[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021182421A1 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
WO2021182421A1
WO2021182421A1 PCT/JP2021/009080 JP2021009080W WO2021182421A1 WO 2021182421 A1 WO2021182421 A1 WO 2021182421A1 JP 2021009080 W JP2021009080 W JP 2021009080W WO 2021182421 A1 WO2021182421 A1 WO 2021182421A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
controller
command signal
traveling hydraulic
motor
Prior art date
Application number
PCT/JP2021/009080
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 抜井
泰典 宮本
幸次 兵藤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2021182421A1 publication Critical patent/WO2021182421A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4192Detecting malfunction or potential malfunction, e.g. fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity

Definitions

  • the present invention relates to a work vehicle equipped with an HST type traveling drive system.
  • the hydraulic pump and hydraulic motor are connected in a closed circuit, and the hydraulic pressure generated by driving the hydraulic pump with the engine is converted into rotational force by the hydraulic motor.
  • An HST type traveling drive system that converts the driving force into traveling driving force is known.
  • a variable-capacity traveling hydraulic pump driven by an engine and a variable-capacity driving hydraulic pump driven by hydraulic oil discharged from the traveling hydraulic pump are used in a main hydraulic circuit which is a closed circuit.
  • a forklift including a hydraulic motor and traveling a vehicle by transmitting the driving force of the hydraulic motor to wheels is disclosed.
  • the capacity of the traveling hydraulic pump is increased by operating the pump capacity control cylinder with a forward electromagnetic proportional valve and a reverse electromagnetic proportional valve that operate according to a command signal given from the control device via a signal line. (Slanted plate tilt angle) is changed.
  • the pump capacity control cylinder can be electronically controlled independently on the forward side and the reverse side by the command signal output from the control device, so that the pump capacity control is hydraulically performed using a throttle or a valve. Compared with the case of controlling the cylinder, the responsiveness of the change of the tilt angle in the traveling hydraulic pump is improved.
  • the tilt piston of the traveling hydraulic pump operates quickly as much as the response of the tilt control of the traveling hydraulic pump is good, so that the vehicle speed tends to change suddenly.
  • the vehicle is operating in a normal state, it is possible to control the tilt of the traveling hydraulic pump according to the command signal output from the control device. If the signal line between the forward electromagnetic proportional valve and the valve is broken, the pressure oil that controls the tilt of the traveling hydraulic pump is returned to the hydraulic oil tank, the tilting piston becomes neutral, and the traveling hydraulic pump becomes neutral.
  • the discharge flow rate of is 0 (zero). As a result, the forklift will suddenly decelerate and easily lose its balance.
  • an object of the present invention is to provide a work vehicle that does not easily decelerate suddenly even when a signal line for electronically controlling the capacity of a traveling hydraulic pump is disconnected.
  • the present invention comprises a vehicle body provided with a plurality of wheels, an engine mounted on the vehicle body, a variable displacement traveling hydraulic pump driven by the engine, and the traveling.
  • a variable displacement traveling hydraulic motor that is connected to the hydraulic pump in a closed circuit and transmits the driving force of the engine to the plurality of wheels, a controller that controls the traveling hydraulic pump and the traveling hydraulic motor, and the like.
  • the pump tilt control device that controls the push-out volume of the traveling hydraulic pump based on the pump command signal output from the controller and transmitted via the signal line, and the motor command signal output from the controller.
  • the controller is said to be based on the pump command signal transmitted from the controller to the pump tilt control device.
  • the push-out volume of the traveling hydraulic motor when the pump command signal is normally output from the controller immediately before determining the abnormal state to the pump tilt control device is used. It is characterized in that the push-out volume of the traveling hydraulic motor is controlled so as to be small.
  • FIG. 1 is a side view showing the appearance of the wheel loader 1 according to the embodiment of the present invention.
  • the wheel loader 1 is an articulated work vehicle that is steered by bending the vehicle body near the center. Specifically, the front frame 1A, which is the front part of the vehicle body, and the rear frame 1B, which is the rear part of the vehicle body, are rotatably connected in the left-right direction by the center joint 10, and the front frame 1A is connected to the rear frame 1B. On the other hand, it bends in the left-right direction.
  • the vehicle body is provided with four wheels 11, two wheels 11 as front wheels 11A on the left and right sides of the front frame 1A, and the remaining two wheels 11 as rear wheels 11B on the left and right sides of the rear frame 1B. ing. Note that, in FIG. 1, of the pair of left and right front wheels 11A and rear wheels 11B, only the left front wheels 11A and rear wheels 11B are shown. Further, the specific number of the plurality of wheels 11 provided on the vehicle body is not particularly limited.
  • a hydraulically driven cargo handling work device 2 used for cargo handling work is attached to the front part of the front frame 1A.
  • the cargo handling work device 2 serves as a lift arm 21 having a base end attached to the front frame 1A, two lift arm cylinders 22 for driving the lift arm 21, and a work tool attached to the tip of the lift arm 21. It has a bucket 23, a bucket cylinder 24 for driving the bucket 23, and a bell crank 25 rotatably connected to the lift arm 21 to form a link mechanism between the bucket 23 and the bucket cylinder 24.
  • the two lift arm cylinders 22 are arranged side by side in the left-right direction of the vehicle body, but in FIG. 1, only the lift arm cylinder 22 arranged on the left side is shown by a broken line.
  • the lift arm 21 rotates upward with respect to the front frame 1A by supplying hydraulic oil to the bottom chambers of the two lift arm cylinders 22 and extending the rod 220, and the rods of the two lift arm cylinders 22 respectively.
  • the hydraulic oil is supplied to the chamber and the rod 220 contracts to rotate downward with respect to the front frame 1A.
  • the bucket 23 is tilted (rotated upward with respect to the lift arm 21) by supplying hydraulic oil to the bottom chamber of the bucket cylinder 24 and extending the rod 240, and enters the rod chamber of the bucket cylinder 24.
  • the hydraulic oil is supplied and the rod 240 contracts to dump (rotate downward with respect to the lift arm 21).
  • the bucket 23 can be replaced with various attachments such as blades, and the wheel loader 1 performs various operations such as soil pushing work and snow removal work in addition to excavation work using the bucket 23. You can also do it.
  • a balance is maintained between the driver's cab 12 on which the operator is boarded, the machine room 13 for accommodating each device necessary for driving the wheel loader 1, and the cargo handling work device 2 so that the vehicle body does not tilt.
  • a counter weight 14 for this purpose is provided.
  • the driver's cab 12 is arranged at the front
  • the counterweight 14 is arranged at the rear
  • the machine room 13 is arranged between the driver's cab 12 and the counterweight 14.
  • FIG. 2 is a diagram showing a configuration example of the drive system of the wheel loader 1 according to the first embodiment.
  • the traveling hydraulic pump 31 and the traveling hydraulic motor 32 are connected by a pair of hydraulic pipelines 301 and 302 in a closed circuit, and the traveling hydraulic pump 31 is driven by the engine 30.
  • the vehicle body is driven by the HST type traveling drive system in which the hydraulic pressure is converted into the rotational force by the traveling hydraulic motor 32 and used as the traveling driving force.
  • the engine 30 operates on a charge pump 31A for supplying hydraulic oil for controlling the traveling hydraulic pump 31 and a cargo handling hydraulic circuit 20 for driving the cargo handling work device 2.
  • a cargo handling hydraulic pump 33 for supplying oil is connected.
  • the cargo handling hydraulic pump 33 is a variable capacity type hydraulic pump, but the present invention is not limited to this, and a fixed capacity type hydraulic pump may be used.
  • the traveling hydraulic pump 31 is a sloping plate type or sloping shaft type variable displacement hydraulic pump in which the push-out volume is controlled according to the tilt angle (tilt amount).
  • the tilt angle is controlled by the pump tilt control device 310 based on the pump command signal output from the controller 5.
  • the pump tilt control device 310 includes a pump tilt cylinder 311 that moves the tilt of the traveling hydraulic pump 31 by supplying pressure oil discharged from the charge pump 31A, and a pump tilt cylinder 311 when the vehicle body moves forward.
  • the forward side pump tilt control valve 312 for controlling the pump tilt control valve 312 and the reverse side pump tilt control valve 313 for controlling the pump tilt cylinder 311 when the vehicle body is moving backward are provided.
  • the forward pump tilt control valve 312 is based on a forward pump command signal (hereinafter, simply referred to as “forward pump command signal”) output from the controller 5 and transmitted via the forward signal line 41. , An electromagnetic proportional pressure reducing valve that reduces the pressure on the forward side (acting pressure on the forward side) acting on the pump tilting cylinder 311.
  • the reverse pump tilt control valve 313 is referred to as a reverse pump command signal (hereinafter, simply referred to as "reverse pump command signal”) output from the controller 5 and transmitted via the reverse signal line 42. ), It is an electromagnetic proportional pressure reducing valve that reduces the pressure on the reverse side (acting pressure on the reverse side) acting on the pump tilting cylinder 311.
  • the traveling hydraulic motor 32 is a swash plate type or sloping shaft type variable displacement hydraulic motor in which the push-out volume is controlled according to the tilt angle (tilt amount).
  • the tilt angle is controlled by the motor tilt control device 320 based on the motor command signal output from the controller 5.
  • the motor tilt control device 320 controls the motor tilt cylinder 321 and the motor tilt cylinder 321 that move the tilt of the traveling hydraulic motor 32 by supplying the hydraulic oil discharged from the traveling hydraulic pump 31.
  • a motor tilt control valve 322 is provided.
  • the motor tilt control valve 322 has a first switching position 322A for contracting the rod 321A of the motor tilt cylinder 321 and a second for extending the rod 321A of the motor tilt cylinder 321 based on the motor command signal output from the controller 5.
  • the 2 switching position 322B is switched.
  • the motor tilt control valve 322 When the motor tilt control valve 322 is switched to the first switching position 322A (state shown in FIG. 2), the motor tilt cylinder 321 travels while the hydraulic oil discharged from the bottom chamber 321B flows into the hydraulic oil tank 34. The hydraulic oil discharged from the hydraulic pump 31 flows into the rod chamber 321C. As a result, the rod 321A contracts, and the tilt angle of the traveling hydraulic motor 32 is controlled to decrease.
  • the traveling hydraulic pump 31 is driven by the driving force of the engine 30.
  • the traveling hydraulic motor 32 is rotationally driven by the hydraulic oil discharged from the traveling hydraulic pump 31, and the output torque from the traveling hydraulic motor 32 is transmitted to the four wheels 11 via the transmission 15 and the axle 16.
  • the wheel loader 1 runs.
  • the forward / backward changeover switch 122 when the forward / backward changeover switch 122 is used to switch to the forward side, the hydraulic oil discharged from the traveling hydraulic pump 31 is sent to the forward side hydraulic line 301 of the pair of hydraulic lines 301 and 302. It is guided and flows into the traveling hydraulic motor 32, and the traveling hydraulic motor 32 rotates in the forward direction, so that the vehicle body travels forward.
  • the forward / backward changeover switch 122 switches to the reverse side, the hydraulic oil discharged from the traveling hydraulic pump 31 is guided to the traveling hydraulic pipeline 302 and flows into the traveling hydraulic motor 32. As the traveling hydraulic motor 32 rotates in the reverse direction, the vehicle body travels backward.
  • the pressure generated in the forward side hydraulic line 301 (HST main circuit pressure at the time of forward movement) is the pressure generated in the reverse side hydraulic line 302 (HST main circuit pressure at the time of reverse movement) by the first pressure sensor 43A.
  • a pair of high-pressure relief valves 351 and 352 are provided on the connecting pipe 303 connecting the pair of hydraulic pipes 301 and 302.
  • the connection line 303 is branched from between the pair of high-pressure relief valves 351 and 352 and connected to the hydraulic oil tank 34, and the low-pressure relief valve 353 is provided on the branch line.
  • the wheel loader 1 is provided with a speed stage switch 123 as a speed stage selection device for selecting the speed stage of the vehicle body in the driver's cab 12.
  • a speed stage switch 123 By operating the speed stage switch 123, the gear combination of the transmission 15 is changed, and a desired speed stage is selected from the four speed stages.
  • the speed stage switch 123 is mainly used for the forward traveling of the wheel loader 1.
  • the 1st speed stage is the lowest speed stage (lowest speed stage), and is selected at the time of work requiring traction force such as excavation work and hill climbing work.
  • the two speed stages are speed stages set one step larger than the first speed stage, which is the lowest speed stage, and are selected, for example, during a dump approach operation. These 1st speed stage and 2nd speed stage correspond to "low speed stage”.
  • the 3rd speed stage is a speed stage set one step larger than the 2nd speed stage
  • the 4th speed stage is a speed stage set 1 step larger than the 3rd speed stage and is the maximum speed stage. These 3 speed stages and 4 speed stages are selected, for example, when transporting a load, and correspond to "medium to high speed stages".
  • the wheel loader 1 controls (shifts) the vehicle speed by continuously increasing or decreasing the discharge flow rate of the traveling hydraulic pump 31, and further electronically controls the traveling hydraulic pump 31 and the traveling hydraulic motor 32 by the controller 5. It improves responsiveness and enables smooth start, deceleration, and stop with less impact.
  • the pump command signal output from the controller 5 is transmitted to the forward pump tilt control valve 312 and the reverse pump tilt control valve 313.
  • the hydraulic oil acting on the pump tilting cylinder 311 is returned to the hydraulic oil tank 34.
  • the pump tilting cylinder 311 is in a neutral state and the discharge flow rate of the traveling hydraulic pump 31 becomes 0 (zero), so that a braking force is generated and the vehicle body suddenly decelerates and stops. Therefore, in the present embodiment, when such a situation occurs, the controller 5 controls the tilt angle of the traveling hydraulic motor 32 to avoid sudden deceleration of the vehicle body.
  • the disconnection of the forward side signal line 41 and the reverse side signal line 42 will be described as an example, but the present invention is not limited to this.
  • the case where the forward side pump tilt control valve 312, the reverse side pump tilt control valve 313, or the controller 5 fails is also included when the pump command signal is not output from the controller 5 to the pump tilt control device 310. Is done.
  • FIG. 3 is a functional block diagram showing the functions of the controller 5 according to the first embodiment.
  • the controller 5 is configured by connecting a CPU, RAM, ROM, HDD, input I / F, and output I / F to each other via a bus. Then, various operating devices such as the accelerator pedal 121 and the forward / backward changeover switch 122, and various sensors are connected to the input I / F, and the forward side pump tilt control valve 312, the reverse side pump tilt control valve 313, and the reverse side pump tilt control valve 313, and A motor tilt control valve 322 or the like is connected to the output I / F.
  • the CPU reads the control program (software) stored in a recording medium such as a ROM, HDD, or optical disk, expands it on the RAM, and executes the expanded control program for control.
  • the program and the hardware work together to realize the function of the controller 5.
  • the controller 5 is described as a computer configured by a combination of software and hardware, but the present invention is not limited to this, and for example, as an example of the configuration of another computer, the wheel loader 1 side.
  • An integrated circuit that realizes the function of the controller to be executed may be used.
  • the controller 5 includes a data acquisition unit 50, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56. including.
  • the data acquisition unit 50 acquires data on the amount of depression of the accelerator pedal 121, the forward / backward changeover signal output from the forward / backward changeover switch 122, and the magnitude of the pump command signal output from the pump command signal output unit 51, respectively. ..
  • the pump command signal output unit 51 sends a forward pump command signal to the forward pump tilt control valve 312 in reverse based on the depression amount of the accelerator pedal 121 and the forward / backward switching signal acquired by the data acquisition unit 50.
  • a reverse pump command signal is output to the side pump tilt control valve 313.
  • the disconnection detection unit 52 detects the disconnection of the forward side signal line 41 and the disconnection of the reverse side signal line 42 based on the magnitude of the pump command signal acquired by the data acquisition unit 50. That is, the disconnection detection unit 52 pumps from the controller 5 to the pump tilt control device 310 based on the magnitude of the pump command signal transmitted from the controller 5 (pump command signal output unit 51) to the pump tilt control device 310. It detects whether or not the command signal is output and determines the abnormal state of the pump command signal.
  • a constant command current is applied to the forward signal line 41 and the reverse signal line 42, respectively, even when the accelerator pedal 121 and the forward / backward changeover switch 122 are not operated. If the wire is broken, the command current is cut off and becomes 0 (zero). Therefore, the disconnection detection unit 52 can detect the disconnection based on the command current applied to each of the forward signal line 41 and the reverse signal line 42 becoming zero.
  • the motor command signal output unit 53 detects that the forward signal line 41 or the reverse signal line 42 is disconnected in the disconnection detection unit 52, that is, when an abnormal state of the pump command signal is determined, the traveling hydraulic motor 32
  • a first motor command signal that reduces the tilt angle ⁇ to the first target angle ⁇ 1 is output to the motor tilt control valve 322.
  • This "first target angle ⁇ 1" is an angle smaller than the tilt angle of the traveling hydraulic motor 32 when the forward side signal line 41 or the reverse side signal line 42 is disconnected, and is, for example, the maximum tilt of the traveling hydraulic motor 32. It is set to an angle of 1/2 of the turning angle, an angle of 1/2 of the tilting angle at the time of disconnection, a minimum tilting angle of the traveling hydraulic motor 32, and the like.
  • the "tilt angle of the traveling hydraulic motor 32 when the forward signal line 41 or the reverse signal line 42 is disconnected" is the controller immediately before the disconnection of the forward signal line 41 or the reverse signal line 42 is detected. This corresponds to the tilt angle of the traveling hydraulic motor 32 when the pump command signal is normally output from 5 to the pump tilt control device 310. Therefore, when the motor command signal output unit 53 detects that the forward signal line 41 or the reverse signal line 42 is disconnected (determines an abnormal state of the pump command signal) in the disconnection detection unit 52, the traveling hydraulic motor The pump command signal from the controller 5 immediately before the disconnection of the forward side signal line 41 or the reverse side signal line 42 is detected (the abnormal state of the pump command signal is determined) to the pump tilt control device 310 at the tilt angle ⁇ of 32. Is smaller than the tilt angle of the traveling hydraulic motor 32 when is normally output.
  • the motor command signal output unit 53 transmits a second motor command signal that increases the tilt angle ⁇ of the traveling hydraulic motor 32 that has been slightly tilted to the first target angle ⁇ 1 to the second target angle ⁇ 2 (> ⁇ 1). Output to the tilt control valve 322.
  • the "second target angle ⁇ 2" may be an angle larger than the first target angle ⁇ 1, and is set to, for example, the maximum tilt angle of the traveling hydraulic motor 32.
  • the time measuring unit 54 measures the elapsed time t after the first motor command signal is output to the motor tilt control valve 322 in the motor command signal output unit 53.
  • the elapsed time determination unit 55 determines whether or not the elapsed time t measured by the time measurement unit 54 is equal to or longer than the predetermined set time T1 (hereinafter, simply referred to as “set time T1”).
  • This "set time T1" is for traveling after the forward side signal line 41 or the reverse side signal line 42 is disconnected (that is, after the pump command signal is no longer output from the controller 5 to the pump tilt control device 310). This is a preset time as the time until the discharge flow rate of the hydraulic pump 31 becomes zero.
  • the set time T1 is stored in the storage unit 56, which is a memory.
  • the motor command signal output unit 53 sends a second motor command signal to the motor tilt control valve 322 when the elapsed time t becomes the set time T1 or more (t ⁇ T1) in the elapsed time determination unit 55. Output. Further, in the present embodiment, the second motor command signal increases the tilt angle ⁇ of the traveling hydraulic motor 32 from the first target angle ⁇ 1 to the second target angle ⁇ 2 over a predetermined time T2. This "predetermined time T2" is a time longer than the time required to reduce the tilt angle ⁇ of the traveling hydraulic motor 32 to the first target angle ⁇ 1 based on the first motor command signal.
  • FIG. 4 is a flowchart showing the flow of processing executed by the controller 5 according to the first embodiment.
  • the data acquisition unit 50 acquires the pump command signal output from the pump command signal output unit 51 (step S501). Subsequently, the disconnection detection unit 52 determines whether or not the forward signal line 41 or the reverse signal line 42 is disconnected based on the pump command signal acquired in step S501 (step S502).
  • step S502 When it is determined in step S502 that the forward side signal line 41 or the reverse side signal line 42 is broken, that is, when the disconnection detection unit 52 detects the disconnection of the forward side signal line 41 or the reverse side signal line 42 (step S502 / YES), the motor command signal output unit 53 outputs a first motor command signal that causes the motor tilt angle ⁇ to be slightly tilted to the first target angle ⁇ 1 (step S503).
  • the wheel loader 1 can suppress the braking force generated by the pump tilting cylinder 311 being in the neutral state at the time of disconnection, and can obtain the braking force according to the first target angle ⁇ 1. Therefore, it becomes difficult to decelerate suddenly. Therefore, even if the forward signal line 41 or the reverse signal line 42 is disconnected, the wheel loader 1 avoids sudden deceleration of the vehicle body by the controller 5 and is in a stable state without losing the balance. It will be possible to stop.
  • the first motor command signal when the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42, the first motor command signal instantly sets the motor tilt angle ⁇ to the first target angle ⁇ 1.
  • the motor tilt angle ⁇ may be slightly tilted to the first target angle ⁇ 1 over a period of time such that sudden deceleration of the vehicle body does not occur.
  • step S502 When it was not determined in step S502 that the forward side signal line 41 or the reverse side signal line 42 was broken, that is, the disconnection detection unit 52 did not detect the disconnection of the forward side signal line 41 or the reverse side signal line 42. In the case (step S502 / NO), the process returns to step S501, and the process does not proceed to step S503 until the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 (step S502 / YES).
  • the time measurement unit 54 starts measuring the elapsed time t (step S504). Subsequently, the elapsed time determination unit 55 determines whether or not the elapsed time t during measurement is equal to or greater than the set time T1 stored in the storage unit 56 (step S505).
  • step S505 When it is determined in step S505 that the elapsed time t is equal to or greater than the set time T1 (t ⁇ T1) (step S505 / YES), the motor command signal output unit 53 sets the motor tilt angle ⁇ over a predetermined time T2. 2 A second motor command signal for large tilting up to the target angle ⁇ 2 is output to the motor tilt control valve 322 (step S506), and the process in the controller 5 ends.
  • step S505 If it is determined in step S505 that the elapsed time t has not passed the set time T1 (t ⁇ T1) (step S505 / NO), the elapsed time t has passed the set time T1 (step S505). / YES) Do not proceed to step S506.
  • the tilt angle ⁇ of the traveling hydraulic motor 32 is slightly tilted in step S503, depending on the value of the first target angle ⁇ 1, there is a possibility that the vehicle body may escape before the vehicle stops, or the wheel loader 1 may be on a slope. In that case, the braking force may be insufficient and the vehicle may not be able to stop. Therefore, in the present embodiment, after the set time T1 elapses after the motor command signal output unit 53 outputs the first motor command signal, the motor command signal output unit 53 outputs the second command signal to drive hydraulic pressure. The braking force is increased by making the tilt angle of the motor 32 larger than the tilt angle corresponding to the first motor command signal. As a result, the wheel loader 1 can be reliably stopped.
  • the second motor command signal does not instantly cause the motor tilt angle ⁇ to be greatly tilted to the second target angle ⁇ 2, but is to be greatly tilted to the second target angle ⁇ 2 over a predetermined time T2. Since the motor tilt angle ⁇ smoothly shifts to a large tilt without leading to sudden deceleration of the vehicle body, the set time T1 can be shortened. For example, the wheel loader 1 is descending a slope. However, the car body does not run away and it becomes easier to stop.
  • FIGS. 5 and 6 the same components as those described for the wheel loader 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5 is a functional block diagram showing the functions of the controller 5A according to the second embodiment.
  • FIG. 6 is a flowchart showing a flow of processing executed by the controller 5A according to the second embodiment.
  • the controller 5A has the motor tilt angle ⁇ of the traveling hydraulic motor 32 slightly tilted to the first target angle ⁇ 1, and then the vehicle speed of the wheel loader 1. On condition of V, the motor tilt angle ⁇ is largely tilted to the second target angle ⁇ 2.
  • the controller 5A includes a vehicle speed determination unit 57 in addition to the data acquisition unit 50A, the pump command signal output unit 51, the disconnection detection unit 52, the motor command signal output unit 53, and the storage unit 56A. That is, the controller 5A includes a vehicle speed determination unit 57 instead of the time measurement unit 54 and the elapsed time determination unit 55 in the first embodiment.
  • the data acquisition unit 50A acquires the vehicle speed V detected by the vehicle speed sensor 44 (step S504A).
  • the vehicle speed determination unit 57 determines whether or not the vehicle speed V acquired in step S504A is equal to or less than a predetermined vehicle speed threshold value Vth (hereinafter, simply referred to as “vehicle speed threshold value Vth”) (step S505A).
  • vehicle speed threshold value Vth is the vehicle speed at the time when the forward side signal line 41 or the reverse side signal line 42 is disconnected (that is, when the pump command signal is no longer output from the controller 5A to the pump tilt control device 310). Is also a small value and is stored in the storage unit 56A.
  • step S505A When it is determined in step S505A that the vehicle speed V is equal to or less than the vehicle speed threshold value Vth (V ⁇ Vth) (step S505A / YES), the process proceeds to step S506 and the motor command signal output unit 53 outputs the second motor command signal. do.
  • step S505A when it is determined in step S505A that the vehicle speed V is larger than the vehicle speed threshold value Vth (V> Vth) (step S505A / NO), the process returns to step S504A and the vehicle speed V becomes equal to or less than the vehicle speed threshold value Vth (V ⁇ ). Do not proceed to step S506 until Vth).
  • FIG. 7 is a functional block diagram showing the functions of the controller 5B according to the third embodiment.
  • FIG. 8 is a flowchart showing a flow of processing executed by the controller 5B according to the third embodiment.
  • the controller 5B has the forward side signal line 41 or the reverse side signal line 42 disconnected, and the bucket 23 is in a horizontal position at the time of disconnection.
  • the motor tilt angle ⁇ is slightly tilted to the first target angle ⁇ 1.
  • the controller 5B includes a data acquisition unit 50B, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56B.
  • the posture determination unit 58 is included.
  • the disconnection detection unit 52 detects the disconnection of the forward side signal line 41 or the reverse side signal line 42 in step S502 (step S502 / YES)
  • the data acquisition unit 50B is attached to the cargo handling work device 2.
  • the cargo handling work device 2 detected by the attitude sensor 45 (for example, an angle sensor that detects the angles of the lift arm 21 and the bucket 23, a pressure sensor that detects the bottom pressure of the lift arm cylinder 22 and the bucket cylinder 24, and the like). Acquire the posture (step S507).
  • the posture determination unit 58 determines whether or not the position of the bucket 23 is higher than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 based on the posture of the cargo handling work device 2 acquired in step S507. Is determined (step S508).
  • the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 is stored in advance in the storage unit 56B.
  • the "horizontal posture of the cargo handling work device 2" is the posture of the cargo handling work device 2 when the wheel loader 1 is in the traveling posture, such as when carrying a load or traveling without a load.
  • step S508 When it is determined in step S508 that the position of the bucket 23 is higher than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 (step S508 / YES), the motor command signal output unit 53 proceeds to step S503. 1 Outputs a motor command signal. On the other hand, when it is determined in step S508 that the position of the bucket 23 is equal to or less than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 (step S508 / NO), the process in the controller 5B ends.
  • the wheel loader 1 raises the lift arm 21 and attaches to the loading destination. If the forward signal line 41 is disconnected and the vehicle body suddenly decelerates in this state, the rear wheels 11B tend to float and the vehicle body tends to lose its balance. Therefore, the motor tilt angle control process may be applied only when the balance of the vehicle body is unstable in this way.
  • FIG. 9 is a functional block diagram showing the functions of the controller 5C according to the fourth embodiment.
  • FIG. 10 is a flowchart showing a flow of processing executed by the controller 5C according to the fourth embodiment.
  • the controller 5C according to the present embodiment has a case where the forward signal line 41 or the reverse signal line 42 is disconnected and the speed stage of the vehicle body at the time of disconnection is a low speed stage.
  • the motor tilt angle ⁇ is slightly tilted to the first target angle ⁇ 1.
  • the controller 5C includes a data acquisition unit 50C, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56.
  • the speed stage determination unit 59 is included. That is, the controller 5C includes a speed stage determination unit 59 instead of the attitude determination unit 58 in the third embodiment.
  • step S502 when the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 in step S502 (step S502 / YES), the data acquisition unit 50C is selected by the speed stage switch 123. Acquire the speed stage (step S507C).
  • step S508C determines whether or not the speed stage acquired in step S507C is a low speed stage.
  • step S508C when it is determined that the speed stage acquired in step S507C is a low speed stage (step S508C / YES), the process proceeds to step S503 and the motor command signal output unit 53 outputs the first motor command signal. ..
  • step S508C when it is determined in step S508C that the speed stage acquired in step S507C is not a low speed stage (step S508C / NO), the processing in the controller 5C ends.
  • the vehicle speed is lower and the motor tilt angle ⁇ is more likely to be greatly tilted when the speed stage of the vehicle body is a low speed stage (1st speed stage or 2nd speed stage).
  • a large braking force is likely to be generated.
  • the speed stage of the vehicle body is medium to high speed stage (3 speed stage or 4 speed stage)
  • the vehicle speed tends to be high
  • the motor tilt angle ⁇ is often used for small tilt. Since the traction force tends to be small even if the motor tilt angle ⁇ is the same due to the difference in the gear ratio of the transmission 15, the braking force is less likely to be generated as compared with the case of the low speed stage. Therefore, only when the speed stage of the vehicle body is the low speed stage as described above, the motor tilt angle control process may be applied.
  • FIG. 11 is a flowchart showing a flow of processing executed by the controller 5 according to the fifth embodiment.
  • the controller 5 has a data acquisition unit 50, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, and an elapsed time determination unit. 55, and a storage unit 56 are included.
  • the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 in step S502 (step S502 / YES)
  • the disconnection detection unit 52 further increases the data acquisition unit 50. Based on the forward / backward switching signal acquired in the above, it is determined whether or not the forward signal line 41 is disconnected while the vehicle body is moving forward or the reverse signal line 42 is disconnected while the vehicle body is moving backward (step S509).
  • step S509 If it is determined in step S509 that the forward signal line 41 is broken while the vehicle body is moving forward or the reverse signal line 42 is broken while the vehicle body is moving backward (step S509 / YES), the process proceeds to step S503 to output the motor command signal.
  • the unit 53 outputs the first motor command signal.
  • step S509 If it is not determined in step S509 that the forward signal line 41 is disconnected during the vehicle body advancement or the reverse signal line 42 is not disconnected during the vehicle vehicle reverse movement, that is, the reverse signal line 42 is disconnected while the vehicle body is moving forward. If the forward signal line 41 is disconnected (step S509 / NO) during disconnection or reverse movement of the vehicle body, the process in the controller 5 ends.
  • the motor tilt angle control process may be performed only when the forward signal line 41 is disconnected during the forward movement of the vehicle body or the reverse signal line 42 is disconnected during the reverse movement of the vehicle body.
  • FIG. 12 is a diagram showing a configuration example of the drive system of the wheel loader 1 according to the sixth embodiment.
  • the flow (flow rate and direction) of the hydraulic oil supplied to the pump tilt cylinder 311 is different. It is controlled by one directional control valve 314.
  • the directional control valve 314 has a first switching position L having a pump tilt angle based on a forward pump command signal output from the controller 5 and transmitted via the forward signal line 41, and a controller.
  • the second switching position R that controls the pump tilt angle based on the reverse pump command signal output from 5 and transmitted via the reverse signal line 42, and the hydraulic oil of the pump tilt cylinder 311 are used in the hydraulic oil tank. It has a neutral position N, which returns to 34.
  • the directional control valve 314 When the forward pump command signal is output from the controller 5, the directional control valve 314 is switched to the first switching position L, whereby the pump tilt cylinder 311 controls the pump tilt angle on the forward side.
  • the directional control valve 314 is switched to the second switching position R, whereby the pump tilt cylinder 311 controls the pump tilt angle on the reverse side.
  • the directional control valve 314 returns to the neutral position N (state shown in FIG. 12), and the hydraulic oil in the pump tilting cylinder 311 is the hydraulic oil. It is discharged to the tank 34, and the discharge flow rate of the traveling hydraulic pump 31 becomes zero.
  • the pump tilt cylinder 311 does not necessarily have to be controlled by two pump tilt control valves (forward side pump tilt control valve 312 and reverse side pump tilt control valve 313), and one direction control. It may be controlled by valve 314.
  • the wheel loader has been described as one aspect of the work vehicle, but the present invention is not limited to this, and the present invention can be applied to other work vehicles equipped with an HST type traveling drive system. be.
  • the motor command signal output unit 53 when the disconnection detection units 52, 52A detect the disconnection of the forward side signal line 41 or the reverse side signal line 42, the motor command signal output unit 53 first. A motor command signal is output, and then a second motor command signal is output. However, when at least the disconnection detection units 52 and 52A detect a disconnection of the forward signal line 41 or the reverse signal line 42, the motor command signal is output. The output unit 53 may output the first motor command signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

