[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021182265A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2021182265A1
WO2021182265A1 PCT/JP2021/008300 JP2021008300W WO2021182265A1 WO 2021182265 A1 WO2021182265 A1 WO 2021182265A1 JP 2021008300 W JP2021008300 W JP 2021008300W WO 2021182265 A1 WO2021182265 A1 WO 2021182265A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
display
sub
display device
display panel
Prior art date
Application number
PCT/JP2021/008300
Other languages
French (fr)
Japanese (ja)
Inventor
紀晃 高橋
優斗 小林
孝明 鈴木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021182265A1 publication Critical patent/WO2021182265A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously

Definitions

  • This disclosure relates to a display device.
  • lenticular lens method a paralux barrier method, a multilayer method, and the like as a display method of a three-dimensional image that reproduces a space by a 3D display, a light field display, or the like.
  • a device for displaying a three-dimensional image such as a lenticular lens, a paralux barrier, or another image display panel, is superimposed on the image display panel to utilize binocular disparity. Then, the three-dimensional image is visually recognized.
  • a striped lens or a barrier is superimposed on an image display panel to display an image that is visually recognized only by the right eye and an image that is visually recognized only by the left eye, and a three-dimensional image is displayed by the binocular disparity effect. Make it visible.
  • the device for displaying the three-dimensional image since the device for displaying the three-dimensional image is superimposed on the image display panel, there arises a problem that the brightness of the entire three-dimensional display device is lowered.
  • the present disclosure provides a display device that displays a three-dimensional image and can suppress a decrease in brightness.
  • a display device displays a three-dimensional image to the user.
  • the display device includes a first display unit and a second display unit.
  • the first display unit has sub-pixels of a predetermined color.
  • the second display unit has at least a part of the display area overlapped with the display area of the first display unit in the line-of-sight direction of the user, and has sub-pixels of a predetermined color.
  • the predetermined color of the sub-pixel of the first display unit or the predetermined color of the sub-pixel of the second display unit is among the R (red), G (green), and B (blue) components. It is a synthetic color obtained by synthesizing at least two components of.
  • a light field display is a display that reproduces light rays emitted by a three-dimensional object, and is a display device that allows a user to visually recognize a three-dimensional image with the naked eye without using special glasses.
  • a visible three-dimensional object emits light rays in various directions.
  • Light rays mean light that reflects sunlight, lighting, and the like. Humans and others recognize an object three-dimensionally by capturing the light rays emitted by the three-dimensional object.
  • the light field display enables stereoscopic viewing of a three-dimensional object by simulating the light rays emitted by the three-dimensional object.
  • a method for reproducing light rays by a light field display for example, there are a lenticular lens method, a parallax barrier method, a multilayer method, and the like as a display method for a three-dimensional image.
  • a multilayer light field display will be described as a display device.
  • the number of display panels included in the light field display will be described as two, but the number of display panels included in the light field display is not limited to two, and may be three or more. May be good.
  • FIGS. 1 and 2 are diagrams for explaining the display principle of the display device 1A.
  • the display device 1A includes a first display panel 110A, a second display panel 120A, and a backlight 130A.
  • the first display panel 110A and the second display panel 120A are, for example, liquid crystal panels having a plurality of pixels (pixels), and generate an image by photomodulating the light of the backlight 130A.
  • the backlight 130A is a light source of the display device 1A.
  • the light emitted from the backlight 130A passes through the first display panel 110A and the second display panel 120A, and is emitted from the display device 1A.
  • the display device 1A is a multilayer type (laminated type) light field display, and the first display panel 110A and the second display panel 120A are arranged in a laminated manner. That is, the first display panel 110A and the second display panel 120A are arranged so that at least a part of the display area overlaps in the line-of-sight direction of the user.
  • the second display panel 120A is arranged on the user side with respect to the first display panel 110A.
  • the first display panel 110A will be referred to as layer H
  • the second display panel 120A will be referred to as layer U.
  • a first display panel 110A and a second display panel 120A are laminated. Therefore, for example, light LF' a having passed through the pixels 111A a first display panel 110A includes a to users through the pixels 121A a second display panel 120A, to view the display device 1A from the viewpoint 1 To reach.
  • light rays LF' b having passed through the pixels 111A b of the first display panel 110A is reach the user through the pixels 121A b of the second display panel 120A, to view the display device 1A from the viewpoint 2 do.
  • light rays LF' c passing through the pixels 111A c of the first display panel 110A passes through the pixels 121A c of the second display panel 120A, and reaches to a user viewing the display device 1A from the viewpoint 3 .
  • the intensity of the light ray LF'emitted from the display device 1A is represented by the integration of the pixel values (transmittance) of the pixel 111A of the first display panel 110A and the pixel 121A of the second display panel 120A.
  • the pixel values of the pixels 111A i of the first display panel 110A (Layer H) and H i, the pixel value of pixel 121A j of the second display panel 120A (Layer U) and U j do.
  • the intensities of the light rays LF'i , j that have passed through the pixels 111A i and 121A j are expressed by the equation (1).
  • I represents the total number of pixels of the first display panel 110A.
  • J represents the total number of pixels of the second display panel 120A.
  • the backlight 130A is not shown.
  • the pixel values H i, U j can be a combination of multiple values.
  • the intensity of j is "0.5”
  • the intensity of H i 1.0
  • the numerical values here are examples, and the intensities of the light rays LF i and j and the values of the pixel values Hi and U j are not limited to these.
  • the pixel 111A, the pixel value H i of 121A, U j may take a plurality of combinations. Therefore, light LF' i emitted from the display device 1A, j is the ray LF i to be reproduced, so as to approach the j, all pixels 111A i, the pixel value H i of 121A j, appropriately setting the U j As a result, a desired three-dimensional image can be displayed on the display device 1A. More specifically, for example, by solving the optimization problem shown in equation (2), the pixel 111A i capable of displaying a desired three-dimensional image on the display device 1A, the 121A j pixel values H i, the U j Can be set.
  • Multiplicative Update as shown in the update equation (3) to (5), that it continues to iteratively update the pixel values H i, the value of U j alternately, the optimum pixel value H i, obtain U j technique Is.
  • the display device 1A described above is a light field display that displays a grayscale monochrome image, but a color image may be displayed on the light field display.
  • the display device 1B for displaying a three-dimensional color image will be described with reference to FIG.
  • FIG. 3 is a diagram for explaining the display principle of the color image by the display device 1B.
  • the display device 1B includes a first display panel 110B, a second display panel 120B, and a backlight 130A.
  • the first display panel 110B and the second display panel 120B are liquid crystal panels having a plurality of pixels (pixels) 111B and 121B.
  • Pixels 111B and 121B transmit sub-pixels 111SR and 121SR that transmit red (R) light, sub-pixels 111SG and 121SG that transmit green (Green) light, and blue (Blue; B) light, respectively.
  • the sub-pixels 111SB and 121SB are used to form one pixel 111B and 121B.
  • the sub-pixels that transmit each color light of R, G, and B are collectively referred to as sub-pixels 111S and 121S.
  • the light emitted from the backlight 130A passes through the sub-pixels 111SR and 121SR and is emitted from the display device 1B as a light ray having a red component. Similarly, a light ray having a green component and a light ray having a blue component are emitted from the display device 1B.
  • the display device 1B can display a three-dimensional color image according to the pixel values (transmittance) of the sub-pixels 111S and 121S.
  • the intensity of the light rays of each color component of R, G, and B is represented by the integration of the pixel values of the sub-pixels 111S and 121S, as shown in the formulas (5) to (7).
  • LF'R , i, j indicates the intensity of the red light beam, that is, the red component of the intensity of the light beam LF'i, j.
  • LF'G , i, j indicates the intensity of the green ray, that is, the green component of the intensity of the ray LF'i, j
  • LF'B, i, j indicates the intensity of the blue ray. That is, the blue component of the intensity of the light rays LF'i , j is shown.
  • H R, i the pixel value of the sub-pixels 111SR i, H G, i, the pixel value of the sub-pixels 111SG i, H B, i represents a pixel value of the sub-pixel 111SB i.
  • U R, j is the pixel value of the sub-pixels 121SR j
  • U G, j is the pixel value of the sub-pixels 121SG j
  • U B, j indicates the pixel value of the sub-pixel 121SB j.
  • I represents the total number of pixels of the first display panel 110B.
  • J represents the total number of pixels of the second display panel 120B.
  • the pixel values of the sub-pixels 111S and 121S are calculated by solving the optimization problem using, for example, the update equations (8) to (13). As a result, a color three-dimensional image can be displayed on the display device 1B.
  • FIG. 4 is a block diagram showing a configuration example of the display device 1B.
  • the display device 1B includes a display unit 10B and a control unit 20B.
  • the configuration shown in FIG. 4 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the display device 1B may be distributed and implemented in a plurality of physically separated configurations. For example, the display unit 10B and the control unit 20B may be configured by physically different devices.
  • the display unit 10B includes the above-mentioned first display panel 110B, a second display panel 120B, and a backlight 130A.
  • the control unit 20B controls each unit of the display unit 10B.
  • the control unit 20B calculates, for example, the pixel values of the sub-pixels 111S and 121S of the display unit 10B, and drives the first display panel 110B and the second display panel 120B based on the calculated pixel values, respectively.
  • the control unit 20B includes a calculation unit 210B and a drive unit 220B.
  • the calculation unit 210B calculates the pixel values of the sub-pixels 111S and 121S of the display unit 10B.
  • the calculation unit 210B includes an R pixel value calculation unit 211B, a G pixel value calculation unit 212B, and a B pixel value calculation unit 213B.
  • the R pixel value calculation unit 211B calculates the U R.
  • the R pixel value calculation unit 211B includes an R light intensity input unit 2111B, a first R pixel calculation unit 2112B, and a second R pixel calculation unit 2113B.
  • the R ray intensity input unit 2111B acquires the intensity of a desired red ray (hereinafter, also referred to as an R ray) to be emitted from the display device 1B, and obtains the intensity of the first R pixel calculation unit 2112B and the second R pixel calculation unit. Output to 2113B.
  • the R ray intensity input unit 2111B acquires the intensity of the R ray intensity based on, for example, a three-dimensional image of the color to be displayed stored in the storage unit (not shown) of the display device 1B.
  • the first R pixel calculation unit 2112B and the second R pixel calculation unit 2113B calculates a pixel value H R, U R using the above-described update expression (5).
  • the first R pixel calculation unit 2112B and the second R pixel calculation unit 2113B a pixel value H R updating each other, by exchanging U R, the pixel value H R, optimizing U R.
  • the G pixel value calculation unit 212B calculates the U G .
  • the G pixel value calculation unit 212B includes a G light intensity input unit 2121B, a first G pixel calculation unit 2122B, and a second G pixel calculation unit 2123B. Since each part of the G pixel value calculation unit 212B operates in the same manner as each part of the R pixel value calculation unit 211B except that the red color (R) is replaced with the green color (G), the description thereof will be omitted.
  • B pixel value calculation unit 212B like the R pixel value calculation unit 211B, sub Pikuseru 111SB of the first display panel 110B, the pixel value of the sub Pikuseru 121SB of the second of the display panel 120B H B, U B Is calculated.
  • the B pixel value calculation unit 213B includes a B light intensity input unit 2131B, a first B pixel calculation unit 2132B, and a second B pixel calculation unit 2133B. Since each part of the B pixel value calculation unit 213B operates in the same manner as each part of the R pixel value calculation unit 211B except that the red color (R) is replaced with the blue color (B), the description thereof will be omitted.
  • the drive unit 220B drives the first display panel 110B and the second display panel 120B based on each pixel value calculated by the calculation unit 210B.
  • the drive unit 220B includes a first drive unit 221B that drives the first display panel 110B, and a second drive unit 222B that drives the second display panel 120B.
  • the first drive unit 221B includes a first R pixel drive unit 2211B, a first G pixel drive unit 2212B, and a first B pixel drive unit 2213B.
  • the first R pixel driver 2211B based on the pixel value H R of the first R pixel calculation unit 2112B is calculated, as the sub-pixel 111SR of the first display panel 110B is a pixel value H R, first The display panel 110B of is driven.
  • the first G pixel driver 2212B based on the pixel values H G of the first G pixel calculation unit 2122B is calculated, as the sub-pixel 111SG of the first display panel 110B is a pixel value H G, first The display panel 110B of is driven.
  • the first B pixel driver 2213B based on the pixel value H B of the first B pixel calculation unit 2132B is calculated, as the sub-pixel 111SB of the first display panel 110B is a pixel value H B, first The display panel 110B of is driven.
  • the second drive unit 222B includes a second R pixel drive unit 2221B, a second G pixel drive unit 2222B, and a second B pixel drive unit 2223B.
  • Second R pixel driver 2221B based on the pixel value H R of the second R pixel calculation unit 2113B is calculated, as the sub-pixel 121SR of the second display panel 120B is a pixel value H R, the second Drives the display panel 120B of.
  • the second G pixel driver 2222B based on the pixel values H G of the second G pixel calculation unit 2123B is calculated, as the sub-pixel 121SG of the second display panel 120B is a pixel value H G, second Drives the display panel 120B of.
  • the second B pixel drive unit 2223B is based on the pixel value H B calculated by the second B pixel calculation unit 2133 B , so that the sub pixel 121 SB of the second display panel 120B becomes the pixel value H B. Drives the display panel 120B of.
  • control unit 20B calculates the pixel value and drives the display unit 10B with the calculated pixel value, so that the display device 1B can display a color three-dimensional image.
  • the display device 1B described above has a plurality of display panels stacked on top of each other, the brightness of the display device 1B is lowered.
  • the subpixel 111SR of the display unit 10B transmits red light, but has zero transmittance for green light and blue light, and does not transmit green light and blue light. Therefore, the brightness (intensity of light rays) of the light passing through the sub-pixel 111SR is reduced to 1/3 times.
  • the sub-pixel 111SG of the display unit 10B also transmits only green light
  • the sub-pixel 111SB also transmits only blue light. Therefore, the intensity of the light rays transmitted through the sub-pixels 111SR, 111SG, and 111SB is reduced to 1/3 times at the maximum.
  • the display device 1B described above has a configuration in which a first display panel 110B and a second display panel 120B are laminated.
  • the intensity of the light beam is attenuated due to the integration as it passes through each panel. Therefore, the intensity of the light rays that have passed through the first display panel 110B and the second display panel 120B is significantly reduced as shown in the equation (14) as compared with the intensity of the light rays emitted from the backlight 130A.
  • the intensity of the red component of the light beam is shown, but the intensity of the green component and the blue component also decreases.
  • the intensity of the light ray that decreases due to the influence of the pixel values of the sub-pixels 111S and 121S is shown, but in reality, the light ray is the first display panel 110B and the second display panel 120B. The strength is reduced by itself. In this case, the intensity of the light beam emitted from the display device 1B is lower than 1/9 shown in the equation (14) as compared with the intensity of the light ray emitted from the backlight 130A.
  • FIG. 5 is a diagram for explaining an outline of the display device 1 according to the embodiment of the present disclosure.
  • the display device 1 includes a first display panel 110 (an example of a first display unit) and a second display panel 120 (an example of a second display unit). , And the backlight 130.
  • the first display panel 110 and the second display panel 120 are, for example, liquid crystal panels having a plurality of pixels 111 and 121, and generate an image by photomodulating the light of the backlight 130.
  • the backlight 130 is a light source of the display device 1.
  • the light emitted from the backlight 130 passes through the first display panel 110 and the second display panel 120, and is emitted from the display device 1.
