[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021182900A2 - VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법 - Google Patents

VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법 Download PDF

Info

Publication number
WO2021182900A2
WO2021182900A2 PCT/KR2021/003051 KR2021003051W WO2021182900A2 WO 2021182900 A2 WO2021182900 A2 WO 2021182900A2 KR 2021003051 W KR2021003051 W KR 2021003051W WO 2021182900 A2 WO2021182900 A2 WO 2021182900A2
Authority
WO
WIPO (PCT)
Prior art keywords
vegfr
disease
mtor
composition
protein
Prior art date
Application number
PCT/KR2021/003051
Other languages
English (en)
French (fr)
Other versions
WO2021182900A3 (ko
Inventor
김원주
정경훈
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021182900A2 publication Critical patent/WO2021182900A2/ko
Publication of WO2021182900A3 publication Critical patent/WO2021182900A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for treating mTOR-related diseases using an inhibitor or activator of VEGFR-3 based on the new discovery that the expression regulation of VEGFR-3 regulates the activity of the mTOR (mammalian target of rapamycin) signaling pathway will be.
  • Epilepsy is a disease that causes intermittent nervous system disorders due to episodic discharge of cranial nerve cells due to organic lesions or functional disorders, and exhibits symptoms such as neurological symptoms, loss of consciousness, convulsions, and sensory disturbances. It is the third most common neurological disease after Alzheimer's disease and stroke, affecting about 0.5 - 2% of the world's population with epilepsy. In addition, it is estimated that there are about 45 new cases per 100,000 people worldwide every year, and about 300,000 to 400,000 epilepsy patients in Korea. Looking at the age distribution of epilepsy patients, it is known that 70% of all epilepsy begins at the age of children and adolescents, and the incidence is particularly high in infancy. In addition, the incidence and prevalence rates were highest within the first year of life and then rapidly decreased, and showed a U-shape that rapidly increased again in the elderly over 60 years of age, and the prevalence of experiencing seizures during life reached 10 to 15%.
  • Epilepsy is a chronic disease in which epileptic seizures occur repeatedly, and the cause is very diverse and the exact etiology is unknown.
  • the identification of the cause of epilepsy is gradually expanding.
  • the epilepsy epidemiologic survey published by the Korean Epilepsy Society in 2012 more than two-thirds of epilepsy patients are idiopathic or latent with no specific cause, and the rest are serious causes that can be found.
  • epilepsy may be induced. It is known that there is a past history of neuropathological changes or brain damage such as stroke, congenital anomaly, head trauma, encephalitis, brain tumor, degenerative encephalopathy, childbirth injury, central nervous system developmental disorder and genetic predisposition. It is known that there is
  • epilepsy treatment can be largely divided into drug treatment and non-drug treatment, that is, surgery, ketogenic diet, and vagus nerve stimulation.
  • drug treatment since non-drug treatment is being performed only for patients who are resistant to drugs, drug treatment has been used as a major method for epilepsy treatment.
  • Conventional drugs include phenytoin (Dilantin®), valproate (Orfil®, Depakine®, Depakote®), carbamazepine (Tegretol®), phenobarbital (Luminal®), etosuccimide.
  • the present inventors made intensive research efforts to discover effective and fundamental therapeutic compositions for various diseases caused by the lack of activity of the mTOR signaling pathway, including epilepsy.
  • the expression of VEGFR-3 in astrocytes in the hippocampus and mTOR signaling activity are closely related, and when VEGFR-3 expression or activity is increased, the expression of glutamate transporter 1 (GLT-1) increases and mTOR
  • GLT-1 glutamate transporter 1
  • an object of the present invention is to provide a composition for preventing or treating a disease related to mTOR signal deficiency and a screening method thereof.
  • Another object of the present invention is to provide a composition for preventing or treating mTOR-mediated diseases and a screening method thereof.
  • the present invention provides an mTOR signal deficiency-related disease comprising at least one selected from the group consisting of VEGFR-3 protein, a nucleic acid molecule encoding the VEGFR-3 protein, and an activator of VEGFR-3 as an active ingredient It provides a composition for the prevention or treatment of.
  • the present inventors made intensive research efforts to discover effective and fundamental therapeutic compositions for various diseases caused by the lack of activity of the mTOR signaling pathway, including epilepsy.
  • the expression of VEGFR-3 in astrocytes in the hippocampus and mTOR signaling activity are closely related, and when VEGFR-3 expression or activity is increased, the expression of glutamate transporter 1 (GLT-1) increases and mTOR It was found that the activation of the signaling pathway effectively eliminates the pathogenesis of diseases caused by mTOR inactivation.
  • mTOR (mammalian target of rapamycin) is a serine/threonine kinase belonging to the PIKK (PI3K-related kinase) family.
  • PIKK PI3K-related kinase
  • mTOR signal deficiency-related disease is meant to encompass a series of diseases caused by the malfunction of the mTOR signaling pathway, which broadly regulates this comprehensive cellular metabolic process.
  • GLT-1 in astrocytes is increased by mTOR activation mediated by VEGFR-3, hyperexcitability in epilepsy is blocked and a neuroprotective effect is confirmed.
  • activation of mTOR can promote BMP-induced muscle hypertrophy and prevent muscle atrophy, and promote protein synthesis in skeletal muscle (Gazzerro E, et al., Rev Endocr Metab Disord 2006; 7:51-65).
  • mTOR signaling was observed in mood disorders including depression, and mTOR signaling causes synaptic neurotransmission and plasticity.
  • mTOR signaling promotes limb skeletal growth by inducing the synthesis of factors necessary for growth in chondrocytes, and inhibits growth of limb mesenchymal cells by mTOR signal deficiency and reduces the growth of transcription factors involved in chondrogenesis. It has been reported that inhibition of expression can lead to skeletal developmental disorders (Jiang M, Fu X, et al., J Cell Biochem. 2017;118(4):748-753).
  • the disease related to mTOR signal deficiency that can be prevented or treated with the composition of the present invention is selected from the group consisting of epilepsy, muscular atrophy, depression and bone disease.
  • bone disease refers to any disease in which degeneration or damage of bone or cartilage tissue leading to quantitative loss of bone or cartilage tissue is caused by pathological or physical causes, for example, osteoporosis, osteomalacia, It includes, but is not limited to, rickets, fibrous osteomyelitis, bone damage due to bone metastasis of cancer cells, aplastic bone disease, metabolic bone disease, and osteoarthritis.
  • the present invention provides a composition for preventing or treating mTOR-mediated diseases comprising an inhibitor of VEGFR-3 protein as an active ingredient.
  • the term “inhibitor” refers to a substance that causes a decrease in the activity or expression of a target protein, whereby the activity or expression of the target protein becomes undetectable or exists at an insignificant level, as well as when the target protein is It refers to a substance that reduces the activity or expression to such an extent that the biological function can be significantly reduced.
  • Inhibitors of VEGFR-3 protein include, for example, shRNA, siRNA, miRNA, ribozyme, and peptide nucleic acids (PNA) that inhibit the expression of VEGFR-3, whose coding nucleotide sequence is known in the art at the gene level.
  • Antisense oligonucleotides or CRISPR systems comprising a guide RNA for recognizing a target gene, and antibodies or aptamers that inhibit VEGFR-3 at the protein level, as well as compounds, peptides and natural products that inhibit their activity. All gene and protein level suppression means known in the art without limitation can be used.
  • RNA small hairpin RNA
  • shRNA small hairpin RNA
  • a long RNA of 19-29 nucleotides is base-paired on both sides of a loop of 5-10 nucleotides to form a double-stranded stem, and in order to always be expressed, it is introduced into a cell through a vector containing a U6 promoter. It is transduced and is usually passed on to daughter cells so that suppression of the expression of the target gene is inherited.
  • RNA refers to a short double-stranded RNA capable of inducing an RNAi (RNA interference) phenomenon through cleavage of a specific mRNA. It is composed of a sense RNA strand having a sequence homologous to the mRNA of a target gene and an antisense RNA strand having a sequence complementary thereto. The total length is 10 to 100 bases, preferably 15 to 80 bases, most preferably 20 to 70 bases, and if the expression of the target gene can be inhibited by the RNAi effect, blunt ends or cohesive ends Both ends are possible.
  • the structure of the adhesive end can be both a structure in which the three-terminal protrudes and a structure in which the five-terminal side protrudes.
  • microRNA refers to a single-stranded RNA molecule that is not expressed in cells, has a short stem-loop structure, and inhibits the expression of a target gene through complementary binding to the mRNA of the target gene. do.
  • ribozyme is a type of RNA and refers to an RNA molecule having the same function as an enzyme that recognizes the base sequence of a specific RNA and cuts it by itself.
  • a ribozyme is a complementary nucleotide sequence of a target mRNA strand and consists of a region that binds with specificity and a region that cuts the target RNA.
  • PNA peptide nucleic acid
  • antisense oligonucleotide refers to a nucleotide sequence complementary to a sequence of a specific mRNA, which binds to a complementary sequence in a target mRNA and translates its protein into a protein, translocation into the cytoplasm, maturation, or any other It refers to a nucleic acid molecule that inhibits an essential activity for an overall biological function.
  • Antisense oligonucleotides may be modified at one or more bases, sugars or backbone positions to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol. , 5(3):343-55, 1995). .
  • the oligonucleotide backbone can be modified with phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyls, cycloalkyls, short chain heteroatomics, heterocyclic sugarscholphonates, and the like.
  • gRNA guideRNA
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • the expression inhibitor of the present invention may be a specific antibody that inhibits the activity of the protein encoded by the genes.
  • the antibody specifically recognizing the target protein is a polyclonal or monoclonal antibody, preferably a monoclonal antibody.
  • Antibodies of the present invention can be prepared by methods routinely practiced in the art, for example, fusion methods (Kohler and Milstein, European Journal of Immunology , 6:511-519 (1976)), recombinant DNA methods (U.S. Patent No. 4,816,567). ) or phage antibody library methods (Clackson et al, Nature , 352:624-628 (1991) and Marks et al, J. Mol. Biol. , 222:58, 1-597 (1991)). .
  • fusion methods Kelham and Milstein, European Journal of Immunology , 6:511-519 (1976)
  • the present invention may inhibit its activity by using an aptamer that specifically binds to a target protein instead of an antibody.
  • aptamer refers to a single-stranded nucleic acid (RNA or DNA) molecule or peptide molecule that binds to a specific target material with high affinity and specificity.
  • RNA or DNA nucleic acid
  • peptide molecule that binds to a specific target material with high affinity and specificity.
  • mTOR-mediated disease is meant to encompass a series of diseases caused by overactivation of the mTOR signaling pathway.
  • the present inventors found that when a selective inhibitor of VEGFR-3 was administered, GLT-1 expression and reactivity of astrocytes were inhibited while the mTOR pathway was inhibited.
  • the mTOR pathway is overactive in a number of cancer patients, and the major tumor suppressor genes TP53 and LKB1 not only inhibit TSC1 and TSC2, which are upstream regulators of mTORC1, but also mTOR signaling also causes apoptosis. It contributes to tumorigenesis by activating Akt, which induces proliferation processes such as glucose uptake and glycolysis while inhibiting Accordingly, inhibition of mTOR through inhibition of VEGFR-3 can be a significant anticancer target.
  • mTOR pathway is a central mechanism of anabolic and catabolic pathways of lipid metabolism, and it has been reported that excessive activity of mTOR causes metabolic abnormalities such as obesity and insulin resistance (Zoncu R. , et al., Molecular Cell Biology 2011;12:21-35).
  • mTOR contributes to synaptic connections through the growth of axons and formation of dendrites.
  • the mTOR signal is excessively increased, it leads to a decrease in memory storage capacity and causes the progression of various neurodegenerative diseases (Bove J. , et al., NATURE REVIEWS 2011;12:437-52).
  • inhibitors of mTOR including rapamycin, have a strong immunosuppressive function by inhibiting the proliferation of T cells induced by growth factors. It can be a therapeutic target for immune diseases.
  • the mTOR-mediated disease that can be prevented or treated with the composition of the present invention is selected from the group consisting of cancer, neurodegenerative disease, metabolic disease, inflammatory disease and actrocytosis.
  • the cancer is selected from the group consisting of kidney cancer, breast cancer, lung cancer, stomach cancer, bladder cancer, prostate cancer, ovarian cancer, cervical cancer, lymphoma, leukemia and myelodysplastic syndrome.
  • the neurodegenerative disease is Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, myasthenia gravis and Pick's disease ( Pick's disease).
  • the metabolic disease is selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome.
  • metabolic disease conceptualizes the phenomenon in which the risk factors of various cardiovascular diseases and type 2 diabetes, which are caused by metabolic abnormalities, cluster with each other as one disease group, and insulin resistance and related complex and It is a concept that encompasses various metabolic abnormalities and clinical aspects.
  • the term “obesity” refers to a state in which the amount of energy intake exceeds energy consumption over a long period of time and the excess energy is stored as fat, resulting in an excess of adipose tissue in the body.
  • body mass index Body mass index: weight (kg)/[height (m)] 2
  • the body mass index is 25 or more, it is defined as fertilely obese.
  • diabetes refers to a chronic disease characterized by a relative or absolute lack of insulin resulting in glucose-intolerance.
  • Diabetes treated or prevented by the composition of the present invention includes all types of diabetes, for example, type 1 diabetes, type 2 diabetes, and hereditary diabetes.
  • Type 1 diabetes is insulin-dependent diabetes mellitus, mainly caused by destruction of ⁇ -cells.
  • Type 2 diabetes is non-insulin-dependent diabetes mellitus, caused by insufficient insulin secretion after a meal or by insulin resistance.
  • dislipidemia refers to a pathologic condition in which the level of fat concentration in the blood is outside the normal range, for example, hypercholesterolemia, hypertriglyceridemia, low-HDL-cholesterol. In addition to hyperlipidemia and hyper-LDL-cholesterolemia, it includes all abnormal lipid states caused by abnormal lipoprotein metabolism.
  • fatty liver refers to a state in which fat is accumulated in hepatocytes in an excessive amount due to a disorder of fat metabolism in the liver, which causes various diseases such as angina pectoris, myocardial infarction, stroke, arteriosclerosis, fatty liver and pancreatitis.
  • insulin resistance refers to a state in which cells cannot effectively burn glucose because the function of insulin to lower blood sugar is low. When insulin resistance is high, the body makes too much insulin, which can lead to high blood pressure or dyslipidemia, as well as heart disease and diabetes. In particular, in type 2 diabetes mellitus, an increase in insulin in muscle and adipose tissue is not noticed, and the action of insulin does not occur.
  • insulin resistance syndrome is a concept that collectively refers to diseases induced by insulin resistance.
  • VLDL very low density lipoprotein
  • HDL high density lipoprotein
  • the dyslipidemia prevented or treated with the composition of the present invention is hyperlipidemia.
  • hyperlipidemia refers to a disease caused by maintaining a high lipid concentration in the blood because fat metabolism such as triglycerides and cholesterol is not properly performed. More specifically, hyperlipidemia includes hypercholesterolemia or hypertriglyceridemia with a high incidence in a state in which lipid components such as triglycerides, LDL cholesterol, phospholipids and free fatty acids in the blood are increased.
  • the fatty liver to be prevented or treated by the composition of the present invention is non-alcoholic fatty liver.
  • non-alcoholic fatty liver refers to a disease in which an excessive amount of fat is accumulated in liver cells regardless of alcohol absorption, and includes simple fatty liver (steatosis) and non-alcoholic non-alcoholic steatohepatitis (NASH).
  • simple fatty liver has a good clinical prognosis
  • NASH with inflammation or fibrosis is a progressive liver disease and is recognized as a progenitor disease that causes cirrhosis or liver cancer.
  • Obesity and insulin resistance are major risk factors for nonalcoholic fatty liver disease.
  • Risk factors for the progression of liver fibrosis include obesity (BMI > 30), blood liver function index ratio (AST/ALT > 1), and diabetes. can 69-100% of nonalcoholic fatty liver patients are obese, and 20-40% of obese patients have nonalcoholic fatty liver. This is because obesity is the most important risk factor for nonalcoholic liver disease.
  • the inflammatory disease (or autoimmune disease) that can be prevented or treated with the composition of the present invention is rheumatoid arthritis, reactive arthritis, type 1 diabetes, type 2 diabetes mellitus, systemic lupus erythematosus, multiple sclerosis , idiopathic fibroal alveolitis, polymyositis, dermatomyositis, localized scleroderma, systemic scleroderma, colitis, inflammatory bowel disease, Sjorgen's syndrome, Raynaud's phenomenon, Bechet's disease, Kawasaki Kawasaki's disease, primary biliary sclerosis, primary sclerosing cholangitis, ulcerative colitis or Crohn's disease.
  • astrocytosis refers to an abnormal increase in astrocytes due to damage to adjacent neurons, such as trauma of the central nervous system, tissue damage caused by tumors, infection, ischemia, stroke, neurodegenerative disease, etc. Or it is meant to encompass all pathological conditions that cause activation. Astrocytes that are activated or proliferated in the lesion area where brain tissue is damaged by various causes have some protective effect on the regeneration process of brain tissue, but the increase in astrocytes appearing after injury inhibits the regeneration process by secreting various inflammatory substances. .
  • the astrocytosis is glioma, glioblastoma, astrocytoma, stroke, traumatic brain injury, and amyotrophic lateral sclerosis.
  • prevention refers to inhibiting the occurrence of a disease or disease in a subject who has never been diagnosed with a disease or disease, but is likely to have the disease or disease.
  • the term “treatment” refers to (a) inhibiting the development of a disease, disorder or condition; (b) alleviation of the disease, condition or condition; or (c) eliminating the disease, condition or symptom.
  • the composition of the present invention When the composition of the present invention is administered to a subject, it regulates the mTOR signaling pathway by inhibiting or increasing the activity or expression level of VEGFR-3, inhibits the development of symptoms of various diseases caused by deficiency or excessive mTOR activity, or removes it or act as a mitigator.
  • the composition of the present invention may be a composition for treating these diseases by itself, or may be administered together with other pharmacological ingredients and applied as a therapeutic adjuvant for the above diseases.
  • the term “treatment” or “therapeutic agent” includes the meaning of “therapeutic adjuvant” or “therapeutic adjuvant”.
  • administering refers to directly administering a therapeutically effective amount of the composition of the present invention to a subject so that the same amount is formed in the subject's body.
  • the term “therapeutically effective amount” refers to the content of the composition in which the pharmacological component in the composition is sufficient to provide a therapeutic or prophylactic effect to an individual to whom the pharmaceutical composition of the present invention is to be administered. prophylactically effective amount”.
  • the term “subject” includes, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cattle, pigs, monkeys, chimpanzees, baboons or rhesus monkeys. Specifically, the subject of the present invention is a human.
  • the pharmaceutical composition of the present invention when prepared as a pharmaceutical composition, includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
  • the pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like, in addition to the above components.
  • a lubricant e.g., a talc, a kaolin, a kaolin, a kaolin, a kaolin, kaolin, kaolin, kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, a talct, a talct, a talct, a talct, a sorbitol, mannitol, mannitol
  • the pharmaceutical composition of the present invention may be administered orally or parenterally, and specifically may be administered orally, intravenously, subcutaneously or intraperitoneally.
  • a suitable dosage of the pharmaceutical composition of the present invention is variously prescribed depending on factors such as formulation method, administration method, age, weight, sex, pathological condition, food, administration time, administration route, excretion rate and reaction sensitivity of the patient. can be A preferred dosage of the pharmaceutical composition of the present invention is within the range of 0.001-100 mg/kg for adults.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, syrup, or emulsion in oil or aqueous medium, or may be in the form of an extract, powder, powder, granule, tablet or capsule, and may additionally include a dispersant or stabilizer.
  • the present invention provides a method for screening a composition for preventing or treating a disease related to mTOR signal deficiency, comprising the following steps:
  • the test substance is determined as a composition for preventing or treating mTOR signal deficiency related diseases.
  • biological sample refers to any sample containing VEGFR-3 expressing cells obtained from mammals including humans, including, but not limited to, tissue, organ, cell or cell culture medium.
  • test substance used while referring to the screening method of the present invention is added to a sample containing cells expressing VEGFR-3 and used in screening to test whether it affects the activity or expression level of VEGFR-3 It means an unknown substance.
  • the test substance includes, but is not limited to, compounds, nucleotides, peptides and natural extracts.
  • the step of measuring the expression level or activity of VEGFR-3 in the biological sample treated with the test substance may be performed by various methods for measuring the expression level and activity known in the art. As a result of the measurement, when the expression level or activity of VEGFR-3 is increased, the test substance may be determined as a composition for preventing or treating mTOR signal deficiency related diseases.
  • the term “increase in expression or activity” refers to an increase in the expression level of VEGFR-3 or intrinsic function of VEGFR-3 in vivo to such an extent that mTOR activation mediated by VEGFR-3 is increased to a measurable level. it means. Specifically, it may refer to a state in which the activity or expression level is increased by 20% or more, more specifically, a state increased by 40% or more, more specifically, a state increased by 60% or more compared to the control group.
  • the present invention provides a method for screening a composition for preventing or treating an mTOR-mediated disease, comprising the steps of:
  • the test substance is determined as a composition for preventing or treating mTOR-mediated diseases.
  • the term “reduction of expression or activity” refers to inhibiting the expression level of VEGFR-3 or the intrinsic function of VEGFR-3 in vivo to such an extent that mTOR activation mediated by VEGFR-3 is reduced to a measurable level. it means. Specifically, it may refer to a state in which the activity or expression level is reduced by 20% or more, more specifically, a state in which the activity or expression is reduced by more than 40%, more specifically, a state in which the activity or expression level is reduced by more than 60% compared to the control.
  • the biological sample is a biological sample including astrocytes.
  • the present invention provides a pharmaceutical composition comprising at least one selected from the group consisting of VEGFR-3 protein, a nucleic acid molecule encoding the VEGFR-3 protein, and an activator of VEGFR-3 as an active ingredient. It provides a method for preventing or treating a disease related to mTOR signal deficiency, comprising administering to a subject.
  • the present invention provides a method for preventing or treating mTOR-mediated diseases, comprising administering to a subject a pharmaceutical composition comprising an inhibitor of VEGFR-3 protein as an active ingredient.
  • the present invention provides a composition for preventing or treating mTOR signaling deficiency-related diseases and mTOR (mammalian target of rapamycin)-mediated diseases, and a screening method thereof.
  • the present invention provides an effective therapeutic target for various diseases caused by excessive activity or lack of activity of mTOR based on the new discovery that regulation of VEGFR-3 expression leads to regulation of mTOR signaling pathway activity
  • the present invention can be usefully used as a fundamental therapeutic agent for overlapping epilepsy, an intractable disease, by blocking the hyperexcited state in epilepsy and protecting nerves through VEGFR-3 activation, in particular.
  • FIG. 1 is a diagram showing the time-dependent expression patterns of pS6 and VEGFR-3 in the hippocampus after epilepsy overlap is induced with pilocarpine.
  • panel A, E shows that p6S-positive neuron-like cells are expressed in the hippocampus of the normal control panel.
  • Panels B, F show that pS6-positive signal is slightly increased compared to that of the normal control group on the 1st day after epilepsy superposition induction. The figure shows that pS6-positive cells increased remarkably on the 4th day after induction of epilepsy superposition.
  • Figure 1b shows the results of confirming that the protein expression changes appear the same as the immunohistochemical staining results through western blot analysis of pS6, S6, VEGFR-3, and GFAP.
  • FIG. 2 is a diagram showing the results of confirming the expression of pS6 in VEGFR-3 positive reactive astrocytes after induction of epilepsy overlap.
  • Panels A-C show that in normal controls, most pS6 expression (green) was not observed in GFAP-positive astrocytes (blue), but some VEGFR-3 expression (red) was observed on the surface of GFAP-positive astrocytes.
  • FIG. 3 is a diagram showing that VEGFR-3 expression in astrocytes is reduced by inhibiting mTOR activation.
  • Figure 3b is a schematic diagram of the hippocampal sub-pyramid region subjected to quantitative analysis of the number of VEGFR-3 expressing cells.
  • Figure 3c is a picture showing the results of quantitative analysis of VEGFR-3 expression in the indicated hippocampal sub-pyramid region, it was confirmed that the number of VEGFR-3 positive astrocytes increased by induction of epilepsy overlap was significantly reduced by the administration of rapamycin.
  • Figure 3d is a result of analyzing the VEGFR-3 protein expression pattern through Western blot, it shows that the expression of VEGFR-3 increased by the induction of epilepsy overlap is again reduced by the administration of rapamycin.
  • Figure 3e is a diagram showing the density-based quantitative analysis result as a histogram of the VEGFR-3 protein band (normalized to ⁇ -actin). Also, the increase in VEGFR-3 expression due to epilepsy overlap is significant by rapamycin administration.
  • FIG. 4 is a diagram showing that mTOR activation in astrocytes is reduced when VEGFR-3 expression in the hippocampus is suppressed after induction of epilepsy overlap.
  • Figure 4b is a diagram showing that the quantitative analysis result confirms that the number of astrocytes pS6-positive cells increased by epilepsy overlap is significantly reduced by SAR administration.
  • 5 is a diagram showing that RA treatment reduces GLT-1 expression in the hippocampus after SE induction.
  • FIG. 6 is a diagram showing that inhibition of VEGFR-3 attenuates GLT-1 expression and activation of astrocytes in the hippocampus after induction of epilepsy overlap.
  • GLT-1 expression red
  • Scale bar 50 ⁇ m.
  • Figure 6b shows that, as a result of quantitative analysis, the number of GLT-1 expressing cells in the hippocampus after induction of epilepsy superimposition is significantly increased compared to the normal control group, but when VEGFR-3 is suppressed due to SAR administration, GLT-1 expression of astrocytes is decreased.
  • Figure 6c shows the results confirmed through Western blot that SAR administration reduces the expression of GLT-1 protein.
  • VEGFR-3 is a diagram showing the effect of an increase in VEGFR-3 in reactive astrocytes after SE induction. Elevated VEGFR-3 affects mTOR activation in reactive astrocytes following the same prolonged seizure behavior. Furthermore, VEGFR-3-mediated mTOR activation may reduce SE-induced hyperexcitability during interstitial subacute phase (gray arrow) by increasing GLT-1 expression in astrocytes. Taken together, the increase in VEGFR-3 in reactive astrocytes appears to play an important role in calming hyperexcitability in the hippocampus.
  • 8 is a diagram showing the effect of RA treatment on Akt/mTOR activation in the hippocampus in normal and epilepsy conditions.
  • 8A is a Western blot analysis result showing the change in the expression level of phosphorylated Akt (pAkt) after RA treatment.
  • pAkt phosphorylated Akt
  • RA treatment significantly increased the expression level of pAkt in the hippocampus in sham-manipulated mice compared to the Sham-Veh group.
  • the expression level of pAkt in the hippocampus of SE 4d-Veh and SE 4d-RA groups was significantly increased compared to Sham-Veh group.
  • the results of quantitative analysis of each sample based on the density of the pAkt band were shown as histograms (normalized to ⁇ -actin).
  • 8B is a Western blot result showing the change in the expression level of RA-treated pS6. Although there was no significant difference between Sham-Veh and Sham-Veh groups, pS6 expression in the hippocampus of mice (SE 4d-RA) 4 days after epilepsy induction by RA treatment was significantly suppressed compared to the SE 4d-Veh group. became The results of quantitative analysis of each sample based on the density of the pS6 band were shown as histograms (normalized to ⁇ -actin).
  • FIG. 9 is a diagram showing the effect of VEGFR-3 inhibition on acute epilepsy induced by pilocarpine injection.
  • SAR 50 mg/kg; ip
  • vehicle solution vehicle solution
  • seizure behavior was recorded after pilocarpine injection until the end of the seizure.
  • mice Male C57BL/6 mice (8 weeks old, Orient Bio, Gyeonggi, Korea) were treated in a light-controlled environment (from 8:00 am to 8:00 pm) under standard temperature (22 ⁇ 1 °C) and humidity (50 ⁇ 1%). ) was bred with free access to food and drinking water. All experiments were conducted in accordance with the guidelines of the Animal Experimentation Ethics Committee of Yonsei University, and the number and suffering of experimental animals were minimized.
  • a pilocarpine-induced status epilepticus (SE) mouse model was established by a previously reported method (Cho et al., 2019; Jeong, Lee, Kim, & Cho, 2011). Briefly, 30 min after treatment with atropine methyl nitrate (1 mg/kg; ip; Sigma-Aldrich), mice were treated with pilocarpine hydrogen chloride (280-300 mg/kg; Sigma-Aldrich; St. Louis, MO, USA) or Or saline (normal control) was intraperitoneally injected. After pilocarpine treatment, the seizure stage was determined according to the Racine scale (Racine, 1972).
  • stage 4 Animals that have reached stage 4 (standing on hind legs, rearing) and stage 5 (rearing and falling) and exhibiting general tonic-clonic seizures are considered to have superposition epilepsy (SE). and selected for further study.
  • SE superposition epilepsy
  • seizure frequency and latency were recorded from immediately after pilocarpine injection to the end of seizures.
  • the number of seizures refers to the total number of convulsive seizures (stages 3-5) after pilocarpine injection.
  • the onset times of seizures and SE were measured as the time elapsed from pilocarpine injection to the first convulsive seizure (stage 3) and SE, respectively.
  • rapamycin (RA; LC laboratories; Woburn, MA, USA) was first administered (6 mg/kg; ip) 1 hour before pilocarpine treatment and 3 days from the 1st day after SE induction. It was administered daily (3 mg/kg; ip).
  • rapamycin was dissolved in 100% ethanol and immediately before injection 5% Tween 80, 5% polyethylene glycol 400 (Sigma-Aldrich) and Dilute in vehicle solution containing 4% ethanol.
  • SAR131675 (SAR; Selleck Chemicals; Kunststoff, Germany), a VEGFR-3 inhibitor, was dissolved in 5% DMSO with saline according to a previously reported method (Bhuiyan, Kim, Hwang, Lee, & Kim, 2015).
  • SAR was administered 1 hour before pilocarpine treatment (50 mg/kg; ip), and after induction of SE with pilocarpine, daily injections were performed for 3 days after 1 day (25 mg/kg; ip). ).
  • mice were anesthetized with 15% chloral hydrate and cardiac perfused with saline followed by 4% paraformaldehyde dissolved in 0.1 M phosphate buffer (PB; pH 7.4). Thereafter, brains were rapidly excised as previously reported (Cho et al., 2019) and cryopreserved with 30% sucrose solution for 3 days. Next, the samples were rapidly frozen in liquid nitrogen. Serial sections (20 ⁇ m thick) were cut coronal at 120 ⁇ m intervals (720 ⁇ m in total, between -1.58 and -2.30 from the grand sac in every 7th slice) (Franklin & Paxinos, 2008). All sections were washed with 0.01 M PBS (pH 7.4).
  • sections were incubated with 3% H 2 O 2 and 10% methanol in 0.01M PBS to remove endogenous peroxidase activity.
  • the sections were fixed with 10% goat serum (VectorLaboratories; Burlingame, CA, USA) dissolved in 0.01M PBS for 1 hour at 4°C and anti-phospho S6 ribosomal protein antibody (pS6; 1:200; Cell Signaling Technology). ; Beverly, MA, USA) and incubated overnight.
  • the sections were incubated with biotinylated anti-rabbit IgG (1:200; Vector Laboratories) at room temperature for 2 hours and placed in an avidin-biotin peroxidase complex solution (Vector Laboratories) for 1 hour. Finally, the sections were stained with 0.1% diaminobenzidine tetrahydrochloride and 0.005% H 2 O 2 dissolved in 0.05M Tris-HCl (pH7.4). The stained sections were observed with an optical microscope (BX51; Olympus; Tokyo, Japan).
  • sections were prepared from anti-neuronal nuclei (NeuN; 1:100; Millipore; Temecula, CA, USA), anti-glial fibrillary acidic protein (GFAP; 1:400; Millipore), anti-VEGFR-3 (1:500; Abnova; Taipei, Taiwan, China), anti-VEGFR-3 (1:100; Abcam; Cambridge, A, USA), anti-pS6 (1:200; Cell) Signaling Technology), and anti-GLT-1 (1:200; Thermo Scientific; Rockford, IL, USA) antibodies, followed by Cy3- (1:500; Jackson ImmunoResearch; West Grove, PA, USA), Cy5- (1:500; Jackson ImmunoResearch) and Alexa fluor 488-conjugated IgG (1:300; Invitrogen; Carlsbad, CA, USA) were incubated overnight at 4°C. Sections were mounted and observed under a confocal microscope (LSM 700; Carl Zeiss; Thornwood, NY, USA),
  • VEGFR-3 To analyze the expression changes of VEGFR-3, pS6 and GLT-1-positive cells in the hippocampus of the normal control group and 4 days after seizure induction, 6 coronal sections were obtained. The number of cells was measured according to a previously reported method (Cho et al., 2019; Jeong et al., 2011). The number of VEGFR-3, pS6 and GLT-1-positive cells was measured in the region including the stratum radiatum, lacunosum moleculare, and dentate gyrus molecular layers ( FIG. 3B ). The number of VEGFR-3, pS6 and GLT-1-labeled cells in each section was measured using ZEN image inspection software (Carl Zeiss).
  • Brain tissue samples for Western blot analysis were prepared by a previously reported method (Jeong, Lee, & Kim, 2015).
  • the mouse hippocampal tissue was homogenized and centrifuged at 14,000 g for 15 minutes at 4°C. The supernatant was transferred to a new tube, and the concentration was measured using a bicinchoninic acid assay kit (Thermo Scientific). Proteins were separated by gel electrophoresis and transferred to a polyvinylidene difluoride membrane (Millipore) using an electrophoretic transfer system (Bio-Rad Laboratories; Hercules, CA, USA).
  • Membranes were incubated overnight at 4°C with the following primary antibodies: anti-VEGFR-3 (Abcam), anti-phosphorylated Akt (Cell Signaling Technology), anti-Akt (Cell Signaling Technology), anti-pS6 (Cell Signaling Technology) ), anti-S6 (Cell Signaling Technology), anti-GFAP (Millipore), anti-GLT-1 (Thermo Scientific), and anti- ⁇ -actin (Santa Cruz Biotechnology; Dallas, TX, USA). After washing, the membrane was again incubated with a secondary antibody (Enzo Life Science; Farmingdale, NY, USA), and blotting was performed using ECL western blotting detection reagent (Amersham Biosciences; Piscataway, NJ, USA). The density of the band was measured using computer imaging equipment and related software (Fuji Film; Tokyo, Japan).
  • pS6 phosphorylated ribosomal protein S6
  • Glue-like pS6 expression was slightly increased in the emissive layer and the subfield CA1 subfields 1 day after SE induction (panels B and F of FIG. 1A ).
  • the expression of glial-like pS6 reached a maximum level on day 4 after SE induction (panels C and G of FIG. 1A ) and gradually decreased from day 7 after SE induction (panels D and H of FIG. 1A ).
  • FIG. 2 After confirming the expression change of pS6 and VEGFR-3 after SE induction, it was investigated whether pS6 and VEGFR-3 coexist in astrocytes by triple-immunofluorescence staining (FIG. 2).
  • pS6 expression in GFAP-expressing astrocytes was not observed, but VEGFR-3 expression was more or less observed on the surface of GFAP-expressing astrocytes (FIG. 2 panels A-C).
  • SE-induced pS6 expression was significantly increased in hippocampal VEGFR-3-expressing reactive astrocytes 4 days after SE induction (FIG. 2 panels D-F).
  • VEGFR-3 specific inhibitors Effect of VEGFR-3 specific inhibitors on reactive astrocytosis after SE induction
  • the PI3K/Akt/mTOR pathway has been reported to affect GLT-1 regulation in primary cultures of astrocytes (Wu, Kihara, Akaike, Niidome, & Sugimoto, 2010). Therefore, we aimed to investigate whether mTOR inhibition by RA treatment regulates GLT-1 expression in the hippocampus after SE. As a result, it was confirmed that the number of glial-like GLT-1-positive cells increased in the hippocampus 4 days after SE induction (SE 4d-Veh; FIG. 5a ). On the other hand, SE-induced glial GLT-1 expression was found to be decreased by RA treatment (SE 4d-RA; FIG. 5A ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Neurology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Neurosurgery (AREA)
  • Genetics & Genomics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)

Abstract

본 발명은 mTOR 신호결핍 관련질환 및 mTOR(mammalian target of rapamycin) 매개 질환의 예방 또는 치료용 조성물과 이들의 스크리닝 방법에 관한 것이다. 본 발명은 VEGFR-3의 발현 조절이 mTOR 신호 경로의 활성 조절로 이어진다는 새로운 발견에 기반하여, mTOR의 과도한 활성 또는 활성 결핍을 원인으로 하는 다양한 질환에 대한 효율적인 치료 타겟을 제공한다. 본 발명은 특히 VEGFR-3 활성화를 통해 뇌전증에서의 과흥분상태를 차단하고 신경을 보호함으로써, 난치성 질환인 중첩성 뇌전증의 근원적인 치료제로 유용하게 이용될 수 있다.

Description

VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법
본 발명은 VEGFR-3의 발현 조절이 mTOR(mammalian target of rapamycin) 신호 경로의 활성을 조절한다는 새로운 발견에 기반하여, VEGFR-3의 억제제 또는 활성화제를 이용하여 mTOR 관련 질환을 치료하는 방법에 관한 것이다.
뇌전증은 기질적 병변 또는 기능적 장애로 인하여 뇌신경 세포의 발작적인 방전으로 간헐적인 신경계의 장애를 일으키고, 신경증상, 의식상실, 경련, 감각장애 등의 증상을 나타내는 질환이다. 알츠하이머병(Alzheimer) 및 뇌졸증(Stroke)에 이어 세 번째로 흔한 신경계 질환으로, 전 세계 인구의 약 0.5 - 2%가 뇌전증을 앓고 있다. 또한, 전 세계적으로는 매년 10만명 당 45명 정도로 새로운 환자가 발생하고 있고, 우리나라의 경우 약 30-40만 명의 뇌전증 환자가 있는 것으로 추정되고 있다. 뇌전증 환자의 연령 분포를 살펴보면, 전체 뇌전증의 70%가 소아 청소년 연령에서 시작되고, 특히 유아기에 발병률이 높은 것으로 알려져 있다. 또한, 발병률과 유병률은 생후 1년 이내에 가장 높았다가 급격히 낮아지고, 60세 이상의 노년층에서 다시 급격히 증가하는 U자 형태를 보이며, 일생 동안 발작을 경험하는 유병률은 10 - 15%에 이른다.
뇌전증은 뇌전증 발작(epileptic seizure)이 반복적으로 발생하는 만성화된 질환으로서, 그 원인이 매우 다양하여 정확한 병인은 밝혀져 있지 않다. 다만, 최근 신경영상검사 기술의 발달에 따라 과거에는 관찰할 수 없었던 뇌의 미세한 병리적 변화들을 관찰할 수 있게 되면서 뇌전증의 원인에 대한 규명이 점차 확대되고 있다. 2012년 대한뇌전증학회 발간 뇌전증 역학 조사서에 의하면, 뇌전증 환자의2/3 이상이 특별한 원인이 없는 특발성이나 잠재성이고, 나머지 경우가 원인을 찾을 수 있는 중후성 원인에 해당된다. 즉, 뇌졸중, 선천기형, 두부외상, 뇌염, 뇌종양, 퇴행성 뇌병증, 분만손상, 중추신경계 발달장애 및 유전적 성향과 같은 신경 병리적 변화나 뇌손상의 과거 병력이 있는 경우, 뇌전증이 유발될 수 있다고 알려져 있다.
한편 뇌전증의 치료는 크게 약물치료와 약물외 치료, 즉 수술이나 케톤식이요법, 미주신경자극술 등으로 분류할 수 있다. 다만, 약물외 치료는 약물에 저항성을 보이는 환자에 대해서만 시행되고 있는 바, 뇌전증 치료를 위한 주요한 방법으로 약물치료가 이용되어왔다. 종래의 약물들로 페니토인(Phenytoin: Dilantin®), 발프로에이트(Valproate: Orfil®, Depakine®, Depakote®), 카바마제핀(Carbamazepine: Tegretol®), 페노바비탈(Phenobarbital: Luminal®), 에토숙시마이드(Ethosuximide: Zarontin®) 등이 있으며, 최근에는 토피라메이트(Topiramate: topamax®), 라모트리진(Lamotrigine: Lamictal®), 비가바트린(Vigabatrin: Sabril®), 옥스카바제핀(Oxcarbazepine: Trileptal®) 등이 개발되어 상용화되어 있다.
그러나, 이러한 약물 치료에도 불구하고 뇌전증 환자의 30% 이상은 여러 가지 작용 기전의 약물을 사용해도 발작이 조절되지 않는 약제 불응성 뇌전증(drug refractory 간질)에 해당되며, 일부 약물들은 면역 과민 반응에 의한 난치성 피부 발진, 약물에 의한 위장 자극, 및 어지럼증 등과 같은 부작용을 나타내고 있고, 종래 약물 사용에 의한 정신장애 유발 및 자살 등의 사례 등이 보고되어 있는 바, 효과적인 뇌전증 치료에 어려움을 겪고 있는 실정이다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 뇌전증을 비롯하여 mTOR 신호 경로의 활성 부족을 원인으로 하는 다양한 질환에 대한 효과적이고 근원적인 치료 조성물을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 해마 내 성상교세포에서의 VEGFR-3의 발현과 mTOR 신호 활성이 밀접하게 관련되어 있으며, VEGFR-3이 발현 또는 활성을 증가시킬 경우 GLT-1(glutamate transporter 1)의 발현이 증가하고 mTOR 신호 경로가 활성화되면서 mTOR 불활성화를 원인으로 하는 질환의 병인을 효과적으로 제거한다는 사실을 발견함으로써, 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물 및 이의 스크리닝 방법을 제공하는 데 있다.
본 발명의 다른 목적은 mTOR 매개 질환의 예방 또는 치료용 조성물 및 이의 스크리닝 방법을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 VEGFR-3 단백질, VEGFR-3 단백질을 인코딩하는 핵산 분자 및 VEGFR-3의 활성화제로 구성된 군으로부터 선택되는 하나 이상을 유효성분으로 포함하는 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물을 제공한다.
본 발명자들은 뇌전증을 비롯하여 mTOR 신호 경로의 활성 부족을 원인으로 하는 다양한 질환에 대한 효과적이고 근원적인 치료 조성물을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 해마 내 성상교세포에서의 VEGFR-3의 발현과 mTOR 신호 활성이 밀접하게 관련되어 있으며, VEGFR-3이 발현 또는 활성을 증가시킬 경우 GLT-1(glutamate transporter 1)의 발현이 증가하고 mTOR 신호 경로가 활성화되면서 mTOR 불활성화를 원인으로 하는 질환의 병인을 효과적으로 제거한다는 사실을 발견하였다.
mTOR(mammalian target of rapamycin)는 PIKK(PI3K-related kinase) 패밀리에 속하는 세린(serine)/트레오닌(threonine) 인산화효소로 mTOR C1(mTOR Complex 1)과 mTOR C2(mTOR Complex 2)라고 불리는 2개의 단백질 복합체를 이루며, 성장인자, 영양, 스트레스 자극 등 외부환경의 신호에 따라 진핵세포의 세포의 성장과 증식, 자가포식(autophagy), 단백질 합성 등의 신진대사를 조절한다. 본 명세서에서 용어“mTOR 신호 결핍 관련 질환”은 이러한 포괄적인 세포 대사과정을 광범위하게 조절하는 mTOR의 신호 경로가 정상적으로 작동하지 못함을 원인으로 하는 일련의 질환을 포괄하는 의미이다.
본 발명에 따르면, VEGFR-3로 매개된 mTOR 활성화에 의해 성상교세포에서의 GLT-1의 발현이 증가되면서 뇌전증에서의 과흥분 상태(hyperexcitability)가 차단되고 신경보호 효과가 발휘되는 것으로 확인되었다. 또한, mTOR의 활성화를 통해 BMP 유발 근비대를 촉진시키고 근위축을 예방할 수 있고, 골격근의 단백질 합성을 촉진하는 것으로 보고되었다(Gazzerro E, et al., Rev Endocr Metab Disord 2006; 7:51-65). 아울러, 우울증을 비롯한 기분장애에서 mTOR 신호전달의 감소가 관찰되었고, mTOR 신호전달은 시냅스의 신호전달(neurotransmission)과 가소성을 일으키며 우울증 동물모델에 mTOR의 발현을 증가시킴으로써 항우울 효과가 발휘되는 것이 관찰되었다(Yang C, Hu YM, et al., Ups J Med Sci 2013;118:3-8). 이와 더불어 mTOR 신호전달은 연골세포에서 성장에 필요한 인자의 합성을 유도하여 사지 골격 성장을 촉진시키고, mTOR 신호 결핍에 의해 팔다리 중간엽 세포(limb mesenchymal cells) 성장 저해 및 연골형성에 관여된 전사 인자의 발현을 억제하여 골격 발달 장애를 유발시킬 수 있다고 보고되었다(Jiang M, Fu X, et al., J Cell Biochem. 2017;118(4):748-753).
이에, 본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료될 수 있는 mTOR 신호 결핍 관련 질환은 뇌전증, 근위축증, 우울증 및 골질환으로 구성된 군으로부터 선택된다.
본 명세서에서 용어“골질환”은 병리학적 또는 물리적인 원인에 의해 골 또는 연골 조직의 양적인 소실로 이어지는 골 또는 연골 조직의 변성 또는 손상이 발생된 모든 질환을 의미하며, 예를 들어 골다공증, 골연화증, 구루병, 섬유성 골염, 암세포의 골전이로 인한 골손상, 무형성 골질환, 대사성 골질환 및 퇴행성 관절염을 포함하나, 이에 제한되는 것은 아니다.
본 발명의 다른 양태에 따르면, 본 발명은 VEGFR-3 단백질의 억제제를 유효성분으로 포함하는 mTOR 매개 질환의 예방 또는 치료용 조성물을 제공한다.
본 명세서에서 용어“억제제”는 타겟 단백질의 활성 또는 발현의 저하를 야기시키는 물질을 의미하며, 이에 의해 타겟 단백질의 활성 또는 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 경우 뿐 아니라, 타겟 단백질의 생물학적 기능이 유의하게 저하될 수 있을 정도로 활성 또는 발현을 저하시키는 물질을 의미한다.
VEGFR-3 단백질의 억제제는 예를 들어 당업계에 이미 그 코딩 뉴클레오타이드 서열이 공지된 VEGFR-3의 발현을 유전자 수준에서 억제하는 shRNA, siRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids) 안티센스 올리고뉴클레오타이드 또는 타겟 유전자를 인식하는 가이드 RNA를 포함하는 CRISPR 시스템과, VEGFR-3를 단백질 수준에서 억제하는 항체 또는 앱타머 뿐 아니라, 이들의 활성을 억제하는 화합물, 펩타이드 및 천연물을 포함하나, 이에 제한되지 않고 당업계에 공지된 모든 유전자 및 단백질 수준의 억제수단이 사용될 수 있다.
본 명세서에서 용어“shRNA(small hairpin RNA)”는 인 비보 상에서 스템-루프(stem-loop) 구조를 이루는 단일 가닥으로 50-70개로 구성된 뉴클레오타이드로서, RNA 간섭을 통해 타겟 유전자의 발현을 억제하기 위한 타이트한 헤어핀 구조를 만드는 RNA 서열을 의미한다. 통상적으로 5-10개의 뉴클레오타이드의 루프 부위 양쪽으로 상보적으로 19-29개의 뉴클레오타이드의 긴 RNA가 염기쌍을 이루어 이중가닥의 스템을 형성하며, 언제나 발현되도록 하기 위하여 U6 프로모터를 포함하는 벡터를 통해 세포 내로 형질도입되며 대개 딸세포로 전달되어 타겟 유전자의 발현억제가 유전되도록 한다.
본 명세서에서 용어“siRNA”는 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성된다. 전체 길이는 10 내지 100 염기, 바람직하게는 15 내지 80 염기, 가장 바람직하게는 20 내지 70 염기이고, 타겟 유전자의 발현을 RNAi 효과에 의하여 억제할 수 있는 것이면 평활(blunt)말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3 말단 돌출한 구조와 5 말단 쪽이 돌출한 구조 모두 가능하다.
본 명세서에서 용어“miRNA(microRNA)”는 세포내에서 발현되지 않는 올리고뉴클레오타이드로서 짧은 스템-루프 구조를 가지면서 타겟 유전자의 mRNA와 상보적인 결합을 통하여 타겟 유전자 발현을 억제하는 단일 가닥 RNA분자를 의미한다.
본 명세서에서 용어“리보자임(ribozyme)”은 RNA의 일종으로 특정한 RNA의 염기 서열을 인식하여 자체적으로 이를 절단하는 효소와 같은 기능을 가진 RNA 분자를 의미한다. 리보자임은 타겟 mRNA 가닥의 상보적인 염기서열로 특이성을 가지고 결합하는 영역과 타겟 RNA를 절단하는 영역으로 구성된다.
본 명세서에서 용어“PNA(Peptide nucleic acid)”는 핵산과 단백질의 성질을 모두 가지면서 DNA 또는 RNA와 상보적으로 결합이 가능한 분자를 의미한다. PNA는 자연계에서는 발견되지 않고 인공적으로 화학적인 방법으로 합성되며, 상보적인 염기 서열의 천연 핵산과 혼성화(hybridization)를 통해 이중가닥을 형성하여 타겟 유전자의 발현을 조절한다.
본 명세서에서 용어 “안티센스 올리고뉴클레오타이드”는 특정 mRNA의 서열에 상보적인 뉴클레오타이드 서열로서 타겟 mRNA 내의 상보적 서열에 결합하여 이의 단백질로의 번역, 세포질내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해하는 핵산 분자를 의미한다. 안티센스 올리고뉴클레오타이드는 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55, 1995). 올리고뉴클레오타이드 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당숄포네이 등으로 변형될 수 있다.
본 명세서에서 용어“gRNA(guideRNA)”는 타겟 유전자를 인식하여 핵산분해효소(nuclease)를 유도함으로써 인식된 분위를 특이적으로 절단하는 유전자 편집 시스템에 사용되는 RNA 분자를 의미한다. 이러한 유전자 편집 시스템에는 대표적으로 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) 시스템이 있다.
본 발명에 따르면, 본 발명의 발현 억제제는 상기 유전자들이 코딩하는 단백질의 활성을 저해하는 특이적 항체일 수 있다. 목적 단백질을 특이적으로 인식하는 항체는 폴리클로날 또는 모노클로날 항체이며, 바람직하게는 모노클로날 항체이다.
본 발명의 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법(Kohler and Milstein, European Journal of Immunology, 6:511-519 (1976)), 재조합 DNA 방법(미국 특허 제4,816,567호) 또는 파아지 항체 라이브러리 방법(Clackson et al, Nature, 352:624-628(1991) 및 Marks et al, J. Mol. Biol., 222:58, 1-597(1991))에 의해 제조될 수 있다. 항체 제조에 대한 일반적인 과정은 Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; 및 Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984에 상세하게 기재되어 있다.
본 발명은 항체 대신 목적 단백질에 특이적으로 결합하는 앱타머를 이용하여 이의 활성을 억제할 수도 있다. 본 명세서에서 용어“앱타머”는 특정 표적물질에 높은 친화력과 특이성으로 결합하는 단일 줄기의(single-stranded) 핵산(RNA 또는 DNA) 분자 또는 펩타이드 분자를 의미한다. 앱타머의 일반적인 내용은 Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78(8):426-30(2000); Cohen BA, Colas P, Brent R . "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95(24):14272-7(1998)에 상세하게 개시되어 있다.
본 명세서에서 용어“mTOR 매개 질환”은 mTOR 신호 경로의 과활성화를 원인으로 하는 일련의 질환을 포괄하는 의미이다.
후술하는 실시예에서 보는 바와 같이, 본 발명자들은 VEGFR-3의 선택적 억제제를 투여할 경우 mTOR 경로가 억제되면서 경우 GLT-1 발현 및 성상교세포의 반응성을 저해됨을 발견하였다.
한편, 다수의 암환자에서 mTOR 경로가 과활성되어있음이 관찰되었으며, 주요 종양억제 유전자인 TP53과 LKB1는 mTORC1의 상위 조절자 인TSC1과 TSC2를 억제하는 것으로 나타났을 뿐 아니라 mTOR 신호는 또한 세포사멸을 억제하면서 포도당 흡수 및해당작용과 같은 증식과정을 유도하는 Akt를 활성화시킴으로써 종양 형성 과정에 기여한다. 이에, VEGFR-3의 억제를 통한 mTOR의 억제는 유의한 항암 타겟이 될 수 있다.
아울러, mTOR 경로는 지질대사의 동화작용(anabolic pathway)과 이화작용(catabolic pathway)의 중심 기전으로서, mTOR의 과도한 활성은 비만, 인슐린 저항성 등의 대사작용의 이상을 초래하는 것으로 보고되었다(Zoncu R, et al., Molecular Cell Biology 2011;12:21-35). 또한 뉴런에서 mTOR는 액손의 성장과 수상돌기의 형성을 통해 시냅스 연결에 기여를 하는데, mTOR 신호가 과도하게 증가하면 기억 저장 능력의 저하를 가져오고, 다양한 신경퇴행성 질환들의 진행을 야기한다(Bove J, et al., NATURE REVIEWS 2011;12:437-52).
한편, 라파마이신을 비롯한 mTOR의 억제제들은 성장 인자에 의해 유도되는 T세포의 증식을 억제함으로써 강한 면역억제 기능을 가지며, 이에 mTOR의 억제는 과도하거나 원치 않는 면역반응을 원인으로 하는 다양한 염증성 질환 또는 자가면역질환의 치료 타겟이 될 수 있다.
따라서, 본 발명의 조성물로 예방 또는 치료될 수 있는 mTOR 매개 질환은 암, 신경퇴행성 질환(Neurodegenerative disease), 대사질환(metabolic disorder), 염증성 질환 및 성상교세포증(actrocytosis)으로 구성된 군으로부터 선택된다.
보다 구체적으로는, 상기 암은 신장암, 유방암, 폐암, 위암, 방광암, 전립선암, 난소암, 자궁경부암, 림프종, 백혈병 및 골수형성이상증후군(myelodysplastic syndrome)으로 구성된 군으로부터 선택된다.
보다 구체적으로는, 상기 신경퇴행성 질환은 알츠하이머병(Alzheimer’s disease), 파킨슨병(Parkinson’s disease), 헌팅턴병(Huntington’s disease), 근위축성 측삭 경화증(Amyotrophic Lateral Sclerosis), 중증 근무력증(myasthenia gravis) 및 피크병(Pick’s disease)으로 구성된 군으로부터 선택된다.
보다 구체적으로는, 상기 대사질환은 비만, 당뇨, 이상지방혈증(dyslipidemia), 지방간 및 인슐린 저항성 증후군(insulin resistance syndrome)으로 구성된 군으로부터 선택된다.
본 명세서에서 용어“대사질환”은 신진대사 이상을 원인으로 발생하는 각종 심혈관 질환과 제2형 당뇨병의 위험 요인들이 서로 군집을 이루는 현상을 한 가지 질환군으로 개념화시킨 것으로 인슐린 저항성 및 이와 관련된 복잡하고 다양한 여러 대사이상과 임상 양상을 모두 포괄하는 개념이다.
본 명세서에서 용어“비만(obesity)”장기간에 걸쳐 에너지 섭취량이 에너지 소비량을 초과하여 잉여 에너지가 지방으로 저장됨으로써 체내에 지방조직이 과다해지는 상태를 의미한다. 통상 체질량지수(Body mass index: 체중(kg)/[신장(m)]2)가 25 이상이면 임성적으로 비만으로 정의된다.
본 명세서에서 용어“당뇨”은 포도당-비관용(intolerance)을 초래하는 인슐린의 상대적 또는 절대적 부족으로 특징되는 만성질환을 의미한다. 본 발명의 조성물로 치료 또는 예방되는 당뇨는 모든 종류의 당뇨병을 포함하며, 예를 들어, 제1형 당뇨, 제2형 당뇨 및 유전성 당뇨를 포함한다. 제1형 당뇨는 인슐린 의존성 당뇨병으로서, β-세포의 파괴에 의해 주로 초래된다. 제2형 당뇨는 인슐린 비의존성 당뇨병으로서, 식사 후 불충분한 인슐린 분비에 의해 초래되거나 또는 인슐린 내성에 의해 초래된다.
본 명세서에서 용어“이상지방혈증(dyslipidemia)”은 혈액 내의 지방농도 수치가 정상범위 밖에 있는 병적 상태(pathologic condition)를 의미하며, 예를 들어 고콜레스테롤혈증, 고중성지방혈증, 저-HDL-콜레스테롤혈증 및 고-LDL-콜레스테롤혈증 외에도 지단백의 대사이상을 원인으로 하는 비정상적 지질상태를 모두 포함한다.
본 명세서에서 용어“지방간”은 간의 지방대사 장애로 지방이 간세포에 과도한 양으로 축적된 상태를 말하며, 이는 협심증, 심근경색, 뇌졸중, 동맥경화, 지방간 및 췌장염 등과 같은 다양한 질병의 원인이 된다.
본 명세서에서 용어“인슐린 저항성”은 혈당을 낮추는 인슐린의 기능이 떨어져 세포가 포도당을 효과적으로 연소하지 못하는 상태를 의미한다. 인슐린 저항성이 높을 경우, 인체는 너무 많은 인슐린을 만들어 내고 이로 인해 고혈압이나 이상지방혈증은 물론 심장병, 당뇨병 등까지 초래할 수 있다. 특히 제2형 당뇨병에서는 근육과 지방조직에서 인슐린의 증가를 알아채지 못하여, 인슐린의 작용이 일어나지 않는다. 용어 “인슐린 저항성 증후군”은 상기 인슐린 저항성에 의하여 유발된 질환을 총칭하는 개념으로 인슐린 작용에 대한 세포의 저항성, 고인슐린혈증 및 초저밀도지단백(very low density lipoprotein, VLDL)과 중성지방의 증가, 고밀도지단백(high density lipoprotein, HDL)의 감소 및 고혈압 등을 특징으로 하는 질환을 의미하며, 심혈관질환과 제2형 당뇨병의 위험인자로 인식되고 있는 개념이다(Reaven GM, Diabetes, 37: 1595-607, (1988)).
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료되는 이상지방혈증은 고지혈증이다.
본 명세서에서 사용되는 용어“고지혈증”은 중성지방과 콜레스테롤 등의 지방대사가 제대로 이루어지지 않아 혈액 중에 높은 지질농도가 유지되어 유발되는 질환을 의미한다. 보다 구체적으로 고지혈증이란 혈액내의 중성지방, LDL 콜레테롤, 인지질 및 유리 지방산 등의 지질 성분이 증가된 상태로 발생빈도가 높은 고콜레스테롤혈증 또는 고중성지방혈증을 포함한다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료되는 지방간은 비알콜성 지방간이다.
본 명세서에서 용어“비알콜성 지방간(Non-alcoholic fatty liver, NAFL)”은 알콜의 흡수와 무관하게 간세포에 과도한 양의 지방이 축적되는 질환을 의미하고, 여기에는 단순지방간(steatosis)과 비알코올성 지방간염(non-alcoholic steatohepatitis, NASH)이 포함된다. 단순 지방간은 임상적으로 예후가 양호한 편이나, 염증 혹은 섬유화를 동반하는 NASH는 진행성 간질환으로 간경변 또는 간암을 유발하는 전구질환으로 인지되고 있다. 비만과 인슐린저항성은 대표적인 비알콜성 지방간질환의 위험인자이다. 간섬유증 진행의 위험인자로는 가령, 비만(BMI>30), 혈중 간기능지표 비율(AST/ALT >1) 및 당뇨를 들 수 있고, 특히 C형 간염 보균자가 비알콜지방간일 경우 간암까지 진행될 수 있다. 비알콜성 지방간 환자의 69-100%는 비만환자이고, 비만환자의 20-40%는 비알콜성 지방간을 동반하며, 특히 유럽, 미국, 아시아의 비만아동의 10~77%가 비알콜성 지방간 병변을 보이는데, 이는 비알콜성 간질환의 가장 중요한 위험인자가 비만이기 때문이다.
본 발명의 구체적인 구현 예에 따르면, 본 발명의 조성물로 예방 또는 치료될 수 있는 염증성 질환(또는 자가면역 질환)은 류마티스 관절염, 반응성 관절염, 1형 당뇨병, 2형 당뇨병, 전신성 홍반성 낭창, 다발성경화증, 특발성섬유성폐포염, 다발성근염, 피부근염, 국한피부경화증, 전신피부경화증, 대장염, 염증성 장질환, 조르젠신드롬(Sjorgen's syndrome), 레이노현상(Raynaud's phenomenon), 베쳇병(Bechet's disease), 가와사키병(Kawasaki's disease), 원발성담즙성경화증(primary biliary sclerosis), 원발성경화성담관염(primary sclerosing cholangitis), 궤양성대장염(ulcerative olitis) 또는 크론병(Crohn's disease)이다.
본 명세서에서 용어“성상교세포증(astrocytosis)”은 중추신경계의 외상, 종양에 의한 조직 손상, 감염, 허혈, 뇌졸중, 신경퇴행성 질환 등에서 인접한 뉴런의 손상을 원인으로 하여 성상교세포(astrocyte)의 비정상적인 증가 또는 활성화가 야기되는 모든 병적 상태를 포괄하는 의미이다. 다양한 원인에 의해 뇌 조직이 손상된 병변부에서 활성화되거나 증식된 성상교세포는 뇌조직의 재생 과정에 일부 보호작용을 하기도 하지만, 손상 후 나타나는 성상교세포의 증가는 다양한 염증 물질을 분비하면서 재생 과정을 저해한다.
보다 구체적으로는, 상기 성상교세포증(actrocytosis)은 신경교종(glioma), 교아종(glioblastoma), 성상세포종(astrocytoma), 뇌졸중(stroke), 외상성 뇌손상(traumatic brain injury) 근위축성 측삭경화증(Amyotrophic Lateral Sclerosis: ALS)으로 구성된 군으로부터 선택된다.
본 명세서에서 용어“예방”은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다.
본 명세서에서 용어“치료”는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 조성물을 대상체에 투여하면 VEGFR-3의 활성 또는 발현량을 억제하거나 증가시킴으로써 mTOR 신호경로를 조절, mTOR 활성이 결핍되거나 과도함으로써 발생하는 다양한 질환의 증상의 발전을 억제하거나, 이를 제거하거나 또는 경감시키는 역할을 한다. 따라서, 본 발명의 조성물은 그 자체로 이들 질환 치료의 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 상기 질환에 대한 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어“치료”또는“치료제”는“치료 보조”또는“치료 보조제”의 의미를 포함한다.
본 명세서에서 용어“투여”또는“투여하다”는 본 발명의 조성물의 치료적 유효량을 대상체에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다.
본 발명에서 용어“치료적 유효량”은 본 발명의 약제학적 조성물을 투여하고자 하는 개체에게 조성물 내의 약리성분이 치료적 또는 예방적 효과를 제공하기에 충분한 정도로 함유된 조성물의 함량을 의미하며, 이에“예방적 유효량”을 포함하는 의미이다.
본 명세서에서 용어“대상체”는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 경구 또는 비경구 투여할 수 있으며, 구체적으로는 경구, 정맥, 피하 또는 복강 투여될 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약제학적 조성물의 바람직한 투여량은 성인 기준으로 0.001-100 ㎎/kg 범위 내이다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물의 스크리닝 방법을 제공한다:
(a) VEGFR-3 단백질 또는 이를 인코딩하는 유전자를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및
(2) 상기 시료 내 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성을 측정하는 단계,
상기 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성이 증가한 경우, 상기 시험물질은 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물로 판정한다.
본 발명에서 스크리닝된 조성물이 예방 또는 치료하고자 하는 mTOR 신호 결핍 관련 질환에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.
본 발명에서 용어“생물학적 시료”는 인간을 포함한 포유동물로부터 얻어지는, VEGFR-3를 발현하는 세포를 포함하고 있는 모든 시료로서, 조직, 기관, 세포 또는 세포 배양액을 포함하나, 이에 제한되지 않는다.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어“시험물질”은 VEGFR-3를 발현하는 세포를 포함하는 시료에 첨가되어 VEGFR-3의 활성 또는 발현량에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시험물질은 화합물, 뉴클레오타이드, 펩타이드 및 천연 추출물을 포함하나, 이에 제한되는 것은 아니다. 시험물질을 처리한 생물학적 시료에서 VEGFR-3의 발현량 또는 활성을 측정하는 단계는 당업계에 공지된 다양한 발현량 및 활성 측정방법에 의해 수행될 수 있다. 측정 결과, VEGFR-3의 발현량 또는 활성이 증가된 경우 상기 시험물질은 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물로 판정될 수 있다.
본 명세서에서 용어“발현량 또는 활성의 증가”는 VEGFR-3에 의해 매개되는 mTOR 활성화가 측정 가능한 수준으로 증가될 정도로 VEGFR-3의 발현량 또는 VEGFR-3의 생체 내 고유한 기능이 증가하는 것을 의미한다. 구체적으로는 대조군에 비하여 활성 또는 발현량이 20% 이상 증가한 상태, 보다 구체적으로는 40% 이상 증가한 상태, 더욱 구체적으로는 60% 이상 증가한 상태를 의미할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 mTOR 매개 질환의 예방 또는 치료용 조성물의 스크리닝 방법을 제공한다:
(a) VEGFR-3 단백질 또는 이를 인코딩하는 유전자를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및
(2) 상기 시료 내 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성을 측정하는 단계,
상기 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성이 감소한 경우, 상기 시험물질은 mTOR 매개 질환의 예방 또는 치료용 조성물로 판정한다.
본 발명에서 스크리닝된 조성물이 예방 또는 치료하고자 하는 mTOR 매개 질환에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.
본 명세서에서 용어“발현량 또는 활성의 감소”는 VEGFR-3에 의해 매개되는 mTOR 활성화가 측정 가능한 수준으로 감소될 정도로 VEGFR-3의 발현량 또는 VEGFR-3의 생체 내 고유한 기능이 저해되는 것을 의미한다. 구체적으로는 대조군에 비하여 활성 또는 발현량이 20% 이상 감소한 상태, 보다 구체적으로는 40% 이상 감소한 상태, 더욱 구체적으로는 60% 이상 감소한 상태를 의미할 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 생물학적 시료는 성상교세포(astrocyte)를 포함하는 생물학적 시료이다.
본 발명의 또 다른 양태에 따르면, 본 발명은 VEGFR-3 단백질, VEGFR-3 단백질을 인코딩하는 핵산 분자 및 VEGFR-3의 활성화제로 구성된 군으로부터 선택되는 하나 이상을 유효성분으로 포함하는 약제학적 조성물을 대상체에 투여하는 단계를 포함하는 mTOR 신호 결핍 관련 질환의 예방 또는 치료 방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 VEGFR-3 단백질의 억제제를 유효성분으로 포함하는 약제학적 조성물을 대상체에 투여하는 단계를 포함하는 mTOR 매개 질환의 예방 또는 치료 방법을 제공한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 mTOR 신호결핍 관련질환 및 mTOR(mammalian target of rapamycin) 매개 질환의 예방 또는 치료용 조성물과 이들의 스크리닝 방법을 제공한다.
(b) 본 발명은 VEGFR-3의 발현 조절이 mTOR 신호 경로의 활성 조절로 이어진다는 새로운 발견에 기반하여, mTOR의 과도한 활성 또는 활성 결핍을 원인으로 하는 다양한 질환에 대한 효율적인 치료 타겟을 제공한다
(c) 본 발명은 특히 VEGFR-3 활성화를 통해 뇌전증에서의 과흥분상태를 차단하고 신경을 보호함으로써, 난치성 질환인 중첩성 뇌전증의 근원적인 치료제로 유용하게 이용될 수 있다.
도 1은 필로카르핀으로 뇌전증 중첩증 유발 후 해마에서 pS6와 VEGFR-3의 시간별 발현 양상을 보여주는 그림이다. 패널 A, E는 p6S 양성 뉴런-유사 세포가 정상 대조군 해마에서 발현됨을 보여준다 패널 B, F는 pS6 양성 신호가 뇌전증 중첩증 유발 후 1일 째 정상대조군과 비교하여 미세하게 증가하며, 비신경세포 형태의 pS6 양성세포가 뇌전증 중첩증 유발 후 4일 째 두드러지게 증가함을 보여주는 그림이다. 패널 D, H는 뇌전증 중첩증 7일 째, pS6 양성반응이 이전 시간보다 감소함을 보여준다. 스케일바 = 100 μm, 20 μm. 도 1b는 pS6, S6, VEGFR-3, GFAP의 웨스턴 블롯 분석을 통해 단백질 발현 변화가 면역조직염색 결과와 동일하게 나타남을 확인한 결과를 보여준다. *P< 0.05, **P< 0.01 및 ***P< 0.001 경우 대조군과 그룹과 유의한 차이가 있는 것으로 간주하였다(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 2는 뇌전증 중첩증 유발 후 VEGFR-3 양성인 반응성 성상교세포 내 pS6의 발현을 확인한 결과를 보여주는 그림이다. 패널 A-C는 정상대조군에서 대부분의 pS6 발현(녹색)은 GFAP 양성 성상교세포(청색)에서 확인되지 않지만, 일부 VEGFR-3 발현(적색)이 GFAP 양성 성상교세포 표면에서 관찰됨을 보여준다. 패널 D-F는 뇌전증 중첩증 유발 후 4일 째에 활성화된 성상교세포 내 pS6 발현이 VEGFR-3 발현과 일치함을 확인한 그림이다. 스케일바 = 20 μm
도 3은 mTOR 활성화를 억제함으로써 상성교세포의 VEGFR-3 발현이 감소함을 보여주는 그림이다. 도 3a는 VEGFR-3(적색)와 NeuN(녹색)의 이중 면역형광염색 결과로, 뇌전증 중첩증 유발 후 4일 째 해마의 CA1 영역에서 성상교세포 VEGFR-3의 발현이 정상대조군보다 증가됨을 확인한 결과를 보여준다. 하지만, mTOR 억제제인 라파마이신이 투여된 뇌전증 동물 모델의 해마에서 VEGFR-3 발현 세포가 현저하게 감소하였다. 스케일바 = 50 μm. 도 3b는 VEGFR-3 발현 세포 수에 대한 정량분석을 실시한 해마 서브피라미드 영역을 도식화한 그림이다. 도 3c는 표시된 해마 서브피라미드 영역에서 VEGFR-3 발현의 정량분석 결과를 보여주는 그림으로, 뇌전증 중첩증 유발에 의해 증가된 VEGFR-3 양성 성상교세포의 수가 라파마이신 투여에 의해 유의미하게 감소함을 확인하였다. 도 3d는 웨스턴 블롯을 통해 VEGFR-3 단백질 발현 양상을 분석한 결과로서, 뇌전증 중첩증 유발에 의해 증가된 VEGFR-3의 발현이 라파마이신 투여에 의해 다시 감소함을 보여준다. 도 3e는 VEGFR-3 단백질 밴드(β-액틴에 대해 정규화됨)에 밀도에 기반한 정량 분석 결과를 히스토그램으로 나타낸 그림으로에 역시 뇌전증 중첩증에 의한 VEGFR-3 발현의 증가가 라파마이신 투여에 의해 유의미하게 감소됨을 보여준다. *P< 0.05 및 ***P< 0.001인 경우 SE 4d-Veh 그룹과 유의한 차이가 있는 것으로 간주하였다(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 4는 뇌전증 중첩증 유발 후 해마에서의 VEGFR-3 발현을 억제하면 성상교세포에서의 mTOR 활성화가 감소됨을 보여주는 그림이다. 도 4a는 성상교세포 pS6 면역반응(적색)이 뇌전증 중첩증 유발 4일 째 해마 CA1 영역에서 확연하게 증가하지만, VEGFR-3 억제제인 SAR131675 (SAR) 투여에 의해 pS6 발현이 감소을 보여준다. 스케일바 = 50 μm. 도 4b는 정량분석 결과 뇌전증 중첩증에 의해 증가된 성상교세포 pS6 양성 세포수가 SAR 투여에 의해 유의미하게 감소함을 확인함을 보여주는 그림이다. 도 4c는 SAR 투여에 의한 pS6 발현 변화를 보여주는 웨스턴 블랏 분석 결과로서, 뇌전증 중첩증에 의해 증가된 pS6 단백질 발현이 SAR 투여에 의해 현저하게 억제됨을 확인하였다. *P< 0.05인 경우 SE 4d-Veh 그룹과 유의한 차이가 있는 것으로 간주하였다(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 5는 RA 처리가 SE 유도 후 해마에서의 GLT-1 발현을 감소시킴을 보여주는 그림이다. 도 5a는 서브피라미드 영역에서 SE에 의해 아교 GLT-1-양성 세포가 증가함을 나타내는 대표적인 그림이다(SE 4d-Veh); 그러나, RA 처리는 SE 유도 후 해마에서 아교 GLT-1 면역반응성을 약화시켰다(SE 4d-RA). 스케일바 = 50 μm; 나머지 이미지도 배율 동일함. 도 5b는 SE 4d-veh 및 SE 4d-RA 군의 서브피라미드 영역에서 Sham-Veh에 비해 아교 GLT-1-양성세포의 수가 유의하게 증가함을 보여주는 정량분석 결과이다. ***P<0.001, 통계적 유의성 있음(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 6은 VEGFR-3의 억제가 뇌전증 중첩증 유발 후 해마에서 GLT-1 발현과 성상교세포의 활성화를 약화시킴을 보여주는 그림이다. 도 6a에서 보는 바와 같이, GLT-1 발현(적색)은 정상대조군 해마 CA1 영역의 파라미드 신경세포층에서 확인되는 반면, 뇌전증 중첩증 유발 후 4일 째 해마에서 성상교세포 GLT-1 발현의 증가가 관찰되었다. 스케일바 = 50 μm. 도 6b는 정량분석 결과 정상대조군과 비교하여 뇌전증 중첩증 유발 후 해마에서 GLT-1 발현 세포수가 두드러지게 증가하지만, SAR 투여로 인해 VEGFR-3가 억제되자 성상교세포의 GLT-1 발현이 감소함을 보여주는 그림이다. 도 6c는 SAR 투여가 GLT-1 단백질 발현을 감소시킴을 웨스턴 블롯을 통해 확인한 결과를 나타낸다. 도 6d는 GFAP 양성 성성교세포(녹색)가 필로카르핀으로 유도된 뇌전증 중첩증에 의해 두드러지게 활성되며, VEGFR-3 억제제인 SAR 투여에 의해 GFAP 양성 성상교세포 발현이 감소됨을 보여주는 면역형광염색 결과를 보여준다. 스케일바 = 50 μm. 도 6e는 면역형광염색 결과와 동일하게, 웨스턴 블랏 분석에서 GFAP 발현이 SAR 투여에 의해 유의미하게 감소됨을 검증한 결과를 보여주는 그림이다. *P< 0.05인 경우 SE 4d-Veh 그룹과 유의한 차이가 있는 것으로 간주하였다(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 7은 SE 유도 이후 반응성 성상교세포에서 VEGFR-3의 증가가 미치는 영향을 보여주는 그림이다. VEGFR-3 증가는 같은 장기간의 발작 행동 후의 반응성 성상교세포에서의 mTOR 활성화에 영향을 미친다. 나아가, VEGFR-3-매개된 mTOR 활성화는 성상교세포의 GLT-1 발현을 증가시킴으로써 간질 아급성기(회색 화살표) 동안의 SE-유도된 과흥분을 감소시킬 수 있다. 이를 종합하면, 반응성 성상교세포에서의 VEGFR-3 증가는 해마에서의 과도한 흥분을 진정시키는 데에 중요한 역할을 하는 것으로 보인다.
도 8은 정상 및 뇌전증 상태에서 RA 처리가 해마에서의 Akt/mTOR 활성화에 미치는 영향을 나타낸 그림이다. 도 8a는 RA 처리 후 인산화된 Akt(pAkt)의 발현량 변화를 나타내는 웨스턴 블롯 분석 결과이다. 정상 상태에서, RA 처리는 sham-manipulated 마우스에서 Sham-Veh 그룹에 비해 해마에서의 pAkt 발현수준을 유의하게 증가시켰다. 간질 상황 하에서, SE 4d-Veh 및 SE 4d-RA 그룹의 해마에서의 pAkt 발현 수준은 Sham-Veh 그룹에 비해 유의하게 증가하였다. pAkt 밴드의 밀도에 기반한 각 시료의 정량분석 결과를 히스토그램으로 나타내었다(β-액틴에 대해 정규화함). *P<0.05 및 ***P< 0.001인 경우 Sham-Veh 동물과 통계적으로 유의한 차이를 가짐(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 도 8b는 RA 처리 pS6의 발현량 변화를 나타내는 웨스턴 블롯 결과이다. Sham-Veh과 Sham-Veh 그룹 간 유의한 차이는 나타나지 않았으나, RA 처리에 의해 뇌전증 유도 4일 경과 마우스(SE 4d-RA)의 해마에서의 pS6 발현이 SE 4d-Veh 그룹에 비해 유의하게 억제되었다. pS6 밴드의 밀도에 기반한 각 시료의 정량분석 결과를 히스토그램으로 나타내었다(β-액틴에 대해 정규화함). ***P< 0.001인 경우 Sham-Veh 동물과 통계적으로 유의한 차이를 가짐. # P<0.05인 경우 SE 4d-Veh 동물과 통계적으로 유의한 차이를 가짐(일원분산분석 후 Tukey’s post-hoc 검정, 각 그룹 당 n= 5). 모든 값은 평균 ± 표준오차로 표시하였다.
도 9는 VEGFR-3 억제가 필로카르핀 주사로 유도된 급성 간질에 미치는 효과를 보여주는 그림이다. 필로카르핀 주사 1시간 전 마우스에 SAR(50 mg/kg; i.p.) 또는 비이클 용액을 전처리하고, 필로카르핀 주사 후 발작 종료시까지의 발작 행동을 기록하였다. 도 9a는 경련성 발작(단계 3-5)의 총 횟수가 SAR-전처리 마우스에서 Veh-전처리 그룹에 비해 유의하게 증가함을 보여주는 그림이다. **P< 0.01인 경우 Veh-전처리 그룹과 통계적으로 유의한 차이를 가짐(스튜던트 t-검정, 각 그룹당 n=10). 도 9b 및 9c는 경련성 발작 및 SE의 개시시간에는 SAR- 및 Veh-전처리 그룹(각 그룹당 n = 10) 간 유의한 차이가 없음을 보여준다. 모든 값은 평균 ± 표준오차로 표시하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험방법
실험동물
수컷 C57BL/6 마우스(8주령, Orient Bio, Gyeonggi, Korea)를 표준 온도(22 ± 1℃) 및 습도(50 ± 1%)하에서 광-조절 환경(오전 8:00부터 오후 8:00까지 광조건)에서 먹이와 식수에 자유롭게 접근하도록 하면서 사육하였다. 모든 실험은 연세대학교 동물실험윤리위원회의 지침에 따라 시행하였다으며 실험동물의 수 및 고통이 최소화되도록 하였다.
필로카르핀을 이용한 SE 유도
필로카르핀(pilocarpine)으로 유도된 뇌전증 중첩증(status epilepticus, SE) 마우스 모델을 종래에 보고된 방법으로 확립하였다(Cho et al., 2019; Jeong, Lee, Kim, & Cho, 2011). 요약하면, 아트로핀 메틸 니트레이트(1 mg/kg; i.p.; Sigma-Aldrich) 처리 30분 뒤 마우스에 필로카르핀 염화수소(280-300 mg/kg; Sigma-Aldrich; St. Louis, MO, USA) 또는 또는 식염수(정상 대조군)를 복강주사하였다. 필로카르핀 처리 후, Racine 스케일(Racine, 1972)에 따라 발작 단계를 결정하였다. 4단계(뒷다리로 서기, rearing) 및 5단계(뒷다리로 서기 및 넘어짐, rearing and falling)에 도달하고 일반적인 긴장간대발작(tonic-clonic seizure)을 나타내는 동물은 뇌전증 중첩증(SE)을 가지는 것으로 간주하고 추가 연구를 위해 선정하였다. 필로카르핀 주사 후 운동 발작(motor seizures)을 모니터링하게 위해, 필로카르핀 주사 직후부터 발작 종료시까지 발작 빈도와 잠재기를 기록하였다. 발작 횟수는 필로카르핀 주사 후의 경련성 발작(3-5 단계) 총 횟수를 의미한다. 발작 및 SE의 개시 시간은 필로카르핀 주사 후 최초 경련성 발작(3 단계) 및 SE까지의 경과 시간으로 각각 측정하였다. SE 유도 2시간 뒤에, 디아제팜(10 mg/kg; i.p.)을 투여하여 발작을 종료시켰다. 회복 촉진을 위해 모든 실험동물에 5% 글루코스 용액을 복강 주사하고 물에 적신 먹이를 공급한 뒤 인큐베이터(30 ± 1℃)에 넣어 생리적 체온을 유지하였다. 모든 실험 마우스는 필로카르핀 또는 식염수 처리 후 1, 4 또는 7일 뒤에 희생시켰다.
라파마이신 및 SAR131675 처리
mTOR 신호를 억제하기 위해, 필로카르핀 처리 1시간 전에 라파마이신(RA; LC laboratories; Woburn, MA, USA)을 최초 투여(6 mg/kg; i.p.)하고 SE 유도 후 1일째 되는 날부터 3일간 매일 투여하였다(3 mg/kg; i.p.). 종래 보고된 방법에 따라(L.-H. Zeng, Rensing, & Wong, 2009), 라파마이신을 100% 에탄올에 용해시키고 주사 직전에 5% Tween 80, 5% 폴리에틸렌글리콜 400(Sigma-Aldrich) 및 4% 에탄올을 함유하는 비이클 용액에서 희석하였다. VEGFR-3 억제제인 SAR131675(SAR; Selleck Chemicals; Munich, Germany)를 종래 보고된 방법에 따라(Bhuiyan, Kim, Hwang, Lee, & Kim, 2015) 5% DMSO에 식염수와 함께 용해시켰다. RA 투여 방법과 마찬가지로, SAR를 필로카르핀 처리 1시간 전에 투여하고(50 mg/kg; i.p.), 필로카르핀으로 SE를 유도한 뒤 1일 후부터 3일간 매일 주사하였다(25 mg/kg; i.p.).
면역조직화학 및 면역형광 염색
면역조직화학 염색을 위해 마우스를 15% 클로랄 하이드레이트로 마취하고 식염수와 뒤이어 0.1 M 인산 완충액(PB; pH 7.4)에 용해된 4% 파라포름알데히드를 심장 관류하였다. 이후, 종래에 보고된 방법(Cho et al., 2019)대로 신속하게 뇌를 적출하고 30% 수크로스 용액으로 3일간 동결방지하였다. 다음으로, 시료를 액체질소로 신속하게 동결시켰다. 연속 절편 (20μm 두께)를 관상으로 120μm 간격으로 잘랐다(총 720μm, 매 7번째 절편에서 대천문으로부터 -1.58 및 -2.30 사이)(Franklin & Paxinos, 2008). 모든 절편은 0.01 M PBS(pH 7.4)로 세척하였다. 면역조직화학을 위해, 절편을 0.01M PBS에서 3% H2O2 및 10% 메탄올과 배양하여 내인성 퍼옥시다제 활성을 제거하였다. 다음으로, 절편을 0.01M PBS에 용해된 10% 고트 혈청(VectorLaboratories; Burlingame, CA, USA)으로 1시간 동안 고정하고 4℃에서 항-phospho S6 리보좀 단백질 항체(pS6; 1:200; Cell Signaling Technology; Beverly, MA, USA)와 함께 밤새 배양하였다. 다음날, 절편을 바이오틴화된 항-래빗 IgG(1:200; Vector Laboratories)와 함께 2시간 동안 상온에서 배양하고 아비딘-바이오틴 퍼옥시다제 복합 용액(Vector Laboratories)에 1시간 동안 넣어두었다. 마지막으로, 절편을 0.05M Tris-HCl(pH7.4)에 용해된 0.1% 디아미노벤지딘 테트라하이드로클로라이드 및 0.005% H2O2로 염색하였다. 염색 절편을 광학현미경(BX51; Olympus; Tokyo, Japan)으로 관찰하였다.
다중-면역형광 분석을 위해, 절편을 항-뉴런 핵(NeuN; 1:100; Millipore; Temecula, CA, USA), 항-아교세포섬유산성 단백질(glial fibrillary acidic protein) (GFAP; 1:400; Millipore), 항-VEGFR-3(1:500; Abnova; Taipei, Taiwan, China), 항-VEGFR-3(1:100; Abcam; Cambridge, A, USA), 항-pS6 (1:200; Cell Signaling Technology), 및 항-GLT-1 (1:200; Thermo Scientific; Rockford, IL, USA) 항체와 함께, 그리고 이어서 Cy3- (1:500; Jackson ImmunoResearch; West Grove, PA, USA), Cy5- (1:500; Jackson ImmunoResearch) 및 Alexa fluor 488-접합 IgG(1:300; Invitrogen; Carlsbad, CA, USA) 항체와 함께 4℃에서 밤새 배양하였다. 절편을 마운팅하고 공초점 현미경(LSM 700; Carl Zeiss; Thornwood, NY, USA)으로 관찰하였다.
아교-유사 VEGFR-3, pS6 및 GLT-1-발현 세포의 정량 분석
정상대조군 및 발작 유도 4일 뒤 동물의 해마에서 VEGFR-3, pS6 및 GLT-1-양성 세포의 발현 변화를 분석하기 위해, 6개의 관상 절편을 수득하였다. 세포 수를 종래에 보고된 방법에 따라 측정하였다(Cho et al., 2019; Jeong et al., 2011). VEGFR-3, pS6 및 GLT-1-양성 세포의 수를 방사층(stratum radiatum), 소강분자층(lacunosum moleculare) 및 치아이랑(dentate gyrus) 분자층을 포함하는 영역에서 측정하였다(도 3b). 각 절편에서 VEGFR-3, pS6 및 GLT-1-표지된 세포의 수는 ZEN 이미지 검사 소프트웨어(Carl Zeiss)를 이용하여 측정하였다.
웨스턴 블롯 분석
웨스턴 블롯 분석을 위한 뇌조직 시료는 종래 보고된 방법으로 준비하였다(Jeong, Lee, & Kim, 2015). 마우스 해마 조직을 균질화하고 4℃에서 15분간 14,000g로 원심분리하였다. 상등액을 새 튜브로 옮기고, 비친코닉산(bicinchoninic acid) 어세이 킷(Thermo Scientific)을 이용하여 농도를 측정하였다. 단백질을 젤 전기영동으로 분리한 뒤 전기영동 이동 시스템(Bio-Rad Laboratories; Hercules, CA, USA)을 이용하여 폴리비닐리덴 디플루오라이드 막(Millipore)으로 옮겼다. 막을 4℃에서 다음의 1차 항체와 함께 밤새 배양하였다: 항-VEGFR-3(Abcam), 항-인산화 Akt(Cell Signaling Technology), 항-Akt (Cell Signaling Technology), 항-pS6(Cell Signaling Technology), 항-S6(Cell Signaling Technology), 항-GFAP(Millipore), 항-GLT-1(Thermo Scientific), 및 항-β-액틴(Santa Cruz Biotechnology; Dallas, TX, USA). 세척 후, 막을 다시 2차 항체(Enzo Life Science; Farmingdale, NY, USA)와 배양하고, ECL 웨스턴 블롯팅 검출 시약(Amersham Biosciences; Piscataway, NJ, USA)을 이용하여 블롯팅을 하였다. 컴퓨터 이미지 장비 및 관련 소프트웨어(Fuji Film; Tokyo, Japan)를 이용하여 밴드의 밀도를 측정하였다 .
통계적 분석
모든 통계적 분석은 IBM SPSS statistics Version 25 (SPSS; Chicago, IL, USA)를 이용하여 수행하였다. 데이터는 평균 ± 표준오차(SEM)로 나타내고 스튜던트 t-검정 또는 일원분산분석 후 Tukey post-hoc 검정을 수행하였다. P < 0.05인 경우 통계적 유의성을 가지는 것으로 간주하였다.
실험결과
SE 후 해마에서의 pS6 및 VEGFR-3 발현의 변화
인산화된 리보좀 단백질인 S6(pS6)의 발현은 종종 mTOR 활성화의 표지자로 활용된다(Deli et al., 2012; Macias et al., 2013; L.-H. Zeng et al., 2009). 필로카르핀으로 SE가 유도된 후 해마에서 mTOR 활성화의 변화를 확인하기 위하여, pS6 발현에 대한 면역조직화학을 수행하였다. 그 결과, 정상 대조군 동물에서의 pS6 면역반응성은 CA1 및 CA3 서브필드의 피라미드 뉴런 및 몇몇 치아과립(dentate granule) 뉴런에서 주로 관찰되었으며(도 1a의 패널 A), CA1 서브필드의 방사층 및 소강분자층의 산재된 세포에서도 검출되었다(도 1a의 패널 E). 아교-유사 pS6 발현은 SE 유도 1일 뒤 방사층 및 소강분자층 CA1 서브필드에서 조금 증가하였다(도 1a의 패널 B 및 F). 아교-유사 pS6 발현은 SE 유도 후 4일 째에 최대수준에 이르렀으며(도 1a의 패널 C 및 G) SE 유도 후 7일 째부터 서서히 감소하였다(도 1a의 패널 D 및 H). 면역염색 결과와 마찬가지로, 웨스턴 블롯 분석결과 pS6의 발현수준은 SE 유도 4일 뒤부터 해마에서 정상 대조군 마우스에 비해 유의하게 증가하였다(정상 대조군(sham)대비 P=0.001; 도 1b). 본 발명자들의 종래 연구결과와 유사하게(Cho et al., 2019), 면역블롯팅 결과 VEGFR-3의 단백질 수준이 SE 유도 4일 뒤부터 해마에서 정상 대조군 마우스에 비해 유의하게 증가함을 확인하였다(정상 대조군(sham)대비 P=0.04; 도 1b). GFAP 단백질 수준은 SE 유도 후 4일(정상 대조군 대비 P= 0.003; 도 1b) 및 7일 (정상 대조군 대비 P= 0.001; 도 1b)째에 유의하게 증가하였다.
SE 유도 후의 pS6 및 VEGFR-3 발현변화를 확인한 뒤, pS6 및 VEGFR-3가 성상교세포 내에서 함께 존재하는지 여부를 삼중-면역형광 염색으로 조사하였다(도 2). 정상 대조군 동물에서, GFAP-발현 성상교세포 내의 pS6 발현은 관찰되지 않았으나, GFAP-발현 성상교세포 표면에서 VEGFR-3 발현은 다소간 관찰되었다(도 2 패널 A-C). 그러나, SE-유도 pS6 발현은 SE 유도 4일 후 해마의 VEGFR-3-발현 반응성 성상교세포에서 크게 증가되었다(도 2 패널 D-F). 이러한 결과는 mTOR 활성화가 SE 유도 후 성상교세포가 활성화되는 동안의 VEGFR-3 발현 증가와 관련되어 있음을 시사한다.
SE 유도 후 반응성 성상교세포에서의 mTOR 활성화와 VEGFR-3 발현 간의 양의 상관관계
다음으로, 라파마이신(RA) 처리에 의한 mTOR 활성화 억제가 해마에서 성상교세포의 VEGFR-3 발현 변화를 유도하는지를 조사하였다. 면역형광 염색 결과 성상교세포의 VEGFR-3 발현은 필로카르핀으로 SE를 유도한 뒤 4일 후 해마의 서브피라미드 영역에서 sham-Veh 및 sham-RA 그룹에 비해 눈에 띄게 증가하였으며, RA 처리는 해마의 서브피라미드 영역에서 성상교세포의 VEGFR-3 발현을 현저히 약화시켰다(도 3a). 해마 서브피라미드 영역의 VEGFR-3-양성 세포수를 정량하자(도 3b), VEGFR-3-발현 세포의 수가 sham-Veh 군에 비해 SE4d-Veh 군에서 유의하게 증가하였음을 확인하였다(sham-Veh 대비 P<0.001; 도 3c). 그러나, RA 처리는 발작 유도 4일째 되는 동물에 비해 해마 서브피라미드 영역에서 VEGFR-3-면역반응성 세포의 수를 유의하게 감소시켰다(SE 4d-Veh 대비 P<0.001; 도 3c). 면역염색 결과와 유사하게, 웨스턴 블롯 결과는 SE 유도 4일 뒤 VEGFR-3의 단백질 수준이 비이클-처리 정상 대조군에 비해 유의하게 증가함을 보여주었다(Sham-Veh 대비 P< 0.001; 도 3d 및 3f); 그러나, VEGFR-3 수준은 RA 처리에 의해 유의하게 약화되었다(SE 4d-Veh 대비 P=0.02; 도 3d 및 3f). sham-manipulated 마우스에서, RA 처리에 의해 VEGFR-3 수준이 비이클-처리 sham 그룹에 비해 유의하게 증가하였다(Sham-Veh 대비 P=0.012; 도 3d 및 3f). 나아가, RA 처리에 의해 인산화된 Akt 수준이 비이클-처리 sham 그룹에 비해 유의하게 증가하였다(Sham-Veh 대비 P= 0.025; 도 8).
SE 유도 후 반응성 성상교세포에서의 VEGFR-3 발현과 mTOR 활성화 간의 상관관계를 추가적으로 확인하기 위해, VEGFR-3 특이적 억제제인 SAR131675(SAR) (Alam et al., 2012)에 의한 VEGFR-3의 억제가 발작 유도 4일째 동물의 해마에서 성상교세포의 pS6 발현 변화를 유도하는지를 면역형광 염색 및 웨스턴 블롯팅으로 조사하였다. 면역형광 염색 결과 해마의 성상교세포에서 pS6 발현이 증가함을 확인한 반면, SE로 유도된 아교세포의 pS6 발현은 SAR가 처리된 발작 유도 4일째 동물(SE 4d-SAR)의 해마에서 현저히 감소하였다(도 4a). 정량분석 결과 역시 SAR 처리가 SE 유도 4일 뒤 해마에서 pS6를 발현하는 아교세포 수를 유의하게 감소시킴을 보여준다(SE 4d-Veh 대비 P< 0.001; 도 4b). 마찬가지로, 웨스턴 블롯 결과 SE에 의해 유도된 pS6 단백질 발현은 SAR 처리에 의해 현저히 약화됨을 보였다(P= 0.032 versus SE 4d-Veh; 도 4C). 이들 결과를 통해 성상교세포의 VEGFR-3 발현 증가는 SE 유도 후의 해마에서 mTOR 활성화와 관련이 있음을 알 수 있었다.
VEGFR-3 특이적 억제제가 SE 유도 후 반응성 성상교세포증에 미치는 영향
PI3K/Akt/mTOR 경로는 성상교세포의 1차 배양에서 GLT-1 조절에 영향을 미치는 것으로 보고된 바 있다(Wu, Kihara, Akaike, Niidome, & Sugimoto, 2010). 따라서, 본 발명자들은 RA 처리에 의한 mTOR 억제가 SE 후 해마에서의 GLT-1 발현을 조절하는지를 조사하고자 하였다. 그 결과, SE 유도 4일 뒤 아교-유사 GLT-1-양성 세포가 해마에서 증가함을 확인하였다(SE 4d-Veh; 도 5a). 반면, RA 처리에 의해 SE-유도된 아교 GLT-1 발현은 감소하는 것으로 나타났다(SE 4d-RA; 도 5a). 유사하게, 정량 분석 결과 비이클-처리된 SE 유도 4일 뒤 마우스에서 아교 GLT-1-양성 세포는 sham-Veh 그룹에 비해 해마의 서브피라미드 영역에서 유의하게 증가하였고(Sham-veh 대비 P<0.001; 도 5b), 증가된 아교 GLT-1-양성 세포의 수는 RA 처리에 의해 유의하게 감소하는 것으로 나타났다(SE 4d-Veh 대비 P=0.029; 도 5b). 웨스턴 블롯 결과 sham-Veh 및 SE 4d-Veh 그룹 간 전체 GLT-1 단백질 수준의 유의한 차이가 나타나지 않았다(도 5c). 그러나, RA 처리는 전체 GLT-1 단백질 수준을 SE 4d-Veh 그룹에 비해 유의하게 감소시켰다(SE 4d-Veh 대비 P= 0.011; 도 5c).
본 발명의 연구 결과가 성상교세포의 활성화에 있어 VEGFR-3 유도 및 mTOR 활성화 간의 상호작용을 시사하였으므로(도 3 및 4), 본 발명자들은 VEGFR-3의 억제가 SE 유도 후 해마에서 GLT-1 발현 및 성상교세포의 활성화 여부를 변동시킬 수 있을지를 조사하였다. SAR을 사전 처리한 경우 비이클 그룹에 비해 발작 횟수가 현저히 증가한 반면(P=0.002; 도 9), 경련성 발작과 SE 개시 시간에는 유의한 차이가 없었다. 면역형광 염색 결과, SE 유도 4일 뒤 해마에서 아교-유사 GLT-1 면역반응성은 sham-Veh 및 sham-SAR 군에 비해 유의하게 증가함을 확인하였다(도 6a). 그러나, 증가된 아교-유사 GLT-1 발현은 SAR 처리에 의해 다시 감소하였다(SE4d-SAR; 도 6a). 이러한 결과와 일치하여, 정량분석 결과 아교 GLT-1-양성 세포의 수는 SE 유도 4일 뒤 해마 서브피라미드 영역에서 Sham-Veh 그룹에 비해 유의하게 증가하였고(Sham-Veh 대비 P< 0.001; 도 6b), 이러한 증가는 해마에서 SAR 처리에 의해 다시 약화되었다(SE 4d-Veh 대비 P= 0.005; 도 6b). GLT-1에 대한 웨스턴 블롯 결과 비이클을 처리한 정상 대조군(sham-manipulated)과 비이클을 처리한 발작 유도 4일째 마우스 간의 유의한 차이는 없었으나, SAR 처리에 의해 전체 GLT-1 단백질의 수준이 유의하게 감소하였다(SE 4d-Veh 대비 P= 0.023; 도 6c). 또한, 면역형광 염색 결과 GFAP-발현 반응성 성상교세포가 SE 유도 후 해마에서 증가하였고, SAR 처리에 의해 다시 감소함을 확인하였다(도 6d). 이중-면역형광 염색 결과와 마찬가지로, 웨스턴 블롯 분석 결과는 SE에 의해 유도된 GFAP 발현 수준이 SAR 처리에 의해 SE 4d-Veh 그룹 대비 유의하게 감소하였음을 보여준다(SE 4d-Veh에 대해 P=0.042; 도 6e). 이러한 결과는 SE 이후 성상교세포의 VEGFR-3 발현이 해마에서의 반응성 성상교세포의 mTOR-매개된 GLT-1 발현과 성상교세포의 활성화에 관여할 가능성을 시사한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (12)

  1. VEGFR-3 단백질, VEGFR-3 단백질을 인코딩하는 핵산 분자 및 VEGFR-3의 활성화제로 구성된 군으로부터 선택되는 하나 이상을 유효성분으로 포함하는 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물.
  2. 제 1 항에 있어서, 상기 mTOR 신호 결핍 관련 질환은 뇌전증, 근위축증, 우울증 및 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  3. 제 2 항에 있어서, 상기 골질환은 골다공증, 골연화증, 구루병, 섬유성 골염, 암세포의 골전이로 인한 골손상, 무형성 골질환, 대사성 골질환 및 퇴행성 관절염으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  4. VEGFR-3 단백질의 억제제를 유효성분으로 포함하는 mTOR 매개 질환의 예방 또는 치료용 조성물.
  5. 제 4 항에 있어서, 상기 mTOR 매개 질환은 암, 신경퇴행성 질환(Neurodegenerative disease), 대사질환(metabolic disorder), 염증성 질환 및 성상교세포증(actrocytosis)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  6. 제 5 항에 있어서, 상기 암은 신장암, 유방암, 폐암, 위암, 방광암, 전립선암, 난소암, 자궁경부암, 림프종, 백혈병 및 골수형성이상증후군(myelodysplastic syndrome)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  7. 제 5 항에 있어서, 상기 신경퇴행성 질환은 알츠하이머병(Alzheimer’s disease), 파킨슨병(Parkinson’s disease), 헌팅턴병(Huntington’s disease), 근위축성 측삭 경화증(Amyotrophic Lateral Sclerosis), 중증 근무력증(myasthenia gravis) 및 피크병(Pick’s disease)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  8. 제 5 항에 있어서, 상기 대사질환은 비만, 당뇨, 이상지방혈증(dyslipidemia), 지방간 및 인슐린 저항성 증후군(insulin resistance syndrome)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  9. 제 5 항에 있어서, 상기 성상교세포증(actrocytosis)은 신경교종(glioma), 교아종(glioblastoma), 성상세포종(astrocytoma), 뇌졸중(stroke), 외상성 뇌손상(traumatic brain injury) 근위축성 측삭경화증(Amyotrophic Lateral Sclerosis: ALS)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  10. 다음의 단계를 포함하는 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물의 스크리닝 방법:
    (a) VEGFR-3 단백질 또는 이를 인코딩하는 유전자를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및
    (2) 상기 시료 내 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성을 측정하는 단계,
    상기 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성이 증가한 경우, 상기 시험물질은 mTOR 신호 결핍 관련 질환의 예방 또는 치료용 조성물로 판정한다.
  11. 다음의 단계를 포함하는 mTOR 매개 질환의 예방 또는 치료용 조성물의 스크리닝 방법:
    (a) VEGFR-3 단백질 또는 이를 인코딩하는 유전자를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및
    (2) 상기 시료 내 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성을 측정하는 단계,
    상기 VEGFR-3 단백질 또는 이를 인코딩하는 유전자의 발현량 또는 활성이 감소한 경우, 상기 시험물질은 mTOR 매개 질환의 예방 또는 치료용 조성물로 판정한다.
  12. 제 10 항 또는 제 11 항에 있어서, 상기 생물학적 시료는 성상교세포(astrocyte)를 포함하는 생물학적 시료인 것을 특징으로 하는 방법.
PCT/KR2021/003051 2020-03-11 2021-03-11 VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법 WO2021182900A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200030038A KR102371269B1 (ko) 2020-03-11 2020-03-11 VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법
KR10-2020-0030038 2020-03-11

Publications (2)

Publication Number Publication Date
WO2021182900A2 true WO2021182900A2 (ko) 2021-09-16
WO2021182900A3 WO2021182900A3 (ko) 2021-11-04

Family

ID=77671857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003051 WO2021182900A2 (ko) 2020-03-11 2021-03-11 VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법

Country Status (2)

Country Link
KR (1) KR102371269B1 (ko)
WO (1) WO2021182900A2 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03010099A (es) * 2001-05-08 2004-03-10 Schering Ag Amidas de antranilamida-piridina selectivas como inhibidores de vegfr-2 y vegfr-3.
MXPA06003163A (es) * 2003-09-23 2006-06-05 Novartis Ag Combinacion de un inhibidor de receptor de vegf con un agente quimioterapeutico.
BRPI0908100A2 (pt) * 2008-02-21 2015-10-06 Astrazeneca Ab produto combinação, uso de um composto, e, método de tratar câncer
TWI583374B (zh) 2010-03-30 2017-05-21 Gw伐瑪有限公司 使用植物大麻素次大麻二酚(cbdv)來治療癲癇之用途
ES2757598T3 (es) * 2012-08-06 2020-04-29 Pitney Pharmaceuticals Pty Ltd Compuestos para el tratamiento de las enfermedades relacionadas con la vía mTOR
KR20180120476A (ko) * 2017-04-27 2018-11-06 가톨릭대학교 산학협력단 Vegfr3 억제제를 유효성분으로 포함하는 당뇨병성 미세혈관 합병증의 예방 또는 치료용 약학 조성물
JP2019184237A (ja) * 2018-03-30 2019-10-24 学校法人 岩手医科大学 急性肺傷害治療剤のスクリーニング方法

Also Published As

Publication number Publication date
WO2021182900A3 (ko) 2021-11-04
KR102371269B1 (ko) 2022-03-07
KR20210114661A (ko) 2021-09-24

Similar Documents

Publication Publication Date Title
US11813244B2 (en) Agent for eliminating senescent cells
US8097596B2 (en) Compositions and methods for the treatment of muscle wasting
KR100917657B1 (ko) 산화환원 효소에 의해 nad(p)/nad(p)h비율을 조절하는 방법
Wu et al. Ursolic acid improves domoic acid-induced cognitive deficits in mice
NO330512B1 (no) Anvendelse av 4-H-1-benzopyran-4-on-derivater for fremstilling av et farmasoytisk preparat for inhibering av glatt muskelcelle proliferering
JP6253596B2 (ja) アシル補酵素a:リゾカルジオリピン・アシル基転移酵素1(alcat1)の発現、機能または活性の阻害物質を同定する方法
CN109593814A (zh) 筛选分析、鉴别药剂的方法及药物组合物
WO2014182051A1 (ko) Asm 억제제를 유효성분으로 포함하는 퇴행성 신경질환의 예방 또는 치료용 조성물
WO2016137037A1 (ko) Dpp-4 억제제를 포함하는 판막 석회화의 예방 또는 치료용 조성물
KR20190110938A (ko) Cox2 아세틸화제를 유효성분으로 포함하는 퇴행성 신경질환의 예방 또는 치료용 약학적 조성물
JP2015514966A5 (ko)
EP3119406B1 (en) Methods for improving cognitive function via modulation of quinone reductase 2
JP6918839B2 (ja) 概日時計の乱れに関連するマイクロバイオームの調節異常を処置するための方法及び医薬組成物
JP2021106625A (ja) Il−34アンチセンスオリゴヌクレオチドおよびその使用方法
Cao et al. Signaling pathways and intervention for therapy of type 2 diabetes mellitus
CA2558160A1 (en) Antisense oligonucleotide targeting myostatin or fox01 for treatment of muscle wasting
KR20150088204A (ko) Gpr119 리간드를 유효성분으로 포함하는 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물
CN110384801B (zh) miRNA552簇的微小RNA在治疗LDLC相关代谢性疾病中的应用
Martí-Pàmies et al. Deficiency of bone morphogenetic protein-3b induces metabolic syndrome and increases adipogenesis
WO2021182900A2 (ko) VEGFR-3 발현 조절을 통한 mTOR 관련 질환의 예방 또는 치료 방법
CN112007157B (zh) Mrg15蛋白或基因作为靶点在代谢疾病治疗和预防中的应用
WO2024167366A1 (ko) 노화성 근골격계 질환의 예방 또는 치료용 약학 조성물
US20190226002A1 (en) Obesity-related disease therapeutic agent by hepatic secretory metabolic regulator inhibitory action
WO2023063564A1 (ko) Pcaf 억제제를 포함하는 혈관 석회화 예방 또는 치료용 약제학적 조성물
WO2023068820A1 (ko) 암 치료 또는 예방용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768376

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768376

Country of ref document: EP

Kind code of ref document: A2