Provided is a work vehicle that is unlikely to undergo drastic deceleration even when a signal line for electronic control of the capacity of a hydraulic pump is interrupted during travel. A wheel loader 1 that travels using an HST-type travel drive system, the wheel loader 1 being provided with: a controller 5 that controls a travel hydraulic pump 31 and a travel hydraulic motor 32; a pump tilt control device 310 that controls the pump tilt angle of the travel hydraulic pump 31 on the basis of a pump command signal outputted from the controller 5; and a motor tilt control device 320 that controls the motor tilt angle of the travel hydraulic motor 32 on the basis of a motor command signal outputted from the controller 5, wherein when an abnormal state of the pump command signal is determined on the basis of the pump command signal, the controller 5 controls the motor tilt angle so as to become smaller than the motor tilt angle when the pump command signal is outputted normally to the pump tilt control devices 310, 310A from the controller 5 immediately before the abnormal is determined.

Description

作業車両Work vehicle
 本発明は、HST式の走行駆動システムが搭載された作業車両に関する。 The present invention relates to a work vehicle equipped with an HST type traveling drive system.
 ホイールローダやフォークリフト等の作業車両の一般的な走行駆動システムとして、油圧ポンプと油圧モータとが閉回路状に接続され、エンジンで油圧ポンプを駆動させることによって発生した油圧を油圧モータで回転力に変換して走行駆動力とするHST式の走行駆動システムが知られている。 As a general running drive system for work vehicles such as wheel loaders and forklifts, the hydraulic pump and hydraulic motor are connected in a closed circuit, and the hydraulic pressure generated by driving the hydraulic pump with the engine is converted into rotational force by the hydraulic motor. An HST type traveling drive system that converts the driving force into traveling driving force is known.
 例えば、特許文献1には、閉回路である主油圧回路に、エンジンによって駆動される可変容量型の走行用油圧ポンプと、走行用油圧ポンプから吐出された作動油によって駆動される可変容量型の油圧モータと、を備え、油圧モータの駆動力を車輪に伝達することによって車両を走行させるフォークリフトが開示されている。このフォークリフトでは、制御装置から信号線を介して与えられた指令信号に従って動作する前進用の電磁比例バルブおよび後進用の電磁比例バルブでポンプ容量制御シリンダを動作させることにより、走行用油圧ポンプの容量(斜板傾転角)が変更される。 For example, in Patent Document 1, a variable-capacity traveling hydraulic pump driven by an engine and a variable-capacity driving hydraulic pump driven by hydraulic oil discharged from the traveling hydraulic pump are used in a main hydraulic circuit which is a closed circuit. A forklift including a hydraulic motor and traveling a vehicle by transmitting the driving force of the hydraulic motor to wheels is disclosed. In this forklift, the capacity of the traveling hydraulic pump is increased by operating the pump capacity control cylinder with a forward electromagnetic proportional valve and a reverse electromagnetic proportional valve that operate according to a command signal given from the control device via a signal line. (Slanted plate tilt angle) is changed.
 このように、制御装置から出力された指令信号によってポンプ容量制御シリンダを前進側と後進側とで独立して電子的に制御することができるため、絞りやバルブを用いて油圧的にポンプ容量制御シリンダを制御する場合と比べて、走行用油圧ポンプにおける傾転角の変化の応答性が向上する。 In this way, the pump capacity control cylinder can be electronically controlled independently on the forward side and the reverse side by the command signal output from the control device, so that the pump capacity control is hydraulically performed using a throttle or a valve. Compared with the case of controlling the cylinder, the responsiveness of the change of the tilt angle in the traveling hydraulic pump is improved.
特許第6335340号公報Japanese Patent No. 6335340
 しかしながら、特許文献1に記載のフォークリフトでは、走行用油圧ポンプの傾転制御の応答性が良好な分だけ走行用油圧ポンプの傾転ピストンが素早く動作するため、車速が急変化しやすくなる。車両が正常な状態で稼働している場合には、制御装置から出力された指令信号通りに走行用油圧ポンプの傾転を制御することが可能であるが、例えば、前進走行中に制御装置と前進用の電磁比例バルブとの間の信号線が断線した場合には、走行用油圧ポンプの傾転を制御する圧油が作動油タンクに戻されて傾転ピストンが中立となり、走行用油圧ポンプの吐出流量が0(ゼロ)となる。これにより、フォークリフトは、急減速してバランスを崩しやすくなってしまう。 However, in the forklift described in Patent Document 1, the tilt piston of the traveling hydraulic pump operates quickly as much as the response of the tilt control of the traveling hydraulic pump is good, so that the vehicle speed tends to change suddenly. When the vehicle is operating in a normal state, it is possible to control the tilt of the traveling hydraulic pump according to the command signal output from the control device. If the signal line between the forward electromagnetic proportional valve and the valve is broken, the pressure oil that controls the tilt of the traveling hydraulic pump is returned to the hydraulic oil tank, the tilting piston becomes neutral, and the traveling hydraulic pump becomes neutral. The discharge flow rate of is 0 (zero). As a result, the forklift will suddenly decelerate and easily lose its balance.
 そこで、本発明の目的は、走行用の油圧ポンプの容量を電子制御するための信号線が断線した場合であっても、急減速しにくい作業車両を提供することにある。 Therefore, an object of the present invention is to provide a work vehicle that does not easily decelerate suddenly even when a signal line for electronically controlling the capacity of a traveling hydraulic pump is disconnected.
 上記の目的を達成するために、本発明は、複数の車輪が設けられた車体と、前記車体に搭載されたエンジンと、前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプに対して閉回路接続され前記エンジンの駆動力を前記複数の車輪に伝達する可変容量型の走行用油圧モータと、前記走行用油圧ポンプおよび前記走行用油圧モータを制御するコントローラと、前記コントローラから出力されて信号線を介して伝達されるポンプ指令信号に基づいて前記走行用油圧ポンプの押しのけ容積を制御するポンプ傾転制御装置と、前記コントローラから出力されたモータ指令信号に基づいて前記走行用油圧モータの押しのけ容積を制御するモータ傾転制御装置と、を備えた作業車両において、前記コントローラは、前記コントローラから前記ポンプ傾転制御装置へ伝達される前記ポンプ指令信号に基づいて前記ポンプ指令信号の異常状態を判定すると、前記異常状態を判定する直前の前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が正常に出力されている場合における前記走行用油圧モータの押しのけ容積よりも小さくなるように前記走行用油圧モータの押しのけ容積を制御することを特徴とする。 In order to achieve the above object, the present invention comprises a vehicle body provided with a plurality of wheels, an engine mounted on the vehicle body, a variable displacement traveling hydraulic pump driven by the engine, and the traveling. A variable displacement traveling hydraulic motor that is connected to the hydraulic pump in a closed circuit and transmits the driving force of the engine to the plurality of wheels, a controller that controls the traveling hydraulic pump and the traveling hydraulic motor, and the like. Based on the pump tilt control device that controls the push-out volume of the traveling hydraulic pump based on the pump command signal output from the controller and transmitted via the signal line, and the motor command signal output from the controller. In a work vehicle provided with a motor tilt control device for controlling the push-out volume of the traveling hydraulic motor, the controller is said to be based on the pump command signal transmitted from the controller to the pump tilt control device. When the abnormal state of the pump command signal is determined, the push-out volume of the traveling hydraulic motor when the pump command signal is normally output from the controller immediately before determining the abnormal state to the pump tilt control device is used. It is characterized in that the push-out volume of the traveling hydraulic motor is controlled so as to be small.
 本発明によれば、走行用の油圧ポンプの容量を電子制御するための信号線が断線した場合であっても、車体の急減速を回避することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, even when the signal line for electronically controlling the capacity of the traveling hydraulic pump is disconnected, sudden deceleration of the vehicle body can be avoided. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の各実施形態に係るホイールローダの一構成例を示す外観側面図である。It is an external side view which shows one structural example of the wheel loader which concerns on each embodiment of this invention. 第1実施形態に係るホイールローダの駆動システムの一構成例を示す図である。It is a figure which shows one configuration example of the drive system of the wheel loader which concerns on 1st Embodiment. 第1実施形態に係るコントローラが有する機能を示す機能ブロック図である。It is a functional block diagram which shows the function which the controller which concerns on 1st Embodiment has. 第1実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the controller which concerns on 1st Embodiment. 第2実施形態に係るコントローラが有する機能を示す機能ブロック図である。It is a functional block diagram which shows the function which the controller which concerns on 2nd Embodiment has. 第2実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the controller which concerns on 2nd Embodiment. 第3実施形態に係るコントローラが有する機能を示す機能ブロック図である。It is a functional block diagram which shows the function which the controller which concerns on 3rd Embodiment has. 第3実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the controller which concerns on 3rd Embodiment. 第4実施形態に係るコントローラが有する機能を示す機能ブロック図である。It is a functional block diagram which shows the function which the controller which concerns on 4th Embodiment has. 第4実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the controller which concerns on 4th Embodiment. 第5実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the controller which concerns on 5th Embodiment. 第6実施形態に係るホイールローダの駆動システムの一構成例を示す図である。It is a figure which shows one configuration example of the drive system of the wheel loader which concerns on 6th Embodiment.
 以下、本発明の各実施形態に係る作業車両の一態様として、例えば土砂や鉱物といった作業対象物を掘削してダンプトラック等へ積み込む荷役作業を行うホイールローダについて説明する。 Hereinafter, as one aspect of the work vehicle according to each embodiment of the present invention, a wheel loader that performs cargo handling work of excavating a work object such as earth and sand or minerals and loading it on a dump truck or the like will be described.
<ホイールローダ1の全体構成>
 まず、本発明の各実施形態に係るホイールローダ1の全体構成について、図1を参照して説明する。
<Overall configuration of wheel loader 1>
First, the overall configuration of the wheel loader 1 according to each embodiment of the present invention will be described with reference to FIG.
 図1は、本発明の実施形態に係るホイールローダ1の外観を示す側面図である。 FIG. 1 is a side view showing the appearance of the wheel loader 1 according to the embodiment of the present invention.
 ホイールローダ1は、車体が中心付近で中折れすることにより操舵するアーティキュレート式の作業車両である。具体的には、車体の前部となる前フレーム1Aと車体の後部となる後フレーム1Bとが、センタジョイント10によって左右方向に回動自在に連結されており、前フレーム1Aが後フレーム1Bに対して左右方向に屈曲する。 The wheel loader 1 is an articulated work vehicle that is steered by bending the vehicle body near the center. Specifically, the front frame 1A, which is the front part of the vehicle body, and the rear frame 1B, which is the rear part of the vehicle body, are rotatably connected in the left-right direction by the center joint 10, and the front frame 1A is connected to the rear frame 1B. On the other hand, it bends in the left-right direction.
 車体には4つの車輪11が設けられており、2つの車輪11が前輪11Aとして前フレーム1Aの左右両側に、残り2つの車輪11が後輪11Bとして後フレーム1Bの左右両側に、それぞれ設けられている。なお、図1では、左右一対の前輪11Aおよび後輪11Bのうち、左側の前輪11Aおよび後輪11Bのみを示している。また、車体に設けられる複数の車輪11の具体的な数については、特に制限はない。 The vehicle body is provided with four wheels 11, two wheels 11 as front wheels 11A on the left and right sides of the front frame 1A, and the remaining two wheels 11 as rear wheels 11B on the left and right sides of the rear frame 1B. ing. Note that, in FIG. 1, of the pair of left and right front wheels 11A and rear wheels 11B, only the left front wheels 11A and rear wheels 11B are shown. Further, the specific number of the plurality of wheels 11 provided on the vehicle body is not particularly limited.
 前フレーム1Aの前部には、荷役作業に用いる油圧駆動式の荷役作業装置2が取り付けられている。荷役作業装置2は、前フレーム1Aに基端部が取り付けられたリフトアーム21と、リフトアーム21を駆動する2つのリフトアームシリンダ22と、リフトアーム21の先端部に取り付けられた作業具としてのバケット23と、バケット23を駆動するバケットシリンダ24と、リフトアーム21に回動可能に連結されてバケット23とバケットシリンダ24とのリンク機構を構成するベルクランク25と、を有している。なお、2つのリフトアームシリンダ22は車体の左右方向に並んで配置されているが、図1では、左側に配置されたリフトアームシリンダ22のみを破線で示している。 A hydraulically driven cargo handling work device 2 used for cargo handling work is attached to the front part of the front frame 1A. The cargo handling work device 2 serves as a lift arm 21 having a base end attached to the front frame 1A, two lift arm cylinders 22 for driving the lift arm 21, and a work tool attached to the tip of the lift arm 21. It has a bucket 23, a bucket cylinder 24 for driving the bucket 23, and a bell crank 25 rotatably connected to the lift arm 21 to form a link mechanism between the bucket 23 and the bucket cylinder 24. The two lift arm cylinders 22 are arranged side by side in the left-right direction of the vehicle body, but in FIG. 1, only the lift arm cylinder 22 arranged on the left side is shown by a broken line.
 リフトアーム21は、2つのリフトアームシリンダ22それぞれのボトム室に作動油が供給されてロッド220が伸びることにより前フレーム1Aに対して上方向に回動し、2つのリフトアームシリンダ22それぞれのロッド室に作動油が供給されてロッド220が縮むことにより前フレーム1Aに対して下方向に回動する。 The lift arm 21 rotates upward with respect to the front frame 1A by supplying hydraulic oil to the bottom chambers of the two lift arm cylinders 22 and extending the rod 220, and the rods of the two lift arm cylinders 22 respectively. The hydraulic oil is supplied to the chamber and the rod 220 contracts to rotate downward with respect to the front frame 1A.
 同様にして、バケット23は、バケットシリンダ24のボトム室に作動油が供給されてロッド240が伸びることによりチルト(リフトアーム21に対して上方向に回動)し、バケットシリンダ24のロッド室に作動油が供給されてロッド240が縮むことによりダンプ(リフトアーム21に対して下方向に回動)する。 Similarly, the bucket 23 is tilted (rotated upward with respect to the lift arm 21) by supplying hydraulic oil to the bottom chamber of the bucket cylinder 24 and extending the rod 240, and enters the rod chamber of the bucket cylinder 24. The hydraulic oil is supplied and the rod 240 contracts to dump (rotate downward with respect to the lift arm 21).
 なお、バケット23は、例えばブレード等の各種アタッチメントに交換することが可能であり、ホイールローダ1は、バケット23を用いた掘削作業の他に、押土作業や除雪作業等の各種作業を行うこともできる。 The bucket 23 can be replaced with various attachments such as blades, and the wheel loader 1 performs various operations such as soil pushing work and snow removal work in addition to excavation work using the bucket 23. You can also do it.
 後フレーム1Bには、オペレータが搭乗する運転室12と、ホイールローダ1の駆動に必要な各機器を内部に収容する機械室13と、車体が傾倒しないように荷役作業装置2とのバランスを保つためのカウンタウェイト14と、が設けられている。後フレーム1Bにおいて、運転室12は前部に、カウンタウェイト14は後部に、機械室13は運転室12とカウンタウェイト14との間に、それぞれ配置されている。 In the rear frame 1B, a balance is maintained between the driver's cab 12 on which the operator is boarded, the machine room 13 for accommodating each device necessary for driving the wheel loader 1, and the cargo handling work device 2 so that the vehicle body does not tilt. A counter weight 14 for this purpose is provided. In the rear frame 1B, the driver's cab 12 is arranged at the front, the counterweight 14 is arranged at the rear, and the machine room 13 is arranged between the driver's cab 12 and the counterweight 14.