  • the display device 1 is a multilayer type light field display, and the first display panel 110 and the second display panel 120 are arranged in a stacked manner. That is, the first display panel 110 and the second display panel 120 are arranged so that at least a part of the display area overlaps in the line-of-sight direction of the user. In the example of FIG. 5, the second display panel 120 is arranged closer to the user than the first display panel 110.
  • the first display panel 110 will be referred to as layer H
  • the second display panel 120 will be referred to as layer U.
  • the display device 1 is a light field display that displays a three-dimensional color image.
  • the pixels 111 and 121 of the first display panel 110 and the second display panel 120 of the display device 1 according to the present embodiment are each composed of a plurality of sub-pixels.
  • the sub-pixel transmits a composite color obtained by synthesizing at least two components of the RGB (red, green, blue) components.
  • RGB red, green, blue
  • pixels 111 and 121 have RGB complementary color sub-pixels. More specifically, the pixels 111 and 121 transmit the wavelengths of the yellow (Y) subpixels 111PY and 121PY and the wavelengths of G and B (green and blue) that transmit the wavelengths of R and G (red and green).
  • C cyan
  • M magenta
  • the sub-pixels that transmit each color light of Y, C, and M are collectively referred to as sub-pixels 111P and 121P.
  • the sub-pixel 111P of the pixel 111 is arranged in the order of Y, C, M
  • the sub-pixel 121P of the pixel 121 is arranged in the order of M, Y, C.
  • the arrangement of is not limited to this.
  • the sub-pixels 111P and 121P may be arranged in the order of C, M, and Y.
  • the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 may have the same or different arrangement of colors.
  • the intensities of the red, green, and blue components of the light rays that have passed through the pixels 111i and 121j of the display device 1 are shown in equations (15) to (17) using the pixel values (transmittance) of the sub-pixels 111P and 121P. expressed.
  • LF'R , i, j indicates a red component of the intensity of the light rays LF'i , j.
  • LF'G , i, j indicates the green component of the intensity of the light rays LF'i , j
  • LF'B, i, j indicates the blue component of the intensity of the light rays LF'i , j. ing.
  • H Y, i the pixel value of the sub-pixels 111PY i, H C, i, the pixel value of the sub-pixels 111PC i, H M, i indicates the pixel value of the sub-pixels 111PM i.
  • U Y and j indicate the pixel value of the sub pixel 121PY j
  • U C and j indicate the pixel value of the sub pixel 121PC j
  • U M and j indicate the pixel value of the sub pixel 121PM j.
  • I represents the total number of pixels of the first display panel 110.
  • J represents the total number of pixels of the second display panel 120.
  • the pixel values of the sub-pixels 111P and 121P are calculated by solving the optimization problem using, for example, the update formulas (18) to (23).
  • LF R, i, j shown in the update formulas (18) to (23) are red components of the light rays (desired light rays) of the three-dimensional image displayed on the display device 1, and LF'G , i, j are It is a green component of a light ray of a three-dimensional image displayed on the display device 1. Further, LF B, i, and j are blue components of light rays of a three-dimensional image displayed on the display device 1.
  • each of the sub-pixels 111P and 121P allows the complementary colors of the R, G, and B components, that is, the light rays of the component obtained by synthesizing at least two of the R, G, and B components to pass through. Therefore, the display device 1 can suppress a decrease in the intensity of the light rays at the sub-pixels 111P and 121P, as compared with the case where only the R, G, and B components of the light rays are passed. The details of the effect of the display device 1 will be described later.
  • FIG. 6 is a block diagram showing a configuration example of the display device 1 according to the embodiment of the present disclosure.
  • the display device 1 includes a display unit 10 and a control unit 20.
  • the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this.
  • the display unit 10 and the control unit 20 may be configured by physically different devices, or may be configured by one device.
  • a part of the functions of the control unit 20 (for example, the drive unit 220 described later) may be mounted on the display unit 10.
  • the display unit 10 is a multi-layer type light field display capable of displaying a color three-dimensional image.
  • the display unit 10 includes a first display panel 110, a second display panel 120, and a backlight 130.
  • the first display panel 110 is, for example, a liquid crystal panel. As described above, the first display panel 110 has a plurality of pixels 111 composed of a yellow sub-pixel 111PY, a cyan sub-pixel 111PC, and a magenta sub-pixel 111PM.
  • the sub-pixel 111P of the first display panel 110 is driven so as to have a predetermined pixel value (transmittance) according to the control by the control unit 20.
  • the second display panel 120 is, for example, a liquid crystal panel. As described above, the second display panel 120 has a plurality of pixels 121 composed of a yellow sub-pixel 121PY, a cyan sub-pixel 121PC, and a magenta sub-pixel 121PM. The sub-pixel 121P of the second display panel 120 is driven so as to have a predetermined pixel value (transmittance) according to the control by the control unit 20.
  • the backlight 130 is a light source of the display unit 10.
  • the light emitted from the backlight 130 passes through the first display panel 110 and the second display panel 120 in this order, and is emitted from the display unit 10.
  • Control unit 20 The control unit 20 is, for example, a dedicated or general-purpose computer.
  • the control unit 20 is, for example, an integrated control unit that controls the display device 1.
  • the control unit 20 includes each function unit of a calculation unit 210, a drive unit 220, and a storage unit 230.
  • Each functional unit of the control unit 20 is realized, for example, by executing a program stored inside the display device 1 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like with a RAM or the like as a work area.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • each functional unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • the calculation unit 210 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10.
  • the calculation unit 210 includes an R light intensity input unit 2111, a G light intensity input unit 2121, a B light intensity input unit 2131, a first pixel calculation unit 2102, and a second pixel calculation unit 2103.
  • the R light intensity input unit 2111 acquires the intensity of the red light ray (hereinafter, also referred to as R light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103.
  • the R ray is, for example, a red component of the ray at each pixel of the three-dimensional image displayed on the display unit 10B.
  • the G light intensity input unit 2121 acquires the intensity of the green light ray (hereinafter, also referred to as G light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103.
  • the G ray is, for example, a green component of the ray at each pixel of the three-dimensional image displayed on the display unit 10B.
  • the B light intensity input unit 2131 acquires the intensity of the blue light ray (hereinafter, also referred to as the B light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103.
  • the B ray is, for example, a blue component of the ray in each pixel of the three-dimensional image displayed on the display unit 10B.
  • the R light intensity input unit 2111, the G light intensity input unit 2121, and the B light intensity input unit 2131 acquire the intensities of the R light, G light, and B light from the storage unit 230, respectively. Not limited to this.
  • the R light intensity input unit 2111, the G light intensity input unit 2121, and the B light intensity input unit 2131 may acquire the intensity of each light ray via the network.
  • the first pixel calculation unit 2102 calculates each pixel value of the sub-pixel 111P of the first display panel 110. More specifically, the first pixel calculation unit 2102 is set to the pixel value of the sub-pixel 121P of the second display panel 120 acquired from the above equations (18) to (20) and the second pixel calculation unit 2103. Based on this, the pixel value of the sub-pixel 111P is updated. The first pixel calculation unit 2102 outputs the updated pixel value to the second pixel calculation unit 2103.
  • the second pixel calculation unit 2103 calculates each pixel value of the sub-pixel 121P of the second display panel 120. More specifically, the second pixel calculation unit 2103 uses the pixel values of the sub-pixel 111P of the first display panel 110 acquired from the above equations (21) to (23) and the first pixel calculation unit 2102. Based on this, the pixel value of the sub-pixel 121P is updated. The second pixel calculation unit 2103 outputs the updated pixel value to the first pixel calculation unit 2102.
  • the first pixel calculation unit 2102 and the second pixel calculation unit 2103 update the pixel values of the sub-pixels 111P and 121P while exchanging the pixel values with each other.
  • the first pixel calculation unit 2102 and the second pixel calculation unit 2103 output the pixel values as the calculated pixel values to the drive unit 220.
  • the drive unit 220 drives each unit of the display unit 10. Alternatively, the drive unit 220 may drive the backlight 130.
  • the drive unit 220 shown in FIG. 6 has a first drive unit 221 and a second drive unit 222.
  • the first drive unit 221 drives the first display panel 110.
  • the first drive unit 221 includes a first C pixel drive unit 2211, a first M pixel drive unit 2212, and a first Y pixel drive unit 2213.
  • the first C pixel drive unit 2211 drives the sub pixel 111 PC so that the pixel value of the sub pixel 111 PC of the first display panel 110 becomes the pixel value of the sub pixel 111 PC calculated by the first pixel calculation unit 2102. ..
  • the first M pixel drive unit 2212 drives the sub pixel 111 PM so that the pixel value of the sub pixel 111 PM of the first display panel 110 becomes the pixel value of the sub pixel 111 PM calculated by the first pixel calculation unit 2102. do.
  • the first Y pixel drive unit 2213 drives the sub pixel 111PY so that the pixel value of the sub pixel 111PY of the first display panel 110 becomes the pixel value of the sub pixel 111PY calculated by the first pixel calculation unit 2102. do.
  • the second drive unit 222 drives the second display panel 120.
  • the second drive unit 222 includes a second C pixel drive unit 2221, a second M pixel drive unit 2222, and a second Y pixel drive unit 2223.
  • the second C pixel drive unit 2221 drives the sub pixel 121 PC so that the pixel value of the sub pixel 121 PC of the second display panel 120 becomes the pixel value of the sub pixel 121 PC calculated by the second pixel calculation unit 2103. ..
  • the second M pixel drive unit 2222 drives the sub pixel 121 PM so that the pixel value of the sub pixel 121 PM of the second display panel 120 becomes the pixel value of the sub pixel 121 PM calculated by the second pixel calculation unit 2103. do.
  • the second Y pixel drive unit 2223 drives the sub pixel 121PY so that the pixel value of the sub pixel 121PY of the second display panel 120 becomes the pixel value of the subpixel 121PY calculated by the second pixel calculation unit 2103. do.
  • the storage unit 230 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 230 has a function of storing data related to processing in the display device 1.
  • the storage unit 230 stores a three-dimensional image displayed on the display unit 10 by the display device 1.
  • the three-dimensional image is, for example, a light field image captured by a light field camera, and has light ray information at each pixel.
  • control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10, and drives the display unit 10 based on the calculated pixel values.
  • a color three-dimensional image can be displayed.
  • control unit 20 calculates the pixel values of the yellow, magenta, and cyan sub-pixels 111P and 121P based on the red, green, and blue components of the light intensity of the image to be displayed. As a result, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10 without converting them into yellow, magenta, and cyan color components even if the image to be displayed is an RGB image, for example. Can be done.
  • FIG. 7 is a flowchart showing an example of display processing by the display device 1 according to the embodiment of the present disclosure.
  • the display device 1 executes the display process shown in FIG. 7, for example, when displaying a desired three-dimensional image on the display unit 10. For example, when displaying a three-dimensional moving image on the display unit 10, the display device 1 executes the display process shown in FIG. 7 for each frame of the moving image.
  • the control unit 20 of the display device 1 first acquires a three-dimensional image to be displayed on the display unit 10 (step S101).
  • the three-dimensional image acquired here is a color image having the intensities of the R ray, the G ray, and the B ray.
  • the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10 based on the RGB components of the acquired three-dimensional image (step S102). Since the sub-pixels 111P and 121P of the display unit 10 transmit any of the components of yellow, magenta, and cyan, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of yellow, magenta, and cyan, respectively.
  • the control unit 20 drives the display unit 10 based on the calculated pixel values (step S103).
  • the display device 1 can display a desired three-dimensional image on the display unit 10.
  • the control unit 20 of the display device 1 may calculate the pixel values of the first display panel 110 and the second display panel 120 from the three-dimensional image in advance.
  • the control unit 20 stores the calculated pixel values in the storage unit 230, and when displaying the three-dimensional image on the display unit 10, acquires and displays each pixel value from the storage unit 230. It is assumed that the unit 10 is driven.
  • the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 are set as sub-pixels that transmit the complementary colors of RGB, yellow, magenta, and cyan, respectively. bottom.
  • the yellow sub-pixels 111PY and 121Y of the first display panel 110 and the second display panel 120 transmit the light rays of the R and G components other than the B component.
  • the magenta sub-pixels 111PM and 121M of the first display panel 110 and the second display panel 120 transmit light rays of R and B components other than the G component
  • the cyan sub-pixels 111PC and 121C are R. It transmits light rays of G and B components other than the components.
  • the brightness is reduced 4/9 times as shown in the equation (24) by allowing the light rays to pass through the sub-pixels 111P and 121P.
  • the brightness when the display panels having RGB sub-pixels are stacked is reduced to 1/9 times, so that the display device 1 of the embodiment of the present disclosure displays RGB. It is possible to suppress a decrease in brightness as compared with the case where panels are laminated.
  • FIG. 8 is a diagram for explaining the display device 1C according to the comparative example. As shown in FIG. 8, the display device 1C includes a first display panel 110C, a second display panel 120C, and a backlight 130C.
  • the first display panel 110C has RGB sub-pixels (not shown).
  • the second display panel 120C has W sub-pixels (not shown) and can transmit all RGB components.
  • the backlight 130C is a light source of the display device 1C, and the light emitted from the backlight 130C passes through the first display panel 110C and the second display panel 120C and is emitted from the display device 1C.
  • the display device 1C adjusts the color displayed on the display device 1C on the first display panel 110C, and adjusts the intensity of the light displayed on the display device 1C on the first display panel 110C and the second display panel 120C. do.
  • the display device 1C is not a device for displaying a three-dimensional image, the contrast of the image displayed on the display device 1C can be expanded by adjusting the light intensity in this way.
  • the intensity of light (light rays) of the display device 1C is determined by the first display panel 110C and the second display panel 120C.
  • the sub-pixels transmit any one of RGB rays. Therefore, the intensity of the light beam is reduced to 1/3 times as the light ray passes through the first display panel 110C.
  • the intensity of the light rays does not decrease in the second display panel 120C. Therefore, in the display device 1C, the brightness is reduced to 1/3 times as shown in the equation (25) by passing through the sub-pixels.
  • one of the display panels to be stacked is a display panel having sub-pixels that transmit white, so that the display panels having RGB sub-pixels are laminated. It is possible to suppress a decrease in brightness as compared with the case.
  • the display device 1 according to the present embodiment can suppress the brightness decrease by 4/9 times, so that the brightness decrease is suppressed as compared with the display device 1C. can do.
  • the display device 1 according to the above-described embodiment may be implemented in various different forms other than the above-described embodiment.
  • the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 transmit any component of Y, M, or C, but the present invention is not limited to this. It suffices if the light rays of the desired three-dimensional image can be reproduced by adjusting the brightness values of the sub-pixels 111P and 121P, and the color component transmitted through the sub-pixels 111P and 121P may be a component other than Y, M, and C. ..
  • each of the sub-pixels 111P and 121P may transmit any of the R, B, and Y components.
  • the sub-pixel 111P of the first display panel 110 is composed of three colors ( ⁇ , ⁇ , ⁇ )
  • the sub-pixel 121P of the second display panel 120 is composed of three colors ( ⁇ , ⁇ , ⁇ ). It shall be done.
  • the three colors ( ⁇ , ⁇ , ⁇ ) are represented by the color matching function shown in the equation (26), and the three colors ( ⁇ , ⁇ , ⁇ ) are represented by the color matching function shown in the formula (27). Suppose it is represented.
  • the light intensity of each RGB component of the light ray LF'emitted from the display device 1 is represented by the formulas (28) to (30).
  • the display device 1 sets the light intensity of the light ray LF'emitted from the display device 1 to the intensity of the desired light ray LF to be displayed on the display device 1. It is possible to calculate each pixel value that brings them closer.
