[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021184986A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021184986A1
WO2021184986A1 PCT/CN2021/074780 CN2021074780W WO2021184986A1 WO 2021184986 A1 WO2021184986 A1 WO 2021184986A1 CN 2021074780 W CN2021074780 W CN 2021074780W WO 2021184986 A1 WO2021184986 A1 WO 2021184986A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
deflection
dielectric substrate
layer
antenna device
Prior art date
Application number
PCT/CN2021/074780
Other languages
English (en)
French (fr)
Inventor
雍征东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21772071.3A priority Critical patent/EP4123834A4/en
Publication of WO2021184986A1 publication Critical patent/WO2021184986A1/zh
Priority to US17/947,788 priority patent/US20230019425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • This application relates to the field of antenna technology, and in particular to an antenna device and electronic equipment.
  • an antenna device is fixedly installed. Due to the fixed arrangement of the antenna device, the radiation direction of the beam of the antenna device is fixed.
  • an antenna device includes at least one dielectric substrate, a grounded metal layer, a radiation patch, a first feeding structure, a first deflection patch, and a radio frequency chip;
  • the grounded metal layer, the at least one dielectric substrate and the radiation patch are stacked, the first power feeding structure penetrates the at least one dielectric substrate, and the first end of the first power feeding structure is connected to The radiating patch is connected, the second end of the first feeding structure passes through the grounded metal layer and is electrically connected to the radio frequency chip, and the first feeding structure is connected to the grounded metal layer.
  • Forming a first gap the radio frequency chip is used to feed a first excitation signal to the first feeding structure, and the first excitation signal is used to excite the radiation patch radiation beam;
  • the first deflection patch is fixed on a side of the first dielectric substrate away from the grounded metal layer, the first deflection patch is located on the first side of the excitation patch, and the first deflection patch It can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state, and the first dielectric substrate is any one of the at least one dielectric substrate.
  • the electronic device includes a controller and the antenna device as described above, the controller is used to control the first deflection patch from an amorphous state to a crystalline state, or by The crystalline state is converted to the amorphous state.
  • FIG. 1 is a schematic diagram of a top view structure of an antenna device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an A-A cross-sectional view of an antenna device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the beam radiation direction when the first deflection patch is in a crystalline state according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of the beam radiation direction when the first deflection patch is in an amorphous state according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of beam scanning of an antenna array formed by an antenna device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a radiation patch provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another radiation patch provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another radiation patch provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another radiation patch provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of yet another radiation patch provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 12 is a schematic top view of another antenna device provided by an embodiment of the present application.
  • FIG. 13 is a B-B cross-sectional schematic diagram of yet another antenna device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of beam scanning of an antenna array formed by another antenna device provided by an embodiment of the present application.
  • 15 is a schematic diagram of beam scanning of an antenna array formed by another antenna device provided by an embodiment of the present application.
  • FIG. 16 is a schematic top view of another antenna device provided by an embodiment of the present application.
  • FIG. 17 is a C-C cross-sectional schematic diagram of still another antenna device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • 10 dielectric substrate; 20: grounded metal layer; 30: radiating patch; 301: radiating sub-patch; 40: first feeding structure; 50: first deflection patch; 60: radio frequency chip; 70: first conductive Structure; 80: second deflection patch; 90: second conductive structure; 11: second feed structure; 12: third deflection patch; 13: third conductive structure; 14: fourth deflection patch; 15: Fourth conductive structure;
  • 1801 housing; 1802: processor; 1803: memory; 1804: controller; 1805: antenna device.
  • An embodiment of the application provides an antenna device, which includes at least one dielectric substrate, a grounded metal layer, a radiation patch, a first feeding structure, a first deflection patch, and a radio frequency chip;
  • the grounded metal layer, the at least one dielectric substrate and the radiation patch are stacked, the first power feeding structure penetrates the at least one dielectric substrate, and the first end of the first power feeding structure is connected to The radiating patch is connected, the second end of the first feeding structure passes through the grounded metal layer and is electrically connected to the radio frequency chip, and the first feeding structure is connected to the grounded metal layer.
  • Forming a first gap the radio frequency chip is used to feed a first excitation signal to the first feeding structure, and the first excitation signal is used to excite the radiation patch radiation beam;
  • the first deflection patch is fixed on a side of the first dielectric substrate away from the grounded metal layer, the first deflection patch is located on the first side of the excitation patch, and the first deflection patch It can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state, and the first dielectric substrate is any one of the at least one dielectric substrate.
  • the beam radiated by the radiation patch is deflected to the first side of the radiation patch.
  • the beam radiated by the radiation patch will not be deflected.
  • the first deflection patch realizes the switching between the crystalline state and the amorphous state under the action of temperature or laser.
  • the antenna device further includes a first conductive structure
  • the first conductive structure penetrates the at least one layer of dielectric substrate, the first end of the first conductive structure is connected to the first deflection patch, and the second end of the first conductive structure penetrates the ground
  • the metal layer is used to electrically connect with an external circuit, the first conductive structure is designed to be insulated from the grounded metal layer, the external circuit is used to feed a first electrical signal to the first conductive structure, and the first conductive structure is designed to be insulated from the ground metal layer.
  • An electrical signal is used to excite the first deflection patch from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the distance between the radiation patch and the first deflection patch is greater than or equal to 0.2 and less than or equal to 2 mm.
  • the antenna device further includes a second deflection patch
  • the second deflection patch is fixed on the side of the first dielectric substrate away from the grounded metal layer,
  • the second deflection patch is located on a second side of the radiation patch opposite to the first side, and the second deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state .
  • the antenna device further includes a second deflection patch
  • the second deflection patch is fixed on the side of the second dielectric substrate away from the grounded metal layer,
  • the second deflection patch is located on a second side of the radiation patch opposite to the first side, and the second deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state
  • the second layer of dielectric substrate is a layer of dielectric substrate that is different from the first layer of dielectric substrate in the at least one layer of dielectric substrate.
  • the antenna device further includes a second feeding structure
  • the second feeding structure penetrates the at least one layer of dielectric substrate, the first end of the second feeding structure is electrically connected to the radiation patch, and the second end of the second feeding structure passes through the
  • the grounded metal layer is electrically connected to the radio frequency chip, a second gap is formed between the second feeding structure and the grounded metal layer, and the radio frequency chip is used to feed a second excitation signal to the first A two-feed structure, and the second excitation signal is used to excite the radiation patch radiation beam.
  • the antenna device further includes a third deflection patch
  • the third deflection patch is fixed on the first layer of dielectric substrate or the third layer of dielectric
  • the third layer of dielectric substrate is a layer of dielectric substrate that is different from the first layer of dielectric substrate in the at least one layer of dielectric substrate;
  • the third deflection patch is located on the third side of the radiation patch adjacent to the first side, and the third deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state state.
  • the antenna device further includes a fourth deflection patch
  • the fourth deflection patch is fixed on the first layer of dielectric substrate or the fourth layer of dielectric
  • the fourth layer of dielectric substrate is a layer of dielectric substrate that is different from the first layer of dielectric substrate in the at least one layer of dielectric substrate;
  • the fourth deflection patch is located on the fourth side of the radiation patch opposite to the third side, and the fourth deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state .
  • the antenna device further includes a fourth deflection patch
  • the fourth deflection patch is fixed on the third dielectric substrate away from the ground metal One side of the layer
  • the fourth deflection patch is located on the fourth side of the radiation patch opposite to the third side, and the fourth deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state .
  • the antenna device further includes a third deflection patch
  • the third deflection patch is fixed on the first-layer dielectric substrate or the third-layer dielectric
  • the third layer of dielectric substrate is a layer of dielectric substrate that is different from the first layer of dielectric substrate and the second layer of dielectric substrate in the at least one layer of dielectric substrate ;
  • the third deflection patch is located on the third side of the radiation patch adjacent to the first side, and the third deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state state.
  • the antenna device further includes a fourth deflection patch
  • the fourth deflection patch is fixed on the second dielectric substrate away from the grounded metal One side of the layer
  • the fourth deflection patch is located on the fourth side of the radiation patch opposite to the third side, and the fourth deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state .
  • the antenna device further includes a fourth deflection patch
  • the fourth deflection patch is fixed on the first layer dielectric substrate, the third layer Layer of dielectric substrate or the side of the fourth layer of dielectric substrate away from the grounded metal layer, and the fourth layer of dielectric substrate is different from the first layer of dielectric substrate and the second layer of the at least one dielectric substrate.
  • the fourth deflection patch is located on the fourth side of the radiation patch opposite to the third side, and the fourth deflection patch can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state .
  • the radiating patch includes at least one radiating sub-patch, the at least one radiating sub-patch is arranged in layers, and the shape and/or size of each radiating sub-patch is different.
  • the radiating sub-patches have a rectangular or circular structure.
  • the antenna device includes a side-fire antenna or an end-fire antenna.
  • the antenna device includes a single antenna unit or an antenna array.
  • An embodiment of the present application provides an electronic device that includes a controller and the above-mentioned antenna device, and the controller is used to control the first deflection patch to be converted from an amorphous state to a crystalline state, or from a crystalline state to a crystalline state. Amorphous state.
  • FIG. 1 illustrates a schematic structural diagram of an antenna device according to an embodiment of the present application
  • FIG. 2 illustrates an A-A cross-sectional schematic diagram of an antenna device according to an embodiment of the present application.
  • the antenna device includes at least one dielectric substrate 10, a grounded metal layer 20, a radiation patch 30, a first feed structure 40, a first deflection patch 50, and a radio frequency chip 60;
  • the layer 20, at least one layer of dielectric substrate 10 and the radiation patch 30 are stacked, the first feeding structure 40 penetrates at least one layer of the dielectric substrate 10, and the first end of the first feeding structure 40 is connected to the radiation patch 30.
  • the second end of the feeding structure 40 passes through the grounded metal layer 20 and is electrically connected to the radio frequency chip 60.
  • a first gap is formed between the first feeding structure 40 and the grounded metal layer 20.
  • the radio frequency chip 60 is used to feed the first
  • the excitation signal is sent to the first feeding structure 40, and the first excitation signal is used to excite the radiation beam of the radiation patch 30;
  • the first deflection patch 50 is fixed on the first dielectric substrate (not shown in the figure) away from the grounded metal layer 20
  • the first deflection patch 50 is located on the first side of the radiation patch 30, and the first deflection patch 50 can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state, the first layer of medium
  • the substrate is any one of at least one dielectric substrate 10.
  • the first excitation signal is fed through the first feeding structure 40, and then the radiation patch 30 is excited by the first excitation signal to radiate the beam, so as to realize the basic function of the antenna device.
  • the first deflection patch 50 can be converted from a crystalline state (metal state) to an amorphous state (insulating state) or from an amorphous state (insulating state) to a crystalline state (metal state)
  • the radiation patch 30 When the beam is radiated, the first deflection patch 50 can be controlled to be in different states, that is, the first deflection patch 50 can be controlled to be in a crystalline state, or the first deflection patch 50 can be controlled to be in an amorphous state, so as to realize the beam radiation direction.
  • the deflection thereby realizing the adjustment of the radiation direction of the beam, improves the spatial coverage of the antenna device.
  • the radiation direction of the beam radiated by the radiation patch 30 excited by the first excitation signal can be deflected to one side of the first deflection patch 50;
  • a deflection patch 50 is in an amorphous state, the radiation direction of the beam radiated by the radiation patch 30 excited by the first excitation signal will not be deflected; that is, as shown in FIG. 3, when the first deflection patch 50 is In the crystalline state, the beam radiated by the radiation patch 30 is deflected to the first side of the radiation patch 30, as shown in FIG. 4, when the first deflection patch 50 is in the amorphous state, the beam radiated by the radiation patch 30 does not occur deflection. In this way, the adjustment of multiple radiation directions of the beam of the antenna device can be realized under different requirements.
  • the first connection point between the first feeding structure 40 and the radiation patch 30 may be located on the center line of the radiation patch 30, and the distance between the first connection point and the center point of the radiation patch 30 may be Located within the first distance threshold range, the first distance threshold range refers to a distance range used to adjust impedance matching. That is, the impedance of the antenna device can be adjusted by adjusting the distance between the first connection point and the center point of the radiating patch 30, and then the antenna matching of the antenna device can be realized to increase the antenna device's Radiation efficiency.
  • the first connection point can be located on the center line of the radiation patch 30 parallel to the length of the first deflection patch 50. Of course, the first connection point can also be slightly offset from the radiation patch 30 and the first deflection patch.
  • the longitudinal direction of 50 is parallel to the center line, which is not limited in the embodiment of the present application.
  • the distance between the first connection point and the center point of the radiation patch 30 can be adjusted so that the impedance of the antenna device is 4 ohms, 5 ohms, or 6 ohms.
  • the impedance is not limited.
  • the antenna device composed of at least one dielectric substrate 10, a grounded metal layer 20, a radiating patch 30, and a first feeding structure 40 may be a side-fire antenna or, of course, an end-fire antenna, such as a dipole. Sub-antenna etc.
  • the antenna device composed of at least one dielectric substrate 10, a grounded metal layer 20, a radiation patch 30, and a first feeding structure 40 may be a single antenna unit or an antenna array. That is, the antenna composed of at least one dielectric substrate 10, the grounded metal layer 20, the radiation patch 30, and the first feeding structure 40 can be arranged in a matrix structure to obtain an antenna array.
  • the form of the antenna formed by the dielectric substrate 10, the grounded metal layer 20, the radiation patch 30 and the first feeding structure 40 is not limited.
  • the array antenna formed by the antenna device can not only realize the general performance of the antenna, but also realize the performance of beam scanning.
  • the antenna device includes at least one dielectric substrate 10, a grounded metal layer 20, a radiation patch 30, a first feeding structure 40 and a first deflection patch 50
  • the first deflection patch 50 can be controlled to be made of amorphous
  • the state is converted to the crystalline state, and the beam scanning is realized by the antenna array formed by the antenna device, and the beam scanning diagram can be as shown in FIG. 5.
  • the radiating patch 30 may include at least one radiating sub-patch 301, the at least one radiating sub-patch 301 is stacked and arranged, and the shape and/or size of each radiating sub-patch 301 are different. In this way, since each radiating sub-patch 301 has a different shape and/or size, when at least one radiating sub-patch 301 is stacked and arranged, different bandwidths corresponding to each radiating sub-patch 301 and two radiating sub-patches can be passed. The mutual coupling between the 301 can increase the overall bandwidth of the radiation patch 30, thereby increasing the bandwidth of the antenna device.
  • the radiating sub-patches 301 may have a rectangular or circular structure.
  • the length direction of the first deflection patch 50 is parallel to the adjacent first side of the radiating sub-patch 301.
  • the length direction of the first deflection patch 50 and the adjacent first side of the radiating sub patch 301 may also form a certain angle.
  • the length direction of the first deflection patch 50 and the radiating sub-patch 301 are located on the same plane.
  • the radiating sub-patches 301 may be a whole-piece structure, or of course, may also be a sheet-like structure provided with through holes.
  • the radiating sub-patch 301 may have a rectangular ring structure, or as shown in FIG. 9, the radiating sub-patch 301 may have a circular ring structure, or as shown in FIG.
  • the sheet 301 may be a rectangular structure provided with a cross-shaped through hole or the like.
  • the first deflection patch 50 may have a strip-shaped rectangular structure, and the first deflection patch 50 may be made of a reversible phase change material.
  • the phase change material may be Vanadium dioxide, germanium antimony tellurium alloy, scandium antimony tellurium alloy or germanium antimony alloy, etc.
  • the first deflection patch 50 and the radiation patch 30 may be located on different layers of dielectric substrates, that is, at least one layer of dielectric substrate 10 may at least include a first layer of dielectric substrate and a second layer of dielectric substrate, At this time, the first deflection patch 50 is fixed on the first layer of dielectric substrate, and the radiation patch 30 is fixed on the second layer of dielectric substrate; or the first deflection patch 50 is fixed on the second layer of dielectric substrate, and the radiation patch 30 Fixed on the first layer of dielectric substrate.
  • the first deflection patch 50 and the radiation patch 30 may be located on the same layer of the dielectric substrate, that is, the first deflection patch 50 and the excitation patch and the radiation patch 30 are located on the same plane. In this way, the deflection effect of the first deflection patch 50 on the direction of the beam radiated by the radiation patch 30 can be better improved.
  • the distance between the first deflection patch 50 and the radiation patch 30 wirelessly approaches zero, the radiation patch 30 and the first deflection patch 50 can be approximately integrated, so that beam alignment cannot be achieved.
  • the deflection of the radiation direction when the distance between the first deflection patch 50 and the radiation patch 30 approaches infinity, it is equivalent to the absence of the first deflection patch 50, so that the deflection of the beam radiation direction cannot be achieved. Therefore, it can be ensured that the distance between the first deflection patch 50 and the radiation patch 30 is within a certain range, so as to better realize the deflection of the beam direction radiated by the radiation patch.
  • the distance between the radiation patch 30 and the first deflection patch 50 may be greater than or equal to 0.2 and less than or equal to 2 millimeters.
  • the first deflection patch 50 can switch between the crystalline state and the amorphous state under the action of temperature.
  • it can also switch between the crystalline state and the amorphous state in other ways, such as Under the action of laser excitation, the crystalline state and the amorphous state can be switched.
  • the antenna device may further include a first conductive structure 70, the first conductive structure 70 penetrates at least one layer of the dielectric substrate 10, and the first end of the first conductive structure 70 Connected to the first deflection patch 50, the second end of the first conductive structure 70 passes through the grounded metal layer 20 and is used for electrical connection with an external circuit.
  • the first conductive structure 70 is designed to be insulated from the grounded metal layer 20 and used for the external circuit After feeding the first electrical signal to the first conductive structure 70, the first electrical signal is used to excite the first deflection patch 50 from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the first deflection patch 50 when the first deflection patch 50 is converted from an amorphous state to a crystalline state, assuming that the first deflection patch 50 is currently in a crystalline state, the first deflection patch 50 can be excited by the first electrical signal to heat up.
  • the temperature of a deflection patch 50 is not less than the temperature threshold, the excitation of the first electrical signal is stopped to achieve rapid cooling of the first deflection patch 50, so that the first deflection patch 50 is switched to the amorphous state; In the amorphous state, the first deflection patch 50 can be stimulated to heat up by the first electrical signal.
  • the first electrical signal When the temperature of the first deflection patch 50 is not less than the temperature threshold, the first electrical signal is slowly reduced to realize the first deflection patch. The temperature of the sheet 50 is slowly cooled, so that the first deflection patch 50 is switched to a crystalline state.
  • the temperature threshold may be determined based on the material of the first deflection patch 50, and the temperature threshold refers to the temperature at which the crystal grains inside the first deflection patch 50 can be in a free state.
  • the antenna device may further include a second deflection patch 80.
  • the second deflection patch 80 is located on the second side of the radiation patch 30 opposite to the first side, and the second deflection patch 80 can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the second deflection patch 80 is fixed on the side of the first dielectric substrate away from the grounded metal layer 20, that is, the first deflection patch 50 and the second deflection patch 80 are located on the same dielectric substrate.
  • the second deflection patch 80 can also be fixed on the side of the second dielectric substrate (not shown in the figure) far away from the grounded metal layer 20, that is, the first deflection patch 50 and the second deflection patch 80 Located on different layers of dielectric substrates.
  • the second dielectric substrate is a dielectric substrate of at least one dielectric substrate 10 that is different from the first dielectric substrate.
  • the material of the second deflection patch 80 and the material of the first deflection patch 50 may be the same or similar, and the setting position of the second deflection patch 80 may be the same or similar to the setting position of the first deflection patch 50. This is not repeated in the application embodiment.
  • the first layer of dielectric substrate may be located above the second layer of dielectric substrate, or may be located below the second layer of dielectric substrate, which is not limited in the embodiment of the present application.
  • first deflection patch 50 and the second deflection patch 80 are both located on the first layer of the dielectric substrate, it can be considered that the first deflection patch 50 and the second deflection patch 80 are arranged in the same layer.
  • the radiation patch 30 may be provided in the same layer as the first deflection patch 50 and the second deflection patch 80, or may be provided in different layers, which is not limited in the embodiment of the present application.
  • the antenna device may further include a second conductive structure 90, and the second conductive structure 90
  • the location structure of the first conductive structure 70 may be the same or similar to that of the first conductive structure 70, which will not be repeated in the embodiment of the present application.
  • the antenna device includes a first deflection patch 50 and a second deflection patch 80
  • the first deflection patch 50 can be controlled to be converted from an amorphous state to a crystalline state
  • the second deflection patch 80 can be controlled.
  • the crystalline state is converted to the amorphous state
  • the beam scanning is realized by the antenna array formed by the antenna device, and the beam scanning pattern can be as shown in FIG.
  • the first deflection patch 50 can be controlled to be converted from the crystalline state to the amorphous state
  • the antenna device may further include a second feeding structure 11, the second feeding structure 11 penetrates at least one layer of the dielectric substrate 10, and the first feeding structure 11 The second end of the second feeding structure 11 is electrically connected to the radiating patch 30. The second end of the second feeding structure 11 passes through the grounding metal layer 20 and is electrically connected to the radio frequency chip 60.
  • a second feeding structure 11 and the grounding metal layer 20 form a second In the gap, the radio frequency chip is used to feed the second excitation signal to the second feeding structure 11, and the second excitation signal is used to excite the radiation beam of the radiation patch 30.
  • the radio frequency chip 60 feeds the second excitation signal to the second feeding structure 11
  • the radiation patch 30 can be excited by the second excitation signal to radiate the directional beam
  • the radio frequency chip 60 can feed the first excitation signal to the first
  • the feeding structure 40 excites the beam with adjustable radiation direction of the radiation patch 30 through the first excitation signal.
  • the second feeding structure 11 may be provided when the antenna device includes the radiation patch 30 and the first deflection patch 50, or the antenna device may include the radiation patch 30, the first deflection patch 50, and the first deflection patch 50. When the two deflection patches 80 are used, the second power feeding structure 11 is provided.
  • a third deflection patch 12 may be additionally provided; of course, the antenna device may also include a radiation patch.
  • the patch 30, the first deflection patch 50, the second deflection patch 80 and the second power feeding structure 11, and a third deflection patch 12 is additionally provided.
  • the antenna device includes a third deflection patch 12, the third deflection patch 12 is located on the radiation patch 30 on the third side opposite to the first side, the third deflection patch 12 can be The amorphous state is converted to the crystalline state, or the crystalline state is converted to the amorphous state.
  • the third deflection patch 12 is fixed on the first dielectric substrate or the third dielectric substrate (Not shown in the figure) on the side far from the grounded metal layer 20, that is, the first deflection patch 50, the second deflection patch 80, and the third deflection patch 12 are arranged on the same layer of dielectric substrate, or the first A deflection patch 50 and a second deflection patch 80 are arranged on the same layer of dielectric substrate, and the third deflection patch 12 is arranged on another layer of dielectric substrate.
  • the third deflection patch 12 can be controlled to be in a different state, that is, the third deflection patch 12 can be controlled to be in a different state. Crystal state, or control the third deflection patch 12 to be in an amorphous state, so as to realize the deflection of the beam radiation direction.
  • the beam direction radiated by the radiation patch 30 excited by the second excitation signal can be deflected to one side of the third deflection patch 12, that is, toward the radiation patch.
  • the third side of the sheet is deflected; when the third deflection patch 12 is in an amorphous state, the direction of the beam radiated by the radiation patch 30 excited by the second excitation signal will not be deflected. In this way, under different requirements, the multiple radiation directions of the beam of the antenna device can be adjusted.
  • the positional relationship between the first layer of dielectric substrate and the third layer of dielectric substrate may not be limited, and the first deflection patch 50, the second deflection patch 80, and the third deflection patch 12 may make the first deflection patch 50 based on the set position.
  • a deflection patch 50, a second deflection patch 80, and a third deflection patch 12 are located on the same layer of dielectric substrate or on different layers of dielectric substrates, which are not limited in the embodiment of the present application.
  • the third deflection patch 12 may have a strip-shaped rectangular structure, and the material of the third deflection patch 12 may be the same as or similar to the material of the first deflection patch 50 described above, and the third deflection patch is excited.
  • the switching mode of the sheet 12 between the crystalline state and the amorphous state can be referred to the above description, which will not be repeated in the embodiment of the present application.
  • the third deflection patch 12 and the radiation patch 30 may be located on different layers of dielectric substrates, that is, at least one layer of dielectric substrate 10 includes at least a third layer of dielectric substrate and a fourth layer of dielectric substrate.
  • the radiation patch 30 is fixed on the fourth layer of dielectric substrate; or the third deflection patch 12 is fixed on the fourth layer of dielectric substrate, and the radiation patch 30 is fixed Wait on the third layer of dielectric substrate.
  • the third deflection patch 12 and the radiation patch 30 may be located on the same layer of the dielectric substrate, that is, the third deflection patch 12 and the radiation patch 30 may be located on the same plane. In this way, the deflection of the direction of the beam radiated by the radiation patch 30 by the third deflection patch 12 can be better improved.
  • the antenna device may further include a third conductive structure 13 through which the third conductive structure 13 penetrates. At least one layer of dielectric substrate 10, the first end of the third conductive structure 13 is connected to the third deflection patch 12, the second end of the third conductive structure 13 passes through the ground metal layer 20 and is used for electrical connection with an external circuit.
  • the three conductive structure 13 is insulated from the grounded metal layer 20, and the external circuit is also used to feed a third electrical signal to the third conductive structure 13, and the third electrical signal is used to excite the third deflection patch 12 from an amorphous state to a crystal. State, or from a crystalline state to an amorphous state.
  • the third signal is used to excite the third deflection patch 12 from the amorphous state to the crystalline state, or from the crystalline state to the amorphous state, refer to the above-mentioned first deflection patch 50 from the amorphous state to the realization process
  • the realization process of the crystalline state, or the conversion from the crystalline state to the amorphous state, will not be repeated in the embodiment of the present application.
  • the antenna device may further include a fourth deflection patch 14.
  • the fourth deflection patch 14 is located on the fourth side of the radiation patch 30 opposite to the third side, and the fourth deflection patch 14 can be converted from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the fourth deflection patch 14 is fixed on the first dielectric substrate or the fourth dielectric substrate (Not shown in the figure) on the side away from the grounded metal layer 20, that is, the first deflection patch 50, the second deflection patch 80, the third deflection patch 12, and the fourth deflection patch 14 are arranged on the same Or the first deflection patch 50, the second deflection patch 80 and the third deflection patch 12 are arranged on the same layer of dielectric substrate, and the fourth deflection patch 14 is arranged on another layer of dielectric substrate.
  • the fourth dielectric substrate is a dielectric substrate of at least one dielectric substrate 10 that is different from the first dielectric substrate.
  • the fourth deflection patch 14 is fixed on the third dielectric substrate away from the grounded metal layer 20. That is, the first deflection patch 50 and the second deflection patch 80 are provided on the same layer of dielectric substrate, and the third deflection patch 12 and the fourth deflection patch 14 are provided on the same layer of dielectric substrate.
  • the positional relationship between the first layer of dielectric substrate, the second layer of dielectric substrate, the third layer of dielectric substrate, and the fourth layer of dielectric substrate may not be limited, and the first deflection patch 50, the second deflection patch 80, and the The three deflection patch 12 and the fourth deflection patch 14 may be based on the set positions such that the first deflection patch 50, the second deflection patch 80, the third deflection patch 12, and the fourth deflection patch 14 are located on the same layer of the dielectric substrate.
  • the embodiment of the present application does not limit this.
  • the material of the fourth deflection patch 14 and the material of the third deflection patch 12 can be the same or similar, and the arrangement position of the fourth deflection patch 14 can be the same as or similar to the arrangement position of the third deflection patch 12.
  • the application embodiment will not go into details here.
  • the antenna device may further include a fourth conductive structure 15 and the fourth conductive
  • the position structure of the structure 15 may be the same as or similar to the position structure of the third conductive structure 13, which will not be repeated in the embodiment of the present application.
  • the third deflection patch 12 Fixed on the side of the first layer of dielectric substrate or the third layer of dielectric substrate away from the grounded metal layer 20, the third layer of dielectric substrate is at least one layer of dielectric substrate 10 that is different from the first layer of dielectric substrate and the second layer of dielectric substrate One layer of dielectric substrate; that is, the first deflection patch 50 and the third deflection patch 12 are arranged on the same layer of dielectric substrate, and the second deflection patch 80 is arranged on another layer of dielectric substrate; or the first deflection patch 50.
  • the second deflection patch 80 and the third deflection patch 12 are arranged on different layers of dielectric substrates.
  • the fourth deflection patch 14 is located on the fourth side of the radiation patch 30 opposite to the third side, and the fourth deflection patch 14 can be changed from the amorphous state. Converted to a crystalline state, or converted from a crystalline state to an amorphous state.
  • the fourth deflection patch 14 is fixed on the second dielectric substrate away from the grounded metal layer 20.
  • the fourth deflection patch 14 is fixed on the first dielectric substrate and the third dielectric substrate.
  • the side of the substrate or the fourth dielectric substrate away from the grounded metal layer 20, that is, the first deflection patch 50, the second deflection patch 80, and the third deflection patch 12 are arranged on different layers of dielectric substrates, and The fourth deflection patch 14 and the first deflection patch 50 are arranged in the same layer; or the first deflection patch 50, the second deflection patch 80, and the third deflection patch 12 are arranged on different layers of dielectric substrates, and the fourth The deflection patch 14 and the third deflection patch 12 are arranged in the same layer; or the first deflection patch 50, the second deflection patch 80, the third deflection patch 12 and the fourth deflection patch 14 are arranged on different layers of dielectric substrates superior.
  • the fourth dielectric substrate is a dielectric substrate of at least
  • the antenna device includes a first deflection patch 50, a second deflection patch 80, a third deflection patch 12, and a fourth deflection patch 14, the first deflection patch 50 and the second deflection patch
  • the sheet 80, the third deflection patch 12, the fourth deflection patch 14 and the radiation patch 30 can be fixed on the same layer of the dielectric substrate, that is, the first deflection patch 50, the second deflection patch 80, and the third deflection patch 80.
  • the deflection patch 12, the fourth deflection patch 14 and the radiation patch 30 may be located on the same plane, which is not limited in the embodiment of the present application.
  • the antenna device includes a first deflection patch 50, a second deflection patch 80, a third deflection patch 12, and a fourth deflection patch 14, the first deflection patch 50 and the second deflection patch can be controlled. Any one of the deflection patch 80, the third deflection patch 12, and the fourth deflection patch 14 is switched from a crystalline state to an amorphous state, or from an amorphous state to a crystalline state, so that the antenna device Scanning of the radiation beam of the antenna array.
  • the beam scan image can refer to the scan image when only the first deflection patch 50 and the second deflection patch 80 are included, which is not limited in the embodiment of the present application.
  • the fourth deflection patch 14 when the second feed structure 11 feeds the excitation signal, the fourth deflection patch 14 is in the crystalline state, and the third deflection patch 12 is in the amorphous state, no matter the first deflection patch 50 and the second deflection patch 50 In what state is the patch 80, the main beam of the antenna is deflected in the direction of the fourth deflection patch 14; when the second feed structure 11 feeds an excitation signal, the fourth deflection patch 14 is in an amorphous state, and the third deflection patch 12 is in a crystal state.
  • the main beam of the antenna is deflected in the direction of the third deflection patch 12; when the second feed structure 11 feeds the excitation signal, the fourth deflection patch When the state of the patch 14 and the third deflection patch are the same, the main beam of the antenna is not deflected, usually in the side firing direction; when the first feeding structure 40 feeds the excitation signal, the first deflection patch 50 is in the crystalline state, and the second deflection patch When the sheet 80 is in the amorphous state, no matter what the state of the fourth deflection patch 14 and the third deflection patch 12 is, the antenna main beam is deflected in the direction of the first deflection patch 50; when the first feeding structure 40 feeds an excitation signal , When the first deflection patch 50 is in the amorphous state and the second deflection patch 80 is in the crystalline state, no matter what state the fourth deflection patch 14 and the third deflection patch 14 and the third deflection
  • a single-polarized antenna may be formed by the first feeding structure 40 and the radiating patch 30.
  • the antenna device may also include a third feeding structure, which penetrates at least one layer of the dielectric substrate 10. The first end of the third feeding structure is connected to the radiation patch 30, and the second end of the third feeding structure passes through the grounded metal layer 20 and forms a third gap with the grounded metal layer 20.
  • the third feeder The electrical structure is used to feed a third excitation signal, and the third excitation signal is used to excite the radiation beam of the radiation patch 30.
  • the dual polarization of the antenna device can be realized, and the first deflection can be achieved.
  • the patch 50 realizes the deflection of the beam radiation direction of the dual-polarized antenna.
  • the third connection point and the first connection point between the third power feeding structure and the radiation patch 30 form center symmetry with the center point of the radiation patch 30.
  • the second feeding structure 11 and the radiation patch 30 may constitute a single-polarized antenna.
  • the antenna device may also include a fourth feeding structure, which penetrates at least one layer of the dielectric substrate. 10. The first end of the fourth feeding structure is connected to the radiation patch 30, and the second end of the fourth feeding structure passes through the grounded metal layer 20 and forms a fourth gap with the grounded metal layer 20.
  • the fourth feeder The electrical structure is used to feed the fourth excitation signal, and the fourth excitation signal is used to excite the radiation beam of the radiation patch 30.
  • the dual polarization of the antenna can be realized, and the third deflection patch can be used.
  • the sheet 12 and the fourth deflection patch 14 realize the deflection of the beam radiation direction of the dual-polarized antenna.
  • the fourth connection point and the second connection point between the fourth power feeding structure and the radiation patch 30 form a center symmetry with the center point of the radiation patch 30.
  • the first excitation signal and the second excitation signal can be fed through the first feed structure and the second feed structure, respectively, and the radiation patch radiation beam can be excited by the first excitation signal and the second excitation signal.
  • the antenna device In order to achieve the basic functions of the antenna device.
  • first deflection patch, the second deflection patch, the third deflection patch, and the fourth deflection patch can all be converted from a crystalline state (metal state) to an amorphous state (insulating state) or from an amorphous state ( The insulated state) is converted to the crystalline state (metal state), so that when the radiation patch radiation beam is excited by the first excitation signal and the second excitation signal, the first deflection patch and the second deflection patch can be controlled to be in different states.
  • the third deflection patch and the fourth deflection patch are in different states, that is, the first deflection patch can be controlled to be in the crystalline state, the second deflection patch is in the amorphous state, or the first deflection patch is in the amorphous state, The second deflection patch is in the crystalline state, and the third deflection patch is controlled to be in the crystalline state and the fourth deflection patch is in the amorphous state, or the third deflection patch is in the amorphous state and the fourth deflection patch is in the crystalline state, In this way, the deflection of the radiation direction of the beam is realized, thereby realizing the adjustment of the radiation direction of the beam, and the spatial coverage of the antenna device is improved.
  • FIG. 18 illustrates a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device may include the antenna device described in the above embodiments.
  • the electronic device can be a smart phone, a tablet computer, an MP3 player (Moving Picture Experts Group Audio Layer III, moving picture expert compression standard audio layer 3), MP4 (Moving Picture Experts Group Audio Layer IV, moving picture expert compressing standard audio layer III) 4) Player, laptop or desktop computer, etc.
  • MP3 player Moving Picture Experts Group Audio Layer III, moving picture expert compression standard audio layer 3
  • MP4 Moving Picture Experts Group Audio Layer IV, moving picture expert compressing standard audio layer III
  • Player laptop or desktop computer, etc.
  • the electronic device may include a housing 1801 in which a processor 1802, a memory 1803, a controller 1804, and the antenna device of the embodiments shown in FIGS. 1 to 17 are arranged. 1805.
  • the processor 1802 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the memory 1803 may include one or more computer-readable storage media, which may be non-transitory.
  • the controller 1804 is used to control the first deflection patch from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the controller 1804 can also be used to control Other deflection patches convert from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state.
  • the antenna device 1805 is used to receive electrical signals and convert them into electromagnetic wave signals to communicate with communication networks and other communication devices, or to convert the received electromagnetic wave signals into electrical signals.
  • the electromagnetic wave signal may be a millimeter wave signal, may be a sub6GHz signal, etc., which is not limited in the embodiment of the present application.
  • FIG. 18 does not constitute a limitation on the electronic device, and may include more or fewer components than those shown in the figure, or combine certain components, or adopt different component arrangements.
  • the antenna device can realize the deflection of the beam radiation direction under the action of the first deflection patch, the spatial coverage of the antenna device is improved, and the performance of the antenna device is ensured. In this way, it is possible to increase the spatial coverage of radiation by beam radiation in different directions of the multiple antenna devices arranged inside the electronic device, so as to improve the antenna performance of the electronic device.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线装置及电子设备,属于天线技术领域。该天线装置包括至少一层介质基板、接地金属层、辐射贴片、第一馈电结构、第一偏转贴片和射频芯片;接地金属层、至少一层介质基板和辐射贴片层叠设置,第一馈电结构贯穿至少一层介质基板,第一馈电结构的第一端与辐射贴片连接,第一馈电结构的第二端穿过接地金属层,且与射频芯片电连接,射频芯片馈入的第一激励信号用于激励辐射贴片辐射波束;第一偏转贴片固定在辐射贴片的第一侧。本申请在辐射贴片辐射波束时,通过第一偏转贴片的不同形态(晶态和非晶态)实现波束辐射方向的偏转,实现了对波束辐射方向的调整,提高了天线装置的空间覆盖度。

Description

天线装置及电子设备
本申请要求于2020年03月19日提交的申请号为202010195147.6、发明名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种天线装置及电子设备。
背景技术
目前,在电子设备的使用过程中,为了保证电子设备的天线性能,均会固定设置天线装置。而由于天线装置的固定设置,使得天线装置的波束辐射方向固定。
发明内容
本申请提供了一种天线装置及电子设备。所述技术方案如下:
一方面、提供了一种天线装置,所述天线装置包括至少一层介质基板、接地金属层、辐射贴片、第一馈电结构、第一偏转贴片和射频芯片;
所述接地金属层、所述至少一层介质基板和所述辐射贴片层叠设置,所述第一馈电结构贯穿所述至少一层介质基板,所述第一馈电结构的第一端与所述辐射贴片连接,所述第一馈电结构的第二端穿过所述接地金属层,且与所述射频芯片电连接,所述第一馈电结构与所述接地金属层之间形成第一间隙,所述射频芯片用于馈入第一激励信号至所述第一馈电结构,所述第一激励信号用于激励所述辐射贴片辐射波束;
所述第一偏转贴片固定在第一层介质基板上远离所述接地金属层的一侧,所述第一偏转贴片位于所述激励贴片的第一侧,所述第一偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态,所述第一层介质基板为所述至少一层介质基板中的任一层介质基板。
另一方面提供了一种电子设备,所述电子设备包括控制器和如前所述的天线装置,所述控制器用于控制所述第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种天线装置的俯视结构示意图;
图2是本申请实施例提供的一种天线装置的A-A截面示意图;
图3是本申请实施例提供的一种第一偏转贴片为晶态时的波束辐射方向示意图;
图4是本申请实施例提供的一种第一偏转贴片为非晶态时的波束辐射方向示意图;
图5是本申请实施例提供的一种天线装置构成的天线阵列的波束扫描示意图;
图6是本申请实施例提供的一种辐射贴片的结构示意图;
图7是本申请实施例提供的另一种辐射贴片的结构示意图;
图8是本申请实施例提供的又一种辐射贴片的结构示意图;
图9是本申请实施例提供的又一种辐射贴片的结构示意图;
图10是本申请实施例提供的再一种辐射贴片的结构示意图;
图11是本申请实施例提供的另一种天线装置的结构示意图;
图12是本申请实施例提供的又一种天线装置的俯视结构示意图;
图13是本申请实施例提供的又一种天线装置的B-B截面示意图;
图14是本申请实施例提供的又一种天线装置构成的天线阵列的波束扫描示意图;
图15是本申请实施例提供的又一种天线装置构成的天线阵列的波束扫描示意图;
图16是本申请实施例提供的再一种天线装置的俯视结构示意图;
图17是本申请实施例提供的再一种天线装置的C-C截面示意图;
图18是本申请实施例提供的一种电子设备的结构示意图。
附图标记:
10:介质基板;20:接地金属层;30:辐射贴片;301:辐射子贴片;40:第一馈电结构;50:第一偏转贴片;60:射频芯片;70:第一导电结构;80:第二偏转贴片;90:第二导电结构;11:第二馈电结构;12:第三偏转贴片;13:第三导电结构;14:第四偏转贴片;15:第四导电结构;
1801:壳体;1802:处理器;1803:存储器;1804:控制器;1805:天线装置。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供一种天线装置,所述天线装置包括至少一层介质基板、接地金属层、辐射贴片、第一馈电结构、第一偏转贴片和射频芯片;
所述接地金属层、所述至少一层介质基板和所述辐射贴片层叠设置,所述第一馈电结构贯穿所述至少一层介质基板,所述第一馈电结构的第一端与所述辐射贴片连接,所述第一馈电结构的第二端穿过所述接地金属层,且与所述射频芯片电连接,所述第一馈电结构与所述接地金属层之间形成第一间隙,所述射频芯片用于馈入第一激励信号至所述第一馈电结构,所述第一激励信号用于激励所述辐射贴片辐射波束;
所述第一偏转贴片固定在第一层介质基板上远离所述接地金属层的一侧,所述第一偏转贴片位于所述激励贴片的第一侧,所述第一偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态,所述第一层介质基板为所述至少一层介质基板中的任一层介质基板。
在示意性实施例中,当所述第一偏转贴片为晶态时,所述辐射贴片辐射的波束偏向所述辐射贴片的第一侧。
在示意性实施例中,当所述第一偏转贴片为非晶态时,所述辐射贴片辐射的波束不会发生偏转。
在示意性实施例中,所述第一偏转贴片在温度或激光的作用下实现晶态与非晶态之间的切换。
在示意性实施例中,所述天线装置还包括第一导电结构;
所述第一导电结构贯穿所述至少一层介质基板,所述第一导电结构的第一端与所述第一偏转贴片连接,所述第一导电结构的第二端穿过所述接地金属层,且用于与外接电路电连接,所述第一导电结构与所述接地金属层绝缘设计,所述外接电路用于馈入第一电信号至所述第一导电结构,所述第一电信号用于激励所述第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述辐射贴片与所述第一偏转贴片之间的距离大于或等于0.2且小于或等于2毫米。
在示意性实施例中,所述天线装置还包括第二偏转贴片;
所述第二偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧,
所述第二偏转贴片位于所述辐射贴片上与第一侧相对的第二侧,所述第二偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第二偏转贴片;
所述第二偏转贴片固定在第二层介质基板上远离所述接地金属层的一侧,
所述第二偏转贴片位于所述辐射贴片上与第一侧相对的第二侧,所述第二偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态,所述第二层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板。
在示意性实施例中,所述天线装置还包括第二馈电结构;
所述第二馈电结构贯穿所述至少一层介质基板,所述第二馈电结构的第一端与所述辐射贴片电连接,所述第二馈电结构的第二端穿过所述接地金属层,且与所述射频芯片电连接,所述第二馈电结构与所述接地金属层之间形成第二间隙,所述射频芯片用于馈入第二激励信号至所述第二馈电结构,所述第二激励信号用于激励所述辐射贴片辐射波束。
在示意性实施例中,所述天线装置还包括第三偏转贴片;
当所述第二偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第三偏转贴片固定在所述第一层介质基板或第三层介质基板上远离所述接地金属层的一侧,所述第三层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板;
所述第三偏转贴片位于所述辐射贴片上与第一侧相邻的第三侧,所述第三偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第四偏转贴片;
当所述第三偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第一层介质基板或第四层介质基板上远离所述接地金属层的一侧,所述第四层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板;
所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第四偏转贴片;
当所述第三偏转贴片固定在所述第三层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第三介质基板上远离所述接地金属层的一侧;
所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第三偏转贴片;
当所述第二偏转贴片固定在所述第二层介质基板上远离所述接地金属层的一侧时,所述第三偏转贴片固定在所述第一层介质基板或第三层介质基板上远离所述接地金属层的一侧,所述第三层介质基板为所述至少一层介质基板中不同于所述第一层介质基板和所述第二层介质基板的一层介质基板;
所述第三偏转贴片位于所述辐射贴片上与第一侧相邻的第三侧,所述第三偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第四偏转贴片;
当所述第三偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第二介质基板上远离所述接地金属层的一侧;
所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述天线装置还包括第四偏转贴片;
当所述第三偏转贴片固定在所述第三层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第一层介质基板、所述第三层介质基板或第四层介质基板上远离所述接地金属层的一侧,所述第四层介质基板为所述至少一层介质基板中不同于所述第一层介 质基板、所述第二层介质基板和所述第三层介质基板的一层介质基板;
所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在示意性实施例中,所述辐射贴片包括至少一个辐射子贴片,所述至少一个辐射子贴片层叠设置,每个辐射子贴片的形状和/或尺寸不同。
在示意性实施例中,所述辐射子贴片为矩形或圆形结构。
在示意性实施例中,所述天线装置包括边射天线或端射天线。
在示意性实施例中,所述天线装置包括单个天线单元或天线阵列。
本申请实施例提供一种电子设备,所述电子设备包括控制器和上述天线装置,所述控制器用于控制所述第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。
图1示例了本申请实施例的一种天线装置的结构示意图,图2示例了本申请实施例的一种天线装置的A-A截面示意图。如图1和图2所示,该天线装置包括至少一层介质基板10、接地金属层20、辐射贴片30、第一馈电结构40、第一偏转贴片50和射频芯片60;接地金属层20、至少一层介质基板10和辐射贴片30层叠设置,第一馈电结构40贯穿至少一层介质基板10,第一馈电结构40的第一端与辐射贴片30连接,第一馈电结构40的第二端穿过接地金属层20,且与射频芯片60电连接,第一馈电结构40与接地金属层20之间形成第一间隙,射频芯片60用于馈入第一激励信号至第一馈电结构40,第一激励信号用于激励辐射贴片30辐射波束;第一偏转贴片50固定在第一层介质基板(图中未示出)上远离接地金属层20的一侧,第一偏转贴片50位于辐射贴片30的第一侧,第一偏转贴片50能够由非晶态转换为晶态,或者由晶态转换为非晶态,第一层介质基板为至少一层介质基板10中的任一层介质基板。
本申请实施例中,通过第一馈电结构40馈入第一激励信号,进而通过第一激励信号激励辐射贴片30辐射波束,以实现该天线装置的基本功能。进一步,由于第一偏转贴片50能够由晶态(金属态)转换为非晶态(绝缘态)或者由非晶态(绝缘态)转换为晶态(金属态),这样在辐射贴片30辐射波束时,可以通过控制第一偏转贴片50处于不同态,也即是可以控制第一偏转贴片50处于晶态,或者控制第一偏转贴片50处于非晶态,实现波束辐射方向的偏转,进而实现对波束辐射方向的调整,提高了天线装置的空间覆盖度。
实际实现过程中,当控制第一偏转贴片50为晶态时,通过第一激励信号激励辐射贴片30辐射的波束的辐射方向可以向第一偏转贴片50的一侧偏转;当控制第一偏转贴片50为非晶态时,通过第一激励信号激励辐射贴片30辐射的波束的辐射方向不会发生偏转;也即是,如图3所示,当第一偏转贴片50为晶态时,辐射贴片30辐射的波束偏向辐射贴片30的第一侧,如图4所示,当第一偏转贴片50为非晶态时,辐射贴片30辐射的波束不会发生偏转。这样,可以在不同的需求下,实现该天线装置的波束的多个辐射方向的调整。
其中,第一馈电结构40与辐射贴片30之间的第一连接点可以位于辐射贴片30的中心线上,且该第一连接点与辐射贴片30的中心点之间的距离可以位于第一距离阈值范围内,第一距离阈值范围是指用于调整阻抗匹配的距离范围。也即是,可以通过调整第一连接点与辐射贴片30的中心点之间的距离,实现对该天线装置的阻抗的调整,进而实现该天线装置的天线匹配,以增大该天线装置的辐射效率。该第一连接点可以位于辐射贴片30上与第一偏转贴片50的长度方向平行的中心线上,当然,该第一连接点也可以稍微偏离辐射贴片30上与第一偏转贴片50的长度方向平行的中心线,本申请实施例对此不做限定。
示例地,可以通过调整第一连接点与辐射贴片30的中心点之间的距离,使得该天线装置的阻抗为4欧姆、5欧姆或6欧姆等,本申请实施例对调整后该天线装置的阻抗不做限定。
在一些实施例中,至少一层介质基板10、接地金属层20、辐射贴片30和第一馈电结构 40构成的天线装置可以是边射天线,当然也可以是端射天线,比如偶极子天线等。另外,至少一层介质基板10、接地金属层20、辐射贴片30和第一馈电结构40构成的天线装置可以是单个天线单元,也可以是天线阵列。也即是可以将至少一层介质基板10、接地金属层20、辐射贴片30和第一馈电结构40构成的天线以矩阵的结构排布,得到天线阵列,本申请实施例对至少一层介质基板10、接地金属层20、辐射贴片30和第一馈电结构40构成的天线的形式不做限定。
需要说明的是,由于该天线装置的波束辐射方向可以调整,因此通过该天线装置构成的阵列天线不仅可以实现天线的通用性能,还能够实现波束扫描的性能。其中,当该天线装置包括至少一层介质基板10、接地金属层20、辐射贴片30、第一馈电结构40和第一偏转贴片50时,可以控制第一偏转贴片50由非晶态转换为晶态,以通过该天线装置构成的天线阵列实现波束扫描,且波束扫描图可如图5所示。
在一些实施例中,辐射贴片30可以包括至少一个辐射子贴片301,该至少一个辐射子贴片301层叠设置,每个辐射子贴片301的形状和/或尺寸均不同。这样由于每个辐射子贴片301的形状和/尺寸均不同,在至少一个辐射子贴片301层叠设置时,可以通过每个辐射子贴片301对应的不同带宽,以及两个辐射子贴片301之间的相互耦合,可以提高辐射贴片30的整体带宽,从而提高该天线装置的带宽。
其中,如图6和图7所示,辐射子贴片301可以为矩形或圆形结构。
当辐射子贴片301为矩形结构时,第一偏转贴片50的长度方向与辐射子贴片301上相邻的第一侧边平行。当然,第一偏转贴片50的长度方向与辐射子贴片301上相邻的第一侧边也可以成一定夹角。
当辐射子贴片301为圆形时,第一偏转贴片50的长度方向与辐射子贴片301位于同一平面。
需要说明的是,辐射子贴片301可以为整片的结构,当然也可以为设置有通孔的片状结构。示例地,如图8所示,辐射子贴片301可以为矩形环状结构,或者如图9所示,辐射子贴片301可以为圆环状结构,或者如图10所示,辐射子贴片301可以为设置有十字形通孔的矩形结构等。
本申请实施例中,如图1所示,第一偏转贴片50可以为条状矩形结构,第一偏转贴片50可以通过可逆的相变材料制成,示例地,该相变材料可以为二氧化钒、锗锑碲合金、钪锑碲合金或锗锑合金等。
在一些实施例中,第一偏转贴片50和辐射贴片30可以位于不同层的介质基板上,也即是至少一层介质基板10至少可以包括第一层介质基板和第二层介质基板,此时第一偏转贴片50固定在第一层介质基板上,辐射贴片30固定在第二层介质基板上;或者第一偏转贴片50固定在第二层介质基板上,辐射贴片30固定在第一层介质基板上。
当然,第一偏转贴片50和辐射贴片30可以位于同一层的介质基板上,也即是第一偏转贴片50和激励贴片辐射贴片30位于同一平面。这样,可以更好的提升第一偏转贴片50对辐射贴片30辐射的波束的方向的偏转效果。
需要说明的是,当第一偏转贴片50与辐射贴片30之间的距离无线趋近于零时,则辐射贴片30与第一偏转贴片50可以近似为一体,从而无法实现对波束辐射方向的偏转;当第一偏转贴片50与辐射贴片30之间的距离趋近于无穷大时,则相当于不存在第一偏转贴片50,从而无法实现对波束辐射方向的偏转。因此,可以保证第一偏转贴片50与辐射贴片30之间的距离位于一定范围内,以更好的实现对辐射贴片辐射的波束方向的偏转。
其中,辐射贴片30与第一偏转贴片50之间的距离可以大于或等于0.2且小于或等于2毫米。
在一些实施例中,第一偏转贴片50可以在温度的作用下实现晶态与非晶态之间的切换,当然,也可以在其他方式下实现晶态与非晶态的切换,比如可以在激光激励的作用下实现晶 态与非晶态的切换。
当通过温度的作用实现状态切换时,如图11所示,该天线装置还可以包括第一导电结构70,第一导电结构70贯穿至少一层介质基板10,第一导电结构70的第一端与第一偏转贴片50连接,第一导电结构70的第二端穿过接地金属层20,且用于与外接电路电连接,第一导电结构70与接地金属层20绝缘设计,外接电路用于馈入第一电信号至第一导电结构70,第一电信号用于激励第一偏转贴片50由非晶态转换为晶态,或者由晶态转换为非晶态。
其中,在实现第一偏转贴片50由非晶态转换为晶态时,假设第一偏转贴片50当前为晶态,则可以通过第一电信号激励第一偏转贴片50升温,在第一偏转贴片50的温度不小于温度阈值时,停止第一电信号的激励,以实现第一偏转贴片50的快速降温,从而使得第一偏转贴片50切换为非晶态;假设当前为非晶态时,则可以通过第一电信号激励第一偏转贴片50升温,在第一偏转贴片50的温度不小于温度阈值时,缓慢减小第一电信号,以实现第一偏转贴片50的缓慢降温,从而使得第一偏转贴片50切换为晶态。
其中,温度阈值可以基于第一偏转贴片50的材料进行确定,该温度阈值是指能够使第一偏转贴片50的内部的晶粒处于自由态的温度。
如图12所示,天线装置还可以包括第二偏转贴片80。第二偏转贴片80位于辐射贴片30上与第一侧相对的第二侧,第二偏转贴片80能够由非晶态转换为晶态,或者由晶态转换为非晶态。
其中,第二偏转贴片80固定在第一层介质基板上远离接地金属层20的一侧,也即是第一偏转贴片50和第二偏转贴片80位于同一层介质基板上。当然,第二偏转贴片80也可以固定在第二层介质基板(图中未示出)上远离接地金属层20的一侧,也即是第一偏转贴片50和第二偏转贴片80位于不同层的介质基板上。第二层介质基板为至少一层介质基板10中不同于第一层介质基板的一层介质基板。
其中,第二偏转贴片80的材质和上述第一偏转贴片50的材质可以相同或相似,第二偏转贴片80的设置位置可以与第一偏转贴片50的设置位置相同或相似,本申请实施例对此不再赘述。
其中,第一层介质基板可以位于第二层介质基板的上方,也可以位于第二层介质基板的下方,本申请实施例对此不做限定。当第一偏转贴片50和第二偏转贴片80均位于第一层介质基板上时,则可以认为第一偏转贴片50和第二偏转贴片80同层设置,当第一偏转贴片50位于第一层介质基板上,第二偏转贴片80位于第二层介质基板上时,则可以认为第一偏转贴片50和第二偏转贴片80异层设置。另外,辐射贴片30可以与第一偏转贴片50和第二偏转贴片80同层设置,也可以异层设置,本申请实施例对此不做限定。
进一步地,当通过温变实现第二偏转贴片80的晶态到非晶态的可逆切换时,如图13所示,该天线装置还可以包括第二导电结构90,且第二导电结构90的位置结构可以与第一导电结构70的位置结构相同或相似,本申请实施例对此不在赘述。
需要说明的是,当该天线装置包括第一偏转贴片50和第二偏转贴片80时,可以控制第一偏转贴片50由非晶态转换为晶态,且控制第二偏转贴片80由晶态转换为非晶态,以通过该天线装置构成的天线阵列实现波束扫描,且波束扫描图可如图14所示;或者可以控制第一偏转贴片50由晶态转换为非晶态,且控制第二偏转贴片80由非晶态转换为晶态,以通过该天线装置构成的天线阵列实现波束扫描,且波束扫描图可如图15所示。
在一些实施例中,如图16或图17所示,天线装置还可以包括第二馈电结构11,第二馈电结构11贯穿至少一层介质基板10,第二馈电结构11的第一端与辐射贴片30电连接,第二馈电结构11的第二端穿过接地金属层20,且与射频芯片60电连接,第二馈电结构11与接地金属层20之间形成第二间隙,射频芯片用于馈入第二激励信号至第二馈电结构11,第二激励信号用于激励辐射贴片30辐射波束。
这样,可以在射频芯片60馈入第二激励信号至第二馈电结构11时,通过第二激励信号 激励辐射贴片30辐射定向波束,同时通过射频芯片60馈入第一激励信号至第一馈电结构40,在第一偏转贴片50的影响下,通过第一激励信号激励辐射贴片30辐射方向可调整的波束。
需要说明的是,可以在天线装置包括辐射贴片30和第一偏转贴片50时设置第二馈电结构11,也可以在该天线装置包括辐射贴片30、第一偏转贴片50和第二偏转贴片80时设置第二馈电结构11。
本申请实施例中,可以在该天线装置包括辐射贴片30、第一偏转贴片50和第二馈电结构11时,另外设置第三偏转贴片12;当然也可以在该天线装置包括辐射贴片30、第一偏转贴片50、第二偏转贴片80和第二馈电结构11,另外设置第三偏转贴片12。
如图16或图17所示,该天线装置包括第三偏转贴片12,第三偏转贴片12位于辐射贴片30上与第一侧相对的第三侧,第三偏转贴片12能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在一些实施例中,当第二偏转贴片80固定在第一层介质基板上远离接地金属层20的一侧时,第三偏转贴片12固定在第一层介质基板或第三层介质基板(图中未示出)上远离接地金属层20的一侧,也即是第一偏转贴片50、第二偏转贴片80、第三偏转贴片12设置在同一层介质基板上,或者第一偏转贴片50和第二偏转贴片80设置在同一层介质基板上,第三偏转贴片12设置在另一层介质基板上。
这样,在通过第二馈电结构11馈入的第二激励信号激励辐射贴片30辐射波束时,可以控制第三偏转贴片12处于不同态,也即是可以控制第三偏转贴片12处于晶态,或者控制第三偏转贴片12处于非晶态,从而实现波束辐射方向的偏转。
实际实现过程中,当第三偏转贴片12为晶态时,通过第二激励信号激励辐射贴片30辐射的波束方向可以向第三偏转贴片12的一侧偏转,也即是向辐射贴片的第三侧偏转;当第三偏转贴片12为非晶态时,通过第二激励信号激励辐射贴片30辐射的波束方向不会发生偏转。这样在不同的需求下,可以实现该天线装置的波束的多个辐射方向的调整。
其中,第一层介质基板和第三层介质基板之间的位置关系可以不限定,且第一偏转贴片50、第二偏转贴片80和第三偏转贴片12可以基于设置的位置使得第一偏转贴片50、第二偏转贴片80和第三偏转贴片12位于同一层介质基板上或者位于不同层的介质基板上,本申请实施例对此不做限定。
如图16所示,第三偏转贴片12可以为条状矩形结构,第三偏转贴片12的材料可以和上述描述的第一偏转贴片50的材料相同或相似,且激励第三偏转贴片12在晶态与非晶态之间切换方式可以入上述描述,本申请实施例对此不在赘述。
在一些实施例中,第三偏转贴片12和辐射贴片30可以位于不同层的介质基板上,也即是至少一层介质基板10至少包括第三层介质基板和第四层介质基板,此时第三偏转贴片12固定在第三层介质基板上,辐射贴片30固定在第四层介质基板上;或者第三偏转贴片12固定在第四层介质基板上,辐射贴片30固定在第三层介质基板上等。
当然,第三偏转贴片12和辐射贴片30可以位于同一层的介质基板上,也即是第三偏转贴片12和辐射贴片30可以位于同一平面。这样,可以更好的提升第三偏转贴片12对辐射贴片30辐射的波束的方向的偏转。
进一步地,当通过温变实现第三偏转贴片12的晶态到非晶态的可逆切换时,如图17所示,该天线装置还可以包括第三导电结构13,第三导电结构13贯穿至少一层介质基板10,第三导电结构13的第一端与第三偏转贴片12连接,第三导电结构13的第二端穿过接地金属层20且用于与外接电路电连接,第三导电结构13与接地金属层20绝缘设计,外接电路还用于馈入第三电信号至第三导电结构13,第三电信号用于激励第三偏转贴片12由非晶态转换为晶态,或者由晶态转换为非晶态。
其中,通过第三信号激励第三偏转贴片12由非晶态转换为晶态,或者由晶态转换为非晶态的实现过程,可以参考上述第一偏转贴片50由非晶态转换为晶态,或者由晶态转换为非晶 态的实现过程,本申请实施例对此不再赘述。
进一步地,当该天线装置包括第二馈电结构11和第三偏转贴片12时,如图16或图17所示,该天线装置还可以包括第四偏转贴片14。第四偏转贴片14位于辐射贴片30上与第三侧相对的第四侧,第四偏转贴片14能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在一些实施例中,当第三偏转贴片12固定在第一层介质基板上远离接地金属层20的一侧时,第四偏转贴片14固定在第一层介质基板或第四层介质基板(图中未示出)上远离接地金属层20的一侧,也即是第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14设置在同一层介质基板上;或者第一偏转贴片50、第二偏转贴片80和第三偏转贴片12设置在同一层介质基板上,第四偏转贴片14设置在另一层介质基板上。第四层介质基板为至少一层介质基板10中不同于第一层介质基板的一层介质基板。
在另一些实施例中,如果第三偏转贴片12固定在第三层介质基板上远离接地金属层20的一侧时,第四偏转贴片14固定在第三介质基板上远离接地金属层20的一侧;也即是第一偏转贴片50和第二偏转贴片80设置在同一层介质基板上,第三偏转贴片12和第四偏转贴片14设置在同一层介质基板上。
其中,第一层介质基板、第二层介质基板、第三层介质基板和第四层介质基板之间的位置关系可以不限定,且第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14可以基于设置的位置使得第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14位于同一层介质基板上或者位于不同层的介质基板上,本申请实施例对此不做限定。
其中,第四偏转贴片14的材质和上述第三偏转贴片12的材质可以相同或相似,第四偏转贴片14的设置位置可以与第三偏转贴片12的设置位置相同或相似,本申请实施例对此不在赘述。
需要说明的是,当通过温变实现第四偏转贴片14的晶态到非晶态的可逆切换时,如图17所示,该天线装置还可以包括第四导电结构15,且第四导电结构15的位置结构可以与第三导电结构13的位置结构相同或相似,本申请实施例对此不在赘述。
当该天线装置包括第三偏转贴片12,在另一些实施例中,当第二偏转贴片80固定在第二层介质基板上远离接地金属层20的一侧时,第三偏转贴片12固定在第一层介质基板或第三层介质基板上远离接地金属层20的一侧,第三层介质基板为至少一层介质基板10中不同于第一层介质基板和第二层介质基板的一层介质基板;也即是第一偏转贴片50和第三偏转贴片12设置在同一层介质基板上,第二偏转贴片80设置在另一层介质基板上;或者第一偏转贴片50、第二偏转贴片80和第三偏转贴片12设置在不同层介质基板上。
进一步地,当该天线装置还包括第四偏转贴片14时,第四偏转贴片14位于辐射贴片30上与第三侧相对的第四侧,第四偏转贴片14能够由非晶态转换为晶态,或者由晶态转换为非晶态。
在一些实施例中,当第三偏转贴片12固定在第一层介质基板上远离接地金属层20的一侧时,第四偏转贴片14固定在第二介质基板上远离接地金属层20的一侧;也即是第一偏转贴片50和第三偏转贴片12设置在同一层介质基板上,第二偏转贴片80和第四偏转贴片14设置在同一层介质基板上。
在另一些实施例中,当第三偏转贴片12固定在第三层介质基板上远离接地金属层20的一侧时,第四偏转贴片14固定在第一层介质基板、第三层介质基板或第四层介质基板上远离接地金属层20的一侧,也即是第一偏转贴片50、第二偏转贴片80、第三偏转贴片12设置在不同层的介质基板上,和第四偏转贴片14与第一偏转贴片50同层设置;或者第一偏转贴片50、第二偏转贴片80、第三偏转贴片12设置在不同层的介质基板上,和第四偏转贴片14与第三偏转贴片12同层设置;或者第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14设置在不同层的介质基板上。第四层介质基板为至少一层介质基板10中不同 于第一层介质基板、第二层介质基板和第三层介质基板的一层介质基板。
需要说明的是,当该天线装置包括第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14时,第一偏转贴片50、第二偏转贴片80、第三偏转贴片12、第四偏转贴片14和辐射贴片30可以固定在同一层的介质基板上,也即是第一偏转贴片50、第二偏转贴片80、第三偏转贴片12、第四偏转贴片14和辐射贴片30可以位于同一平面,本申请实施例对此不做限定。
需要说明的是,当该天线装置包括第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14时,可以控制第一偏转贴片50、第二偏转贴片80、第三偏转贴片12和第四偏转贴片14中的任一偏转贴片由晶态切换为非晶态,或者由非晶态切换为晶态,以实现由该天线装置构成的天线阵列的辐射波束的扫描。其波束扫描图可以参考只包括第一偏转贴片50和第二偏转贴片80时的扫描图,本申请实施例对此不做限定。
示例性地,当第二馈电结构11馈入激励信号、第四偏转贴片14处于晶态、第三偏转贴片12处于非晶态时,无论第一偏转贴片50和第二偏转贴片80处于什么状态,天线主波束向第四偏转贴片14方向偏转;当第二馈电结构11馈入激励信号、第四偏转贴片14处于非晶态、第三偏转贴片12处于晶态时,无论第一偏转贴片50和第二偏转贴片80处于什么状态,天线主波束向第三偏转贴片12方向偏转;当第二馈电结构11馈入激励信号、第四偏转贴片14和第三偏转贴片状态一致时,天线主波束不偏转,通常为边射方向;当第一馈电结构40馈入激励信号、第一偏转贴片50处于晶态、第二偏转贴片80处于非晶态时,无论第四偏转贴片14和第三偏转贴片12处于什么状态,天线主波束向第一偏转贴片50方向偏转;当第一馈电结构40馈入激励信号、第一偏转贴片50处于非晶态、第二偏转贴片80处于晶态时,无论第四偏转贴片14和第三偏转贴片12处于什么状态,天线主波束向第二偏转贴片80方向偏转;当第一馈电结构40馈入激励信号、第一偏转贴片50和第二偏转贴片80状态一致时,天线主波束不偏转,通常为边射方向。
在一些实施例中,可以通过第一馈电结构40和辐射贴片30构成单极化天线,当然,该天线装置还可以包括第三馈电结构,第三馈电结构贯穿至少一层介质基板10,第三馈电结构的第一端与辐射贴片30连接,第三馈电结构的第二端穿过接地金属层20,且与接地金属层20之间形成第三间隙,第三馈电结构用于馈入第三激励信号,第三激励信号用于激励辐射贴片30辐射波束。
这样,在通过第一馈电结构40和第三馈电结构分别馈入的第一激励信号和第三激励信号激励辐射贴片30,可以实现天线装置的双极化,进而可以通过第一偏转贴片50实现对双极化天线的波束辐射方向的偏转。
其中,第三馈电结构与辐射贴片30之间的第三连接点与第一连接点以辐射贴片30的中心点形成中心对称。
在一些实施例中,可以通过第二馈电结构11和辐射贴片30构成单极化天线,当然,该天线装置还可以包括第四馈电结构,第四馈电结构贯穿至少一层介质基板10,第四馈电结构的第一端与辐射贴片30连接,第四馈电结构的第二端穿过接地金属层20,且与接地金属层20之间形成第四间隙,第四馈电结构用于馈入第四激励信号,第四激励信号用于激励辐射贴片30辐射波束。
这样,在通过第二馈电结构11和第四馈电结构分别馈入的第二激励信号和第四激励信号激励辐射贴片30,可以实现天线的双极化,进而可以通过第三偏转贴片12和第四偏转贴片14实现对双极化天线的波束辐射方向的偏转。
其中,第四馈电结构与辐射贴片30之间的第四连接点与第二连接点以辐射贴片30的中心点形成中心对称。
本申请实施例中,可以通过第一馈电结构和第二馈电结构分别馈入第一激励信号和第二激励信号,进而可以通过第一激励信号和第二激励信号激励辐射贴片辐射波束,以实现该天 线装置的基本功能。进一步,由于第一偏转贴片、第二偏转贴片、第三偏转贴片和第四偏转贴片均能够由晶态(金属态)转换为非晶态(绝缘态)或者由非晶态(绝缘态)转换为晶态(金属态),这样在通过第一激励信号和第二激励信号激励辐射贴片辐射波束时,可以控制第一偏转贴片和第二偏转贴片处于不同态,控制第三偏转贴片和第四偏转贴片处于不同态,也即是可以控制第一偏转贴片处于晶态、第二偏转贴片处于非晶态,或者第一偏转贴片处于非晶态、第二偏转贴片处于晶态,以及控制第三偏转贴片处于晶态、第四偏转贴片处于非晶态,或者第三偏转贴片处于非晶态、第四偏转贴片处于晶态,从而实现波束辐射方向的偏转,进而实现对波束辐射方向的调整,提高了天线装置的空间覆盖度。
图18示例了本申请实施例的一种电子设备的结构示意图。该电子设备可以包括如上述是实施例所述的天线装置。
该电子设备可以是智能手机、平板电脑、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、笔记本电脑或台式电脑等。
在一些实施例中,如图18所示,该电子设备可以包括壳体1801,壳体内设置有处理器1802、存储器1803、控制器1804和上述图1-图17中所示实施例的天线装置1805。
其中,处理器1802可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。存储器1803可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。控制器1804用于控制第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态,当然,当天线装置包括其他偏转贴片时,控制器1804也可以用于控制其他偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。天线装置1805用于接收电信号,并转换为电磁波信号,以与通信网络以及其他通信设备进行通信,或者将接收到的电磁波信号转换为电信号。其中,电磁波信号可以是毫米波信号,可以是sub6GHz信号等,本申请实施例对此不做限定。
本领域技术人员可以理解,图18中示出的结构并不构成对电子设备的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
本申请实施例中,由于天线装置可以在第一偏转贴片的作用下实现波束辐射方向的偏转,提高了天线装置的空间覆盖度,保证该天线装置的性能。这样,可以通过该电子设备内部设置的多个天线装置的不同方向的波束辐射,增大辐射的空间覆盖度,以提高该电子设备的天线性能。
以上所述仅为本申请的说明性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种天线装置,其特征在于,所述天线装置包括至少一层介质基板、接地金属层、辐射贴片、第一馈电结构、第一偏转贴片和射频芯片;
    所述接地金属层、所述至少一层介质基板和所述辐射贴片层叠设置,所述第一馈电结构贯穿所述至少一层介质基板,所述第一馈电结构的第一端与所述辐射贴片连接,所述第一馈电结构的第二端穿过所述接地金属层,且与所述射频芯片电连接,所述第一馈电结构与所述接地金属层之间形成第一间隙,所述射频芯片用于馈入第一激励信号至所述第一馈电结构,所述第一激励信号用于激励所述辐射贴片辐射波束;
    所述第一偏转贴片固定在第一层介质基板上远离所述接地金属层的一侧,所述第一偏转贴片位于所述激励贴片的第一侧,所述第一偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态,所述第一层介质基板为所述至少一层介质基板中的任一层介质基板。
  2. 如权利要求1所述的天线装置,其特征在于,当所述第一偏转贴片为晶态时,所述辐射贴片辐射的波束偏向所述辐射贴片的第一侧。
  3. 如权利要求1所述的天线装置,其特征在于,当所述第一偏转贴片为非晶态时,所述辐射贴片辐射的波束不会发生偏转。
  4. 如权利要求1所述的天线装置,其特征在于,所述第一偏转贴片在温度或激光的作用下实现晶态与非晶态之间的切换。
  5. 如权利要求1所述的天线装置,其特征在于,所述天线装置还包括第一导电结构;
    所述第一导电结构贯穿所述至少一层介质基板,所述第一导电结构的第一端与所述第一偏转贴片连接,所述第一导电结构的第二端穿过所述接地金属层,且用于与外接电路电连接,所述第一导电结构与所述接地金属层绝缘设计,所述外接电路用于馈入第一电信号至所述第一导电结构,所述第一电信号用于激励所述第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。
  6. 如权利要求1所述的天线装置,其特征在于,所述辐射贴片与所述第一偏转贴片之间的距离大于或等于0.2且小于或等于2毫米。
  7. 如权利要求1所述的天线装置,其特征在于,所述天线装置还包括第二偏转贴片;
    所述第二偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧,
    所述第二偏转贴片位于所述辐射贴片上与第一侧相对的第二侧,所述第二偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  8. 如权利要求1所述的天线装置,其特征在于,所述天线装置还包括第二偏转贴片;
    所述第二偏转贴片固定在第二层介质基板上远离所述接地金属层的一侧,
    所述第二偏转贴片位于所述辐射贴片上与第一侧相对的第二侧,所述第二偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态,所述第二层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板。
  9. 如权利要求1、5和6任一所述的天线装置,其特征在于,所述天线装置还包括第二馈电结构;
    所述第二馈电结构贯穿所述至少一层介质基板,所述第二馈电结构的第一端与所述辐射 贴片电连接,所述第二馈电结构的第二端穿过所述接地金属层,且与所述射频芯片电连接,所述第二馈电结构与所述接地金属层之间形成第二间隙,所述射频芯片用于馈入第二激励信号至所述第二馈电结构,所述第二激励信号用于激励所述辐射贴片辐射波束。
  10. 如权利要求9所述的天线装置,其特征在于,所述天线装置还包括第三偏转贴片;
    当所述第二偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第三偏转贴片固定在所述第一层介质基板或第三层介质基板上远离所述接地金属层的一侧,所述第三层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板;
    所述第三偏转贴片位于所述辐射贴片上与第一侧相邻的第三侧,所述第三偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  11. 如权利要求10所述的天线装置,其特征在于,所述天线装置还包括第四偏转贴片;
    当所述第三偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第一层介质基板或第四层介质基板上远离所述接地金属层的一侧,所述第四层介质基板为所述至少一层介质基板中不同于所述第一层介质基板的一层介质基板;
    所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  12. 如权利要求10所述的天线装置,其特征在于,所述天线装置还包括第四偏转贴片;
    当所述第三偏转贴片固定在所述第三层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第三介质基板上远离所述接地金属层的一侧;
    所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  13. 如权利要求9所述的天线装置,其特征在于,所述天线装置还包括第三偏转贴片;
    当所述第二偏转贴片固定在所述第二层介质基板上远离所述接地金属层的一侧时,所述第三偏转贴片固定在所述第一层介质基板或第三层介质基板上远离所述接地金属层的一侧,所述第三层介质基板为所述至少一层介质基板中不同于所述第一层介质基板和所述第二层介质基板的一层介质基板;
    所述第三偏转贴片位于所述辐射贴片上与第一侧相邻的第三侧,所述第三偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  14. 如权利要求13所述的天线装置,其特征在于,所述天线装置还包括第四偏转贴片;
    当所述第三偏转贴片固定在所述第一层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第二介质基板上远离所述接地金属层的一侧;
    所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够由非晶态转换为晶态,或者由晶态转换为非晶态。
  15. 如权利要求13所述的天线装置,其特征在于,所述天线装置还包括第四偏转贴片;
    当所述第三偏转贴片固定在所述第三层介质基板上远离所述接地金属层的一侧时,所述第四偏转贴片固定在所述第一层介质基板、所述第三层介质基板或第四层介质基板上远离所述接地金属层的一侧,所述第四层介质基板为所述至少一层介质基板中不同于所述第一层介质基板、所述第二层介质基板和所述第三层介质基板的一层介质基板;
    所述第四偏转贴片位于所述辐射贴片上与第三侧相对的第四侧,所述第四偏转贴片能够 由非晶态转换为晶态,或者由晶态转换为非晶态。
  16. 如权利要求1所述的天线装置,其特征在于,所述辐射贴片包括至少一个辐射子贴片,所述至少一个辐射子贴片层叠设置,每个辐射子贴片的形状和/或尺寸不同。
  17. 如权利要求16所述的天线装置,其特征在于,所述辐射子贴片为矩形或圆形结构。
  18. 如权利要求1所述的天线装置,其特征在于,所述天线装置包括边射天线或端射天线。
  19. 如权利要求1所述的天线装置,其特征在于,所述天线装置包括单个天线单元或天线阵列。
  20. 一种电子设备,其特征在于,所述电子设备包括控制器和如权利要求1-19任一项所述的天线装置,所述控制器用于控制所述第一偏转贴片由非晶态转换为晶态,或者由晶态转换为非晶态。
PCT/CN2021/074780 2020-03-19 2021-02-02 天线装置及电子设备 WO2021184986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21772071.3A EP4123834A4 (en) 2020-03-19 2021-02-02 ANTENNA APPARATUS AND ELECTRONIC DEVICE
US17/947,788 US20230019425A1 (en) 2020-03-19 2022-09-19 Antenna device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010195147.6A CN111370870B (zh) 2020-03-19 2020-03-19 天线装置及电子设备
CN202010195147.6 2020-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/947,788 Continuation US20230019425A1 (en) 2020-03-19 2022-09-19 Antenna device and electronic device

Publications (1)

Publication Number Publication Date
WO2021184986A1 true WO2021184986A1 (zh) 2021-09-23

Family

ID=71211873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074780 WO2021184986A1 (zh) 2020-03-19 2021-02-02 天线装置及电子设备

Country Status (4)

Country Link
US (1) US20230019425A1 (zh)
EP (1) EP4123834A4 (zh)
CN (1) CN111370870B (zh)
WO (1) WO2021184986A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370870B (zh) * 2020-03-19 2021-11-12 Oppo广东移动通信有限公司 天线装置及电子设备
EP4016735A1 (en) * 2020-12-17 2022-06-22 INTEL Corporation A multiband patch antenna
US11973262B2 (en) * 2021-01-18 2024-04-30 Samsung Electronics Co., Ltd Electronic device including antenna module
WO2024090930A1 (ko) * 2022-10-26 2024-05-02 동우화인켐 주식회사 굴절률 조절 필름 및 안테나 구조체
CN116826371B (zh) * 2023-08-29 2023-12-22 南通至晟微电子技术有限公司 一种双向准端射贴片天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
CN106299627A (zh) * 2016-10-18 2017-01-04 京东方科技集团股份有限公司 一种液晶天线及通信设备
WO2017123558A1 (en) * 2016-01-11 2017-07-20 Mimosa Networks, Inc. Printed circuit board mounted antenna and waveguide interface
US20170237178A1 (en) * 2016-02-16 2017-08-17 National Chung Shan Institute Of Science And Technology Millimeter-wave antenna device and millimeter-wave antenna array device thereof
US20180191054A1 (en) * 2017-01-05 2018-07-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Ribbon bond antennas
CN110133759A (zh) * 2019-04-23 2019-08-16 电子科技大学 一种基于vo2的动态太赫兹超透镜
CN111370870A (zh) * 2020-03-19 2020-07-03 Oppo广东移动通信有限公司 天线装置及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198438B1 (en) * 1999-10-04 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Reconfigurable microstrip antenna array geometry which utilizes micro-electro-mechanical system (MEMS) switches
US7965249B1 (en) * 2008-04-25 2011-06-21 Rockwell Collins, Inc. Reconfigurable radio frequency (RF) surface with optical bias for RF antenna and RF circuit applications
CN102694277B (zh) * 2012-06-15 2014-04-02 中国电子科技集团公司第三十六研究所 基于双开口谐振环的多频方向图可重构天线
WO2015163972A2 (en) * 2014-02-14 2015-10-29 Hrl Laboratories, Llc A reconfigurable electromagnetic surface of pixelated metal patches
CN104020623B (zh) * 2014-06-05 2017-01-18 哈尔滨工程大学 一种基于分裂环结构、背景自由的波束方向控制器
CN104157980B (zh) * 2014-08-08 2017-02-15 电子科技大学 可重构微带八木天线
FR3025658B1 (fr) * 2014-09-04 2016-12-23 Commissariat Energie Atomique Antenne a diagramme de rayonnement mecaniquement reconfigurable
CN108767456B (zh) * 2018-05-07 2020-07-31 电子科技大学 一种可分块控制的方向图可重构液晶天线及重构方法
CN110676578B (zh) * 2019-10-18 2021-07-09 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN110690570B (zh) * 2019-10-18 2021-06-22 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN110768006A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 天线模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
WO2017123558A1 (en) * 2016-01-11 2017-07-20 Mimosa Networks, Inc. Printed circuit board mounted antenna and waveguide interface
US20170237178A1 (en) * 2016-02-16 2017-08-17 National Chung Shan Institute Of Science And Technology Millimeter-wave antenna device and millimeter-wave antenna array device thereof
CN106299627A (zh) * 2016-10-18 2017-01-04 京东方科技集团股份有限公司 一种液晶天线及通信设备
US20180191054A1 (en) * 2017-01-05 2018-07-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Ribbon bond antennas
CN110133759A (zh) * 2019-04-23 2019-08-16 电子科技大学 一种基于vo2的动态太赫兹超透镜
CN111370870A (zh) * 2020-03-19 2020-07-03 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
EP4123834A1 (en) 2023-01-25
US20230019425A1 (en) 2023-01-19
CN111370870B (zh) 2021-11-12
EP4123834A4 (en) 2023-08-16
CN111370870A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021184986A1 (zh) 天线装置及电子设备
US11973280B2 (en) Antenna element and terminal device
US11735807B2 (en) Antenna module and electronic device
US9306291B2 (en) Mobile device and antenna array therein
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
EP2917963B1 (en) Dual polarization current loop radiator with integrated balun
US20190089069A1 (en) Broadband phased array antenna system with hybrid radiating elements
KR100542829B1 (ko) 송/수신용 고이득 광대역 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
TWI509880B (zh) 行動裝置
US9240631B2 (en) Reduced ground plane shorted-patch hemispherical omni antenna
TWI389390B (zh) 陣列天線以及使用其之電子裝置
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
US10522908B2 (en) Antenna control method
JP7228720B2 (ja) ハウジングアセンブリ、アンテナデバイス及び電子機器
US10777897B2 (en) Antenna system and communication terminal
WO2020135171A1 (zh) 天线结构及终端
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN112310633B (zh) 天线装置及电子设备
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
CN114846695B (zh) 双极化连接天线阵列
WO2021083218A1 (zh) 天线单元及电子设备
JP2007124346A (ja) アンテナ素子及びアレイ型アンテナ
JP2006014152A (ja) 平面アンテナ
US20230299485A1 (en) Lowband dipole with improved gain and isolation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021772071

Country of ref document: EP

Effective date: 20221019