 以下、ホイールローダ1の走行駆動システムの構成について、実施形態ごとに説明する。 Hereinafter, the configuration of the traveling drive system of the wheel loader 1 will be described for each embodiment.
<第1実施形態>
 本発明の第1実施形態に係るホイールローダ1の走行駆動システムについて、図2~4を参照して説明する。
<First Embodiment>
The traveling drive system of the wheel loader 1 according to the first embodiment of the present invention will be described with reference to FIGS. 2 to 4.
(走行駆動システムの全体構成)
 まず、ホイールローダ1の走行駆動システムの全体構成について、図2を参照して説明する。
(Overall configuration of the driving drive system)
First, the overall configuration of the traveling drive system of the wheel loader 1 will be described with reference to FIG.
 図2は、第1実施形態に係るホイールローダ1の駆動システムの一構成例を示す図である。 FIG. 2 is a diagram showing a configuration example of the drive system of the wheel loader 1 according to the first embodiment.
 ホイールローダ1では、走行用油圧ポンプ31と走行用油圧モータ32とが一対の油圧管路301,302により閉回路をなして接続され、エンジン30で走行用油圧ポンプ31を駆動させることによって発生した油圧を走行用油圧モータ32で回転力に変換して走行駆動力とするHST式の走行駆動システムにより、車体が走行駆動する。 In the wheel loader 1, the traveling hydraulic pump 31 and the traveling hydraulic motor 32 are connected by a pair of hydraulic pipelines 301 and 302 in a closed circuit, and the traveling hydraulic pump 31 is driven by the engine 30. The vehicle body is driven by the HST type traveling drive system in which the hydraulic pressure is converted into the rotational force by the traveling hydraulic motor 32 and used as the traveling driving force.
 エンジン30には、走行用油圧ポンプ31の他に、走行用油圧ポンプ31を制御するための作動油を補給するチャージポンプ31Aと、荷役作業装置2を駆動するための荷役用油圧回路20に作動油を供給する荷役用油圧ポンプ33と、が連結されている。なお、図2では、荷役用油圧ポンプ33は可変容量型の油圧ポンプであるが、これに限らず、固定容量型の油圧ポンプであってもよい。 In addition to the traveling hydraulic pump 31, the engine 30 operates on a charge pump 31A for supplying hydraulic oil for controlling the traveling hydraulic pump 31 and a cargo handling hydraulic circuit 20 for driving the cargo handling work device 2. A cargo handling hydraulic pump 33 for supplying oil is connected. In FIG. 2, the cargo handling hydraulic pump 33 is a variable capacity type hydraulic pump, but the present invention is not limited to this, and a fixed capacity type hydraulic pump may be used.
 走行用油圧ポンプ31は、傾転角(傾転量)に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧ポンプである。傾転角は、コントローラ5から出力されたポンプ指令信号に基づいてポンプ傾転制御装置310により制御される。 The traveling hydraulic pump 31 is a sloping plate type or sloping shaft type variable displacement hydraulic pump in which the push-out volume is controlled according to the tilt angle (tilt amount). The tilt angle is controlled by the pump tilt control device 310 based on the pump command signal output from the controller 5.
 ポンプ傾転制御装置310は、チャージポンプ31Aから吐出された圧油が供給されることにより走行用油圧ポンプ31の傾転を動かすポンプ傾転シリンダ311と、車体の前進時においてポンプ傾転シリンダ311を制御する前進側ポンプ傾転制御弁312と、車体の後進時においてポンプ傾転シリンダ311を制御する後進側ポンプ傾転制御弁313と、を備える。 The pump tilt control device 310 includes a pump tilt cylinder 311 that moves the tilt of the traveling hydraulic pump 31 by supplying pressure oil discharged from the charge pump 31A, and a pump tilt cylinder 311 when the vehicle body moves forward. The forward side pump tilt control valve 312 for controlling the pump tilt control valve 312 and the reverse side pump tilt control valve 313 for controlling the pump tilt cylinder 311 when the vehicle body is moving backward are provided.
 前進側ポンプ傾転制御弁312は、コントローラ5から出力されて前進側信号線41を介して伝達された前進側のポンプ指令信号(以下、単に「前進側ポンプ指令信号」とする)に基づいて、ポンプ傾転シリンダ311に作用する前進側の油圧(前進側の作用圧)を減圧する電磁比例減圧弁である。 The forward pump tilt control valve 312 is based on a forward pump command signal (hereinafter, simply referred to as “forward pump command signal”) output from the controller 5 and transmitted via the forward signal line 41. , An electromagnetic proportional pressure reducing valve that reduces the pressure on the forward side (acting pressure on the forward side) acting on the pump tilting cylinder 311.
 同様にして、後進側ポンプ傾転制御弁313は、コントローラ5から出力されて後進側信号線42を介して伝達された後進側のポンプ指令信号(以下、単に「後進側ポンプ指令信号」とする)に基づいて、ポンプ傾転シリンダ311に作用する後進側の油圧(後進側の作用圧)を減圧する電磁比例減圧弁である。 Similarly, the reverse pump tilt control valve 313 is referred to as a reverse pump command signal (hereinafter, simply referred to as "reverse pump command signal") output from the controller 5 and transmitted via the reverse signal line 42. ), It is an electromagnetic proportional pressure reducing valve that reduces the pressure on the reverse side (acting pressure on the reverse side) acting on the pump tilting cylinder 311.
 なお、車体の前後進の切り換えは、運転室12(図1参照)内に設けられた前後進切換装置としての前後進切換スイッチ122により行う。また、ポンプ傾転シリンダ311に作用する油圧のバランスが取れている(前進側の作用圧=後進側の作用圧)ときは、ポンプ傾転シリンダ311は中立状態となり、走行用油圧ポンプ31から吐出される作動油の流量が0(ゼロ)となって車体は停車する。 The forward / backward movement of the vehicle body is switched by the forward / backward changeover switch 122 as the forward / backward changeover device provided in the driver's cab 12 (see FIG. 1). Further, when the hydraulic pressure acting on the pump tilting cylinder 311 is balanced (acting pressure on the forward side = acting pressure on the reverse side), the pump tilting cylinder 311 is in a neutral state and is discharged from the traveling hydraulic pump 31. The flow rate of the hydraulic oil to be generated becomes 0 (zero) and the vehicle body stops.
 走行用油圧モータ32は、傾転角(傾転量)に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧モータである。傾転角は、コントローラ5から出力されたモータ指令信号に基づいてモータ傾転制御装置320により制御される。 The traveling hydraulic motor 32 is a swash plate type or sloping shaft type variable displacement hydraulic motor in which the push-out volume is controlled according to the tilt angle (tilt amount). The tilt angle is controlled by the motor tilt control device 320 based on the motor command signal output from the controller 5.
 モータ傾転制御装置320は、走行用油圧ポンプ31から吐出された作動油が供給されることにより走行用油圧モータ32の傾転を動かすモータ傾転シリンダ321と、モータ傾転シリンダ321を制御するモータ傾転制御弁322と、を備える。 The motor tilt control device 320 controls the motor tilt cylinder 321 and the motor tilt cylinder 321 that move the tilt of the traveling hydraulic motor 32 by supplying the hydraulic oil discharged from the traveling hydraulic pump 31. A motor tilt control valve 322 is provided.
 モータ傾転制御弁322は、コントローラ5から出力されたモータ指令信号に基づいて、モータ傾転シリンダ321のロッド321Aを縮める第1切換位置322Aと、モータ傾転シリンダ321のロッド321Aを伸長させる第2切換位置322Bと、が切り換わる。 The motor tilt control valve 322 has a first switching position 322A for contracting the rod 321A of the motor tilt cylinder 321 and a second for extending the rod 321A of the motor tilt cylinder 321 based on the motor command signal output from the controller 5. The 2 switching position 322B is switched.
 モータ傾転シリンダ321は、モータ傾転制御弁322が第1切換位置322Aに切り換わると(図2に示す状態)、ボトム室321Bから排出された作動油が作動油タンク34に流れ込むと共に、走行用油圧ポンプ31から吐出された作動油がロッド室321Cに流入する。これにより、ロッド321Aが縮んで、走行用油圧モータ32の傾転角は小さくなる方向に制御される。 When the motor tilt control valve 322 is switched to the first switching position 322A (state shown in FIG. 2), the motor tilt cylinder 321 travels while the hydraulic oil discharged from the bottom chamber 321B flows into the hydraulic oil tank 34. The hydraulic oil discharged from the hydraulic pump 31 flows into the rod chamber 321C. As a result, the rod 321A contracts, and the tilt angle of the traveling hydraulic motor 32 is controlled to decrease.
 他方、モータ傾転シリンダ321は、モータ傾転制御弁322が第2切換位置322Bに切り換わると、ロッド室321Cから排出された作動油および走行用油圧ポンプ31から吐出された作動油がボトム室321Bに流入する。これにより、ロッド321Aが伸長して、走行用油圧モータ32の傾転角は大きくなる方向に制御される。 On the other hand, in the motor tilt cylinder 321, when the motor tilt control valve 322 is switched to the second switching position 322B, the hydraulic oil discharged from the rod chamber 321C and the hydraulic oil discharged from the traveling hydraulic pump 31 are in the bottom chamber. It flows into 321B. As a result, the rod 321A is extended, and the tilt angle of the traveling hydraulic motor 32 is controlled to increase.
 HST式走行駆動システムでは、まず、運転室12内に設けられたアクセルペダル121をオペレータが踏み込むとエンジン30が回転し、エンジン30の駆動力により走行用油圧ポンプ31が駆動する。そして、走行用油圧ポンプ31から吐出した作動油によって走行用油圧モータ32が回転駆動し、走行用油圧モータ32からの出力トルクがトランスミッション15およびアクスル16を介して4つの車輪11に伝達されることにより、ホイールローダ1が走行する。 In the HST type traveling drive system, first, when the operator depresses the accelerator pedal 121 provided in the driver's cab 12, the engine 30 rotates, and the traveling hydraulic pump 31 is driven by the driving force of the engine 30. Then, the traveling hydraulic motor 32 is rotationally driven by the hydraulic oil discharged from the traveling hydraulic pump 31, and the output torque from the traveling hydraulic motor 32 is transmitted to the four wheels 11 via the transmission 15 and the axle 16. As a result, the wheel loader 1 runs.
 このとき、前後進切換スイッチ122により前進側に切り換わっている場合には、走行用油圧ポンプ31から吐出した作動油は、一対の油圧管路301,302のうち前進側の油圧管路301に導かれて走行用油圧モータ32に流入し、走行用油圧モータ32が正回転することで車体が前進走行する。他方、前後進切換スイッチ122により後進側に切り換わっている場合には、走行用油圧ポンプ31から吐出した作動油は、後進側の油圧管路302に導かれて走行用油圧モータ32に流入し、走行用油圧モータ32が逆回転することで車体が後進走行する。 At this time, when the forward / backward changeover switch 122 is used to switch to the forward side, the hydraulic oil discharged from the traveling hydraulic pump 31 is sent to the forward side hydraulic line 301 of the pair of hydraulic lines 301 and 302. It is guided and flows into the traveling hydraulic motor 32, and the traveling hydraulic motor 32 rotates in the forward direction, so that the vehicle body travels forward. On the other hand, when the forward / backward changeover switch 122 switches to the reverse side, the hydraulic oil discharged from the traveling hydraulic pump 31 is guided to the traveling hydraulic pipeline 302 and flows into the traveling hydraulic motor 32. As the traveling hydraulic motor 32 rotates in the reverse direction, the vehicle body travels backward.
 なお、前進側の油圧管路301に発生する圧力(前進時におけるHSTメイン回路圧)は第1圧力センサ43Aで、後進側の油圧管路302に発生する圧力(後進時におけるHSTメイン回路圧)は第2圧力センサ43Bで、それぞれ検出される。また、一対の油圧管路301,302を接続する接続管路303上には一対の高圧リリーフ弁351,352が設けられている。接続管路303は、一対の高圧リリーフ弁351,352の間から分岐して作動油タンク34に接続されており、当該分岐管路上には低圧リリーフ弁353が設けられている。 The pressure generated in the forward side hydraulic line 301 (HST main circuit pressure at the time of forward movement) is the pressure generated in the reverse side hydraulic line 302 (HST main circuit pressure at the time of reverse movement) by the first pressure sensor 43A. Are detected by the second pressure sensor 43B, respectively. Further, a pair of high- pressure relief valves 351 and 352 are provided on the connecting pipe 303 connecting the pair of hydraulic pipes 301 and 302. The connection line 303 is branched from between the pair of high- pressure relief valves 351 and 352 and connected to the hydraulic oil tank 34, and the low-pressure relief valve 353 is provided on the branch line.
 このHST式走行駆動システムでは、エンジン30の回転数が減少すると、走行用油圧ポンプ31からの吐出流量が少なくなって走行用油圧モータ32に流入する作動油の流量が減るため、走行用油圧モータ32の回転数が減少してホイールローダ1の車速が制限される。さらに、この場合において、モータ傾転制御装置320により走行用油圧モータ32の傾転角を大きく制御すると、走行用油圧モータ32の出力トルクが小さくなるため、ホイールローダ1の車速をより制限することができる。 In this HST type traveling drive system, when the rotation speed of the engine 30 decreases, the discharge flow rate from the traveling hydraulic pump 31 decreases and the flow rate of the hydraulic oil flowing into the traveling hydraulic motor 32 decreases, so that the traveling hydraulic motor The number of rotations of 32 is reduced and the vehicle speed of the wheel loader 1 is limited. Further, in this case, if the tilt angle of the traveling hydraulic motor 32 is largely controlled by the motor tilt control device 320, the output torque of the traveling hydraulic motor 32 becomes smaller, so that the vehicle speed of the wheel loader 1 is further limited. Can be done.
 反対に、エンジン30の回転数が増加すると、走行用油圧ポンプ31からの吐出流量が増えて走行用油圧モータ32に流入する作動油の流量が増大するため、走行用油圧モータ32の回転数が増加してホイールローダ1の車速が速くなる。さらに、この場合において、モータ傾転制御装置320により走行用油圧モータ32の傾転角を小さく制御すると、走行用油圧モータ32の出力トルクが大きくなるため、ホイールローダ1の車速をより速くすることができる。 On the contrary, when the rotation speed of the engine 30 increases, the discharge flow rate from the traveling hydraulic pump 31 increases and the flow rate of the hydraulic oil flowing into the traveling hydraulic motor 32 increases, so that the rotation speed of the traveling hydraulic motor 32 increases. The vehicle speed of the wheel loader 1 increases. Further, in this case, if the tilt angle of the traveling hydraulic motor 32 is controlled to be small by the motor tilt control device 320, the output torque of the traveling hydraulic motor 32 becomes large, so that the vehicle speed of the wheel loader 1 is further increased. Can be done.
 また、ホイールローダ1には、車体の速度段を選択する速度段選択装置としての速度段スイッチ123が運転室12内に設けられている。この速度段スイッチ123を操作することにより、トランスミッション15のギアの組み合わせが変更されて、4つの速度段から所望の速度段が選択される。なお、速度段スイッチ123は、ホイールローダ1の前進走行に対して主に使用される。 Further, the wheel loader 1 is provided with a speed stage switch 123 as a speed stage selection device for selecting the speed stage of the vehicle body in the driver's cab 12. By operating the speed stage switch 123, the gear combination of the transmission 15 is changed, and a desired speed stage is selected from the four speed stages. The speed stage switch 123 is mainly used for the forward traveling of the wheel loader 1.
 1速度段は、最も低い速度段(最低速度段)であり、例えば掘削作業や登坂作業等のけん引力を必要とする作業時に選択される。2速度段は、最低速度段である1速度段よりも1段階大きく設定された速度段であり、例えばダンプアプローチ動作時に選択される。これら1速度段および2速度段は「低速度段」に相当する。3速度段は、2速度段よりもさらに1段階大きく設定された速度段であり、4速度段は、3速度段よりもさらに1段階大きく設定された速度段であって最高速度段である。これら3速度段および4速度段は、例えば積荷の運搬時に選択され、「中~高速度段」に相当する。 The 1st speed stage is the lowest speed stage (lowest speed stage), and is selected at the time of work requiring traction force such as excavation work and hill climbing work. The two speed stages are speed stages set one step larger than the first speed stage, which is the lowest speed stage, and are selected, for example, during a dump approach operation. These 1st speed stage and 2nd speed stage correspond to "low speed stage". The 3rd speed stage is a speed stage set one step larger than the 2nd speed stage, and the 4th speed stage is a speed stage set 1 step larger than the 3rd speed stage and is the maximum speed stage. These 3 speed stages and 4 speed stages are selected, for example, when transporting a load, and correspond to "medium to high speed stages".