  • Equations (37) to (39) are substituted for URA, UGA, and UBA of the equation (31), respectively.
  • Equations (40) to (42) are substituted into URB, UGB, and UBB of the equation (32), respectively.
  • Equations (43) to (45) are substituted into URC, UGC, and UBC of equation (33), respectively.
  • Equations (46) to (48) are substituted for HRA, HGA, and HBA of the equation (34), respectively.
  • Equations (49) to (51) are substituted into HRB, HGB, and HBB of the equation (35), respectively.
  • Equations (52) to (54) are substituted into HRC, HGC, and HBC of equation (36), respectively.
  • the color transmitted through the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 may be a color obtained by synthesizing at least two colors of the R, G, and B color components. It can be any color.
  • the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 both transmit the same color (Y, M, C) component, but the present invention is not limited to this. ..
  • the color components transmitted by the first display panel 110 and the second display panel 120 may be different.
  • the first display panel 110 may transmit the color components of R, G, and B
  • the second display panel 120 may transmit the color components of Y, M, and C.
  • the first display panel 110 and the second display panel 120 transmit the three colors of Y, M, and C, but the present invention is not limited to this.
  • the first display panel 110 and the second display panel 120 may transmit four or more color components.
  • the display device 1 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10, but the present invention is not limited to this.
  • an external device (not shown) may calculate the pixel values of the sub-pixels 111P and 121P, and the control unit 20 may acquire the pixel values from the external device to drive the display unit 10.
  • the display device 1 is configured by laminating two panels of the first display panel 110 and the second display panel 120, but the present invention is not limited to this.
  • three or more display panels may be laminated to form a structure.
  • both the first display panel 110 and the second display panel 120 are liquid crystal panels, but the present invention is not limited to this.
  • the first display panel 110 may be an organic light emitting diode (OLED: Organic Light Emitting Diode).
  • OLED Organic Light Emitting Diode
  • the backlight 130 of the display device 1 can be omitted.
  • the first display panel 110 and the second display panel 120 may be SXRD (Silicon X-tal Reflective Display).
  • the display device 1 described above is a field display for displaying a three-dimensional image, but the present invention is not limited to this.
  • the display device 1 may be a display in which a plurality of display panels are laminated, and display panels are laminated in order to expand the contrast.
  • the display device 1 has a display panel, but the present invention is not limited to this.
  • the display device 1 may be a device such as a projector that displays a three-dimensional image by projecting an image.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • a display device that displays a three-dimensional image to the user.
  • a first display unit having sub-pixels of a predetermined color
  • a second display unit having at least a part of the display area overlapped with the display area of the first display unit in the line-of-sight direction of the user and having sub-pixels of a predetermined color.
  • the predetermined color of the sub-pixel of the first display unit or the predetermined color of the sub-pixel of the second display unit is among the R (red), G (green), and B (blue) components. It is a composite color that combines at least two components of Display device.
  • both the predetermined color of the sub-pixel of the first display unit and the predetermined color of the sub-pixel of the second display unit are the composite colors.
  • the synthetic color is a complementary color of at least one of the R, G, and B components.
  • the first display unit and the second display unit are driven according to the brightness values calculated for each of the sub-pixels based on the image data of the R, G, and B components, (1) to (3). ) Is described in any one of the display devices.
  • the brightness value of the sub-pixel of the first display unit and the second display unit is Each value of the R, G, and B components included in the value obtained by multiplying the brightness value of the sub-pixel of the first display unit and the brightness value of the sub-pixel of the second display unit is The display device according to (4), which is calculated by optimizing the image data so as to approach each value of the R, G, and B components.
  • the display unit arranged far from the user is an OLED (Organic Light Emitting Diode) panel, which is any one of (1) to (6).
  • OLED Organic Light Emitting Diode
  • Display device 10 Display unit 110 First display panel 120 Second display panel 130 Backlight 20 Control unit 210 Calculation unit 220 Drive unit 230 Storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device (1) displays a three-dimensional image to a user. The display device (1) is provided with a first display unit (110) and a second display unit (120). The first display unit (110) has sub-pixels of a predetermined color. The second display unit (120) has sub-pixels of a predetermined color and is disposed such that at least a part of the display region thereof overlaps a display region of the first display unit (110) in the direction of a user's line of sight. The predetermined color of the sub-pixels of the first display unit (110), or the predetermined color of the sub-pixels of the second display unit (120) is a composite color obtained by composing at least two of red (R), green (G), and blue (B) components.

Description

表示装置Display device
 本開示は、表示装置に関する。 This disclosure relates to a display device.
 3Dディスプレイやライトフィールドディスプレイ等によって空間を再現する3次元画像の表示方式として、レンチキュラーレンズ方式、パララックスバリア方式、およびマルチレイヤ方式などがある。 There are a lenticular lens method, a paralux barrier method, a multilayer method, and the like as a display method of a three-dimensional image that reproduces a space by a 3D display, a light field display, or the like.
 これらの方式を採用する3次元表示装置は、レンチキュラーレンズ、パララックスバリア、または、もう一枚の画像表示パネルなどの3次元画像表示用のデバイスが画像表示パネルに重畳され、両眼視差を利用して3次元画像を視認させる。 In a three-dimensional display device that employs these methods, a device for displaying a three-dimensional image, such as a lenticular lens, a paralux barrier, or another image display panel, is superimposed on the image display panel to utilize binocular disparity. Then, the three-dimensional image is visually recognized.
 例えば、3次元表示装置は、画像表示パネルに縞状のレンズやバリアが重畳され、右目だけによって視認させる画像と、左目だけによって視認させる画像とを表示させ、両眼視差効果によって3次元画像を視認させる。 For example, in a three-dimensional display device, a striped lens or a barrier is superimposed on an image display panel to display an image that is visually recognized only by the right eye and an image that is visually recognized only by the left eye, and a three-dimensional image is displayed by the binocular disparity effect. Make it visible.
特開2009-276410号公報JP-A-2009-276410
 しかしながら、3次元表示装置は、画像表示パネルに3次元画像表示用のデバイスを重畳するため、3次元表示装置全体の輝度が低下してしまうという問題が発生する。 However, in the three-dimensional display device, since the device for displaying the three-dimensional image is superimposed on the image display panel, there arises a problem that the brightness of the entire three-dimensional display device is lowered.
 そこで、本開示では、3次元画像を表示する表示装置であって、輝度低下を抑制することができる表示装置を提供する。 Therefore, the present disclosure provides a display device that displays a three-dimensional image and can suppress a decrease in brightness.
 本開示によれば、表示装置が提供される。表示装置は、ユーザに対して三次元画像を表示する。表示装置は、第1の表示部と、第2の表示部と、を備える。第1の表示部は、所定色のサブピクセルを有する。第2の表示部は、表示領域の少なくとも一部が、前記ユーザの視線方向において前記第1の表示部の表示領域と重複するように配置され、所定色のサブピクセルを有する。前記第1の表示部の前記サブピクセルの前記所定色、又は、前記第2の表示部の前記サブピクセルの前記所定色が、R(赤色)、G(緑色)、B(青色)成分の中の少なくとも2つの成分を合成した合成色である。 According to the present disclosure, a display device is provided. The display device displays a three-dimensional image to the user. The display device includes a first display unit and a second display unit. The first display unit has sub-pixels of a predetermined color. The second display unit has at least a part of the display area overlapped with the display area of the first display unit in the line-of-sight direction of the user, and has sub-pixels of a predetermined color. The predetermined color of the sub-pixel of the first display unit or the predetermined color of the sub-pixel of the second display unit is among the R (red), G (green), and B (blue) components. It is a synthetic color obtained by synthesizing at least two components of.
表示装置の表示原理について説明するための図である。It is a figure for demonstrating the display principle of a display device. 表示装置の表示原理について説明するための図である。It is a figure for demonstrating the display principle of a display device. 表示装置によるカラー画像の表示原理を説明するための図である。It is a figure for demonstrating the display principle of a color image by a display device. 表示装置の構成例を示すブロック図である。It is a block diagram which shows the configuration example of a display device. 本開示の実施形態に係る表示装置の概要について説明するための図である。It is a figure for demonstrating the outline of the display device which concerns on embodiment of this disclosure. 本開示の実施形態に係る表示装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the display device which concerns on embodiment of this disclosure. 本開示の実施形態に係る表示装置による表示処理の一例を示すフローチャートである。It is a flowchart which shows an example of the display processing by the display device which concerns on embodiment of this disclosure. 比較例に係る表示装置を説明するための図である。It is a figure for demonstrating the display device which concerns on a comparative example.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 なお、説明は以下の順序で行うものとする。
  1.背景
    1.1.ライトフィールドディスプレイの概要
  2.表示装置の概要
  3.表示装置の構成例
  4.表示処理
  5.効果
  6.その他の実施形態
  7.補足
The explanations will be given in the following order.
1. 1. Background 1.1. Outline of light field display 2. Overview of display device 3. Display device configuration example 4. Display processing 5. Effect 6. Other embodiments 7. supplement
 <<1.背景>>
 <1.1.ライトフィールドディスプレイの概要>
 ライトフィールド(Light Field)ディスプレイは、3次元物体の放つ光線を再現するディスプレイであり、専用メガネを用いずに、裸眼で3次元画像をユーザに視認させる表示装置である。例えば、視認される3次元物体は、様々な方向に光線を放っている。光線は、太陽光、照明などを反射した光を意味している。人間等は、3次元物体が放った光線を捉えることで、物体を立体的に認識している。ライトフィールドディスプレイは、3次元物体が放った光線を擬似的に再現することで、3次元物体の立体視を可能にしている。
<< 1. Background >>
<1.1. Overview of Lightfield Display>
A light field display is a display that reproduces light rays emitted by a three-dimensional object, and is a display device that allows a user to visually recognize a three-dimensional image with the naked eye without using special glasses. For example, a visible three-dimensional object emits light rays in various directions. Light rays mean light that reflects sunlight, lighting, and the like. Humans and others recognize an object three-dimensionally by capturing the light rays emitted by the three-dimensional object. The light field display enables stereoscopic viewing of a three-dimensional object by simulating the light rays emitted by the three-dimensional object.
 ライトフィールドディスプレイによる光線の再現方式として、例えば、3次元画像の表示方式として、レンチキュラーレンズ方式、パララックスバリア方式、およびマルチレイヤ方式などがある。本実施形態では、表示装置としてマルチレイヤ方式のライトフィールドディスプレイについて説明する。なお、以下、説明を簡略化するために、ライトフィールドディスプレイが有する表示パネルを2枚として説明するが、ライトフィールドディスプレイが有する表示パネルの枚数は2枚に限定されず、3枚以上であってもよい。 As a method for reproducing light rays by a light field display, for example, there are a lenticular lens method, a parallax barrier method, a multilayer method, and the like as a display method for a three-dimensional image. In the present embodiment, a multilayer light field display will be described as a display device. Hereinafter, for the sake of brevity, the number of display panels included in the light field display will be described as two, but the number of display panels included in the light field display is not limited to two, and may be three or more. May be good.
 (マルチレイヤ方式の表示原理)
 まず、図1及び図2を用いて、マルチレイヤ方式のライトフィールドディスプレイの表示原理について説明する。図1及び図2は、表示装置1Aの表示原理について説明するための図である。
(Multi-layer display principle)
First, the display principle of the multilayer light field display will be described with reference to FIGS. 1 and 2. 1 and 2 are diagrams for explaining the display principle of the display device 1A.
 図1に示すように、表示装置1Aは、第1の表示パネル110Aと、第2の表示パネル120Aと、バックライト130Aと、を有する。 As shown in FIG. 1, the display device 1A includes a first display panel 110A, a second display panel 120A, and a backlight 130A.
 第1の表示パネル110A及び第2の表示パネル120Aは、例えば複数のピクセル(画素)を有する液晶パネルであり、バックライト130Aの光を光変調することで画像を生成する。 The first display panel 110A and the second display panel 120A are, for example, liquid crystal panels having a plurality of pixels (pixels), and generate an image by photomodulating the light of the backlight 130A.
 バックライト130Aは、表示装置1Aの光源である。バックライト130Aから射出された光は、第1の表示パネル110A及び第2の表示パネル120Aを透過して、表示装置1Aから射出される。 The backlight 130A is a light source of the display device 1A. The light emitted from the backlight 130A passes through the first display panel 110A and the second display panel 120A, and is emitted from the display device 1A.
 ここで、表示装置1Aは、マルチレイヤ型(積層型)のライトフィールドディスプレイであり、第1の表示パネル110A及び第2の表示パネル120Aは、積層して配置される。すなわち、第1の表示パネル110A及び第2の表示パネル120Aは、ユーザの視線方向において表示領域の少なくとも一部が重なるように配置される。図1の例では、第2の表示パネル120Aが、第1の表示パネル110Aよりユーザ側に配置される。以下、第1の表示パネル110AをレイヤーH、第2の表示パネル120AをレイヤーUとも記載する。 Here, the display device 1A is a multilayer type (laminated type) light field display, and the first display panel 110A and the second display panel 120A are arranged in a laminated manner. That is, the first display panel 110A and the second display panel 120A are arranged so that at least a part of the display area overlaps in the line-of-sight direction of the user. In the example of FIG. 1, the second display panel 120A is arranged on the user side with respect to the first display panel 110A. Hereinafter, the first display panel 110A will be referred to as layer H, and the second display panel 120A will be referred to as layer U.
 図1に示す表示装置1Aは、第1の表示パネル110A及び第2の表示パネル120Aが積層されている。そのため、例えば、第1の表示パネル110Aのピクセル111Aを通過した光線LF´は、第2の表示パネル120Aのピクセル121Aを通過して、視点1から表示装置1Aを視認するユーザへと到達する。 In the display device 1A shown in FIG. 1, a first display panel 110A and a second display panel 120A are laminated. Therefore, for example, light LF' a having passed through the pixels 111A a first display panel 110A includes a to users through the pixels 121A a second display panel 120A, to view the display device 1A from the viewpoint 1 To reach.
 同様に、第1の表示パネル110Aのピクセル111Aを通過した光線LF´は、第2の表示パネル120Aのピクセル121Aを通過して、視点2から表示装置1Aを視認するユーザへと到達する。また、第1の表示パネル110Aのピクセル111Aを通過した光線LF´は、第2の表示パネル120Aのピクセル121Aを通過して、視点3から表示装置1Aを視認するユーザへと到達する。 Similarly, light rays LF' b having passed through the pixels 111A b of the first display panel 110A is reach the user through the pixels 121A b of the second display panel 120A, to view the display device 1A from the viewpoint 2 do. Also, light rays LF' c passing through the pixels 111A c of the first display panel 110A passes through the pixels 121A c of the second display panel 120A, and reaches to a user viewing the display device 1A from the viewpoint 3 ..
 表示装置1Aから射出される光線LF´の強度は、第1の表示パネル110Aのピクセル111A及び第2の表示パネル120Aのピクセル121Aの画素値(透過率)の積算で表される。 The intensity of the light ray LF'emitted from the display device 1A is represented by the integration of the pixel values (transmittance) of the pixel 111A of the first display panel 110A and the pixel 121A of the second display panel 120A.
