[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021184797A1 - 状态切换控制方法、装置、电子设备和存储介质 - Google Patents

状态切换控制方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2021184797A1
WO2021184797A1 PCT/CN2020/129446 CN2020129446W WO2021184797A1 WO 2021184797 A1 WO2021184797 A1 WO 2021184797A1 CN 2020129446 W CN2020129446 W CN 2020129446W WO 2021184797 A1 WO2021184797 A1 WO 2021184797A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
information
lte
waiting time
detection information
Prior art date
Application number
PCT/CN2020/129446
Other languages
English (en)
French (fr)
Inventor
曹怡晋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20925525.6A priority Critical patent/EP4117250A4/en
Publication of WO2021184797A1 publication Critical patent/WO2021184797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the technical field of wireless communication networks, and in particular to a state switching control method, device, electronic equipment, and storage medium.
  • NSA networking is a 5G network model that is not an independent networking. NSA networking is based on the existing 4G base station and network architecture to deploy 5G networks.
  • the source LTE station when the UE undergoes a handover on the LTE side, the source LTE station only transmits the detection of the bearer on the LTE side, and does not transmit the detection of the bearer on the NR side. This leads to the problem that the detection time of the bearer on the NR side is too long after the handover, or the LTE side misjudges the time to enter the idle state.
  • the embodiments of the present application provide a state switching control method, device, electronic equipment, and storage medium.
  • the embodiment of the application provides a state switching control method, which is applied to a source base station.
  • the method includes: obtaining NR detection information carried on the NR side when the NSA networking is switched; and according to the LTE detection information on the LTE bearer side and the The NR detection information determines the waiting time; the waiting time is sent to the target base station so that the target base station controls the UE to switch to the idle state.
  • the embodiment of the application provides a state switching control method, which is applied to a target base station, and the method includes: receiving a waiting time and determining the base station type of the target base station; controlling the UE to switch to idle according to the base station type and the waiting time state.
  • the embodiment of the application provides a state switching control device, which is applied to a source base station, and the device includes: an information acquisition module configured to acquire NR detection information carried on the NR side when the NSA networking is switched; and a duration determination module , Configured to determine the waiting duration according to the LTE detection information on the LTE bearer side and the NR detection information; the duration sending module is configured to send the waiting duration to the target base station so that the target base station controls the UE to switch to the idle state.
  • the embodiment of the present application provides a state switching control device, which is applied to a target base station, and the device includes: a duration receiving module configured to receive the waiting duration and determine the base station type of the target base station; and the state switching module configured to Control the UE to switch to the idle state according to the type of the base station and the waiting time.
  • An embodiment of the application provides an electronic device, which includes: one or more processors; a memory configured to store one or more programs; when the one or more programs are processed by the one or more The processor executes, so that the one or more processors implement the state switching control method according to any one of the embodiments of the present application.
  • An embodiment of the present application provides a storage medium that stores a computer program that, when executed by a processor, implements the state switching control method as described in any of the embodiments of the present application.
  • FIG. 1 is a flowchart of a state switching control method provided by an embodiment of the present application
  • FIG. 2 is an example diagram of obtaining NR detection information provided by an embodiment of the present application
  • Fig. 3 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of another state switching control method provided by an embodiment of the present application.
  • Fig. 6 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • FIG. 7 is an example diagram of a waiting time sending provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • FIG. 10 is an exemplary diagram of a state switching control method provided by an embodiment of the present application.
  • FIG. 11 is an exemplary diagram of a state switching control method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a state switching control device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a state switching control device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the UE When the UE user plane has no uplink service or downlink service within the time corresponding to a certain remaining time threshold inactivitytimer, the UE will enter the idle state.
  • T2 waiting time inactivitytimer-T1
  • the primary node that the UE accesses is LTE
  • the secondary node is NR
  • the UE's bearers are distributed on both sides of LTE and NR.
  • the LTE side and the NR side respectively detect the waiting time of the UE when there is no service, and control the UE to enter the idle state.
  • the LTE side bearer only carries the remaining time of inactivity on the source LTE side, and does not consider the secondary node
  • the inactivity period caused by the network switching, the detection time of the NR side bearer is too long, or the LTE side misjudges the time when the UE enters the idle state.
  • the NR side bearer has no service within a certain time T2 and T2 is also less than the remaining time threshold inactivitytimer of the idle state
  • T3 inactivitytimer-T1
  • the remaining time threshold inactivity timer of the state is considered to enter the inactive state, which causes the UE to enter the idle state when switching scenes to increase.
  • the waiting time of the service carried by the NR side is transmitted, which can effectively improve the timeliness of detecting that the UE enters the idle state in the NSA networking handover scenario, and avoid the misjudgment that the UE enters the idle state when the NSA networking is switched to the LTE networking. Timing, to improve the accuracy of UE state switching, and to increase the power consumption of the UE during the communication process.
  • Fig. 1 is a flowchart of a state switching control method provided by an embodiment of the present application; the embodiment of the present application is applicable to the case of NSA networking switching, and the method can be executed by the state switching control apparatus in the embodiment of the present application.
  • the device can be implemented by software and/or hardware, and can generally be integrated in a base station. Referring to FIG. 1, the state switching control method of the embodiment of the present application may include the following steps:
  • Step 101 Obtain NR detection information carried on the NR side when it is determined that the NSA network is switched.
  • NSA networking switching may refer to the UE device switching from a base station connection of one NSA networking to a base station connection of another NSA networking or switching to a base station connection of another LTE networking.
  • the NSA networking can be through hybrid networking.
  • the method realizes the common networking through LTE equipment and NR equipment, where the LTE equipment can be the master node, and the NR equipment can be the auxiliary node.
  • the NR detection information may indicate information related to waiting to enter the idle state in the NR side bearer of the UE, and may specifically include the length of waiting time without UE service or description information, etc.
  • FIG. 2 is an example diagram for obtaining NR detection information according to an embodiment of the present application.
  • the source base station may request the NR side bearer detection information from the NR base station, and the NR base station feeds back the NR side bearer detection information.
  • Step 102 Determine the waiting time according to the LTE detection information carried on the LTE side and the NR detection information.
  • the LTE detection information can be the waiting time of the bearer on the LTE side when there is no UE service or the status information of the bearer on the LTE side. Because the primary node in the NSA network is an LTE base station, the secondary node is an NR base station, and the LTE bearer side is LTE The detection information can be directly obtained in the source base station.
  • the waiting time may be the length of time that the bearer on the NR side needs to wait to control the UE to switch to the idle state after switching the NSA network.
  • the time required for the UE to transition to the idle state based on the NR side bearer can be determined through the LTE detection information carried on the LTE side and the NR detection information carried on the NR side.
  • the NR detection information and the LTE detection can be used The information respectively determines the corresponding remaining waiting time as the waiting time to be sent.
  • the corresponding remaining waiting time can also be determined by the NR detection information and the LTE detection information, and the two remaining waiting time together determine a waiting time to send.
  • the longest waiting time in the LTE detection information and the NR detection information can be compared as the waiting time.
  • Step 103 Send the waiting time to the target base station so that the target base station controls the UE to switch to the idle state.
  • the target base station may be a base station carrying UE services after NSA network switching, an LTE base station, or an NR base station, and may be an NSA network or an LTE network after switching according to different NSA networks of the target base station.
  • the waiting time can be sent from the source base station to the target base station, so that the corresponding bearer in the target base station controls the UE to enter the idle state according to the waiting time. Since the waiting time is less than the remaining time threshold, it can reduce the time after the NSA network is switched.
  • the waiting time may be sent through separate request information, or the waiting time may be added to the existing request information to be sent.
  • the waiting time is determined by the LTE detection information and NR detection information carried on the LTE side, and the waiting time is sent to the target base station, so that the target base station is based on The waiting time controls the UE to switch to the idle state.
  • the waiting time of the bearer equipment is shortened when the network is switched, the accuracy of the UE state switching is improved, and the power consumption in the wireless communication process can be reduced.
  • the NR detection information includes at least one of the following: status information and handover remaining time.
  • the state information can indicate the state of the bearer on the NR side, which can specifically include active, inactive, and noninactive states.
  • the NR side bearer can be inactive.
  • the bearer on the NR side may be active.
  • T time
  • T time
  • the bearer on the NR side may be noninactive.
  • the remaining time for handover may be the length of time that the NR side bearer needs to wait before the UE switches to the idle state.
  • the NR detection information may include status information and the remaining time of handover. It is understandable that the LTE detection information may also include at least one of the status information and the remaining time of handover.
  • FIG. 3 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • the embodiment of the present application is applicable to the case of NSA network switching.
  • the method may be executed by the state switching control apparatus in the embodiment of the present application.
  • the device can be implemented by software and/or hardware, and generally can be integrated in a base station.
  • the state switching control method of the embodiment of the present application may include the following steps:
  • Step 111 When the network switching request information is received, if the NR side bearer is in the active state, obtain the feedback active state information and/or the remaining duration threshold.
  • the active state information may indicate that the NR side bears information in the active state, may be an identification symbol, and may be composed of numbers, letters, and/or special symbols.
  • the remaining time threshold may be the longest time that the NR side bearer needs to wait before the UE switches to the idle state. Since the NR side bearer is active, the NR bearer must wait at least the time length corresponding to the remaining time threshold after there is no UE service.
  • the networking switching request information may be a request from the UE to request the switching source base station to perform NSA networking switching, and may include relevant information of the target base station.
  • the networking switching request information When the networking switching request information is obtained, it can be determined that the NSA networking switching has occurred, and it can be sent to
  • the NR side bearer generates request information to detect the NR side bearer status.
  • the NR side bearer status When the NR side bearer status is active, the NR side bearer can feed back the active status information or the remaining time threshold to the source base station. It can be understood that due to the remaining time of the source base station
  • the threshold is the same as the remaining time threshold carried by the NR side, and the remaining time threshold can be fed back to the source base station, and the source base station obtains the remaining time threshold according to the active state information.
  • Step 112 When the network switching request information is received, if the NR side bearer is in the inactive state, obtain the feedback inactive state information and/or 0.
  • the bearer on the NR side when the bearer on the NR side is in the inactive state, it can be determined that the bearer on the NR side has waited for the remaining threshold inactivitytimer and has no UE service, and can notify the UE to enter the idle state. At this time, the bearer on the NR side does not need to wait again after the NSA networking switchover.
  • the waiting time corresponding to the bearer on the NR side can be 0 at this time.
  • the source base station when the NSA network is determined to switch after receiving the network switching request information, can send the request information to the NR side bearer to detect the NR side bearer status.
  • the NR side bearer status When the NR side bearer status is inactive, it can be determined The bearer on the NR side does not need to wait again after the NSA networking switchover, and can feed back the inactive status information to the source base station or feed back 0 as the waiting time.
  • Step 113 When the network switching request information is received, if the NR side bearer is in the noninactive state, obtain the feedback remaining detection time.
  • the bearer on the NR side waits for a certain period of time T1 without UE services, but the waiting time has not exceeded the remaining time threshold inactivitytimer.
  • the NR side The bearer also needs to wait for a period of time T2 when there is no UE service.
  • T2 may be the difference between the remaining duration threshold inactivitytimer and T1, and T2 may be used as the remaining detection duration of the bearer on the NR side.
  • the source base station obtains the network switching request information, it can send a detection request to the NR side bearer.
  • the NR side bearer can determine the waiting time without UE service according to the detection request. If the NR side bearer After waiting for a period of time but not exceeding the waiting threshold duration inactivitytimer, the remaining detection duration T2 that needs to be waited for the NR side bearer can be fed back.
  • Step 114 Determine the waiting time according to the LTE detection information carried on the LTE side and the NR detection information.
  • Step 115 Send the waiting time to the target base station so that the target base station controls the UE to switch to the idle state.
  • the bearer when determining the sending of NSA networking and sending handover, different waiting time is obtained according to the different state of the bearer on the NR side, and the waiting time is sent so that the target base station switches the UE to the idle state according to the waiting time, so that the NR side is realized
  • the bearer accurately obtains the waiting time, improves the timeliness for the UE to enter the idle state, reduces the power consumption in the communication process, and improves the accuracy of determining the UE handover timing.
  • FIG. 4 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • the embodiment of the present application is applicable to the case of NSA network switching.
  • the method may be executed by the state switching control apparatus in the embodiment of the present application.
  • the device can be implemented by software and/or hardware, and generally can be integrated in a base station.
  • the state switching control method of the embodiment of the present application may include the following steps:
  • Step 121 Acquire NR detection information carried on the NR side when it is determined that the NSA network is switched.
  • Step 122 Obtain LTE detection information on the LTE bearer side.
  • the LTE node can be the primary node
  • the NR node can be the secondary node
  • the LTE bearer side can be the source base station in this application
  • the corresponding source base station can be an LTE base station, which can be obtained locally at the source base station.
  • LTE detection information may indicate the length of time that the LTE base station waits to control the UE to switch to the idle state when there is no UE service. Specifically, it may be the length of waiting time or state information indicating the length of waiting time.
  • the LTE detection information may include at least one of state information and handover remaining time.
  • Step 123 According to the LTE detection information and the NR detection information, look up the corresponding waiting time in the preset information time length association table.
  • the preset information duration association table can be a data table that stores the corresponding relationship between detection information and waiting time.
  • the LTE detection information and NR detection information in the preset information duration association table can be stored in association with the waiting time. Different LTE detection information and NR The detection information can correspond to different waiting periods. The corresponding relationship between the waiting time and the detection information can be set through experiments or experience.
  • the LTE detection information and the NR detection information can be used to search the preset information duration association table for the length of time that the NR side bearer needs to wait without UE services after the networking is switched.
  • Step 124 Send the waiting time to the target base station so that the target base station controls the UE to switch to the idle state.
  • the waiting time is accurately obtained, the timeliness for the UE to enter the idle state is improved, the power consumption in the communication process is reduced, and the accuracy of determining the UE handover timing is improved.
  • the correspondence between LTE detection information, NR detection information, and waiting time in the preset information duration association table includes:
  • the corresponding waiting time is the remaining time threshold; the status information in the LTE detection information is the inactive status information and the status information in the NR detection information is the noninactive status information, then the corresponding The waiting time is the remaining detection time in the NR detection information; the status information in the LTE detection information is noninactive status information and the status information in the NR detection information is inactive status information, then the corresponding waiting time is the remaining detection time in the LTE detection information; LTE The state information in the detection information is noninactive state information and the state information in the NR detection information is noninactive state information, and the corresponding waiting time is the maximum value of the remaining detection time in the LTE detection information and the NR detection information.
  • the correspondence between LTE detection information, NR detection information, and waiting time in the preset information time length association table can be set as if the LTE and NR side bearers are both in the noninactive state, then Take the larger value of the remaining detection time carried on both sides as the waiting time and send it to the target LTE station. If one of the LTE side bearer and the NR side bearer is in the inactive state and the other is in the noninactive state, the remaining detection time in the noninacitve state is taken and brought to the target LTE station. If one of the LTE and NR side bearers is in the active state, the remaining detection duration is not carried or the remaining duration threshold value is inacitvetimer directly.
  • a preset information duration association table may be as shown in the following table:
  • LTE side bearer status and duration NR side bearer status and duration The length of time the source LTE carries to the target LTE Acitve - Do not carry or carry inactivitytimer - Active Do not carry or carry inactivitytimer Inactive noninactive(T2 NR ) T2 NR noninactive(T2 LTE ) Inactive T2 LTE noninactive(T2 LTE ) noninactive(T2 NR ) Max(T2 LTE , T2 NR )
  • FIG. 5 is a flowchart of another state switching control method provided by an embodiment of the present application; the embodiment of the present application may be applicable to the case of NSA network switching, and the method may be executed by the state switching control device in the embodiment of the present application,
  • the device can be implemented by software and/or hardware, and generally can be integrated in a base station.
  • the state switching control method of the embodiment of the present application may include the following steps:
  • Step 131 Acquire NR detection information carried on the NR side when it is determined that the NSA networking is switched.
  • Step 132 Obtain LTE detection information on the LTE bearer side.
  • the LTE node can be the primary node
  • the NR node can be the secondary node
  • the LTE bearer side can be the source base station in this application
  • the corresponding source base station can be an LTE base station, which can be obtained locally at the source base station.
  • LTE detection information may indicate the length of time that the LTE base station waits to control the UE to switch to the idle state when there is no UE service. Specifically, it may be the length of waiting time or state information indicating the length of waiting time.
  • the LTE detection information may include at least one of state information and handover remaining time.
  • Step 133 Use the remaining handover duration in the LTE detection information and the remaining handover duration in the NR detection information as the waiting duration.
  • the remaining time for handover may be the length of waiting time required for the LTE side bearer and the NR side bearer to control the UE to switch to the idle state when there is no UE service state. It can be understood that the remaining time of the handover may be a time period less than or equal to the remaining time threshold inactivitytimer.
  • the waiting time may include two pieces of time information, which may be the remaining handover time in the LTE detection information and the remaining handover time in the NR detection information, respectively.
  • the NR side bearer's waiting time and the LTE side bearer's waiting time can be sent together as the waiting time. Because the states of the NR side bearer and the LTE side bearer are different, the corresponding handover remaining The duration can be different.
  • Step 134 Send the waiting time to the target base station so that the target base station controls the UE to switch to the idle state.
  • the handover remaining time corresponding to the LTE side bearer and the handover remaining time corresponding to the NR side bearer can be sent to the target base station respectively.
  • the handover remaining time can be sent together with the handover remaining time corresponding to the NR side bearer, or the handover remaining time corresponding to the LTE side bearer and the handover remaining time corresponding to the NR side bearer can be sent to the target base station through different messages.
  • the NR detection information carried on the NR side is obtained when the NSA network is switched, and the LTE detection information carried on the LTE side is obtained.
  • the remaining time of the handover between the LTE detection information and the NR side detection information is used as the waiting time to occur to the target
  • the base station can accurately switch the UE to the idle state, reduce the waiting time of the base station, and reduce the power consumption in the communication process.
  • the sending the waiting time to the target base station so that the target base station controls the UE to switch to the idle state includes: sending the waiting time to the target through networking switching request information The base station enables the target base station to control the UE to switch to the idle state.
  • the networking switching request information may be a request of the source base station to request the target base station to switch the NSA networking, and the base station may perform a switching operation after obtaining the networking switching request information to make the UE connect to the target base station.
  • the waiting time in order to reduce communication overhead, can be added to the networking switching request information, and the waiting time can be transmitted between the source base station and the target base station by using the transferred networking switching request information.
  • FIG. 6 is a flowchart of a state switching control method provided by an embodiment of the present application; the embodiment of the present application is applicable to the case of NSA networking switching, and the method may be executed by the state switching control apparatus in the embodiment of the present application.
  • the device can be implemented by software and/or hardware, and generally can be integrated in a base station.
  • the state switching control method of the embodiment of the present application may include the following steps:
  • Step 201 Receive the waiting time and determine the base station type of the target base station.
  • the target base station may be the serving base station that the UE connects to after the NSA network is switched.
  • the target base station may provide communication services for the UE after the NSA network is switched, because the target base station provides network services after the NSA network is switched.
  • Base stations that belong to different base station types for example, a base station that can provide LTE services or a base station that provides NR services.
  • the base station type of the target base station includes at least an LTE networking base station and an NSA networking base station.
  • the source base station of the NSA network can be switched to the target base station of the LTE network or the target base station of the NSA network.
  • the base station type of the target base station can include at least the LTE network base station and the NSA group Network base station, etc.
  • Step 202 Control the UE to switch to the idle state according to the type of the base station and the waiting time.
  • FIG. 7 is an example diagram of a waiting time transmission provided by an embodiment of the present application, see FIG. 7 , The waiting time can be sent to the NR side bearer, and the NR side bearer detects the UE service according to the waiting time, and controls the UE to switch to the idle state when it is determined that there is no UE service within the waiting time.
  • the base station type of the target base station is determined by receiving the waiting time, different control strategies can be determined according to the base station type, and the UE is controlled to switch to the idle state according to the control strategy and the waiting time, so that the UE handover timing can be accurately determined , To reduce the waiting time, which can save the power consumption in the communication process.
  • the receiving waiting time includes: receiving the networking switching request information sent by the source base station, and extracting the waiting time in the networking switching request information.
  • the networking switching request information may be a request of the source base station to request the target base station to switch the NSA networking, and the base station may perform a switching operation after obtaining the networking switching request information to make the UE connect to the target base station.
  • the waiting time in order to reduce communication overhead, can be added to the networking switching request information, and the waiting time can be transmitted between the source base station and the target base station by using the transferred networking switching request information.
  • the target base station may receive the networking switching request information sent by the source base station, and extract the waiting time therein.
  • the waiting time may be information in one or several fields in the networking switching request information.
  • FIG. 8 is a flowchart of a state switching control method provided by an embodiment of the present application; the embodiment of the present application may be applicable to the case of NSA networking switching, and the method may be executed by the state switching control apparatus in the embodiment of the present application.
  • the device may be implemented by software and/or hardware, and may generally be integrated in a base station. Referring to FIG. 8, the state switching control method of the embodiment of the present application may include the following steps:
  • Step 211 Receive the waiting time and determine the base station type of the target base station.
  • the waiting time sent by the source base station can be received, and the base station type of the target base station can be determined according to the communication mode.
  • the base station type of the target base station can be an NSA networking base station, which can support UEs in NR communication.
  • Step 212 Send the waiting time to the NR side bearer through an SN add request message, so that the NR side bearer detects the UE service according to the waiting time.
  • the target base station can pass the waiting time to the bearer on the NR side.
  • the way of transmitting the waiting time may include filling the waiting time into the SN addition request message, and sending the waiting time to the SN addition request message through the SN addition request message.
  • NR side bearer NR side bearer can detect UE services according to the corresponding waiting time to determine whether the UE is still sending uplink services or downlink services.
  • Step 213 The LTE side bearer detects the UE service according to the waiting time.
  • the inactive state may indicate that the bearer on the NR side has waited for the remaining time threshold inactivity timer to have no UE service, and may notify the UE to enter the idle state.
  • the inactive state may be composed of numbers, letters, and special characters.
  • the LTE-side bearer may perform UE service detection according to the acquired waiting time, and determine that the UE service does not send uplink services or downlink services within a time period corresponding to the waiting time. It is understandable that when the NSA networking is switched to the NSA networking, the LTE side bearer can be the target base station, and the UE service can be detected directly according to the acquired waiting time.
  • Step 214 When it is determined that the LTE side bearer and the NR side bearer enter the inactive state, control the UE to switch to the idle state.
  • the state of the LTE side bearer and the NR side bearer can be determined.
  • the LTE side bearer and the NR side bearer also enter the inactive state, it can be determined that the LTE side bearer and the NR side bearer of the NSA network meet the UE to enter the idle state.
  • the target base station can send a message to the UE to notify the UE to switch the state to the idle state.
  • the NR side bearer enters the inactive state, it can send a message to the LTE side bearer to notify the NR side bearer that the NR side bearer enters the inactive state.
  • it can be determined whether the LTE side bearer enters the inactive state. If so, you can Send a message to the UE to notify the UE to switch to the idle state.
  • the base station type of the target base station is determined by receiving the waiting time.
  • the waiting time is sent to the NR side bearer through the SN add request message, and the NR side bearer detects the UE according to the waiting time
  • the UE service is detected through the LTE side bearer, and when the LTE side bearer is determined to enter the inactive state, the UE is controlled to switch to the UE idle state, which realizes the accurate determination of the UE handover timing and reduces the waiting time. Can save the power consumption in the communication process.
  • the sending the waiting time to the NR side bearer through an SN addition request message includes:
  • the waiting time information is added to the SN adding request message, and the SN adding request message is sent to the NR side bearer; when the waiting time includes two pieces of waiting time information At this time, the waiting time information corresponding to the NR side bearer is added to the SN addition request message, and the SN addition request message is sent to the NR side bearer.
  • the waiting period received by the target base station may be one waiting period information, or it may include two waiting periods. If the target base station obtains a piece of remaining time information from the handover request message obtained by the source base station, the time information is sent to the NR side in the SN addition request message. If the target base station obtains two pieces of remaining time information from the source LTE base station, Then the remaining time corresponding to the NR side is sent to the NR side in the SN addition request message to the NR side.
  • the waiting time may specifically be the information of one or more fields in the SN addition request message.
  • FIG. 9 is a flowchart of a state switching control method provided by an embodiment of the present application.
  • the embodiment of the present application is applicable to the case of NSA network switching.
  • the method may be executed by the state switching control apparatus in the embodiment of the present application.
  • the device may be implemented by software and/or hardware, and may generally be integrated in a base station.
  • the state switching control method of the embodiment of the present application may include the following steps:
  • Step 221 Receive the waiting time and determine the base station type of the target base station.
  • the waiting time sent by the source base station can be received, and the base station type of the target base station can be determined according to the communication mode.
  • the base station type of the target base station can be an LTE networking base station, which can support the UE for LTE communication.
  • Step 222 When the waiting time includes a waiting time information, detect the UE service according to the waiting time information, and control the UE to switch to an idle state.
  • the waiting time information can be a specific time length.
  • the target base station can wait for the time corresponding to the waiting time information.
  • the UE service is detected within the period, and when it is determined that the UE service is not detected within the time period, the UE can be controlled to switch the state to the idle state.
  • Step 223 When the duration includes two pieces of waiting duration information, detect the UE service according to the longer waiting duration information in the two pieces of waiting duration information, and control the UE to switch to an idle state.
  • the waiting duration information may be a specific duration of time.
  • the longer time length can be selected from the two waiting time information as the time length for detecting the UE service, ensuring that the UE device switches to the idle state within an accurate time, and avoiding the target base station from misjudgeting the time when the UE enters the idle state.
  • the target base station detects the UE service in the time period corresponding to the waiting time information, and when it is determined that the UE service is not detected in the time period, the UE may be controlled to switch the state to the idle state.
  • the waiting time is received and the base station type of the target base station is determined.
  • the base station is an LTE network base station
  • the appropriate waiting time is selected for UE service detection, and the UE is controlled to switch to the UE idle state, thereby realizing the UE
  • the accurate determination of the handover timing prevents the target base station from erroneously judging the time when the UE enters the idle state, improves the timeliness of the response of the communication device, and enhances the user experience.
  • the UE accesses cell1, cell1 is the primary node, and cell2 is the secondary node.
  • UE1 has bearers on cell1 and cell2, and both perform services.
  • the LTE base station 1 obtains the NR side bearer detection information of the UE from the NR base station 1, and the detection information returned by the NR base station 1 to the LTE base station 1 carries the remaining time of 8 min.
  • LTE base station 1 calculates that the remaining time of the bearer on the LTE side is 5min, and the result is 8min compared with 8min.
  • LTE1 base station 1 allows the UE to switch to LTE base station 2, and carries the remaining time of 8min in the handover request to LTE base station 2.
  • cell3 is the primary node and cell2 is the secondary node.
  • the LTE base station 2 informs the NR base station 1 that the remaining time length is 8 min in the SN addition request message.
  • the NR base station 1 After 6.8 minutes, the NR base station 1 notifies the LTE base station 2 that the bearer on the NR side is in the inactive state, and the LTE base station 2 also detects that the LTE side bearer is in the inactive state, and then notifies the UE to enter the idle state.
  • FIG. 11 is an example diagram of a state switching control method provided by an embodiment of the present application.
  • the LTE base station carries 1 duration information to the target base station.
  • Set inactivetytimer 10min.
  • the UE accesses cell1, cell1 is the primary node, and cell2 is the secondary node.
  • UE1 has bearers on cell1 and cell2, and both perform services.
  • the LTE base station 1 obtains the NR side bearer detection information of the UE from the NR base station 1, and the detection information returned by the NR base station 1 to the LTE base station 1 carries the remaining time of 8 min.
  • LTE base station 1 calculates that the remaining time of the bearer on the LTE side is 5min, and the result is 8min compared with 8min.
  • LTE1 base station 1 allows the UE to switch to LTE base station 2, and carries the remaining time of 8min in the handover request to LTE base station 2.
  • the UE switches to cell3, and the LTE base station 2 detects the service of the UE according to 8 minutes, and then notifies the UE to enter the idle state after 8 minutes.
  • FIG. 10 is an example diagram of a state switching control method provided by an embodiment of the present application.
  • the LTE base station carries 2 duration information to the target base station.
  • Set inactivetytimer 10min.
  • the UE accesses cell1, cell1 is the primary node, and cell2 is the secondary node.
  • UE1 has bearers on cell1 and cell2, and both perform services.
  • the LTE base station 1 obtains the NR side bearer detection information of the UE from the NR base station 1, and the detection information returned by the NR base station 1 to the LTE base station 1 carries the remaining time of 8 min.
  • LTE base station 1 carries in the handover request to LTE base station 2 the remaining time on the LTE side is 0 min, and the remaining time on the NR side is 8 min
  • cell3 is the primary node and cell2 is the secondary node.
  • the LTE base station 2 informs the NR base station 1 that the remaining time length is 8 min in the SN addition request. LTE base station 2 directly judges that the bearer on the LTE side has entered the inactive state because of the remaining 0 minutes, and then continues to wait for the status notification of NR base station 1
  • the NR base station 1 After 6.8 minutes, the NR base station 1 notifies the LTE base station 2 that the bearer on the NR side is in the inactive state, and the LTE base station 2 notifies the UE to enter the idle state.
  • FIG. 11 is an exemplary diagram of a state switching control method provided by an embodiment of the present application.
  • the LTE base station carries 2 duration information to the target base station.
  • Set inactivetytimer 10min.
  • the UE accesses cell1, cell1 is the primary node, and cell2 is the secondary node.
  • UE1 has bearers on cell1 and cell2, and both perform services.
  • the LTE base station 1 obtains the NR side bearer detection information of the UE from the NR base station 1, and the detection information returned by the NR base station 1 to the LTE base station 1 carries the remaining time of 8 min.
  • the handover request from LTE1 to LTE base station 2 carries the remaining time on the LTE side as 0 min, and the remaining time on the NR side as 8 min.
  • the LTE base station 2 compares the remaining duration of the LTE side bearer of 0min and the remaining duration of the NR side bearer of 8min, and finally determines that the required detection time is 8min
  • the LTE base station 2 judges that the bearer enters the inactive state, and notifies the UE to enter the idle state.
  • FIG. 12 is a schematic structural diagram of a state switching control device provided by an embodiment of the present application, which can execute the state switching control method provided in any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the device may be implemented by software and/or hardware, and specifically includes: an information acquisition module 301, a duration determination module 302, and a duration transmission module 303.
  • the information acquiring module 301 is configured to acquire the NR detection information carried by the NR side when it is determined that the NSA network is switched.
  • the duration determining module 302 is configured to determine the waiting duration according to the LTE detection information on the LTE bearer side and the NR detection information.
  • the duration sending module 303 is configured to send the waiting duration to the target base station so that the target base station controls the UE to switch to the idle state.
  • the information acquisition module acquires the NR detection information carried on the NR side when determining the NSA network switching.
  • the duration determination module determines the waiting time based on the LTE detection information and NR detection information carried on the LTE side, and the duration sending module will wait for the duration Send to the target base station, so that the target base station controls the UE to switch to the idle state according to the waiting time.
  • the waiting time of the bearer equipment is shortened when the network is switched, the accuracy of the UE state switching is improved, and the power consumption in the wireless communication process can be reduced.
  • the NR detection information in the state switching control device includes at least one of state information and a remaining time for switching.
  • the information acquisition module 301 includes:
  • the first obtaining unit is configured to obtain the feedback active state information and/or the remaining time threshold when the NR side bearer is in the active state when the network switching request information is received.
  • the second acquiring unit is configured to acquire the feedback inactive state information and/or 0 if the NR side bearer is in the inactive state when the network switching request information is received.
  • the third acquiring unit is configured to acquire the feedback remaining detection duration if the NR side bearer is in the noninactive state when the network switching request information is received.
  • the duration determining module 302 includes:
  • the detection information unit is configured to obtain LTE detection information on the LTE bearer side.
  • the duration determining unit is configured to look up the corresponding waiting duration in a preset information duration association table according to the LTE detection information and the NR detection information.
  • the correspondence between LTE detection information, NR detection information, and waiting time in the preset information time-length association table in the time-length determining module 302 includes:
  • the corresponding waiting time is the remaining time threshold; the status information in the LTE detection information is the inactive status information and the status information in the NR detection information is the noninactive status information, then the corresponding The waiting time is the remaining detection time in the NR detection information; the status information in the LTE detection information is noninactive status information and the status information in the NR detection information is inactive status information, then the corresponding waiting time is the remaining detection time in the LTE detection information; LTE The state information in the detection information is noninactive state information and the state information in the NR detection information is noninactive state information, and the corresponding waiting time is the maximum value of the remaining detection time in the LTE detection information and the NR detection information.
  • the duration determination module 302 further includes:
  • the LTE information unit is configured to obtain LTE detection information on the LTE bearer side.
  • the second duration unit is configured to use the remaining handover duration in the LTE detection information and the remaining handover duration in the NR detection information as the waiting duration.
  • the duration sending module 303 includes:
  • the sending execution unit is configured to send the waiting time to the target base station through the networking switching request information, so that the target base station controls the UE to switch to the idle state.
  • FIG. 13 is a schematic structural diagram of a state switching control device provided by an embodiment of the present application, which can execute the state switching control method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the device may be implemented by software and/or hardware, and specifically includes: a duration receiving module 311 and a state switching module 312.
  • the duration receiving module 311 is configured to receive the waiting duration and determine the base station type of the target base station.
  • the state switching module 312 is configured to control the UE to switch to the idle state according to the type of the base station and the waiting time.
  • the waiting time is received by the time receiving module to determine the base station type of the target base station.
  • the state switching module can determine different control strategies according to the base station type, and control the UE to switch to the idle state according to the control strategy and the waiting time.
  • the accurate determination of the UE handover timing reduces the waiting time and can save power consumption in the communication process.
  • the base station type of the target base station in the state switching control device includes at least an LTE networking base station and an NSA networking base station.
  • the duration receiving module 311 includes:
  • the request message unit is configured to receive the networking switching request information sent by the source base station, and extract the waiting time in the networking switching request information.
  • the state switching module 312 includes:
  • the NR transfer unit is configured to send the waiting time to the NR side bearer through an SN addition request message, so that the NR side bearer detects the UE service according to the waiting time.
  • the LTE detection unit is configured to notify the LTE side bearer to detect UE services when it is determined that the NR side bearer enters the inactive state.
  • the idle switching unit is configured to control the UE to switch to the idle state when it is determined that the LTE side bearer enters the inactive state.
  • the NR transfer unit is specifically configured to: when the waiting time includes a piece of waiting time information, add the waiting time information to the SN addition request message, and add the SN The addition request message is sent to the NR side bearer; when the waiting time includes two waiting time information, the waiting time information corresponding to the NR side bearer is added to the SN addition request message, and the SN addition request message is sent to Bearer on the NR side.
  • the state switching module 312 further includes:
  • the first LTE unit is configured to, when the waiting time includes a piece of waiting time information, detect a UE service according to the waiting time information, and control the UE to switch to an idle state.
  • the second LTE unit is configured to, when the duration includes two pieces of waiting duration information, detect the UE service according to the longer waiting duration information among the two pieces of waiting duration information, and control the UE to switch to an idle state.
  • FIG. 14 is a schematic structural diagram of an electronic device provided by an embodiment of the present application; as shown in FIG. 14, the device includes a processor 40, a memory 41, an input device 42, and an output device 43; the number of processors 40 in the device may be One or more, one processor 40 is taken as an example in FIG. 14; the device processor 40, the memory 41, the input device 42, and the output device 43 may be connected by a bus or other means. In FIG. 14, the connection by a bus is taken as an example.
  • the memory 41 can be configured to store software programs, computer-executable programs, and modules, such as the modules corresponding to the state switching control device in the embodiment of the present application (information acquisition module 301, duration determination module 302). , The duration sending module 303, the duration receiving module 311, and/or the state switching module 312).
  • the processor 40 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 41, that is, realizes the above-mentioned state switching control method.
  • the memory 41 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 41 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 41 may further include a memory remotely provided with respect to the processor 40, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 42 may be configured to receive input numeric or character information, and generate key signal inputs related to user settings and function control of the device.
  • the output device 43 may include a display device such as a display screen.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions, which are used to execute a state switching control method when the computer-executable instructions are executed by a computer processor, and the method includes:
  • the NR detection information carried on the NR side When determining that the NSA network is switched, obtain the NR detection information carried on the NR side; determine the waiting time according to the LTE detection information carried on the LTE side and the NR detection information; send the waiting time to the target base station so that the target base station controls the UE Switch to idle state.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present application is not limited to the above-mentioned method operations, and can also execute the state switching control method provided by any embodiment of the present application. Related operations.
  • the waiting time is determined by the LTE detection information and NR detection information carried on the LTE side, and the waiting time is sent to the target base station, so that the target base station is based on The waiting time controls the UE to switch to the idle state. It is realized that the waiting time of the bearer equipment is shortened when the network is switched, the accuracy of the UE state switching is improved, and the power consumption of the wireless communication process is reduced.
  • the embodiments of the present application implement accurate detection of the UE state, shorten the average waiting time for the UE to switch to the idle state, improve the accuracy of the UE entering the idle state, and reduce the power consumption in the wireless communication process.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FLASH Flash memory
  • hard disk or optical disk etc., including several instructions to make a computer device (which can be a personal computer) , A server, or a network device, etc.) execute the method described in each embodiment of the present application.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or Object code.
  • ISA instruction set architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), programmable logic devices (FGPA) And processors based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种状态切换控制方法、装置、设备和存储介质,其中,该方法包括:确定NSA组网发生切换时,获取NR侧承载的NR检测信息(101);根据LTE承载侧的LTE检测信息和所述NR检测信息确定等待时长(102);将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态(103)。

Description

状态切换控制方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为202010197599.8、申请日为2020年03月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信网络技术领域,具体涉及一种状态切换控制方法、装置、电子设备和存储介质。
背景技术
随着国内5G牌照的发放,5G已经正式开启了商用进程,然而电信中4G的LTE正在大规模商用,相信未来很长的时间内,通信网络领域将是4G和5G共存的局面,5GNR的部署方式中NSA组网显然会被得到广泛的应用。NSA组网非独立组网的5G网络模式,NSA组网是基于现有的4G基站和网络架构的基础上部署5G网络。
在NSA组网下,当UE发生LTE侧切换时,会出现源LTE站只传递LTE侧承载的检测情况,不传递NR侧承载的检测情况。导致切换后NR侧承载的检测时长过长,或者LTE侧误判进入空闲态时机的问题。
发明内容
本申请实施例提供了一种状态切换控制方法、装置、电子设备和存储介质。
本申请实施例提供了一种状态切换控制方法,应用于源基站,该方法包括:确定NSA组网发生切换时,获取NR侧承载的NR检测信息;根据LTE承载侧的LTE检测信息和所述NR检测信息确定等待时长;将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
本申请实施例提供了一种状态切换控制方法,应用于目标基站,该方法包括:接收等待时长并确定所述目标基站的基站类型;根据所述基站类型和所述等待时长控制UE切换到空闲态。
本申请实施例提供了一种状态切换控制装置,应用于源基站,所述装置包括:信息获取模块,被配置成确定NSA组网发生切换时,获取NR侧承载的NR检测信息;时长确定模块,被配置成根据LTE承载侧的LTE检测信息和所述NR检测信息确定等待时长;时长发送模块,被配置成将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
本申请实施例提供了一种状态切换控制装置,应用于目标基站,所述装置包括:时长接收模块,被配置成接收等待时长并确定所述目标基站的基站类型;状态切换模块,被配置成根据所述基站类型和所述等待时长控制UE切换到空闲态。
本申请实施例提供了一种电子设备,该设备包括:一个或多个处理器;存储器,被配置成存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述的状态切换控制方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例中任一所述的状态切换控制方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请实施例提供的一种状态切换控制方法的流程图;
图2是本申请实施例提供的一种获取NR检测信息的示例图;
图3是本申请实施例提供的一种状态切换控制方法的流程图;
图4是本申请实施例提供的一种状态切换控制方法的流程图;
图5是本申请实施例提供的另一种状态切换控制方法的流程图;
图6是本申请实施例提供的一种状态切换控制方法的流程图;
图7是本申请实施例提供的一种等待时长发送的示例图;
图8是本申请实施例提供的一种状态切换控制方法的流程图;
图9是本申请实施例提供的一种状态切换控制方法的流程图;
图10是本申请实施例提供的一种状态切换控制方法的示例图;
图11是本申请实施例提供的一种状态切换控制方法的示例图;
图12是本申请实施例提供的一种状态切换控制装置的结构示意图;
图13是本申请实施例提供的一种状态切换控制装置的结构示意图;
图14是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
UE用户面在一定剩余时长阈值inactivitytimer对应的时间内没有上行业务或者下行业务时,UE会进入空闲态,在LTE组网下,当UE在一定时间T1内检测到没有业务且T1小于剩余时长阈值inactivitytimer时,如果此时UE发生切换,源基站会将用户没有业务的剩余时长T2带给目标基站,其中,T2=等待时长inactivitytimer-T1。UE切换到目标基站后在T2内没有业务时,UE会进入空闲态。在NSA组网下,UE接入的主节点为LTE,辅节点为NR,UE的承载分布在LTE和NR两侧。LTE侧和NR侧分别检测UE的没有业务时的等待时长,并控制UE进入空闲态,在发生组网切换时,LTE侧承载仅携带源LTE侧的不活动的剩余时长,并不考虑辅节点的不活动时长情况,导致组网切换后,NR侧承载的检测时长过长,或者LTE侧误判UE进入空闲态的时间。产生上述问题的原因具体如下:
1)当UE的LTE承载在一定事件T1内没有业务,并且T1的时长小于进入空闲态的剩余时长阈值inactivitytimer,NR侧承载在一定时间T2内没有业务且T2同样小于空闲态的剩余时长阈值inactivitytimer时,如果此时UE从一个NSA组网切换到另一各NSA组网,切换后LTE侧承载满足时长T3,T3=inactivitytimer-T1,即认为UE进入inactive态,而NR侧承载还需要检测空闲态的剩余时长阈值inactivitytimer才认为进入inactive态,导致UE在切换场景时进入空闲态的时长增加。
2)当UE的LTE承载在进入空闲态的剩余时长阈值inactivitytimer对应的时间内没有业务而进入inactive状态时,NR侧承载在一定事件T2内没有业务且T2小于空闲态的剩余时长阈值inactivitytimer,或者NR侧承载还没有业务时,如果此时UE从NSA组网切换到LTE组网,切换后目标LTE站判断需要检测剩余没有业务的时长是否为0,则会直接让UE进入空闲态,但是实际上NR承载侧还不满足inactive状态的要求,LTE的误判让UE错误的进入空闲态。
本申请实施例,通过传输NR侧承载的业务等待时长,可有效提升NSA组网切换场景下检测UE进入空闲态的时效性,避免NSA组网切换到LTE组网时误判UE进入空闲态的时机,提高UE状态切换的准确性,提升通信过程中UE的电量消耗。
图1是本申请实施例提供的一种状态切换控制方法的流程图;本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图1,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤101、确定NSA组网发生切换时,获取NR侧承载的NR检测信息。
其中,NSA组网切换可以是指UE设备从一个NSA组网的基站连接切换到另一个NSA组网的基站连接或者切换到另一个LTE组网的基站连接,NSA组网可以是通过混合组网的方式实现通过LTE设备和NR设备实现共同组网,其中,LTE设备可以为主节点,NR设备可以为辅节点。NR检测信息可以表示UE的NR侧承载中等待进入空闲态相关信息,可以具体包括无UE业务的等待时间长度或者描述信息等。
具体的,当前确定NSA组网进行切换时,可以向UE的NR侧承载发送检测指令,NR侧承载获取到该检测指令后可以确定当前NR侧承载的NR检测信息,可以具体是NR侧承载在无UE业务时已等待的时间长度和当前NR侧承载的状态信息等。示例性的,图2是本申请实施例提供的一种获取NR检测信息的示例图,参见图2,源基站可以向NR基站请求NR侧承载检测信息,NR基站反馈NR侧承载检测信息。
步骤102、根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长。
其中,LTE检测信息可以是LTE侧承载在无UE业务情况下已等待时间或者是LTE侧承载的状态信息,由于NSA组网中主节点为LTE基站,辅节点为NR基站,LTE承载侧的LTE检测信息可以在源基站中直接获取。等待时长可以是NR侧承载在切换NSA组网后为了控制UE切换到空闲态还需进行等待的时间长度。
在本申请实施例中,可以通过LTE侧承载的LTE检测信息以及NR侧承载的NR检测信息确定出需要UE基于NR侧承载转入空闲态的时间,具体的,可以通过NR检测信息和LTE检测信息分别确定出对应的剩余等待时长作为等待时长发送,也可以通过例如NR检测信息和LTE检测信息分别确定出对应的剩余等待时长,由两个剩余等待时长共同确定出一个等待时长发送。例如,可以通过比较LTE检测信息和NR检测信息中时间最长的等待时间作为等待时长。
步骤103、将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
其中,目标基站可以是NSA组网切换后的承载UE业务的基站,可以为LTE基站,也可为NR基站,可以根据目标基站的不同NSA组网切换后可以为NSA组网或者LTE组网。
具体的,可以将等待时长由源基站发送到目标基站,使得目标基站中的相应承载根据等待时长控制UE进入空闲态,由于等待时长为小于剩余时长阈值的时间长度,可以减少NSA组网切换后的等待时长。在本申请实施例中,可以将等待时长通过单独的请求信息发送,也可以将等待时长添加到已有请求信息中发送。
本申请实施例,通过在确定NSA组网切换时获取NR侧承载的NR检测信息,通过LTE侧承载的LTE检测信息和NR检测信息确定等待时长,将等待时长发送到目标基站,使得目标基站根据等待时长控制UE切换至空闲态。实现组网切换时承载设备等待时间的缩短,提高了UE状态切换的准确性,可减少无线通信过程的电量消耗。
进一步的,在上述申请实施例的基础上,所述NR检测信息至少包括以下之一:状态信息和切换剩余时长。
具体的,状态信息可以表示NR侧承载的状态,具体可以包括active、inactive和noninactive等状态,当UE满足一定剩余时长阈值inactivitytimer内没有上行或下行业务时,NR侧承载可以为inactive,当UE有上行或下行业务时,NR侧承载可以为active,当UE满足一定时长T没有上行或下行业务,但T<剩余时长阈值inactivitytimer时,NR侧承载可以为noninactive。切换剩余时长可以是NR侧承载在UE切换到空闲态前还需要等待的时间长度。NR检测信息可以包括状态信息和切换剩余时长。可以理解的是,LTE检测信息同样可以至少包括状态信息和切换剩余时长中一种。
图3是本申请实施例提供的一种状态切换控制方法的流程图,本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图3,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤111、接收到组网切换请求信息时,若所述NR侧承载处于active状态,则获取反馈的active状态信息和/或剩余时长阈值。
其中,active状态信息可以表示NR侧承载处于active状态的信息,可以为标识符号,可以由数字、字母和/或特殊符号组成。剩余时长阈值可以是NR侧承载在UE切换到空闲态前需要等待的最长时间,由于NR侧承载处于active,在无UE业务后NR承载至少要等待剩余时长阈值对应的时间长度。
具体的,组网切换请求信息可以是UE请求切换源基站进行NSA组网切换的请求,可以包括目标基站的相关信息,在获取到组网切换请求信息时可以确定NSA组网发生切换,可以向NR侧承载发生请求信息以检测NR侧承载状态,当NR侧承载状态为active时,可以由NR侧承载向源基站反馈active状态信息或者剩余时长阈值,可以理解的是,由于源基站的剩余时长阈值与NR侧承载的剩余时长阈值相同,可以向源基站反馈剩余时长阈值,在源基站根据active状态信息获取剩余时长阈值。
步骤112、接收到组网切换请求信息时,若所述NR侧承载处于inactive状态,则获取反馈的inactive状态信息和/或0。
其中,当NR侧承载处于inactive状态时,可以确定NR侧承载已经等待剩余阈值时长inactivitytimer没有UE业务,可以通知UE进入空闲态,此时,NR侧承载在NSA组网切换后无需再次进行等待,NR侧承载此时对应的等待时长可以为0。
本申请实施例中,在接受到组网切换请求信息时确定NSA组网进行切换,源基站可以向NR侧承载发送请求信息以检测NR侧承载状态,当NR侧承载状态为inactive状态,可以确定NR侧承载在进行NSA组网切换后不需要重新进行等待,可以向源基站反馈inactive状态信息或者反馈0作为等待时长。
步骤113、接收到组网切换请求信息时,若所述NR侧承载处于noninactive状态,则获取反馈的剩余检测时长。
具体的,NR侧承载处于noninactive状态时,NR侧承载在无UE业务的状态下等待了一定时间T1,但等待的时间长度还未超过剩余时长阈值inactivitytimer,在进行NSA组网切换后,NR侧承载还需要在无UE业务的情况下等待一段时间T2,可以理解的是,T2可以为剩余时长阈值inactivitytimer与T1的差值,可以将T2作为NR侧承载的剩余检测时长。在本申请实施中,当源基站获取到组网切换请求信息时,可以向NR侧承载发送检测请求,NR侧承载可以根据检测请求确定在无UE业务情况下已等待的时间,若NR侧承载已经等待一段时间但还未超过等待阈值时长inactivitytimer,可以反馈NR侧承载的还需要等待的剩余检测时长T2。
步骤114、根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长。
步骤115、将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
本申请实施例,通过在确定发送NSA组网发送切换时,根据NR侧承载的不同状态获取不同的等待时长,通过发送等待时长以使得目标基站根据等待时长切换UE到空闲态,实现了NR侧承载准确获取等待时长,提高UE进入空闲态的及时性,减少通信过程的电量消耗,提升确定UE切换时机的准确性。
图4是本申请实施例提供的一种状态切换控制方法的流程图,本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图4,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤121、确定NSA组网发生切换时,获取NR侧承载的NR检测信息。
步骤122、获取LTE承载侧的LTE检测信息。
具体的,在NSA组网中,LTE节点可以主节点,NR节点可以为辅节点,LTE承载侧可以是本申请中的源基站,相应的源基站可以为LTE基站,可以在源基站本地获取到LTE检测信息。其中,LTE检测信息可以表示LTE基站在无UE业务的情况下等待控制UE切换到空闲态的时间长度,具体可以是等待时间长度或者是表示等待时间长度的状态信息。进一步到的,LTE检测信息可以至少包括状态信息和切换剩余时长中一种。
步骤123、根据所述LTE检测信息和所述NR检测信息在预设信息时长关联表查找对应的等待时长。
其中,预设信息时长关联表可以是存储检测信息与等待时长对应关系的数据表,预设信息时长关联表中LTE检测信息、NR检测信息可以与等待时长关联存储,不同的LTE检测信息和NR检测信息可以对应不同的等待时长。等待时长与检测信息之间的对应关系可以通过实验或者经验设置。
具体的,可以通过LTE检测信息和NR检测信息在预设信息时长关联表中查找进行组 网切换后NR侧承载需要在无UE业务情况下等待的时间长度。
步骤124、将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
本申请实施例,确定发送NSA组网发送切换时,根据NR检测信息和LTE检测信息获取不同的等待时长,通过发送等待时长以使得目标基站根据等待时长切换UE到空闲态,实现了NR侧承载准确获取等待时长,提高UE进入空闲态的及时性,减少通信过程的电量消耗,提升确定UE切换时机的准确性。
进一步的,在上述申请实施例的基础上,预设信息时长关联表中LTE检测信息、NR检测信息和等待时长的对应关系包括:
LTE检测信息或NR检测信息中状态信息为active状态信息,则对应的等待时长为剩余时长阈值;LTE检测信息中状态信息为inactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时长为NR检测信息中的剩余检测时长;LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为inactive状态信息,则对应的等待时长为LTE检测信息中的剩余检测时长;LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时长为LTE检测信息和NR检测信息中剩余检测时长的最大值。
具体的,为了进一步减少NR侧设备的等待时长,可以将预设信息时长关联表中LTE检测信息、NR检测信息和等待时长的对应关系设定为如果LTE和NR侧承载都处于noninactive状态,则取两侧承载的剩余检测时长较大的值作为等待时长发送给目标LTE站。如果LTE侧承载和NR侧承载一个处于inactive状态,一个处于noninactive状态,则取处于noninacitve状态的剩余检测时长带给目标LTE站。如果LTE和NR侧承载有一个处于active状态,则不携带剩余检测时长或者直接携带剩余时长阈值为inacitvetimer。示例性的,一个预设信息时长关联表可以如下表所示:
预设信息时长关联示例表
LTE侧承载状态及时长 NR侧承载状态及时长 源LTE给目标LTE携带的时长
Acitve - 不携带或携带inactivitytimer
- Active 不携带或携带inactivitytimer
Inactive noninactive(T2 NR) T2 NR
noninactive(T2 LTE) Inactive T2 LTE
noninactive(T2 LTE) noninactive(T2 NR) Max(T2 LTE,T2 NR)
图5是本申请实施例提供的另一种状态切换控制方法的流程图;本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图5,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤131、确定NSA组网发生切换时,获取NR侧承载的NR检测信息。
步骤132、获取LTE承载侧的LTE检测信息。
具体的,在NSA组网中,LTE节点可以主节点,NR节点可以为辅节点,LTE承载侧可以是本申请中的源基站,相应的源基站可以为LTE基站,可以在源基站本地获取到LTE 检测信息。其中,LTE检测信息可以表示LTE基站在无UE业务的情况下等待控制UE切换到空闲态的时间长度,具体可以是等待时间长度或者是表示等待时间长度的状态信息。进一步到的,LTE检测信息可以至少包括状态信息和切换剩余时长中一种。
步骤133、将所述LTE检测信息中的切换剩余时长和所述NR检测信息中的切换剩余时长作为等待时长。
其中,切换剩余时长可以是LTE侧承载和NR侧承载在无UE业务状态下控制UE切换到空闲态还需要等待时间长度。可以理解的是,切换剩余时长可以是小于或等于剩余时长阈值inactivitytimer的时间段。
在本申请实施例中,等待时长可以包括两个时间信息,可以分别是LTE检测信息中的切换剩余时长和NR检测信息中的切换剩余时长。在发送等待时长时,可以将NR侧承载还需等待的时长以及将LTE侧承载还需等待的时长一同作为等待时长发送,由于NR侧承载和LTE侧承载所述的状态不同,对应的切换剩余时长可以不同。
步骤134、将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
具体的,当等待时长携带两个切换剩余时长信息时,可以将LTE侧承载对应的切换剩余时长和NR侧承载对应的切换剩余时长分别发送到目标基站,可以理解的是,LTE侧承载对应的切换剩余时长可以与NR侧承载对应的切换剩余时长一同发送,也可以分别通过不同的消息将LTE侧承载对应的切换剩余时长和NR侧承载对应的切换剩余时长发送到目标基站。
本申请实施例,通过确定NSA组网发生切换时获取NR侧承载的NR检测信息,获取LTE侧承载的LTE检测信息,将LTE检测信息和NR侧检测信息的切换剩余时长作为等待时长发生到目标基站,实现准确切换UE到空闲态,降低基站的等待时间,减少通信过程的电量消耗。
进一步的,在上述申请实施例的基础上,所述将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态,包括:将所述等待时长通过组网切换请求信息发送到目标基站以使目标基站控制UE切换到空闲态。
其中,组网切换请求信息可以是源基站请求目标基站切换NSA组网的请求,基站在获取到组网切换请求信息后可以进行切换操作使得UE连接到目标基站。
在本申请实施例中,为了减少通信开销,可以将等待时长添加到组网切换请求信息中,可以借助传递的组网切换请求信息实现等待时长在源基站和目标基站之间的信息传递。
图6是本申请实施例提供的一种状态切换控制方法的流程图;本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图6,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤201、接收等待时长并确定所述目标基站的基站类型。
其中,目标基站可以是NSA组网切换后UE连接到的服务基站,目标基站可以在NSA组网切换后为UE提供通信服务,由于目标基站在NSA组网切换后由于目标基站提供网络服务的方式不同属于不同基站类型的基站,例如,可以提供LTE服务的基站或者提供NR服务的基站。
进一步的,在上述申请实施例的基础上,所述目标基站的基站类型至少包括LTE组网基站和NSA组网基站。
在本申请实施例中,NSA组网的源基站可以切换到LTE组网的目标基站或者切换到NSA组网的目标基站,相应的,目标基站的基站类型可以至少包括LTE组网基站和NSA组网基站等。
步骤202、根据所述基站类型和所述等待时长控制UE切换到空闲态。
具体的,由于目标基站组网方式的不同,可以根据目标基站的基站类型采取不同的措施基于等待时长将UE切换到空闲态,例如,当目标基站为LTE组网类型的基站时,可以目标基站可以在UE业务情况下检测等待时长后控制UE切换到空闲态,当目标基站为NSA组网类型的基站时,图7是本申请实施例提供的一种等待时长发送的示例图,参见图7,可以将等待时长发送到NR侧承载,由NR侧承载根据等待时长检测UE业务,确定等待时长内无UE业务时控制UE切换到空闲态。
本申请实施例,通过接收等待时长,确定出目标基站的基站类型,可以根据基站类型确定不同的控制策略,根据控制策略并依据等待时长控制UE切换到空闲态,实现了UE切换时机的准确确定,减少等待时长,可节约通信过程中的电量消耗。
进一步的,在上述申请实施例的基础上,所述接收等待时长,包括:接收源基站发送的组网切换请求信息,并提取所述组网切换请求信息中的等待时长。
其中,组网切换请求信息可以是源基站请求目标基站切换NSA组网的请求,基站在获取到组网切换请求信息后可以进行切换操作使得UE连接到目标基站。
在本申请实施例中,为了减少通信开销,可以将等待时长添加到组网切换请求信息中,可以借助传递的组网切换请求信息实现等待时长在源基站和目标基站之间的信息传递。目标基站可以接收源基站发送的组网切换请求信息,并提取其中的等待时长,等待时长在组网切换请求信息中具体可以为一个或几个字段中的信息。
图8是本申请实施例提供的一种状态切换控制方法的流程图;本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图8,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤211、接收等待时长并确定所述目标基站的基站类型。
在本申请实施例中,可以接收源基站发送的等待时长,可以根据进行通信的方式确定出目标基站的基站类型,目标基站的基站类型可以为NSA组网基站,可以支持UE进行NR通信。
步骤212、将所述等待时长通过SN添加请求消息发送给NR侧承载,以使所述NR侧承载根据所述等待时长检测UE业务。
具体的,当目标基站为NSA组网基站时,目标基站可以将等待时长传递给NR侧承载,传递等待时长的方式可以包括将等待时长填充到SN添加请求消息中,通过SN添加请求消息发送给NR侧承载,NR侧承载可以根据对应的等待时长检测UE业务,确定UE是否还在发送上行业务或者下行业务。
步骤213、LTE侧承载根据所述等待时长检测UE业务。
其中,inactive状态可以表示NR侧承载已经等待剩余时长阈值inactivitytimer没有UE业务,可以通知UE进入空闲态的状态标识,inactive状态可以通过数字、字母和特殊字符组成。
具体的,在进行NSA组网切换后,LTE侧承载可以根据获取到的等待时长进行UE业务的检测,确定在等待时长对应的时间段内,UE业务未发送上行业务或者下行业务。可以理解的是,由于NSA组网切换到NSA组网时,LTE侧承载可以为目标基站,可以直接根据获取到的等待时长检测UE业务。
步骤214、确定所述LTE侧承载和所述NR侧承载进入inactive状态时,控制UE切换到空闲态。
具体的,可以对LTE侧承载和NR侧承载的状态进行确定,当LTE侧承载和NR侧承载也进入inactive状态时,可以确定NSA组网的LTE侧承载和NR侧承载全部满足UE进入空闲状态要求,可以由目标基站向UE发送消息通知UE将状态切换到空闲态。可以理解的是,当NR侧承载进入到inactive状态后,可以向LTE侧承载发送消息通知NR侧承载进入inactive状态,可以在接收到该通知时确定LTE侧承载是否进入inactive状态,若是,则可以向UE发送消息通知UE切换到空闲态。
本申请实施例,通过接收等待时长并确定出目标基站的基站类型,当基站类为NSA组网基站时,将等待时长通过SN添加请求消息发送到NR侧承载,NR侧承载根据等待时长检测UE业务,在确定NR侧承载进入inactive状态时,通过LTE侧承载检测UE业务,确定LTE侧承载进入inactive状态时,控制UE切换到UE空闲态,实现了UE切换时机的准确确定,减少等待时长,可节约通信过程中的电量消耗。
进一步的,在上述申请实施例的基础上,所述将所述等待时长通过SN添加请求消息发送给NR侧承载,包括:
当所述等待时长包括一个等待时长信息时,将所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载;当所述等待时长包括两个等待时长信息时,将NR侧承载对应的所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载。
具体的,当目标基站为NSA组网基站时,目标基站接收到等待时长可以为一个等待时长信息,也可以包括了两个等待时长。如果目标基站从源基站获取的切换请求消息中获取一个剩余时长信息时,则将此时长信息在SN添加请求消息中发给NR侧,如果目标基站从源LTE基站获取两个剩余时长信息时,则将NR侧对应的剩余时长在SN添加请求消息中发给NR侧带给NR侧。等待时长可以具体为SN添加请求消息中的一个或多个字段的信息。
图9是本申请实施例提供的一种状态切换控制方法的流程图,本申请实施例可适用于NSA组网切换的情况,该方法可以由本申请实施例中的状态切换控制装置来执行,该装置可以由软件和/或硬件的方式实现,并一般可以集成在基站中,参见图9,本申请实施例的状态切换控制方法可以包括如下步骤:
步骤221、接收等待时长并确定所述目标基站的基站类型。
具体的,可以接收源基站发送的等待时长,可以根据进行通信的方式确定出目标基站 的基站类型,目标基站的基站类型可以为LTE组网基站,可以支持UE进行LTE通信。
步骤222、当所述等待时长包括一个等待时长信息时,根据所述等待时长信息检测UE业务,并控制UE切换到空闲态。
在本申请实施例中,如果目标基站从源基站获取到的等待时长为一个等待时长信息,其中,等待时长信息可以为一个具体时间长度,此时,可以由目标基站在等待时长信息对应的时间段内检测UE业务,当确定在该时间段内未检测到UE业务时,可以控制UE将状态切换到空闲态。
步骤223、当所述时长包括两个等待时长信息时,根据两个所述等待时长信息中时间长度较长的等待时长信息检测UE业务,并控制UE切换到空闲态。
在本申请实施例中,如果目标基站从源基站获取到的等待时长为两个等待时长信息,其中,等待时长信息可以为一个具体时间长度。可以在两个等待时长信息中选择较长的时间长度作为检测UE业务的时间长度,确保UE设备在准确的时间内切换到空闲态,避免目标基站误判UE进入空闲态的时间。目标基站在等待时长信息对应的时间段内检测UE业务,当确定在该时间段内未检测到UE业务时,可以控制UE将状态切换到空闲态。
本申请实施例,通过接收等待时长并确定出目标基站的基站类型,当基站类为LTE组网基站时,选择适当的等待时长进行UE业务检测,并控制UE切换到UE空闲态,实现了UE切换时机的准确确定,防止目标基站错误判断UE进入空闲态的时间,提高通信设备响应的及时性,增强用户的体验程度。
示例性的,图10是本申请实施例提供的一种状态切换控制方法的示例图;从NSA组网切换到NSA组网,LTE基站给目标基站携带1个时长信息。如图10所示。设定inactivetytimer=10min。
1.UE接入cell1,cell1为主节点,cell2为辅节点。UE1在cell1和cell2都有承载,并都进行业务。
2.停止UE在cell1上的业务,3min后,停止UE在cell2的业务,2min后,UE从cell1移动到cell3。
3.LTE基站1向NR基站1获取UE的NR侧承载检测信息,NR基站1给LTE基站1返回的检测信息中携带剩余时长为8min
4.LTE基站1计算LTE侧承载的剩余时长为5min,与8min相比取结果为8min,LTE1基站1让UE切换到LTE基站2,在给LTE基站2的切换请求中携带剩余时长为8min
5.UE切换到cell3后,cell3为主节点,cell2为辅节点。LTE基站2在SN添加请求消息中通知NR基站1剩余时长为8min。
6.8min后,NR基站1通知LTE基站2NR侧的承载为inactive状态,LTE基站2也检测到LTE侧承载为inactive状态,则通知UE进入空闲态。
另一种实施例中,图11是本申请实施例提供的一种状态切换控制方法的示例图,从NSA组网切换到LTE组网,LTE基站给目标基站携带1个时长信息。如图11所示。设定inactivetytimer=10min。
1.UE接入cell1,cell1为主节点,cell2为辅节点。UE1在cell1和cell2都有承载, 并都进行业务。
2.停止UE在cell1上的业务,3min后,停止UE在cell2的业务,2min后,UE从cell1移动到cell3。
3.LTE基站1向NR基站1获取UE的NR侧承载检测信息,NR基站1给LTE基站1返回的检测信息中携带剩余时长为8min
4.LTE基站1计算LTE侧承载的剩余时长为5min,与8min相比取结果为8min,LTE1基站1让UE切换到LTE基站2,在给LTE基站2的切换请求中携带剩余时长为8min
5.UE切换到cell3,LTE基站2按照8min来检测UE的业务,8min后通知UE进入空闲态。
在一个示例性实施方式中,图10是本申请实施例提供的一种状态切换控制方法的示例图,从NSA组网切换到NSA组网,LTE基站给目标基站携带2个时长信息。如图10所示。设定inactivetytimer=10min。
1.UE接入cell1,cell1为主节点,cell2为辅节点。UE1在cell1和cell2都有承载,并都进行业务。
2.停止UE在cell1上的业务,10min后,停止UE在cell2的业务,2min后,UE从cell1移动到cell3。
3.LTE基站1向NR基站1获取UE的NR侧承载检测信息,NR基站1给LTE基站1返回的检测信息中携带剩余时长为8min
4.LTE基站1在给LTE基站2的切换请求中携带LTE侧剩余时长为0min,NR侧剩余时长为8min
5.UE切换到cell3后,cell3为主节点,cell2为辅节点。LTE基站2在SN添加请求中通知NR基站1剩余时长为8min。LTE基站2因为剩余0min直接判断LTE侧承载进入inactive态,然后继续等待NR基站1的状态通知
6.8min后,NR基站1通知LTE基站2NR侧的承载为inactive状态,LTE基站2通知UE进入空闲态。
在另一个示例性实施方式中,图11是本申请实施例提供的一种状态切换控制方法的示例图,从NSA组网切换到LTE组网,LTE基站给目标基站携带2个时长信息。如图11所示。设定inactivetytimer=10min。
1.UE接入cell1,cell1为主节点,cell2为辅节点。UE1在cell1和cell2都有承载,并都进行业务。
2.停止UE在cell1上的业务,10min后,停止UE在cell2的业务,2min后,UE从cell1移动到cell3。
3.LTE基站1向NR基站1获取UE的NR侧承载检测信息,NR基站1给LTE基站1返回的检测信息中携带剩余时长为8min
4.LTE1给LTE基站2的切换请求中携带LTE侧剩余时长为0min,NR侧剩余时长为8min
5.UE切换到cell3后,LTE基站2比较LTE侧承载剩余时长0min和NR侧承载剩余 时长8min,最终判断需要检测的时长为8min
6.8min后,LTE基站2判断承载进入inactive状态,通知UE进入空闲态。
图12是本申请实施例提供的一种状态切换控制装置的结构示意图,可执行本申请任意实施例所提供的状态切换控制方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:信息获取模块301、时长确定模块302和时长发送模块303。
信息获取模块301,被配置成确定NSA组网发生切换时,获取NR侧承载的NR检测信息。
时长确定模块302,被配置成根据LTE承载侧的LTE检测信息和所述NR检测信息确定等待时长。
时长发送模块303,被配置成将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
本申请实施例,通过信息获取模块在确定NSA组网切换时获取NR侧承载的NR检测信息,时长确定模块通过LTE侧承载的LTE检测信息和NR检测信息确定等待时长,时长发送模块将等待时长发送到目标基站,使得目标基站根据等待时长控制UE切换至空闲态。实现组网切换时承载设备等待时间的缩短,提高了UE状态切换的准确性,可减少无线通信过程的电量消耗。
进一步的,在上述申请实施例的基础上,所述状态切换控制装置中的NR检测信息至少包括状态信息和切换剩余时长中一种。
进一步的,在上述申请实施例的基础上,信息获取模块301包括:
第一获取单元,被配置成接收到组网切换请求信息时,若所述NR侧承载处于active状态,则获取反馈的active状态信息和/或剩余时长阈值。
第二获取单元,被配置成接收到组网切换请求信息时,若所述NR侧承载处于inactive状态,则获取反馈的inactive状态信息和/或0。
第三获取单元,被配置成接收到组网切换请求信息时,若所述NR侧承载处于noninactive状态,则获取反馈的剩余检测时长。
进一步的,在上述申请实施例的基础上,时长确定模块302包括:
检测信息单元,被配置成获取LTE承载侧的LTE检测信息。
时长确定单元,被配置成根据所述LTE检测信息和所述NR检测信息在预设信息时长关联表查找对应的等待时长。
进一步的,在上述申请实施例的基础上,时长确定模块302中的预设信息时长关联表中LTE检测信息、NR检测信息和等待时长的对应关系包括:
LTE检测信息或NR检测信息中状态信息为active状态信息,则对应的等待时长为剩余时长阈值;LTE检测信息中状态信息为inactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时长为NR检测信息中的剩余检测时长;LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为inactive状态信息,则对应的等待时长为LTE检测信息中的剩余检测时长;LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时 长为LTE检测信息和NR检测信息中剩余检测时长的最大值。
进一步的,在上述申请实施例的基础上,时长确定模块302还包括:
LTE信息单元,被配置成获取LTE承载侧的LTE检测信息。
第二时长单元,被配置成将所述LTE检测信息中的切换剩余时长和所述NR检测信息中的切换剩余时长作为等待时长。
进一步的,在上述申请实施例的基础上,时长发送模块303包括:
发送执行单元,被配置成将所述等待时长通过组网切换请求信息发送到目标基站以使目标基站控制UE切换到空闲态。
图13是本申请实施例提供的一种状态切换控制装置的结构示意图,可执行本申请任意实施例所提供的状态切换控制方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:时长接收模块311和状态切换模块312。
时长接收模块311,被配置成接收等待时长并确定所述目标基站的基站类型。
状态切换模块312,被配置成根据所述基站类型和所述等待时长控制UE切换到空闲态。
本申请实施例,通过时长接收模块接收等待时长,确定出目标基站的基站类型,状态切换模块可以根据基站类型确定不同的控制策略,根据控制策略并依据等待时长控制UE切换到空闲态,实现了UE切换时机的准确确定,减少等待时长,可节约通信过程中的电量消耗。
进一步的,在上述申请实施例的基础上,状态切换控制装置中的目标基站的基站类型至少包括LTE组网基站和NSA组网基站。
进一步的,在上述申请实施例的基础上,时长接收模块311包括:
请求消息单元,被配置成接收源基站发送的组网切换请求信息,并提取所述组网切换请求信息中的等待时长。
进一步的,在上述申请实施例的基础上,状态切换模块312包括:
NR传递单元,被配置成将所述等待时长通过SN添加请求消息发送给NR侧承载,以使所述NR侧承载根据所述等待时长检测UE业务。
LTE检测单元,被配置成确定所述NR侧承载进入inactive状态时,通知LTE侧承载检测UE业务。
空闲切换单元,被配置成确定所述LTE侧承载进入inactive状态时,控制UE切换到空闲态。
进一步的,在上述申请实施例的基础上,NR传递单元具体被配置成:当所述等待时长包括一个等待时长信息时,将所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载;当所述等待时长包括两个等待时长信息时,将NR侧承载对应的所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载。
进一步的,在上述申请实施例的基础上,状态切换模块312还包括:
第一LTE单元,被配置成当所述等待时长包括一个等待时长信息时,根据所述等待时长信息检测UE业务,并控制UE切换到空闲态。
第二LTE单元,被配置成当所述时长包括两个等待时长信息时,根据两个所述等待时长信息中时间长度较长的等待时长信息检测UE业务,并控制UE切换到空闲态。
图14是本申请实施例提供的一种电子设备的结构示意图;如图14所示,该设备包括处理器40、存储器41、输入装置42和输出装置43;设备中处理器40的数量可以是一个或多个,图14中以一个处理器40为例;设备处理器40、存储器41、输入装置42和输出装置43可以通过总线或其他方式连接,图14中以通过总线连接为例。
存储器41作为一种计算机可读存储介质,可被配置成存储软件程序、计算机可执行程序以及模块,如本申请实施例中的状态切换控制装置对应的模块(信息获取模块301、时长确定模块302、时长发送模块303、时长接收模块311和/或状态切换模块312)。处理器40通过运行存储在存储器41中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的状态切换控制方法。
存储器41可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器41可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器41可进一步包括相对于处理器40远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置42可被配置成接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置43可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种状态切换控制方法,该方法包括:
确定NSA组网发生切换时,获取NR侧承载的NR检测信息;根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长;将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
和/或,
接收等待时长并确定所述目标基站的基站类型;根据所述基站类型和所述等待时长控制UE切换到空闲态。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的状态切换控制方法中的相关操作。
本申请实施例,通过在确定NSA组网切换时获取NR侧承载的NR检测信息,通过LTE侧承载的LTE检测信息和NR检测信息确定等待时长,将等待时长发送到目标基站,使得目标基站根据等待时长控制UE切换至空闲态。实现在组网切换时缩短承载设备的等待时间,提高了UE状态切换的准确性,减少无线通信过程的电量消耗。
本申请实施例,实现了UE状态的准确检测,缩短UE切换到空闲态的平均等待时长,提高UE进入空闲态的准确性,可以降低无线通信过程的电量消耗。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借 助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更可能的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述状态切换控制装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
以上所述,仅为本申请的一些实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过非限制性的示例,上文已提供了对本申请的一些实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (17)

  1. 一种状态切换控制方法,应用于源基站,包括:
    确定NSA组网发生切换时,获取NR侧承载的NR检测信息;
    根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长;
    将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
  2. 根据权利要求1所述的方法,其中,所述NR检测信息至少包括以下之一:状态信息和切换剩余时长。
  3. 根据权利要求1所述的方法,其中,所述确定NSA组网发生切换时,获取NR侧承载的NR检测信息,包括:
    接收到组网切换请求信息时,若所述NR侧承载处于active状态,则获取反馈的active状态信息和/或剩余时长阈值;
    接收到组网切换请求信息时,若所述NR侧承载处于inactive状态,则获取反馈的inactive状态信息和/或0;
    接收到组网切换请求信息时,若所述NR侧承载处于noninactive状态,则获取反馈的剩余检测时长。
  4. 根据权利要求1所述的方法,其中,所述根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长,包括:
    获取LTE承载侧的LTE检测信息;
    根据所述LTE检测信息和所述NR检测信息在预设信息时长关联表查找对应的等待时长。
  5. 根据权利要求4所述的方法,其中,所述预设信息时长关联表包括LTE检测信息、NR检测信息和等待时长的对应关系,包括:
    所述LTE检测信息或NR检测信息中状态信息为active状态信息,则对应的等待时长为剩余时长阈值;
    LTE检测信息中状态信息为inactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时长为NR检测信息中的剩余检测时长;
    LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为inactive状态信息,则对应的等待时长为LTE检测信息中的剩余检测时长;
    LTE检测信息中状态信息为noninactive状态信息且NR检测信息中状态信息为noninactive状态信息,则对应的等待时长为LTE检测信息和NR检测信息中剩余检测时长的最大值。
  6. 根据权利要求1所述的方法,其中,所述根据LTE侧承载的LTE检测信息和所述NR检测信息确定等待时长,包括:
    获取LTE承载侧的LTE检测信息;
    将所述LTE检测信息中的切换剩余时长和所述NR检测信息中的切换剩余时长作为等待时长。
  7. 根据权利要求1所述的方法,其中,所述将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态,包括:
    将所述等待时长通过组网切换请求信息发送到目标基站以使目标基站控制UE切换到空闲态。
  8. 一种状态切换控制方法,应用于目标基站,包括:
    接收等待时长并确定所述目标基站的基站类型;
    根据所述基站类型和所述等待时长控制UE切换到空闲态。
  9. 根据权利要求8所述的方法,其中,所述目标基站的基站类型至少包括LTE组网基站和NSA组网基站。
  10. 根据权利要求8所述的方法,其中,所述接收等待时长,包括:
    接收源基站发送的组网切换请求信息,并提取所述组网切换请求信息中的等待时长。
  11. 根据权利要求8所述的方法,其中,所述基站类型为NSA组网基站,相应的,所述根据所述基站类型和所述等待时长控制UE切换到空闲态,包括:
    将所述等待时长通过SN添加请求消息发送给NR侧承载,以使所述NR侧承载根据所述等待时长检测UE业务;
    LTE侧承载根据所述等待时长检测UE业务;
    确定所述LTE侧承载和所述NR侧承载进入inactive状态时,控制UE切换到空闲态。
  12. 根据权利要求11所述的方法,其中,所述将所述等待时长通过SN添加请求消息发送给NR侧承载,包括:
    当所述等待时长包括一个等待时长信息时,将所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载;
    当所述等待时长包括两个等待时长信息时,将NR侧承载对应的所述等待时长信息添加到SN添加请求消息,并将所述SN添加请求消息发送到NR侧承载。
  13. 根据权利要求8所述的方法,其中,所述基站类型为LTE组网基站,相应的,所述根据所述基站类型和所述等待时长控制UE切换到空闲态,包括:
    当所述等待时长包括一个等待时长信息时,根据所述等待时长信息检测UE业务,并控制UE切换到空闲态;
    当所述时长包括两个等待时长信息时,根据两个所述等待时长信息中时间长度较长的等待时长信息检测UE业务,并控制UE切换到空闲态。
  14. 一种状态切换控制装置,应用于源基站,包括:
    信息获取模块,被配置成确定NSA组网发生切换时,获取NR侧承载的NR检测信息;
    时长确定模块,被配置成根据LTE承载侧的LTE检测信息和所述NR检测信息确定等待时长;
    时长发送模块,被配置成将所述等待时长发送到目标基站以使目标基站控制UE切换到空闲态。
  15. 一种状态切换控制装置,应用于目标基站,包括:
    时长接收模块,被配置成接收等待时长并确定所述目标基站的基站类型;
    状态切换模块,被配置成根据所述基站类型和所述等待时长控制UE切换到空闲态。
  16. 一种电子设备,包括:
    一个或多个处理器;
    存储器,被配置成存储一个或多个程序;其中,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-13中任一所述的状态切换控制方法。
  17. 一种存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-13中任一所述的状态切换控制方法。
PCT/CN2020/129446 2020-03-19 2020-11-17 状态切换控制方法、装置、电子设备和存储介质 WO2021184797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20925525.6A EP4117250A4 (en) 2020-03-19 2020-11-17 STATUS SWITCHING CONTROL METHOD AND APPARATUS, ELECTRONIC DEVICE AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197599.8 2020-03-19
CN202010197599.8A CN113498151A (zh) 2020-03-19 2020-03-19 状态切换控制方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021184797A1 true WO2021184797A1 (zh) 2021-09-23

Family

ID=77770074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129446 WO2021184797A1 (zh) 2020-03-19 2020-11-17 状态切换控制方法、装置、电子设备和存储介质

Country Status (3)

Country Link
EP (1) EP4117250A4 (zh)
CN (1) CN113498151A (zh)
WO (1) WO2021184797A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318344B (zh) * 2023-02-28 2023-10-24 广州爱浦路网络技术有限公司 获取ue不可达时间的优化方法、系统、装置和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282836A (zh) * 2017-01-06 2018-07-13 展讯通信(上海)有限公司 辅基站切换方法、装置及基站
WO2019160266A1 (en) * 2018-02-13 2019-08-22 Lg Electronics Inc. Method for measuring frame timing difference and user equipment performing the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282836A (zh) * 2017-01-06 2018-07-13 展讯通信(上海)有限公司 辅基站切换方法、装置及基站
WO2019160266A1 (en) * 2018-02-13 2019-08-22 Lg Electronics Inc. Method for measuring frame timing difference and user equipment performing the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117250A4 *

Also Published As

Publication number Publication date
EP4117250A4 (en) 2023-08-09
EP4117250A1 (en) 2023-01-11
CN113498151A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
CN110557777B (zh) 网络连接的控制方法、终端及存储介质
US8594748B2 (en) Mobile equipment autonomous quick release detection
CN110677900B (zh) 寻呼处理方法及相关装置
US11716703B2 (en) Paging method and paging device
US20210185753A1 (en) Method and system for indication of a change in multi-radio access technology dual connectivity capability
US20220286970A1 (en) Data sending method and apparatus, data receiving method and apparatus, first node, and second node
US20220078712A1 (en) Terminal waking method, device and storage medium
US20130223335A1 (en) Multi-mode terminal and method for controlling operation mode thereof
CN110636593A (zh) 连接模式的控制方法、终端及存储介质
EP3468292A1 (en) Transition method and device for transmission mode
WO2018014783A1 (zh) 一种传输数据方法和设备
CN113747571A (zh) 一种通信方法及装置
CN114765810A (zh) 配置方法、装置、设备及可读存储介质
WO2021184797A1 (zh) 状态切换控制方法、装置、电子设备和存储介质
EP3796693B1 (en) Method, apparatus, terminal and storage medium for sending measurement report
CN112788786A (zh) 网络连接的控制方法、终端及存储介质
WO2023011595A1 (zh) 信息上报方法、终端及网络侧设备
WO2022261893A1 (zh) 数据传输处理方法、装置、终端及存储介质
CN111314272B (zh) 一种任务处理方法及装置
CN114080045A (zh) 数据发送处理方法、资源配置方法及相关设备
WO2023193676A1 (zh) 测量上报处理方法、装置、终端及网络侧设备
CN112788649B (zh) 网络连接的控制方法、终端及存储介质
CN113886296B (zh) 数据传输方法、装置、设备和存储介质
WO2023202560A1 (zh) 辅小区组信息发送方法、接收方法、终端、设备和介质
CN102802262A (zh) 数据传输的方法、无线网络控制器、基站和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020925525

Country of ref document: EP

Effective date: 20221007

NENP Non-entry into the national phase

Ref country code: DE