 ホイールローダ1では、走行用油圧ポンプ31の吐出流量を連続的に増減させることにより車速を制御(変速)し、さらにコントローラ5により走行用油圧ポンプ31および走行用油圧モータ32を電子制御することによって応答性を向上させ、滑らかな発進や減速、衝撃の少ない停止を可能としている。 The wheel loader 1 controls (shifts) the vehicle speed by continuously increasing or decreasing the discharge flow rate of the traveling hydraulic pump 31, and further electronically controls the traveling hydraulic pump 31 and the traveling hydraulic motor 32 by the controller 5. It improves responsiveness and enables smooth start, deceleration, and stop with less impact.
 ただし、例えば前進側信号線41や後進側信号線42が断線してしまうと、コントローラ5から出力されたポンプ指令信号が前進側ポンプ傾転制御弁312や後進側ポンプ傾転制御弁313に伝達されなくなり、ポンプ傾転シリンダ311に作用する作動油が作動油タンク34に戻される。これに伴い、ポンプ傾転シリンダ311が中立状態となって走行用油圧ポンプ31の吐出流量が0(ゼロ)となるため、ブレーキ力が発生し、車体が急減速して停車する。そこで、本実施形態では、このような事態が発生した場合に、コントローラ5が走行用油圧モータ32の傾転角を制御することで車体の急減速を回避している。 However, for example, if the forward signal line 41 or the reverse signal line 42 is disconnected, the pump command signal output from the controller 5 is transmitted to the forward pump tilt control valve 312 and the reverse pump tilt control valve 313. The hydraulic oil acting on the pump tilting cylinder 311 is returned to the hydraulic oil tank 34. Along with this, the pump tilting cylinder 311 is in a neutral state and the discharge flow rate of the traveling hydraulic pump 31 becomes 0 (zero), so that a braking force is generated and the vehicle body suddenly decelerates and stops. Therefore, in the present embodiment, when such a situation occurs, the controller 5 controls the tilt angle of the traveling hydraulic motor 32 to avoid sudden deceleration of the vehicle body.
 なお、以下では、コントローラ5からポンプ傾転制御装置310へポンプ指令信号が出力されない場合として、前進側信号線41や後進側信号線42の断線を例に挙げて説明するが、これに限らず、前進側ポンプ傾転制御弁312や後進側ポンプ傾転制御弁313の故障、コントローラ5の故障の場合などについても、コントローラ5からポンプ傾転制御装置310へポンプ指令信号が出力されない場合に含まれる。 In the following, assuming that the pump command signal is not output from the controller 5 to the pump tilt control device 310, the disconnection of the forward side signal line 41 and the reverse side signal line 42 will be described as an example, but the present invention is not limited to this. , The case where the forward side pump tilt control valve 312, the reverse side pump tilt control valve 313, or the controller 5 fails is also included when the pump command signal is not output from the controller 5 to the pump tilt control device 310. Is done.
 また、「コントローラ5からポンプ傾転制御装置310へポンプ指令信号が出力されない場合」には、コントローラ5からのポンプ指令信号の出力が停止している場合、およびコントローラ5からポンプ指令信号は出力されているが、ポンプ指令信号の出力が途中で寸断されてポンプ傾転制御装置310へ伝達されていない場合の両方が含まれる。 Further, in the case of "when the pump command signal is not output from the controller 5 to the pump tilt control device 310", the output of the pump command signal from the controller 5 is stopped, and the pump command signal is output from the controller 5. However, both cases are included in which the output of the pump command signal is cut off in the middle and is not transmitted to the pump tilt control device 310.
(コントローラ5の構成)
 次に、コントローラ5の構成について、図3を参照して説明する。
(Configuration of controller 5)
Next, the configuration of the controller 5 will be described with reference to FIG.
 図3は、第1実施形態に係るコントローラ5が有する機能を示す機能ブロック図である。 FIG. 3 is a functional block diagram showing the functions of the controller 5 according to the first embodiment.
 コントローラ5は、CPU、RAM、ROM、HDD、入力I/F、および出力I/Fがバスを介して互いに接続されて構成される。そして、アクセルペダル121や前後進切換スイッチ122といった各種の操作装置、および各種のセンサなどが入力I/Fに接続され、前進側ポンプ傾転制御弁312、後進側ポンプ傾転制御弁313、およびモータ傾転制御弁322などが出力I/Fに接続されている。 The controller 5 is configured by connecting a CPU, RAM, ROM, HDD, input I / F, and output I / F to each other via a bus. Then, various operating devices such as the accelerator pedal 121 and the forward / backward changeover switch 122, and various sensors are connected to the input I / F, and the forward side pump tilt control valve 312, the reverse side pump tilt control valve 313, and the reverse side pump tilt control valve 313, and A motor tilt control valve 322 or the like is connected to the output I / F.
 このようなハードウェア構成において、ROMやHDD若しくは光学ディスク等の記録媒体に格納された制御プログラム(ソフトウェア)をCPUが読み出してRAM上に展開し、展開された制御プログラムを実行することにより、制御プログラムとハードウェアとが協働して、コントローラ5の機能を実現する。 In such a hardware configuration, the CPU reads the control program (software) stored in a recording medium such as a ROM, HDD, or optical disk, expands it on the RAM, and executes the expanded control program for control. The program and the hardware work together to realize the function of the controller 5.
 なお、本実施形態では、コントローラ5をソフトウェアとハードウェアとの組み合わせによって構成されるコンピュータとして説明しているが、これに限らず、例えば他のコンピュータの構成の一例として、ホイールローダ1の側で実行される制御プログラムの機能を実現する集積回路を用いてもよい。 In the present embodiment, the controller 5 is described as a computer configured by a combination of software and hardware, but the present invention is not limited to this, and for example, as an example of the configuration of another computer, the wheel loader 1 side. An integrated circuit that realizes the function of the controller to be executed may be used.
 コントローラ5は、データ取得部50と、ポンプ指令信号出力部51と、断線検出部52と、モータ指令信号出力部53と、時間計測部54と、経過時間判定部55と、記憶部56と、を含む。 The controller 5 includes a data acquisition unit 50, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56. including.
 データ取得部50は、アクセルペダル121の踏込量、前後進切換スイッチ122から出力された前後進切換信号、およびポンプ指令信号出力部51から出力されたポンプ指令信号の大きさに関するデータをそれぞれ取得する。 The data acquisition unit 50 acquires data on the amount of depression of the accelerator pedal 121, the forward / backward changeover signal output from the forward / backward changeover switch 122, and the magnitude of the pump command signal output from the pump command signal output unit 51, respectively. ..
 ポンプ指令信号出力部51は、データ取得部50で取得されたアクセルペダル121の踏込量や前後進切換信号に基づいて、前進側ポンプ傾転制御弁312に対して前進側ポンプ指令信号を、後進側ポンプ傾転制御弁313に対して後進側ポンプ指令信号を、それぞれ出力する。 The pump command signal output unit 51 sends a forward pump command signal to the forward pump tilt control valve 312 in reverse based on the depression amount of the accelerator pedal 121 and the forward / backward switching signal acquired by the data acquisition unit 50. A reverse pump command signal is output to the side pump tilt control valve 313.
 断線検出部52は、データ取得部50で取得されたポンプ指令信号の大きさに基づいて、前進側信号線41の断線や後進側信号線42の断線を検出する。すなわち、断線検出部52は、コントローラ5(ポンプ指令信号出力部51)からポンプ傾転制御装置310へ伝達されるポンプ指令信号の大きさに基づいて、コントローラ5からポンプ傾転制御装置310へポンプ指令信号が出力されているか否かを検出して、ポンプ指令信号の異常状態を判定する。 The disconnection detection unit 52 detects the disconnection of the forward side signal line 41 and the disconnection of the reverse side signal line 42 based on the magnitude of the pump command signal acquired by the data acquisition unit 50. That is, the disconnection detection unit 52 pumps from the controller 5 to the pump tilt control device 310 based on the magnitude of the pump command signal transmitted from the controller 5 (pump command signal output unit 51) to the pump tilt control device 310. It detects whether or not the command signal is output and determines the abnormal state of the pump command signal.
 より具体的には、前進側信号線41および後進側信号線42にはそれぞれ、アクセルペダル121や前後進切換スイッチ122が操作されていない状態であっても一定の指令電流が印加されており、断線した場合にはその指令電流が遮断されて0(ゼロ)となる。したがって、断線検出部52は、前進側信号線41および後進側信号線42のそれぞれに印加されている指令電流が0となったことに基づいて断線を検出することができる。 More specifically, a constant command current is applied to the forward signal line 41 and the reverse signal line 42, respectively, even when the accelerator pedal 121 and the forward / backward changeover switch 122 are not operated. If the wire is broken, the command current is cut off and becomes 0 (zero). Therefore, the disconnection detection unit 52 can detect the disconnection based on the command current applied to each of the forward signal line 41 and the reverse signal line 42 becoming zero.
 モータ指令信号出力部53は、断線検出部52において前進側信号線41または後進側信号線42が断線したことが検出、すなわちポンプ指令信号の異常状態が判定されると、走行用油圧モータ32の傾転角θを第1目標角θ1まで小さくする第1モータ指令信号をモータ傾転制御弁322に対して出力する。この「第1目標角θ1」は、前進側信号線41または後進側信号線42の断線時における走行用油圧モータ32の傾転角よりも小さい角度であり、例えば走行用油圧モータ32の最大傾転角の1/2の角度や断線時における傾転角の1/2の角度、あるいは走行用油圧モータ32の最小傾転角などに設定される。 The motor command signal output unit 53 detects that the forward signal line 41 or the reverse signal line 42 is disconnected in the disconnection detection unit 52, that is, when an abnormal state of the pump command signal is determined, the traveling hydraulic motor 32 A first motor command signal that reduces the tilt angle θ to the first target angle θ1 is output to the motor tilt control valve 322. This "first target angle θ1" is an angle smaller than the tilt angle of the traveling hydraulic motor 32 when the forward side signal line 41 or the reverse side signal line 42 is disconnected, and is, for example, the maximum tilt of the traveling hydraulic motor 32. It is set to an angle of 1/2 of the turning angle, an angle of 1/2 of the tilting angle at the time of disconnection, a minimum tilting angle of the traveling hydraulic motor 32, and the like.
 なお、「前進側信号線41または後進側信号線42の断線時における走行用油圧モータ32の傾転角」は、前進側信号線41または後進側信号線42の断線が検出される直前のコントローラ5からポンプ傾転制御装置310へポンプ指令信号が正常に出力されている場合における走行用油圧モータ32の傾転角に相当する。したがって、モータ指令信号出力部53は、断線検出部52において前進側信号線41または後進側信号線42が断線したことが検出(ポンプ指令信号の異常状態が判定)されると、走行用油圧モータ32の傾転角θを、前進側信号線41または後進側信号線42の断線が検出(ポンプ指令信号の異常状態が判定)される直前のコントローラ5からポンプ傾転制御装置310へポンプ指令信号が正常に出力されている場合における走行用油圧モータ32の傾転角よりも小さくする。 The "tilt angle of the traveling hydraulic motor 32 when the forward signal line 41 or the reverse signal line 42 is disconnected" is the controller immediately before the disconnection of the forward signal line 41 or the reverse signal line 42 is detected. This corresponds to the tilt angle of the traveling hydraulic motor 32 when the pump command signal is normally output from 5 to the pump tilt control device 310. Therefore, when the motor command signal output unit 53 detects that the forward signal line 41 or the reverse signal line 42 is disconnected (determines an abnormal state of the pump command signal) in the disconnection detection unit 52, the traveling hydraulic motor The pump command signal from the controller 5 immediately before the disconnection of the forward side signal line 41 or the reverse side signal line 42 is detected (the abnormal state of the pump command signal is determined) to the pump tilt control device 310 at the tilt angle θ of 32. Is smaller than the tilt angle of the traveling hydraulic motor 32 when is normally output.
 また、モータ指令信号出力部53は、第1目標角θ1まで小傾転化した走行用油圧モータ32の傾転角θを第2目標角θ2(>θ1)まで大きくする第2モータ指令信号をモータ傾転制御弁322に対して出力する。この「第2目標角θ2」は、第1目標角θ1よりも大きい角度であればよく、例えば走行用油圧モータ32の最大傾転角などに設定される。 Further, the motor command signal output unit 53 transmits a second motor command signal that increases the tilt angle θ of the traveling hydraulic motor 32 that has been slightly tilted to the first target angle θ1 to the second target angle θ2 (> θ1). Output to the tilt control valve 322. The "second target angle θ2" may be an angle larger than the first target angle θ1, and is set to, for example, the maximum tilt angle of the traveling hydraulic motor 32.
 時間計測部54は、モータ指令信号出力部53において第1モータ指令信号がモータ傾転制御弁322に対して出力されてからの経過時間tを計測する。 The time measuring unit 54 measures the elapsed time t after the first motor command signal is output to the motor tilt control valve 322 in the motor command signal output unit 53.
 経過時間判定部55は、時間計測部54で計測された経過時間tが所定の設定時間T1(以下、単に「設定時間T1」とする)以上となったか否かを判定する。この「設定時間T1」とは、前進側信号線41または後進側信号線42が断線してから(すなわち、コントローラ5からポンプ傾転制御装置310へポンプ指令信号が出力されなくなってから)走行用油圧ポンプ31の吐出流量が0になるまでの時間として予め設定された時間である。設定時間T1は、メモリである記憶部56に記憶されている。 The elapsed time determination unit 55 determines whether or not the elapsed time t measured by the time measurement unit 54 is equal to or longer than the predetermined set time T1 (hereinafter, simply referred to as “set time T1”). This "set time T1" is for traveling after the forward side signal line 41 or the reverse side signal line 42 is disconnected (that is, after the pump command signal is no longer output from the controller 5 to the pump tilt control device 310). This is a preset time as the time until the discharge flow rate of the hydraulic pump 31 becomes zero. The set time T1 is stored in the storage unit 56, which is a memory.
 なお、モータ指令信号出力部53は、経過時間判定部55において経過時間tが設定時間T1以上となった場合(t≧T1)に、第2モータ指令信号をモータ傾転制御弁322に対して出力する。また、本実施形態では、第2モータ指令信号は、走行用油圧モータ32の傾転角θを所定の時間T2かけて第1目標角θ1から第2目標角θ2まで大きくする。この「所定の時間T2」は、第1モータ指令信号に基づいて走行用油圧モータ32の傾転角θを第1目標角θ1まで小さくする際にかかる時間よりも長い時間である。 The motor command signal output unit 53 sends a second motor command signal to the motor tilt control valve 322 when the elapsed time t becomes the set time T1 or more (t ≧ T1) in the elapsed time determination unit 55. Output. Further, in the present embodiment, the second motor command signal increases the tilt angle θ of the traveling hydraulic motor 32 from the first target angle θ1 to the second target angle θ2 over a predetermined time T2. This "predetermined time T2" is a time longer than the time required to reduce the tilt angle θ of the traveling hydraulic motor 32 to the first target angle θ1 based on the first motor command signal.
(コントローラ5内での処理)
 次に、コントローラ5内で実行される具体的な処理の流れについて、図4を参照して説明する。
(Processing in controller 5)
Next, a specific flow of processing executed in the controller 5 will be described with reference to FIG.
 図4は、第1実施形態に係るコントローラ5で実行される処理の流れを示すフローチャートである。 FIG. 4 is a flowchart showing the flow of processing executed by the controller 5 according to the first embodiment.
 まず、データ取得部50は、ポンプ指令信号出力部51から出力されたポンプ指令信号を取得する(ステップS501)。続いて、断線検出部52は、ステップS501で取得されたポンプ指令信号に基づいて、前進側信号線41または後進側信号線42が断線しているか否かを判定する(ステップS502)。 First, the data acquisition unit 50 acquires the pump command signal output from the pump command signal output unit 51 (step S501). Subsequently, the disconnection detection unit 52 determines whether or not the forward signal line 41 or the reverse signal line 42 is disconnected based on the pump command signal acquired in step S501 (step S502).