 図2に示すように、第1の表示パネル110A(レイヤーH)のピクセル111Aの画素値をHとし、第2の表示パネル120A(レイヤーU)のピクセル121Aの画素値をUとする。この場合、ピクセル111A及びピクセル121Aを通過した光線LF´i,jの強度は、式(1)で表される。なお、iは、i=1~Iの整数であり、Iは、第1の表示パネル110Aの総ピクセル数を表している。また、jは、j=1~Jの整数であり、Jは、第2の表示パネル120Aの総ピクセル数を表している。なお、図2では、バックライト130Aの図示を省略している。 As shown in FIG. 2, the pixel values of the pixels 111A i of the first display panel 110A (Layer H) and H i, the pixel value of pixel 121A j of the second display panel 120A (Layer U) and U j do. In this case, the intensities of the light rays LF'i , j that have passed through the pixels 111A i and 121A j are expressed by the equation (1). Note that i is an integer of i = 1 to I, and I represents the total number of pixels of the first display panel 110A. Further, j is an integer of j = 1 to J, and J represents the total number of pixels of the second display panel 120A. In FIG. 2, the backlight 130A is not shown.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 表示装置1Aで表示する3次元画像の光線LFi,jをレイヤーHのピクセル111Aの画素値H及びレイヤーUのピクセル121Aの画素値Uによって再現しようとすると、画素値H、Uは、複数の値の組み合わせとなり得る。例えば、光線LFi,jの強度を「0.5」とすると、H=1.0、U=0.5でも光線LF´i,jの強度は「0.5」になり、H=0.8、U=0.625でも光線LF´i,jの強度は「0.5」になる。なお、ここでの数値は一例であり、光線LFi,jの強度、画素値H、Uの値は、これに限定されるものではない。 If you try to reproduce the beam LF i, the pixel value U j pixels 121A j of the pixel values H i and layer U of the pixels 111A i of the j layer H of the 3-dimensional image displayed on the display device 1A, the pixel values H i, U j can be a combination of multiple values. For example, when the light beam LF i, the intensity of j is "0.5", the intensity of H i = 1.0, U j = 0.5 Even light LF' i, j is "0.5", H Even if i = 0.8 and U j = 0.625, the intensity of the light rays LF'i , j becomes "0.5". The numerical values here are examples, and the intensities of the light rays LF i and j and the values of the pixel values Hi and U j are not limited to these.
 このように、ピクセル111A、121Aの画素値H、Uは、複数の組み合わせを取り得る。そこで、表示装置1Aから射出される光線LF´i,jが、再現したい光線LFi,jに近づくように、全てのピクセル111A、121Aの画素値H、Uを適切に設定することで、表示装置1Aに所望の3次元画像を表示し得る。より具体的には、例えば、式(2)に示す最適化問題を解くことで、表示装置1Aに所望の3次元画像を表示し得るピクセル111A、121Aの画素値H、Uを設定しうる。 Thus, the pixel 111A, the pixel value H i of 121A, U j may take a plurality of combinations. Therefore, light LF' i emitted from the display device 1A, j is the ray LF i to be reproduced, so as to approach the j, all pixels 111A i, the pixel value H i of 121A j, appropriately setting the U j As a result, a desired three-dimensional image can be displayed on the display device 1A. More specifically, for example, by solving the optimization problem shown in equation (2), the pixel 111A i capable of displaying a desired three-dimensional image on the display device 1A, the 121A j pixel values H i, the U j Can be set.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)に示す最適化問題を解く手法は種々知られているが、ここでは代表的な手法としてMultiplicative Updateを用いた手法について説明する。Multiplicative Updateでは、更新式(3)~(5)に示すように、画素値H、Uの値を交互に反復更新していくことで、最適な画素値H、Uを得る手法である。 Various methods for solving the optimization problem shown in Eq. (2) are known, but here, a method using Multiplicative Update will be described as a typical method. In Multiplicative Update, as shown in the update equation (3) to (5), that it continues to iteratively update the pixel values H i, the value of U j alternately, the optimum pixel value H i, obtain U j technique Is.
 式(3)~(5)を用いて最適な画素値H、Uを得ることで、表示装置1Aに所望の3次元画像を表示することができる。 By obtaining the optimum pixel values Hi and U j using the equations (3) to (5), a desired three-dimensional image can be displayed on the display device 1A.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (カラー画像の表示原理)
 上述した表示装置1Aは、グレースケールのモノクロ画像を表示するライトフィールドディスプレイであるが、カラー画像をライトフィールドディスプレイで表示するようにしてもよい。以下では、図3を用いて、カラーの3次元画像を表示する表示装置1Bについて説明する。図3は、表示装置1Bによるカラー画像の表示原理を説明するための図である。
(Color image display principle)
The display device 1A described above is a light field display that displays a grayscale monochrome image, but a color image may be displayed on the light field display. Hereinafter, the display device 1B for displaying a three-dimensional color image will be described with reference to FIG. FIG. 3 is a diagram for explaining the display principle of the color image by the display device 1B.
 図3に示すように、表示装置1Bは、第1の表示パネル110Bと、第2の表示パネル120Bと、バックライト130Aと、を有する。 As shown in FIG. 3, the display device 1B includes a first display panel 110B, a second display panel 120B, and a backlight 130A.
 第1の表示パネル110B及び第2の表示パネル120Bは、複数のピクセル(画素)111B及び121Bを有する液晶パネルである。ピクセル111B及び121Bは、それぞれ赤色(Red;R)光を透過するサブピクセル111SR、121SR、緑色(Green;G)光を透過するサブピクセル111SG、121SG、及び、青色(Blue;B)光を透過するサブピクセル111SB、121SBで1つのピクセル111B、121Bを構成する。なお、R、G、Bの各色光を透過するサブピクセルをまとめてサブピクセル111S、121Sとも記載する。バックライト130Aから射出された光は、サブピクセル111SR、121SRを通過することで赤色成分の光線として表示装置1Bから射出される。同様に、緑色成分の光線及び青色成分の光線が表示装置1Bから射出される。表示装置1Bは、サブピクセル111S、121Sの画素値(透過率)に応じて、カラーの3次元画像を表示することができる。 The first display panel 110B and the second display panel 120B are liquid crystal panels having a plurality of pixels (pixels) 111B and 121B. Pixels 111B and 121B transmit sub-pixels 111SR and 121SR that transmit red (R) light, sub-pixels 111SG and 121SG that transmit green (Green) light, and blue (Blue; B) light, respectively. The sub-pixels 111SB and 121SB are used to form one pixel 111B and 121B. The sub-pixels that transmit each color light of R, G, and B are collectively referred to as sub-pixels 111S and 121S. The light emitted from the backlight 130A passes through the sub-pixels 111SR and 121SR and is emitted from the display device 1B as a light ray having a red component. Similarly, a light ray having a green component and a light ray having a blue component are emitted from the display device 1B. The display device 1B can display a three-dimensional color image according to the pixel values (transmittance) of the sub-pixels 111S and 121S.
 上述したように、R、G、Bの各色成分の光線の強度は、式(5)~(7)に示すように、各サブピクセル111S、121Sの画素値の積算で表される。 As described above, the intensity of the light rays of each color component of R, G, and B is represented by the integration of the pixel values of the sub-pixels 111S and 121S, as shown in the formulas (5) to (7).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、LF´R,i,jは、赤色の光線の強度、即ち、光線LF´i,jの強度の赤色成分を示している。同様に、LF´G,i,jは、緑色の光線の強度、即ち、光線LF´i,jの強度の緑色成分を示しており、LF´B,i,jは、青色の光線の強度、即ち、光線LF´i,jの強度の青色成分を示している。また、HR,iは、サブピクセル111SRの画素値、HG,iは、サブピクセル111SGの画素値、HB,iは、サブピクセル111SBの画素値を示している。また、UR,jは、サブピクセル121SRの画素値、UG,jは、サブピクセル121SGの画素値、UB,jは、サブピクセル121SBの画素値を示している。なお、iは、i=1~Iの整数であり、Iは、第1の表示パネル110Bの総ピクセル数を表している。また、jは、j=1~Jの整数であり、Jは、第2の表示パネル120Bの総ピクセル数を表している。 Note that LF'R , i, j indicates the intensity of the red light beam, that is, the red component of the intensity of the light beam LF'i, j. Similarly, LF'G , i, j indicates the intensity of the green ray, that is, the green component of the intensity of the ray LF'i, j , and LF'B, i, j indicates the intensity of the blue ray. That is, the blue component of the intensity of the light rays LF'i , j is shown. Also, H R, i, the pixel value of the sub-pixels 111SR i, H G, i, the pixel value of the sub-pixels 111SG i, H B, i represents a pixel value of the sub-pixel 111SB i. Also, U R, j is the pixel value of the sub-pixels 121SR j, U G, j is the pixel value of the sub-pixels 121SG j, U B, j indicates the pixel value of the sub-pixel 121SB j. Note that i is an integer of i = 1 to I, and I represents the total number of pixels of the first display panel 110B. Further, j is an integer of j = 1 to J, and J represents the total number of pixels of the second display panel 120B.
 上述した表示装置1Aと同様に例えば更新式(8)~(13)を用いて最適化問題を解くことによって、各サブピクセル111S、121Sの画素値が算出される。これにより、表示装置1Bにカラーの3次元画像を表示することができる。 Similar to the display device 1A described above, the pixel values of the sub-pixels 111S and 121S are calculated by solving the optimization problem using, for example, the update equations (8) to (13). As a result, a color three-dimensional image can be displayed on the display device 1B.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、図4を用いて、表示装置1Bの構成例について説明する。図4は、表示装置1Bの構成例を示すブロック図である。図4に示すように、表示装置1Bは、表示部10Bと制御部20Bとを有する。なお、図4に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、表示装置1Bの機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、表示部10Bと制御部20Bとが物理的に異なる装置で構成されてもよい。 Next, a configuration example of the display device 1B will be described with reference to FIG. FIG. 4 is a block diagram showing a configuration example of the display device 1B. As shown in FIG. 4, the display device 1B includes a display unit 10B and a control unit 20B. The configuration shown in FIG. 4 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the display device 1B may be distributed and implemented in a plurality of physically separated configurations. For example, the display unit 10B and the control unit 20B may be configured by physically different devices.
 表示部10Bは、上述した第1の表示パネル110Bと、第2の表示パネル120Bと、バックライト130Aと、を有する。 The display unit 10B includes the above-mentioned first display panel 110B, a second display panel 120B, and a backlight 130A.
 制御部20Bは、表示部10Bの各部を制御する。制御部20Bは、例えば表示部10Bの各サブピクセル111S、121Sの画素値を算出し、算出した画素値に基づいて第1の表示パネル110B及び第2の表示パネル120Bをそれぞれ駆動する。制御部20Bは、算出部210Bと駆動部220Bとを有する。 The control unit 20B controls each unit of the display unit 10B. The control unit 20B calculates, for example, the pixel values of the sub-pixels 111S and 121S of the display unit 10B, and drives the first display panel 110B and the second display panel 120B based on the calculated pixel values, respectively. The control unit 20B includes a calculation unit 210B and a drive unit 220B.
 算出部210Bは、表示部10Bの各サブピクセル111S、121Sの画素値を算出する。算出部210Bは、R画素値算出部211Bと、G画素値算出部212Bと、B画素値算出部213Bと、を有する。 The calculation unit 210B calculates the pixel values of the sub-pixels 111S and 121S of the display unit 10B. The calculation unit 210B includes an R pixel value calculation unit 211B, a G pixel value calculation unit 212B, and a B pixel value calculation unit 213B.
 R画素値算出部211Bは、第1の表示パネル110Bのサブピクセル111SR、第2の表示パネル120Bのサブピクセル121SRの画素値H、Uを算出する。R画素値算出部211Bは、R光線強度入力部2111Bと、第1のR画素算出部2112Bと、第2のR画素算出部2113Bと、を有する。 R pixel value calculation unit 211B, the sub-pixel 111SR of the first display panel 110B, the pixel value H R subpixels 121SR of the second display panel 120B, calculates the U R. The R pixel value calculation unit 211B includes an R light intensity input unit 2111B, a first R pixel calculation unit 2112B, and a second R pixel calculation unit 2113B.
 R光線強度入力部2111Bは、表示装置1Bから射出したい所望の赤色の光線(以下、R光線とも記載する)の強度を取得し、第1のR画素算出部2112B及び第2のR画素算出部2113Bに出力する。R光線強度入力部2111Bは、例えば、表示装置1Bの記憶部(図示省略)が記憶する表示したいカラーの3次元画像に基づき、R光線の強度を取得する。 The R ray intensity input unit 2111B acquires the intensity of a desired red ray (hereinafter, also referred to as an R ray) to be emitted from the display device 1B, and obtains the intensity of the first R pixel calculation unit 2112B and the second R pixel calculation unit. Output to 2113B. The R ray intensity input unit 2111B acquires the intensity of the R ray intensity based on, for example, a three-dimensional image of the color to be displayed stored in the storage unit (not shown) of the display device 1B.
 第1のR画素算出部2112B及び第2のR画素算出部2113Bは、上述した更新式(5)を用いて画素値H、Uを算出する。このとき、第1のR画素算出部2112B及び第2のR画素算出部2113Bは、互いに更新した画素値H、Uをやり取りすることで、画素値H、Uを最適化する。 The first R pixel calculation unit 2112B and the second R pixel calculation unit 2113B calculates a pixel value H R, U R using the above-described update expression (5). In this case, the first R pixel calculation unit 2112B and the second R pixel calculation unit 2113B, a pixel value H R updating each other, by exchanging U R, the pixel value H R, optimizing U R.
 G画素値算出部212Bも、R画素値算出部211Bと同様に、第1の表示パネル110Bのサブピクセル111SG、第2の表示パネル120Bのサブピクセル121SGの画素値H、Uを算出する。G画素値算出部212Bは、G光線強度入力部2121Bと、第1のG画素算出部2122Bと、第2のG画素算出部2123Bと、を有する。G画素値算出部212Bの各部は、赤色(R)を緑色(G)に置き換えた以外、R画素値算出部211Bの各部と同様に動作するため、説明を省略する。 G pixel value calculation unit 212B, as in the R pixel value calculation unit 211B, sub-pixel 111SG of the first display panel 110B, the pixel value H G subpixels 121SG of the second display panel 120B, calculates the U G .. The G pixel value calculation unit 212B includes a G light intensity input unit 2121B, a first G pixel calculation unit 2122B, and a second G pixel calculation unit 2123B. Since each part of the G pixel value calculation unit 212B operates in the same manner as each part of the R pixel value calculation unit 211B except that the red color (R) is replaced with the green color (G), the description thereof will be omitted.
 続いて、B画素値算出部212Bも、R画素値算出部211Bと同様に、第1の表示パネル110Bのサブピクセル111SB、第2の表示パネル120Bのサブピクセル121SBの画素値H、Uを算出する。B画素値算出部213Bは、B光線強度入力部2131Bと、第1のB画素算出部2132Bと、第2のB画素算出部2133Bと、を有する。B画素値算出部213Bの各部は、赤色(R)を青色(B)に置き換えた以外、R画素値算出部211Bの各部と同様に動作するため、説明を省略する。 Tsuzui and, B pixel value calculation unit 212B, like the R pixel value calculation unit 211B, sub Pikuseru 111SB of the first display panel 110B, the pixel value of the sub Pikuseru 121SB of the second of the display panel 120B H B, U B Is calculated. The B pixel value calculation unit 213B includes a B light intensity input unit 2131B, a first B pixel calculation unit 2132B, and a second B pixel calculation unit 2133B. Since each part of the B pixel value calculation unit 213B operates in the same manner as each part of the R pixel value calculation unit 211B except that the red color (R) is replaced with the blue color (B), the description thereof will be omitted.
 駆動部220Bは、算出部210Bが算出した各画素値に基づき、第1の表示パネル110B及び第2の表示パネル120Bを駆動する。駆動部220Bは、第1の表示パネル110Bを駆動する第1の駆動部221Bと、第2の表示パネル120Bを駆動する第2の駆動部222Bと、を有する。 The drive unit 220B drives the first display panel 110B and the second display panel 120B based on each pixel value calculated by the calculation unit 210B. The drive unit 220B includes a first drive unit 221B that drives the first display panel 110B, and a second drive unit 222B that drives the second display panel 120B.
 第1の駆動部221Bは、第1のR画素駆動部2211Bと、第1のG画素駆動部2212Bと、第1のB画素駆動部2213Bと、を有する。第1のR画素駆動部2211Bは、第1のR画素算出部2112Bが算出した画素値Hに基づき、第1の表示パネル110Bのサブピクセル111SRが画素値Hになるように、第1の表示パネル110Bを駆動する。第1のG画素駆動部2212Bは、第1のG画素算出部2122Bが算出した画素値Hに基づき、第1の表示パネル110Bのサブピクセル111SGが画素値Hになるように、第1の表示パネル110Bを駆動する。第1のB画素駆動部2213Bは、第1のB画素算出部2132Bが算出した画素値Hに基づき、第1の表示パネル110Bのサブピクセル111SBが画素値Hになるように、第1の表示パネル110Bを駆動する。 The first drive unit 221B includes a first R pixel drive unit 2211B, a first G pixel drive unit 2212B, and a first B pixel drive unit 2213B. The first R pixel driver 2211B, based on the pixel value H R of the first R pixel calculation unit 2112B is calculated, as the sub-pixel 111SR of the first display panel 110B is a pixel value H R, first The display panel 110B of is driven. The first G pixel driver 2212B, based on the pixel values H G of the first G pixel calculation unit 2122B is calculated, as the sub-pixel 111SG of the first display panel 110B is a pixel value H G, first The display panel 110B of is driven. The first B pixel driver 2213B, based on the pixel value H B of the first B pixel calculation unit 2132B is calculated, as the sub-pixel 111SB of the first display panel 110B is a pixel value H B, first The display panel 110B of is driven.
 第2の駆動部222Bは、第2のR画素駆動部2221Bと、第2のG画素駆動部2222Bと、第2のB画素駆動部2223Bと、を有する。第2のR画素駆動部2221Bは、第2のR画素算出部2113Bが算出した画素値Hに基づき、第2の表示パネル120Bのサブピクセル121SRが画素値Hになるように、第2の表示パネル120Bを駆動する。第2のG画素駆動部2222Bは、第2のG画素算出部2123Bが算出した画素値Hに基づき、第2の表示パネル120Bのサブピクセル121SGが画素値Hになるように、第2の表示パネル120Bを駆動する。第2のB画素駆動部2223Bは、第2のB画素算出部2133Bが算出した画素値Hに基づき、第2の表示パネル120Bのサブピクセル121SBが画素値Hになるように、第2の表示パネル120Bを駆動する。 The second drive unit 222B includes a second R pixel drive unit 2221B, a second G pixel drive unit 2222B, and a second B pixel drive unit 2223B. Second R pixel driver 2221B, based on the pixel value H R of the second R pixel calculation unit 2113B is calculated, as the sub-pixel 121SR of the second display panel 120B is a pixel value H R, the second Drives the display panel 120B of. The second G pixel driver 2222B, based on the pixel values H G of the second G pixel calculation unit 2123B is calculated, as the sub-pixel 121SG of the second display panel 120B is a pixel value H G, second Drives the display panel 120B of. The second B pixel drive unit 2223B is based on the pixel value H B calculated by the second B pixel calculation unit 2133 B , so that the sub pixel 121 SB of the second display panel 120B becomes the pixel value H B. Drives the display panel 120B of.
 このように、制御部20Bが画素値を算出し、算出した画素値で表示部10Bを駆動させることで、表示装置1Bは、カラーの3次元画像を表示することができる。 In this way, the control unit 20B calculates the pixel value and drives the display unit 10B with the calculated pixel value, so that the display device 1B can display a color three-dimensional image.
 しかし、上述した表示装置1Bは、表示パネルを複数枚積層しているため、表示装置1Bの輝度が低下してしまう。例えば、表示部10Bのサブピクセル111SRは、赤色光を透過するが、緑色光及び青色光の透過率がゼロであり、緑色光及び青色光を透過しない。そのため、サブピクセル111SRを通過する光の輝度(光線の強度)が1/3倍に低下してしまう。同様に、表示部10Bのサブピクセル111SGも緑色光のみを透過し、サブピクセル111SBも青色光のみを透過する。そのため、サブピクセル111SR、111SG、111SBを透過した光線の強度は、最大であっても1/3倍に低下してしまう。 However, since the display device 1B described above has a plurality of display panels stacked on top of each other, the brightness of the display device 1B is lowered. For example, the subpixel 111SR of the display unit 10B transmits red light, but has zero transmittance for green light and blue light, and does not transmit green light and blue light. Therefore, the brightness (intensity of light rays) of the light passing through the sub-pixel 111SR is reduced to 1/3 times. Similarly, the sub-pixel 111SG of the display unit 10B also transmits only green light, and the sub-pixel 111SB also transmits only blue light. Therefore, the intensity of the light rays transmitted through the sub-pixels 111SR, 111SG, and 111SB is reduced to 1/3 times at the maximum.
 上述した表示装置1Bは、第1の表示パネル110B及び第2の表示パネル120Bを積層した構成になっている。また、光線の強度は、各パネルを通過するごとに積算の関係で減衰する。そのため、バックライト130Aから射出された光線の強度と比較して、第1の表示パネル110B及び第2の表示パネル120Bを通過した光線の強度は、式(14)に示すように著しく低下する。なお、式(14)では、光線の赤色成分の強度を示しているが、緑色成分及び青色成分の強度も同様に低下する。 The display device 1B described above has a configuration in which a first display panel 110B and a second display panel 120B are laminated. In addition, the intensity of the light beam is attenuated due to the integration as it passes through each panel. Therefore, the intensity of the light rays that have passed through the first display panel 110B and the second display panel 120B is significantly reduced as shown in the equation (14) as compared with the intensity of the light rays emitted from the backlight 130A. In the formula (14), the intensity of the red component of the light beam is shown, but the intensity of the green component and the blue component also decreases.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、式(14)では、サブピクセル111S、121Sの画素値の影響で低下する光線の強度を示しているが、実際には、光線は、第1の表示パネル110B及び第2の表示パネル120Bそのものでも強度が低下してしまう。この場合、表示装置1Bから射出される光線の強度は、バックライト130Aから射出される光線の強度と比較して、式(14)に示す1/9よりも低下してしまう。 In the equation (14), the intensity of the light ray that decreases due to the influence of the pixel values of the sub-pixels 111S and 121S is shown, but in reality, the light ray is the first display panel 110B and the second display panel 120B. The strength is reduced by itself. In this case, the intensity of the light beam emitted from the display device 1B is lower than 1/9 shown in the equation (14) as compared with the intensity of the light ray emitted from the backlight 130A.
 本件の開示者は、上記事情に鑑みて本技術を開発するに至った。以降で、本開示に係る技術の詳細を順次説明していく。 The discloser of this case has come to develop this technology in view of the above circumstances. Hereinafter, the details of the technology according to the present disclosure will be described in sequence.
 <<2.表示装置の概要>>
 上記では、本開示の背景について説明した。続いて、本開示の実施形態に係る表示装置1の概要について説明する。図5は、本開示の実施形態に係る表示装置1の概要について説明するための図である。
<< 2. Overview of display device >>
In the above, the background of the present disclosure has been described. Subsequently, an outline of the display device 1 according to the embodiment of the present disclosure will be described. FIG. 5 is a diagram for explaining an outline of the display device 1 according to the embodiment of the present disclosure.
 図5に示すように、本実施形態に係る表示装置1は、第1の表示パネル110(第1の表示部の一例)と、第2の表示パネル120(第2の表示部の一例)と、バックライト130と、を有する。 As shown in FIG. 5, the display device 1 according to the present embodiment includes a first display panel 110 (an example of a first display unit) and a second display panel 120 (an example of a second display unit). , And the backlight 130.
 第1の表示パネル110及び第2の表示パネル120は、例えば複数のピクセル111、121を有する液晶パネルであり、バックライト130の光を光変調することで画像を生成する。 The first display panel 110 and the second display panel 120 are, for example, liquid crystal panels having a plurality of pixels 111 and 121, and generate an image by photomodulating the light of the backlight 130.
 バックライト130は、表示装置1の光源である。バックライト130から射出された光は、第1の表示パネル110及び第2の表示パネル120を通過して、表示装置1から射出される。 The backlight 130 is a light source of the display device 1. The light emitted from the backlight 130 passes through the first display panel 110 and the second display panel 120, and is emitted from the display device 1.
 ここで、表示装置1は、マルチレイヤ型のライトフィールドディスプレイであり、第1の表示パネル110及び第2の表示パネル120は、積層して配置される。すなわち、第1の表示パネル110及び第2の表示パネル120は、ユーザの視線方向において表示領域の少なくとも一部が重複するように配置される。図5の例では、第2の表示パネル120が第1の表示パネル110よりもユーザ側に配置される。以下、第1の表示パネル110をレイヤーH、第2の表示パネル120をレイヤーUとも記載する。 Here, the display device 1 is a multilayer type light field display, and the first display panel 110 and the second display panel 120 are arranged in a stacked manner. That is, the first display panel 110 and the second display panel 120 are arranged so that at least a part of the display area overlaps in the line-of-sight direction of the user. In the example of FIG. 5, the second display panel 120 is arranged closer to the user than the first display panel 110. Hereinafter, the first display panel 110 will be referred to as layer H, and the second display panel 120 will be referred to as layer U.
 本実施形態に係る表示装置1は、カラーの3次元画像を表示するライトフィールドディスプレイである。本実施形態に係る表示装置1の第1の表示パネル110及び第2の表示パネル120のピクセル111、121は、それぞれ複数のサブピクセルで構成される。サブピクセルは、RGB(赤色、緑色、青色)成分の中の少なくとも2つの成分を合成した合成色を透過する。図5の例では、ピクセル111、121は、RGBの補色のサブピクセルを有する。より具体的には、ピクセル111、121は、R、G(赤色、緑色)の波長を透過するイエロー(Y)のサブピクセル111PY、121PYと、G、B(緑色、青色)の波長を透過するシアン(C)のサブピクセル111PC、121PCと、R、B(赤色、青色)の波長を透過するマゼンタ(M)のサブピクセル111PM、121PMと、を有する。なお、Y、C、Mの各色光を透過するサブピクセルをまとめてサブピクセル111P、121Pとも記載する。 The display device 1 according to the present embodiment is a light field display that displays a three-dimensional color image. The pixels 111 and 121 of the first display panel 110 and the second display panel 120 of the display device 1 according to the present embodiment are each composed of a plurality of sub-pixels. The sub-pixel transmits a composite color obtained by synthesizing at least two components of the RGB (red, green, blue) components. In the example of FIG. 5, pixels 111 and 121 have RGB complementary color sub-pixels. More specifically, the pixels 111 and 121 transmit the wavelengths of the yellow (Y) subpixels 111PY and 121PY and the wavelengths of G and B (green and blue) that transmit the wavelengths of R and G (red and green). It has cyan (C) subpixels 111PC and 121PC, and magenta (M) subpixels 111PM and 121PM that transmit wavelengths of R and B (red and blue). The sub-pixels that transmit each color light of Y, C, and M are collectively referred to as sub-pixels 111P and 121P.
 なお、図5では、ピクセル111のサブピクセル111Pが、Y、C、Mの順に並んでおり、ピクセル121のサブピクセル121Pが、M、Y、Cの順に並んでいるが、サブピクセル111P、121Pの並び方は、これに限定されない。例えば、サブピクセル111P、121Pが、C、M、Yの順に並んでいてもよい。また、第1の表示パネル110及び第2の表示パネル120のサブピクセル111P、121Pで各色の並びが同じであっても異なっていてもよい。 In FIG. 5, the sub-pixel 111P of the pixel 111 is arranged in the order of Y, C, M, and the sub-pixel 121P of the pixel 121 is arranged in the order of M, Y, C. The arrangement of is not limited to this. For example, the sub-pixels 111P and 121P may be arranged in the order of C, M, and Y. Further, the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 may have the same or different arrangement of colors.
 バックライト130から射出される光線は、例えば、サブピクセル111PY、121PMを通過することで、赤色成分の光線LF´となって表示装置1から射出する。同様に、バックライト130から射出される光線は、サブピクセル111PM、121PYを通過することで、赤色成分の光線LF´となって表示装置1から射出する。 Light emitted from the backlight 130, e.g., sub-pixel 111PY, by passing through the 121PM, emitted from the display device 1 becomes light LF' R of the red component. Similarly, light emitted from the backlight 130, the subpixel 111PM, by passing through the 121PY, emitted from the display device 1 becomes light LF' R of the red component.
 表示装置1のピクセル111i、121jを通過した光線の赤、緑、青色成分の強度は、サブピクセル111P、121Pの画素値(透過率)を用いて式(15)~(17)に示すように表される。 The intensities of the red, green, and blue components of the light rays that have passed through the pixels 111i and 121j of the display device 1 are shown in equations (15) to (17) using the pixel values (transmittance) of the sub-pixels 111P and 121P. expressed.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、LF´R,i,jは、光線LF´i,jの強度の赤色成分を示している。同様に、LF´G,i,jは、光線LF´i,jの強度の緑色成分を示しており、LF´B,i,jは、光線LF´i,jの強度の青色成分を示している。また、HY,iは、サブピクセル111PYの画素値、HC,iは、サブピクセル111PCの画素値、HM,iは、サブピクセル111PMの画素値を示している。また、UY,jは、サブピクセル121PYの画素値、UC,jは、サブピクセル121PCの画素値、UM,jは、サブピクセル121PMの画素値を示している。なお、iは、i=1~Iの整数であり、Iは、第1の表示パネル110の総ピクセル数を表している。また、jは、j=1~Jの整数であり、Jは、第2の表示パネル120の総ピクセル数を表している。 Note that LF'R , i, j indicates a red component of the intensity of the light rays LF'i , j. Similarly, LF'G , i, j indicates the green component of the intensity of the light rays LF'i , j , and LF'B, i, j indicates the blue component of the intensity of the light rays LF'i , j. ing. Also, H Y, i, the pixel value of the sub-pixels 111PY i, H C, i, the pixel value of the sub-pixels 111PC i, H M, i indicates the pixel value of the sub-pixels 111PM i. Further, U Y and j indicate the pixel value of the sub pixel 121PY j , U C and j indicate the pixel value of the sub pixel 121PC j , and U M and j indicate the pixel value of the sub pixel 121PM j. Note that i is an integer of i = 1 to I, and I represents the total number of pixels of the first display panel 110. Further, j is an integer of j = 1 to J, and J represents the total number of pixels of the second display panel 120.
 上述した表示装置1Bと同様に例えば更新式(18)~(23)を用いて最適化問題を解くことによって、各サブピクセル111P、121Pの画素値が算出される。 Similar to the display device 1B described above, the pixel values of the sub-pixels 111P and 121P are calculated by solving the optimization problem using, for example, the update formulas (18) to (23).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 更新式(18)~(23)に示すLFR,i,jは、表示装置1に表示する3次元画像の光線(所望の光線)の赤色成分であり、LF´G,i,jは、表示装置1に表示する3次元画像の光線の緑色成分である。また、LFB,i,jは、表示装置1に表示する3次元画像の光線の青色成分である。 LF R, i, j shown in the update formulas (18) to (23) are red components of the light rays (desired light rays) of the three-dimensional image displayed on the display device 1, and LF'G , i, j are It is a green component of a light ray of a three-dimensional image displayed on the display device 1. Further, LF B, i, and j are blue components of light rays of a three-dimensional image displayed on the display device 1.
 算出された各サブピクセル111P、121Pの画素値に基づき、第1の表示パネル110及び第2の表示パネル120を駆動することで、表示装置1にカラーの3次元画像が表示される。 By driving the first display panel 110 and the second display panel 120 based on the calculated pixel values of the sub-pixels 111P and 121P, a color three-dimensional image is displayed on the display device 1.
 また、各サブピクセル111P、121Pは、R、G、B成分の補色、即ち、R、G、B成分の少なくとも2つを合成した成分の光線を通過させる。そのため、光線のR、G、B成分のみを通過させる場合に比べて、表示装置1は、各サブピクセル111P、121Pでの光線の強度の低下を抑制することができる。表示装置1のかかる効果の詳細については後述する。 Further, each of the sub-pixels 111P and 121P allows the complementary colors of the R, G, and B components, that is, the light rays of the component obtained by synthesizing at least two of the R, G, and B components to pass through. Therefore, the display device 1 can suppress a decrease in the intensity of the light rays at the sub-pixels 111P and 121P, as compared with the case where only the R, G, and B components of the light rays are passed. The details of the effect of the display device 1 will be described later.
 <<3.表示装置の構成例>>
 次に、図6を用いて、本実施形態に係る表示部10を備えた表示装置1について説明する。図6は、本開示の実施形態に係る表示装置1の構成例を示すブロック図である。
<< 3. Display device configuration example >>
Next, the display device 1 provided with the display unit 10 according to the present embodiment will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration example of the display device 1 according to the embodiment of the present disclosure.
 図6に示すように、本実施形態に係る表示装置1は、表示部10と、制御部20と、を有する。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。例えば、表示部10と制御部20とが物理的に異なる装置で構成されてもよく、あるいは、1つの装置で構成されてもよい。あるいは、制御部20の一部の機能(例えば後述する駆動部220)が表示部10に搭載されていてもよい。 As shown in FIG. 6, the display device 1 according to the present embodiment includes a display unit 10 and a control unit 20. The configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. For example, the display unit 10 and the control unit 20 may be configured by physically different devices, or may be configured by one device. Alternatively, a part of the functions of the control unit 20 (for example, the drive unit 220 described later) may be mounted on the display unit 10.
 (表示部10)
 表示部10は、カラーの3次元画像を表示し得るマルチレイヤ方式のライトフィールドディスプレイである。表示部10は、第1の表示パネル110と、第2の表示パネル120と、バックライト130と、を有する。
(Display unit 10)
The display unit 10 is a multi-layer type light field display capable of displaying a color three-dimensional image. The display unit 10 includes a first display panel 110, a second display panel 120, and a backlight 130.
 第1の表示パネル110は、例えば液晶パネルである。第1の表示パネル110は、上述したように、イエローのサブピクセル111PY、シアンのサブピクセル111PC及びマゼンタのサブピクセル111PMで構成されるピクセル111を複数有する。第1の表示パネル110のサブピクセル111Pは、制御部20による制御に応じて所定の画素値(透過率)になるように駆動する。 The first display panel 110 is, for example, a liquid crystal panel. As described above, the first display panel 110 has a plurality of pixels 111 composed of a yellow sub-pixel 111PY, a cyan sub-pixel 111PC, and a magenta sub-pixel 111PM. The sub-pixel 111P of the first display panel 110 is driven so as to have a predetermined pixel value (transmittance) according to the control by the control unit 20.
 第2の表示パネル120は、例えば液晶パネルである。第2の表示パネル120は、上述したように、イエローのサブピクセル121PY、シアンのサブピクセル121PC及びマゼンタのサブピクセル121PMで構成されるピクセル121を複数有する。第2の表示パネル120のサブピクセル121Pは、制御部20による制御に応じて所定の画素値(透過率)になるように駆動する。 The second display panel 120 is, for example, a liquid crystal panel. As described above, the second display panel 120 has a plurality of pixels 121 composed of a yellow sub-pixel 121PY, a cyan sub-pixel 121PC, and a magenta sub-pixel 121PM. The sub-pixel 121P of the second display panel 120 is driven so as to have a predetermined pixel value (transmittance) according to the control by the control unit 20.
 バックライト130は、表示部10の光源である。バックライト130から射出された光は、第1の表示パネル110、第2の表示パネル120の順に通過して、表示部10から射出される。 The backlight 130 is a light source of the display unit 10. The light emitted from the backlight 130 passes through the first display panel 110 and the second display panel 120 in this order, and is emitted from the display unit 10.
 (制御部20)
 制御部20は、例えば、専用または汎用のコンピュータである。制御部20は、例えば、表示装置1を制御する統合制御ユニットである。
(Control unit 20)
The control unit 20 is, for example, a dedicated or general-purpose computer. The control unit 20 is, for example, an integrated control unit that controls the display device 1.
 制御部20は、算出部210と、駆動部220と、記憶部230と、の各機能部を備える。制御部20の各機能部は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって表示装置1の内部に記憶されたプログラムがRAM等を作業領域として実行されることにより実現される。また、各機能部は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の集積回路により実現されてもよい。 The control unit 20 includes each function unit of a calculation unit 210, a drive unit 220, and a storage unit 230. Each functional unit of the control unit 20 is realized, for example, by executing a program stored inside the display device 1 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like with a RAM or the like as a work area. NS. Further, each functional unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
 (算出部210)
 算出部210は、表示部10の各サブピクセル111P、121Pの画素値を算出する。算出部210は、R光線強度入力部2111と、G光線強度入力部2121と、B光線強度入力部2131と、第1の画素算出部2102と、第2の画素算出部2103と、を有する。
(Calculation unit 210)
The calculation unit 210 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10. The calculation unit 210 includes an R light intensity input unit 2111, a G light intensity input unit 2121, a B light intensity input unit 2131, a first pixel calculation unit 2102, and a second pixel calculation unit 2103.
 R光線強度入力部2111は、表示部10Bから射出したい赤色の光線(以下、R光線とも記載する)の強度を記憶部230から取得し、第1の画素算出部2102及び第2の画素算出部2103に出力する。R光線は、例えば、表示部10Bに表示する3次元画像の各ピクセルにおける光線の赤色成分である。 The R light intensity input unit 2111 acquires the intensity of the red light ray (hereinafter, also referred to as R light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103. The R ray is, for example, a red component of the ray at each pixel of the three-dimensional image displayed on the display unit 10B.
 G光線強度入力部2121は、表示部10Bから射出したい緑色の光線(以下、G光線とも記載する)の強度を記憶部230から取得し、第1の画素算出部2102及び第2の画素算出部2103に出力する。G光線は、例えば、表示部10Bに表示する3次元画像の各ピクセルにおける光線の緑色成分である。 The G light intensity input unit 2121 acquires the intensity of the green light ray (hereinafter, also referred to as G light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103. The G ray is, for example, a green component of the ray at each pixel of the three-dimensional image displayed on the display unit 10B.
 B光線強度入力部2131は、表示部10Bから射出したい青色の光線(以下、B光線とも記載する)の強度を記憶部230から取得し、第1の画素算出部2102及び第2の画素算出部2103に出力する。B光線は、例えば、表示部10Bに表示する3次元画像の各ピクセルにおける光線の青色成分である。 The B light intensity input unit 2131 acquires the intensity of the blue light ray (hereinafter, also referred to as the B light ray) to be emitted from the display unit 10B from the storage unit 230, and obtains the intensity of the first pixel calculation unit 2102 and the second pixel calculation unit. Output to 2103. The B ray is, for example, a blue component of the ray in each pixel of the three-dimensional image displayed on the display unit 10B.
 なお、ここでは、R光線強度入力部2111、G光線強度入力部2121、及び、B光線強度入力部2131が、記憶部230からそれぞれR光線、G光線、B光線の強度を取得するとしたが、これに限定されない。例えば、図示は省略するが、R光線強度入力部2111、G光線強度入力部2121、及び、B光線強度入力部2131が、ネットワークを介して各光線の強度を取得してもよい。 Here, it is assumed that the R light intensity input unit 2111, the G light intensity input unit 2121, and the B light intensity input unit 2131 acquire the intensities of the R light, G light, and B light from the storage unit 230, respectively. Not limited to this. For example, although not shown, the R light intensity input unit 2111, the G light intensity input unit 2121, and the B light intensity input unit 2131 may acquire the intensity of each light ray via the network.
 第1の画素算出部2102は、第1の表示パネル110のサブピクセル111Pの各画素値を算出する。より具体的には、第1の画素算出部2102は、上述した式(18)~(20)及び第2の画素算出部2103から取得する第2の表示パネル120のサブピクセル121Pの画素値に基づき、サブピクセル111Pの画素値を更新する。第1の画素算出部2102は、更新した画素値を第2の画素算出部2103に出力する。 The first pixel calculation unit 2102 calculates each pixel value of the sub-pixel 111P of the first display panel 110. More specifically, the first pixel calculation unit 2102 is set to the pixel value of the sub-pixel 121P of the second display panel 120 acquired from the above equations (18) to (20) and the second pixel calculation unit 2103. Based on this, the pixel value of the sub-pixel 111P is updated. The first pixel calculation unit 2102 outputs the updated pixel value to the second pixel calculation unit 2103.
 第2の画素算出部2103は、第2の表示パネル120のサブピクセル121Pの各画素値を算出する。より具体的には、第2の画素算出部2103は、上述した式(21)~(23)及び第1の画素算出部2102から取得する第1の表示パネル110のサブピクセル111Pの画素値に基づき、サブピクセル121Pの画素値を更新する。第2の画素算出部2103は、更新した画素値を第1の画素算出部2102に出力する。 The second pixel calculation unit 2103 calculates each pixel value of the sub-pixel 121P of the second display panel 120. More specifically, the second pixel calculation unit 2103 uses the pixel values of the sub-pixel 111P of the first display panel 110 acquired from the above equations (21) to (23) and the first pixel calculation unit 2102. Based on this, the pixel value of the sub-pixel 121P is updated. The second pixel calculation unit 2103 outputs the updated pixel value to the first pixel calculation unit 2102.
 第1の画素算出部2102及び第2の画素算出部2103は、画素値を互いにやり取りしながら、サブピクセル111P、121Pの画素値を更新する。第1の画素算出部2102及び第2の画素算出部2103は、更新する画素値の値が収束した場合、当該画素値を算出した画素値として駆動部220に出力する。 The first pixel calculation unit 2102 and the second pixel calculation unit 2103 update the pixel values of the sub-pixels 111P and 121P while exchanging the pixel values with each other. When the values of the pixel values to be updated have converged, the first pixel calculation unit 2102 and the second pixel calculation unit 2103 output the pixel values as the calculated pixel values to the drive unit 220.
 (駆動部220)
 駆動部220は、表示部10の各部を駆動する。あるいは、駆動部220が、バックライト130を駆動してもよい。図6に示す駆動部220は、第1の駆動部221及び第2の駆動部222を有する。
(Drive 220)
The drive unit 220 drives each unit of the display unit 10. Alternatively, the drive unit 220 may drive the backlight 130. The drive unit 220 shown in FIG. 6 has a first drive unit 221 and a second drive unit 222.
 第1の駆動部221は、第1の表示パネル110を駆動する。第1の駆動部221は、第1のC画素駆動部2211と、第1のM画素駆動部2212と、第1のY画素駆動部2213と、を有する。 The first drive unit 221 drives the first display panel 110. The first drive unit 221 includes a first C pixel drive unit 2211, a first M pixel drive unit 2212, and a first Y pixel drive unit 2213.
 第1のC画素駆動部2211は、第1の表示パネル110のサブピクセル111PCの画素値が、第1の画素算出部2102が算出したサブピクセル111PCの画素値になるようサブピクセル111PCを駆動する。 The first C pixel drive unit 2211 drives the sub pixel 111 PC so that the pixel value of the sub pixel 111 PC of the first display panel 110 becomes the pixel value of the sub pixel 111 PC calculated by the first pixel calculation unit 2102. ..
 第1のM画素駆動部2212は、第1の表示パネル110のサブピクセル111PMの画素値が、第1の画素算出部2102が算出したサブピクセル111PMの画素値になるよう、サブピクセル111PMを駆動する。 The first M pixel drive unit 2212 drives the sub pixel 111 PM so that the pixel value of the sub pixel 111 PM of the first display panel 110 becomes the pixel value of the sub pixel 111 PM calculated by the first pixel calculation unit 2102. do.
 第1のY画素駆動部2213は、第1の表示パネル110のサブピクセル111PYの画素値が、第1の画素算出部2102が算出したサブピクセル111PYの画素値になるよう、サブピクセル111PYを駆動する。 The first Y pixel drive unit 2213 drives the sub pixel 111PY so that the pixel value of the sub pixel 111PY of the first display panel 110 becomes the pixel value of the sub pixel 111PY calculated by the first pixel calculation unit 2102. do.
 第2の駆動部222は、第2の表示パネル120を駆動する。第2の駆動部222は、第2のC画素駆動部2221と、第2のM画素駆動部2222と、第2のY画素駆動部2223と、を有する。 The second drive unit 222 drives the second display panel 120. The second drive unit 222 includes a second C pixel drive unit 2221, a second M pixel drive unit 2222, and a second Y pixel drive unit 2223.
 第2のC画素駆動部2221は、第2の表示パネル120のサブピクセル121PCの画素値が、第2の画素算出部2103が算出したサブピクセル121PCの画素値になるようサブピクセル121PCを駆動する。 The second C pixel drive unit 2221 drives the sub pixel 121 PC so that the pixel value of the sub pixel 121 PC of the second display panel 120 becomes the pixel value of the sub pixel 121 PC calculated by the second pixel calculation unit 2103. ..
 第2のM画素駆動部2222は、第2の表示パネル120のサブピクセル121PMの画素値が、第2の画素算出部2103が算出したサブピクセル121PMの画素値になるよう、サブピクセル121PMを駆動する。 The second M pixel drive unit 2222 drives the sub pixel 121 PM so that the pixel value of the sub pixel 121 PM of the second display panel 120 becomes the pixel value of the sub pixel 121 PM calculated by the second pixel calculation unit 2103. do.
 第2のY画素駆動部2223は、第2の表示パネル120のサブピクセル121PYの画素値が、第2の画素算出部2103が算出したサブピクセル121PYの画素値になるよう、サブピクセル121PYを駆動する。 The second Y pixel drive unit 2223 drives the sub pixel 121PY so that the pixel value of the sub pixel 121PY of the second display panel 120 becomes the pixel value of the subpixel 121PY calculated by the second pixel calculation unit 2103. do.
 (記憶部230)
 記憶部230は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部230は、表示装置1における処理に関するデータを記憶する機能を有する。記憶部230は、表示装置1が表示部10に表示する3次元画像を記憶する。3次元画像は、例えばライトフィールドカメラで撮像されたライトフィールド画像であり、各ピクセルにおける光線情報を有する。
(Memory unit 230)
The storage unit 230 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 230 has a function of storing data related to processing in the display device 1. The storage unit 230 stores a three-dimensional image displayed on the display unit 10 by the display device 1. The three-dimensional image is, for example, a light field image captured by a light field camera, and has light ray information at each pixel.
 このように、制御部20が表示部10の各サブピクセル111P、121Pの画素値を算出し、算出した画素値に基づいて表示部10を駆動することで、表示装置1は、表示部10にカラーの3次元画像を表示することができる。 In this way, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10, and drives the display unit 10 based on the calculated pixel values. A color three-dimensional image can be displayed.
 また、制御部20は、表示したい画像の光線強度のレッド、グリーン、ブルー成分に基づき、イエロー、マゼンタ、シアンのサブピクセル111P、121Pの画素値を算出する。これにより、制御部20は、例えば表示したい画像がRGB画像であっても、イエロー、マゼンタ、シアンの色成分に変換することなく、表示部10のサブピクセル111P、121Pの画素値を算出することができる。 Further, the control unit 20 calculates the pixel values of the yellow, magenta, and cyan sub-pixels 111P and 121P based on the red, green, and blue components of the light intensity of the image to be displayed. As a result, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10 without converting them into yellow, magenta, and cyan color components even if the image to be displayed is an RGB image, for example. Can be done.
 <<4.表示処理>>
 次に、図7を用いて、本実施形態に係る表示装置1による表示処理ついて説明する。図7は、本開示の実施形態に係る表示装置1による表示処理の一例を示すフローチャートである。
<< 4. Display processing >>
Next, the display process by the display device 1 according to the present embodiment will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of display processing by the display device 1 according to the embodiment of the present disclosure.
 表示装置1は、例えば表示部10に所望の3次元画像を表示する場合に、図7に示す表示処理を実行する。例えば、3次元の動画を表示部10に表示する場合、表示装置1は、動画のフレームごとに図7に示す表示処理を実行する。 The display device 1 executes the display process shown in FIG. 7, for example, when displaying a desired three-dimensional image on the display unit 10. For example, when displaying a three-dimensional moving image on the display unit 10, the display device 1 executes the display process shown in FIG. 7 for each frame of the moving image.
 図7に示すように、表示装置1の制御部20は、まず表示部10に表示する3次元画像を取得する(ステップS101)。ここで取得する3次元画像はR光線、G光線、B光線の強度を有するカラー画像である。 As shown in FIG. 7, the control unit 20 of the display device 1 first acquires a three-dimensional image to be displayed on the display unit 10 (step S101). The three-dimensional image acquired here is a color image having the intensities of the R ray, the G ray, and the B ray.
 続いて、制御部20は、取得した3次元画像の各RGB成分に基づき、表示部10のサブピクセル111P、121Pの各画素値を算出する(ステップS102)。表示部10のサブピクセル111P、121Pは、イエロー、マゼンタ、シアンのいずれかの成分を透過するため、制御部20は、イエロー、マゼンタ、シアンのサブピクセル111P、121Pの画素値をそれぞれ算出する。 Subsequently, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10 based on the RGB components of the acquired three-dimensional image (step S102). Since the sub-pixels 111P and 121P of the display unit 10 transmit any of the components of yellow, magenta, and cyan, the control unit 20 calculates the pixel values of the sub-pixels 111P and 121P of yellow, magenta, and cyan, respectively.
 制御部20は、算出した各画素値に基づき、表示部10を駆動する(ステップS103)。 The control unit 20 drives the display unit 10 based on the calculated pixel values (step S103).
 これにより、表示装置1は、所望の3次元画像を表示部10に表示することができる。 Thereby, the display device 1 can display a desired three-dimensional image on the display unit 10.
 なお、ここでは、表示装置1が3次元画像を表示する場合に、図7の表示処理を実行するとしたが、これに限定されない。例えば、表示装置1の制御部20が、予め3次元画像から第1の表示パネル110及び第2の表示パネル120の各画素値を算出しておいてもよい。この場合、制御部20は、例えば、算出した各画素値を記憶部230に記憶しておき、表示部10に3次元画像を表示する際に、記憶部230から各画素値を取得して表示部10を駆動するものとする。 Here, it is assumed that the display process of FIG. 7 is executed when the display device 1 displays a three-dimensional image, but the present invention is not limited to this. For example, the control unit 20 of the display device 1 may calculate the pixel values of the first display panel 110 and the second display panel 120 from the three-dimensional image in advance. In this case, for example, the control unit 20 stores the calculated pixel values in the storage unit 230, and when displaying the three-dimensional image on the display unit 10, acquires and displays each pixel value from the storage unit 230. It is assumed that the unit 10 is driven.
 <<5.効果>>
 上述したように、マルチレイヤ方式の表示装置は、表示パネルを複数枚積層するため、表示装置の輝度が低下してしまう。特に、RGBのサブピクセルを有する表示パネルを積層した場合、各表示パネルのサブピクセルを通過するごとに光線の強度が1/3ずつ低下してしまう。このように、サブピクセルの透過率に起因する輝度低下が問題となる場合があった。
<< 5. Effect >>
As described above, in the multilayer display device, since a plurality of display panels are stacked, the brightness of the display device is lowered. In particular, when display panels having RGB sub-pixels are stacked, the intensity of light rays decreases by 1/3 each time the display panels pass through the sub-pixels of each display panel. As described above, the decrease in brightness due to the transmittance of the sub-pixels may be a problem.
 そこで、本開示の実施形態の表示装置1では、第1の表示パネル110及び第2の表示パネル120のサブピクセル111P、121PをRGBの補色であるイエロー、マゼンタ、シアンをそれぞれ透過するサブピクセルとした。 Therefore, in the display device 1 of the embodiment of the present disclosure, the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 are set as sub-pixels that transmit the complementary colors of RGB, yellow, magenta, and cyan, respectively. bottom.
 例えば第1の表示パネル110及び第2の表示パネル120のイエローのサブピクセル111PY、121Yは、B成分以外のR、G成分の光線を透過する。同様に、第1の表示パネル110及び第2の表示パネル120のマゼンタのサブピクセル111PM、121Mは、G成分以外のR、B成分の光線を透過し、シアンのサブピクセル111PC、121Cは、R成分以外のG、B成分の光線を透過する。 For example, the yellow sub-pixels 111PY and 121Y of the first display panel 110 and the second display panel 120 transmit the light rays of the R and G components other than the B component. Similarly, the magenta sub-pixels 111PM and 121M of the first display panel 110 and the second display panel 120 transmit light rays of R and B components other than the G component, and the cyan sub-pixels 111PC and 121C are R. It transmits light rays of G and B components other than the components.
 そのため、表示装置1では、輝度が、光線がサブピクセル111P、121Pを透過することで、式(24)に示すように4/9倍に低下する。RGBのサブピクセルを有する表示パネルを積層した場合の輝度は、上記式(14)に示したように、1/9倍に低下するため、本開示の実施形態の表示装置1では、RGBの表示パネルを積層した場合と比較して、輝度低下を抑制することができる。 Therefore, in the display device 1, the brightness is reduced 4/9 times as shown in the equation (24) by allowing the light rays to pass through the sub-pixels 111P and 121P. As shown in the above formula (14), the brightness when the display panels having RGB sub-pixels are stacked is reduced to 1/9 times, so that the display device 1 of the embodiment of the present disclosure displays RGB. It is possible to suppress a decrease in brightness as compared with the case where panels are laminated.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、上述した実施形態に係る効果を比較例との対比に基づいて説明する。複数の表示パネルを積層する技術として、コントラストを拡張するために、RGBの表示パネルと、白色(White:W)の表示パネルを積層した表示装置が知られている。かかる表示装置を比較例として図8を用いて説明する。 Here, the effects according to the above-described embodiment will be described based on comparison with comparative examples. As a technique for stacking a plurality of display panels, a display device in which an RGB display panel and a white (White: W) display panel are laminated is known in order to expand the contrast. Such a display device will be described with reference to FIG. 8 as a comparative example.
 図8は、比較例に係る表示装置1Cを説明するための図である。図8に示すように、表示装置1Cは、第1の表示パネル110Cと、第2の表示パネル120Cと、バックライト130Cと、を有する。 FIG. 8 is a diagram for explaining the display device 1C according to the comparative example. As shown in FIG. 8, the display device 1C includes a first display panel 110C, a second display panel 120C, and a backlight 130C.
 第1の表示パネル110Cは、RGBのサブピクセル(図示省略)を有する。第2の表示パネル120Cは、Wのサブピクセル(図示省略)を有し、RGB全ての成分を透過し得る。バックライト130Cは、表示装置1Cの光源であり、バックライト130Cから射出された光は、第1の表示パネル110C及び第2の表示パネル120Cを透過して、表示装置1Cから射出される。 The first display panel 110C has RGB sub-pixels (not shown). The second display panel 120C has W sub-pixels (not shown) and can transmit all RGB components. The backlight 130C is a light source of the display device 1C, and the light emitted from the backlight 130C passes through the first display panel 110C and the second display panel 120C and is emitted from the display device 1C.
 なお、表示装置1Cは、第1の表示パネル110Cで表示装置1Cに表示する色を調整し、第1の表示パネル110C及び第2の表示パネル120Cで表示装置1Cに表示する光の強度を調整する。表示装置1Cは、3次元の画像を表示する装置ではないが、このように光の強度を調整することで、表示装置1Cに表示する画像のコントラストを拡張することができる。 The display device 1C adjusts the color displayed on the display device 1C on the first display panel 110C, and adjusts the intensity of the light displayed on the display device 1C on the first display panel 110C and the second display panel 120C. do. Although the display device 1C is not a device for displaying a three-dimensional image, the contrast of the image displayed on the display device 1C can be expanded by adjusting the light intensity in this way.
 ここで、表示装置1Cの光(光線)の強度は、第1の表示パネル110C及び第2の表示パネル120Cによって決定する。第1の表示パネル110では、サブピクセルがRGBのいずれか1つの光線を透過する。そのため、光線の強度は、当該光線が第1の表示パネル110Cを透過することで1/3倍に低下する。第2の表示パネル120では、サブピクセルがRGB全ての光線を透過するため、光線の強度は第2の表示パネル120Cでは低下しない。そのため、表示装置1Cでは、輝度が、サブピクセルを透過することで、式(25)に示すように1/3倍に低下する。 Here, the intensity of light (light rays) of the display device 1C is determined by the first display panel 110C and the second display panel 120C. In the first display panel 110, the sub-pixels transmit any one of RGB rays. Therefore, the intensity of the light beam is reduced to 1/3 times as the light ray passes through the first display panel 110C. In the second display panel 120, since the sub-pixels transmit all the light rays of RGB, the intensity of the light rays does not decrease in the second display panel 120C. Therefore, in the display device 1C, the brightness is reduced to 1/3 times as shown in the equation (25) by passing through the sub-pixels.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このように、比較例に係る表示装置1Cのように、積層する表示パネルの1つを、白色を透過するサブピクセルを有する表示パネルとすることで、RGBのサブピクセルを有する表示パネルを積層した場合に比べて輝度低下を抑制することができる。しかしながら、本実施形態に係る表示装置1は、上述した式(24)に示すように、輝度低下を4/9倍に抑制することができるため、表示装置1Cと比較しても輝度低下を抑制することができる。 In this way, as in the display device 1C according to the comparative example, one of the display panels to be stacked is a display panel having sub-pixels that transmit white, so that the display panels having RGB sub-pixels are laminated. It is possible to suppress a decrease in brightness as compared with the case. However, as shown in the above formula (24), the display device 1 according to the present embodiment can suppress the brightness decrease by 4/9 times, so that the brightness decrease is suppressed as compared with the display device 1C. can do.
 <<6.その他の実施形態>>
 上述した実施形態に係る表示装置1は、上記実施形態以外にも種々の異なる形態にて実施されてよい。
<< 6. Other embodiments >>
The display device 1 according to the above-described embodiment may be implemented in various different forms other than the above-described embodiment.
 上述した実施形態では、第1の表示パネル110及び第2の表示パネル120のサブピクセル111P、121PがY、M、Cのいずれかの成分を透過するとしたが、これに限定されない。サブピクセル111P、121Pの輝度値を調整することで、所望の3次元画像の光線を再現できればよく、サブピクセル111P、121Pが透過する色成分がY、M、C以外の成分であってもよい。例えば、各サブピクセル111P、121Pが、R、B、Y成分のいずれかを透過するようにしてもよい。 In the above-described embodiment, the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 transmit any component of Y, M, or C, but the present invention is not limited to this. It suffices if the light rays of the desired three-dimensional image can be reproduced by adjusting the brightness values of the sub-pixels 111P and 121P, and the color component transmitted through the sub-pixels 111P and 121P may be a component other than Y, M, and C. .. For example, each of the sub-pixels 111P and 121P may transmit any of the R, B, and Y components.
 例えば、第1の表示パネル110のサブピクセル111Pが(α、β、γ)の3色で構成され、第2の表示パネル120のサブピクセル121Pが(δ、ε、ζ)の3色で構成されるものとする。ここで、(α、β、γ)の3色が、式(26)に示す等色関数で表され、(δ、ε、ζ)の3色が、式(27)に示す等色関数で表されるとする。 For example, the sub-pixel 111P of the first display panel 110 is composed of three colors (α, β, γ), and the sub-pixel 121P of the second display panel 120 is composed of three colors (δ, ε, ζ). It shall be done. Here, the three colors (α, β, γ) are represented by the color matching function shown in the equation (26), and the three colors (δ, ε, ζ) are represented by the color matching function shown in the formula (27). Suppose it is represented.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 この場合、表示装置1から射出される光線LF´のRGB成分ごとの光線強度は、式(28)~(30)で表される。 In this case, the light intensity of each RGB component of the light ray LF'emitted from the display device 1 is represented by the formulas (28) to (30).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
  そのため、更新式(31)~(36)を更新することで、表示装置1は、表示装置1から射出される光線LF´の光線強度を、表示装置1に表示する所望の光線LFの強度に近づけるような各画素値を算出することができる。 Therefore, by updating the update formulas (31) to (36), the display device 1 sets the light intensity of the light ray LF'emitted from the display device 1 to the intensity of the desired light ray LF to be displayed on the display device 1. It is possible to calculate each pixel value that brings them closer.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 なお、式(31)のURA、UGA、UBAには、それぞれ式(37)~(39)が代入される。式(32)のURB、UGB、UBBには、それぞれ式(40)~(42)が代入される。式(33)のURC、UGC、UBCには、それぞれ式(43)~(45)が代入される。式(34)のHRA、HGA、HBAには、それぞれ式(46)~(48)が代入される。式(35)のHRB、HGB、HBBには、それぞれ式(49)~(51)が代入される。式(36)のHRC、HGC、HBCには、それぞれ式(52)~(54)が代入される。 Equations (37) to (39) are substituted for URA, UGA, and UBA of the equation (31), respectively. Equations (40) to (42) are substituted into URB, UGB, and UBB of the equation (32), respectively. Equations (43) to (45) are substituted into URC, UGC, and UBC of equation (33), respectively. Equations (46) to (48) are substituted for HRA, HGA, and HBA of the equation (34), respectively. Equations (49) to (51) are substituted into HRB, HGB, and HBB of the equation (35), respectively. Equations (52) to (54) are substituted into HRC, HGC, and HBC of equation (36), respectively.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、第1の表示パネル110及び第2の表示パネル120のサブピクセル111P、121Pが透過する色は、R、G、Bの各色成分の少なくとも2色を合成した色であればよく、任意の色とすることができる。 As described above, the color transmitted through the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 may be a color obtained by synthesizing at least two colors of the R, G, and B color components. It can be any color.
 また、上述した実施形態では、第1の表示パネル110及び第2の表示パネル120のサブピクセル111P、121Pがどちらも同じ色(Y、M、C)成分を透過するとしたが、これに限定されない。第1の表示パネル110と、第2の表示パネル120と、で透過する色成分が異なっていてもよい。例えば、第1の表示パネル110が、R、G、Bの色成分を透過し、第2の表示パネル120がY、M、Cの色成分を透過するようにしてもよい。 Further, in the above-described embodiment, the sub-pixels 111P and 121P of the first display panel 110 and the second display panel 120 both transmit the same color (Y, M, C) component, but the present invention is not limited to this. .. The color components transmitted by the first display panel 110 and the second display panel 120 may be different. For example, the first display panel 110 may transmit the color components of R, G, and B, and the second display panel 120 may transmit the color components of Y, M, and C.
 また、上述した実施形態では、第1の表示パネル110及び第2の表示パネル120が、Y、M、Cの3色を透過するとしたが、これに限定されない。例えば、Y、M、C、Wのように、第1の表示パネル110及び第2の表示パネル120が4色以上の色成分を透過するようにしてもよい。 Further, in the above-described embodiment, the first display panel 110 and the second display panel 120 transmit the three colors of Y, M, and C, but the present invention is not limited to this. For example, as in Y, M, C, and W, the first display panel 110 and the second display panel 120 may transmit four or more color components.
 また、上述した実施形態では、表示装置1が表示部10の各サブピクセル111P、121Pの画素値を算出するとしたが、これに限定されない。例えば、外部装置(図示省略)がサブピクセル111P、121Pの画素値を算出し、制御部20が該画素値を外部装置から取得して表示部10を駆動するようにしてもよい。 Further, in the above-described embodiment, the display device 1 calculates the pixel values of the sub-pixels 111P and 121P of the display unit 10, but the present invention is not limited to this. For example, an external device (not shown) may calculate the pixel values of the sub-pixels 111P and 121P, and the control unit 20 may acquire the pixel values from the external device to drive the display unit 10.
 また、上述した実施形態では、表示装置1が、第1の表示パネル110及び第2の表示パネル120の2枚のパネルを積層して構成されるとしたが、これに限定されない。例えば、3枚以上の表示パネルを積層して構成するようにしてもよい。 Further, in the above-described embodiment, the display device 1 is configured by laminating two panels of the first display panel 110 and the second display panel 120, but the present invention is not limited to this. For example, three or more display panels may be laminated to form a structure.
 また、上述した実施形態では、第1の表示パネル110及び第2の表示パネル120が、どちらも液晶パネルであるとしたが、これに限定されない。例えば、第1の表示パネル110が、有機発光ダイオード(OLED:Organic Light Emitting Diode)であってもよい。この場合、表示装置1のバックライト130を省略することができる。また、第1の表示パネル110及び第2の表示パネル120が、SXRD(Silicon X-tal Reflective Display)であってもよい。 Further, in the above-described embodiment, both the first display panel 110 and the second display panel 120 are liquid crystal panels, but the present invention is not limited to this. For example, the first display panel 110 may be an organic light emitting diode (OLED: Organic Light Emitting Diode). In this case, the backlight 130 of the display device 1 can be omitted. Further, the first display panel 110 and the second display panel 120 may be SXRD (Silicon X-tal Reflective Display).
 また、上述した表示装置1は、3次元画像を表示するフィールドディスプレイとしたが、これに限定されない。表示装置1は、表示パネルが複数積層されていればよく、コントラストを拡張するために表示パネルが積層されたディスプレイであってもよい。 Further, the display device 1 described above is a field display for displaying a three-dimensional image, but the present invention is not limited to this. The display device 1 may be a display in which a plurality of display panels are laminated, and display panels are laminated in order to expand the contrast.
 また、上述した実施形態では、表示装置1が表示パネルを有するとしたが、これに限定されない。表示装置1が、例えばプロジェクタのように、映像を投影することで3次元の画像を表示する装置であってもよい。 Further, in the above-described embodiment, the display device 1 has a display panel, but the present invention is not limited to this. The display device 1 may be a device such as a projector that displays a three-dimensional image by projecting an image.
 <<7.補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<< 7. Supplement >>
Although the preferred embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that anyone with ordinary knowledge in the technical field of the present disclosure may come up with various modifications or modifications within the scope of the technical ideas set forth in the claims. Is, of course, understood to belong to the technical scope of the present disclosure.
 上記実施形態において説明した処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。 Of the processes described in the above embodiments, all or part of the processes described as being automatically performed may be performed manually, or all or one of the processes described as being performed manually. The section can also be performed automatically by a known method. In addition, the processing procedure, specific name, and information including various data and parameters shown in the above document and drawings can be arbitrarily changed unless otherwise specified. For example, the various information shown in each figure is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。 Further, each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、上述してきた実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Further, the above-described embodiments can be appropriately combined as long as the processing contents do not contradict each other.
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示にかかる技術は、上記の効果とともに、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Further, the effects described in the present specification are merely explanatory or exemplary and are not limited. That is, the techniques according to the present disclosure may exhibit other effects apparent to those skilled in the art from the description herein, in addition to or in place of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ユーザに対して三次元画像を表示する表示装置であって、
 所定色のサブピクセルを有する第1の表示部と、
 表示領域の少なくとも一部が、前記ユーザの視線方向において前記第1の表示部の表示領域と重複するように配置され、所定色のサブピクセルを有する第2の表示部と、
 を備え、
 前記第1の表示部の前記サブピクセルの前記所定色、又は、前記第2の表示部の前記サブピクセルの前記所定色が、R(赤色)、G(緑色)、B(青色)成分の中の少なくとも2つの成分を合成した合成色である、
 表示装置。
(2)
 前記第1の表示部の前記サブピクセルの前記所定色、及び、前記第2の表示部の前記サブピクセルの前記所定色の両方が前記合成色である、(1)に記載の表示装置。
(3)
 前記合成色は、前記R、G、B成分の中の少なくとも1つの成分の補色である、(1)又は(2)に記載の表示装置。
(4)
 前記第1の表示部及び前記第2の表示部は、前記R、G、B成分の画像データに基づいて前記サブピクセルごとに算出された輝度値に応じて駆動する、(1)~(3)のいずれか1つに記載の表示装置。
(5)
 前記第1の表示部及び前記第2の表示部の前記サブピクセルの前記輝度値は、
 前記第1の表示部の前記サブピクセルの前記輝度値と、前記第2の表示部の前記サブピクセルの前記輝度値と、を乗算した値に含まれる前記R、G、B成分の各値が、前記画像データの前記R、G、B成分の各値に近づくように最適化して算出される、(4)に記載の表示装置。
(6)
 前記画像データは、ライトフィールド画像である、(4)又は(5)に記載の表示装置。
(7)
 前記第1の表示部及び前記第2の表示部は、液晶パネルである、(1)~(6)のいずれか1つに記載の表示装置。
(8)
 前記第1の表示部及び前記第2の表示部のうち前記ユーザから遠くに配置される表示部は、OLED(Organic Light Emitting Diode)パネルである、(1)~(6)のいずれか1つに記載の表示装置。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A display device that displays a three-dimensional image to the user.
A first display unit having sub-pixels of a predetermined color,
A second display unit having at least a part of the display area overlapped with the display area of the first display unit in the line-of-sight direction of the user and having sub-pixels of a predetermined color.
With
The predetermined color of the sub-pixel of the first display unit or the predetermined color of the sub-pixel of the second display unit is among the R (red), G (green), and B (blue) components. It is a composite color that combines at least two components of
Display device.
(2)
The display device according to (1), wherein both the predetermined color of the sub-pixel of the first display unit and the predetermined color of the sub-pixel of the second display unit are the composite colors.
(3)
The display device according to (1) or (2), wherein the synthetic color is a complementary color of at least one of the R, G, and B components.
(4)
The first display unit and the second display unit are driven according to the brightness values calculated for each of the sub-pixels based on the image data of the R, G, and B components, (1) to (3). ) Is described in any one of the display devices.
(5)
The brightness value of the sub-pixel of the first display unit and the second display unit is
Each value of the R, G, and B components included in the value obtained by multiplying the brightness value of the sub-pixel of the first display unit and the brightness value of the sub-pixel of the second display unit is The display device according to (4), which is calculated by optimizing the image data so as to approach each value of the R, G, and B components.
(6)
The display device according to (4) or (5), wherein the image data is a light field image.
(7)
The display device according to any one of (1) to (6), wherein the first display unit and the second display unit are liquid crystal panels.
(8)
Of the first display unit and the second display unit, the display unit arranged far from the user is an OLED (Organic Light Emitting Diode) panel, which is any one of (1) to (6). The display device described in.
 1   表示装置
 10  表示部
 110 第1の表示パネル
 120 第2の表示パネル
 130 バックライト
 20  制御部
 210 算出部
 220 駆動部
 230 記憶部
1 Display device 10 Display unit 110 First display panel 120 Second display panel 130 Backlight 20 Control unit 210 Calculation unit 220 Drive unit 230 Storage unit

Claims (8)

  1.  ユーザに対して三次元画像を表示する表示装置であって、
     所定色のサブピクセルを有する第1の表示部と、
     表示領域の少なくとも一部が、前記ユーザの視線方向において前記第1の表示部の表示領域と重複するように配置され、所定色のサブピクセルを有する第2の表示部と、
     を備え、
     前記第1の表示部の前記サブピクセルの前記所定色、又は、前記第2の表示部の前記サブピクセルの前記所定色が、R(赤色)、G(緑色)、B(青色)成分の中の少なくとも2つの成分を合成した合成色である、
     表示装置。
    A display device that displays a three-dimensional image to the user.
    A first display unit having sub-pixels of a predetermined color,
    A second display unit having at least a part of the display area overlapped with the display area of the first display unit in the line-of-sight direction of the user and having sub-pixels of a predetermined color.
    With
    The predetermined color of the sub-pixel of the first display unit or the predetermined color of the sub-pixel of the second display unit is among the R (red), G (green), and B (blue) components. It is a composite color that combines at least two components of
    Display device.
  2.  前記第1の表示部の前記サブピクセルの前記所定色、及び、前記第2の表示部の前記サブピクセルの前記所定色の両方が前記合成色である、請求項1に記載の表示装置。 The display device according to claim 1, wherein both the predetermined color of the sub-pixel of the first display unit and the predetermined color of the sub-pixel of the second display unit are the composite colors.
  3.  前記合成色は、前記R、G、B成分の中の少なくとも1つの成分の補色である、請求項1に記載の表示装置。 The display device according to claim 1, wherein the synthetic color is a complementary color of at least one of the R, G, and B components.
  4.  前記第1の表示部及び前記第2の表示部は、前記R、G、B成分の画像データに基づいて前記サブピクセルごとに算出された輝度値に応じて駆動する、請求項1に記載の表示装置。 The first display unit and the second display unit are driven according to the luminance value calculated for each of the sub-pixels based on the image data of the R, G, and B components, according to claim 1. Display device.
  5.  前記第1の表示部及び前記第2の表示部の前記サブピクセルの前記輝度値は、
     前記第1の表示部の前記サブピクセルの前記輝度値と、前記第2の表示部の前記サブピクセルの前記輝度値と、を乗算した値に含まれる前記R、G、B成分の各値が、前記画像データの前記R、G、B成分の各値に近づくように最適化して算出される、請求項4に記載の表示装置。
    The brightness value of the sub-pixel of the first display unit and the second display unit is
    Each value of the R, G, and B components included in the value obtained by multiplying the brightness value of the sub-pixel of the first display unit and the brightness value of the sub-pixel of the second display unit is The display device according to claim 4, wherein the display device is calculated by optimizing the image data so as to approach each value of the R, G, and B components.
  6.  前記画像データは、ライトフィールド画像である、請求項4に記載の表示装置。 The display device according to claim 4, wherein the image data is a light field image.
  7.  前記第1の表示部及び前記第2の表示部は、液晶パネルである、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first display unit and the second display unit are liquid crystal panels.
  8.  前記第1の表示部及び前記第2の表示部のうち前記ユーザから遠くに配置される表示部は、OLED(Organic Light Emitting Diode)パネルである、請求項1に記載の表示装置。 The display device according to claim 1, wherein the display unit located far from the user among the first display unit and the second display unit is an OLED (Organic Light Emitting Diode) panel.
PCT/JP2021/008300 2020-03-11 2021-03-03 Display device WO2021182265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042248 2020-03-11
JP2020042248 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182265A1 true WO2021182265A1 (en) 2021-09-16

Family

ID=77672254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008300 WO2021182265A1 (en) 2020-03-11 2021-03-03 Display device

Country Status (1)

Country Link
WO (1) WO2021182265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029212A1 (en) * 2022-08-03 2024-02-08 ソニーグループ株式会社 Stereoscopic image display device and stereoscopic image display method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183223A (en) * 1989-01-09 1990-07-17 Sony Corp Color liquid crystal display device
JP2005065087A (en) * 2003-08-19 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> Method and device of stereoscopic display
JP2015070618A (en) * 2013-09-30 2015-04-13 三星電子株式会社Samsung Electronics Co.,Ltd. Image generating apparatus and display device for layered display scheme based on location of eye of user
WO2016121233A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Image processing apparatus, image displaying apparatus, and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183223A (en) * 1989-01-09 1990-07-17 Sony Corp Color liquid crystal display device
JP2005065087A (en) * 2003-08-19 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> Method and device of stereoscopic display
JP2015070618A (en) * 2013-09-30 2015-04-13 三星電子株式会社Samsung Electronics Co.,Ltd. Image generating apparatus and display device for layered display scheme based on location of eye of user
WO2016121233A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Image processing apparatus, image displaying apparatus, and image processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOTODA, HIRONOBU: "Implementation of an Autostereoscopic Display Using Multilayer LCDs", ITE TECHNICAL REPORT, vol. 35, no. 35, 9 September 2011 (2011-09-09), pages 1 - 4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029212A1 (en) * 2022-08-03 2024-02-08 ソニーグループ株式会社 Stereoscopic image display device and stereoscopic image display method

Similar Documents

Publication Publication Date Title
US7876350B2 (en) Three-dimensional image display
US8194119B2 (en) Display of generalized anaglyphs without retinal rivalry
US9524700B2 (en) Method and system for displaying images of various formats on a single display
WO2018072527A1 (en) Three-dimensional display device
US10419746B2 (en) 3D display apparatus and 3D display method
WO2016127630A1 (en) Processing method and device for naked eye 3d displaying, and display device
JP2009080144A (en) Stereoscopic image display apparatus and stereoscopic image display method
CN104321686A (en) Controlling light sources of a directional backlight
JP2006228723A (en) Back light module and 2d/3d display device using this back light module
CN107102446B (en) A kind of 3 D stereo display panel, its display methods and display device
US10419743B2 (en) Three-dimensional display apparatus and three-dimensional display method
TWI537604B (en) Display apparatus, variable parallax barrier module, and displaying method
TW200900736A (en) Hybrid multiplexed 3D display and a displaying method thereof
KR102670407B1 (en) Autostereoscopic 3-Dimensional Display
WO2017117928A1 (en) Display module, display device, and drive method thereof
US10863167B2 (en) Stereoscopic image projection device and stereoscopic display glasses
US9620044B2 (en) Image display device and drive method therefor
TW201519636A (en) Three-dimensional image display device
WO2021182265A1 (en) Display device
US20170237973A1 (en) Display device
JP2002287090A (en) Three-dimensional video display device, spot light projection member, and spot light transmission member
CN108198841A (en) Display panel and display device
WO2017118047A1 (en) 2d/3d switchable display device
TW201443483A (en) Autostereoscopic display device
US10630963B2 (en) Autostereoscopic 3-dimensional display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP