[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021177382A1 - Positive electrode material and battery - Google Patents

Positive electrode material and battery Download PDF

Info

Publication number
WO2021177382A1
WO2021177382A1 PCT/JP2021/008285 JP2021008285W WO2021177382A1 WO 2021177382 A1 WO2021177382 A1 WO 2021177382A1 JP 2021008285 W JP2021008285 W JP 2021008285W WO 2021177382 A1 WO2021177382 A1 WO 2021177382A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
battery
carbon
group
negative electrode
Prior art date
Application number
PCT/JP2021/008285
Other languages
French (fr)
Japanese (ja)
Inventor
健太 長嶺
出 佐々木
西山 誠司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21764175.2A priority Critical patent/EP4117054A4/en
Priority to CN202180015390.8A priority patent/CN115136349A/en
Priority to JP2022504442A priority patent/JPWO2021177382A1/ja
Publication of WO2021177382A1 publication Critical patent/WO2021177382A1/en
Priority to US17/888,055 priority patent/US20220393168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode material for a battery and a battery.
  • Patent Document 1 discloses a battery using a positive electrode containing a lithium-containing metal oxide and a negative electrode containing a carbon material.
  • Patent Document 2 discloses a solid electrolyte material containing lithium, yttrium and halogen.
  • Patent No. 1989923 International Publication No. 2018/025582
  • the present disclosure provides a novel positive electrode material.
  • the positive electrode material in one aspect of the present disclosure is The material represented by the following composition formula (1) and A carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides, including.
  • a, b, and c are values larger than 0, respectively.
  • M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
  • X contains a halogen element.
  • a new positive electrode material can be provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the battery according to the second embodiment.
  • FIG. 3 is a graph showing the charge / discharge curves of the batteries of Examples 1, 2 and 3.
  • FIG. 4 is a graph showing the charge / discharge curves of the batteries of Reference Examples 1 and 2.
  • FIG. 5 is a graph showing the charge / discharge curves of the batteries of Examples 4, 5, 6 and 7.
  • FIG. 6 is a graph showing the charge / discharge curves of the batteries of Examples 4, 8 and 9.
  • FIG. 7 is a graph showing cyclic voltammograms of the batteries of Examples 9, 10 and Reference Example 2.
  • FIG. 8 is a graph showing the results of Raman spectroscopic measurement of the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test.
  • the positive electrode material according to the first aspect of the present disclosure is The material represented by the following composition formula (1) and A carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides, including.
  • a, b, and c are values larger than 0, respectively.
  • M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
  • X contains a halogen element.
  • a new positive electrode material can be provided.
  • the charge / discharge reaction proceeds by a new mechanism.
  • This positive electrode material is suitable for improving the output of the battery.
  • the carbon material in the Raman spectrum of the carbon material, to the intensity I G of the peak appearing at 1500 cm -1 or 1700 cm -1 in the range, 1300 cm -1 above 1400 cm -1 ratio I D / I G of the intensity I D of the peak appearing in the range may be 0 to 2.
  • the carbon material can more easily occlude the halogen simple substance or the halide.
  • the BET specific surface area of the carbon material may be larger than 5 m 2 g -1.
  • the area where the carbon material and the material represented by the composition formula (1) are in contact with each other is large. Thereby, the current density of the battery including the positive electrode material can be improved.
  • the carbon material can more easily occlude halogen simple substances or halides.
  • the carbon material is graphite, graphene, graphene oxide, reduced graphene oxide, carbon nanotube, fullerene, carbon. It may contain at least one selected from the group consisting of fiber, carbon black, soft carbon, hard carbon, mesoporous carbon and activated carbon.
  • the carbon material is at least selected from the group consisting of carbon black, vapor-grown carbon fibers and graphene. One may be included.
  • the M may contain Y.
  • the M may contain Y and Zr.
  • the X may contain at least one selected from the group consisting of Cl and Br. ..
  • the battery containing the positive electrode material has better charge / discharge characteristics.
  • the battery according to the ninth aspect of the present disclosure is A positive electrode containing a positive electrode material according to any one of the first to eighth aspects, and a positive electrode. With the negative electrode An electrolyte layer arranged between the positive electrode and the negative electrode, It has.
  • the charge / discharge reaction proceeds by a new mechanism. Batteries tend to have high output.
  • the negative electrode may contain a negative electrode active material capable of occluding lithium.
  • the negative electrode is a metallic lithium, a lithium alloy, a metallic indium, an indium alloy, a carbon material, a silicon, a silicon alloy, silicon oxide and a titanic acid. It may contain at least one selected from the group consisting of lithium.
  • the battery has better charge / discharge characteristics.
  • the electrolyte layer may contain a solid electrolyte material, and the composition of the solid electrolyte material is the same.
  • the composition may be different from the composition of the material represented by the composition formula (1).
  • the electrolyte layer may contain a sulfide solid electrolyte.
  • the battery has better charge / discharge characteristics.
  • the halogen element contained in the material represented by the composition formula (1) is oxidized at the time of charging. May produce at least one selected from the group consisting of a single halogen and a halide, and upon discharge, the halogen element contained in at least one selected from the group consisting of a single halogen and the halide is reduced. May be done.
  • the charge / discharge reaction proceeds by a new mechanism.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the positive electrode material 1000 according to the first embodiment.
  • the positive electrode material 1000 includes a material 100 represented by the following composition formula (1) and a carbon material 101.
  • Material 100 may be a material known as a halide solid electrolyte.
  • the material 100 may be referred to as a "halide material”.
  • a, b, and c are values larger than 0, respectively.
  • a, b and c may satisfy a + b ⁇ c.
  • M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
  • X contains a halogen element.
  • the halogen element comprises, for example, at least one selected from the group consisting of F, Cl, Br and I.
  • the "metalloid element” is B, Si, Ge, As, Sb and Te.
  • Metallic elements are all elements contained in groups 1 to 12 of the periodic table except hydrogen, as well as B, Si, Ge, As, Sb, Te, C, N, P, O, S and Se. It is all the elements contained in the 13th to 16th groups of the periodic table except for. That is, the "metalloid element” or “metal element” is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
  • the carbon material 101 can occlude at least one selected from the group consisting of elemental halogens and halides.
  • the carbon material occludes means that the carbon material 101 takes in an element other than carbon from the outside of the carbon material 101 and retains the element on the surface or inside of the carbon material 101. Means to do. Further, the carbon material 101 may release at least one selected from the group consisting of occluded halogen simple substances and halides. "The carbon material releases " means that other elements occluded in the carbon material 101 are desorbed from the carbon material 101.
  • a new positive electrode material can be realized. Further, according to this positive electrode material, it is possible to realize a battery in which the charge / discharge reaction proceeds by a mechanism different from that of the conventional lithium ion battery.
  • the halide material does not have to contain sulfur.
  • Patent Document 1 discloses a lithium ion battery using a positive electrode containing a lithium-containing metal oxide, a negative electrode containing a carbon material, and a non-aqueous organic electrolytic solution as an electrolyte.
  • lithium ions are desorbed from the lithium-containing positive electrode oxide during charging.
  • the lithium ions are solvated in the electrolytic solution and diffuse into the electrolytic solution.
  • Lithium ions diffused in the electrolytic solution are occluded in the carbon material.
  • Patent Document 2 discloses a solid electrolyte material having a composition represented by Li 3 YBr 6. In this solid electrolyte material, halogens are strongly attracted to yttrium. As a result, the solid electrolyte material exhibits high ionic conductivity. In Patent Document 2, the ionic conductivity of the solid electrolyte material is used for charging and discharging the battery.
  • the present inventors have made a positive electrode in which a material represented by Li a M b X c and a carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides are combined. It has been newly found that by using a material, a battery capable of reversible charging and discharging can be produced by a mechanism different from that of a conventional battery.
  • Charging and discharging of the battery containing the positive electrode material of the present embodiment is performed by the following mechanism.
  • the halogen element contained in the material 100 is oxidized. At this time, lithium ions are released from the material 100 for charge compensation. Oxidation of the halogen element produces at least one selected from the group consisting of elemental halogens and halides.
  • Halogen alone is, for example, a compound represented by X 2.
  • the halide is, for example, a compound represented by MX d. Here, d is the same value as the valence of M.
  • the generated halogen simple substance or halide is occluded in the carbon material 101.
  • Lithium ions move, for example, in the electrolyte layer in the battery and are occluded in the negative electrode. Next, when the battery is discharged, the lithium ions occluded in the negative electrode are released from the negative electrode. Lithium ions move to the positive electrode through the electrolyte layer. At the positive electrode during discharge, the halogen alone or the halide is reduced with the acceptance of electrons. Specifically, the halogen element contained in at least one selected from the group consisting of elemental halogens and halides is reduced. The reduced halogen simple substance or halide reacts with the lithium ions transferred from the negative electrode and is released from the carbon material 101.
  • the material 100 represented by the composition formula (1) changes in the internal structure of the positive electrode are suppressed during charging and discharging of the battery. For example, when the battery is charged, it is possible to prevent the formation of voids inside the positive electrode. As a result, it is presumed that a reversible charge / discharge reaction proceeds in the battery.
  • the material 100 and the carbon material 101 can function as the positive electrode active material.