 ステップS502において前進側信号線41または後進側信号線42が断線していると判定される、すなわち断線検出部52が前進側信号線41または後進側信号線42の断線を検出すると(ステップS502/YES)、モータ指令信号出力部53は、モータ傾転角θを第1目標角θ1まで小傾転化させる第1モータ指令信号を出力する(ステップS503)。 When it is determined in step S502 that the forward side signal line 41 or the reverse side signal line 42 is broken, that is, when the disconnection detection unit 52 detects the disconnection of the forward side signal line 41 or the reverse side signal line 42 (step S502 / YES), the motor command signal output unit 53 outputs a first motor command signal that causes the motor tilt angle θ to be slightly tilted to the first target angle θ1 (step S503).
 これにより、ホイールローダ1は、断線時にポンプ傾転シリンダ311が中立状態になることによって発生するブレーキ力を抑制することができ、第1目標角θ1に応じたブレーキ力を得ることが可能となるため、急減速しにくくなる。したがって、ホイールローダ1は、前進側信号線41または後進側信号線42が断線してしまった場合であっても、コントローラ5によって車体の急減速を回避し、バランスを崩すことなく安定した状態で停車することが可能となる。 As a result, the wheel loader 1 can suppress the braking force generated by the pump tilting cylinder 311 being in the neutral state at the time of disconnection, and can obtain the braking force according to the first target angle θ1. Therefore, it becomes difficult to decelerate suddenly. Therefore, even if the forward signal line 41 or the reverse signal line 42 is disconnected, the wheel loader 1 avoids sudden deceleration of the vehicle body by the controller 5 and is in a stable state without losing the balance. It will be possible to stop.
 なお、本実施形態では、第1モータ指令信号は、断線検出部52が前進側信号線41または後進側信号線42の断線を検出すると、瞬時にモータ傾転角θを第1目標角θ1まで小傾転化させるように設定されているが、これに限らず、車体の急減速が発生しない程度の時間をかけてモータ傾転角θを第1目標角θ1まで小傾転化させてもよい。 In the present embodiment, when the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42, the first motor command signal instantly sets the motor tilt angle θ to the first target angle θ1. Although it is set to be slightly tilted, the present invention is not limited to this, and the motor tilt angle θ may be slightly tilted to the first target angle θ1 over a period of time such that sudden deceleration of the vehicle body does not occur.
 ステップS502において前進側信号線41または後進側信号線42が断線していると判定されなかった場合、すなわち断線検出部52が前進側信号線41または後進側信号線42の断線を検出しなかった場合(ステップS502/NO)には、ステップS501に戻り、断線検出部52が前進側信号線41または後進側信号線42の断線を検出するまで(ステップS502/YES)ステップS503に進まない。 When it was not determined in step S502 that the forward side signal line 41 or the reverse side signal line 42 was broken, that is, the disconnection detection unit 52 did not detect the disconnection of the forward side signal line 41 or the reverse side signal line 42. In the case (step S502 / NO), the process returns to step S501, and the process does not proceed to step S503 until the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 (step S502 / YES).
 ステップS503においてモータ指令信号出力部53が第1モータ指令信号を出力すると、時間計測部54は、経過時間tの計測を開始する(ステップS504)。続いて、経過時間判定部55は、計測中の経過時間tが記憶部56に記憶された設定時間T1以上であるか否かを判定する(ステップS505)。 When the motor command signal output unit 53 outputs the first motor command signal in step S503, the time measurement unit 54 starts measuring the elapsed time t (step S504). Subsequently, the elapsed time determination unit 55 determines whether or not the elapsed time t during measurement is equal to or greater than the set time T1 stored in the storage unit 56 (step S505).
 ステップS505において経過時間tが設定時間T1以上である(t≧T1)と判定された場合(ステップS505/YES)、モータ指令信号出力部53は、モータ傾転角θを所定時間T2かけて第2目標角θ2まで大傾転化させる第2モータ指令信号をモータ傾転制御弁322に対して出力し(ステップS506)、コントローラ5における処理が終了する。 When it is determined in step S505 that the elapsed time t is equal to or greater than the set time T1 (t ≧ T1) (step S505 / YES), the motor command signal output unit 53 sets the motor tilt angle θ over a predetermined time T2. 2 A second motor command signal for large tilting up to the target angle θ2 is output to the motor tilt control valve 322 (step S506), and the process in the controller 5 ends.
 なお、ステップS505において経過時間tが設定時間T1を経過していない(t<T1)と判定された場合(ステップS505/NO)には、経過時間tが設定時間T1を経過するまで(ステップS505/YES)ステップS506に進まない。 If it is determined in step S505 that the elapsed time t has not passed the set time T1 (t <T1) (step S505 / NO), the elapsed time t has passed the set time T1 (step S505). / YES) Do not proceed to step S506.
 ステップS503において走行用油圧モータ32の傾転角θを小傾転化させると、第1目標角θ1の値によっては車体が停車するまでに逸走する可能性や、ホイールローダ1が坂道にいるような場合にはブレーキ力が不足して停車できなくなる可能性がある。そのため、本実施形態では、モータ指令信号出力部53が第1モータ指令信号を出力してから設定時間T1が経過した後に、モータ指令信号出力部53が第2指令信号を出力して走行用油圧モータ32の傾転角を第1モータ指令信号に対応した傾転角よりも大きくすることによってブレーキ力を上げている。これにより、ホイールローダ1は、確実に停車することが可能となる。 When the tilt angle θ of the traveling hydraulic motor 32 is slightly tilted in step S503, depending on the value of the first target angle θ1, there is a possibility that the vehicle body may escape before the vehicle stops, or the wheel loader 1 may be on a slope. In that case, the braking force may be insufficient and the vehicle may not be able to stop. Therefore, in the present embodiment, after the set time T1 elapses after the motor command signal output unit 53 outputs the first motor command signal, the motor command signal output unit 53 outputs the second command signal to drive hydraulic pressure. The braking force is increased by making the tilt angle of the motor 32 larger than the tilt angle corresponding to the first motor command signal. As a result, the wheel loader 1 can be reliably stopped.
 また、本実施形態では、第2モータ指令信号は、瞬時にモータ傾転角θを第2目標角θ2まで大傾転化させず、所定時間T2かけて第2目標角θ2まで大傾転化させるため、車体の急減速につながることがなく、また、モータ傾転角θが滑らかに大傾転化するため、設定時間T1を短くすることが可能となり、例えば、ホイールローダ1が降坂中であっても車体が逸走せずに停車しやすくなる。 Further, in the present embodiment, the second motor command signal does not instantly cause the motor tilt angle θ to be greatly tilted to the second target angle θ2, but is to be greatly tilted to the second target angle θ2 over a predetermined time T2. Since the motor tilt angle θ smoothly shifts to a large tilt without leading to sudden deceleration of the vehicle body, the set time T1 can be shortened. For example, the wheel loader 1 is descending a slope. However, the car body does not run away and it becomes easier to stop.
<第2実施形態>
 次に、本発明の第2実施形態に係るコントローラ5Aについて、図5および図6を参照して説明する。図5および図6において、第1実施形態に係るホイールローダ1について説明したものと共通する構成要素については、同一の符号を付してその説明を省略する。以下、第3~第6実施形態においても同様とする。
<Second Embodiment>
Next, the controller 5A according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. In FIGS. 5 and 6, the same components as those described for the wheel loader 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Hereinafter, the same applies to the third to sixth embodiments.
 図5は、第2実施形態に係るコントローラ5Aが有する機能を示す機能ブロック図である。図6は、第2実施形態に係るコントローラ5Aで実行される処理の流れを示すフローチャートである。 FIG. 5 is a functional block diagram showing the functions of the controller 5A according to the second embodiment. FIG. 6 is a flowchart showing a flow of processing executed by the controller 5A according to the second embodiment.
 本実施形態に係るコントローラ5Aは、第1実施形態に係るコントローラ5と異なり、走行用油圧モータ32のモータ傾転角θを第1目標角θ1まで小傾転化させた後、ホイールローダ1の車速Vを条件として、モータ傾転角θを第2目標角θ2まで大傾転化させる。 Unlike the controller 5 according to the first embodiment, the controller 5A according to the present embodiment has the motor tilt angle θ of the traveling hydraulic motor 32 slightly tilted to the first target angle θ1, and then the vehicle speed of the wheel loader 1. On condition of V, the motor tilt angle θ is largely tilted to the second target angle θ2.
 図5に示すように、コントローラ5Aは、データ取得部50A、ポンプ指令信号出力部51、断線検出部52、モータ指令信号出力部53、および記憶部56Aの他に、車速判定部57を含む。すなわち、コントローラ5Aは、第1実施形態における時間計測部54および経過時間判定部55に代わって、車速判定部57を含んでいる。 As shown in FIG. 5, the controller 5A includes a vehicle speed determination unit 57 in addition to the data acquisition unit 50A, the pump command signal output unit 51, the disconnection detection unit 52, the motor command signal output unit 53, and the storage unit 56A. That is, the controller 5A includes a vehicle speed determination unit 57 instead of the time measurement unit 54 and the elapsed time determination unit 55 in the first embodiment.
 図6に示すように、ステップS503においてモータ指令信号出力部53が第1モータ指令信号を出力後、データ取得部50Aは、車速センサ44で検出された車速Vを取得する(ステップS504A)。 As shown in FIG. 6, after the motor command signal output unit 53 outputs the first motor command signal in step S503, the data acquisition unit 50A acquires the vehicle speed V detected by the vehicle speed sensor 44 (step S504A).
 続いて、車速判定部57は、ステップS504Aにおいて取得された車速Vが所定の車速閾値Vth(以下、単に「車速閾値Vth」とする)以下であるか否かを判定する(ステップS505A)。ここで、「車速閾値Vth」は、前進側信号線41または後進側信号線42の断線時(すなわち、コントローラ5Aからポンプ傾転制御装置310へポンプ指令信号が出力されなくなった時)における車速よりも小さく設定された値であり、記憶部56Aに記憶されている。 Subsequently, the vehicle speed determination unit 57 determines whether or not the vehicle speed V acquired in step S504A is equal to or less than a predetermined vehicle speed threshold value Vth (hereinafter, simply referred to as “vehicle speed threshold value Vth”) (step S505A). Here, the "vehicle speed threshold value Vth" is the vehicle speed at the time when the forward side signal line 41 or the reverse side signal line 42 is disconnected (that is, when the pump command signal is no longer output from the controller 5A to the pump tilt control device 310). Is also a small value and is stored in the storage unit 56A.
 ステップS505Aにおいて車速Vが車速閾値Vth以下である(V≦Vth)と判定された場合(ステップS505A/YES)には、ステップS506に進んでモータ指令信号出力部53は第2モータ指令信号を出力する。一方、ステップS505Aにおいて車速Vが車速閾値Vthよりも大きい(V>Vth)と判定された場合(ステップS505A/NO)には、ステップS504Aに戻って車速Vが車速閾値Vth以下となる(V≦Vth)までステップS506に進まない。 When it is determined in step S505A that the vehicle speed V is equal to or less than the vehicle speed threshold value Vth (V ≦ Vth) (step S505A / YES), the process proceeds to step S506 and the motor command signal output unit 53 outputs the second motor command signal. do. On the other hand, when it is determined in step S505A that the vehicle speed V is larger than the vehicle speed threshold value Vth (V> Vth) (step S505A / NO), the process returns to step S504A and the vehicle speed V becomes equal to or less than the vehicle speed threshold value Vth (V ≦). Do not proceed to step S506 until Vth).
 本実施形態においても、第1実施形態における作用および効果と同様の作用および効果を奏する。 Also in this embodiment, the same actions and effects as those in the first embodiment are exhibited.
<第3実施形態>
 次に、本発明の第3実施形態に係るコントローラ5Bについて、図7および図8を参照して説明する。
<Third Embodiment>
Next, the controller 5B according to the third embodiment of the present invention will be described with reference to FIGS. 7 and 8.
 図7は、第3実施形態に係るコントローラ5Bが有する機能を示す機能ブロック図である。図8は、第3実施形態に係るコントローラ5Bで実行される処理の流れを示すフローチャートである。 FIG. 7 is a functional block diagram showing the functions of the controller 5B according to the third embodiment. FIG. 8 is a flowchart showing a flow of processing executed by the controller 5B according to the third embodiment.
 本実施形態に係るコントローラ5Bは、第1実施形態に係るコントローラ5と異なり、前進側信号線41または後進側信号線42が断線し、かつ断線時におけるバケット23の位置が水平姿勢でのバケット23の位置よりも上方である場合に、モータ傾転角θを第1目標角θ1まで小傾転化させる。 Unlike the controller 5 according to the first embodiment, the controller 5B according to the present embodiment has the forward side signal line 41 or the reverse side signal line 42 disconnected, and the bucket 23 is in a horizontal position at the time of disconnection. When the position is above the position of, the motor tilt angle θ is slightly tilted to the first target angle θ1.
 図7に示すように、コントローラ5Bは、データ取得部50B、ポンプ指令信号出力部51、断線検出部52、モータ指令信号出力部53、時間計測部54、経過時間判定部55、および記憶部56Bの他に、姿勢判定部58を含む。 As shown in FIG. 7, the controller 5B includes a data acquisition unit 50B, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56B. In addition, the posture determination unit 58 is included.
 図8に示すように、ステップS502において断線検出部52が前進側信号線41または後進側信号線42の断線を検出すると(ステップS502/YES)、データ取得部50Bは、荷役作業装置2に取り付けられた姿勢センサ45(例えば、リフトアーム21およびバケット23の角度を検出する角度センサや、リフトアームシリンダ22およびバケットシリンダ24のボトム圧を検出する圧力センサなど)で検出された荷役作業装置2の姿勢を取得する(ステップS507)。 As shown in FIG. 8, when the disconnection detection unit 52 detects the disconnection of the forward side signal line 41 or the reverse side signal line 42 in step S502 (step S502 / YES), the data acquisition unit 50B is attached to the cargo handling work device 2. The cargo handling work device 2 detected by the attitude sensor 45 (for example, an angle sensor that detects the angles of the lift arm 21 and the bucket 23, a pressure sensor that detects the bottom pressure of the lift arm cylinder 22 and the bucket cylinder 24, and the like). Acquire the posture (step S507).
 続いて、姿勢判定部58は、ステップS507で取得された荷役作業装置2の姿勢に基づいて、バケット23の位置が荷役作業装置2の水平姿勢におけるバケット23の位置よりも上方であるか否かを判定する(ステップS508)。荷役作業装置2の水平姿勢におけるバケット23の位置は、予め記憶部56Bに記憶されている。なお、「荷役作業装置2の水平姿勢」とは、積荷の運搬時や積荷がない状態での走行時など、ホイールローダ1が走行姿勢にある場合における荷役作業装置2の姿勢である。 Subsequently, the posture determination unit 58 determines whether or not the position of the bucket 23 is higher than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 based on the posture of the cargo handling work device 2 acquired in step S507. Is determined (step S508). The position of the bucket 23 in the horizontal posture of the cargo handling work device 2 is stored in advance in the storage unit 56B. The "horizontal posture of the cargo handling work device 2" is the posture of the cargo handling work device 2 when the wheel loader 1 is in the traveling posture, such as when carrying a load or traveling without a load.
 ステップS508においてバケット23の位置が荷役作業装置2の水平姿勢におけるバケット23の位置よりも上方であると判定された場合(ステップS508/YES)、ステップS503に進んでモータ指令信号出力部53は第1モータ指令信号を出力する。一方、ステップS508においてバケット23の位置が荷役作業装置2の水平姿勢におけるバケット23の位置以下であると判定された場合(ステップS508/NO)には、コントローラ5B内における処理が終了する。 When it is determined in step S508 that the position of the bucket 23 is higher than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 (step S508 / YES), the motor command signal output unit 53 proceeds to step S503. 1 Outputs a motor command signal. On the other hand, when it is determined in step S508 that the position of the bucket 23 is equal to or less than the position of the bucket 23 in the horizontal posture of the cargo handling work device 2 (step S508 / NO), the process in the controller 5B ends.
 例えば、掘削した土砂や鉱物などの積荷をダンプトラックなどの積込み先に積み込む積込作業では、ホイールローダ1はリフトアーム21を上昇させながら積込み先に・BR>゜づく(ダンプアプローチ)が、この状態で前進側信号線41が断線して車体が急減速してしまうと、後輪11Bが浮きやすく車体はよりバランスを崩しやすくなってしまう。したがって、このように車体のバランスが不安定な状態である場合のみ、モータ傾転角制御処理の対象としてもよい。 For example, in the loading work of loading excavated earth and sand, minerals, etc. into a loading destination such as a dump truck, the wheel loader 1 raises the lift arm 21 and attaches to the loading destination. If the forward signal line 41 is disconnected and the vehicle body suddenly decelerates in this state, the rear wheels 11B tend to float and the vehicle body tends to lose its balance. Therefore, the motor tilt angle control process may be applied only when the balance of the vehicle body is unstable in this way.
<第4実施形態>
 次に、第4実施形態に係るコントローラ5Cについて、図9および図10を参照して説明する。
<Fourth Embodiment>
Next, the controller 5C according to the fourth embodiment will be described with reference to FIGS. 9 and 10.
 図9は、第4実施形態に係るコントローラ5Cが有する機能を示す機能ブロック図である。図10は、第4実施形態に係るコントローラ5Cで実行される処理の流れを示すフローチャートである。 FIG. 9 is a functional block diagram showing the functions of the controller 5C according to the fourth embodiment. FIG. 10 is a flowchart showing a flow of processing executed by the controller 5C according to the fourth embodiment.
 本実施形態に係るコントローラ5Cは、第1実施形態に係るコントローラ5と異なり、前進側信号線41または後進側信号線42が断線し、かつ断線時における車体の速度段が低速度段である場合に、モータ傾転角θを第1目標角θ1まで小傾転化させる。 Unlike the controller 5 according to the first embodiment, the controller 5C according to the present embodiment has a case where the forward signal line 41 or the reverse signal line 42 is disconnected and the speed stage of the vehicle body at the time of disconnection is a low speed stage. In addition, the motor tilt angle θ is slightly tilted to the first target angle θ1.
 図9に示すように、コントローラ5Cは、データ取得部50C、ポンプ指令信号出力部51、断線検出部52、モータ指令信号出力部53、時間計測部54、経過時間判定部55、および記憶部56の他に、速度段判定部59を含む。すなわち、コントローラ5Cは、第3実施形態における姿勢判定部58に代わって、速度段判定部59を含んでいる。 As shown in FIG. 9, the controller 5C includes a data acquisition unit 50C, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, an elapsed time determination unit 55, and a storage unit 56. In addition, the speed stage determination unit 59 is included. That is, the controller 5C includes a speed stage determination unit 59 instead of the attitude determination unit 58 in the third embodiment.
 図10に示すように、ステップS502において断線検出部52が前進側信号線41または後進側信号線42の断線を検出すると(ステップS502/YES)、データ取得部50Cは、速度段スイッチ123で選択された速度段を取得する(ステップS507C)。 As shown in FIG. 10, when the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 in step S502 (step S502 / YES), the data acquisition unit 50C is selected by the speed stage switch 123. Acquire the speed stage (step S507C).
 続いて、速度段判定部59は、ステップS507Cで取得された速度段が低速度段であるか否かを判定する(ステップS508C)。ステップS508Cにおいて、ステップS507Cで取得された速度段が低速度段であると判定された場合(ステップS508C/YES)、ステップS503に進んでモータ指令信号出力部53は第1モータ指令信号を出力する。一方、ステップS508CにおいてステップS507Cで取得された速度段が低速度段でないと判定された場合(ステップS508C/NO)には、コントローラ5C内における処理が終了する。 Subsequently, the speed stage determination unit 59 determines whether or not the speed stage acquired in step S507C is a low speed stage (step S508C). In step S508C, when it is determined that the speed stage acquired in step S507C is a low speed stage (step S508C / YES), the process proceeds to step S503 and the motor command signal output unit 53 outputs the first motor command signal. .. On the other hand, when it is determined in step S508C that the speed stage acquired in step S507C is not a low speed stage (step S508C / NO), the processing in the controller 5C ends.
 ホイールローダ1は、車体の速度段が低速度段(1速度段や2速度段)のときほど、車速が低く、モータ傾転角θも大傾転になりやすいため、前進側信号線41や後進側信号線42が断線すると大きなブレーキ力が発生しやすい。一方、車体の速度段が中~高速度段(3速度段や4速度段)のときは、車速が高くなりやすく、また、モータ傾転角θを小傾転で使うことが多くこと、およびトランスミッション15のギア比の違いによって同じモータ傾転角θであっても牽引力が小さくなりやすいことから、低速度段の場合と比べてブレーキ力が発生しにくい。したがって、このように車体の速度段が低速度段である場合のみ、モータ傾転角制御処理の対象としてもよい。 In the wheel loader 1, the vehicle speed is lower and the motor tilt angle θ is more likely to be greatly tilted when the speed stage of the vehicle body is a low speed stage (1st speed stage or 2nd speed stage). When the reverse signal line 42 is disconnected, a large braking force is likely to be generated. On the other hand, when the speed stage of the vehicle body is medium to high speed stage (3 speed stage or 4 speed stage), the vehicle speed tends to be high, and the motor tilt angle θ is often used for small tilt. Since the traction force tends to be small even if the motor tilt angle θ is the same due to the difference in the gear ratio of the transmission 15, the braking force is less likely to be generated as compared with the case of the low speed stage. Therefore, only when the speed stage of the vehicle body is the low speed stage as described above, the motor tilt angle control process may be applied.
<第5実施形態>
 次に、本発明の第5実施形態に係るコントローラ5について、図11を参照して説明する。
<Fifth Embodiment>
Next, the controller 5 according to the fifth embodiment of the present invention will be described with reference to FIG.
 図11は、第5実施形態に係るコントローラ5で実行される処理の流れを示すフローチャートである。 FIG. 11 is a flowchart showing a flow of processing executed by the controller 5 according to the fifth embodiment.
 本実施形態に係るコントローラ5は、第1実施形態と同様に、データ取得部50、ポンプ指令信号出力部51、断線検出部52、モータ指令信号出力部53、時間計測部54、経過時間判定部55、および記憶部56を含む。 Similar to the first embodiment, the controller 5 according to the present embodiment has a data acquisition unit 50, a pump command signal output unit 51, a disconnection detection unit 52, a motor command signal output unit 53, a time measurement unit 54, and an elapsed time determination unit. 55, and a storage unit 56 are included.
 図11に示すように、ステップS502において断線検出部52が前進側信号線41または後進側信号線42の断線を検出すると(ステップS502/YES)、さらに、断線検出部52は、データ取得部50で取得された前後進切換信号に基づいて、車体の前進中に前進側信号線41が断線または車体の後進中に後進側信号線42が断線したか否かを判定する(ステップS509)。 As shown in FIG. 11, when the disconnection detection unit 52 detects the disconnection of the forward signal line 41 or the reverse signal line 42 in step S502 (step S502 / YES), the disconnection detection unit 52 further increases the data acquisition unit 50. Based on the forward / backward switching signal acquired in the above, it is determined whether or not the forward signal line 41 is disconnected while the vehicle body is moving forward or the reverse signal line 42 is disconnected while the vehicle body is moving backward (step S509).
 ステップS509において車体の前進中に前進側信号線41が断線または車体の後進中に後進側信号線42が断線したと判定された場合(ステップS509/YES)、ステップS503に進んでモータ指令信号出力部53は第1モータ指令信号を出力する。一方、ステップS509において車体の前進中に前進側信号線41が断線または車体の後進中に後進側信号線42が断線したと判定されなかった場合、すなわち車体の前進中に後進側信号線42が断線または車体の後進中に前進側信号線41が断線した場合(ステップS509/NO)には、コントローラ5内における処理が終了する。 If it is determined in step S509 that the forward signal line 41 is broken while the vehicle body is moving forward or the reverse signal line 42 is broken while the vehicle body is moving backward (step S509 / YES), the process proceeds to step S503 to output the motor command signal. The unit 53 outputs the first motor command signal. On the other hand, if it is not determined in step S509 that the forward signal line 41 is disconnected during the vehicle body advancement or the reverse signal line 42 is not disconnected during the vehicle vehicle reverse movement, that is, the reverse signal line 42 is disconnected while the vehicle body is moving forward. If the forward signal line 41 is disconnected (step S509 / NO) during disconnection or reverse movement of the vehicle body, the process in the controller 5 ends.
 車体の前進中に後進側信号線42が断線した場合や、車体の後進中に前進側信号線41が断線した場合には、ポンプ指令信号出力部51から出力されるポンプ指令信号に影響がないため、車体の前進中に前進側信号線41が断線または車体の後進中に後進側信号線42が断線したときのみ、モータ傾転角制御処理の対象としてもよい。 If the reverse signal line 42 is disconnected while the vehicle body is moving forward, or if the forward signal line 41 is disconnected while the vehicle body is moving backward, the pump command signal output from the pump command signal output unit 51 is not affected. Therefore, the motor tilt angle control process may be performed only when the forward signal line 41 is disconnected during the forward movement of the vehicle body or the reverse signal line 42 is disconnected during the reverse movement of the vehicle body.
<第6実施形態>
 次に、本発明の第6実施形態に係るホイールローダ1について、図12を参照して説明する。
<Sixth Embodiment>
Next, the wheel loader 1 according to the sixth embodiment of the present invention will be described with reference to FIG.
 図12は、第6実施形態に係るホイールローダ1の駆動システムの一構成例を示す図である。 FIG. 12 is a diagram showing a configuration example of the drive system of the wheel loader 1 according to the sixth embodiment.
 本実施形態に係るポンプ傾転制御装置310Aでは、第1実施形態に係るポンプ傾転制御装置310の構成と異なり、ポンプ傾転シリンダ311に供給される作動油の流れ(流量および方向)が、1つの方向制御弁314によって制御されている。 In the pump tilt control device 310A according to the present embodiment, unlike the configuration of the pump tilt control device 310 according to the first embodiment, the flow (flow rate and direction) of the hydraulic oil supplied to the pump tilt cylinder 311 is different. It is controlled by one directional control valve 314.
 具体的には、方向制御弁314は、コントローラ5から出力されて前進側信号線41を介して伝達された前進側ポンプ指令信号に基づいたポンプ傾転角とする第1切換位置Lと、コントローラ5から出力されて後進側信号線42を介して伝達された後進側ポンプ指令信号に基づいたポンプ傾転角を制御する第2切換位置Rと、ポンプ傾転シリンダ311の作動油を作動油タンク34に戻す中立位置Nと、を有する。 Specifically, the directional control valve 314 has a first switching position L having a pump tilt angle based on a forward pump command signal output from the controller 5 and transmitted via the forward signal line 41, and a controller. The second switching position R that controls the pump tilt angle based on the reverse pump command signal output from 5 and transmitted via the reverse signal line 42, and the hydraulic oil of the pump tilt cylinder 311 are used in the hydraulic oil tank. It has a neutral position N, which returns to 34.
 コントローラ5から前進側ポンプ指令信号が出力されると、方向制御弁314は第1切換位置Lに切り換わり、これによってポンプ傾転シリンダ311は前進側におけるポンプ傾転角を制御する。他方、コントローラ5から後進側ポンプ指令信号が出力されると、方向制御弁314は第2切換位置Rに切り換わり、これによってポンプ傾転シリンダ311は後進側におけるポンプ傾転角を制御する。 When the forward pump command signal is output from the controller 5, the directional control valve 314 is switched to the first switching position L, whereby the pump tilt cylinder 311 controls the pump tilt angle on the forward side. On the other hand, when the reverse pump command signal is output from the controller 5, the directional control valve 314 is switched to the second switching position R, whereby the pump tilt cylinder 311 controls the pump tilt angle on the reverse side.
 また、前進側信号線41または後進側信号線42が断線した場合には、方向制御弁314は中立位置Nに戻り(図12に示す状態)、ポンプ傾転シリンダ311内の作動油が作動油タンク34に排出されて、走行用油圧ポンプ31の吐出流量が0となる。 When the forward signal line 41 or the reverse signal line 42 is disconnected, the directional control valve 314 returns to the neutral position N (state shown in FIG. 12), and the hydraulic oil in the pump tilting cylinder 311 is the hydraulic oil. It is discharged to the tank 34, and the discharge flow rate of the traveling hydraulic pump 31 becomes zero.
 このように、ポンプ傾転シリンダ311は、必ずしも2つのポンプ傾転制御弁(前進側ポンプ傾転制御弁312および後進側ポンプ傾転制御弁313)によって制御される必要はなく、1つの方向制御弁314によって制御されてもよい。 As described above, the pump tilt cylinder 311 does not necessarily have to be controlled by two pump tilt control valves (forward side pump tilt control valve 312 and reverse side pump tilt control valve 313), and one direction control. It may be controlled by valve 314.
 以上、本発明の実施形態および変形例について説明した。なお、本発明は上記した実施形態や変形例に限定されるものではなく、様々な他の変形例が含まれる。例えば、上記した実施形態および変形例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、本実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The embodiments and modifications of the present invention have been described above. The present invention is not limited to the above-described embodiments and modifications, and includes various other modifications. For example, the above-described embodiments and modifications have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of the present embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of the present embodiment. Furthermore, it is possible to add / delete / replace a part of the configuration of the present embodiment with another configuration.
 例えば、上記実施形態では、作業車両の一態様としてホイールローダについて説明したが、これに限らず、HST式の走行駆動システムが搭載された他の作業車両についても本発明を適用することが可能である。 For example, in the above embodiment, the wheel loader has been described as one aspect of the work vehicle, but the present invention is not limited to this, and the present invention can be applied to other work vehicles equipped with an HST type traveling drive system. be.
 また、上記実施形態では、コントローラ5,5A,5B,5Cは、断線検出部52,52Aが前進側信号線41または後進側信号線42の断線を検出すると、モータ指令信号出力部53が第1モータ指令信号を出力し、その後に第2モータ指令信号を出力しているが、少なくとも断線検出部52,52Aが前進側信号線41または後進側信号線42の断線を検出した場合にモータ指令信号出力部53が第1モータ指令信号を出力すればよい。 Further, in the above embodiment, in the controllers 5, 5A, 5B, 5C, when the disconnection detection units 52, 52A detect the disconnection of the forward side signal line 41 or the reverse side signal line 42, the motor command signal output unit 53 first. A motor command signal is output, and then a second motor command signal is output. However, when at least the disconnection detection units 52 and 52A detect a disconnection of the forward signal line 41 or the reverse signal line 42, the motor command signal is output. The output unit 53 may output the first motor command signal.
1:ホイールローダ(作業車両)
2:荷役作業装置(作業装置)
5,5A,5B,5C:コントローラ
11A:前輪(車輪)
11B:後輪(車輪)
23:バケット(作業具)
30:エンジン
31:走行用油圧ポンプ
32:走行用油圧モータ
44:車速センサ
45:姿勢センサ
122:前後進切換スイッチ(前後進切換装置)
123:速度段スイッチ(速度段選択装置)
310,310A:ポンプ傾転制御装置
320:モータ傾転制御装置
1: Wheel loader (work vehicle)
2: Cargo handling work equipment (work equipment)
5,5A, 5B, 5C: Controller 11A: Front wheels (wheels)
11B: Rear wheel (wheel)
23: Bucket (working tool)
30: Engine 31: Driving hydraulic pump 32: Driving hydraulic motor 44: Vehicle speed sensor 45: Attitude sensor 122: Forward / backward changeover switch (forward / backward changeover device)
123: Speed stage switch (speed stage selection device)
310, 310A: Pump tilt control device 320: Motor tilt control device

Claims (7)

  1.  複数の車輪が設けられた車体と、
     前記車体に搭載されたエンジンと、
     前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、
     前記走行用油圧ポンプに対して閉回路接続され前記エンジンの駆動力を前記複数の車輪に伝達する可変容量型の走行用油圧モータと、
     前記走行用油圧ポンプおよび前記走行用油圧モータを制御するコントローラと、
     前記コントローラから出力されて信号線を介して伝達されるポンプ指令信号に基づいて前記走行用油圧ポンプの押しのけ容積を制御するポンプ傾転制御装置と、
     前記コントローラから出力されたモータ指令信号に基づいて前記走行用油圧モータの押しのけ容積を制御するモータ傾転制御装置と、
    を備えた作業車両において、
     前記コントローラは、
     前記コントローラから前記ポンプ傾転制御装置へ伝達される前記ポンプ指令信号に基づいて前記ポンプ指令信号の異常状態を判定すると、前記異常状態を判定する直前の前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が正常に出力されている場合における前記走行用油圧モータの押しのけ容積よりも小さくなるように前記走行用油圧モータの押しのけ容積を制御する
    ことを特徴とする作業車両。
    A car body with multiple wheels and
    The engine mounted on the car body and
    A variable displacement hydraulic pump driven by the engine and
    A variable displacement type traveling hydraulic motor that is connected to the traveling hydraulic pump in a closed circuit and transmits the driving force of the engine to the plurality of wheels.
    A controller that controls the traveling hydraulic pump and the traveling hydraulic motor,
    A pump tilt control device that controls the push-out volume of the traveling hydraulic pump based on a pump command signal output from the controller and transmitted via a signal line.
    A motor tilt control device that controls the push-out volume of the traveling hydraulic motor based on a motor command signal output from the controller, and a motor tilt control device.
    In a work vehicle equipped with
    The controller
    When the abnormal state of the pump command signal is determined based on the pump command signal transmitted from the controller to the pump tilt control device, the controller immediately before determining the abnormal state sends the pump tilt control device to the pump tilt control device. A work vehicle characterized in that the push-out volume of the running hydraulic motor is controlled so as to be smaller than the push-out volume of the running hydraulic motor when a pump command signal is normally output.
  2.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されていないことを検出して前記走行用油圧モータの押しのけ容積を小さくしてからの経過時間が、前記ポンプ指令信号が出力されなくなってから前記走行用油圧ポンプの吐出流量が0になるまでの時間として設定された設定時間以上となった場合に、前記走行用油圧モータの押しのけ容積を、小さくした前記走行用油圧モータの押しのけ容積よりも大きくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 1,
    The controller
    The pump command signal is not output for the elapsed time after detecting that the pump command signal is not output from the controller to the pump tilt control device and reducing the push-out volume of the traveling hydraulic motor. When the set time or more set as the time until the discharge flow rate of the traveling hydraulic pump becomes 0 or more, the pushing volume of the traveling hydraulic motor is reduced to reduce the pushing volume of the traveling hydraulic motor. A work vehicle characterized by being larger than.
  3.  請求項2に記載の作業車両において、
     前記コントローラは、
     前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されていないことを検出して前記走行用油圧モータの押しのけ容積を小さくする場合にかかる時間よりも長い所定の時間をかけて、前記走行用油圧モータの押しのけ容積を、小さくした前記走行用油圧モータの押しのけ容積よりも大きくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 2.
    The controller
    It takes a predetermined time longer than the time required to reduce the push-out volume of the traveling hydraulic motor by detecting that the pump command signal is not output from the controller to the pump tilt control device. A work vehicle characterized in that the push-out volume of the traveling hydraulic motor is made larger than the pushing-out volume of the traveling hydraulic motor that has been reduced.
  4.  請求項1に記載の作業車両において、
     車速を検出する車速センサを備え、
     前記コントローラは、
     前記車速センサで検出された車速が、前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されなくなった時における車速よりも小さく設定された所定の車速以下となった場合に、前記走行用油圧モータの押しのけ容積を、小さくした前記走行用油圧モータの押しのけ容積よりも大きくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 1,
    Equipped with a vehicle speed sensor that detects vehicle speed
    The controller
    When the vehicle speed detected by the vehicle speed sensor becomes a predetermined vehicle speed set to be smaller than the vehicle speed when the pump command signal is no longer output from the controller to the pump tilt control device, the traveling A work vehicle characterized in that the push-out volume of the hydraulic motor for driving is made larger than the push-out volume of the reduced running hydraulic motor.
  5.  請求項1に記載の作業車両において、
     作業具が先端部に取り付けられた作業装置と、
     前記作業装置の姿勢を検出する姿勢センサと、を備え、
     前記コントローラは、
     前記姿勢センサで検出された前記作業装置の姿勢における前記作業具の位置が、前記作業装置の水平姿勢における前記作業具の位置よりも上方である場合に、前記走行用油圧モータの押しのけ容積を、前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されている場合における前記走行用油圧モータの押しのけ容積よりも小さくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 1,
    A work device with a work tool attached to the tip,
    A posture sensor for detecting the posture of the work device is provided.
    The controller
    When the position of the work tool in the posture of the work device detected by the posture sensor is higher than the position of the work tool in the horizontal posture of the work device, the push-out volume of the traveling hydraulic motor is determined. A work vehicle characterized in that it is smaller than the push-out volume of the traveling hydraulic motor when the pump command signal is output from the controller to the pump tilt control device.
  6.  請求項1に記載の作業車両において、
     前記車体の速度段を選択する速度段選択装置を備え、
     前記コントローラは、
     前記速度段選択装置において最も低い速度段を含む低速度段が選択されている場合に、前記走行用油圧モータの押しのけ容積を、前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されている場合における前記走行用油圧モータの押しのけ容積よりも小さくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 1,
    A speed stage selection device for selecting the speed stage of the vehicle body is provided.
    The controller
    When a low speed stage including the lowest speed stage is selected in the speed stage selection device, the pump command signal is output from the controller to the pump tilt control device for the push-out volume of the traveling hydraulic motor. A work vehicle characterized in that it is made smaller than the push-out volume of the traveling hydraulic motor in the case of
  7.  請求項1に記載の作業車両において、
     前記車体の前後進を切り換える前後進切換装置を備え、
     前記コントローラは、
     前記前後進切換装置が前進に切り換わっているときに前記コントローラから前記ポンプ傾転制御装置へ前進に係る前記ポンプ指令信号が出力されていない場合、または前記前後進切換装置が後進に切り換わっているときに前記コントローラから前記ポンプ傾転制御装置へ後進に係る前記ポンプ指令信号が出力されていない場合に、前記走行用油圧モータの押しのけ容積を、前記コントローラから前記ポンプ傾転制御装置へ前記ポンプ指令信号が出力されている場合における前記走行用油圧モータの押しのけ容積よりも小さくする
    ことを特徴とする作業車両。
    In the work vehicle according to claim 1,
    A forward / backward switching device for switching the forward / backward movement of the vehicle body is provided.
    The controller
    When the forward / backward switching device is switched to forward, the pump command signal related to forward is not output from the controller to the pump tilt control device, or the forward / backward switching device is switched to reverse. When the controller does not output the pump command signal related to reverse movement to the pump tilt control device, the push-out volume of the traveling hydraulic motor is transferred from the controller to the pump tilt control device. A work vehicle characterized in that it is smaller than the push-out volume of the traveling hydraulic motor when a command signal is output.
PCT/JP2021/009080 2020-03-09 2021-03-08 Work vehicle WO2021182421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040126 2020-03-09
JP2020040126A JP2023052712A (en) 2020-03-09 2020-03-09 work vehicle

Publications (1)

Publication Number Publication Date
WO2021182421A1 true WO2021182421A1 (en) 2021-09-16

Family

ID=77671477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009080 WO2021182421A1 (en) 2020-03-09 2021-03-08 Work vehicle

Country Status (2)

Country Link
JP (1) JP2023052712A (en)
WO (1) WO2021182421A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542251A (en) * 1992-07-23 1996-08-06 Brueninghaus Hyodromatik Gmbh Control and regulation device for a vehicle travel drive
JP2007051781A (en) * 2006-08-25 2007-03-01 Komatsu Ltd Control device for hydraulic drive machine
JP2009030693A (en) * 2007-07-26 2009-02-12 Tcm Corp Travel control device of work vehicle
JP2014114914A (en) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd Transmission device for work vehicle
WO2018055723A1 (en) * 2016-09-23 2018-03-29 日立建機株式会社 Hydraulic energy recovery device for work machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542251A (en) * 1992-07-23 1996-08-06 Brueninghaus Hyodromatik Gmbh Control and regulation device for a vehicle travel drive
JP2007051781A (en) * 2006-08-25 2007-03-01 Komatsu Ltd Control device for hydraulic drive machine
JP2009030693A (en) * 2007-07-26 2009-02-12 Tcm Corp Travel control device of work vehicle
JP2014114914A (en) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd Transmission device for work vehicle
WO2018055723A1 (en) * 2016-09-23 2018-03-29 日立建機株式会社 Hydraulic energy recovery device for work machine

Also Published As

Publication number Publication date
JP2023052712A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP6825165B2 (en) Cargo handling vehicle
CN111801490B (en) Working vehicle
US12134877B2 (en) Working machine
JPWO2020065914A1 (en) Cargo handling vehicle
CN111032968A (en) Wheel loader
EP3795755B1 (en) Cargo handling work vehicle
US11286646B2 (en) Loading vehicle
WO2020188943A1 (en) Work vehicle
WO2021182421A1 (en) Work vehicle
US12129627B2 (en) Work vehicle
EP3825475B1 (en) Wheel loader
WO2021187206A1 (en) Construction vehicle
JPWO2020065915A1 (en) Wheel loader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP