WO2021184827A1 - 一种再生变形铝合金熔体的复合处理方法 - Google Patents
一种再生变形铝合金熔体的复合处理方法 Download PDFInfo
- Publication number
- WO2021184827A1 WO2021184827A1 PCT/CN2020/133199 CN2020133199W WO2021184827A1 WO 2021184827 A1 WO2021184827 A1 WO 2021184827A1 CN 2020133199 W CN2020133199 W CN 2020133199W WO 2021184827 A1 WO2021184827 A1 WO 2021184827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- regenerated
- melt
- deformed aluminum
- alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to the technical field of composite treatment of regenerated deformed aluminum alloy melts, and in particular to a composite treatment method capable of reducing the thermal cracking sensitivity of 6xxx series regenerated deformed aluminum alloy ingots and improving its comprehensive mechanical properties.
- Aluminum and aluminum alloys have the characteristics of small specific gravity, good electrical conductivity, good heat dissipation performance, high specific strength and easy processing. They have been used more and more in the fields of automobiles, transportation, aviation, etc., and have become an indispensable foundation of the national economy. Sexual raw materials. On the one hand, the rapid development of the national economy has continuously increased the demand for aluminum products. On the other hand, large quantities of aluminum materials reach the service life every year, resulting in the accumulation of a large amount of waste aluminum resources and promoting the rapid development of the secondary aluminum industry. In addition, recycled metal has the characteristics of energy saving. From the perspective of unit energy consumption, the unit energy consumption of recycled aluminum production does not exceed 5% of electrolytic aluminum production. The development of the secondary aluminum industry is of great significance to the realization of a green economy and sustainable development strategy.
- Recycled aluminum is an aluminum alloy or aluminum metal obtained by remelting and refining various recycled aluminum scrap as raw materials. It is an important source of metallic aluminum. There are many types of scrap aluminum and different components, which makes the composition of recycled aluminum very complicated. The main impurities are Zn, Fe, Cu, Mn, etc. The presence of these impurity elements reduces the performance of recycled aluminum alloys and leads to degraded use of aluminum alloys. Especially in the casting process of secondary aluminum alloy, the presence of impurity elements significantly increases the hot crack sensitivity of aluminum alloy ingots, reduces the yield, and causes waste of resources.
- Hot cracking is a common casting defect and a major factor restricting casting production and the diversified application of alloys. From the perspective of the properties of the alloy itself, the composition, grain size and morphology of the alloy greatly affect the hot crack sensitivity of the alloy.
- the patent (CN102127665B) uses higher Zn and Mg content, Sc and Zr composite microalloying treatment to achieve the purpose of increasing the eutectic phase ratio, inhibiting dendritic growth and changing the alloy solidification mode, thereby reducing the alloy hot cracking sensitivity and improving the alloy casting performance .
- this patent will significantly increase the content of alloy elements, and does not involve the melt processing of the complex situation where there are a large number of impurity elements in the alloy.
- the patent (CN109439975A) uses Mn, Al-B and Al-Sr master alloys for composite modification of regenerated cast aluminum alloys to achieve simultaneous refinement of the three phases of iron-rich phase, primary ⁇ -Al phase and eutectic silicon in the alloy The purpose is to increase the elongation of the alloy.
- this patent is the same as a large number of studies on alloy structure changes and properties, and does not involve its influence on aluminum alloy casting hot cracking defects.
- the 6xxx series wrought aluminum alloy represented by 6061 is one of the aluminum alloys with the largest market share at present. It is mainly used in civilian fields and has a large recycling volume, with an annual recycling volume of more than 3 million tons. After remelting and recycling, its composition is complex, which leads to a great tendency of thermal cracking in the casting production process, reduces the process yield, and at the same time significantly reduces its performance.
- the purpose of the present invention is to provide a composite treatment method for regenerated deformed aluminum alloy melt.
- the regenerated deformed aluminum alloy processed by the method of the invention has low thermal cracking sensitivity during the casting process, high casting billet yield, excellent comprehensive mechanical properties, and wide application range.
- a composite treatment method for regenerated deformed aluminum alloy melt which includes the following steps:
- step (1) Add metallic Mg, Al-Ti series refiners and Al-10Sr modifiers to the melt obtained in step (1) for compound treatment, stir evenly after melting, and keep it standing at temperature;
- step (3) Perform refining and slag removal treatment on the melt obtained in step (2), and then keep the slag holding and standing still;
- step (3) Casting the melt obtained in step (3) to obtain a regenerated deformed aluminum alloy ingot;
- Multi-pass rolling is performed on the cast sheet obtained in step (5) to obtain a regenerated deformed aluminum alloy.
- the melting temperature of the 6xxx series aluminum scrap is 750°C.
- the addition amount of the Al-Ti series refiner accounts for 0.3% to 0.7% of the melt mass
- the addition amount of the Al-10Sr modifier accounts for 0.2% to the melt mass. 0.6%.
- the Al-Ti series refining agent includes at least one of a C-containing refining agent and an Al-5Ti-B refining agent. More preferably, the Al-Ti series refining agent is a C-containing refining agent.
- the C-containing refining agent includes the following components in mass fractions: 4.5% to 5.5% Ti, 0.25% to 0.35% B, and 0.15% to 0.25% C.
- the mass percentage of Mg in the melt is 0.8% to 1.4%.
- the temperature of the composite treatment is 720 to 750° C.
- the heat preservation and standing time is 10 to 20 minutes.
- the refining and deslagging treatment includes adding a refining agent and a slag breaker to the melt, the treatment temperature is controlled to be 720-750°C, and the treatment time is 10-20 min.
- the total added amount of the refining agent and the slagging agent is 1% of the mass of the melt, and the mass ratio of the refining agent to the slagging agent is 1:4.
- the refining agent and the slagging agent are mixed uniformly first, and then added to the melt by the injection method.
- the commercial brands of the refining agent and the slagging agent are refining agent YT-J-1 and slagging agent YT-D-4, respectively.
- the heat preservation and standing time is 30 min.
- the casting molding method is gravity casting molding.
- the process of the homogenization heat treatment is: a temperature of 480 to 500° C., and a holding time of 8 to 12 hours.
- the rolling process is as follows: the deformation per pass is up to 10%, and the total deformation is 50%.
- the present invention also provides a 6xxx series regenerated deformed aluminum alloy, which is prepared by the composite treatment method of the regenerated deformed aluminum alloy melt of the present invention.
- the complex source of raw materials for the 6xxx series regenerated deformed aluminum alloy Due to the complex source of raw materials for the 6xxx series regenerated deformed aluminum alloy, it contains many impurity elements such as Fe, Cu, Mn, and Zn, and the content is relatively high, such as Fe: 0.95% and Cu: 0.45%.
- the above-mentioned impurity elements are easy to form coarse and brittle iron-rich copper-rich impurity phases and other low melting point phases in the alloy, destroy the continuity of the matrix, and increase the solidification interval of the alloy, which leads to the increase of the alloy's thermal cracking sensitivity and mechanical properties. It can only be degraded to use.
- the purification treatment of the regenerated deformed aluminum alloy melt can effectively reduce pores and oxide slag inclusion, and reduce the source of cracks.
- the broken long needle-like iron-rich phase in the alloy transforms into a Chinese character shape, and is more closely combined with the matrix, the grain is further refined, and the ability to resist thermal stress is strengthened.
- the Mg element is an important alloy element in the 6xxx series aluminum alloys. Mg is added for composition control.
- the Mg 2 Si eutectic phase produced at the end of the alloy solidification can be well fed to prevent the generation of hot cracks, and Mg 2 Si is 6xxx It is the main hard strengthening phase of aluminum alloy, which can improve the hardness and mechanical properties.
- the composite treatment of the melt in the present invention can effectively reduce the alloy's thermal cracking sensitivity, while improving its mechanical properties, so that the obtained secondary aluminum alloy can meet the requirements of household, light industry manufacturing molds, etc. It is required not only to realize the reclassification utilization of regenerated deformed aluminum alloy, but also to expand its application range and field.
- the present invention Compared with the prior art, the present invention has the following beneficial effects: the present invention performs compound treatment of Mg, Sr modifier and C-containing refiner on the 6xxx series regenerated deformed aluminum alloy melt, which fully exerts the multiple compounding effect and improves
- the morphology and distribution of the second phase in the regenerated deformed aluminum alloy make the iron-rich impurity phase transform from needle-like to Chinese-character-like, and the eutectic phase is evenly distributed.
- the grain structure is refined and the alloy solidification mode is changed; Purification treatment was performed to further reduce the source of cracks in the alloy.
- homogenization and rolling deformation control were carried out.
- a 6xxx series regenerated deformed aluminum alloy with low casting hot cracking sensitivity, excellent comprehensive mechanical properties and high casting yield was obtained. Broaden the industrial application of 6xxx series secondary wrought aluminum alloy.
- Figure 1 is the as-cast optical microstructure of the original regenerated deformed aluminum alloy prepared in Comparative Example 1;
- Figure 2 is the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Comparative Example 2;
- Figure 3 is the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Comparative Example 3;
- Figure 4 is the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Comparative Example 4;
- Example 5 is the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Example 1;
- Figure 6 is a hot crack test sample of the CRC restraint rod of the original recycled deformed aluminum alloy prepared in Comparative Example 1;
- FIG. 7 is a hot crack test sample of the CRC restraint rod of the regenerated deformed aluminum alloy prepared in Example 1.
- FIG. 7 is a hot crack test sample of the CRC restraint rod of the regenerated deformed aluminum alloy prepared in Example 1.
- Fig. 8 is a comparison of the thermal crack sensitivity of the regenerated deformed aluminum alloy ingots prepared by the embodiment and the comparative example.
- Preparation of the original 6xxx series regenerated deformed aluminum alloy melt the 6xxx series recycled scrap aluminum that has been preliminarily screened, including 6061, 6063, 6151 and 6201, at a melting temperature of 750°C, fully melt and stir until the melt composition is uniform, and then strip it off Scum on the surface of the melt, keep it for 20 minutes while keeping heat preservation.
- the temperature is 720°C
- the treatment time is 20 minutes
- the total added amount of refining agent and slagging agent is 1% of the melt mass
- the surface scum of the melt is stripped off, and the temperature is kept for 30 minutes to obtain a recycled deformed aluminum alloy melt.
- the composition by mass percentage is: Si: 0.63%, Fe: 0.95%, Mg: 0.72%, Cu: 0.45%, Mn: 0.12%, Zn: 0.15%
- the total amount of other impurities is not more than 0.30%
- the remainder is Al.
- the regenerated deformed aluminum alloy melt is cast and molded by a gravity casting method to obtain a regenerated deformed aluminum alloy ingot, wherein the preheating temperature of the metal mold is 200°C.
- the ingot is placed in a resistance furnace for homogenization heat treatment, the homogenization temperature is 480 °C, and the holding time is 8 hours.
- the ingot after the homogenization heat treatment is rolled in multiple passes, and the deformation amount is 5% each time, and the total deformation amount is 50%, to obtain the original regenerated deformed aluminum alloy.
- the CRC (Constrained Rod Cast) constraint rod hot crack evaluation method is used to evaluate the hot crack sensitivity of the regenerated aluminum alloy; at the same time, a metallographic specimen is prepared for microstructure observation; the HB3000 Brinell hardness tester is used Test the hardness value of the alloy; and use the AG-X100KN universal testing machine to perform tensile experiments to obtain mechanical properties.
- CRC Consstrained Rod Cast
- Figure 1 is the optical microstructure of the original regenerated deformed aluminum alloy prepared in Comparative Example 1. It can be seen from the figure that the structure of the original regenerated deformed aluminum alloy without composite treatment has coarse dendrites, and there are many eutectic structure phases and impurity phases. , The aggregation is distributed at the grain boundary. After measuring the as-cast properties, the alloy has a tensile strength of 178.9MPa, an elongation of 9.4%, and a hardness of 48HB.
- Figure 6 shows the hot cracking test sample of the CRC restraint bar of the alloy. From the figure, it can be seen that the long arm and the secondary long arm are completely broken, and the secondary short arm is partially broken.
- the heat of the alloy is calculated.
- the crack sensitivity coefficient HTS is 178, and the casting hot crack sensitivity is high.
- the tensile strength of the alloy is only 202.2MPa, the elongation is 6.2%, the hardness is 63.9HB, and the overall performance is poor.
- Figure 2 shows the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Comparative Example 2 after Mg separate melt treatment. It can be seen from the figure that there is a large interconnected eutectic structure in the alloy, and the grain boundary The eutectic structure and impurity phases increase.
- the thermal crack sensitivity coefficient HTS is 154.
- the alloy's tensile strength is 185.2MPa
- the elongation is 9.1%
- the hardness is 54.4HB.
- the tensile strength of the alloy is 212.5MPa
- the elongation is 7.2%
- the hardness is 75.4HB.
- Figure 3 is the as-cast optical microstructure of the regenerated deformed aluminum alloy prepared in Comparative Example 3 after being treated with Mg alone melt, which is compared with the as-cast optical microscope of the regenerated deformed aluminum alloy treated by Mg alone melt in Comparative Example 2
- the structure is similar. It can be seen from Figure 3 that the bulk eutectic structure and impurity phases in the alloy disappear and are evenly distributed around the grains.
- the hot crack sensitivity coefficient HTS of the as-cast alloy is 164, the tensile strength is 190.2MPa, the elongation is 10.2%, and the hardness is 53.7HB.
- the tensile strength of the alloy in the rolled state is 217.5MPa, the elongation is 6.9%, and the hardness is 68.5HB.
- Figure 4 shows the as-cast optical microstructure of the regenerated wrought aluminum alloy prepared in Comparative Example 4. It can be seen that the morphology of the Sr/Al-5Ti-B composite treatment of the regenerated wrought aluminum alloy prepared in Comparative Example 4 has changed. , The dendritic structure is broken, the acicular phase is transformed into Chinese characters, and other impurity phases are transformed into ellipsoids and distributed in the crystal grains or grain boundaries.
- the hot crack sensitivity coefficient HTS of the as-cast alloy is 160, the tensile strength is 200.2MPa, the elongation is 10.8%, and the hardness is 53.3HB.
- the tensile strength of the alloy in the rolled state is 229.4MPa, the elongation is 7.5%, and the hardness is 69.6HB.
- the mass percentage of Mg in the melt is adjusted to 1.2%. Then, the melt was refined and slag-removed according to the method of Comparative Example 1, and the melt after the refining and slag-removal treatment was cast into an ingot. Subsequently, the ingot was placed in a resistance furnace for homogenization heat treatment, the homogenization temperature was 500° C., and the holding time was 10 hours. After homogenization, multi-pass rolling is carried out, each time the deformation is 5%, and the total deformation is 50%, to obtain the secondary deformed aluminum alloy.
- Figure 5 is the optical microstructure of the regenerated deformed aluminum alloy prepared by the Mg/Sr/C-containing refiner melt composite treatment prepared in Example 1. It can be seen from the figure that the iron-rich phase structure in the alloy is Chinese-characterized and mutually The connection is crossed, and it has a good connection with the matrix. The needle-like phase is greatly reduced, and the other impurity phases are ellipsoidal and more evenly distributed in the grain boundaries and crystals.
- Figure 7 is a hot crack test sample of the CRC restraint rod of the regenerated deformed aluminum alloy in this embodiment. From the figure, it can be seen that only the long arm and the secondary long arm have cracks but are not completely broken.
- the alloy has the smallest thermal crack sensitivity
- the coefficient HTS is 122, which is 32% lower than the hot crack sensitivity of the original regenerated deformed aluminum alloy of Comparative Example 1.
- the alloy of this example has a tensile strength of 223.1MPa, an elongation of 11.3%, and a as-cast hardness of 58.1HB.
- the alloy of this example has The mechanical properties are significantly improved, and the tensile strength and hardness in the as-cast state are increased by 25% and 21%, respectively.
- the tensile strength of the alloy of this example is 268.2MPa, the elongation is 8.3%, and the hardness is 93.8HB.
- the alloy of this example is rolled
- the tensile strength and hardness of the lower part are increased by 33% and 47%, respectively.
- Preparation of 6xxx series regenerated deformed aluminum alloy treated with Mg/Sr/C-containing refining agent The preparation method of this embodiment 2 is similar to that of embodiment 1, except that Mg ingot, Al-10Sr modifier and Al The addition amount of -5Ti-0.3B-0.2C refiner is different.
- the amount of Al-10Sr modifier added is 0.6% of the melt mass
- the amount of Al-5Ti-0.3B-0.2C refiner added is 0.3% of the melt mass.
- the Mg ingot is added and melted.
- the mass percentage of Mg in the body is adjusted to 1.0%.
- the optical microstructure of the regenerated deformed aluminum alloy prepared in this example is similar to that of the regenerated deformed aluminum alloy prepared in Example 1, but the eutectic structure of this example is reduced, and needle-like dendrites are broken.
- the thermal crack sensitivity coefficient HTS of the alloy of this example is 130
- the tensile strength is 207.3MPa
- the elongation is 9.7%
- the as-cast hardness is 54.5HB.
- the tensile strength of the alloy of this example under rolling is 254.8 MPa
- the elongation is 7.9%
- the hardness is 84.1HB.
- the hot crack sensitivity coefficient of the alloy of this example is reduced by 27%, and the rolling tensile strength and hardness are increased by 26% and 32%, respectively. That is, this embodiment realizes the overall improvement of the thermal crack resistance and mechanical properties of the regenerated aluminum alloy at low cost (compound treatment with low content of additives).
- Preparation of 6xxx series regenerated deformed aluminum alloy treated with Mg/Sr/C-containing refining agent The preparation method of this embodiment 3 is similar to that of embodiment 1, except that Mg ingot, Al-10Sr modifier and Al The addition amount of -5Ti-0.3B-0.2C refiner is different.
- the amount of Al-10Sr modifier added is 0.2% of the melt mass
- the amount of Al-5Ti-0.3B-0.2C refining agent added is 0.5% of the melt mass.
- Mg ingots are added and melted. The mass percentage of Mg in the body is adjusted to 1.2%.
- the optical microstructure of the regenerated deformed aluminum alloy prepared in this example is similar to that of the regenerated deformed aluminum alloy prepared in Example 1.
- the grains are refined, and the eutectic structure is distributed in dots or blocks at the grain boundaries. around.
- the thermal crack sensitivity coefficient HTS of the alloy of this example is 126
- the tensile strength is 218.9 MPa
- the elongation is 10.4%
- the as-cast hardness is 57.6HB.
- the tensile strength of the alloy of this embodiment under rolling is 257.1 MPa
- the elongation is 7.2%
- the hardness is 89.4HB.
- the thermal crack sensitivity coefficient of the alloy of this example is reduced by 29%, the as-cast tensile strength and hardness are increased by 22% and 20%, respectively; the rolled tensile strength and The hardness has increased by 27% and 40%, respectively.
- the preparation method of this embodiment 4 is similar to the preparation method of embodiment 1, except for the Mg ingot, Al-10Sr modifier and Al The addition amount of -5Ti-0.3B-0.2C refiner is different.
- the Al-10Sr modifier was added in an amount of 0.2% of the melt mass
- the Al-5Ti-0.3B-0.2C refiner was added in an amount of 0.3% of the melt mass.
- Mg ingots were added and melted. The mass percentage of Mg in the body is adjusted to 1.0%.
- the optical microstructure of the regenerated deformed aluminum alloy prepared in this example is similar to that of the regenerated deformed aluminum alloy prepared in Example 1, but the acicular phases in this example are increased.
- the thermal crack sensitivity coefficient HTS of the alloy of this example is 134
- the tensile strength is 208.4 MPa
- the elongation is 10.6%
- the as-cast hardness is 53.7HB.
- the tensile strength of the alloy of this example under rolling is 260.5MPa
- the elongation is 7.6%
- the hardness is 87.5HB.
- the thermal crack sensitivity coefficient of the alloy of this example is reduced by 25%, the as-cast tensile strength and hardness are increased by 17% and 12%, respectively; the rolled tensile strength and The hardness score has been increased by 29% and 37%.
- Preparation of 6xxx series regenerated deformed aluminum alloy treated with Mg/Sr/C-containing refining agent The preparation method of this embodiment 5 is similar to the preparation method of embodiment 1, except for the Mg ingot, Al-10Sr modifier and Al The addition amount of -5Ti-0.3B-0.2C refiner is different.
- the addition amount of Al-10Sr modifier is 0.4% of the melt mass
- the addition amount of Al-5Ti-0.3B-0.2C refiner is 0.5% of the melt mass.
- the Mg ingot is added and melted
- the mass percentage of Mg in the body is adjusted to 1.4%.
- the optical microstructure of the regenerated deformed aluminum alloy prepared in this example is similar to the microstructure of the regenerated deformed aluminum alloy prepared in Example 1, but the eutectic structure of this example increases, and some large eutectic structures are aggregated.
- the thermal crack sensitivity coefficient HTS of the alloy of this example is 128, the tensile strength is 218.2MPa, the elongation is 9.9%, and the as-cast hardness is 61HB.
- the tensile strength of the alloy of this example under rolling is 265MPa, the elongation is 7.3%, and the hardness is 92.4HB.
- the thermal crack sensitivity coefficient of the alloy of this example is reduced by 28%, the as-cast tensile strength and hardness are increased by 22% and 27%, respectively; the rolled tensile strength and The hardness score has been increased by 31% and 45%.
- FIG. 8 shows the summary results of the hot cracking tendency coefficients of the regenerated deformed aluminum alloy ingots prepared in the comparative example and the examples. It can be seen from Fig. 8 that the thermal cracking tendency coefficient of the comparative alloy decreased by 7% to 13%, while the thermal cracking tendency coefficient of the example alloy decreased by 20% to 32%. The results show that after the melt composite treatment of the present invention, the casting process stability of the regenerated deformed aluminum alloy is further improved.
- Table 1 and Table 2 show the summary results of the mechanical properties of the regenerated deformed aluminum alloys prepared in the comparative examples and the examples, respectively.
- the as-cast tensile strength of the comparative alloy is increased by 5%-10%, and the example is increased by 15%-25%; the hardness of the comparative alloy is increased by 7%-15%, and the example is increased by 25%-30%. %, the lifting effect of the embodiment is obvious.
- the 6xxx series alloys belong to the deformed aluminum alloys, which need to be rolled and deformed during processing.
- Table 2 summarizes the mechanical properties of the alloys after rolling. It can be seen from Table 2 that the rolled tensile strength of the comparative alloy is increased by 5%-10%, and the example is increased by 25%-35%; the hardness of the comparative alloy is increased by 5%-20%, and the example is increased by 30% ⁇ 45%. The results show that after the melt composite treatment of the present invention, the mechanical properties of the regenerated deformed aluminum alloy are significantly improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
Abstract
一种再生变形铝合金熔体的复合处理方法,所述复合处理方法主要是通过Mg、Sr和含C细化剂对6xxx系再生铝合金熔体进行复合处理,改变合金第二相形态和分布,使得针状杂质相转变为汉字状,共晶组织均匀分布,同时细化晶粒,改变合金凝固方式。经复合处理后,再生变形铝合金的铸锭热裂敏感性显著降低,降低率高达32%,综合力学性能也显著提升,抗拉强度最高提升35%,硬度最高提升45%。
Description
本发明涉及再生变形铝合金熔体复合处理技术领域,尤其涉及一种能够降低6xxx系再生变形铝合金铸锭热裂敏感性及提升其综合力学性能的复合处理方法。
铝及铝合金具有比重小、导电性好、散热性能好、比强度高和易于加工等特点,在汽车、交通、航空等领域得到了越来越多的应用,成为国民经济不可或缺的基础性原材料。一方面国民经济的高速发展对铝产品的需求不断加大,另一方面每年大批量铝材达到服役年限,造成大量废旧铝资源的富集,促进了再生铝工业的迅速发展。此外,再生金属具有节能的特点,从单位能耗看,再生铝生产的单位能耗不超过电解铝生产的5%。再生铝产业的发展对于实现绿色经济、可持续发展战略具有重要意义。
再生铝是以各种回收废铝为原料,经重新熔化提炼而得到的铝合金或铝金属,是获得金属铝的一个重要来源。废铝种类繁多且成分不尽相同,造成再生铝的成分非常复杂,主要杂质有Zn、Fe、Cu、Mn等,这些杂质元素的存在降低了再生铝合金的性能,导致铝合金的降级使用。尤其是在再生铝合金铸造成型过程中,杂质元素的存在显著增加了铝合金铸锭的热裂敏感,降低了成品率,造成资源的浪费。
热裂是常见的铸造缺陷,是制约铸造生产和合金多样化应用的一大因素。从合金本身性质上来看,合金的成分、晶粒尺寸及形貌均较大地影响合金的热裂敏感性。专利(CN102127665B)采用较高Zn、Mg含量,Sc与Zr复合微合金化处理实现增加共晶相比例、抑制枝晶生长和改变合金凝固方式的目的,从而降低合金热裂敏感和改善合金铸造性能。但该专利将会显著增加合 金元素含量,未涉及合金存在大量杂质元素的复杂情况的熔体处理。从合金熔体处理角度来看,铝合金熔体的净化、变质和细化技术尤为关键。专利(CN109439975A)采用Mn、Al-B及Al-Sr中间合金用于再生铸造铝合金的复合变质,达到同步细化合金中的富铁相、初生α-Al相和共晶硅共三种相的目的,从而可以提高合金延伸率。但该专利与大量针对合金组织变化和性能的研究相同,没有涉及其对铝合金铸造热裂缺陷的影响。
当前,针对铝合金热裂倾向的研究主要集中于成熟的商用合金,而关注基于废杂再生铝合金热裂倾向的相对较少。以6061为典型代表的6xxx系变形铝合金是目前市场占有率最大的铝合金之一,主要应用于民用领域,回收量大,每年回收量超过300万吨。经重熔回收后其成分复杂,导致铸造生产过程具有很大的热裂倾向,降低工艺成品率,同时性能显著下降。因此,针对成分复杂的再生6xxx系变形铝合金,如何利用一种熔体复合处理方法,减少合金在铸造过程中的热裂敏感,同时使其兼顾优异的综合性能,对于再生铝的实践应用具有重要的意义。
发明内容
为解决上述现有技术中存在的缺点和不足,本发明的目的在于提供一种再生变形铝合金熔体的复合处理方法。经本发明方法处理的再生变形铝合金在铸造过程中的热裂敏感性小,铸坯成品率高,综合力学性能优异,应用范围广。
为实现其目的,本发明采取的技术方案包括如下几方面:
一种再生变形铝合金熔体的复合处理方法,其包括如下步骤:
(1)熔化6xxx系废铝,扒渣后,得到再生变形铝合金熔体;
(2)向步骤(1)得到的熔体中加入金属Mg、Al-Ti系列细化剂和Al-10Sr变质剂进行复合处理,熔化后搅拌均匀,保温静置;
(3)对步骤(2)得到的熔体进行精炼除渣处理,扒渣后保温静置;
(4)对步骤(3)得到的熔体进行铸造成型,得到再生变形铝合金铸锭;
(5)对步骤(4)得到的铝合金铸锭进行均匀化热处理,得到铸造板材;
(6)对步骤(5)得到的铸造板材进行多道次轧制,得到再生变形铝合金。
优选地,步骤(1)中,所述6xxx系废铝的熔化温度为750℃。
优选地,步骤(2)中,所述Al-Ti系列细化剂的加入量占熔体质量的0.3%~0.7%,所述Al-10Sr变质剂的加入量占熔体质量的0.2%~0.6%。
优选地,所述Al-Ti系列细化剂包括含C细化剂和Al-5Ti-B细化剂中的至少一种。更优选地,所述Al-Ti系列细化剂为含C细化剂。所述含C细化剂包括如下质量分数的成分:4.5%~5.5%Ti、0.25%~0.35%B和0.15%~0.25%C。
优选地,所述金属Mg加入后,熔体中Mg的质量百分含量为0.8%~1.4%。
优选地,步骤(2)中,所述复合处理的温度为720~750℃,保温静置的时间为10~20min。
优选地,步骤(3)中,所述精炼除渣处理为向熔体中加入精炼剂和打渣剂,控制处理温度为720~750℃,处理时间为10~20min。
优选地,所述精炼剂和打渣剂的总添加量为熔体质量的1%,所述精炼剂与打渣剂的质量比为1:4。
优选地,所述精炼剂和打渣剂先混合均匀,再通过喷吹法加入到熔体中。
优选地,所述精炼剂和打渣剂的商业牌号分别为精炼剂YT-J-1和打渣剂YT-D-4。
优选地,步骤(3)中,所述保温静置的时间为30min。
优选地,步骤(4)中,所述铸造成型方式为重力铸造成型。
优选地,步骤(5)中,所述均匀化热处理的工艺为:温度480~500℃,保温时间8~12h。
优选地,步骤(6)中,所述轧制的工艺为:每道次变形量最高为10%,总变形量为50%。
本发明还提供了一种6xxx系再生变形铝合金,其由本发明所述的再生变形铝合金熔体的复合处理方法制得。
由于6xxx系再生变形铝合金的原料来源复杂,含有Fe、Cu、Mn、Zn等众多杂质元素,且含量较高,如Fe:0.95%,Cu:0.45%。上述杂质元素在合金中易形成粗大易脆的富铁富铜杂质相以及其它低熔点相,破坏基体的连续性,并增大合金的凝固区间,导致合金的热裂敏感性增大,力学性能下降,只能降级使用。而在本发明的处理方法中,对再生变形铝合金熔体的净化处理可有效减少气孔和氧化物夹渣,减少裂纹源。同时在Sr变质剂和含C细化剂的作用下,合金中的破碎长针状富铁相转变为汉字状,并与基体结合更为紧密,晶粒进一步细化,抵抗热应力能力加强。Mg元素是6xxx系铝合金中重要的合金元素,添加Mg进行成分调控,合金凝固末期产生的Mg
2Si共晶相能够很好的进行补缩,阻止热裂纹的产生,且Mg
2Si是6xxx系铝合金主要的硬质强化相,能提升硬度和力学性能。因此,相对于单一变质处理,本发明对熔体的复合处理能够有效减小合金的热裂敏感性,同时提升其力学性能,使获得的再生铝合金能满足家居、轻工制造业模具等的要求,不仅可实现再生变形铝合金的保级利用,还可拓展其应用范围和领域。
与现有技术相比,本发明的有益效果为:本发明通过对6xxx系再生变形铝合金熔体进行Mg、Sr变质剂和含C细化剂的复合处理,充分发挥多元复合作用,改善了再生变形铝合金中第二相形态和分布,使得富铁杂质相由针状转变成汉字状,共晶相均匀分布,同时细化晶粒组织,改变合金凝固方式;本发明还对熔体进行了净化处理,进一步减少合金中的裂纹源,最后还进行了均匀化和轧制变形控制,最终获得铸造热裂敏感性小、综合力学性能优异和铸造成品率高的6xxx系再生变形铝合金,拓宽了6xxx系再生变形铝合金的工业化应用。
图1为对比例1制备的原再生变形铝合金的铸态光学显微组织;
图2为对比例2制备的再生变形铝合金的铸态光学显微组织;
图3为对比例3制备的再生变形铝合金的铸态光学显微组织;
图4为对比例4制备的再生变形铝合金的铸态光学显微组织;
图5为实施例1制备的再生变形铝合金的铸态光学显微组织;
图6为对比例1制备的原再生变形铝合金的CRC约束杆热裂测试样品;
图7为实施例1制备的再生变形铝合金的CRC约束杆热裂测试样品。
图8为实施例与对比例所制再生变形铝合金铸锭的热裂敏感对比。
为更好的说明本发明的目的、技术方案和优点,本发明通过下列实施例进一步说明。显然,下列实施例仅是本发明的一部分实施例,而不是全部的实施例。应理解,本发明实施例仅用于说明本发明的技术效果,而非用于限制本发明的保护范围。
对比例1
原6xxx系再生变形铝合金的制备:熔化经过初步筛选的6xxx系回收废铝,包括6061、6063、6151和6201等,熔化温度为750℃,充分熔化并搅拌至熔体成分均匀后,扒去熔体表面浮渣,保温静置20min。将精炼剂YT-J-1和打渣剂YT-D-4按1:4的质量比混合均匀后,用氮气喷吹法加入到熔体中,对熔体进行精炼除渣处理,控制处理温度为720℃,处理时间为20min,精炼剂和打渣剂的总加入量为熔体质量的1%,扒去熔体表面浮渣,保温静置30min,得到再生变形铝合金熔体,其组成按质量百分比为:Si:0.63%,Fe:0.95%,Mg:0.72%,Cu:0.45%,Mn:0.12%,Zn:0.15%,其它杂质总量不大于0.30%,剩余为Al。利用重力铸造法将再生变形铝合金熔体铸造成型,获得再生变形铝合金铸锭,其中金属模具预热温度为200℃。将铸锭置于电阻炉中进行均匀化热处理,均匀化温度为480℃,保温时间为8h。对均匀化热处理后的铸锭进行多道次轧制,每次变形量为5%,总变形量为50%,制得原再生变形铝合金。
为了对比合金的组织和性能特性,采用CRC(Constrained Rod Cast)约束棒热裂评价法来评估再生铝合金的热裂敏感性;同时制备金相试样进行组织观察;利用HB3000型布氏硬度计测试合金的硬度值;并使用AG-X100KN万能试验机进行拉伸实验获取力学性能参数。
图1为对比例1制备的原再生变形铝合金的光学显微组织,从图中可看出, 未经复合处理的原再生变形铝合金的组织枝晶粗大,共晶组织相和杂质相多,聚集分布在晶界处。经测量铸态性能,该合金的抗拉强度为178.9MPa,伸长率为9.4%,硬度为48HB。图6为该合金的CRC约束杆棒热裂测试样品,从图中可以看到长臂和次长臂发生完全断裂,次短臂发生部分断裂,按照CRC的评价方式,计算得到该合金的热裂敏感系数HTS为178,铸造热裂敏感性大。经测量轧制态性能,该合金的抗拉强度仅为202.2MPa,伸长率为6.2%,硬度为63.9HB,综合性能较差。
对比例2
Mg单独处理的6xxx系再生变形铝合金的制备:按对比例1的方法熔化经过初步筛选的6xxx系回收废铝,初始基本成分与对比例1相同,扒去浮渣并保温静置20min。向熔体中加入Mg锭,熔体温度保持在720℃,熔化后搅拌均匀并保温静置20min;其中Mg的加入量为熔体质量的0.55%,烧损率为10%,加入后合金的Mg含量质量分数为1.2%。再按对比例1的方法将熔体浇铸成铸锭,随后置于电阻炉中进行均匀化热处理,均匀化温度为490℃,保温时间为10h。均匀化后进行多道次轧制,每次变形量为5%,总变形量为50%,制得再生变形铝合金。
图2为对比例2制备的经Mg单独熔体处理后再生变形铝合金的铸态光学显微组织,从图中可看出,合金中出现大块相互连接的共晶组织,且晶粒边界处的共晶组织和杂质相增多。合金铸态下热裂敏感系数HTS为154,铸态下,合金的抗拉强度为185.2MPa,伸长率为9.1%,硬度为54.4HB。轧制态下,合金的抗拉强度为212.5MPa,伸长率为7.2%,硬度为75.4HB。
对比例3
Sr单独处理的6xxx系再生变形铝合金的制备:按对比例1的方法熔化经过初步筛选的6xxx系回收废铝,初始基本成分与对比例1相同,扒去浮渣并保温静置20min。向熔体中加入Al-10Sr变质剂,熔体温度保持在720℃,熔化后搅拌均匀并保温静置20min;其中Al-10Sr变质剂的加入量为熔体质量的0.5%。再按对比例1的方法将熔体浇铸成铸锭,随后置于电阻炉中进行均匀化热处理, 均匀化温度为480℃,保温时间为8h。均匀化后进行多道次轧制,每次变形量为5%,总变形量为50%,制得再生变形铝合金。
图3为对比例3制备的经Mg单独熔体处理后再生变形铝合金的铸态光学显微组织,其与对比例2中经Mg单独熔体处理的再生变形铝合金的铸态光学显微组织相似,从图3可看出合金中大块共晶组织和杂质相消失,均匀分布在晶粒周围。铸态下合金的热裂敏感系数HTS为164,抗拉强度为190.2MPa,伸长率为10.2%,硬度为53.7HB。轧制态下合金的抗拉强度为217.5MPa,伸长率为6.9%,硬度为68.5HB。
对比例4
Sr/Al-5Ti-B复合处理的6xxx系再生变形铝合金的制备:按对比例1的方法熔化经过初步筛选的6xxx系回收废铝,初始基本成分与对比例1相同,扒去浮渣并保温静置20min。向熔体中加入Al-10Sr变质剂和Al-5Ti-B细化剂,熔体温度保持在720℃,熔化后搅拌均匀并保温静置20min;其中Al-10Sr变质剂和Al-5Ti-B细化剂的加入量均为熔体质量的0.5%。再按对比例1的方法将熔体浇铸成铸锭,随后置于电阻炉中进行均匀化热处理,均匀化温度为480℃,保温时间为8h。均匀化后进行多道次轧制,每次变形量为5%,总变形量为50%,制得再生变形铝合金。
图4为对比例4制备的再生变形铝合金的铸态光学显微组织,可以看出,对比例4制得的经Sr/Al-5Ti-B复合处理的再生变形铝合金相的形态发生变化,枝晶状组织破碎,针状相转变为汉字状,其他杂质相转变成椭球状分布在晶粒内部或晶界。铸态下合金的热裂敏感系数HTS为160,抗拉强度为200.2MPa,伸长率为10.8%,硬度为53.3HB。轧制态下合金的抗拉强度为229.4MPa,伸长率为7.5%,硬度为69.6HB。
实施例1
Mg/Sr/含C细化剂复合处理的6xxx系再生变形铝合金的制备:按对比例1的方法熔化经过初步筛选的6xxx系回收废铝,初始基本成分与对比例1相同,扒去浮渣并保温静置20min。向熔体中加入Mg锭、Al-10Sr变质剂和 Al-5Ti-0.3B-0.2C细化剂,熔体温度保持在720℃,熔化后搅拌均匀,保温静置20min;其中Al-10Sr变质剂的加入量为熔体质量的0.6%,Al-5Ti-0.3B-0.2C细化剂的加入量为熔体质量的0.7%,Mg锭加入后熔体中Mg的质量百分含量调整为1.2%。再按对比例1的方法对熔体进行精炼除渣处理,以及将精炼除渣处理后的熔体浇铸成铸锭。随后将铸锭置于电阻炉中进行均匀化热处理,均匀化温度为500℃,保温时间为10h。均匀化后进行多道次轧制,每次变形量为5%,总变形量为50%,制得再生变形铝合金。
图5为实施例1制得的经Mg/Sr/含C细化剂熔体复合处理的再生变形铝合金的光学显微组织,从图中可看出,合金中富铁相组织汉字化且相互连接交叉,与基体有很好的连接作用,针状相大量减少,其他杂质相呈椭球状且较为均匀地分布在晶界和晶内。图7为本实施例再生变形铝合金的CRC约束杆棒热裂测试样品,从图中可看到只有长臂和次长臂发生裂纹但未完全断裂,经计算该合金拥有最小的热裂敏感系数HTS为122,较对比例1的原再生变形铝合金的热裂敏感降低了32%。本实施例合金在铸态条件下,其抗拉强度为223.1MPa,伸长率为11.3%,铸态硬度为58.1HB,相比于对比例1的原再生变形铝合金,本实施例合金的力学性能显著提高,铸态下的抗拉强度和硬度分别提高了25%和21%。轧制态条件下,本实施例合金的抗拉强度为268.2MPa,伸长率为8.3%,硬度为93.8HB,与对比例1的原再生变形铝合金相比,本实施例合金轧制态下的抗拉强度和硬度分别提高了33%和47%。由此说明,本发明针对6xxx系再生变形铝合金熔体的Mg/Sr/含C细化剂的复合处理方法,可以显著减小合金的热裂敏感性,提高铸件成品率,同时也能提高合金的综合力学性能。
实施例2
Mg/Sr/含C细化剂复合处理的6xxx系再生变形铝合金的制备:本实施例2的制备方法与实施例1的制备方法相似,区别仅在于Mg锭、Al-10Sr变质剂和Al-5Ti-0.3B-0.2C细化剂的添加量不同。本实施例2中,Al-10Sr变质剂的加入量为熔体质量的0.6%,Al-5Ti-0.3B-0.2C细化剂的加入量为熔体质量的0.3%,Mg锭加入后熔体中Mg的质量百分含量调整为1.0%。
本实施例制得的再生变形铝合金的光学显微组织与实施例1制得的再生变 形铝合金的显微组织类似,但本实施例的共晶组织有所减少,针状枝晶破碎。铸态下本实施例合金的热裂敏感系数HTS为130,抗拉强度为207.3MPa,伸长率为9.7%,铸态硬度为54.5HB。轧制下本实施例合金的抗拉强度为254.8MPa,伸长率为7.9%,硬度为84.1HB。与对比例1的原再生变形铝合金相比,本实施例合金的热裂敏感系数降低了27%,轧制抗拉强度和硬度分别提高了26%和32%。即本实施例实现了低成本下(低含量添加剂复合处理)再生铝合金抗热裂性能和力学性能的全面提升。
实施例3
Mg/Sr/含C细化剂复合处理的6xxx系再生变形铝合金的制备:本实施例3的制备方法与实施例1的制备方法相似,区别仅在于Mg锭、Al-10Sr变质剂和Al-5Ti-0.3B-0.2C细化剂的添加量不同。本实施例3中,Al-10Sr变质剂的加入量为熔体质量的0.2%,Al-5Ti-0.3B-0.2C细化剂的加入量为熔体质量的0.5%,Mg锭加入后熔体中Mg的质量百分含量调整为1.2%。
本实施例制得的再生变形铝合金的光学显微组织与实施例1制得的再生变形铝合金的显微组织类似,晶粒细化,共晶组织成点状或块状分布在晶界周围。铸态下本实施例合金的热裂敏感系数HTS为126,抗拉强度为218.9MPa,伸长率为10.4%,铸态硬度为57.6HB。轧制下本实施例合金的抗拉强度为257.1MPa,伸长率为7.2%,硬度为89.4HB。与对比例1的原再生变形铝合金相比,本实施例合金的热裂敏感系数降低了29%,铸态抗拉强度和硬度分别提高了22%和20%;轧制态抗拉强度和硬度分别提高了27%和40%。
实施例4
Mg/Sr/含C细化剂复合处理的6xxx系再生变形铝合金的制备:本实施例4的制备方法与实施例1的制备方法相似,区别仅在于Mg锭、Al-10Sr变质剂和Al-5Ti-0.3B-0.2C细化剂的添加量不同。本实施例4中,Al-10Sr变质剂的加入量为熔体质量的0.2%,Al-5Ti-0.3B-0.2C细化剂的加入量为熔体质量的0.3%,Mg锭加入后熔体中Mg的质量百分含量调整为1.0%。
本实施例制得的再生变形铝合金的光学显微组织与实施例1制得的再生变 形铝合金的显微组织类似,但本实施例的针状相增多。铸态下本实施例合金的热裂敏感系数HTS为134,抗拉强度为208.4MPa,伸长率为10.6%;铸态硬度为53.7HB。轧制下本实施例合金的抗拉强度为260.5MPa,伸长率为7.6%,硬度为87.5HB。与对比例1的原再生变形铝合金相比,本实施例合金的热裂敏感系数降低了25%,铸态抗拉强度和硬度分别提高了17%和12%;轧制态抗拉强度和硬度分被提高了29%和37%。
实施例5
Mg/Sr/含C细化剂复合处理的6xxx系再生变形铝合金的制备:本实施例5的制备方法与实施例1的制备方法相似,区别仅在于Mg锭、Al-10Sr变质剂和Al-5Ti-0.3B-0.2C细化剂的添加量不同。本实施例5中,Al-10Sr变质剂的加入量为熔体质量的0.4%,Al-5Ti-0.3B-0.2C细化剂的加入量为熔体质量的0.5%,Mg锭加入后熔体中Mg的质量百分含量调整为1.4%。
本实施例制得的再生变形铝合金的光学显微组织与实施例1制得的再生变形铝合金的显微组织类似,但本实施例的共晶组织增多,出现部分大块共晶组织聚集在晶界周围。铸态下本实施例合金的热裂敏感系数HTS为128,抗拉强度为218.2MPa,伸长率为9.9%,铸态硬度为61HB。轧制下本实施例合金的抗拉强度为265MPa,伸长率为7.3%,硬度为92.4HB。与对比例1的原再生变形铝合金相比,本实施例合金的热裂敏感系数降低了28%,铸态抗拉强度和硬度分别提高了22%和27%;轧制态抗拉强度和硬度分被提高了31%和45%。
为更好地对比实施效果,图8所示为对比例和实施例所制再生变形铝合金铸锭的热裂倾向系数汇总结果。由图8可见,对比例合金的热裂倾向系数下降7%~13%,而实施例合金的热裂倾向系数下降20%~32%。结果表明,经本发明的熔体复合处理后,再生变形铝合金的铸造工艺稳定性进一步改善。
表1和表2所示分别为对比例和实施例所制再生变形铝合金的力学性能汇总结果。
表1
表2
由表1可见,对比例合金的铸态抗拉强度提升5%~10%,实施例则提升15%~25%;对比例合金硬度提升7%~15%,实施例则提升25%~30%,实施例的提升效果明显。6xxx系合金属于变形铝合金,加工过程中需要经过轧制变形处理,表2汇总轧制后合金的力学性能。由表2可见,对比例合金的轧制态抗拉强度提升5%~10%,实施例则提升25%~35%;对比例合金硬度提升5%~20%,实施例则提升30%~45%。结果表明,经本发明的熔体复合处理后,再生变形铝合金的力学性能显著提升。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发 明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
Claims (10)
- 一种再生变形铝合金熔体的复合处理方法,其特征在于,包括如下步骤:(1)熔化6xxx系废铝,扒渣后,得到再生变形铝合金熔体;(2)向步骤(1)得到的熔体中加入金属Mg、Al-Ti系列细化剂和Al-10Sr变质剂进行复合处理,熔化后搅拌均匀,保温静置;(3)对步骤(2)得到的熔体进行精炼除渣处理,扒渣后保温静置;(4)对步骤(3)得到的熔体进行铸造成型,得到再生变形铝合金铸锭;(5)对步骤(4)得到的铝合金铸锭进行均匀化热处理,得到铸造板材;(6)对步骤(5)得到的铸造板材进行多道次轧制,得到再生变形铝合金。
- 如权利要求1所述的再生变形铝合金熔体的复合处理方法,其特征在于,步骤(2)中,所述Al-Ti系列细化剂的加入量占熔体质量的0.3%~0.7%,所述Al-10Sr变质剂的加入量占熔体质量的0.2%~0.6%,所述金属Mg加入后熔体中Mg的质量百分含量为0.8%~1.4%。
- 如权利要求1所述的再生变形铝合金熔体的复合处理方法,其特征在于,所述Al-Ti系列细化剂包括含C细化剂和Al-5Ti-B细化剂中的至少一种;优选地,所述Al-Ti系列细化剂为含C细化剂。
- 如权利要求3所述的再生变形铝合金熔体的复合处理方法,其特征在于,所述含C细化剂包括如下质量分数的成分:4.5%~5.5%Ti、0.25%~0.35%B和0.15%~0.25%C。
- 如权利要求1所述的再生变形铝合金熔体的复合处理方法,其特征在于,步骤(2)中,所述复合处理的温度为720~750℃,保温静置的时间为10~20min。
- 如权利要求1所述的再生变形铝合金熔体的复合处理方法,其特征在于,步骤(3)中,所述精炼除渣处理为向熔体中加入精炼剂和打渣剂,控制处理温度为720~750℃,处理时间为10~20min;优选地,所述精炼剂和打渣剂通过喷吹法加入。
- 如权利要求6所述的再生变形铝合金熔体的复合处理方法,其特征在于, 步骤(3)中,所述精炼剂和打渣剂的总添加量为熔体质量的1%,所述精炼剂与打渣剂的质量比为1:4。
- 如权利要求1所述的再生变形铝合金熔体的复合处理方法,其特征在于,步骤(5)中,所述均匀化热处理的工艺为:温度480~500℃,保温时间8~12h。
- 如权利要求1所述的再生变形铝合金的制备方法,其特征在于,步骤(6)中,所述轧制的工艺为:每道次变形量最高为10%,总变形量为50%。
- 一种6xxx系再生变形铝合金,其特征在于,由如权利要求1~9任一项所述的再生变形铝合金熔体的复合处理方法制得。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010193794.3 | 2020-03-18 | ||
CN202010193794.3A CN111411247B (zh) | 2020-03-18 | 2020-03-18 | 一种再生变形铝合金熔体的复合处理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021184827A1 true WO2021184827A1 (zh) | 2021-09-23 |
Family
ID=71489179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133199 WO2021184827A1 (zh) | 2020-03-18 | 2020-12-02 | 一种再生变形铝合金熔体的复合处理方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111411247B (zh) |
WO (1) | WO2021184827A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114323848A (zh) * | 2021-12-22 | 2022-04-12 | 河北新立中有色金属集团有限公司 | 铸造铝合金360z.3铸态光谱单点标准样品的制备方法 |
CN115058618A (zh) * | 2022-06-29 | 2022-09-16 | 铜山县丰华工贸有限公司 | 一种用于铝合金熔炼的清渣剂 |
CN115216662A (zh) * | 2022-08-18 | 2022-10-21 | 山东南山铝业股份有限公司 | 一种循环保级8系旋开盖料的生产方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111411247B (zh) * | 2020-03-18 | 2021-11-26 | 清远市正通金属制品有限公司 | 一种再生变形铝合金熔体的复合处理方法 |
CN112662922A (zh) * | 2020-12-11 | 2021-04-16 | 清远市正通金属制品有限公司 | 一种再生变形铝合金熔体 |
CN113151717A (zh) * | 2021-03-24 | 2021-07-23 | 辽宁忠旺集团有限公司 | 一种6063铝合金铸件及其生产工艺 |
CN115896514B (zh) * | 2022-12-14 | 2023-05-23 | 中信戴卡股份有限公司 | 一种铝合金铸件的制备方法 |
CN115976352B (zh) * | 2023-02-14 | 2024-08-30 | 湖南中创空天新材料股份有限公司 | 一种利用回收铝制备变形铝合金的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2031969C1 (ru) * | 1992-09-28 | 1995-03-27 | Научно-внедренческое предприятие "Новые металлургические технологии" | Лигатура для измельчения зерна алюминиевых сплавов |
CN1570174A (zh) * | 2004-04-28 | 2005-01-26 | 郑州大学 | Al-Mg-Si-Cu-Ti-Sr合金及其制备方法 |
WO2015118312A2 (en) * | 2014-02-04 | 2015-08-13 | Jbm International Limited | Method of manufacture |
CN108411139A (zh) * | 2018-02-23 | 2018-08-17 | 兰州理工大学 | 一种Al-Ti-C-Sr复合晶粒细化剂、合金及其制备方法 |
CN108950325A (zh) * | 2018-08-17 | 2018-12-07 | 龙口市大川活塞有限公司 | 一种高强度铝合金材料及其生产工艺 |
CN109355520A (zh) * | 2018-11-27 | 2019-02-19 | 中国科学院金属研究所 | 一种Al-Ti-C-B中间合金及其制备方法 |
CN110079704A (zh) * | 2019-04-01 | 2019-08-02 | 华南理工大学 | 一种再生耐磨变形铝合金及其制备方法 |
CN110343883A (zh) * | 2019-06-24 | 2019-10-18 | 广东省材料与加工研究所 | 一种高强韧的铸造铝硅合金及其废铝再生方法 |
CN111411247A (zh) * | 2020-03-18 | 2020-07-14 | 清远市正通金属制品有限公司 | 一种再生变形铝合金熔体的复合处理方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101781723B (zh) * | 2009-09-15 | 2011-06-01 | 卢森锴 | 高强度汽车铝合金轮辋材料的制造方法 |
CN104775062B (zh) * | 2015-04-21 | 2017-02-22 | 宝山钢铁股份有限公司 | 一种高强度铝合金材料、铝合金板及其制造方法 |
EP3669009A4 (en) * | 2017-08-16 | 2020-12-30 | Alcoa USA Corp. | METHODS FOR RECYCLING AND PURIFYING ALUMINUM ALLOYS |
CN107619958B (zh) * | 2017-09-25 | 2019-04-26 | 浙江工业大学 | 再生Al-Mg-Si系铝合金除铁方法 |
CN109022840A (zh) * | 2018-07-17 | 2018-12-18 | 北京科技大学 | 一种再生铝合金显微组织控制方法 |
-
2020
- 2020-03-18 CN CN202010193794.3A patent/CN111411247B/zh active Active
- 2020-12-02 WO PCT/CN2020/133199 patent/WO2021184827A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2031969C1 (ru) * | 1992-09-28 | 1995-03-27 | Научно-внедренческое предприятие "Новые металлургические технологии" | Лигатура для измельчения зерна алюминиевых сплавов |
CN1570174A (zh) * | 2004-04-28 | 2005-01-26 | 郑州大学 | Al-Mg-Si-Cu-Ti-Sr合金及其制备方法 |
WO2015118312A2 (en) * | 2014-02-04 | 2015-08-13 | Jbm International Limited | Method of manufacture |
CN108411139A (zh) * | 2018-02-23 | 2018-08-17 | 兰州理工大学 | 一种Al-Ti-C-Sr复合晶粒细化剂、合金及其制备方法 |
CN108950325A (zh) * | 2018-08-17 | 2018-12-07 | 龙口市大川活塞有限公司 | 一种高强度铝合金材料及其生产工艺 |
CN109355520A (zh) * | 2018-11-27 | 2019-02-19 | 中国科学院金属研究所 | 一种Al-Ti-C-B中间合金及其制备方法 |
CN110079704A (zh) * | 2019-04-01 | 2019-08-02 | 华南理工大学 | 一种再生耐磨变形铝合金及其制备方法 |
CN110343883A (zh) * | 2019-06-24 | 2019-10-18 | 广东省材料与加工研究所 | 一种高强韧的铸造铝硅合金及其废铝再生方法 |
CN111411247A (zh) * | 2020-03-18 | 2020-07-14 | 清远市正通金属制品有限公司 | 一种再生变形铝合金熔体的复合处理方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114323848A (zh) * | 2021-12-22 | 2022-04-12 | 河北新立中有色金属集团有限公司 | 铸造铝合金360z.3铸态光谱单点标准样品的制备方法 |
CN115058618A (zh) * | 2022-06-29 | 2022-09-16 | 铜山县丰华工贸有限公司 | 一种用于铝合金熔炼的清渣剂 |
CN115216662A (zh) * | 2022-08-18 | 2022-10-21 | 山东南山铝业股份有限公司 | 一种循环保级8系旋开盖料的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111411247A (zh) | 2020-07-14 |
CN111411247B (zh) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021184827A1 (zh) | 一种再生变形铝合金熔体的复合处理方法 | |
CN108425050B (zh) | 一种高强高韧铝锂合金及其制备方法 | |
CN102899539B (zh) | 一种压铸用高塑性铝硅合金及其制备方法 | |
WO2023125263A1 (zh) | 铝合金改性用复合稀土合金及其制备方法 | |
CN113234949B (zh) | 一种废杂铝合金制备再生变形铝合金的方法 | |
CN115044810B (zh) | 一种铝合金及其制备方法、汽车用材料 | |
CN111763856B (zh) | 一种亚共晶Al-Si-Mg-Ti-Sn铸造合金及其制备方法 | |
WO2022228548A1 (zh) | 一种铝合金建筑模板及其制备方法 | |
CN113667850B (zh) | 一种废杂铝合金制备zl111的方法 | |
WO2023050808A1 (zh) | 用于汽车防撞梁的铝合金及其制备方法 | |
CN114231800A (zh) | 一种高性能低碳铝合金与制备方法 | |
CN117660814B (zh) | 一种免热处理压铸铝合金材料及其制备方法与应用 | |
CN113444911A (zh) | 一种高强高韧Al-Mg-(Al-Ti-Nb-B)合金及其制备方法 | |
CN112760532A (zh) | 一种装卸转运平台用铝合金型材及其制备方法 | |
CN112159917A (zh) | 一种大规格高纯均质细晶铝合金铸锭及铸造方法 | |
CN113278831B (zh) | 一种废杂铝制备再生adc12铝合金的方法 | |
CN114836656A (zh) | 一种可时效强化的高强度高导热压铸铝合金及其制备方法 | |
CN114703409A (zh) | 一种高强度耐腐蚀铝合金及其铸造方法 | |
CN114941089A (zh) | 一种高强高导电率的Al-Zr-Si型铝合金 | |
CN114032418A (zh) | 一种高流动性压铸锌合金及其制备方法 | |
CN113789453A (zh) | 通过Mn微合金化提高耐热铝合金高温强度的方法 | |
CN113862529A (zh) | 一种铝合金及其制备方法 | |
CN115612899B (zh) | 一种高导电、抗疲劳铝合金导体材料及其制备方法 | |
CN117026026B (zh) | 一种基于再生铝的高延伸率铝合金材料及其制备方法 | |
CN116005044B (zh) | 一种铝硅合金母液及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20926276 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20926276 Country of ref document: EP Kind code of ref document: A1 |