
- the liquid metal is less than 5% by volume, the conductivity is low, and it is not preferable, and when it exceeds 90% by volume, the effect of increasing the conductivity as the volume% of the liquid metal increases is insignificant, which is not preferable.
- step (b) ultrasonically treating the mixed solution to react the elastic polymer with the radical initiator to generate hydrogen radicals (H ⁇ ) and forming a core including the liquid metal ; (b-2) oxidizing the liquid metal on the surface of the core to form a liquid metal oxide surrounding the core; And (b-3) forming a conductive liquid metal fine particle shell is formed, including the hydrogen radical (H and) the liquid hydrogen doping by combining with oxygen in the metal oxide (hydrogen-doped), a liquid metal oxide; may include.
- the generated radical is transferred to the polymer and undergoes ⁇ -scission to generate alkene and secondary carbon radicals ( ⁇ CC ⁇ -C ⁇ ) that generate primary carbon radicals.
- the secondary carbon radical generation reaction is shown in Schemes 3 and 4 below.
- the primary carbon radical is converted to an alkene of hydrogen radicals (H and) the generation of hydrogen and the radical generation reaction is shown in scheme 5 below.
- the rate of hydrogen radical formation can be controlled by adjusting the concentration of the radical initiator.
- the liquid metal on the surface of the core containing the liquid metal is oxidized to form a liquid metal oxide surrounding the core, and the hydrogen radical binds to oxygen in the liquid metal oxide and binds to hydrogen-doped liquid metal Conductive liquid metal microparticles having a shell containing oxide are formed.
- the elastic polymer contains a large amount of ethylene (-CC-) segments (moiety) in the chain, and typically contains 88 wt% of ethylene segments (ethylene-vinyl acetate) copolymer (PEVA) is preferably used.
- the method for producing the conductive ink comprises the steps of (b-4) bonding the elastic polymer to the shell after step (b-3) to form conductive liquid metal microparticles containing the polymer bonded to the shell; may additionally include.
- the elastic polymer coupled to the shell of the conductive liquid metal microparticle and positioned outward helps to stabilize the liquid metal microparticle.
- the conductive ink was printed on a dow corning (PDMS) substrate using a nozzle printer (Image Master 350PC, Musashi).
- the diameter of the nozzle was 100 ⁇ m, and the dispensing pressure was varied from 50 to 100 kPa to control the width of the printed line.
- the solvent was removed through heat treatment at 120° C. for 3 hours to prepare a stretchable electrode.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that PEVA having an ethylene fragment weight fraction ( ⁇ E ) of 0.82 was used instead of PEVA having an ethylene fragment weight fraction ( ⁇ E ) of 0.88 did.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.75 was used instead of PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.88 did.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that PEVA having an ethylene fragment weight fraction ( ⁇ E ) of 0.6 was used instead of PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.88 did.
- Conductive ink and stretchable electrode were prepared in the same manner as in Example 1, except that PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.3 was used instead of PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.88 did.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.2 was used instead of PEVA having an ethylene segment weight fraction ( ⁇ E ) of 0.88 did.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that 5 mL of tetrahydrofuran (THF, Samchun) capable of dissolving polyurethane was used instead of using 5 mL of toluene because it was not soluble. .
- SEBS styrene-ethylene-butylene-styrene block copolymer
- THF tetrahydrofuran
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that 0.14 g was used instead of 0.56 g of gallium indium eutectic alloy.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that 0.32 g was used instead of 0.56 g of gallium indium eutectic alloy.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that 0.86 g was used instead of 0.56 g of gallium indium eutectic alloy.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that 1.30 g was used instead of 0.56 g of gallium indium eutectic alloy.
- a conductive ink and a stretchable electrode were prepared in the same manner as in Example 1, except that dicumyl peroxide (DCP, Sigma-Aldrich) was not used instead of used.
- DCP dicumyl peroxide
- Example 2 In the same manner as in Example 1, except that 0.3 g of PEVA having an ethylene fragment weight fraction ( ⁇ E ) of 0.88 was used instead of 0.2 g, and 0.75 g was used instead of using 0.56 g of gallium indium eutectic alloy. Conductive inks and stretchable electrodes were prepared.
- FIG. 12 shows a three-dimensional stretchable electrode circuit using a stretchable electrode formed by printing a conductive ink according to an embodiment of the present invention and a schematic diagram thereof, and a cross-sectional schematic diagram of the stretchable electrode at the intersection of the stretchable electrodes.
- a circuit was constructed with reference to FIG. 12 .
- LED A is connected to the stretchable electrode (Line 1) prepared according to Example 1
- LED C is connected to the stretchable electrode (Line 3) manufactured according to Example 14 and not connected to Line 1 connected.
- the LED B was connected to the stretchable electrode (Line 2) prepared according to Example 14 and intersected with Line 1 and Line 3 above. At this time, at the intersection, Line 2 is located on Line 1 and Line 3, the intersection of Line 2 and Line 1 is a purple box (v), and the intersection of Line 2 and Line 3 is a green box (g). showed
- FIG. 13 is a schematic diagram illustrating a method of manufacturing a strain sensor by printing a conductive ink according to an embodiment of the present invention. A strain sensor was manufactured with reference to FIG. 13 .
- the conductive ink prepared according to Example 14 was rotated counterclockwise 9 times from the center to the outside with a width of 500 ⁇ m and a height of 90 ⁇ m on a PDMS (Dow Corning) substrate using a nozzle printer (Image Master 350PC, Musashi). Then, the lower electrode was printed in a flat spiral shape with a diameter of 20 mm and heat treated at 120° C. for 3 hours to prepare a lower electrode. At this time, the lower electrode was formed by a matrix containing an elastic polymer (PEVA) and hydrogen doping (hydrogen) dispersed in the matrix. doped) a conductive line layer comprising a conductive wire having fine particles of liquid metal; and a passivation layer coated on the conductive wire and including a coating portion having an elastic polymer (PEVA).
- PEVA elastic polymer
- hydrox hydrogen doping
- the coating part formed in the center of the lower electrode was removed by scraping it with tongs, so that the liquid metal microparticles in the center of the lower electrode were leaked.
- the conductive ink prepared according to Example 12 was printed by rotating 9 times at a width of 500 ⁇ m and a height of 90 ⁇ m starting from the center in the form of a flat spiral having a diameter of 20 mm in the opposite direction to the lower electrode rotating from the center to the outside, and then at 120 ° C.
- the upper electrode was fabricated by heat treatment for 3 hours.
- the upper electrode may include a conductive line layer including a matrix including an elastic polymer (PEVA) and a conductive wire having hydrogen-doped liquid metal microparticles dispersed in the matrix; and a passivation layer coated on the conductive wire and including a coating portion having an elastic polymer (PEVA).
- Test Example 1-1 Confirmation of hydrogen doping using XPS spectrum
- Figure 2 shows the high-resolution XPS spectrum (O 1s, Ga 3d, In 3d) of the liquid metal microparticles in the ink of Example 1. Specifically, high-resolution X-ray photoelectron spectroscopy (XPS) spectra of O 1s, Ga 3d and In 3d are shown after washing the liquid metal microparticles from the ink of Example 1. A peak was deconvolved using a Gaussian-Lorentzian method.
- XPS X-ray photoelectron spectroscopy
- the peaks (Ga + , Ga 3+ , In 3+ ) in the range of 19 to 22 eV correspond to the hydroxide contribution.
- the peak can be deconvolved with the surface oxide contribution (-Ga(OH) 3 , 20.8 eV) and the hydrogen doping contribution (GaOH).
- the oxygen fraction in the hydrogen doped state (GaOH) is 15.8% , which indicates that the atomic concentration of H + is 7.0 at%.
- Test Example 1-2 Confirmation of hydrogen doping using APT element distribution
- Figure 3a shows the APT element distribution on the surface of the conductive liquid metal microparticles in Example 1
- Figure 3b shows the APT element profiles of C, GaO, GaOH and InOH on the surface of the conductive liquid metal microparticles in Example 1.
- Figure 4a shows the APT element distribution on the surface of the liquid metal microparticles in Comparative Example 1
- Figure 4b shows the element profile of the surface of the liquid metal microparticles in Comparative Example 1.
- APT analysis was performed as follows. First, the inks prepared according to Example 1 and Comparative Example 1 were diluted in 10 mL of toluene, vortexed for 2 minutes, settling for 30 minutes, and then the solution floating on the surface was discarded. This washing process was repeated three times to remove the polymer, and the precipitated liquid metal microparticles were diluted with 10 mL of toluene and spin-coated on a Si wafer. Ni was deposited on the surface of micro-particles to prevent local heating of the sample during laser irradiation for measurement, and a sample for APT analysis was prepared through a focused ion beam. APT analysis was performed by transferring the sample to an APT tip.
- Test Example 2 Conductivity analysis according to ethylene weight fraction
- FIG. 5 shows the conductivity of the stretchable electrodes formed by printing the conductive inks of Examples 1 to 8 and Comparative Examples 1 to 3; Specifically, in order to confirm the relationship between the degree of hydrogen doping and the chemical process of an elastic polymer containing an ethylene segment by a radical initiator, a conductive ink was prepared with a polymer containing various wt% of an ethylene segment, and Conductivity was tested by printing.
- Example 6 shows liquid metal microparticles in Example 1 (w/ PEVA & DCP), Example 13 (w/ PEVA) and Comparative Example 1 (w/o PEVA & DCP), respectively, positioned between gold (Au) pattern lines
- the IV graph is shown when
- Example 1 w/ PEVA & DCP
- Example 13 w/ PEVA
- Comparative Example 1 w/o PEVA & DCP
- Example 1 in which liquid metal microparticles were prepared using an elastic polymer (PEVA) and a radical initiator (DCP), had the highest conductivity, and liquid metal microparticles were prepared using only an elastic polymer (PEVA). Although prepared Example 13 is lower than Example 1, it can be confirmed that it still has high conductivity. On the other hand, it can be confirmed that Comparative Example 1, in which liquid metal microparticles were prepared without using an elastic polymer (PEVA) and a radical initiator (DCP), was an electrically insulator.
- PEVA elastic polymer
- DCP radical initiator
- FIG. 7a is a cross-sectional SEM photograph of the stretchable electrode printed with the conductive ink of Example 1
- FIG. 7b is a cross-sectional SEM photograph of the stretchable electrode printed with the conductive ink of Example 1 is etched with HCl.
- . 7c is a SEM photograph of the upper surface of the electrode when the stretchable electrode printed with conductive ink is uniaxially stretched by 500%.
- the conductive liquid metal microparticles are vertically stacked on the substrate to increase the contact area between the microparticles and are slightly deformed.
- the conductive liquid metal microparticles are three-dimensionally interconnected through the continuously connected hollow space to form a two-continuous structure with the PEVA matrix.
- the conductive liquid metal microparticles do not merge with each other and return to their initial shape when the strain is released even after 1,000 cycles are repeated.
- This reversible shape change is possible due to the elastic properties of PEVA, and after the conductive ink of the present invention contains an elastic polymer and is printed on an elastic polymer substrate (PDMS or Ecoflex) to form a stretchable electrode, the substrate and the electrode are It can be seen that when deformation is applied, it dynamically deforms together.
- Test Example 5 Conductivity according to volume fraction and size of liquid metal microparticles
- Figure 8a shows the conductivity according to the size of the liquid metal microparticles of Examples 1 and 9 to 12.
- the ultrasonic treatment time was set to 5 mins, 10 mins, 15 mins, 30 mins and 120 mins, respectively, to control the size of liquid metal microparticles in the conductive ink, and accordingly, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, It has a size of 10 ⁇ m and 15 ⁇ m.
- the conductivity of the stretchable electrode formed by printing the conductive ink increases according to the size of the conductive liquid metal microparticles.
- the highest conductivity (2,500 Scm -1 ) is achieved when the conductive ink contains conductive liquid metal microparticles with a diameter of 15 ⁇ m. This appears to be because the contact area between the liquid metal microparticles increases and the number of contacts decreases as the size of the liquid metal microparticles increases.
- the maximum conductivity was obtained when the volume fraction of the conductive liquid metal microparticles was 20 to 30%, indicating that there is a tradeoff between the liquid metal content of the conductive ink and the hydrogen doping efficiency of the liquid metal. It can be seen that more liquid metal in the conductive ink can increase the overall conductivity, but hydrogen doping is not enough with a small amount of PEVA.
- Test Example 6 Resistance change during repeated tensile of electrode lines formed of conductive ink
- Figure 8b shows the resistance change when repeating uniaxial stretching for 1,000 cycles at 100% and 500% strain ( ⁇ ) of an extensible electrode formed by printing the conductive ink of Example 1
- Figure 8c is the conductivity of Example 1 It shows the appearance when the extensible electrode formed by printing ink is connected to the LED and then uniaxially stretched at various strain rates.
- the electrode line formed by printing the conductive ink of Example 1 has a negligible resistance change while repeating 1,000 cycles of uniaxial stretching at strains ( ⁇ ) of 100% and 500%.
- the graph inserted in FIG. 8b is an enlarged resistance change when the stretchable electrode formed by printing the conductive ink of Example 1 is uniaxially stretched 1,000 times at a strain ( ⁇ ) of 500%, and the same resistance curve profile can be seen to indicate.
- Figure 8c confirms the change in LED luminance (intensity of light) according to the strain when the LED is attached between two extensible electrodes formed by printing the conductive ink of Example 1. Referring to FIG. 8C , it can be seen that the luminance (intensity of light) is constant from 0% to 500% of the strain ⁇ .
- Test Example 7 Cutting Test of Electrode Lines Formed with Conductive Ink
- FIG. 9A is a photograph of a state in which the stretchable electrode formed by printing the conductive ink of Example 1 is scraped with tweezers
- FIG. 9B is a picture taken while the stretchable electrode formed by printing the conductive ink of Example 1 is cut with a sharp razor blade. It shows the change in resistance.
- the extensible electrode formed by printing the conductive ink prepared according to Example 1 was connected to the LED, and then the extensible electrode was cut with a sharp razor blade and blunt tweezers to conduct a cutting test.
- FIG. 10 shows a cross-sectional SEM image of the stretchable electrode prepared according to Example 14.
- FIG. 11A shows the resistance change of the stretchable electrode of Example 14 at various temperatures (-20°C, 25°C, 100°C) for 12 weeks, and FIG. 11B shows the electrode of Comparative Example 1 (passivation layer not present) The resistance change for 30 days at 90% moisture of the stretchable electrode of Example 14 (with passivation layer) is shown.
- the stretchable electrode prepared according to Example 14 exhibits excellent thermal stability in a wide temperature range of -20 to 100°C.
- the resistance of the stretchable electrode prepared according to Example 14 showed no difference at 100° C. for 12 weeks, indicating that oxidation no longer occurred at high temperature.
- the resistance was slightly high, but it can be confirmed that it is stabilized after 4 weeks. It can be seen that the contact between the liquid metal microparticles was improved by possible joule heating during the measurement.
- the stretchable electrode of the present invention including the passivation layer exhibits excellent electrical stability in mechanical, thermal, and moisture environments.
- Test Example 10 Characteristics of a three-dimensional circuit using a stretchable electrode
- FIG. 12 is a schematic diagram of a three-dimensional stretchable electrode circuit manufactured according to Device Example 1 and its on/off phenomenon by applying a voltage. Specifically, it is shown how a complex three-dimensional interconnection can be designed without electrical crosstalk between stacked stretchable electrodes by changing the thickness of the passivation layer.
- a complex three-dimensional extensible circuit can be manufactured without electrical crosstalk with a controlled passivation layer by controlling the weight parts of the polymer and liquid metal when manufacturing the extensible electrode of the present invention.
- FIG. 14 shows images at 0% strain ( ⁇ ) and 100% strain ( ⁇ ) of Device Example 2
- FIG. 15A shows the resistance change during repeated uniaxial stretching of Device Example 2.
- 15B is a graph showing the change in inductance when the device Example 2 is repeatedly uniaxially stretched
- the diagram inserted in FIG. 15B is a graph showing the measured inductance versus the strain of Device Example 2.
- the strain sensor manufactured according to Device Example 2 exhibits negligible resistance change even at a strain rate of 100% and has elasticity.
- the strain sensor manufactured according to Device Example 2 has a high inductance of 4.25 ⁇ H at 100 kHz by being formed of a double layer including a lower electrode and an upper electrode. This is twice the inductance of a single-layer conductive coil, 2 ⁇ H, at the same frequency, and is higher than that of a stretchable coil made of serpentine traces ( ⁇ 100 nH) and that of a stretchable coil made of liquid metal microchannels (0.712 ⁇ H). You can see it's much higher.
- the strain sensor manufactured according to Device Example 2 shows a linear response of inductance to deformation. This indicates that the inductance depends on the area of the electrode because the resistance of the lower electrode and the upper electrode does not change.
- the conductive liquid metal microparticles of the present invention can maintain conductivity without destroying the oxide layer using chemical etching or mechanical scratches by doping hydrogen into the natural oxide layer formed on the surface of the liquid metal microparticles.
- the conductive ink of the present invention can form a circuit line having negligible resistance change in metal conductivity, deformation or mechanical damage and excellent adhesion to an elastic substrate by including the conductive liquid metal microparticles.
- the conductive ink of the present invention it is possible to manufacture a stretchable electrode maintaining the same conductivity in a wide range of temperature and humidity.
- a stretchable electrode capable of 3D circuit printing and a strain sensor including the same can be manufactured using the conductive ink of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Conductive Materials (AREA)
Abstract
수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법이 개시된다. 상기 전도성 액체금속 미세입자는 액체금속을 포함하는 코어; 및 상기 코어를 둘러싸고, 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘;을 포함하고, 상기 전도성 잉크가 상기 액체금속 미세입자를 포함함으로써, 금속 전도도를 가지고, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화, 열악한 환경 조건에서의 전기 안정성 및 탄성 기판에 대한 우수한 접착력을 가지는 회로 라인을 형성할 수 있다.
Description
본 발명은 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법에 관한 것으로, 상세하게는 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자를 포함함으로써 높은 전도도 및 기계적 손상 또는 변형이 존재할 때 무시할 수 있는 저항변화를 가지고, 탄성 기판 사이의 상호작용이 우수한 전극 라인을 제조할 수 있는 전도성 잉크 및 그의 제조방법에 관한 것이다.
부드럽고 신축성 있는 전자 장치가 유망한 차세대 전자 장치로 지난 10년간 주목 받았다. 신축성 전자기기의 주요 기술 문제 중 하나는 신축성 회로 라인을 형성하는 것이다. 신축성 회로 라인은 금속 전도도, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화, 열악한 환경 조건에서의 전기 안정성, 복잡한 회로라인 제조, 패시베이션(passivation) 및 탄성 기판에 대한 우수한 접착력과 같은 특성이 동시에 요구된다.
높은 전도성 및 높은 신축성을 얻기 위한 다양한 연구가 진행되었다. 절연체인 연신성 고분자에 전도성 필러를 내장(embedding)한 복합체는 높은 신축성을 얻을 수 있었지만 연신에 따라 전도성 필러간 거리가 멀어지게 되어 전도성-연신성 간의 피할 수 없는 균형 관계 및 연신에 따른 급격한 저항변화의 문제점이 있다.
유동성, 극도의 신축성 및 금속 전도성(34,000 S/cm)과 같은 고유한 특성으로 인해 단단한 금속 도체의 대안으로 액체금속이 연구되었다. 하지만, 액체금속 표면에 빠르게 형성된 산화물층(Ga2O3)은 절연성이기 때문에 액체금속으로 구성된 전극은 비전도성이다. 따라서, 전극의 전도를 활성화 시키기 위해 화학적 에칭(etching)에 의해 표면 산화층을 제거하거나 기계적 스크래치에 의해 산화층을 파괴할 필요가 있다. 또한, 액체금속과 신축성 기판 사이의 상호작용은 매우 열악하다는 문제점이 있다.
미래의 전자 기기는 촉각 감지 애플리케이션을 위한 평면형 다층 유도 코일, 무선 통신을 위한 3D 안테나 구조 등과 같은 3차원 구조로 높은 신축성을 제공하는 것에 중점을 두고 있다. 3차원 구조의 전자장치의 주요 기술 문제 중 하나는 수동회로요소(passive component)가 하부 및 상부 회로라인을 분리하는데 어려움이 있다는 것이다.
따라서, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화 및 탄성 기판에 대한 우수한 접착력을 가지고, 더 나아가 3차원 구조를 제공할 수 있는 전도성 잉크 및 그의 제조방법에 관한 연구가 필요하다.
본 발명의 목적은 상기 문제점들을 해결하기 위한 것으로, 금속 전도도, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화 및 탄성 기판에 대한 우수한 접착력을 가지는 회로 라인을 형성하기 위한 전도성 잉크를 제공하는데 있다.
또한, 화학적 에칭(Ethcing)이나 기계적 스크래치를 이용해 산화층을 파괴할 필요가 없는 액체금속을 이용한 전도성 잉크를 제공하는데 있다.
또한, 넓은 범위의 온도 및 습도에서 동일한 전도성을 유지하는 연신성 전극을 제조할 수 있는 전도성 잉크 및 그의 제조방법을 제공하는데 있다.
또한, 3차원 회로 프린팅이 가능한 연신성 전극 및 그를 포함하는 스트레인 센서를 제조할 수 있는 전도성 잉크 및 그의 제조방법을 제공하는데 있다.
본 발명의 일 측면에 따르면, 액체금속을 포함하는 코어; 및 상기 코어를 둘러싸고, 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘;을 포함하는 전도성 액체금속 미세입자가 제공된다.
또한, 상기 쉘이 액체금속 산화물을 추가로 포함할 수 있다.
또한, 상기 수소 도핑된 액체금속 산화물이 화학식 1로 표시될 수 있다.
[화학식 1]
MxOyHz
상기 화학식 1에서,
M은 액체금속이고,
x는 0<x≤1이고,
y 는 0<y≤1이고,
z 는 0<z≤1이다.
또한, 상기 액체금속이 갈륨(Ga), 인듐(In), 주석(Sn), 금(Au) 및 이들의 합금으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 합금이 갈륨 인듐 공융합금(EGaIn, Eutectic Gallium-Indium alloy), 갈린스탄(Galinstan)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 전도성 액체금속 미세입자가 상기 쉘에 결합되어 외부 방향으로 위치하는 탄성 고분자를 추가로 포함할 수 있다.
또한, 상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함할 수 있다.
또한, 상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS) 및 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 전도성 액체금속 미세입자의 직경이 1 내지 10μm일 수 있다.
또한, 상기 쉘의 두께가 0.5 내지 10nm일 수 있다.
본 발명의 다른 하나의 측면에 따르면, 탄성 고분자; 상기 전도성 액체금속 미세입자; 및 용매;를 포함하는 전도성 잉크가 제공된다.
또한, 상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함할 수 있다.
또한, 상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS), 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 용매가 톨루엔(toluene), 테트라히드로퓨란(tetrahydrofuran, THF), 헥산(Hexane), 헵탄(Heptane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 전도성 잉크가 라디칼 개시제를 추가로 포함하고, 상기 라디칼 개시제가 퍼옥사이드(peroxide)계 화합물이고, 상기 퍼옥사이드계 화합물이 디큐밀 퍼옥사이드(dicumyl peroxide), 디벤조일 퍼옥사이드(dibenzoyl peroxide) 및 디터셔리부틸 퍼옥사이드(di-tert-butyl peroxide)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 또 다른 하나의 측면에 따르면, (a) 탄성 고분자, 액체금속, 라디칼 개시제 및 용매를 혼합하여 혼합용액을 제조하는 단계; 및 (b) 상기 혼합용액을 초음파 처리하여 상기 전도성 액체금속 미세입자를 포함하는 전도성 잉크를 제조하는 단계;를 포함하는 전도성 잉크의 제조방법이 제공된다.
또한, 상기 단계 (a)가 70 내지 100℃의 온도에서 수행될 수 있다.
또한, 상기 혼합용액이 상기 탄성 고분자 100 부피%를 기준으로, 상기 액체금속 미세입자 5 내지 90 부피%(v/v%)를 포함할 수 있다.
또한, 상기 단계 (b)가 (b-1) 상기 혼합용액을 초음파 처리하여 상기 탄성 고분자와 상기 라디칼 개시제를 반응시켜 수소 라디칼(Hㆍ)을 생성하고 상기 액체금속을 포함하는 코어를 형성하는 단계; (b-2) 상기 코어 표면의 액체금속이 산화되어 상기 코어를 둘러싸는 액체금속 산화물을 형성하는 단계; 및 (b-3) 상기 수소 라디칼(Hㆍ)이 상기 액체금속 산화물의 산소와 결합하여 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘이 형성된 전도성 액체금속 미세입자를 형성하는 단계;를 포함할 수 있다.
또한, 상기 전도성 잉크의 제조방법이 단계 (b-3) 후에 (b-4) 상기 탄성 고분자가 상기 쉘에 결합하여 상기 쉘에 결합된 고분자를 포함하는 전도성 액체금속 미세입자를 형성하는 단계;를 추가로 포함할 수 있다.
본 발명의 전도성 액체금속 미세입자는 액체금속 미세입자 표면에 형성된 자연 산화층에 수소를 도핑함으로써 화학적 에칭(Ethcing)이나 기계적 스크래치를 이용해 산화층을 파괴하지 않아도 전도성을 유지할 수 있다.
또한, 본 발명의 전도성 잉크는 상기 전도성 액체금속 미세입자를 포함함으로써 금속 전도도, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화 및 탄성 기판에 대한 우수한 접착력을 가지는 회로 라인을 형성할 수 있다.
또한, 본 발명의 전도성 잉크를 이용해 넓은 범위의 온도 및 습도에서 동일한 전도성을 유지하는 연신성 전극을 제조할 수 있다.
또한, 본 발명의 전도성 잉크를 이용해 3차원 회로 프린팅이 가능한 연신성 전극 및 그를 포함하는 스트레인 센서를 제조할 수 있다.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.
도 1은 본 발명의 하나의 실시예의 따른 전도성 잉크의 제조과정을 나타낸 것이다.
도 2는 실시예 1에서 액체금속 미세입자의 고해상도 XPS 스펙트럼(O 1s, Ga 3d, In 3d)을 나타낸 것이다.
도 3a는 실시예 1에서 전도성 액체금속 미세입자 표면의 APT 원소 분포를 나타낸 것이다.
도 3b는 실시예 1에서 전도성 액체금속 미세입자 표면의 C, GaO, GaOH 및 InOH의 APT 원소 프로파일을 나타낸 것이다.
도 4a는 비교예 1에서 액체금속 미세입자 표면의 APT 원소 분포를 나타낸 것이다.
도 4b는 비교예 1에서 액체금속 미세입자 표면의 원소 프로파일을 나타낸 것이다.
도 5는 실시예 1 내지 8, 비교예 1 내지 3의 전도성 잉크를 인쇄하여 형성된 연신성 전극의 전도도를 나타낸 것이다.
도 6은 실시예 1, 실시예 13 및 비교예 1의 전도성 잉크에서 액체금속 미세입자를 각각 금(Au) 패턴 라인 사이에 위치시켰을 때 I-V 그래프를 나타낸 것이다.
도 7a는 실시예 1의 전도성 잉크를 인쇄한 연신성 전극의 단면 SEM 사진을 나타낸 것이다.
도 7b는 실시예 1의 전도성 잉크를 인쇄한 연신성 전극을 HCl로 에칭했을 때 단면 SEM 사진을 나타낸 것이다.
도 7c는 전도성 잉크를 인쇄한 연신성 전극을 500% 일축신장할 때 전극 상부의 표면 SEM 사진을 나타낸 것이다.
도 8a는 실시예 1, 실시예 9 내지 12의 액체금속 미세입자의 사이즈에 따른 전도도를 나타낸 것이다.
도 8b는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 변형률(ε) 100% 및 500%에서 1,000 사이클 동안 일축신장을 반복할 때 저항 변화를 나타낸 것이다.
도 8c는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 LED에 연결한 후 다양한 변형률로 일축신장 하였을 때 모습을 나타낸 것이다.
도 9a는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 핀셋으로 긁은 상태를 촬영한 사진이다.
도 9b는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극이 날카로운 면도날로 절단되는 동안 저항 변화를 나타낸 것이고, 도 9b에 삽입된 도면은 상기 면도날로 절단된 연신성 전극의 단면 SEM 이미지(Scale bar=50μm)를 나타낸 것이다.
도 9c는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 핀셋으로 뭉툭하게 자름(blunt cut)과 동시에 반복 스트레칭(ε=100%)할 때 저항 변화를 나타낸 것이고, 도 9c에 삽입된 도면은 상기 절단과 반복 스트레칭을 동시에 진행한 연신성 전극의 단면 SEM 이미지(Scale bar=250μm)를 나타낸 것이다.
도 10은 실시예 14의 전도성 잉크를 인쇄하여 형성된 연신성 전극의 단면 SEM 이미지를 나타낸 것이다.
도 11a는 실시예 14의 전도성 잉크를 인쇄하여 형성된 연신성 전극의 다양한 온도(-20℃, 25℃, 100℃)에서 12주 동안의 저항 변화를 나타낸 것이다.
도 11b는 실시예 14 및 비교예 1의 잉크를 인쇄하여 형성된 전극의 90% 수분에서 30일 동안의 저항 변화를 나타낸 것이다.
도 12는 본 발명 하나의 실시예에 따른 전도성 잉크를 인쇄하여 형성된 연신성 전극을 이용한 삼차원 연신성 전극회로, 전극회로의 모식도 및 연신성 전극의 교차점에서 연신성 전극의 단면 모식도를 나타낸 것이다.
도 13은 본 발명 하나의 실시예에 따른 전도성 잉크를 인쇄하여 스트레인 센서(strain sensor)를 제조하는 방법을 나타낸 모식도이다.
도 14는 소자실시예 2의 변형율(ε) 0% 및 변형율(ε) 100%에서의 이미지를 나타낸 것이다.
도 15a는 소자실시예 2의 반복 일축신장 시 저항 변화를 나타낸 것이다.
도 15b는 소자실시예 2를 반복 일축신장 하였을 때 인덕턴스의 변화를 나타낸 것이고, 도 15b 에 삽입된 도면은 소자실시예 2의 변형율 대비 측정된 인덕턴스를 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.
이하, 본 발명의 수소 도핑된 액체금속 산화물을 포함하는 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명은 액체금속을 포함하는 액체금속을 포함하는 코어; 및 상기 코어를 둘러싸고, 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘;을 포함하는 전도성 액체금속 미세입자를 제공한다.
종래의 액체금속은 표면에 산화물층(Ga2O3)이 빠르게 형성됨으로써 액체금속의 전도성을 유지하지 못하고 부도체가 되나, 본 발명의 액체금속 미세입자는 액체금속 표면에 형성된 액체금속 산화물에 수소 도핑(hydrogen-doped)함으로써 액체금속의 전도성을 유지할 수 있다.
또한, 상기 쉘이 액체금속 산화물을 추가로 포함할 수 있다.
또한, 상기 수소 도핑된 액체금속 산화물이 화학식 1로 표시될 수 있다.
[화학식 1]
MxOyHz
상기 화학식 1에서,
M은 액체금속이고,
x는 0<x≤1이고,
y 는 0<y≤1이고,
z 는 0<z≤1이다.
또한, 상기 액체금속이 갈륨(Ga), 인듐(In), 주석(Sn), 금(Au) 및 이들의 합금으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 합금이 갈륨 인듐 공융합금(EGaIn, Eutectic Gallium-Indium alloy) 및 갈린스탄(Galinstan)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 갈륨 인듐 공융합금을 포함할 수 있다.
또한, 상기 전도성 액체금속 미세입자가 상기 쉘에 결합되어 외부 방향으로 위치하는 탄성 고분자를 추가로 포함할 수 있다.
또한, 상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함할 수 있다. 상기 에틸렌 분절이 상기 탄성 고분자 100 중량%를 기준으로 40 내지 99중량%를 포함할 수 있고, 바람직하게는 60 내지 95중량%, 보다 바람직하게는 80 내지 90중량%를 포함할 수 있다. 상기 탄성 고분자가 상기 에틸렌 분절을 40중량% 미만으로 포함할 경우, 액체금속 미세입자 표면의 산화물에 수소 도핑이 충분히 되지 않아 연신성 전극으로 사용했을 때 전도도가 낮아 바람직하지 않고, 99중량%를 초과하여 포함할 경우 탄성이 없어져 탄성 고분자가 아님으로 바람직하지 않다.
또한, 상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS) 및 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 (에틸렌-비닐아세테이트)공중합체를 포함할 수 있다.
또한, 상기 전도성 액체금속 미세입자의 직경이 1 내지 10μm, 바람직하게는 3 내지 5μm일 수 있다. 상기 전도성 액체금속 미세입자의 직경이 1μm 미만일 경우 전도도가 낮아 바람직하지 않고, 10μm를 초과할 경우 전체 액체금속 미세입자 직경에 비해 쉘(액체금속 산화물)의 두께가 얇아 상기 쉘을 다룰 때(수소 도핑 진행할 때) 코어의 액체금속이 손상 및 누출되어 본 발명의 전도성 액체금속 미세입자를 형성하기 어려움으로 바람직하지 않다.
또한, 상기 쉘의 두께가 0.5 내지 10nm, 바람직하게는 1 내지 5nm, 보다 바람직하게는 3 내지 5nm일 수 있다. 상기 쉘의 두께가 0.5nm 미만일 경우, 액체금속 미세입자가 불안정하여 바람직하지 않고, 10nm를 초과할 경우, 쉘인 액체금속 산화물 두께가 두꺼워짐에 따라 수소도핑을 함으로써 나타나는 전도성 효과가 미미하여 바람직하지 않다.
본 발명은 탄성 고분자; 상기 전도성 액체금속 미세입자; 및 용매;를 포함하는 전도성 잉크를 제공한다.
또한, 상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함할 수 있다.
상세하게는, 상기 에틸렌 분절이 상기 탄성 고분자 100 중량%를 기준으로 40 내지 99중량%를 포함할 수 있고, 바람직하게는 60 내지 95중량%, 보다 바람직하게는 80 내지 90중량%를 포함할 수 있다. 상기 탄성 고분자가 상기 에틸렌 분절을 40중량% 미만으로 포함할 경우, 액체금속 미세입자 표면의 산화물에 수소 도핑이 충분히 되지 않아 연신성 전극으로 사용했을 때 전도도가 낮아 바람직하지 않고, 99중량%를 초과하여 포함할 경우 탄성이 없어 상기 전도성 잉크를 이용해 연신성 전극을 제조하기 어려움으로 바람직하지 않다.
또한, 상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS), 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 (에틸렌-비닐아세테이트)공중합체를 포함할 수 있다.
또한, 상기 용매가 톨루엔(toluene), 테트라히드로퓨란(tetrahydrofuran, THF), 헥산(Hexane), 헵탄(Heptane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 톨루엔 및 테트라히드로퓨란으로 이루어진 군으로부터 선택된 1종 이상, 보다 바람직하게는 톨루엔을 포함할 수 있다.
또한, 상기 전도성 잉크가 라디칼 개시제를 추가로 포함할 수 있다.
또한, 상기 라디칼 개시제가 퍼옥사이드(peroxide)계 화합물일 수 있고, 바람직하게는 디큐밀 퍼옥사이드(dicumyl peroxide), 디벤조일 퍼옥사이드(dibenzoyl peroxide), 디터셔리부틸 퍼옥사이드(di-tert-butyl peroxide)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 보다 바람직하게는 디큐밀 퍼옥사이드를 포함할 수 있다.
도 1은 본 발명의 하나의 실시예의 따른 전도성 잉크의 제조과정을 나타낸 것이다.
도 1을 참조하면, 본 발명은 (a) 탄성 고분자, 액체금속, 라디칼 개시제 및 용매를 혼합하여 혼합용액을 제조하는 단계; 및 (b) 상기 혼합용액을 초음파 처리하여 상기 전도성 액체금속 미세입자를 포함하는 전도성 잉크를 제조하는 단계;를 포함하는 전도성 잉크의 제조방법을 제공한다.
또한, 상기 단계 (a)가 70 내지 100℃의 온도에서 수행될 수 있다. 상기 단계 (a)가 70℃ 미만의 온도에서 수행될 경우 라디칼 개시제가 활성되지 않아 라디칼을 생성할 수 없어 바람직하지 않고, 100℃를 초과할 경우 부가반응이 일어날 수 있어 바람직하지 않다.
또한, 상기 혼합용액이 상기 탄성 고분자 100 부피%를 기준으로, 상기 액체금속 5 내지 90 부피%(v/v%)를 포함할 수 있고, 바람직하게는 10 내지 40 부피%(v/v%), 보다 바람직하게는 20 내지 30 부피%(v/v%)를 포함할 수 있다. 상기 액체금속이 5 부피% 미만일 경우 전도도가 낮아 바람직하지 않고, 90 부피%를 초과할 경우 액체금속의 부피%가 증가함에 따른 전도도 증가의 효과가 미미해 바람직하지 않다.
또한, 상기 단계 (b)가 (b-1) 상기 혼합용액을 초음파 처리하여 상기 탄성 고분자와 상기 라디칼 개시제를 반응시켜 수소 라디칼(Hㆍ)을 생성하고 상기 액체금속을 포함하는 코어를 형성하는 단계; (b-2) 상기 코어 표면의 액체금속이 산화되어 상기 코어를 둘러싸는 액체금속 산화물을 형성하는 단계; 및 (b-3) 상기 수소 라디칼(Hㆍ)이 상기 액체금속 산화물의 산소와 결합하여 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘이 형성된 전도성 액체금속 미세입자를 형성하는 단계;를 포함할 수 있다.
상세하게는, 상기 초음파 처리를 통해 상기 탄성 고분자의 지방족 세그먼트(aliphatic segment)에서 1차 탄소 라디칼(~C-Cㆍ)이 생성되고, 상기 라디칼 개시제로부터 라디칼이 생성되며, 액체금속을 포함하는 코어가 형성된다. 상기 1차 탄소 라디칼 생성 반응은 아래 반응식 1과 같다.
[반응식 1]
상기 라디칼 개시제로부터 라디칼이 생성되는 반응은 아래 반응식 2와 같다.
[반응식 2]
생성된 라디칼은 고분자로 전달되고 β-분열(β-scission)을 거쳐 알켄 및 1차 탄소 라디칼을 생성하는 2차 탄소 라디칼(~C-Cㆍ-C~)을 생성한다. 상기 2차 탄소 라디칼 생성 반응은 아래 반응식 3 및 4와 같다.
[반응식 3]
[반응식 4]
상기 1차 탄소 라디칼은 알켄으로 변환되어 수소 라디칼(Hㆍ)을 생성하며 상기 수소 라디칼 생성 반응은 아래 반응식 5와 같다. 이때 수소 라디칼 형성 속도는 라디칼 개시제의 농도를 조절함으로써 제어할 수 있다.
[반응식 5]
액체금속을 포함하는 코어 표면의 액체금속이 산화되어 상기 코어를 둘러싸는 액체금속 산화물이 형성되고, 상기 수소 라디칼은 상기 액체금속 산화물에서 산소에 결합하며 결합하여 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘이 형성된 전도성 액체금속 미세입자를 형성한다. 이때 다량의 수소 도핑을 달성하기 위해서는 탄성 고분자가 사슬에 다량의 에틸렌(-C-C-) 분절(moiety)을 포함하는 것이 바람직하며, 대표적으로 에틸렌 분절을 88wt% 포함하는 (에틸렌-비닐아세테이트)공중합체(PEVA)를 사용하는 것이 바람직하다.
또한, 상기 전도성 잉크의 제조방법이 단계 (b-3) 후에 (b-4) 상기 탄성 고분자가 상기 쉘에 결합하여 상기 쉘에 결합된 고분자를 포함하는 전도성 액체금속 미세입자를 형성하는 단계;를 추가로 포함할 수 있다. 상기 전도성 액체금속 미세입자의 쉘에 결합되어 외부방향으로 위치하는 탄성 고분자는 액체금속 미세입자를 안정화시키는데 도움이 된다.
[실시예]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
전도성 잉크 및 연신성 전극
실시예 1
에틸렌(-C-C-) 분절(moiety) 무게분율(φE)이 88인 (에틸렌-비닐아세테이트)공중합체(poly(ethylene-co-vinylacetate), PEVA, Sigma-Aldrich) 0.2g 및 디큐밀 퍼옥사이드(dicumyl peroxide, DCP, Sigma-Aldrich) 4mg을 80℃에서 5mL의 톨루엔(toluene 99.5%, Samchun)에 용해시켜 용액을 제조하였다.
상기 용액에 0.56g의 갈륨 인듐 공융합금(99.99% 미량 금속 기준, Sigma-Aldrich)를 넣은 후 15분 동안 Sonics vibra CV334(13mm tip)을 사용하여 초음파 처리하여 전도성 액체금속 미세입자를 포함하는 전도성 잉크를 제조하였다.
상기 전도성 잉크를 노즐 프린터(Image Master 350PC, Musashi)를 이용하여 PDMS(Dow corning) 기판 상에 인쇄하였다. 상기 노즐의 지름은 100μm이고, 분배 압력(dispensing pressure)은 인쇄된 라인의 폭을 제어하기 위해 50 내지 100kPa에서 변화되었다. 인쇄 후 120℃에서 3시간 동안 열처리를 통해 용매를 제거하여 연신성 전극을 제조하였다.
실시예 2
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.82인 PEVA를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 3
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.75인 PEVA를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 4
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.6인 PEVA를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 5
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.3인 PEVA를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 6
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.2인 PEVA를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 7
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.5인 폴리우레탄(MM 4520, SMP technology, Japan)을 0.2 g 사용하고, 폴리우레탄은 톨루엔에 용해되지 않으므로 5mL의 톨루엔을 사용한 것 대신에 폴리우레탄을 용해할 수 있는 5mL의 테트라히드로퓨란(THF, Samchun)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 8
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0.7인 스티렌-에틸렌-부틸렌-스티렌 블록 공중합체(SEBS, volume fraction of styrene = 30%, Ashahi Kasei)를 0.2 g 사용하고, SEBS는 톨루엔에 용해되지 않으므로 5mL의 톨루엔을 사용한 것 대신에 SEBS를 용해할 수 있는 5mL의 테트라히드로퓨란(THF, Samchun)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 9
갈륨 인듐 공융합금 0.56g을 사용한 것 대신에 0.14g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 10
갈륨 인듐 공융합금 0.56g을 사용한 것 대신에 0.32g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 11
갈륨 인듐 공융합금 0.56g을 사용한 것 대신에 0.86g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 12
갈륨 인듐 공융합금 0.56g을 사용한 것 대신에 1.30g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 13
디큐밀 퍼옥사이드(dicumyl peroxide, DCP, Sigma-Aldrich)를 사용한 것 대신에 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
실시예 14
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 0.2g 사용한 것 대신에 0.3g 사용하고, 갈륨 인듐 공융합금 0.56g을 사용한 것 대신에 0.75g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전도성 잉크 및 연신성 전극을 제조하였다.
비교예 1
에틸렌 분절 무게분율(φE)이 0.88인 PEVA 0.2g을 5mL의 톨루엔에 용해시킨 용액을 사용한 것 대신에 5mL의 에탄올(ethanol, Samchun)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 잉크 및 전극을 제조하였다.
비교예 2
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0인 불소 실리콘 고무(fluorine silicon rubber, DAL-EL G801, Daikin Industries)를 0.2g. 사용하고, 5mL의 톨루엔을 사용한 것 대신에 5mL의 테트라히드로퓨란(THF, Samchun)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 잉크 및 전극을 제조하였다.
비교예 3
에틸렌 분절 무게분율(φE)이 0.88인 PEVA를 사용한 것 대신에 에틸렌 분절 무게분율(φE)이 0인 폴리비닐아세테이트(poly(vinylacetate), Sigma-Aldrich)를 0.2g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 잉크 및 전극을 제조하였다.
하기 표 1은 실시예 1 내지 14 및 비교예 1 내지 3의 구성요소를 정리하여 나타낸 것이다.
구분 | 고분자 | 액체금속 함량 (g) | 용매 | 라디칼 개시제 사용 | ||
종류 | 에틸렌 분절 무게분율 | 함량 (g) | ||||
실시예 1 | PEVA | 0.88 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 2 | PEVA | 0.82 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 3 | PEVA | 0.75 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 4 | PEVA | 0.6 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 5 | PEVA | 0.3 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 6 | PEVA | 0.2 | 0.2 | 0.56 | 톨루엔 | ○ |
실시예 7 | polyurethane | 0.5 | 0.2 | 0.56 | THF | ○ |
실시예 8 | SEBS | 0.7 | 0.2 | 0.56 | THF | ○ |
실시예 9 | PEVA | 0.88 | 0.2 | 0.14 | 톨루엔 | ○ |
실시예 10 | PEVA | 0.88 | 0.2 | 0.32 | 톨루엔 | ○ |
실시예 11 | PEVA | 0.88 | 0.2 | 0.86 | 톨루엔 | ○ |
실시예 12 | PEVA | 0.88 | 0.2 | 1.30 | 톨루엔 | ○ |
실시예 13 | PEVA | 0.88 | 0.2 | 0.56 | 톨루엔 | - |
실시예 14 | PEVA | 0.88 | 0.3 | 0.75 | 톨루엔 | ○ |
비교예 1 | - | 0 | - | 0.56 | 에탄올 | ○ |
비교예 2 | Fluorine silicon rubber | 0 | 0.2 | 0.56 | THF | ○ |
비교예 3 | Poly(vinylacetate) | 0 | 0.2 | 0.56 | 톨루엔 | ○ |
전도성 잉크를 이용한 삼차원 연신성 전극회로
소자실시예 1
도 12는 본 발명 하나의 실시예에 따른 전도성 잉크를 인쇄하여 형성된 연신성 전극을 이용한 삼차원 연신성 전극 회로 및 그의 모식도를 나타내고, 연신성 전극의 교차점에서 연신성 전극의 단면 모식도를 나타낸 것이다. 도 12를 참조하여 회로를 구성하였다.
상세하게는, 실시예 1에 따라 제조된 연신성 전극(Line 1)에 LED A를 연결하고, 실시예 14에 따라 제조되고 상기 Line 1과 연결되지 않는 연신성 전극(Line 3)에 LED C를 연결하였다. 상기 Line 1 및 Line 3와 교차되고, 실시예 14에 따라 제조된 연신성 전극(Line 2)에 LED B를 연결하였다. 이때, 상기 교차지점에서, Line 2가 Line 1 및 Line 3 상에 위치하고, Line 2와 Line 1의 교차지점을 보라색 박스(v)로, Line 2와 Line 3의 교차지점을 초록색 박스(g)로 나타냈다.
스트레인 센서(strain sensor) 제조
소자실시예 2
도 13은 본 발명 하나의 실시예에 따른 전도성 잉크를 인쇄하여 스트레인 센서(strain sensor)를 제조하는 방법을 나타낸 모식도이다. 도 13을 참조하여 스트레인 센서를 제조하였다.
상세하게는, 실시예 14에 따라 제조된 전도성 잉크를 노즐 프린터(Image Master 350PC, Musashi)를 이용해 PDMS(Dow corning) 기판 상에 너비 500μm, 높이 90μm로 중심부로부터 외부로 반시계 방향으로 9회 회전하여 직경 20mm의 평면 나선 형태로 인쇄하고, 120℃에서 3시간 동안 열처리하여 하부전극을 제조하였다.이때, 상기 하부전극은 탄성 고분자 (PEVA)를 포함하는 매트릭스 및 상기 매트릭스에 분산된 수소도핑(hydrogen doped)된 액체금속 미세입자를 갖는 도선을 포함하는 도선층(conductive line layer); 및 상기 도선 상에 코팅되고, 탄성 고분자(PEVA)를 갖는 코팅부를 포함하는 패시베이션층(passivation layer);을 포함한다.
상기 하부전극의 중심부에 형성된 코팅부를 집게로 긁어서 제거하여 하부전극 중심부의 액체금속 미세입자가 누출되게 하였다.
실시예 12에 따라 제조된 전도성 잉크를 상기 중심부에서 외부로 회전하는 상기 하부전극과 반대 방향의 직경 20mm의 평면 나선 형태로 상기 중심부에서 시작하여 너비 500μm, 높이 90μm로 9회 회전하여 인쇄하고 120℃에서 3시간 동안 열처리하여 상부전극을 제조하였다. 이때, 상기 상부전극은 탄성 고분자(PEVA)를 포함하는 매트릭스 및 상기 매트릭스에 분산된 수소도핑(hydrogen doped)된 액체금속 미세입자를 갖는 도선을 포함하는 도선층(conductive line layer); 및 상기 도선 상에 코팅되고, 탄성 고분자(PEVA)를 갖는 코팅부를 포함하는 패시베이션층(passivation layer);을 포함한다.
[시험예]
시험예 1: 액체금속 산화물의 수소 도핑 확인
시험예 1-1: XPS 스펙트럼 이용해 수소 도핑 확인
도 2는 실시예 1의 잉크에서 액체금속 미세입자의 고해상도 XPS 스펙트럼(O 1s, Ga 3d, In 3d)을 나타낸 것이다. 상세하게는, 실시예 1의 잉크에서 액체금속 미세입자를 세척한 후 O 1s, Ga 3d 및 In 3d의 고해상도 X-선 광전자 분광법(XPS) 스펙트럼을 나타낸 것이다. 가우시안-로렌치안(Gaussian-Lorentzian) 방법을 사용하여 피크(peak)를 디콘볼루션(deconvolution)하였다.
도 2를 참조하면, O 1s 스펙트럼(도 2에서 왼쪽에 위치한 도면)에서 수소 도핑된 액체금속 미세입자는 산화물 표면의 M(OH)3 및 산화물 내부의 MOH에서 유래하는 금속 수산화물(-M(OH)x)의 O2-에 상응하는 531.7eV에서 넓은 피크를 가지는 것을 확인할 수 있다. 표면 수산화물(M(OH)3)은 절연성이지만, 양성화된 MOH는 금속 산화물의 전도성을 증가시키는 것으로 알려져 있다. 수산화물 및 산화물에 대한 산소(O)의 분율은 각각 52% 및 48%인 것으로 나타났다. 더 높은 결합 에너지(533.2eV 및 534.6eV)에서 나타나야하는 PEVA의 아세테이트 그룹(C-O-C=O)에서 O 1s 피크가 관찰되지 않았으며 이는 산화물에 흡착된 PEVA의 양이 적은 것을 의미한다.
또한, In 3d 스펙트럼(도 2에서 오른쪽에 위치한 도면)에서, In(OH)x에 해당하는 피크는 445eV 및 452.6eV에서 나타난 것을 확인할 수 있다.
또한, Ga 3d 스펙트럼(도 2에서 가운데 위치한 도면)에서, 19 내지 22eV 범위의 피크(Ga+, Ga3+, In3+)는 수산화물 기여에 해당된다. 피크는 표면 산화물 기여(-Ga(OH)3, 20.8eV) 및 수소 도핑 기여(GaOH)로 디컨볼루션될 수 있다, XPS 결과에 기초하여 수소 도핑된 상태(GaOH)에서의 산소 분율은 15.8%이며, 이는 H+의 원자 농도가 7.0 at%임을 나타낸다.
시험예 1-2: APT 원소 분포 이용해 수소 도핑 확인
도 3a는 실시예 1에서 전도성 액체금속 미세입자 표면의 APT 원소 분포를 나타낸 것이고, 도 3b는 실시예 1에서 전도성 액체금속 미세입자 표면의 C, GaO, GaOH 및 InOH의 APT 원소 프로파일을 나타낸 것이다.
도 4a는 비교예 1에서 액체금속 미세입자 표면의 APT 원소 분포를 나타낸 것이고, 도 4b는 비교예 1에서 액체금속 미세입자 표면의 원소 프로파일을 나타낸 것이다.
APT 분석은 다음과 같이 수행되었다. 먼저 실시예 1 및 비교예 1에 따라 제조된 잉크를 10mL의 톨루엔에 희석하고 2분 동안 볼택싱(vortexed)한 다음 30분 동안 침강시킨 후 표면에 뜨는 용액을 버렸다. 이 세척 공정을 3회 반복하여 중합체를 제거하고, 침전된 액체금속 미세입자를 10mL의 톨루엔으로 희석하고 Si 웨이퍼 상에 스핀코팅하였다. 측정을 위한 레이저 조사 동안 샘플의 국소 가열을 방지하기 위해 마이크로 입자의 표면에 Ni를 증착시키고, 집중된 이온 빔을 통해 APT 분석을 위한 샘플을 제조하였다. 상기 샘플을 APT 팁으로 옮겨 APT 분석을 수행하였다.
도 3a 및 3b를 참조하면, 실시예 1에 따라 제조된 전도성 잉크의 전도성 액체금속 미세입자 표면에서 상당한 양의 탄소가 검출된 것을 확인할 수 있는데 이는 PEVA가 마이크로 입자의 표면을 덮었음을 나타낸다. 또한, 산화 갈륨(GaOH) 및 산화 인듐(InOH)이 쉘의 표면 영역(< 3nm)에서 우세하고, GaO의 농도가 GaOH 보다 낮은 것을 확인할 수 있다. 이는 수소 도핑이 액체금속 산화물 표면에서 광범위하다는 것을 의미한다.
도 4a 및 4b를 참조하면, PEVA가 액체금속 마이크로 입자의 생산에 사용되지 않은 경우, GaOH와 InOH가 전혀 없는 표면 영역에서 GaO만이 검출되어 표면에 수소 도핑이 없음을 확인할 수 있다.
시험예 2: 에틸렌 무게분율에 따른 전도도 분석
도 5는 실시예 1 내지 8, 비교예 1 내지 3의 전도성 잉크를 인쇄하여 형성된 연신성 전극의 전도도를 나타낸 것이다. 상세하게는, 라디칼 개시제에 의한 에틸렌 분절(moiety)을 포함하는 탄성 고분자의 화학 공정과 수소 도핑 정도 사이의 관계를 확인하기 위해 다양한 wt%의 에틸렌 분절을 포함하는 고분자로 전도성 잉크를 제조하고, 그를 인쇄하여 전도도를 테스트하였다.
도 5를 참조하면, 순수한 폴리비닐아세테이트(비교예 3)를 사용하면 전도성 잉크의 전도도가 절연 Ga2O3 표면층으로 인해 노이즈 수준인 것을 확인할 수 있다. 에틸렌 분절의 무게분율(φE)이 증가함에 따라 전도도가 증가하며, 또한 에틸렌 분절을 가장 많이 포함한 실시예 1(φE=0.88)의 전도도가 σ=25,000cm-1로 가장 높은 것을 확인할 수 있다.
또한, 도 5를 참조하면, 테트라히드로퓨란(THF)에 용해된 다른 중합체, 예를 들면 무시할만한 수소 분율을 포함하는 플루오린 실리콘 고무(φE=0, 비교예 2), 폴리우레탄(φE=0.5, 실시예 7) 및 스티렌-에틸렌-부틸렌-스티렌 공중합체(φE=0.7, 실시예 8)를 사용한 경우의 전도도 또한 확인할 수 있다.
플루오린 실리콘 고무를 포함하는 비교예 2는 비전도성인 반면, 폴리우레탄을 포함하는 실시예 7과 SEBS를 포함하는 실시예 8은 에틸렌 분절의 무게분율(φE)이 0.8 이상인 PEVA를 포함하는 실시예 1(φE=0.88) 및 실시예 2(φE=0.82)와 유사한 전도성을 가진 것을 확인할 수 있다. 이러한 결과는 수소 도핑이 높은 전도성을 얻는 열쇠라는 것을 나타낸다.
시험예 3: 전도성 확인
도 6은 실시예 1(w/ PEVA & DCP), 실시예 13(w/ PEVA) 및 비교예 1(w/o PEVA & DCP)에서 액체금속 미세입자를 각각 금(Au) 패턴 라인 사이에 위치시켰을 때 I-V 그래프를 나타낸 것이다.
상세하게는, 실시예 1(w/ PEVA & DCP), 실시예 13(w/ PEVA) 및 비교예 1(w/o PEVA & DCP)에 따라 제조된 잉크를 10mL의 톨루엔에 희석하고 2분 동안 볼택싱(vortexed)한 다음 30분 동안 침강시킨 후 표면에 뜨는 용액을 버렸다. 이 세척 공정을 3회 반복하여 중합체를 제거하고, 침전된 액체금속 미세입자를 10mL의 톨루엔으로 희석하여 액체금속 미세입자 단일 입자를 금 패턴 라인 사이에 위치시킨 후 전도도를 측정하였다.
도 6을 참조하면, 탄성 고분자(PEVA) 및 라디칼 개시제(DCP)를 사용하여 액체금속 미세입자를 제조한 실시예 1이 전도도가 가장 높았으며, 탄성 고분자(PEVA)만 사용하여 액체금속 미세입자를 제조한 실시예 13이 실시예 1에 비해 낮지만, 여전히 높은 전도도를 가지는 것을 확인할 수 있다. 반면에, 탄성 고분자(PEVA) 및 라디칼 개시제(DCP)를 사용하지 않고 액체금속 미세입자를 제조한 비교예 1은 전기적으로 절연체인 것을 확인할 수 있다.
시험예 4: SEM 분석
도 7a는 실시예 1의 전도성 잉크를 인쇄한 연신성 전극의 단면 SEM 사진을 나타낸 것이고, 도 7b는 실시예 1의 전도성 잉크를 인쇄한 연신성 전극을 HCl로 에칭했을 때 단면 SEM 사진을 나타낸 것이다. 도 7c는 전도성 잉크를 인쇄한 연신성 전극을 500% 일축신장할 때 전극 상부의 표면 SEM 사진을 나타낸 것이다.
도 7a를 참조하면, 전도성 잉크로 제조된 연신성 전극에서 전도성 액체금속 미세입자들이 상기 미세입자들 사이의 접촉 면적을 증가시키기 위해 기판 상에 수직으로 적층되며 약간 변형된 것을 확인할 수 있다.
도 7b를 참조하면, 연속적으로 연결된 중공 공간을 통해 전도성 액체금속 미세입자들이 삼차원적으로 상호 연결되어 PEVA 매트릭스와의 2연속 구조를 형성하는 것을 확인할 수 있다.
도 7c를 참조하면, 1,000 사이클이 반복되어도 응력(strain)이 풀렸을 때 전도성 액체금속 미세입자들이 서로 합쳐지지 않고 초기 형상으로 되돌아오는 것을 확인할 수 있다. 이러한 가역적 형상 변화는 PEVA의 탄성 특성으로 인해 가능하며, 본 발명의 전도성 잉크가 탄성 고분자를 포함함으로써 탄성 중합체 기재(PDMS 또는 Ecoflex) 상에 인쇄되어 연신성 전극을 형성한 후, 상기 기재와 전극이 변형을 가했을 때 함께 동적으로 변형하는 것을 확인할 수 있다.
시험예 5: 액체금속 미세입자의 부피분율 및 사이즈에 따른 전도도
도 8a는 실시예 1, 실시예 9 내지 12의 액체금속 미세입자의 사이즈에 따른 전도도를 나타낸 것이다. 상세하게는, 전도성 잉크에서 액체금속 미세입자의 사이즈를 조절하기 위해 초음파 처리 시간을 각각 5 mins, 10 mins, 15 mins, 30 mins 및 120 mins로 설정하였고, 이에 따라 각각 0.5μm, 1μm, 5μm, 10μm 및 15μm의 사이즈를 가지게 되었다.
도 8a를 참조하면, 전도성 액체금속 미세입자의 부피분율이 동일할 때, 전도성 잉크가 인쇄되어 형성된 연신성 전극의 전도성이 전도성 액체금속 미세입자의 크기에 따라 증가하는 것을 확인할 수 있다. 특히, 전도성 잉크가 직경 15μm의 전도성 액체금속 미세입자를 포함할 경우 가장 큰 전도도(2,500Scm-1)를 달성한 것을 확인할 수 있다. 이는 액체금속 미세입자의 크기가 커짐에 따라 액체금속 미세입자들 사이의 접촉 면적이 증가하고, 접촉 수가 감소하기 때문인 것으로 나타난다.
또한, 전도성 액체금속 미세입자의 부피분율이 20 내지 30%일 때 최대 전도성이 얻어졌으며, 이는 전도성 잉크의 액체금속 함량과 액체금속의 수소 도핑 효율 사이에 trade off가 있음을 나타낸다. 전도성 잉크에서 더 많은 액체 금속은 전체 전도성을 증가시킬 수 있지만, 소량의 PEVA로는 수소 도핑이 충분하지 않는 것을 확인할 수 있다.
시험예 6: 전도성 잉크로 형성된 전극 라인의 반복 인장시 저항 변화
도 8b는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 변형률(ε) 100% 및 500%에서 1,000 사이클 동안 일축신장을 반복할 때 저항 변화를 나타낸 것이고, 도 8c는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 LED에 연결한 후 다양한 변형률로 일축신장 하였을 때 모습을 나타낸 것이다.
도 8b를 참조하면, 실시예 1의 전도성 잉크를 인쇄하여 형성된 전극 라인은 변형률(ε) 100% 및 500%에서 일축신장을 1,000 사이클 반복하는 동안 무시할 수 있는 저항변화를 가지는 것을 확인할 수 있다. 또한, 도 8b에 삽입된 그래프는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극이 변형률(ε) 500%에서 일축신장을 1,000회 반복했을 때 저항 변화를 확대한 것이며, 동일한 저항 곡선 프로파일을 나타내는 것을 확인할 수 있다.
도 8c는 상세하게는, 실시예 1의 전도성 잉크를 인쇄하여 형성된 두 개의 연신성 전극 사이에 LED를 부착하였을 때 변형률에 따른 LED 휘도(빛의 세기) 변화를 확인한 것이다. 도 8c를 참조하면, 변형률(ε) 0%에서 500%까지 휘도(빛의 세기)가 일정한 것을 확인할 수 있다.
시험예 7: 전도성 잉크로 형성된 전극 라인의 절단 시험
도 9a는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 핀셋으로 긁은 상태를 촬영한 사진이고, 도 9b는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극이 날카로운 면도날로 절단되는 동안 저항 변화를 나타낸 것이다. 도 9b에 삽입된 도면은 상기 면도날로 절단된 연신성 전극의 단면 SEM 이미지(Scale bar=50μm)를 나타낸 것이다. 도 9c는 실시예 1의 전도성 잉크를 인쇄하여 형성된 연신성 전극을 핀셋으로 뭉툭하게 자름(blunt cut)과 동시에 반복 스트레칭(ε=100%)할 때 저항 변화를 나타낸 것이다. 도 9c에 삽입된 도면은 상기 절단과 반복 스트레칭을 동시에 진행한 연신성 전극의 단면 SEM 이미지(Scale bar=250μm)를 나타낸 것이다.
최근 전기적 자기 치유는 탄성 회로 라인을 구현하는데 관심을 끌고 있다. 그러나, 변형 가능한 전자 장치의 핵심 요구 사항은 연결이 끊어진 라인을 치료하는 것이 아니라 절단하기 어려운 전기 연결이다. 따라서, 실시예 1에 따라 제조된 전도성 잉크를 인쇄하여 형성된 연신성 전극을 LED와 연결한 후 날카로운 면도날과 뭉툭한 핀셋으로 연신성 전극을 절단하여 절단 시험을 진행하였다.
도 9a 및 9b를 참조하면, 반복 절단 동안 LED의 전기 저항 및 광 강도는 변하지 않고 유지되는 것을 확인할 수 있다. 또한, 면도날로 예리한 절단 후 연신성 전극의 단면 SEM 이미지를 보면 전도성 액체금속 미세입자가 손상 없이 초기 형태를 유지하는 것을 확인할 수 있다.
도 9c를 참조하면, 큰 핀셋으로 실시예 1의 전도성 잉크로 제조된 전극 라인을 뭉툭하게 자르면(blunt cut) 전도성 액체금속 미세입자가 파열되고, 코어의 액체금속이 누출되어 연속 액체금속 라인을 형성함으로써 최소 저항 변화를 나타내는 것을 확인할 수 있다.
시험예 8: 패시베이션 층 형성 확인
도 10은 실시예 14에 따라 제조된 연신성 전극의 단면 SEM 이미지를 나타낸 것이다.
도 10을 참조하면, 용매 대비 과량의 탄성 고분자 및 액체금속을 포함하는 전도성 잉크를 인쇄 후 120℃에서 열처리를 수행하면, 과량의 PEVA가 액체금속보다 낮은 밀도로 인해 상부에 쌓여 PEVA를 포함하는 패시배이션 층을 형성하는 것을 확인할 수 있다.
시험예 9: 연신성 전극의 안정성
도 11a는 실시예 14의 연신성 전극이 다양한 온도(-20℃, 25℃, 100℃)에서 12주 동안의 저항 변화를 나타낸 것이고, 도 11b는 비교예 1의 전극(패시베이션 층 존재하지 않음)와 실시예 14의 연신성 전극(패시배이션 층 존재)의 90% 수분에서 30일 동안의 저항 변화를 나타낸 것이다.
도 11a를 참조하면, 실시예 14에 따라 제조된 연신성 전극은 -20 내지 100℃의 넓은 온도 범위에서 우수한 열 안정성을 나타내는 것을 확인할 수 있다. 실시예 14에 따라 제조된 연신성 전극의 저항은 100℃에서 12주 동안 아무런 차이가 없는 것으로 나타났으며, 이는 고온에서 더 이상 산화가 일어나지 않음을 나타낸다. -20℃에서 저항은 약간 높았으나 4주 후에 안정화 되는 것을 확인할 수 있다. 이는 측정하는 동안 가능한 줄 가열(joule heating)에 의해 액체금속 미세입자들 사이의 접촉이 개선된 것으로 볼 수 있다.
도 11b를 참조하면, 40℃, 90% 수분에서 패시베이션 층의 유무에 따른 저항 변화를 확인할 수 있다. 패시베이션 층이 존재하지 않는 비교예 1의 저항은 초기 4일 동안은 변하지 않았지만 서서히 증가하여 20일 후에 전도도를 잃은 것을 확인할 수 있다. 반면에 패시베이션 층이 존재하는 실시예 14의 저항은 전체 측정 기간(30일)동안 저항 변화를 나타내지 않은 것을 확인할 수 있다.
따라서, 패시베이션 층을 포함하는 본 발명의 연신성 전극은 기계적, 열적, 수분 환경에서 우수한 전기적 안정성을 나타내는 것을 확인할 수 있다.
시험예 10: 연신성 전극을 이용한 삼차원 회로의 특징
도 12는 소자실시예 1에 따라 제조된 삼차원 연신성 전극회로 및 그의 모식도와 전압을 인가함에 따른 LED의 켜짐/꺼짐 현상을 나타낸 것이다. 상세하게는, 패시배이션 층의 두께 변화로 어떻게 적층된 연신성 전극들 사이에 전기적 혼선(electrical crosstalk) 없이 복잡한 3차원 상호 연결을 설계할 수 있는지 나타낸 것이다.
도 12를 참조하면, Line 1 및 Line 3에 각각 전압(3V)를 인가하면(도 12의 (i), (ii)) 각각 LED A 및 C가 켜진 것을 확인할 수 있다. 전압이 Line 1에 인가 된 상태에서 Line 1과 Line 2 사이의 교차지점(보라색 박스(v))에 힘을 가했을 때, 교차지점의 수직 연결로 인해 LED B가 켜진 것을 확인할 수 있다(도 12의 (iii)). 한편, 전압이 Line 1에 인가 된 상태에서 Line 2와 Line 3 사이의 교차지점(초록색 박스(g))에 힘을 가했을 경우에는 Line 2의 두꺼운(약 5μm) 패시베이션 층으로 인해 LED C를 켜지 못하는 것을 확인할 수 있다(도 12의 (iv)).
따라서, 본 발명의 연신성 전극 제조시 고분자 및 액체금속의 중량부를 조절함에 따라 제어된 패시배이션 층으로 전기적 혼선 없이 복잡한 삼차원 연신성 회로를 제조할 수 있다.
시험예 11: 스트레인 센서의 기계적 특성
도 14는 소자실시예 2의 변형율(ε) 0% 및 변형율(ε) 100%에서의 이미지를 나타낸 것이고, 도 15a는 소자실시예 2의 반복 일축신장 시 저항 변화를 나타낸 것이다. 도 15b는 소자실시예 2를 반복 일축신장 하였을 때 인덕턴스의 변화를 나타낸 것이고, 도 15b 에 삽입된 도면은 소자실시예 2의 변형율 대비 측정된 인덕턴스를 나타낸 그래프이다.
도 14 및 15a를 참조하면, 소자실시예 2에 따라 제조된 스트레인 센서는 변형율(ε) 100%에서도 무시할 수 있는 저항 변화를 나타내 신축성이 있는 것을 확인할 수 있다.
도 15b를 참조하면, 소자실시예 2에 따라 제조된 스트레인 센서는 하부전극 및 상부전극을 포함하는 이중층으로 형성됨으로써 100kHz에서 4.25μH의 높은 인덕턴스를 가지는 것을 확인할 수 있다. 이는 동일한 주파수에서 단일층 전도성 코일의 인덕턴스인 2μH의 두 배이고, 구불구불한 트레이스(serpentine trace)로 만들어진 신축성 코일의 인덕턴스(~100nH)와 액체금속 마이크로 채널로 만들어진 신축성 코일의 인덕턴스(0.712μH) 보다 훨씬 높은 것을 확인할 수 있다.
또한, 소자실시예 2에 따라 제조된 스트레인 센서는 ε=100%의 반복 일축신장에서 우수한 반복성을 나타내는 것을 확인할 수 있다. 상기 스트레인 센서는 변형율에 관계 없이 무시할 수 있는 표준편차를 나타냈는데, ε=0%에서 0.9nH, ε=60%에서 0.2nH, ε=100%에서 0.1nH인 것을 확인할 수 있다.
또한, 도 15b에 삽입된 도면을 참조하면, 소자실시예 2에 따라 제조된 스트레인 센서가 변형에 대해 인덕턴스의 선형 응답을 보여주는 것을 확인할 수 있다. 이는 하부전극 및 상부전극의 저항이 변하지 않기 때문에 인덕턴스가 전극의 면적에 의해 좌우되는 것을 나타낸다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 전도성 액체금속 미세입자는 액체금속 미세입자 표면에 형성된 자연 산화층에 수소를 도핑함으로써 화학적 에칭(Ethcing)이나 기계적 스크래치를 이용해 산화층을 파괴하지 않아도 전도성을 유지할 수 있다.
또한, 본 발명의 전도성 잉크는 상기 전도성 액체금속 미세입자를 포함함으로써 금속 전도도, 변형 또는 기계적 손상에서 무시할 수 있는 저항 변화 및 탄성 기판에 대한 우수한 접착력을 가지는 회로 라인을 형성할 수 있다.
또한, 본 발명의 전도성 잉크를 이용해 넓은 범위의 온도 및 습도에서 동일한 전도성을 유지하는 연신성 전극을 제조할 수 있다.
또한, 본 발명의 전도성 잉크를 이용해 3차원 회로 프린팅이 가능한 연신성 전극 및 그를 포함하는 스트레인 센서를 제조할 수 있다.
Claims (20)
- 액체금속을 포함하는 코어; 및상기 코어를 둘러싸고, 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘;을포함하는 전도성 액체금속 미세입자.
- 제1항에 있어서,상기 쉘이 액체금속 산화물을 추가로 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제1항에 있어서,상기 수소 도핑된 액체금속 산화물이 화학식 1로 표시되는 것을 특징으로 하는 전도성 액체금속 미세입자:[화학식 1]MxOyHz상기 화학식 1에서,M은 액체금속이고,x는 0<x≤1이고,y 는 0<y≤1이고,z 는 0<z≤1이다.
- 제1항에 있어서,상기 액체금속이 갈륨(Ga), 인듐(In), 주석(Sn), 금(Au) 및 이들의 합금으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제4항에 있어서,상기 합금이 갈륨 인듐 공융합금(EGaIn, Eutectic Gallium-Indium alloy), 갈린스탄(Galinstan)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제1항에 있어서,상기 전도성 액체금속 미세입자가 상기 쉘에 결합되어 외부 방향으로 위치하는 탄성 고분자를 추가로 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제6항에 있어서,상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제6항에 있어서,상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS) 및 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제1항에 있어서,상기 전도성 액체금속 미세입자의 직경이 1 내지 10μm인 것을 특징으로 하는 전도성 액체금속 미세입자.
- 제1항에 있어서,상기 쉘의 두께가 0.5 내지 10nm인 것을 특징으로 하는 전도성 액체금속 미세입자.
- 탄성 고분자;제1항에 따른 전도성 액체금속 미세입자; 및용매;를포함하는 전도성 잉크.
- 제11항에 있어서,상기 탄성 고분자가 사슬에 에틸렌(-C-C-) 분절(moiety)을 포함하는 것을 특징으로 하는 전도성 잉크.
- 제11항에 있어서,상기 탄성 고분자가 (에틸렌-비닐아세테이트)공중합체(PEVA), 스티렌-에틸렌-부틸렌-스틸렌 블록 공중합체(SEBS), 지방족 폴리우레탄(aliphatic polyurethane)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 잉크.
- 제11항에 있어서,상기 용매가 톨루엔(toluene), 테트라히드로퓨란(tetrahydrofuran, THF), 헥산(Hexane), 헵탄(Heptane)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 잉크.
- 제11항에 있어서,상기 전도성 잉크가 라디칼 개시제를 추가로 포함하고,상기 라디칼 개시제가 퍼옥사이드(peroxide)계 화합물이고,상기 퍼옥사이드계 화합물이 디큐밀 퍼옥사이드(dicumyl peroxide), 디벤조일 퍼옥사이드(dibenzoyl peroxide) 및 디터셔리부틸 퍼옥사이드(di-tert-butyl peroxide)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 잉크.
- (a) 탄성 고분자, 액체금속, 라디칼 개시제 및 용매를 혼합하여 혼합용액을 제조하는 단계; 및(b) 상기 혼합용액을 초음파 처리하여 제1항에 따른 전도성 액체금속 미세입자를 포함하는 전도성 잉크를 제조하는 단계;를포함하는 전도성 잉크의 제조방법.
- 제16항에 있어서,상기 단계 (a)가 70 내지 100℃의 온도에서 수행되는 것을 특징으로 하는 전도성 잉크의 제조방법.
- 제16항에 있어서,상기 혼합용액이 상기 탄성 고분자 100 부피%를 기준으로, 상기 액체금속 5 내지 90 부피%(v/v%)를 포함하는 것을 특징으로 하는 전도성 잉크의 제조방법.
- 제16항에 있어서,상기 단계 (b)가(b-1) 상기 혼합용액을 초음파 처리하여 상기 탄성 고분자와 상기 라디칼 개시제를 반응시켜 수소 라디칼(Hㆍ)을 생성하고 상기 액체금속을 포함하는 코어를 형성하는 단계;(b-2) 상기 코어 표면의 액체금속이 산화되어 상기 코어를 둘러싸는 액체금속 산화물을 형성하는 단계; 및(b-3) 상기 수소 라디칼(Hㆍ)이 상기 액체금속 산화물의 산소와 결합하여 수소 도핑된(hydrogen-doped) 액체금속 산화물을 포함하는 쉘이 형성된 전도성 액체금속 미세입자를 형성하는 단계;를 포함하는 것을 특징으로 하는 전도성 잉크의 제조방법.
- 제19항에 있어서,상기 전도성 잉크의 제조방법이 단계 (b-3) 후에(b-4) 상기 탄성 고분자가 상기 쉘에 결합하여 상기 쉘에 결합된 고분자를 포함하는 전도성 액체금속 미세입자를 형성하는 단계;를 추가로 포함하는 것을 특징으로 하는 액체금속 미세입자의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/781,117 US20240199903A1 (en) | 2020-03-18 | 2020-12-14 | Conductive liquid metal microparticles comprising hydrogen-doped liquid metal oxide, conductive ink comprising same, and preparation method therefor |
EP20925809.4A EP4122989A4 (en) | 2020-03-18 | 2020-12-14 | CONDUCTIVE LIQUID METAL MICROPARTICLES COMPRISING A LIQUID METAL OXIDE DOPED WITH HYDROGEN, CONDUCTIVE INK COMPRISING THEM AND ASSOCIATED PREPARATION METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0033237 | 2020-03-18 | ||
KR1020200033237A KR102290112B1 (ko) | 2020-03-18 | 2020-03-18 | 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021187724A1 true WO2021187724A1 (ko) | 2021-09-23 |
Family
ID=77313829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018245 WO2021187724A1 (ko) | 2020-03-18 | 2020-12-14 | 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240199903A1 (ko) |
EP (1) | EP4122989A4 (ko) |
KR (1) | KR102290112B1 (ko) |
WO (1) | WO2021187724A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113897096A (zh) * | 2021-09-27 | 2022-01-07 | 武汉大学 | 一种基于液态金属-微米金属片的超拉伸材料用导电印刷墨水及其应用 |
CN116023824A (zh) * | 2023-01-18 | 2023-04-28 | 上海宇叠智能科技有限公司 | 导电油墨及其制备方法和应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102557855B1 (ko) * | 2022-07-20 | 2023-07-24 | 한국과학기술원 | 액체금속 용액, 이를 포함하는 잉크 및 이를 포함하는 전자소자 |
CN116574212B (zh) * | 2023-03-23 | 2024-07-19 | 厦门大学 | 一种聚合物/液态金属复合导电固体材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150109374A (ko) * | 2013-01-23 | 2015-10-01 | 헨켈 아이피 앤드 홀딩 게엠베하 | 가요성 전도성 잉크 |
KR20170025313A (ko) * | 2015-08-28 | 2017-03-08 | 전자부품연구원 | 전도성 고분자 조성물 및 그의 제조방법 |
KR20180092471A (ko) * | 2017-02-09 | 2018-08-20 | 울산과학기술원 | 탄소-공융 갈륨 인듐 복합체, 그 제조방법, 및 이를 포함한 전극 재료 |
WO2018194517A1 (en) * | 2017-04-18 | 2018-10-25 | Nanyang Technological University | Elastic conductor, device including, and method of forming the same |
KR20190069081A (ko) * | 2017-12-11 | 2019-06-19 | 울산과학기술원 | 상온 액체금속 캡슐 잉크, 그 제조 방법, 및 이를 이용하여 형성한 상온 액체금속 캡슐 배선 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10293325B2 (en) * | 2013-12-11 | 2019-05-21 | University Of Massachusetts | Core-shell multi-layer particles |
US9859226B1 (en) * | 2016-12-13 | 2018-01-02 | International Business Machines Corporation | Core-shell particles for anti-tampering applications |
WO2019055680A1 (en) * | 2017-09-13 | 2019-03-21 | Carnegie Mellon University | LIQUID METAL FUSION WITH INKS AND CONDUCTIVE PASTES |
KR101993812B1 (ko) * | 2017-12-11 | 2019-06-27 | 울산과학기술원 | 상온 액체금속 캡슐 및 그 제조 방법 |
-
2020
- 2020-03-18 KR KR1020200033237A patent/KR102290112B1/ko active IP Right Grant
- 2020-12-14 EP EP20925809.4A patent/EP4122989A4/en active Pending
- 2020-12-14 WO PCT/KR2020/018245 patent/WO2021187724A1/ko active Application Filing
- 2020-12-14 US US17/781,117 patent/US20240199903A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150109374A (ko) * | 2013-01-23 | 2015-10-01 | 헨켈 아이피 앤드 홀딩 게엠베하 | 가요성 전도성 잉크 |
KR20170025313A (ko) * | 2015-08-28 | 2017-03-08 | 전자부품연구원 | 전도성 고분자 조성물 및 그의 제조방법 |
KR20180092471A (ko) * | 2017-02-09 | 2018-08-20 | 울산과학기술원 | 탄소-공융 갈륨 인듐 복합체, 그 제조방법, 및 이를 포함한 전극 재료 |
WO2018194517A1 (en) * | 2017-04-18 | 2018-10-25 | Nanyang Technological University | Elastic conductor, device including, and method of forming the same |
KR20190069081A (ko) * | 2017-12-11 | 2019-06-19 | 울산과학기술원 | 상온 액체금속 캡슐 잉크, 그 제조 방법, 및 이를 이용하여 형성한 상온 액체금속 캡슐 배선 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4122989A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113897096A (zh) * | 2021-09-27 | 2022-01-07 | 武汉大学 | 一种基于液态金属-微米金属片的超拉伸材料用导电印刷墨水及其应用 |
CN116023824A (zh) * | 2023-01-18 | 2023-04-28 | 上海宇叠智能科技有限公司 | 导电油墨及其制备方法和应用 |
CN116023824B (zh) * | 2023-01-18 | 2023-09-01 | 上海宇叠智能科技有限公司 | 导电油墨及其制备方法和应用 |
WO2024152687A1 (zh) * | 2023-01-18 | 2024-07-25 | 上海宇叠智能科技有限公司 | 导电油墨及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
EP4122989A1 (en) | 2023-01-25 |
EP4122989A4 (en) | 2024-04-03 |
US20240199903A1 (en) | 2024-06-20 |
KR102290112B1 (ko) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021187724A1 (ko) | 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법 | |
WO2021201376A1 (ko) | 3차원 회로 프린팅이 가능한 연신성 전극회로, 그를 이용한 스트레인 센서 및 그의 제조방법 | |
WO2014178639A1 (ko) | 연성인쇄회로기판 및 그 제조 방법 | |
WO2018212443A1 (ko) | 스트레처블 전자 소자 및 그의 제조 방법 | |
WO2018103164A1 (zh) | 一种铝合金基板用厚膜电路中温烧结全银电极浆料及其制备方法 | |
WO2018034411A1 (ko) | 필름 터치 센서 및 필름 터치 센서용 구조체 | |
WO2014054921A1 (en) | The printed circuit board and the method for manufacturing the same | |
WO2017204584A1 (ko) | 보호 컨택터 | |
WO2014133285A1 (ko) | 전도성 박막, 이의 제조 방법 및 이를 포함한 전자 소자 | |
WO2015147509A1 (ko) | 열경화성 반도체 웨이퍼용 임시접착필름, 이를 포함하는 적층체 및 적층체 분리방법 | |
WO2020180149A1 (ko) | 패키징 기판 및 이를 포함하는 반도체 장치 | |
WO2021145664A1 (ko) | 회로기판 | |
WO2024085727A1 (ko) | 전자부품용 기판, 상기 전자부품용 기판의 제조방법 및 이를 포함하는 표시 장치 및 반도체 장치 | |
WO2023191535A1 (ko) | 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법 | |
WO2018093127A1 (ko) | 복합 용도의 자성 시트 및 이를 포함하는 안테나 장치 | |
WO2019112175A1 (ko) | 접착제 키트, 이를 포함하는 접착필름 및 봉지재, 및 유기전자장치의 봉지방법 | |
WO2021040364A1 (ko) | 회로기판 | |
WO2021256869A1 (ko) | 회로기판 | |
WO2021091303A1 (ko) | 저주파 안테나용 방열 시트, 이의 제조방법 및 이를 포함하는 전자기기 | |
WO2020185021A1 (ko) | 패키징 기판 및 이를 포함하는 반도체 장치 | |
WO2023059008A1 (ko) | 회로기판 및 이를 포함하는 반도체 패키지 | |
WO2017183740A1 (ko) | Uv 경화를 이용한 내압착용 전극 페이스트 조성물 및 이를 이용한 칩부품 제조 방법 | |
WO2020055139A1 (ko) | 복합소자 제조방법 및 이로 구현된 복합소자 | |
WO2023059007A1 (ko) | 회로기판 및 이를 포함하는 반도체 패키지 | |
WO2022119389A1 (ko) | 반도체 패키지용 수지 조성물, 동박 부착 수지 및 이를 포함하는 회로기판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20925809 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17781117 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020925809 Country of ref document: EP Effective date: 20221018 |