[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021187132A1 - 制御装置、及びそれを備える液圧システム - Google Patents

制御装置、及びそれを備える液圧システム Download PDF

Info

Publication number
WO2021187132A1
WO2021187132A1 PCT/JP2021/008420 JP2021008420W WO2021187132A1 WO 2021187132 A1 WO2021187132 A1 WO 2021187132A1 JP 2021008420 W JP2021008420 W JP 2021008420W WO 2021187132 A1 WO2021187132 A1 WO 2021187132A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
flow state
flow rate
valve
flow
Prior art date
Application number
PCT/JP2021/008420
Other languages
English (en)
French (fr)
Inventor
知道 能勢
勇人 川▲崎▼
英泰 村岡
敦之 木下
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to GB2215095.7A priority Critical patent/GB2609777B/en
Priority to CN202180017994.6A priority patent/CN115151735A/zh
Priority to US17/906,409 priority patent/US11933331B2/en
Publication of WO2021187132A1 publication Critical patent/WO2021187132A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6657Open loop control, i.e. control without feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element

Definitions

  • the present invention relates to a control device for controlling the movement of the valve body of the valve device provided in the hydraulic pressure system, and a hydraulic pressure system including the control device.
  • the hydraulic system is equipped with a control device.
  • the control device controls the movement of the valve body of the valve device in the hydraulic system, for example, the spool of the spool valve.
  • a control device for example, a control device such as Patent Document 1 is known.
  • the position control signal is feedback-controlled based on the spool position detected by the sensor circuit.
  • the spool position is controlled, but there is also a control device that controls the flow rate of the valve device.
  • the valve body opening that is, the spool position command is calculated based on the target flow rate value and the actual flow rate.
  • the spool position command is calculated based on the relational expression between the flow rate and the pressure loss.
  • the relational expression between the flow rate and the pressure loss is a relational expression that holds when the state of the hydraulic fluid flow in the valve device is a steady flow state or a quasi-steady flow state. Therefore, the conventional control device exhibits stability in flow rate control mainly in a steady flow state or a quasi-steady flow state.
  • an object of the present invention is to provide a control device capable of improving the stability in flow rate control in a transient flow state.
  • the control device of the present invention controls the movement of the valve body of the valve device, and is estimated by a flow rate acquisition unit that acquires the flow rate of the valve device, an input flow rate target value, and the flow rate acquisition unit. Based on the flow rate estimated value, the flow state determination unit that determines whether or not the flow of the hydraulic fluid in the valve device is in a transient flow state, and the opening command based on the flow rate target value and the differential pressure before and after the valve device.
  • the valve body control unit has a valve body control unit that controls the movement of the valve body, and the valve body control unit determines that the flow state determination unit is not in the transient flow state. The movement of the valve body is controlled based on the above, and when the flow state determining unit determines that the flow state is in a transient flow state, the movement of the valve body is controlled based on the flow rate target value.
  • the stability of the flow rate control in the transient flow state is improved by separating the valve body control method between the transient flow state and the non-transient flow state, that is, the steady flow or quasi-steady flow state. be able to.
  • the hydraulic system of the present invention includes the above-mentioned control device, the valve device, at least one electromagnetic proportional valve, and a spool valve, and the spool valve has a spool which is the valve body, and the spool. Strokes according to the pilot pressure acting on the spool, the electromagnetic proportional valve outputs the pilot pressure acting on the spool, and the valve body control unit requires that the flow state determination unit is not in the transient flow state.
  • the pilot pressure according to the opening command is output from the electromagnetic proportional valve to control the movement of the valve body, and when the flow state determination unit determines that the flow state determination unit is in the transient flow state, the pilot pressure according to the flow rate target value is applied. The movement of the valve body is controlled by outputting from the electromagnetic proportional valve.
  • FIG. 2 It is a hydraulic circuit diagram which shows the hydraulic pressure system which concerns on embodiment of this invention. It is a block diagram of the control device provided in the hydraulic pressure system of FIG. It is a block diagram which shows the opening command limit value calculation part of FIG. 2 in more detail.
  • (A) is a graph showing the time-dependent change of the flow rate target value and the flow rate estimated value
  • (b) is a graph showing the time-dependent change of the opening command of the prior art and the opening command of the present invention. It is a graph which shows the time-dependent change of the flow rate in the conventional technique and the flow rate of this invention.
  • the construction machine is equipped with a hydraulic actuator and a hydraulic system 1 to move each configuration.
  • the hydraulic actuator is, for example, a hydraulic cylinder 2 as shown in FIG.
  • the hydraulic cylinder 2 is attached in association with each configuration of the construction machine.
  • the hydraulic cylinder 2 can operate the corresponding configuration by expanding and contracting. More specifically, the hydraulic cylinder 2 has a rod-side port 2a and a head-side port 2b. The hydraulic cylinder 2 expands and contracts when the hydraulic fluid is supplied to the ports 2a and 2b.
  • the hydraulic system 1 can supply the hydraulic fluid to the hydraulic cylinder 2. Then, the hydraulic system 1 can expand and contract the hydraulic cylinder 2 by supplying the hydraulic liquid to the hydraulic cylinder 2.
  • the hydraulic system 1 having such a function includes, for example, a hydraulic pump 11, a valve device 12, three pressure sensors 13 to 15, an operating device 16, and a control device 17.
  • the hydraulic pump 11 can discharge the working liquid. More specifically, a drive source is connected to the hydraulic pump 11.
  • the drive source is an engine E and an electric motor. In this embodiment, the drive source is the engine E.
  • the hydraulic pump 11 is rotationally driven by the engine E to discharge the hydraulic fluid.
  • the hydraulic pump 11 is a swash plate pump or a swash shaft pump in the present embodiment.
  • the valve device 12 is interposed between the hydraulic pump 11 and the hydraulic cylinder 2. Then, the valve device 12 can control the flow direction of the hydraulic fluid flowing from the hydraulic pump 11 to the hydraulic cylinder 2 and the flow rate of the hydraulic fluid in response to the input operation command. That is, the valve device 12 switches the flow direction of the hydraulic fluid to any of the two ports 2a and 2b of the hydraulic cylinder 2 and shuts off the flow of the hydraulic fluid to the two ports 2a and 2b. Can be done. More specifically, the valve device 12 is an electronically controlled spool valve. The valve device 12 includes a directional control valve 21 and two electromagnetic proportional control valves 22L and 22R.
  • the directional control valve 21 is connected to the hydraulic pump 11, the rod side port 2a and the head side port 2b of the hydraulic cylinder 2, and the tank 3. Then, the directional control valve 21 switches the connection state of the hydraulic pump 11, the rod side port 2a and the head side port 2b of the hydraulic cylinder 2, and the tank 3 (that is, communicates or shuts off each of them). Can be done. As a result, the flow from the hydraulic pump 11 to the hydraulic cylinder 2 is switched. By changing the flow in this way, the directional control valve 21 can expand and contract the hydraulic cylinder 2. Further, the directional control valve 21 can adjust the size of the opening when the hydraulic pump 11 and the hydraulic cylinder 2 communicate with each other, that is, the opening degree. Thereby, the flow rate of the working liquid flowing through the hydraulic cylinder 2 can be adjusted. That is, the speed at which the hydraulic cylinder 2 expands and contracts can be adjusted.
  • the directional control valve 21 has a spool 21a.
  • the connection state of the spool 21a can be switched by changing the position (that is, the stroke amount). That is, the spool 21a can connect the hydraulic pump 11 to each of the rod side port 2a and the head side port 2b depending on the position. Further, the opening degree of the spool 21a can be adjusted according to the stroke amount (or position) of the spool 21a. Thereby, the flow rate of the working liquid flowing through the hydraulic cylinder 2 can be adjusted.
  • the spool 21a having such a function receives pilot pressures P1 and P2 that oppose each other, and moves to a position corresponding to the differential pressure between the two pilot pressures P1 and P2.
  • the first and second electromagnetic proportional control valves 22L and 22R which are examples of the electromagnetic proportional valves, are the first pilot pressure P1 and the second pilot pressure P2 of the pressure corresponding to the input signal (current or voltage in this embodiment). Is output respectively.
  • the output first pilot pressure P1 and second pilot pressure P2 are guided to the spool 21a.
  • the first and second electromagnetic proportional control valves 22L and 22R are connected to a pilot pump (not shown).
  • the first and second electromagnetic proportional control valves 22L and 22R adjust the hydraulic fluid discharged from the pilot pump to a pressure corresponding to the signal and output it to the spool 21a.
  • the three pressure sensors 13 to 15 detect the hydraulic pressure before and after the directional control valve 21. More specifically, the first pressure sensor 13 is provided in association with the flow path connecting the directional control valve 21 and the hydraulic pump 11. Further, the second pressure sensor 14 is provided in association with the flow path connecting the directional control valve 21 and the rod side port 2a of the hydraulic cylinder 2. Further, the third pressure sensor 15 is provided in association with the flow path connecting the directional control valve 21 and the head side port 2b. Each pressure sensor 13 to 15 detects the hydraulic pressure of the corresponding flow path. Then, each of the pressure sensors 13 to 15 outputs the detected hydraulic pressure to the control device 17.
  • the operation device 16 outputs an operation command to the control device 17 in order to operate the hydraulic cylinder 2.
  • the operating device 16 is, for example, an operating valve or an electric joystick. More specifically, the operating device 16 has an operating lever 16a, which is an example of an operating tool.
  • the operation lever 16a is configured to be operable by the operator.
  • the operating lever 16a is configured to be swingable.
  • the operation device 16 outputs an operation command corresponding to the operation amount (swing amount in the present embodiment) of the operation lever 16a to the control device 17.
  • the control device 17 is connected to pressure sensors 13 to 15, two electromagnetic proportional control valves 22L and 22R, and an operating device 16.
  • the control device 17 controls the operation of the spool 21a of the valve device 12 in response to an operation command from the operation device 16. More specifically, the control device 17 calculates an operation command based on the detection results of the pressure sensors 13 to 15 and the operation command from the operation device 16.
  • the operation command is a pressure command for controlling the operation of the spool 21a of the valve device 12. In this embodiment, the operation command is a pressure command described later.
  • the control device 17 outputs a signal corresponding to the pressure command to the electromagnetic proportional control valves 22L and 22R.
  • the pilot pressures P1 and P2 corresponding to the pressure command are output from the electromagnetic proportional control valves 22L and 22R.
  • the operation of the spool 21a of the valve device 12 is controlled in response to the operation command.
  • the control device 17 acquires the flow rate target value and the front-rear differential pressure of the valve device 12 in order to calculate the operation command.
  • the flow rate target value is a target value of the flow rate of the hydraulic fluid flowing through the hydraulic cylinder 2.
  • the control device 17 sets the flow rate target value based on the operation command from the operation device 16.
  • the front-rear differential pressure of the valve device 12 that is, the front-rear differential pressure of the directional control valve 21
  • the valve device 12 that is, in the flow path connecting the hydraulic pump 11 and the hydraulic cylinder 2 via the valve device 12. Specifically, it is the difference in pressure between the upstream side and the downstream side of the directional control valve 21).
  • the control device 17 calculates the front-rear differential pressure of the directional control valve 21 based on the signals from the three pressure sensors 13 to 15. Further, the control device 17 includes an opening command calculation unit 31, a flow rate estimation calculation unit 32, an opening command limit value calculation unit 33, a valve body control unit 34, and an opening estimation calculation unit 35 in order to calculate an operation command. , And have.
  • the opening command calculation unit 31 calculates an opening command for the direction control valve 21 based on the calculated flow rate target value and the front-rear pressure of the direction control valve 21.
  • the opening command is the opening degree at which the directional control valve 21 should be opened.
  • the opening command calculation unit 31 calculates the opening degree at which the hydraulic fluid having the flow rate target value can flow from the directional control valve 21 to the hydraulic cylinder 2.
  • the flow rate estimation calculation unit 32 which is an example of the flow rate acquisition unit, estimates the flow rate of the hydraulic fluid flowing through the direction control valve 21 based on the calculated front-rear pressure of the direction control valve 21 and the estimated opening degree described later, that is, the flow rate. Calculate the estimate.
  • the opening command limit value calculation unit 33 determines the flow state of the hydraulic fluid in the direction control valve 21 based on the calculated flow rate estimated value and flow rate target value.
  • the hydraulic fluid flow states to be determined include a steady flow state, a quasi-steady flow state, and a transient flow state. Further, the opening command limit value calculation unit 33 calculates the opening command limit value according to the flow state to be determined.
  • the opening command limit value is a limit value (upper limit value) when the valve body control unit 34, which will be described in detail later, limits the opening command. Further, the opening command limit value calculation unit 33 smoothly changes the limit value when changing from the transient flow state to the steady flow state or the quasi-steady flow state (hereinafter, referred to as “steady flow state or the like”).
  • the opening command limit value calculation unit 33 has a flow state determination unit 36, a limit value selection unit 37, and a change rate limit unit 38.
  • the flow state determination unit 36 does not necessarily have to be included in the opening command limit value calculation unit 33. That is, the flow state determination unit 36 may be independent of the opening command limit value calculation unit 33.
  • the flow state determination unit 36 determines the flow state of the hydraulic fluid in the direction control valve 21 based on the calculated flow rate estimated value and the flow rate target value. In the present embodiment, the flow state determination unit 36 determines the flow state depending on whether the difference between the calculated flow rate estimated value and the flow rate target value is within or outside the predetermined range. More specifically, the flow state determination unit 36 determines whether or not the flow state is in the transient flow state based on whether or not the absolute value of the difference (hereinafter, referred to as “absolute difference value”) is less than a predetermined difference flow rate ⁇ Q.
  • the flow state determination unit 36 having such a function has a subtractor 41, an absolute value calculator 42, and a first comparator 43 in the present embodiment.
  • the subtractor 41 calculates the difference between the flow rate target value and the flow rate estimated value.
  • the absolute value calculator 42 calculates the absolute difference value based on the calculated difference.
  • the first comparator 43 determines whether or not the calculated difference absolute value is less than a predetermined difference flow rate ⁇ Q. Then, when the first comparator 43 determines that the difference absolute value is less than the difference flow rate ⁇ Q, it is determined that the flow state is a steady flow state or a quasi-steady flow state. On the contrary, when the first comparator 43 determines that the absolute difference value is equal to or greater than the difference flow rate ⁇ Q, it is determined that the flow state is the transient flow state. In this way, the flow state determination unit 36 can easily determine the flow state by using the absolute difference value.
  • the limit value selection unit 37 selects the opening command limit value based on the determination of the flow state determination unit 36. More specifically, the limit value selection unit 37 invalidates the limit value when it is determined that the flow state is a steady flow state or the like. In the present embodiment, the limit value selection unit 37 invalidates the limit value by setting the limit value to the maximum aperture value. On the other hand, when it is determined that the flow state is a transient flow state, the limit value selection unit 37 sets a limit value ( ⁇ maximum opening value) based on the flow rate target value.
  • the limit value selection unit 37 having such a function has a limit invalidator 45, a limit value calculator 46, and a selector 47 in the present embodiment.
  • the limit invalidator 45 sets the limit value (that is, the upper limit value and the lower limit value) to the maximum opening value (invalid limit value).
  • the limit value calculator 46 calculates the calculation limit value based on the flow rate target value to be calculated. In the present embodiment, the correspondence between the flow rate target value and the limit value is preset in the limit value calculator 46. The limit value calculator 46 calculates a limit value (calculation set value) based on the above-mentioned correspondence relationship. Then, the selector 47 selects either the invalid limit value or the calculation limit value as the selection limit value based on the flow state determined by the flow state determination unit 36.
  • the selector 47 selects an invalid limit value as a selection limit value when it is determined that the flow state is a steady flow state or the like. On the other hand, when it is determined that the flow state is the transient flow state, the selector 47 selects the calculation limit value as the selection limit value.
  • the rate of change limiting unit 38 adjusts the limit value so as to smooth the change of the opening command when changing from the transient flow state to the steady flow state or the quasi-steady flow state (hereinafter referred to as “steady flow state, etc.”). ..
  • the change rate limiting unit 38 limits the rate of change of the limit value to or less than the predetermined limit change rate for a predetermined time Ts after the flow state is switched as described above.
  • the rate of change limiting unit 38 having such a function has a timer 51, a second comparator 52, and a rate of change limiting device 53 in the present embodiment.
  • the timer 51 measures the elapsed time from the time when the flow state determined by the flow state determination unit 36 is switched. More specifically, the timer 51 starts measuring the elapsed time based on the output of the first comparator 43. That is, the first comparator 43 starts measuring the elapsed time when it is determined that the absolute difference value is equal to or greater than the differential flow rate ⁇ Q and then is determined to be equal to or less than the differential flow rate ⁇ Q.
  • the second comparator 52 determines whether or not the elapsed time measured by the timer 51 is less than a predetermined time Ts.
  • the change rate limiter 53 limits the rate of change of the limit value to less than the limit change rate when the second comparator 52 determines that the elapsed time is less than the predetermined time Ts.
  • the rate of change limiter 53 newly sets the limited limit value as a limit value (set limit value).
  • the rate of change limiter 53 invalidates the limit on the rate of change of the limit value when the second comparator 52 determines that the elapsed time is Ts or more for a predetermined time. That is, the rate of change limiter 53 sets the selection limit value as it is as the set limit value.
  • the change rate limiter 53 sets the next set limit value so that the change rate of the selection limit value with respect to the immediately preceding set limit value is equal to or less than the limit change rate. That is, the rate of change limiter 53 stores at least the immediately preceding set limit value. Then, the change rate limiter 53 calculates the change rate of the calculation limit value with respect to the immediately preceding set limit value. When the rate of change is equal to or greater than the rate of change, the rate of change limiter 53 sets the value obtained by multiplying the rate of change by ⁇ t by adding the value obtained by adding the value obtained by multiplying the rate of change to the immediately preceding set limit value as the next set limit value (for example, described later). See the solid line at times t0 to t3 in FIG.
  • the limit change rate is the amount of change per unit time
  • ⁇ t seconds is the calculation interval for calculating the set limit value.
  • the selection limit value is set as the set limit value.
  • the change rate limiter 53 sets the selection limit value as it is as the set limit value as described above.
  • the valve body control unit 34 controls the movement of the valve body according to the flow state determined by the flow state determination unit 36 of the opening command limit value calculation unit 33. That is, when it is determined that the valve body control unit 34 is not in the transient flow state, that is, in the steady flow state or the like, the valve body control unit 34 controls the movement of the spool 21a based on the opening command calculated by the opening command calculation unit 31. On the other hand, when it is determined that the transient flow state is established, the valve body control unit 34 controls the movement of the spool 21a based on the flow rate target value.
  • valve body control unit 34 controls the movement of the spool 21a based on either the opening command or the flow rate target value in each state by limiting the opening command according to the flow state.
  • the valve body control unit 34 having such a function has an opening command limiting portion 55 and a pressure command calculation portion 56 in the present embodiment.
  • the opening command limiting portion 55 limits the opening command based on the set limit value set by the opening command limit value calculation unit 33. That is, when the opening command limit value calculation unit 33 determines that the flow state is a steady flow state or the like and the elapsed time is Ts or more for a predetermined time, the maximum opening value, which is an invalid limit value, is set as the set limit value. do. Then, since the opening command calculated by the opening command calculation unit 31 becomes equal to or less than the set limit value, the opening command limiting portion 55 outputs the opening command as it is as an output command.
  • the determination condition does not necessarily include the elapsed time.
  • the opening command limit value calculation unit 33 sets the calculation limit value, which is the selection limit value, as the setting limit value in the transient flow state.
  • the calculation limit value calculated based on the flow rate target value is smaller than, for example, the opening command.
  • the opening command is limited to the set limit value by the opening command limiting portion 55. That is, the opening command limiting portion 55 outputs an output command according to the flow rate target value.
  • the set limit value increases based on the limit change rate. Therefore, the output command is output from the opening command limiting portion 55 in a state where the rate of change is suppressed to the limit change rate or less (see times t2 to t4 in FIG. 4B).
  • the pressure command calculation part 56 calculates the pressure command based on the output command output from the opening command limiting part 55.
  • the pressure command which is an example of the operation command, is a command for adjusting the opening degree of the directional control valve 21 to the opening degree according to the output command.
  • the pressure command is a command value for outputting pilot pressures P1 and P2 from the electromagnetic proportional control valves 22L and 22R in order to adjust the opening degree. That is, the pressure command calculation unit 56 calculates the command values of the pilot pressures P1 and P2 in response to the output command. As a result, the movement of the spool 21a is controlled in response to the pressure command.
  • the pressure command calculation unit 56 calculates the first pressure command (first operation command) based on the opening command. Then, the pressure command calculation unit 56 outputs a signal corresponding to the first pressure command to the electromagnetic proportional control valves 22L and 22R. As a result, when the flow state is a steady flow state or the like, the operation of the spool 21a is controlled based on the opening command. On the other hand, when the flow state is a transient flow, an output command corresponding to the calculation limit value is output. Therefore, the pressure command calculation unit 56 calculates the second pressure command (second operation command) based on the calculation limit value.
  • the calculation limit value is a value set based on the flow rate target value. Therefore, the pressure command calculation unit 56 calculates the pressure command based on the flow rate target value. Then, the pressure command calculation unit 56 outputs a signal corresponding to the second pressure command to the electromagnetic proportional control valves 22L and 22R. Therefore, in the transient flow state, the operation of the spool 21a is controlled based on the flow rate target value.
  • the rate of change of the set limit value is equal to or less than the limit change rate.
  • the opening estimation calculation unit 35 which is an example of the opening degree acquisition unit, estimates the opening degree of the direction control valve 21, that is, the estimated opening degree, based on the output value from the opening command limiting portion 55. More specifically, the aperture estimation calculation unit 35 estimates the stroke amount of the spool 21a based on the output command from the aperture command limiting portion 55. Further, the aperture estimation calculation unit 35 estimates the estimated opening degree from the stroke amount. The estimated estimated opening degree is used when the flow rate estimation calculation unit 32 calculates the flow rate estimation value.
  • the aperture estimation calculation unit 35 may be an observer.
  • the control device 17 configured in this way executes the following control when the operation lever 16a of the operation device 16 is operated. That is, the control device 17 calculates the flow rate target value based on the operation amount of the operation lever 16a. The control device 17 calculates the front-rear differential pressure of the directional control valve 21 based on the pressures detected by the three pressure sensors 13 to 15. Next, in the control device 17, the opening command calculation unit 31 calculates the opening command based on the flow rate target value and the front-rear differential pressure of the direction control valve 21. Further, the flow rate estimation calculation unit 32 calculates the flow rate estimation value based on the estimated opening value and the front-rear differential pressure of the direction control valve 21.
  • the opening command limit value calculation unit 33 determines the flow state based on the calculated flow rate estimated value and the flow rate target value. Further, the opening command limit value calculation unit 33 sets the set limit value according to the flow state and the elapsed time. The valve body control unit 34 limits the opening command according to the set limit value. Further, the valve body control unit 34 calculates a pressure command based on an output command which is a limited opening command. Then, the valve body control unit 34 outputs the pilot pressures P1 and P2 in response to the pressure command from the electromagnetic proportional control valves 22L and 22R. As a result, the control device 17 can control the movement of the spool 21a in response to the pressure command.
  • the operating lever 16a is operated so that the hydraulic fluid is supplied from the hydraulic pump 11 to the hydraulic cylinder 2 as the flow rate changes with time as shown by the alternate long and short dash line in the graph of FIG. That is, the control device 17 sets the flow rate target value as shown by the alternate long and short dash line in FIG. 4 based on the operation command from the operation device 16.
  • the flow rate target value is greatly increased (see time t0 to t1 of the alternate long and short dash line in FIG. 4A). Therefore, the absolute difference between the flow rate estimated value estimated by the flow rate estimation calculation unit 32 and the flow rate target value exceeds the predetermined difference flow rate ⁇ Q.
  • the flow state determination unit 36 of the opening command limit value calculation unit 33 determines that the flow state is a transient flow state. Then, the limit value selection unit 37 selects the calculation limit value calculated based on the flow rate target value. Further, the rate of change limiting unit 38 sets the calculation limit value as the set limit value.
  • the set limit value is a value smaller than the opening command in the transient flow state (see the solid line and the alternate long and short dash line at times t0 to t3 in FIG. 4B). Therefore, the valve body control unit 34 calculates the pressure command based on the output command that limits the opening command to the set limit value.
  • the valve body control unit 34 controls the movement of the spool 21a based on the flow rate target value (see the solid line at times t0 to t3 in FIG. 4B).
  • the flow rate target value is held at a constant flow rate (see time t1 or later on the alternate long and short dash line in FIG. 4A).
  • the absolute difference value is equal to or greater than the predetermined difference flow rate ⁇ Q (see the alternate long and short dash line after time t1 in FIG. 4A).
  • the flow state determination unit 36 determines that the flow state determination unit 36 continues in the transient flow state. Then, the output command is limited to the set limit value or less, and the pressure command is set based on the flow rate target value (see the solid line at times t1 to t2 in FIG. 4B).
  • the flow state determination unit 36 determines that the flow state has been switched to the steady flow state or the like (see time t2 in FIG. 4A). Then, the timer 51 starts measuring the elapsed time. Then, the set limit value increases while the change rate of the set limit value is limited to the limit change rate or less until the elapsed time reaches the predetermined time Ts.
  • the valve body control unit 34 can smoothly increase the output command according to the limitation of the set limit value, that is, the pressure command can be smoothly increased.
  • the valve body control unit 34 uses the opening command as it is as an output command. That is, the valve body control unit 34 calculates the pressure command based on the opening command. As a result, the valve body control unit 34 controls the movement of the spool 21a based on the opening command (see the solid line after the time t3 in FIG. 4B).
  • control device 17 executes the same control when the operation lever 16a is returned to the neutral position. That is, the control device 17 controls the movement of the spool 21a based on either the opening command or the flow rate target value according to the flow state to be determined. As a result, even when the flow rate is reduced, the same effect as when the flow rate is increased can be obtained.
  • the control method of the spool 21a is divided into a transient flow state and a steady flow state that is not a transient flow state.
  • stability can be improved in the flow rate control in the transient flow state. That is, as shown in FIG. 5, an overshoot or the like occurs in the flow rate in the conventional control with respect to the flow rate target value (see the alternate long and short dash line in FIG. 5) (see the alternate long and short dash line in FIG. 5).
  • the control device 17 of the present invention it is possible to suppress the occurrence of overshoot or the like (see the solid line in FIG. 5). That is, the control device 17 can improve the stability of the flow rate control in the transient flow state.
  • the flow rate estimated value is estimated based on the estimated opening degree acquired by the opening degree estimation calculation unit 35. Then, the control device 17 determines the flow state based on the estimated flow rate value. Therefore, the control device 17 can accurately determine the flow state. As a result, the flow of the hydraulic fluid in the transient flow state can be controlled more stably.
  • the valve body control unit 34 functions as follows. That is, the valve body control unit 34 controls the movement of the spool 21a based on the opening command in the case of a steady flow state or the like. The opening command is calculated based on the front-rear pressure of the directional control valve 21 and the flow rate target value. That is, the valve body control unit 34 executes feedback control based on the opening command regarding the control of the movement of the spool 21a. On the other hand, the valve body control unit 34 controls the movement of the spool 21a based on the flow rate target value in the transient flow state. The flow rate target value is calculated in response to an operation command from the operation device 16.
  • the valve body control unit 34 executes open loop control (feedforward control) based on the flow rate target value for controlling the movement of the spool 21a.
  • open loop control feedforward control
  • the flow rate accuracy can be improved in a steady flow state or the like.
  • the stability can be improved in the flow rate control in the transient flow state.
  • the opening command limiting portion 55 of the valve body control unit 34 limits the opening command.
  • the pressure command calculation unit 56 controls the movement of the spool 21a based on the second pressure command.
  • the control device 17 can control the movement of the spool 21a based on the flow rate target value by calculating the second pressure command by the limited opening command.
  • the flow of the hydraulic fluid can be stably controlled in the transient flow state.
  • the hydraulic system 1 of the present embodiment is applied to a construction machine, it may be applied to an industrial vehicle such as a forklift or an industrial machine such as a press machine. Further, in the hydraulic system 1 of the present embodiment, only one directional control valve 21 is connected to the hydraulic pump 11, but a plurality of directional control valves 21 are connected in parallel or in series. May be good. Further, the hydraulic actuator connected to the directional control valve 21 is not limited to the hydraulic cylinder 2, and may be a hydraulic motor.
  • an example of the hydraulic actuator is the hydraulic cylinder 2, but the hydraulic actuator may be a hydraulic motor.
  • the type of the hydraulic cylinder 2 is not limited to the single-rod double-acting cylinder, and may be a double-rod cylinder or a single-acting cylinder.
  • the configuration included in the valve device 12 is not limited to the directional control valve 21, as long as the size of the opening can be adjusted by the valve body.
  • the operation command is not necessarily limited to the pressure command, but may be a current command.
  • control device 17 does not necessarily have to have the flow rate estimation calculation unit 32.
  • the control device 17 may have, for example, a flow rate acquisition unit.
  • the hydraulic system 1 is provided with a flow rate sensor in the flow path connecting the directional control valve 21 and the hydraulic pump 11. Then, the flow rate acquisition unit acquires the measured flow rate based on the output result of the flow rate sensor.
  • the opening command limit value calculation unit 33 determines the flow state based on the acquired measured flow rate.
  • the aperture estimation calculation unit 35 may also be an aperture acquisition unit.
  • the hydraulic system 1 is provided with a stroke sensor on the spool 21a. Then, the opening acquisition unit acquires the estimated opening degree based on the output result of the stroke sensor.
  • valve body control unit 34 of the control device 17 realizes control of the movement of the spool 21a based on the flow rate target value by limiting the opening command in the transient flow state.
  • the control executed by the valve body control unit 34 is not necessarily limited to this.
  • the target based on the pressure command calculated by the valve body control unit 34 may be switched to either the opening command or the flow rate target value according to the flow state.
  • the spool 21a may be controlled as follows. That is, the control device 17 calculates the first and second pressure commands based on both the opening command and the flow rate target value.
  • the valve body control unit 34 outputs one of the first and second pressure commands to the first and second electromagnetic proportional control valves 22L and 22R according to the determined flow state.
  • valve body control unit 34 controls the movement of the spool 21a based on the opening command in the steady flow state or the like, and controls the movement of the spool 21a based on the flow rate target value in the transient flow state. can do.
  • the spool 21a of the directional control valve 21 moves according to the pilot pressure from the electromagnetic proportional control valves 22L and 22R.
  • the drive system of the spool 21a of the directional control valve 21 is not necessarily limited to such a system.
  • the spool 21a of the directional control valve 21 may be driven by an electric motor via a linear motion mechanism.
  • the control device 17 controls the movement of the spool 21a via an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Flow Control (AREA)

Abstract

弁装置の弁体の動きを制御する制御装置であって、前記弁装置の流量を取得する流量取得部と入力される流量目標値と前記流量取得部で推定される流量推定値とに基づいて、前記弁装置における作動液の流れが過渡流れ状態か否かを判定する流れ状態判定部と、前記流量目標値及び前記弁装置の前後の差圧に基づいて開口指令を演算する開口指令演算部と、前記弁体の動きを制御する弁体制御部と、を有し、前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると前記開口指令に基づいて前記弁体の動きを制御し、前記流れ状態判定部が過渡流れ状態であると判定すると前記流量目標値に基づいて前記弁体の動きを制御するものである。

Description

制御装置、及びそれを備える液圧システム
 本発明は、液圧システムに備わる弁装置の弁体の動きを制御する制御装置、及びそれを備える液圧システムに関する。
 液圧システムは、制御装置を備えている。制御装置は、液圧システムにおける弁装置の弁体、例えばスプール弁のスプールの動きを制御する。このような制御装置としては、例えば特許文献1のような制御装置が知られている。特許文献1の制御装置では、センサ回路によって検出されるスプール位置に基づいて位置制御信号をフィードバック制御している。
特開2003-167604号公報
 特許文献1の制御装置では、スプール位置を制御しているが、弁装置の流量を制御する制御装置もある。このような制御装置の場合、目標流量値及び実際の流量に基づいて弁体の開口、即ちスプール位置指令を演算する。例えば、スプール位置指令は流量と圧力損失との関係式に基づいて演算される。流量と圧力損失の関係式は、弁装置における作動液の流れの状態が定常流れ状態又は準定常流れ状態において成立する関係式である。それ故、従来の制御装置は、主に定常流れ状態又は準定常流れ状態において流量制御における安定性を発揮する。
 そこで本発明は、過渡流れ状態の流量制御における安定性を向上させることができる制御装置を提供することを目的としている。
 本発明の制御装置は、弁装置の弁体の動きを制御するものであって、前記弁装置の流量を取得する流量取得部と、入力される流量目標値と前記流量取得部で推定される流量推定値とに基づいて、前記弁装置における作動液の流れが過渡流れ状態か否かを判定する流れ状態判定部と、前記流量目標値及び前記弁装置の前後の差圧に基づいて開口指令を演算する開口指令演算部と、前記弁体の動きを制御する弁体制御部と、を有し、前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると前記開口指令に基づいて前記弁体の動きを制御し、前記流れ状態判定部が過渡流れ状態であると判定すると前記流量目標値に基づいて前記弁体の動きを制御するものである。
 本発明に従えば、過渡流れ状態と、過渡流れ状態でない状態、即ち定常流れ又は準定常流れの状態とで弁体の制御方法を切り分けることによって、過渡流れ状態における流量制御の安定性を向上させることができる。
 本発明の液圧システムは、前述する制御装置と、前記弁装置は、少なくとも1つの電磁比例弁と、スプール弁とを備え、前記スプール弁は、前記弁体であるスプールを有し、前記スプールは、前記スプールに作用するパイロット圧に応じてストロークし、前記電磁比例弁は、前記スプールに作用するパイロット圧を出力し、前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると開口指令に応じたパイロット圧を前記電磁比例弁から出力させて前記弁体の動きを制御し、前記流れ状態判定部が過渡流れ状態であると判定すると流量目標値に応じたパイロット圧を前記電磁比例弁から出力させて前記弁体の動きを制御するものである。
 本発明に従えば、過渡流れ状態における流量制御の安定性を向上させた液圧システムを提供することができる。
 本発明によれば、過渡流れ状態の流量制御における安定性を向上させることができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施形態に係る液圧システムを示す液圧回路図である。 図1の液圧システムに備わる制御装置のブロック図である。 図2の開口指令制限値演算部を更に詳しく示すブロック図である。 (a)は、流量目標値及び流量推定値の経時変化を示すグラフであり、(b)は、従来技術の開口指令と本発明の開口指令の経時変化を示すグラフである。 従来術における流量と本発明の流量の経時変化を示すグラフである。
 以下、本発明に係る実施形態の液圧システム1及び制御装置17を前述する図面を参照しながら説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等を記載される方向に限定するものではない。また、以下に説明する液圧システム1及び制御装置17は、本発明の一実施形態に過ぎない。従って、本発明は以下の実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 建設機械は、各構成を動かすべく液圧アクチュエータ及び液圧システム1を備えている。液圧アクチュエータは、例えば図1に示すような液圧シリンダ2である。液圧シリンダ2は、建設機械の各構成に対応付けて取り付けられている。液圧シリンダ2は、伸縮することによって対応する構成を作動させることができる。更に詳細に説明すると、液圧シリンダ2は、ロッド側ポート2a及びヘッド側ポート2bを有している。液圧シリンダ2では、各ポート2a,2bに作動液が供給されることによって伸縮する。
 液圧システム1は、液圧シリンダ2に作動液を供給することができる。そして、液圧システム1は、液圧シリンダ2に作動液を供給することによって液圧シリンダ2を伸縮させることができる。このような機能を有する液圧システム1は、例えば液圧ポンプ11と、弁装置12と、3つの圧力センサ13~15と、操作装置16と、制御装置17とを備えている。
 液圧ポンプ11は、作動液を吐出することができる。更に詳細に説明すると、液圧ポンプ11には、駆動源が接続されている。駆動源は、エンジンE及び電気モータである。本実施形態において、駆動源はエンジンEである。液圧ポンプ11は、エンジンEによって回転駆動されることによって作動液を吐出する。なお、液圧ポンプ11は、本実施形態において斜板ポンプ又は斜軸ポンプである。
 弁装置12は、液圧ポンプ11と液圧シリンダ2との間に介在する。そして、弁装置12は、入力される動作指令に応じて、液圧ポンプ11から液圧シリンダ2に流れる作動液の流れる方向及び作動液の流量を制御することができる。即ち、弁装置12は、作動液の流れる方向を液圧シリンダ2の2つのポート2a,2bの何れかの方向へと切替え、また2つのポート2a,2bへの作動液の流れを遮断することができる。更に詳細に説明すると、弁装置12は、電子制御式のスプール弁である。弁装置12は、方向制御弁21と、2つの電磁比例制御弁22L,22Rを有している。
 方向制御弁21は、液圧ポンプ11、液圧シリンダ2のロッド側ポート2a及びヘッド側ポート2b、並びにタンク3に接続されている。そして、方向制御弁21は、液圧ポンプ11、液圧シリンダ2のロッド側ポート2a及びヘッド側ポート2b、並びにタンク3の接続状態を切替える(即ち、各々を連通したり遮断したりする)ことができる。これにより、液圧ポンプ11から液圧シリンダ2への流れが切替わる。このように流れを変えることによって、方向制御弁21は液圧シリンダ2を伸縮することができる。また、方向制御弁21は、液圧ポンプ11と液圧シリンダ2とを連通する際の開口の大きさ、即ち開度を調節することができる。これにより、液圧シリンダ2に流れる作動液の流量を調整することができる。即ち、液圧シリンダ2の伸縮する速度を調整することができる。
 更に詳細に説明すると、方向制御弁21は、スプール21aを有している。スプール21aは、位置(即ち、ストローク量)を変えることによって、接続状態を切替えことができる。即ち、スプール21aは、位置に応じて液圧ポンプ11をロッド側ポート2a及びヘッド側ポート2bの各々に接続することができる。また、スプール21aは、スプール21aのストローク量(又は位置)に応じて開度を調整することができる。これにより、液圧シリンダ2に流れる作動液の流量を調整することができる。このような機能を有するスプール21aは、互いに抗するパイロット圧P1,P2を受圧しており、2つのパイロット圧P1,P2の差圧に応じた位置に移動する。
 電磁比例弁の一例である第1及び第2電磁比例制御弁22L,22Rは、入力される信号(本実施形態では電流又は電圧)に応じた圧力の第1パイロット圧P1及び第2パイロット圧P2を夫々出力する。出力される第1パイロット圧P1及び第2パイロット圧P2は、スプール21aに導かれる。更に詳細に説明すると、第1及び第2電磁比例制御弁22L,22Rは、図示しないパイロットポンプに接続されている。第1及び第2電磁比例制御弁22L,22Rは、パイロットポンプから吐出される作動液を信号に応じた圧力に調圧してスプール21aに出力する。
 3つの圧力センサ13~15は、方向制御弁21の前後の液圧を検出する。更に詳細に説明すると、第1圧力センサ13は、方向制御弁21と液圧ポンプ11とを繋ぐ流路に対応付けて設けられている。また、第2圧力センサ14は、方向制御弁21と液圧シリンダ2のロッド側ポート2aとを繋ぐ流路に対応付けて設けられている。更に、第3圧力センサ15は、方向制御弁21とヘッド側ポート2bとを繋ぐ流路に対応付けて設けられている。各圧力センサ13~15は、対応する流路の液圧を検出する。そして、各圧力センサ13~15は、検出された液圧を制御装置17に出力する。
 操作装置16は、液圧シリンダ2を作動させるべく操作指令を制御装置17に出力する。操作装置16は、例えば操作弁又は電気ジョイスティック等である。更に詳細に説明すると、操作装置16は操作具の一例である操作レバー16aを有している。操作レバー16aは、操作者が操作可能に構成されている。例えば、操作レバー16aは、揺動可能に構成されている。操作装置16は、操作レバー16aの操作量(本実施形態において揺動量)に応じた操作指令を制御装置17に出力する。
 制御装置17は、圧力センサ13~15、2つの電磁比例制御弁22L,22R、及び操作装置16に接続されている。制御装置17は、操作装置16からの操作指令に応じて弁装置12のスプール21aの動作を制御する。更に詳細に説明すると、制御装置17は、圧力センサ13~15の検出結果、及び操作装置16からの操作指令に基づいて動作指令を演算する。動作指令は、弁装置12のスプール21aの動作を制御するための圧力指令である。本実施形態において、動作指令は、後述する圧力指令である。制御装置17は、圧力指令に応じた信号を電磁比例制御弁22L,22Rに出力する。そうすると、電磁比例制御弁22L,22Rから圧力指令に応じたパイロット圧P1,P2が出力される。これにより、弁装置12のスプール21aの動作が操作指令に応じて制御される。
 更に詳細に説明すると、制御装置17は、動作指令を演算すべく流量目標値及び弁装置12の前後差圧を取得する。流量目標値は、液圧シリンダ2に流す作動液の流量の目標値である。本実施形態において、制御装置17は、操作装置16からの操作指令に基づいて流量目標値を設定する。他方、弁装置12の前後差圧(即ち、方向制御弁21の前後差圧)は、弁装置12を介して液圧ポンプ11と液圧シリンダ2とを繋ぐ流路において、弁装置12(より詳しくは方向制御弁21)の上流側及び下流側の圧力の差である。制御装置17は、3つの圧力センサ13~15からの信号に基づいて方向制御弁21の前後差圧を演算する。また、制御装置17は、動作指令を演算すべく、開口指令演算部31と、流量推定演算部32と、開口指令制限値演算部33と、弁体制御部34と、開口推定演算部35と、とを有している。
 開口指令演算部31は、演算される流量目標値及び方向制御弁21の前後圧に基づいて方向制御弁21に対する開口指令を演算する。開口指令は、方向制御弁21が開くべき開度である。本実施形態において、開口指令演算部31は、流量目標値の流量の作動液を方向制御弁21から液圧シリンダ2に流すことができる開度を演算する。
 流量取得部の一例である流量推定演算部32は、演算される方向制御弁21の前後圧、及び後述する推定開度に基づいて方向制御弁21を流れる作動液の流量を推定値、即ち流量推定値を演算する。
 開口指令制限値演算部33は、演算される流量推定値及び流量目標値に基づいて方向制御弁21における作動液の流れ状態を判定する。なお、判定される作動液の流れ状態には、定常流れ状態、準定常流れ状態、及び過渡流れ状態がある。また、開口指令制限値演算部33は、判定する流れ状態に応じて開口指令制限値を演算する。なお、開口指令制限値は、後で詳述する弁体制御部34で開口指令を制限する際の制限値(上限値)である。更に、開口指令制限値演算部33は、過渡流れ状態から定常流れ状態又は準定常流れ状態(以下、「定常流れ状態等」という)に推移する際に制限値を滑らかに変化させる。
 開口指令制限値演算部33は、流れ状態判定部36と、制限値選択部37と、変化率制限部38とを有している。なお、流れ状態判定部36は、必ずしも開口指令制限値演算部33に含まれている必要はない。即ち、流れ状態判定部36は、開口指令制限値演算部33と独立していてもよい。
 流れ状態判定部36は、演算される流量推定値及び流量目標値に基づいて方向制御弁21における作動液の流れ状態を判定する。本実施形態においては、流れ状態判定部36が演算される流量推定値及び流量目標値の差分が所定範囲内か所定範囲外かによって流れ状態を判定する。更に詳細に説明すると、流れ状態判定部36は、差分の絶対値(以下、「差分絶対値」という)が所定の差分流量ΔQ未満か否かで過渡流れ状態か否かを判定する。このような機能を有する流れ状態判定部36は、本実施形態において減算器41、絶対値演算器42、及び第1比較器43を有する。
 減算器41は、流量目標値と流量推定値との差分を演算する。絶対値演算器42は、演算される差分に基づいて差分絶対値を演算する。そして、第1比較器43は、演算される差分絶対値が所定の差分流量ΔQ未満か否かを判定する。そして、第1比較器43において差分絶対値が差分流量ΔQ未満であると判定された場合、流れ状態が定常流れ状態又は準定常流れ状態であると判定される。逆に、第1比較器43において差分絶対値が差分流量ΔQ以上であると判定された場合、流れ状態が過渡流れ状態であると判定される。このように流れ状態判定部36は、差分絶対値を用いることによって流れ状態を容易に判断することができる。
 制限値選択部37は、流れ状態判定部36の判定に基づいて開口指令制限値を選択する。更に詳細に説明すると、制限値選択部37は、流れ状態が定常流れ状態等であると判定されると、制限値を無効にする。本実施形態において、制限値選択部37は、制限値を最大開口値にすることによって制限値を無効にする。他方、流れ状態が過渡流れ状態であると判定されると、制限値選択部37は、流量目標値に基づいて制限値(<最大開口値)を設定する。このような機能を有する制限値選択部37は、本実施形態において制限無効器45と、制限値演算器46と、選択器47とを有している。
 制限無効器45は、制限値(即ち、上限値及び下限値)を最大開口値(無効制限値)に設定する。他方、制限値演算器46は、演算される流量目標値に基づいて演算制限値を演算する。本実施形態において、制限値演算器46には流量目標値と制限値の対応関係が予め設定されている。制限値演算器46は、前述する対応関係に基づいて制限値(演算設定値)を演算する。そして、選択器47は、流れ状態判定部36で判定される流れ状態に基づいて、無効制限値及び演算制限値の何れかを選択制限値として選択する。例えば、選択器47は、流れ状態が定常流れ状態等であると判定された場合、無効制限値を選択制限値として選択する。他方、流れ状態が過渡流れ状態であると判定された場合、選択器47は、演算制限値を選択制限値として選択する。
 変化率制限部38は、過渡流れ状態から定常流れ状態又は準定常流れ状態(以下、「定常流れ状態等」という)に推移する際に開口指令の変化を滑らかにするように制限値を調整する。本実施形態において、変化率制限部38は、前述するように流れ状態が切換った後の所定時間Tsの間、制限値の変化率を所定の制限変化率以下に制限する。このような機能を有する変化率制限部38は、本実施形態においてタイマー51と、第2比較器52と、変化率制限器53とを有している。
 タイマー51は、流れ状態判定部36によって判定される流れ状態が切替わった時点からの経過時間を測定する。更に詳細に説明すると、タイマー51は、第1比較器43の出力に基づいて経過時間の測定を開始する。即ち、第1比較器43が差分絶対値が差分流量ΔQ以上であると判定された後に差分流量ΔQ以下であると判定された時に経過時間の測定を開始する。第2比較器52は、タイマー51で測定される経過時間が所定時間Ts未満か否かを判定する。
 変化率制限器53は、第2比較器52において経過時間が所定時間Ts未満であると判定されると、制限値の変化率を制限変化率未満に制限する。変化率制限器53は、制限された制限値を新たに制限値(設定制限値)として設定する。他方、変化率制限器53は、第2比較器52において経過時間が所定時間Ts以上であると判定されると、制限値の変化率に関する制限を無効にする。つまり、変化率制限器53は、選択制限値をそのまま設定制限値として設定する。
 更に詳細に説明すると、変化率制限器53は、直前の設定制限値に対する選択制限値の変化率が制限変化率以下になるように次の設定制限値を設定する。即ち、変化率制限器53は、少なくとも直前の設定制限値を記憶している。そして、変化率制限器53は、直前の設定制限値に対する演算制限値の変化率を演算する。変化率が制限変化率以上の場合、変化率制限器53は、制限変化率にΔtを乗算した値を直前の設定制限値に加えた値を次の設定制限値として設定する(例えば、後述する図4(b)の時刻t0~t3の実線及び時刻t3以降の3点鎖線参照)。本実施形態において、制限変化率は、単位時間当たりの変化量であり、Δt秒は設定制限値を演算する演算間隔である。他方、変化率が制限変化率未満の場合、選択制限値を設定制限値として設定する。なお、経過時間が所定時間Ts以上になった場合、前述の通り、変化率制限器53は、選択制限値をそのまま設定制限値として設定する。
 弁体制御部34は、開口指令制限値演算部33の流れ状態判定部36で判定される流れ状態に応じて弁体の動きを制御する。即ち、弁体制御部34は、過渡流れ状態ではない、即ち定常流れ状態などであると判定されると、開口指令演算部31で演算される開口指令に基づいてスプール21aの動きを制御する。他方、過渡流れ状態であると判定されると、弁体制御部34は、流量目標値に基づいてスプール21aの動きを制御する。なお本実施形態において、弁体制御部34は、流れ状態に応じて開口指令を制限することによって各状態において開口指令及び流量目標値の何れかに基づいてスプール21aの動きを制御する。このような機能を有する弁体制御部34は、本実施形態において開口指令制限部分55と、圧力指令演算部分56とを有している。
 開口指令制限部分55は、開口指令制限値演算部33で設定される設定制限値に基づいて開口指令を制限する。即ち、開口指令制限値演算部33は、流れ状態が定常流れ状態等であり且つ経過時間が所定時間Ts以上であると判定された場合、制限無効値である開口最大値が設定制限値として設定する。そうすると、開口指令演算部31で演算される開口指令が設定制限値以下となるので、開口指令制限部分55は開口指令をそのまま出力指令として出力する。なお、判定条件には、必ずしも経過時間が含まれる必要はない。他方、開口指令制限値演算部33は、過渡流れ状態の場合、選択制限値である演算制限値を設定制限値として設定する。流量目標値に基づいて演算される演算制限値は、例えば開口指令より小さくなる。そうすると、開口指令制限部分55によって開口指令が設定制限値に制限される。即ち、開口指令制限部分55は、流量目標値に応じた出力指令を出力する。なお、経過時間が所定時間Tsに達する前の間では、設定制限値が制限変化率に基づいて増加する。それ故、出力指令は、その変化率が制限変化率以下に抑えられた状態で開口指令制限部分55から出力される(図4(b)の時刻t2~t4参照)。
 圧力指令演算部分56は、開口指令制限部分55から出力される出力指令に基づいて圧力指令を算出する。動作指令の一例である圧力指令は、出力指令に応じた開度に方向制御弁21の開度を調整するための指令である。本実施形態において、圧力指令は、開度を調整すべく電磁比例制御弁22L,22Rからパイロット圧P1,P2を出力させるための指令値である。即ち、圧力指令演算部分56は、出力指令に応じてパイロット圧P1,P2の指令値を演算する。これにより、スプール21aの動きが圧力指令に応じて制御される。
 更に詳細に説明すると、流れ状態が定常流れ状態等である場合、開口指令がそのまま出力指令として出力される。それ故、圧力指令演算部分56は、開口指令に基づいて第1圧力指令(第1動作指令)を演算する。そして、圧力指令演算部分56は、第1圧力指令に応じた信号を電磁比例制御弁22L,22Rに出力する。これにより、流れ状態が定常流れ状態等である場合、スプール21aの動作が開口指令に基づいて制御される。他方、流れ状態が過渡流れである場合、演算制限値に応じた出力指令が出力される。それ故、圧力指令演算部分56は、演算制限値に基づいて第2圧力指令(第2動作指令)を演算する。演算制限値は、流量目標値に基づいて設定される値である。それ故、圧力指令演算部分56は、流量目標値に基づいて圧力指令を演算することになる。そして、圧力指令演算部分56は、第2圧力指令に応じた信号を電磁比例制御弁22L,22Rに出力する。従って、過渡流れ状態である場合、スプール21aの動作は流量目標値に基づいて制御される。
 また、経過時間が所定時間Ts未満において、設定制限値の変化率が制限変化率以下になっている。これにより、圧力指令が第1圧力指令から第2圧力指令に切替わる際、制限変化率以下の変化率にて圧力指令を推移させることができる。
 開度取得部の一例である開口推定演算部35は、開口指令制限部分55からの出力値に基づいて方向制御弁21の開度、即ち推定開度を推定する。更に詳細に説明すると、開口推定演算部35は、開口指令制限部分55からの出力指令に基づいてスプール21aのストローク量を推定する。更に、開口推定演算部35は、ストローク量から推定開度を推定する。推定された推定開度は、流量推定演算部32が流量推定値を演算する際に用いられる。なお、開口推定演算部35は、オブザーバであってもよい。
 このように構成されている制御装置17は、操作装置16の操作レバー16aが操作されると、以下のような制御を実行する。即ち、制御装置17は、操作レバー16aの操作量に基づいて流量目標値を演算する。制御装置17は、3つの圧力センサ13~15で検出される圧力に基づいて方向制御弁21の前後差圧を演算する。次に、制御装置17は、開口指令演算部31が流量目標値及び方向制御弁21の前後差圧に基づいて開口指令を演算する。また、流量推定演算部32は、推定開口値及び方向制御弁21の前後差圧に基づいて流量推定値を演算する。更に、開口指令制限値演算部33は、演算される流量推定値及び流量目標値に基づいて流れ状態を判定する。更に、開口指令制限値演算部33は、流れ状態及び経過時間に応じて設定制限値を設定する。弁体制御部34は、設定制限値に応じて開口指令を制限する。また、弁体制御部34は、制限された開口指令である出力指令に基づいて圧力指令を演算する。そして、弁体制御部34は、圧力指令に応じたパイロット圧P1,P2を電磁比例制御弁22L,22Rから出力させる。これにより、制御装置17は、圧力指令に応じてスプール21aの動きを制御することができる。
 更に詳細に説明すると、例えば、操作レバー16aが図4のグラフの二点鎖線に示す流量の経時変化で液圧ポンプ11から液圧シリンダ2に作動液が供給されるように操作される。即ち、制御装置17は、操作装置16からの操作指令に基づいて図4の二点鎖線に示すような流量目標値を設定する。操作レバー16aが中立位置から操作される際に流量目標値が大きく増加している(図4(a)の二点鎖線の時刻t0~t1参照)。それ故、流量推定演算部32で推定される流量推定値と流量目標値との差分絶対値が所定の差分流量ΔQを超えている。開口指令制限値演算部33の流れ状態判定部36は、流れ状態が過渡流れ状態であると判断される。そうすると、制限値選択部37が流量目標値に基づいて演算される演算制限値を選択する。更に、変化率制限部38が演算制限値を設定制限値として設定する。設定制限値は、過渡流れ状態において開口指令より小さい値である(図4(b)の時刻t0~t3の実線及び一点鎖線参照)。それ故、弁体制御部34は、開口指令を設定制限値に制限した出力指令に基づいて圧力指令を演算する。前述の通り、過渡流れ状態と判定される場合、設定制限値が流量目標値に基づいて演算されているので、圧力指令は流量目標値に基づいて演算されることになる。それ故、弁体制御部34は、流量目標値に基づいてスプール21aの動きを制御する(図4(b)の時刻t0~t3の実線参照)。
 その後、操作レバー16aが所望の角度に止められると、流量目標値が一定流量にて保持される(図4(a)の二点鎖線の時刻t1以降参照)。保持後の暫くの間、差分絶対値が所定の差分流量ΔQ以上である(図4(a)の時刻t1以降の二点鎖線参照)。これにより、流れ状態判定部36が過渡流れ状態で続いていると判定する。そうすると、出力指令は設定制限値以下に制限され、圧力指令が流量目標値に基づいて設定されることになる(図4(b)の時刻t1~t2の実線参照)。
 その後、差分絶対値が所定の差分流量ΔQ未満になるとに、流れ状態判定部36は、流れ状態が定常流れ状態等に切替わったと判断する(図4(a)の時刻t2参照)。そうすると、タイマー51によって経過時間の測定が開始される。そして、経過時間が所定時間Tsに至るまで、設定制限値の変化率が制限変化率以下に制限されながら設定制限値が増加していく。弁体制御部34は、設定制限値の制限に応じて出力指令を滑らかに増加させることができる、即ち圧力指令を滑らかに増加させることができる。これにより、流れ状態に関する判定が切換った際にスプール21aが急に動いて開口が急変することを抑制することができる(図4(b)の時刻t2~t3の実線参照)。即ち、流れ状態に関する判定が切換った際に急な流量の変化が生じることを抑制することができる。これにより、急な流量変化によって方向制御弁21に生じる衝撃を抑制することができる。
 流れ状態が切換った後も操作レバー16aの角度を一定に保ち続けると、定常流れ状態が続く。そうすると、圧力指令が所定の変化率にて増加するので、やがて開口指令が設定制限値を下回ることなる(図4(b)の時刻t3参照)。そうすると、弁体制御部34は、開口指令をそのまま出力指令とする。即ち、弁体制御部34は、開口指令に基づいて圧力指令を演算する。これにより、弁体制御部34は、開口指令に基づいてスプール21aの動きを制御している(図4(b)の時刻t3以降の実線参照)。
 また、制御装置17は、詳しくは説明しないが操作レバー16aが中立位置の方に戻される際にも同様の制御を実行する。即ち、制御装置17は、判定する流れ状態に応じて、開口指令及び流量目標値の何れかに基づいてスプール21aの動きを制御する。これにより、流量を減少させる際にも、前述する流量を増加させる際と同様の作用効果を得ることができる。
 このように構成されている液圧システム1の制御装置17では、過渡流れ状態と過渡流れ状態でない定常流れ状態等とでスプール21aの制御方法が切り分けられている。これにより、過渡流れ状態の流量制御において安定性を高めることができる。即ち、図5に示すように、流量目標値(図5の二点鎖線参照)に対して従来の制御では、流量においてオーバーシュート等が生じている(図5の一点鎖線参照)。他方、本発明の制御装置17による制御では、オーバーシュート等が発生することを抑制することができる(図5の実線参照)。即ち、制御装置17は、過渡流れ状態における流量制御の安定性を向上させることができる。
 また、制御装置17では、開口推定演算部35によって取得される推定開度に基づいて流量推定値が推定される。そして、制御装置17は、推定される流量推定値に基づいて流れ状態を判定している。それ故、制御装置17は、流れ状態を精度よく判定することができる。これにより、過渡流れ状態における作動液の流れをより安定して制御することができる。
 更に、制御装置17では、弁体制御部34が以下のように機能する。即ち、弁体制御部34は、定常流れ状態等である場合、開口指令に基づいてスプール21aの動きの制御している。開口指令は、方向制御弁21の前後圧と流量目標値に基づいて演算される。即ち、弁体制御部34は、スプール21aの動きの制御に関して開口指令に基づくフィードバック制御を実行している。他方、弁体制御部34は、過渡流れ状態である場合、流量目標値に基づいてスプール21aの動きを制御する。流量目標値は、操作装置16からの操作指令に応じて演算される。即ち、弁体制御部34は、流れ状態が過渡流れである場合、スプール21aの動きの制御に関して流量目標値に基づくオープンループ制御(フィードフォワード制御)を実行している。定常流れ状態等においてフィードバック制御を実行することによって、定常流れ状態等において流量精度を向上させることができる。他方、過渡流れ状態においてオープンループ制御を実行することによって、過渡流れ状態の流量制御において安定性を高めることができる。
 また、制御装置17では、弁体制御部34の開口指令制限部分55が開口指令を制限する。そして圧力指令演算部分56が第2圧力指令に基づいてスプール21aの動きを制御する。このように制御装置17は、制限された開口指令によって第2圧力指令を演算することによって、流量目標値に基づいてスプール21aの動きを制御することができる。これにより、過渡流れ状態において、作動液の流れを安定して制御することができる。
 <その他の実施形態>
 本実施形態の液圧システム1は、建設機械に適用されているが、フォークリフト等の産業車両やプレス機械等の産業機械に適用されてもよい。また、本実施形態の液圧システム1では、液圧ポンプ11に対して1つの方向制御弁21だけが接続されているが、複数の方向制御弁21が並列的又は直列的に接続されていてもよい。また、方向制御弁21に接続される液圧アクチュエータもまた液圧シリンダ2に限定されず、液圧モータであってもよい。
 また、本実施形態の液圧システム1において、液圧アクチュエータの一例が液圧シリンダ2であるが、液圧アクチュエータは液圧モータであってもよい。また、液圧シリンダ2の種類も片ロッドの複動式のシリンダに限定されず、両ロッドのシリンダ及び単動式のシリンダであってもよい。また、弁装置12に含まれる構成は方向制御弁21に限定されず、弁体によって開口の大きさを調整可能なものであればよい。動作指令は、必ずしも圧力指令に限定されず、電流指令であってもよい。
 更に、制御装置17は、必ずしも流量推定演算部32を有する必要はない。制御装置17は、例えば流量取得部を有してもよい。この場合、液圧システム1には、方向制御弁21と液圧ポンプ11とを繋ぐ流路に流量センサが設けられる。そして、流量取得部は、流量センサの出力結果に基づいて計測流量を取得する。開口指令制限値演算部33は、取得する計測流量に基づいて流れ状態を判断する。同様に、開口推定演算部35もまた開口取得部であってもよい。この場合、液圧システム1には、スプール21aにストロークセンサが設けられる。そして、開口取得部は、ストロークセンサの出力結果に基づいて推定開度を取得する。
 また、制御装置17の弁体制御部34は、過渡流れ状態において開口指令を制限することによって流量目標値に基づくスプール21aの動きの制御を実現している。しかし、弁体制御部34が実行する制御は必ずしもこれに限定されない。例えば、流れ状態に応じて弁体制御部34が演算する圧力指令が基づく対象を開口指令と流量目標値の何れかに切替えるようにしてもよい。また、スプール21aが以下のように制御されてもよい。即ち、制御装置17は、開口指令及び流量目標値の両方に基づいて第1及び第2圧力指令を演算する。判定される流れ状態に応じて弁体制御部34が第1及び第2圧力指令の何れかを第1及び第2電磁比例制御弁22L,22Rに出力する。何れの制御であっても、弁体制御部34は、定常流れ状態等において開口指令に基づいてスプール21aの動きを制御し、且つ過渡流れ状態において流量目標値に基づいてスプール21aの動きを制御することができる。
 更に、本実施形態の液圧システム1では、方向制御弁21のスプール21aが電磁比例制御弁22L,22Rからのパイロット圧に応じて動いている。しかし、方向制御弁21のスプール21aの駆動方式は、必ずしもこのように方式に限定されない。例えば、方向制御弁21のスプール21aが直動機構を介して電気モータによって駆動されてもよい。この場合、制御装置17は、電気モータを介してスプール21aの動きを制御する。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 1   液圧システム
 12  弁装置
 17  制御装置
 21  方向制御弁(スプール弁)
 21a スプール
 22L 第1電磁比例制御弁
 22R 第2電磁比例制御弁
 31  開口指令演算部
 32  流量推定演算部(流量取得部)
 34  弁体制御部
 35  開口推定演算部(開度取得部)
 36  流れ状態判定部
 55  開口指令制限部分
 56  圧力指令演算部分(指令演算部分)

 

Claims (8)

  1.  弁装置の弁体の動きを制御する制御装置であって、
     前記弁装置の流量を取得する流量取得部と、
     入力される流量目標値と前記流量取得部で推定される流量推定値とに基づいて、前記弁装置における作動液の流れが過渡流れ状態か否かを判定する流れ状態判定部と、
     前記流量目標値及び前記弁装置の前後の差圧に基づいて開口指令を演算する開口指令演算部と、
     前記弁体の動きを制御する弁体制御部と、を有し、
     前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると前記開口指令に基づいて前記弁体の動きを制御し、前記流れ状態判定部が過渡流れ状態であると判定すると前記流量目標値に基づいて前記弁体の動きを制御する、制御装置。
  2.  前記弁装置の開度を取得する開度取得部を更に有し、
     前記流量取得部は、前記開度取得部によって取得される前記開度と前記差圧とに基づいて、前記流量推定値を推定する、請求項1に記載の制御装置。
  3.  前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定する場合における前記弁体の動きの制御に関して前記開口指令に基づくフィードバック制御を実行し、前記流れ状態判定部が過渡流れ状態であると判定する場合における前記弁体の動きに関して前記流量目標値に基づくオープンループ制御を実行する、請求項1又は2に記載の制御装置。
  4.  前記弁体制御部は、前記弁体の動きを制御する動作指令を演算し、前記動作指令を前記弁装置に出力することによって前記弁体の動きを制御し、
     前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると前記開口指令に基づいて前記動作指令である第1動作指令を演算し、前記流れ状態判定部が過渡流れ状態であると判定すると前記流量目標値に基づいて前記動作指令である第2動作指令を演算する、請求項1乃至3の何れか1つに記載の制御装置。
  5.  前記弁体制御部は、開口指令制限部分と、指令演算部分とを有し、
     前記開口指令制限部分は、前記流れ状態判定部が過渡流れ状態であると判定すると前記流量目標値に応じて設定される制限値に前記開口指令を制限し、
     前記指令演算部分は、前記開口指令制限部分によって制限される前記開口指令に基づいて前記第2動作指令を演算する、請求項4に記載の制御装置。
  6.  前記弁体制御部は、前記動作指令が前記第1動作指令から前記第2動作指令に切替わる際、所定の制限変化率以下の変化率にて前記動作指令を推移させる、請求項4又は5に記載の制御装置。
  7.  前記流れ状態判定部は、前記流量目標値と前記流量推定値とを差分を演算し、差分が所定範囲外である場合において前記弁装置における作動液の流れが過渡流れ状態であると判定する、請求項1乃至6の何れか1つに記載の制御装置。
  8.  請求項1乃至7の何れか1つに記載の制御装置と、
     前記弁装置は、少なくとも1つの電磁比例弁と、スプール弁とを備え、
     前記スプール弁は、前記弁体であるスプールを有し、
     前記スプールは、前記スプールに作用するパイロット圧に応じてストロークし、
     前記電磁比例弁は、前記スプールに作用するパイロット圧を出力し、
     前記弁体制御部は、前記流れ状態判定部が過渡流れ状態でないと判定すると開口指令に応じたパイロット圧を前記電磁比例弁から出力させて前記弁体の動きを制御し、前記流れ状態判定部が過渡流れ状態であると判定すると流量目標値に応じたパイロット圧を前記電磁比例弁から出力させて前記弁体の動きを制御する、液圧システム。
PCT/JP2021/008420 2020-03-17 2021-03-04 制御装置、及びそれを備える液圧システム WO2021187132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2215095.7A GB2609777B (en) 2020-03-17 2021-03-04 Control device and hydraulic system including the same
CN202180017994.6A CN115151735A (zh) 2020-03-17 2021-03-04 控制装置、及具备该控制装置的液压系统
US17/906,409 US11933331B2 (en) 2020-03-17 2021-03-04 Control device and hydraulic system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-046638 2020-03-17
JP2020046638A JP7337012B2 (ja) 2020-03-17 2020-03-17 制御装置、及びそれを備える液圧システム

Publications (1)

Publication Number Publication Date
WO2021187132A1 true WO2021187132A1 (ja) 2021-09-23

Family

ID=77772028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008420 WO2021187132A1 (ja) 2020-03-17 2021-03-04 制御装置、及びそれを備える液圧システム

Country Status (5)

Country Link
US (1) US11933331B2 (ja)
JP (1) JP7337012B2 (ja)
CN (1) CN115151735A (ja)
GB (1) GB2609777B (ja)
WO (1) WO2021187132A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337012B2 (ja) * 2020-03-17 2023-09-01 川崎重工業株式会社 制御装置、及びそれを備える液圧システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108401A (ja) * 1987-10-21 1989-04-25 Kayaba Ind Co Ltd 液圧制御回路
US4858172A (en) * 1987-10-05 1989-08-15 Robotic Vision Systems Sealant flow control for robotic applications
JP2014013461A (ja) * 2012-07-03 2014-01-23 Horiba Ltd 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
JP2014156828A (ja) * 2013-02-18 2014-08-28 Mikuni Corp バルブ制御装置及びバルブ制御方法
JP2017082814A (ja) * 2015-10-22 2017-05-18 富士通テン株式会社 ソレノイドバルブ装置およびソレノイドバルブの制御方法
JP2018097759A (ja) * 2016-12-15 2018-06-21 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム
JP2018147218A (ja) * 2017-03-06 2018-09-20 株式会社堀場エステック 流体制御装置及び流体制御装置用プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217313A (ja) * 1986-03-19 1987-09-24 Yuken Kogyo Kk 比例電磁式流体制御弁の制御回路
JP2003167604A (ja) 2001-12-04 2003-06-13 Komatsu Ltd 油圧機器の制御装置におけるパラメータ同定装置
US6880332B2 (en) * 2002-09-25 2005-04-19 Husco International, Inc. Method of selecting a hydraulic metering mode for a function of a velocity based control system
WO2006043630A1 (ja) * 2004-10-20 2006-04-27 Matsushita Electric Industrial Co., Ltd. ガス遮断装置及びガス遮断方法
DE102011115896B4 (de) * 2011-10-14 2015-05-28 Bürkert Werke GmbH Vorrichtung und Verfahren zur Prozessregelung
US10082806B2 (en) * 2013-08-28 2018-09-25 Horiba Stec, Co., Ltd. Flow-rate control device and flow-rate control program
US10118637B2 (en) * 2016-07-08 2018-11-06 Eaton Intelligent Power Limited Load-sensing system
JP7059053B2 (ja) * 2018-03-12 2022-04-25 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP7337012B2 (ja) * 2020-03-17 2023-09-01 川崎重工業株式会社 制御装置、及びそれを備える液圧システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858172A (en) * 1987-10-05 1989-08-15 Robotic Vision Systems Sealant flow control for robotic applications
JPH01108401A (ja) * 1987-10-21 1989-04-25 Kayaba Ind Co Ltd 液圧制御回路
JP2014013461A (ja) * 2012-07-03 2014-01-23 Horiba Ltd 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
JP2014156828A (ja) * 2013-02-18 2014-08-28 Mikuni Corp バルブ制御装置及びバルブ制御方法
JP2017082814A (ja) * 2015-10-22 2017-05-18 富士通テン株式会社 ソレノイドバルブ装置およびソレノイドバルブの制御方法
JP2018097759A (ja) * 2016-12-15 2018-06-21 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム
JP2018147218A (ja) * 2017-03-06 2018-09-20 株式会社堀場エステック 流体制御装置及び流体制御装置用プログラム

Also Published As

Publication number Publication date
CN115151735A (zh) 2022-10-04
US20230175536A1 (en) 2023-06-08
GB2609777A (en) 2023-02-15
US11933331B2 (en) 2024-03-19
JP2021148161A (ja) 2021-09-27
JP7337012B2 (ja) 2023-09-01
GB202215095D0 (en) 2022-11-30
GB2609777B (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US10066610B2 (en) Tilting angle control device
JP5508293B2 (ja) 複数のアクチュエータを備える油圧システム及び関連の制御方法
WO2021256098A1 (ja) 液圧駆動システム
US5537819A (en) Hydraulic device for working machine
JP2004270923A (ja) 電磁油圧比例制御バルブを制御するための速度に基づく方法
JP2004272873A (ja) 油圧システムを制御するための速度に基づく方法
US10895059B2 (en) Shovel
JP2016142285A5 (ja)
WO2017187687A1 (ja) 作業機の昇降制御装置
WO2021187132A1 (ja) 制御装置、及びそれを備える液圧システム
WO2021186998A1 (ja) 制御装置、及びそれを備える液圧システム
KR102541658B1 (ko) 전자 유압 장치 및 유압 차축
WO2017141479A1 (ja) 流体圧アクチュエータの制御装置
JPH06117404A (ja) 油圧回路の制御装置
JPH11350538A (ja) 油圧駆動機械の制御装置
JPH04258505A (ja) 油圧建設機械の駆動制御装置
WO2021171947A1 (ja) 操舵システム
JPH04239902A (ja) 位置制御装置
JPWO2023127436A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202215095

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210304

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771623

Country of ref document: EP

Kind code of ref document: A1