  • a lithium ion battery in order for the desorption or insertion of lithium in the positive electrode and the negative electrode to proceed, it is necessary for the active material and the electrolyte to rapidly exchange electrons and lithium ions.
  • the active material and the electrolyte In order for the desorption or insertion of lithium in the positive electrode and the negative electrode to proceed, it is necessary for the active material and the electrolyte to rapidly exchange electrons and lithium ions.
  • electrons and lithium ions are exchanged at a three-phase interface formed by a positive electrode active material, a conductive auxiliary agent, and an electrolyte.
  • the positive electrode active material is, for example, an oxide that stores lithium ions.
  • the conductive auxiliary agent has, for example, a function of assisting the conduction of electrons.
  • the electrolyte is contained in, for example, the electrolyte or the electrolyte layer and can transport lithium ions.
  • the positive electrode active material of a lithium ion battery for example, electrons are conducted by hopping conduction through a metal-oxygen-metal bond.
  • the conductivity of electrons in the positive electrode active material is greatly affected by the electronic state of the metal ions contained in the positive electrode active material.
  • the electron conductivity of the positive electrode active material decreases. That is, at the end of charging or the end of discharging of the battery, the electron conductivity of the positive electrode active material decreases.
  • the positive electrode including the positive electrode material of the present embodiment for example, electrons and lithium ions are exchanged at a two-phase interface formed by the carbon material 101 having high electron conductivity and the material 100 having high ionic conductivity. .. That is, the charge / discharge reaction proceeds using the two-phase interface. Therefore, the positive electrode material of the present embodiment is suitable for improving the current density of the battery.
  • the ratio I D intensity I D of the peak appearing in the range of 1300 cm -1 or 1400 cm -1 or less / IG is, for example, 0 or more and 2 or less.
  • the carbon material 101 can more easily occlude the halogen alone or the halide.
  • the Raman spectrum of the carbon material 101 can be obtained, for example, by laser Raman spectroscopy. Peak appearing at 1300 cm -1 or 1400 cm -1 in the range, for example, from the sp 3 carbon bonds. Peak appearing at 1500 cm -1 or 1700 cm -1 in the range, for example, from sp 2 carbon bond. Therefore, the lower the ratio I D / I G, the carbon material 101 has a number of ⁇ electrons. When charging the battery containing the positive electrode material 1000 of the present embodiment, the generated halogen simple substance or halide tends to be attracted to the ⁇ electrons of the carbon material 101. Therefore, the lower the ratio I D / I G, the carbon material 101 can be easily occluded simple halogen or halide.
  • the ratio I D / IG may be 0 or more and 1.6 or less, 0 or more and 1.1 or less, 0 or more and 0.5 or less, and 0 or more and 0.1 or less. It may be.
  • the carbon material 101 can more easily occlude the halogen alone or the halide.
  • the BET specific surface area of the carbon material 101 is, for example, greater than 5 m 2 g -1.
  • the BET specific surface area of the carbon material 101 can be determined, for example, by the BET (Brunauer-Emmett-Teller) method by adsorbing nitrogen gas.
  • the larger the BET specific surface area of the carbon material 101 the larger the area in which the carbon material 101 and the material 100 are in contact with each other.
  • the BET specific surface area of the carbon material 101 is larger than 5 m 2 g -1 , the current density of the battery containing the positive electrode material 1000 tends to increase.
  • the larger the BET specific surface area of the carbon material 101 the more easily the carbon material 101 can occlude the halogen simple substance or the halide. Further, according to the above configuration, a battery having better charge / discharge characteristics can be realized.
  • the BET specific surface area of the carbon material 101 may be larger than 10 m 2 g -1 , may be larger than 14 m 2 g -1 , may be 40 m 2 g -1 or more, and may be 100 m 2 g -1 or more. There may be.
  • the upper limit of the BET specific surface area of the carbon material 101 is not particularly limited, and is, for example, 1000 m 2 g -1 .
  • the current density of the battery containing the positive electrode material 1000 tends to improve. Further, according to the above configuration, a battery having better charge / discharge characteristics can be realized.
  • the shape of the carbon material 101 is not particularly limited, and is, for example, particulate.
  • "particulate” includes needle-like, scaly, spherical and elliptical spheres.
  • the median diameter of the carbon material 101 is not particularly limited and may be 0.001 ⁇ m or more and 100 ⁇ m or less.
  • the carbon material 101 and the material 100 can form a good dispersed state in the positive electrode material 1000.
  • the charge / discharge characteristics of the battery containing the positive electrode material 1000 can be improved.
  • the median diameter of the carbon material 101 is 100 ⁇ m or less, the lithium diffusion rate in the carbon material 101 increases. This allows the battery to operate at high output.
  • the median diameter of the carbon material 101 may be smaller than 10 ⁇ m, smaller than 8 ⁇ m, 5 ⁇ m or less, 3 ⁇ m or less, or 1 ⁇ m or less.
  • the lower limit of the median diameter of the carbon material 101 may be 0.01 ⁇ m.
  • the median diameter of the carbon material 101 may be larger than the median diameter of the material 100 described later. As a result, the carbon material 101 and the material 100 can form a good dispersed state.
  • the median diameter means the particle size (d50) corresponding to the cumulative volume of 50%, which is obtained from the particle size distribution measured by the laser diffraction / scattering method on a volume basis.
  • the carbon material 101 includes, for example, graphite (graphite), graphene, graphene oxide, reduced graphene oxide (RGO), carbon nanotube (CNT), fullerene, carbon fiber, carbon black (CB), and soft carbon (graphitizable carbon). ), Hard carbon (non-graphitizable carbon), mesoporous carbon and at least one selected from the group consisting of activated carbon.
  • Graphite may be natural graphite or artificial graphite such as highly oriented pyrolytic graphite (HOPG).
  • Examples of carbon fibers include vapor-grown carbon fibers.
  • the carbon black may be acetylene black (AB) or Ketjen black (KB).
  • the carbon material may contain at least one selected from the group consisting of carbon black, vapor-grown carbon fibers and graphene.
  • the content of the carbon material 101 in the positive electrode material 1000 is not particularly limited, and may be 1% by weight or more, 5% by weight or more, 10% by weight or more, or 15% by weight. It may be the above.
  • the upper limit of the content of the carbon material 101 is not particularly limited, and is, for example, 40% by weight. The higher the content of the carbon material 101, the larger the discharge capacity of the battery containing the positive electrode material 1000 tends to be.
  • M in the composition formula (1) may contain Y, and may contain Y and Zr.
  • X in the composition formula (1) may contain at least one selected from the group consisting of Cl and Br, and may contain both Cl and Br.
  • m is a valence of M.
  • M contains a plurality of kinds of elements
  • mb is the sum of the values obtained by multiplying the composition ratio of each element by the valence of the element.
  • the composition ratio of the element M1 is b 1
  • the valence of the element M1 is m 1
  • the composition ratio of the element M2 is b 2
  • mb m 1 b 1 + m 2 b 2 .
  • the shape of the material 100 is not particularly limited, and is, for example, in the form of particles.
  • the median diameter of the material 100 may be 100 ⁇ m or less.
  • the material 100 and the carbon material 101 can form a good dispersed state in the positive electrode material 1000. This improves the charge / discharge characteristics of the battery.
  • the median diameter of the material 100 may be 10 ⁇ m or less.
  • the content of the material 100 in the positive electrode material 1000 is not particularly limited, and may be 30% by weight or more, or 50% by weight or more.
  • the upper limit of the content of the material 100 may be 95% by weight, 90% by weight, or 85% by weight.
  • the positive electrode material 1000 may further contain materials other than the material 100 and the carbon material 101.
  • Other materials include positive electrode active materials, binders, conductive aids and the like.
  • Examples of the positive electrode active material include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, and transition metal oxynitrides.
  • Examples of the lithium-containing transition metal oxide include Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , and LiCoO 2 .
  • the average discharge voltage of the battery can be improved.
  • the positive electrode active material may contain lithium nickel cobalt manganate as the lithium-containing transition metal oxide.
  • the positive electrode active material may be Li (NiComn) O 2 . According to the above configuration, the positive electrode material 1000 can further improve the energy density of the battery and the charge / discharge efficiency of the battery.
  • the binder is used, for example, to improve the adhesion between particles and the binding property of the materials constituting the positive electrode when a positive electrode is prepared from the positive electrode material 1000.
  • the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, and polyacrylic acid ethyl ester.
  • Polyacrylic acid hexyl ester polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene Examples include rubber and carboxymethyl cellulose.
  • Copolymers of more than seed materials can also be used as binders. A mixture of two or more selected from these materials may be used as a binder.
  • the conductive auxiliary agent can be used for the purpose of improving the electronic conductivity of the positive electrode material 1000.
  • the conductive auxiliary agent include conductive fibers such as metal fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, and conductive metal oxides such as titanium oxide.
  • conductive polymer compounds such as polyacetylene, polyaniline, polypyrrole, polythiophene and the like can be used.
  • the conductive polymer compound is suitable for improving the electron conductivity and plasticity of the positive electrode formed from the positive electrode material 1000.
  • the content of the other material in the positive electrode material 1000 is not particularly limited, and may be 50% by weight or less, 30% by weight or less, 10% by weight or less, or 5% by weight. It may be as follows.
  • the positive electrode material 1000 does not have to substantially contain other materials.
  • the positive electrode material 1000 does not have to substantially contain the positive electrode active material as another material.
  • the positive electrode material 1000 may substantially consist of the material 100 and the carbon material 101.
  • substantially consisting of is meant eliminating other components that alter the essential characteristics of the mentioned material.
  • the positive electrode material 1000 may contain impurities in addition to the material 100 and the carbon material 101.
  • the positive electrode material 1000 may include particles of a plurality of materials 100, particles of a plurality of carbon materials 101, and particles of a plurality of positive electrode active materials.
  • the material 100 can be produced, for example, by the following method.
  • a raw material powder for a dual halide is prepared at a blending ratio according to the desired composition.
  • the binary halide refers to a compound composed of two kinds of elements including a halogen element.
  • the raw material powder of LiCl and the raw material powder of YCl 3 are prepared at a molar ratio of 3: 1.
  • the elements of "M” and "X” in the above composition formula (1) are determined depending on the type of raw material powder.
  • the values of "a”, “b” and “c” in the above-mentioned composition formula (1) are determined by the type of raw material powder, the blending ratio and the synthesis process.
  • the raw material powders After sufficiently mixing the raw material powders, the raw material powders are mixed, crushed and reacted using the method of mechanochemical milling. After the raw material powder is sufficiently mixed, the raw material powder may be sintered in vacuum.
  • composition (crystal structure) of the crystal phase in the material 100 is determined by the reaction method and reaction conditions between the raw material powders.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the battery 2000 according to the second embodiment.
  • the battery 2000 includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
  • the positive electrode 201 includes the positive electrode material 1000 according to the first embodiment described above.
  • the electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203.
  • the charge / discharge reaction proceeds by a new mechanism. Further, it is possible to suppress an increase in the reaction overvoltage of the battery 2000.
  • v1 represents the volume ratio of the carbon material 101 when the total volume of the carbon material 101 and the material 100 contained in the positive electrode 201 is defined as 100.
  • v1 satisfies 5 ⁇ v1
  • sufficient battery energy density can be ensured. If v1 satisfies v1 ⁇ 95, the battery can operate at high power.
  • the thickness of the positive electrode 201 may be 5 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 5 ⁇ m or more, sufficient energy density of the battery can be secured. When the thickness of the positive electrode 201 is 500 ⁇ m or less, the battery can operate at a high output.
  • the electrolyte layer 202 is a layer containing an electrolyte material.
  • the electrolyte material contained in the electrolyte layer 202 is, for example, a solid electrolyte material. That is, the electrolyte layer 202 may be a solid electrolyte layer.
  • Examples of the solid electrolyte material contained in the electrolyte layer 202 include a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte.
  • the electrolyte layer 202 may contain a sulfide solid electrolyte.
  • the composition of the solid electrolyte material contained in the electrolyte layer 202 may be the same as the composition of the material 100 of the positive electrode material 1000 in the above-described first embodiment. That is, the electrolyte layer 202 may include the material 100 according to the first embodiment described above as the solid electrolyte material.
  • the output density and charge / discharge characteristics of the battery can be further improved.
  • the composition of the solid electrolyte material contained in the electrolyte layer 202 may be different from the composition of the material 100 of the positive electrode material 1000 in the above-described first embodiment.
  • the electrolyte layer 202 may contain, as the solid electrolyte material, a halide solid electrolyte having a composition different from that of the material 100 in the first embodiment described above.
  • the charge / discharge characteristics of the battery can be further improved.
  • Examples of the sulfide solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like can be used.
  • These sulfide solid electrolyte, LiX, Li 2 O, MO q, like Li p MO q may be added.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • M is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe and Zn.
  • p and q are natural numbers, respectively.
  • the electrolyte layer 202 contains a sulfide solid electrolyte having excellent reduction stability, a low potential material such as graphite or metallic lithium can be used as the negative electrode material. Thereby, the energy density of the battery can be improved.
  • oxide solid electrolyte examples include a NASICON type solid electrolyte typified by LiTi 2 (PO 4 ) 3 and its elemental substituent, a (LaLi) TiO 3 based perovskite type solid electrolyte, Li 14 ZnGe 4 O 16 , Li.
  • Li-BO compounds such as Li BO 2 and Li 3 BO 3 with added Li 2 SO 4 , Li 2 CO 3 and the like. Can be used.
  • the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • the polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity of the electrolyte layer 202 can be further increased.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and the like can be used.
  • One lithium salt selected from the exemplified lithium salts can be used alone.
  • a mixture of two or more lithium salts selected from the exemplified lithium salts may be used.
  • LiBH 4- LiI and LiBH 4- P 2 S 5 can be used as the complex hydride solid electrolyte.
  • the electrolyte layer 202 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 202 may contain, for example, 50% by weight or more of the solid electrolyte material as a weight ratio with respect to the whole of the electrolyte layer 202.
  • the charge / discharge characteristics of the battery can be further improved.
  • the electrolyte layer 202 may contain, for example, 70% by weight or more of the solid electrolyte material as a weight ratio to the whole of the electrolyte layer 202.
  • the charge / discharge characteristics of the battery can be further improved.
  • the electrolyte layer 202 contains a solid electrolyte material as a main component, and may further contain unavoidable impurities, a starting material used when synthesizing the solid electrolyte material, by-products, decomposition products, and the like.
  • the electrolyte layer 202 may contain 100% by weight of the solid electrolyte material as a weight ratio to the whole of the electrolyte layer 202, excluding impurities that are unavoidably mixed, for example.
  • the charge / discharge characteristics of the battery can be further improved.
  • the electrolyte layer 202 may be substantially composed of only the solid electrolyte material.
  • the electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials.
  • the electrolyte layer 202 may contain a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the positive electrode 201 and the negative electrode 203 can be separated more reliably. When the thickness of the electrolyte layer 202 is 300 ⁇ m or less, the battery can operate at high output.
  • the electrolyte layer 202 may have a multilayer structure in which two or more layers having different compositions are laminated.
  • a layer containing a halide solid electrolyte and a layer containing a sulfide solid electrolyte may be laminated.
  • the negative electrode 203 includes a material having the property of occluding and releasing metal ions (for example, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • the negative electrode 203 may contain a negative electrode active material that can occlude lithium. According to the above configuration, a battery having better charge / discharge characteristics can be realized.
  • a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, etc. can be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include metallic lithium and lithium alloys.
  • carbon materials include natural graphite, coke, developing carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of the capacity density of the battery, silicon (Si), tin (Sn), a silicon compound and a tin compound can be used.
  • the negative electrode 203 may contain at least one selected from the group consisting of metallic lithium, lithium alloy, metallic indium, indium alloy, carbon material, silicon, silicon alloy, silicon oxide and lithium titanate as the negative electrode active material. good.
  • the negative electrode 203 may contain a solid electrolyte material.
  • the solid electrolyte material contained in the negative electrode 203 the solid electrolyte material exemplified as the material constituting the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 can be improved, and the battery can operate at a high output.
  • the shape of the negative electrode active material is not particularly limited, and is, for example, particulate.
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte material can form a good dispersed state in the negative electrode 203. This improves the charge / discharge characteristics of the battery.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material increases. This allows the battery to operate at high output.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material. As a result, the negative electrode active material and the solid electrolyte material can form a good dispersed state.
  • v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 is defined as 100.
  • v2 satisfies 30 ⁇ v2
  • sufficient battery energy density can be secured. If v2 satisfies v2 ⁇ 95, the battery can operate at high power.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, sufficient energy density of the battery can be secured. When the thickness of the negative electrode 203 is 500 ⁇ m or less, the battery can operate at a high output.
  • At least one selected from the group consisting of the electrolyte layer 202 and the negative electrode 203 may contain a binder for the purpose of improving the adhesion between the particles.
  • the binder is used, for example, to improve the binding property of the material constituting the negative electrode 203.
  • the binder for example, the binder described above for the positive electrode material 1000 can be used.
  • the negative electrode 203 may contain a conductive auxiliary agent for the purpose of improving electronic conductivity.
  • the conductive auxiliary agent contained in the negative electrode 203 include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, and carbon fluoride.
  • Metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene can be used. ..
  • a carbon conductive auxiliary agent is used as the conductive auxiliary agent, the cost can be reduced.
  • Examples of the shape of the battery 2000 include a coin type, a cylindrical type, a square type, a sheet type, a button type, a flat type, and a laminated type.
  • the metal In foil and the metal Li foil were laminated on the surface of the solid electrolyte layer opposite to the surface in contact with the first electrode.
  • a pressure of 80 MPa to these metal foils, a laminate composed of a first electrode, a solid electrolyte layer, and a second electrode as a negative electrode was produced.
  • Example 1 the battery of Example 1 was produced by blocking and sealing the inside of the insulating outer cylinder from the outside air atmosphere using an insulating ferrule.
  • Example 1 The battery of Example 1 was subjected to a charge / discharge test by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. The battery was charged with a constant current at a current value of 0.05 mA. Charging was carried out until the voltage of the battery reached 4.0 V. Next, the battery was discharged at a current value of 0.05 mA. The discharge was carried out until the voltage of the battery reached 1.9 V.
  • Example 2 Example by the same method as in Example 1 except that the positive electrode material was prepared by using the powder of the material represented by the composition formula (1) and the powder of the carbon material at a mass ratio of 83.0: 17.0. 2 batteries were produced. Further, a charge / discharge test was performed on the battery of Example 2 by the same method as in Example 1.
  • Example 3 Example by the same method as in Example 1 except that the positive electrode material was prepared by using the powder of the material represented by the composition formula (1) and the powder of the carbon material in a mass ratio of 76.5: 23.5. 3 batteries were produced. Further, a charge / discharge test was performed on the battery of Example 3 by the same method as in Example 1.
  • Example 4 In the production of the positive electrode material, the battery of Example 4 was produced by the same method as in Example 1 except that acetylene black was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 4 by the same method as in Example 1.
  • Example 5 In the production of the positive electrode material, the battery of Example 5 was produced by the same method as in Example 1 except that carbon black was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 5 by the same method as in Example 1.
  • Example 6 In the production of the positive electrode material, the battery of Example 6 was produced by the same method as in Example 1 except that the vapor-grown carbon fiber (VGCF (registered trademark)) was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 6 by the same method as in Example 1.
  • VGCF vapor-grown carbon fiber
  • Example 7 In the production of the positive electrode material, the battery of Example 7 was produced by the same method as in Example 1 except that graphene was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 7 by the same method as in Example 1.
  • Li 3 YBr 6 Li 3 YBr 6 may be referred to as LYB. Further, a charge / discharge test was performed on the battery of Example 8 by the same method as in Example 1.
  • cyclic voltammetry (CV) measurement was also performed by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. A battery was connected to the potencio galvanostat and CV measurements were taken. In the CV measurement, the sweep speed was set to 10 mV / s. The scanning range is 4.0 V to 1.9 V vs. It was set to In-Li.
  • Example 9 In the production of the positive electrode material, the battery of Example 9 was produced by the same method as in Example 4 except that Li 2.7 Y 1.1 Cl 6 was used as the material represented by the composition formula (1).
  • a battery used for the charge / discharge test and a battery used for the CV measurement were prepared.
  • Li 2.7 Y 1.1 Cl 6 was obtained.
  • Li 2.7 Y 1.1 Cl 6 may be referred to as LYC.
  • a charge / discharge test was performed on the battery of Example 9 by the same method as in Example 1.
  • CV measurement was performed on the battery of Example 9 by the same method as in Example 8.
  • Li 2.5 Y 0.5 Zr 0.5 Cl 6 Li 2.5 Y 0.5 Zr 0.5 Cl 6 may be referred to as LYZC. Further, a charge / discharge test was performed on the battery of Example 10 by the same method as in Example 1.
  • Li 6 PS 5 Cl which is a sulfide solid electrolyte
  • Li 6 PS 5 Cl which is a sulfide solid electrolyte
  • the battery of Reference Example 1 was produced by the same method as in Example 1 except that the above positive electrode material was used.
  • Table 1 shows the results of the battery charge / discharge tests of Examples and Reference Examples.
  • Table 1 the type of the carbon material contained in the positive electrode, the content of the carbon material in the positive electrode, the median size of the ratio I D / I G, the carbon material in the carbon material, BET specific surface area of the carbon material, the composition formula (1)
  • the types of materials represented by are also shown.
  • the ratio I D / I G in the carbon material, as described above, in the Raman spectrum of the carbon material, to the intensity I G of the peak appearing in the range of 1500 cm -1 or 1700 cm -1 or less, 1300 cm -1 or 1400 cm -1 or less It means the ratio of the intensity ID of the peaks appearing in the range of.
  • the ratio I D / I G, median diameter and BET specific surface area is a value measured for the carbon material prior to making the cathode material.
  • I D / I G, median diameter and BET specific surface area is a value measured for the carbon material prior to making the cathode material.
  • FIG. 3 is a graph showing the initial charge / discharge curves of the batteries of Examples 1, 2 and 3.
  • FIG. 3 shows the discharge characteristics of the battery.
  • the battery voltage is 4.0 Vvs., Which is the cutoff voltage from the open circuit voltage.
  • a constant current was applied in the forward direction from the negative electrode to the positive electrode until In-Li was reached.
  • the voltage of the battery is the cutoff voltage of 1.9 Vvs.
  • a constant current was applied in the direction opposite to that during charging until In-Li was reached.
  • FIG. 3 in the charge / discharge test of Example 1, a plateau region associated with the charge / discharge of the battery was observed. Further, as can be seen from the comparison of Examples 1 to 3, the higher the content of the carbon material in the positive electrode, the greater the amount of electricity due to charging and discharging.
  • the battery of Example 1 behaves differently from the capacitor. In capacitors, the voltage tends to rise linearly with respect to the current. Since the plateau region was observed, it is presumed that in the battery of Example 1, an electrochemical redox reaction occurred during the charge / discharge test. That is, it can be seen that the charging reaction proceeded by passing the current in the forward direction, and the discharge reaction proceeded by passing the current in the reverse direction. Furthermore, the higher the content of the carbon material in the positive electrode, the greater the amount of electricity due to charging and discharging. Therefore, it is estimated that the carbon material and the material represented by the composition formula (1) have reacted electrochemically. Will be done.
  • Example 1 since an In—Li alloy is used as the negative electrode and the reversible charge / discharge reaction is proceeding, it can be seen that the charge carriers are Li ions. That is, in the battery of Example 1, Li ions, which are charge carriers, move from the positive electrode to the negative electrode via the solid electrolyte layer during charging.
  • FIG. 4 is a graph showing the initial charge / discharge curves of the batteries of Reference Examples 1 and 2.
  • Reference Example 1 a mixture of LiBr and LiCl was used instead of the material represented by the composition formula (1). In the mixture, the molar ratio of Br to Cl was 1: 2. This mixture and the carbon material were mixed well using a ball mill. A positive electrode material was prepared by further mixing the mixture thus obtained with a sulfide solid electrolyte having Li ion conductivity. In the battery charge / discharge test of Reference Example 1, a charging curve indicating that the charging of the battery has progressed was confirmed. However, the battery of Reference Example 1 could not be discharged.
  • a positive electrode material was prepared by mixing the material represented by the composition formula (1) used in Example 1 with the powder of metallic Al.
  • the battery charge / discharge test of Reference Example 2 no current flowed through the battery during both charging and discharging, and the battery voltage reached the cutoff voltage.
  • the material represented by the composition formula (1) contains a metal element or a metalloid element other than Li, halogen gas is less likely to be generated by oxidation of the halogen element contained in the material when charging the battery. Therefore, when the battery is charged, voids are less likely to occur inside the positive electrode. That is, the internal structure of the positive electrode is unlikely to change. As a result, it is presumed that the conduction of electrons and lithium ions is less likely to be hindered during charging / discharging of the battery, and a reversible charging / discharging reaction proceeds. In Reference Example 1, it is presumed that the internal structure of the positive electrode changed when the battery was charged, so that the conduction of electrons and lithium ions was inhibited and the discharge reaction did not proceed.
  • FIG. 5 is a graph showing the initial charge / discharge curves of the batteries of Examples 4 to 7.
  • Examples 4 to 7 include a graphite-like structure, a diamond-like structure, and the like.
  • the charge / discharge reaction proceeded due to the graphite-like structure contained in the carbon material. That is, in the batteries of Examples 4 to 7, it is presumed that the charge / discharge reaction proceeded due to the layer structure contained in the carbon material.
  • carbon black such as acetylene black, vapor-grown carbon fibers and graphene are suitable for improving the discharge capacity of the battery as compared with graphite. ..
  • FIG. 6 is a graph showing the initial charge / discharge curves of the batteries of Examples 4, 8 and 9.
  • the material represented by the composition formula (1) does not have to contain both Br and Cl, and may contain only one kind of halogen element.
  • the type of halogen element contained in the material represented by the composition formula (1) is not limited to Br or Cl as long as the voltage of the battery can be swept to the voltage at which the redox of the halogen element occurs.
  • FIG. 7 is a graph showing the cyclic voltammograms of the batteries of Examples 9, 10 and Reference Example 2.
  • Example 11 [Preparation of material represented by composition formula (1)]
  • a powder of LYBC which is a material represented by the composition formula (1), was obtained.
  • a metal Li foil was laminated on the surface of the solid electrolyte layer opposite to the surface in contact with the first electrode.
  • a pressure of 80 MPa to this metal foil, a laminate composed of a first electrode, a solid electrolyte layer, and a second electrode as a negative electrode was produced.
  • Example 11 the battery of Example 11 was produced by blocking and sealing the inside of the insulating outer cylinder from the outside air atmosphere using an insulating ferrule.
  • Example 11 The battery of Example 11 was charged by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. The battery was charged with a constant current at a current value of 0.1 mA. Constant current charging was performed until the battery voltage reached 4.4 V. Next, the battery was charged at a constant voltage until the current value dropped to 0.01 mA.
  • Raman spectroscopic measurements were performed on the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test. Raman spectroscopy was performed by the following method. First, the above-mentioned laminate was taken out from the battery. Next, Raman spectroscopic measurement was performed with the laminated body enclosed in an airtight cell. Raman spectroscopic measurement was performed using an NRS-5500 manufactured by JASCO Corporation with an Ar ion laser that emits light having a wavelength of 457 nm. Specifically, the surface of the laminate on the positive electrode side was mapped and measured. Carbon-derived peaks were separated from the obtained data by performing a multivariate spectrum analysis (MCR) method. As a result, a Raman spectrum of the carbon material in the positive electrode material was obtained.
  • MCR multivariate spectrum analysis
  • FIG. 8 is a graph showing the results of Raman spectroscopic measurement of the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test.
  • the graph in FIG. 8 also shows the results of Raman spectroscopic measurements on graphene powder.
  • the G band peak appearing near 1580 cm -1 is broader than the Raman spectrum of the carbon material in the positive electrode material before the charging test. It became, and it was shifting to the high wave number side. From this, it is presumed that the carbon material adsorbed the halogen simple substance or the halide derived from the material represented by the composition formula (1) by the charging test.
  • the positive electrode material of the present disclosure can be used, for example, in an all-solid-state secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A positive electrode material 1000 according to the present disclosure contains a material 100 which is represented by composition formula (1) and a carbon material 101 which is capable of adsorbing at least one substance that is selected from the group consisting of elemental halogens and halides. Formula (1): LiaMbXc In the formula, each of a, b and c represents a number larger than 0; M includes at least one element that is selected from the group consisting of metal elements other than Li and semimetal elements; and X includes a halogen element.

Description

正極材料および電池Positive electrode material and battery
 本開示は、電池用の正極材料および電池に関する。 The present disclosure relates to a positive electrode material for a battery and a battery.
 特許文献1には、リチウム含有金属酸化物を含む正極と、炭素材料を含む負極とを用いた電池が開示されている。 Patent Document 1 discloses a battery using a positive electrode containing a lithium-containing metal oxide and a negative electrode containing a carbon material.
 特許文献2には、リチウム、イットリウムおよびハロゲンを含む固体電解質材料が開示されている。 Patent Document 2 discloses a solid electrolyte material containing lithium, yttrium and halogen.
特許第1989293号Patent No. 1989923 国際公開第2018/025582号International Publication No. 2018/025582
 本開示は、新規な正極材料を提供する。 The present disclosure provides a novel positive electrode material.
 本開示の一態様における正極材料は、
 下記の組成式(1)により表される材料と、
 ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを吸蔵しうる炭素材料と、
を含む。
 Liabc ・・・式(1)
 ここで、a、bおよびcは、それぞれ、0より大きい値であり、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つを含み、
 Xは、ハロゲン元素を含む。
The positive electrode material in one aspect of the present disclosure is
The material represented by the following composition formula (1) and
A carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides,
including.
Li a M b X c・ ・ ・ Equation (1)
Here, a, b, and c are values larger than 0, respectively.
M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
X contains a halogen element.
 本開示によれば、新規な正極材料を提供できる。 According to the present disclosure, a new positive electrode material can be provided.
図1は、実施の形態1における正極材料の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material according to the first embodiment. 図2は、実施の形態2における電池の概略構成を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration of the battery according to the second embodiment. 図3は、実施例1、2および3の電池の充放電曲線を示すグラフである。FIG. 3 is a graph showing the charge / discharge curves of the batteries of Examples 1, 2 and 3. 図4は、参考例1および2の電池の充放電曲線を示すグラフである。FIG. 4 is a graph showing the charge / discharge curves of the batteries of Reference Examples 1 and 2. 図5は、実施例4、5、6および7の電池の充放電曲線を示すグラフである。FIG. 5 is a graph showing the charge / discharge curves of the batteries of Examples 4, 5, 6 and 7. 図6は、実施例4、8および9の電池の充放電曲線を示すグラフである。FIG. 6 is a graph showing the charge / discharge curves of the batteries of Examples 4, 8 and 9. 図7は、実施例9、10および参考例2の電池のサイクリックボルタモグラムを示すグラフである。FIG. 7 is a graph showing cyclic voltammograms of the batteries of Examples 9, 10 and Reference Example 2. 図8は、実施例11の電池の正極材料について、充電試験前、充電試験後および放電試験後にラマン分光測定を行った結果を示すグラフである。FIG. 8 is a graph showing the results of Raman spectroscopic measurement of the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test.
(本開示に係る一態様の概要)
 本開示の第1態様に係る正極材料は、
 下記の組成式(1)により表される材料と、
 ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを吸蔵しうる炭素材料と、
を含む。
 Liabc ・・・式(1)
 ここで、a、bおよびcは、それぞれ、0より大きい値であり、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つを含み、
 Xは、ハロゲン元素を含む。
(Summary of one aspect of the present disclosure)
The positive electrode material according to the first aspect of the present disclosure is
The material represented by the following composition formula (1) and
A carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides,
including.
Li a M b X c・ ・ ・ Equation (1)
Here, a, b, and c are values larger than 0, respectively.
M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
X contains a halogen element.
 第1態様によれば、新規な正極材料を提供できる。この正極材料を含む電池では、新しいメカニズムで充放電反応が進行する。この正極材料は、電池の出力を向上させることに適している。 According to the first aspect, a new positive electrode material can be provided. In the battery containing this positive electrode material, the charge / discharge reaction proceeds by a new mechanism. This positive electrode material is suitable for improving the output of the battery.
 本開示の第2態様において、例えば、第1態様に係る正極材料では、前記炭素材料のラマンスペクトルにおいて、1500cm-1以上1700cm-1以下の範囲内に現れるピークの強度IGに対する、1300cm-1以上1400cm-1以下の範囲内に現れるピークの強度IDの比ID/IGが0以上2以下であってもよい。第2態様によれば、炭素材料は、ハロゲン単体またはハロゲン化物をより容易に吸蔵できる。 In a second aspect of the present disclosure, for example, in the positive electrode material according to the first aspect, in the Raman spectrum of the carbon material, to the intensity I G of the peak appearing at 1500 cm -1 or 1700 cm -1 in the range, 1300 cm -1 above 1400 cm -1 ratio I D / I G of the intensity I D of the peak appearing in the range may be 0 to 2. According to the second aspect, the carbon material can more easily occlude the halogen simple substance or the halide.
 本開示の第3態様において、例えば、第1または第2態様に係る正極材料では、前記炭素材料のBET比表面積が5m2-1より大きくてもよい。第3態様によれば、炭素材料と組成式(1)により表される材料とが互いに接触している面積が大きい。これにより、正極材料を含む電池の電流密度を向上させることができる。さらに、炭素材料は、ハロゲン単体またはハロゲン化物をより容易に吸蔵できる。 In the third aspect of the present disclosure, for example, in the positive electrode material according to the first or second aspect, the BET specific surface area of the carbon material may be larger than 5 m 2 g -1. According to the third aspect, the area where the carbon material and the material represented by the composition formula (1) are in contact with each other is large. Thereby, the current density of the battery including the positive electrode material can be improved. In addition, the carbon material can more easily occlude halogen simple substances or halides.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る正極材料では、前記炭素材料は、黒鉛、グラフェン、酸化グラフェン、還元型酸化グラフェン、カーボンナノチューブ、フラーレン、カーボンファイバー、カーボンブラック、ソフトカーボン、ハードカーボン、メソポーラスカーボンおよび活性炭からなる群より選択される少なくとも1つを含んでいてもよい。 In the fourth aspect of the present disclosure, for example, in the positive electrode material according to any one of the first to third aspects, the carbon material is graphite, graphene, graphene oxide, reduced graphene oxide, carbon nanotube, fullerene, carbon. It may contain at least one selected from the group consisting of fiber, carbon black, soft carbon, hard carbon, mesoporous carbon and activated carbon.
 本開示の第5態様において、例えば、第1から第3態様のいずれか1つに係る正極材料では、前記炭素材料は、カーボンブラック、気相成長炭素繊維およびグラフェンからなる群より選択される少なくとも1つを含んでいてもよい。 In the fifth aspect of the present disclosure, for example, in the positive electrode material according to any one of the first to third aspects, the carbon material is at least selected from the group consisting of carbon black, vapor-grown carbon fibers and graphene. One may be included.
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る正極材料では、前記Mは、Yを含んでいてもよい。 In the sixth aspect of the present disclosure, for example, in the positive electrode material according to any one of the first to fifth aspects, the M may contain Y.
 本開示の第7態様において、例えば、第1から第5態様のいずれか1つに係る正極材料では、前記Mは、YおよびZrを含んでいてもよい。 In the seventh aspect of the present disclosure, for example, in the positive electrode material according to any one of the first to fifth aspects, the M may contain Y and Zr.
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る正極材料では、前記Xは、ClおよびBrからなる群より選択される少なくとも1つを含んでいてもよい。 In the eighth aspect of the present disclosure, for example, in the positive electrode material according to any one of the first to seventh aspects, the X may contain at least one selected from the group consisting of Cl and Br. ..
 第4から第8態様によれば、正極材料を含む電池は、より良好な充放電特性を有する。 According to the fourth to eighth aspects, the battery containing the positive electrode material has better charge / discharge characteristics.
 本開示の第9態様に係る電池は、
 第1から第8態様のいずれか1つに係る正極材料を含む正極と、
 負極と、
 前記正極と前記負極との間に配置された電解質層と、
 を備えている。
The battery according to the ninth aspect of the present disclosure is
A positive electrode containing a positive electrode material according to any one of the first to eighth aspects, and a positive electrode.
With the negative electrode
An electrolyte layer arranged between the positive electrode and the negative electrode,
It has.
 第9態様によれば、電池では、新しいメカニズムで充放電反応が進行する。電池は、高い出力を有する傾向がある。 According to the ninth aspect, in the battery, the charge / discharge reaction proceeds by a new mechanism. Batteries tend to have high output.
 本開示の第10態様において、例えば、第9態様に係る電池では、前記負極は、リチウムを吸蔵しうる負極活物質を含んでいてもよい。 In the tenth aspect of the present disclosure, for example, in the battery according to the ninth aspect, the negative electrode may contain a negative electrode active material capable of occluding lithium.
 本開示の第11態様において、例えば、第9または第10態様に係る電池では、前記負極は、金属リチウム、リチウム合金、金属インジウム、インジウム合金、炭素材料、シリコン、シリコン合金、酸化ケイ素およびチタン酸リチウムからなる群より選択される少なくとも1つを含んでいてもよい。 In the eleventh aspect of the present disclosure, for example, in the battery according to the ninth or tenth aspect, the negative electrode is a metallic lithium, a lithium alloy, a metallic indium, an indium alloy, a carbon material, a silicon, a silicon alloy, silicon oxide and a titanic acid. It may contain at least one selected from the group consisting of lithium.
 第10または第11態様によれば、電池は、より良好な充放電特性を有する。 According to the tenth or eleventh aspect, the battery has better charge / discharge characteristics.
 本開示の第12態様において、例えば、第9から第11態様のいずれか1つに係る電池では、前記電解質層は、固体電解質材料を含んでいてもよく、前記固体電解質材料の組成は、前記組成式(1)により表される材料の組成と異なっていてもよい。 In the twelfth aspect of the present disclosure, for example, in the battery according to any one of the ninth to eleventh aspects, the electrolyte layer may contain a solid electrolyte material, and the composition of the solid electrolyte material is the same. The composition may be different from the composition of the material represented by the composition formula (1).
 本開示の第13態様において、例えば、第9から第12態様のいずれか1つに係る電池では、前記電解質層は、硫化物固体電解質を含んでいてもよい。 In the thirteenth aspect of the present disclosure, for example, in the battery according to any one of the ninth to twelfth aspects, the electrolyte layer may contain a sulfide solid electrolyte.
 第12または第13態様によれば、電池は、より良好な充放電特性を有する。 According to the twelfth or thirteenth aspect, the battery has better charge / discharge characteristics.
 本開示の第14態様において、例えば、第9から第13態様のいずれか1つに係る電池では、充電時に、前記組成式(1)により表される材料に含まれるハロゲン元素が酸化されることによって、ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つが生成してもよく、放電時に、前記ハロゲン単体および前記ハロゲン化物からなる群より選択される少なくとも1つに含まれるハロゲン元素が還元されてもよい。第14態様によれば、電池では、新しいメカニズムで充放電反応が進行する。 In the 14th aspect of the present disclosure, for example, in the battery according to any one of the 9th to 13th aspects, the halogen element contained in the material represented by the composition formula (1) is oxidized at the time of charging. May produce at least one selected from the group consisting of a single halogen and a halide, and upon discharge, the halogen element contained in at least one selected from the group consisting of a single halogen and the halide is reduced. May be done. According to the fourteenth aspect, in the battery, the charge / discharge reaction proceeds by a new mechanism.
 以下、本開示の実施の形態が、図面を参照しながら説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
(実施の形態1)
 図1は、実施の形態1に係る正極材料1000の概略構成を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a schematic configuration of the positive electrode material 1000 according to the first embodiment.
 正極材料1000は、下記の組成式(1)により表される材料100および炭素材料101を含む。材料100は、ハロゲン化物固体電解質として知られている材料であってもよい。本明細書では、材料100を「ハロゲン化物材料」と呼ぶことがある。
 Liabc ・・・式(1)
 ここで、a、bおよびcは、それぞれ、0より大きい値である。a、bおよびcは、a+b<cを満たしていてもよい。Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つを含む。Xは、ハロゲン元素を含む。ハロゲン元素は、例えば、F、Cl、BrおよびIからなる群より選択される少なくとも1つを含む。
The positive electrode material 1000 includes a material 100 represented by the following composition formula (1) and a carbon material 101. Material 100 may be a material known as a halide solid electrolyte. In the present specification, the material 100 may be referred to as a "halide material".
Li a M b X c・ ・ ・ Equation (1)
Here, a, b, and c are values larger than 0, respectively. a, b and c may satisfy a + b <c. M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements. X contains a halogen element. The halogen element comprises, for example, at least one selected from the group consisting of F, Cl, Br and I.
 本開示において、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。「金属元素」とは、水素を除く周期表1族から12族中に含まれる全ての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、SおよびSeを除く周期表13族から16族中に含まれる全ての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン化合物と無機化合物を形成したときにカチオンとなりうる元素群である。 In the present disclosure, the "metalloid element" is B, Si, Ge, As, Sb and Te. "Metallic elements" are all elements contained in groups 1 to 12 of the periodic table except hydrogen, as well as B, Si, Ge, As, Sb, Te, C, N, P, O, S and Se. It is all the elements contained in the 13th to 16th groups of the periodic table except for. That is, the "metalloid element" or "metal element" is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
 炭素材料101は、ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを吸蔵しうる。本明細書において、「炭素材料が~を吸蔵する」とは、炭素材料101が、炭素材料101の外部から炭素以外の他の元素を取り込み、炭素材料101の表面または内部において、当該元素を保持することを意味する。さらに、炭素材料101は、吸蔵したハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを放出しうる。「炭素材料が~を放出する」とは、炭素材料101に吸蔵された他の元素が炭素材料101から脱離することを意味する。 The carbon material 101 can occlude at least one selected from the group consisting of elemental halogens and halides. In the present specification, "the carbon material occludes ..." means that the carbon material 101 takes in an element other than carbon from the outside of the carbon material 101 and retains the element on the surface or inside of the carbon material 101. Means to do. Further, the carbon material 101 may release at least one selected from the group consisting of occluded halogen simple substances and halides. "The carbon material releases ..." means that other elements occluded in the carbon material 101 are desorbed from the carbon material 101.
 以上の構成によれば、新規な正極材料を実現できる。さらに、この正極材料によれば、従来のリチウムイオン電池とは異なるメカニズムで充放電反応が進行する電池を実現できる。なお、ハロゲン化物材料は硫黄を含まなくてもよい。 With the above configuration, a new positive electrode material can be realized. Further, according to this positive electrode material, it is possible to realize a battery in which the charge / discharge reaction proceeds by a mechanism different from that of the conventional lithium ion battery. The halide material does not have to contain sulfur.
 特許文献1には、リチウム含有金属酸化物を含む正極と、炭素材料を含む負極と、電解質として非水有機電解液とを用いたリチウムイオン電池が開示されている。特許文献1の電池では、充電時において、リチウム含有正極酸化物からリチウムイオンが脱離する。このリチウムイオンは、電解液に溶媒和され、電解液中に拡散する。電解液中に拡散したリチウムイオンは、炭素材料に吸蔵される。 Patent Document 1 discloses a lithium ion battery using a positive electrode containing a lithium-containing metal oxide, a negative electrode containing a carbon material, and a non-aqueous organic electrolytic solution as an electrolyte. In the battery of Patent Document 1, lithium ions are desorbed from the lithium-containing positive electrode oxide during charging. The lithium ions are solvated in the electrolytic solution and diffuse into the electrolytic solution. Lithium ions diffused in the electrolytic solution are occluded in the carbon material.
 特許文献2には、Li3YBr6で表される組成を有する固体電解質材料が開示されている。この固体電解質材料では、ハロゲンがイットリウムに強く引き寄せられている。これにより、固体電解質材料は、高いイオン伝導性を示す。特許文献2では、固体電解質材料のイオン伝導性が電池の充放電に利用されている。 Patent Document 2 discloses a solid electrolyte material having a composition represented by Li 3 YBr 6. In this solid electrolyte material, halogens are strongly attracted to yttrium. As a result, the solid electrolyte material exhibits high ionic conductivity. In Patent Document 2, the ionic conductivity of the solid electrolyte material is used for charging and discharging the battery.
 本発明者らは、鋭意検討の結果、Liabcで表される材料と、ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを吸蔵しうる炭素材料とを組み合わせた正極材料を用いることによって、従来の電池とは異なるメカニズムで可逆的な充放電が可能な電池を作製できることを新たに見出した。 As a result of diligent studies, the present inventors have made a positive electrode in which a material represented by Li a M b X c and a carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides are combined. It has been newly found that by using a material, a battery capable of reversible charging and discharging can be produced by a mechanism different from that of a conventional battery.
 本実施形態の正極材料を含む電池の充放電は、次のメカニズムによって行われる。まず、電池の充電時において、材料100に含まれるハロゲン元素が酸化される。このとき、電荷補償のために、材料100からリチウムイオンが放出される。ハロゲン元素の酸化によってハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つが生成する。ハロゲン単体は、例えば、X2で表される化合物である。ハロゲン化物は、例えば、MXdで表される化合物である。ここで、dは、Mの価数と同じ値である。生成したハロゲン単体またはハロゲン化物は、炭素材料101に吸蔵される。リチウムイオンは、例えば、電池内の電解質層を移動し、負極に吸蔵される。次に、電池の放電時において、負極に吸蔵されたリチウムイオンが負極から放出される。リチウムイオンは、電解質層を通じて、正極に移動する。放電時の正極において、ハロゲン単体またはハロゲン化物は、電子の受容を伴って還元される。詳細には、ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つに含まれるハロゲン元素が還元される。還元されたハロゲン単体またはハロゲン化物は、負極から移動してきたリチウムイオンと反応して、炭素材料101から放出される。組成式(1)で表される材料100によれば、電池の充放電時において、正極の内部の構造の変化が抑制される。例えば、電池の充電時に、正極の内部に空隙が生じることが抑制される。これにより、電池において、可逆的な充放電反応が進行すると推定される。本実施形態では、材料100および炭素材料101が正極活物質として機能しうる。 Charging and discharging of the battery containing the positive electrode material of the present embodiment is performed by the following mechanism. First, when the battery is charged, the halogen element contained in the material 100 is oxidized. At this time, lithium ions are released from the material 100 for charge compensation. Oxidation of the halogen element produces at least one selected from the group consisting of elemental halogens and halides. Halogen alone is, for example, a compound represented by X 2. The halide is, for example, a compound represented by MX d. Here, d is the same value as the valence of M. The generated halogen simple substance or halide is occluded in the carbon material 101. Lithium ions move, for example, in the electrolyte layer in the battery and are occluded in the negative electrode. Next, when the battery is discharged, the lithium ions occluded in the negative electrode are released from the negative electrode. Lithium ions move to the positive electrode through the electrolyte layer. At the positive electrode during discharge, the halogen alone or the halide is reduced with the acceptance of electrons. Specifically, the halogen element contained in at least one selected from the group consisting of elemental halogens and halides is reduced. The reduced halogen simple substance or halide reacts with the lithium ions transferred from the negative electrode and is released from the carbon material 101. According to the material 100 represented by the composition formula (1), changes in the internal structure of the positive electrode are suppressed during charging and discharging of the battery. For example, when the battery is charged, it is possible to prevent the formation of voids inside the positive electrode. As a result, it is presumed that a reversible charge / discharge reaction proceeds in the battery. In this embodiment, the material 100 and the carbon material 101 can function as the positive electrode active material.
 リチウムイオン電池では、正極および負極におけるリチウムの脱離または挿入が進行するためには、活物質と電解質とが電子およびリチウムイオンを速やかにやり取りする必要がある。例えば、正極においては、正極活物質、導電助剤および電解質によって形成された三相界面で電子およびリチウムイオンのやり取りが行われる。正極活物質は、例えば、リチウムイオンを貯蔵する酸化物である。導電助剤は、例えば、電子の伝導を補助する機能を有する。電解質は、例えば、電解液または電解質層に含まれており、リチウムイオンを輸送することができる。リチウムイオン電池の正極活物質では、例えば、金属-酸素-金属結合を通じたホッピング伝導によって電子が伝導される。この場合、正極活物質における電子の伝導性は、正極活物質に含まれる金属イオンの電子状態の影響を大きく受ける。例えば、正極活物質内において、金属イオンの価数が一様である場合、正極活物質の電子伝導性が低下する。すなわち、電池の充電末期または放電末期では、正極活物質の電子伝導性が低下する。 In a lithium ion battery, in order for the desorption or insertion of lithium in the positive electrode and the negative electrode to proceed, it is necessary for the active material and the electrolyte to rapidly exchange electrons and lithium ions. For example, in a positive electrode, electrons and lithium ions are exchanged at a three-phase interface formed by a positive electrode active material, a conductive auxiliary agent, and an electrolyte. The positive electrode active material is, for example, an oxide that stores lithium ions. The conductive auxiliary agent has, for example, a function of assisting the conduction of electrons. The electrolyte is contained in, for example, the electrolyte or the electrolyte layer and can transport lithium ions. In the positive electrode active material of a lithium ion battery, for example, electrons are conducted by hopping conduction through a metal-oxygen-metal bond. In this case, the conductivity of electrons in the positive electrode active material is greatly affected by the electronic state of the metal ions contained in the positive electrode active material. For example, when the valence of metal ions is uniform in the positive electrode active material, the electron conductivity of the positive electrode active material decreases. That is, at the end of charging or the end of discharging of the battery, the electron conductivity of the positive electrode active material decreases.
 本実施形態の正極材料を含む正極では、例えば、高い電子伝導性を有する炭素材料101と、高いイオン伝導性を有する材料100とによって形成された二相界面で電子およびリチウムイオンのやり取りが行われる。すなわち、二相界面を利用して、充放電反応が進行する。そのため、本実施形態の正極材料は、電池の電流密度を向上することに適している。 In the positive electrode including the positive electrode material of the present embodiment, for example, electrons and lithium ions are exchanged at a two-phase interface formed by the carbon material 101 having high electron conductivity and the material 100 having high ionic conductivity. .. That is, the charge / discharge reaction proceeds using the two-phase interface. Therefore, the positive electrode material of the present embodiment is suitable for improving the current density of the battery.
 炭素材料101のラマンスペクトルにおいて、1500cm-1以上1700cm-1以下の範囲内に現れるピークの強度IGに対する、1300cm-1以上1400cm-1以下の範囲内に現れるピークの強度IDの比ID/IGは、例えば、0以上2以下である。 In the Raman spectrum of the carbon material 101, to the peak intensity I G appearing in the range of 1500 cm -1 or 1700 cm -1 or less, the ratio I D intensity I D of the peak appearing in the range of 1300 cm -1 or 1400 cm -1 or less / IG is, for example, 0 or more and 2 or less.
 以上の構成によれば、炭素材料101は、ハロゲン単体またはハロゲン化物をより容易に吸蔵できる。 According to the above configuration, the carbon material 101 can more easily occlude the halogen alone or the halide.
 炭素材料101のラマンスペクトルは、例えば、レーザーラマン分光法によって得ることができる。1300cm-1以上1400cm-1以下の範囲内に現れるピークは、例えば、炭素のsp3結合に由来する。1500cm-1以上1700cm-1以下の範囲内に現れるピークは、例えば、炭素のsp2結合に由来する。そのため、比ID/IGが低ければ低いほど、炭素材料101は、多くのπ電子を有する。本実施形態の正極材料1000を含む電池の充電時において、生成したハロゲン単体またはハロゲン化物は、炭素材料101のπ電子に引き付けられる傾向がある。そのため、比ID/IGが低ければ低いほど、炭素材料101は、ハロゲン単体またはハロゲン化物を容易に吸蔵できる。 The Raman spectrum of the carbon material 101 can be obtained, for example, by laser Raman spectroscopy. Peak appearing at 1300 cm -1 or 1400 cm -1 in the range, for example, from the sp 3 carbon bonds. Peak appearing at 1500 cm -1 or 1700 cm -1 in the range, for example, from sp 2 carbon bond. Therefore, the lower the ratio I D / I G, the carbon material 101 has a number of π electrons. When charging the battery containing the positive electrode material 1000 of the present embodiment, the generated halogen simple substance or halide tends to be attracted to the π electrons of the carbon material 101. Therefore, the lower the ratio I D / I G, the carbon material 101 can be easily occluded simple halogen or halide.
 比ID/IGは、0以上1.6以下であってもよく、0以上1.1以下であってもよく、0以上0.5以下であってもよく、0以上0.1以下であってもよい。 The ratio I D / IG may be 0 or more and 1.6 or less, 0 or more and 1.1 or less, 0 or more and 0.5 or less, and 0 or more and 0.1 or less. It may be.
 以上の構成によれば、炭素材料101は、ハロゲン単体またはハロゲン化物をより容易に吸蔵できる。 According to the above configuration, the carbon material 101 can more easily occlude the halogen alone or the halide.
 炭素材料101のBET比表面積は、例えば、5m2-1より大きい。炭素材料101のBET比表面積は、例えば、窒素ガス吸着によるBET(Brunauer-Emmett-Teller)法によって求めることができる。炭素材料101のBET比表面積が大きければ大きいほど、炭素材料101と材料100とが互いに接触している面積が大きい。炭素材料101のBET比表面積が5m2-1より大きいとき、正極材料1000を含む電池の電流密度が向上する傾向がある。炭素材料101のBET比表面積が大きければ大きいほど、炭素材料101は、ハロゲン単体またはハロゲン化物を容易に吸蔵できる傾向もある。さらに、以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 The BET specific surface area of the carbon material 101 is, for example, greater than 5 m 2 g -1. The BET specific surface area of the carbon material 101 can be determined, for example, by the BET (Brunauer-Emmett-Teller) method by adsorbing nitrogen gas. The larger the BET specific surface area of the carbon material 101, the larger the area in which the carbon material 101 and the material 100 are in contact with each other. When the BET specific surface area of the carbon material 101 is larger than 5 m 2 g -1 , the current density of the battery containing the positive electrode material 1000 tends to increase. The larger the BET specific surface area of the carbon material 101, the more easily the carbon material 101 can occlude the halogen simple substance or the halide. Further, according to the above configuration, a battery having better charge / discharge characteristics can be realized.
 炭素材料101のBET比表面積は、10m2-1より大きくてもよく、14m2-1より大きくてもよく、40m2-1以上であってもよく、100m2-1以上であってもよい。炭素材料101のBET比表面積の上限値は、特に限定されず、例えば1000m2-1である。 The BET specific surface area of the carbon material 101 may be larger than 10 m 2 g -1 , may be larger than 14 m 2 g -1 , may be 40 m 2 g -1 or more, and may be 100 m 2 g -1 or more. There may be. The upper limit of the BET specific surface area of the carbon material 101 is not particularly limited, and is, for example, 1000 m 2 g -1 .
 以上の構成によれば、正極材料1000を含む電池の電流密度が向上する傾向がある。さらに、以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, the current density of the battery containing the positive electrode material 1000 tends to improve. Further, according to the above configuration, a battery having better charge / discharge characteristics can be realized.
 炭素材料101の形状は、特に限定されず、例えば粒子状である。本開示において、「粒子状」は、針状、鱗片状、球状および楕円球状を含む。炭素材料101の形状が粒子状(例えば、球状)である場合、炭素材料101のメジアン径は、特に限定されず、0.001μm以上100μm以下であってもよい。炭素材料101のメジアン径が0.001μm以上である場合、正極材料1000において、炭素材料101および材料100が良好な分散状態を形成しうる。これにより、正極材料1000を含む電池の充放電特性が向上しうる。炭素材料101のメジアン径が100μm以下である場合、炭素材料101内でのリチウム拡散速度が増加する。これにより、電池が高出力で動作しうる。 The shape of the carbon material 101 is not particularly limited, and is, for example, particulate. In the present disclosure, "particulate" includes needle-like, scaly, spherical and elliptical spheres. When the shape of the carbon material 101 is particulate (for example, spherical), the median diameter of the carbon material 101 is not particularly limited and may be 0.001 μm or more and 100 μm or less. When the median diameter of the carbon material 101 is 0.001 μm or more, the carbon material 101 and the material 100 can form a good dispersed state in the positive electrode material 1000. As a result, the charge / discharge characteristics of the battery containing the positive electrode material 1000 can be improved. When the median diameter of the carbon material 101 is 100 μm or less, the lithium diffusion rate in the carbon material 101 increases. This allows the battery to operate at high output.
 炭素材料101のメジアン径は、10μmより小さくてもよく、8μmより小さくてもよく、5μm以下であってもよく、3μm以下であってもよく、1μm以下であってもよい。炭素材料101のメジアン径の下限値は、0.01μmであってもよい。 The median diameter of the carbon material 101 may be smaller than 10 μm, smaller than 8 μm, 5 μm or less, 3 μm or less, or 1 μm or less. The lower limit of the median diameter of the carbon material 101 may be 0.01 μm.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 炭素材料101のメジアン径は、後述する材料100のメジアン径より大きくてもよい。これにより、炭素材料101と材料100とが良好な分散状態を形成できる。 The median diameter of the carbon material 101 may be larger than the median diameter of the material 100 described later. As a result, the carbon material 101 and the material 100 can form a good dispersed state.
 本明細書において、メジアン径は、レーザー回折散乱法によって体積基準で測定された粒度分布から求められる、体積累積50%に相当する粒径(d50)を意味する。 In the present specification, the median diameter means the particle size (d50) corresponding to the cumulative volume of 50%, which is obtained from the particle size distribution measured by the laser diffraction / scattering method on a volume basis.
 炭素材料101は、例えば、黒鉛(グラファイト)、グラフェン、酸化グラフェン、還元型酸化グラフェン(RGO)、カーボンナノチューブ(CNT)、フラーレン、カーボンファイバー、カーボンブラック(CB)、ソフトカーボン(易黒鉛化性炭素)、ハードカーボン(難黒鉛化性炭素)、メソポーラスカーボンおよび活性炭からなる群より選択される少なくとも1つを含む。黒鉛は、天然黒鉛であってもよく、高配向性熱分解グラファイト(HOPG)などの人工黒鉛であってもよい。カーボンファイバーとしては、例えば、気相成長炭素繊維が挙げられる。カーボンブラックは、アセチレンブラック(AB)であってもよく、ケッチェンブラック(KB)であってもよい。炭素材料は、カーボンブラック、気相成長炭素繊維およびグラフェンからなる群より選択される少なくとも1つを含んでいてもよい。 The carbon material 101 includes, for example, graphite (graphite), graphene, graphene oxide, reduced graphene oxide (RGO), carbon nanotube (CNT), fullerene, carbon fiber, carbon black (CB), and soft carbon (graphitizable carbon). ), Hard carbon (non-graphitizable carbon), mesoporous carbon and at least one selected from the group consisting of activated carbon. Graphite may be natural graphite or artificial graphite such as highly oriented pyrolytic graphite (HOPG). Examples of carbon fibers include vapor-grown carbon fibers. The carbon black may be acetylene black (AB) or Ketjen black (KB). The carbon material may contain at least one selected from the group consisting of carbon black, vapor-grown carbon fibers and graphene.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 正極材料1000における炭素材料101の含有率は、特に限定されず、1重量%以上であってもよく、5重量%以上であってもよく、10重量%以上であってもよく、15重量%以上であってもよい。炭素材料101の含有率の上限値は、特に限定されず、例えば40重量%である。炭素材料101の含有率が高ければ高いほど、正極材料1000を含む電池は、大きい放電容量を有する傾向がある。 The content of the carbon material 101 in the positive electrode material 1000 is not particularly limited, and may be 1% by weight or more, 5% by weight or more, 10% by weight or more, or 15% by weight. It may be the above. The upper limit of the content of the carbon material 101 is not particularly limited, and is, for example, 40% by weight. The higher the content of the carbon material 101, the larger the discharge capacity of the battery containing the positive electrode material 1000 tends to be.
 組成式(1)のMは、Yを含んでいてもよく、YおよびZrを含んでいてもよい。 M in the composition formula (1) may contain Y, and may contain Y and Zr.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 組成式(1)のXは、ClおよびBrからなる群より選択される少なくとも1つを含んでいてもよく、ClおよびBrの両方を含んでいてもよい。 X in the composition formula (1) may contain at least one selected from the group consisting of Cl and Br, and may contain both Cl and Br.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 組成式(1)において、a、bおよびcは、1≦a≦5、0<b≦2および5.5≦c≦6.5を満たしていてもよく、1.5≦a≦4.5、0.5≦b≦1.5およびc=6を満たしていてもよい。a、bおよびcは、a+mb=cの関係を満たしてもよい。ここで、mは、Mの価数である。Mが複数種の元素を含む場合、mbは、各元素の組成比に当該元素の価数をかけた値の合計となる。例えば、Mが、元素M1と元素M2とを含む場合であって、元素M1の組成比がb1で元素M1の価数がm1、元素M2の組成比がb2で元素M2の価数がm2である場合、mb=m11+m22となる。元素Mの価数が複数考えうる場合は、それらの考えうる価数をmとして用いた場合に上記関係式が満たされればよい。 In the composition formula (1), a, b and c may satisfy 1 ≦ a ≦ 5, 0 <b ≦ 2 and 5.5 ≦ c ≦ 6.5, and 1.5 ≦ a ≦ 4. 5, 0.5 ≦ b ≦ 1.5 and c = 6 may be satisfied. a, b and c may satisfy the relationship of a + mb = c. Here, m is a valence of M. When M contains a plurality of kinds of elements, mb is the sum of the values obtained by multiplying the composition ratio of each element by the valence of the element. For example, when M contains the element M1 and the element M2, the composition ratio of the element M1 is b 1 , the valence of the element M1 is m 1 , the composition ratio of the element M2 is b 2 , and the valence of the element M2. When is m 2 , mb = m 1 b 1 + m 2 b 2 . When a plurality of valences of the element M can be considered, the above relational expression may be satisfied when those possible valences are used as m.
 材料100の形状は、特に限定されず、例えば粒子状である。材料100の形状が粒子状(例えば、球状)である場合、材料100のメジアン径は、100μm以下であってもよい。材料100のメジアン径が100μm以下である場合、材料100および炭素材料101が正極材料1000において良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。材料100のメジアン径は、10μm以下であってもよい。 The shape of the material 100 is not particularly limited, and is, for example, in the form of particles. When the shape of the material 100 is particulate (for example, spherical), the median diameter of the material 100 may be 100 μm or less. When the median diameter of the material 100 is 100 μm or less, the material 100 and the carbon material 101 can form a good dispersed state in the positive electrode material 1000. This improves the charge / discharge characteristics of the battery. The median diameter of the material 100 may be 10 μm or less.
 正極材料1000における材料100の含有率は、特に限定されず、30重量%以上であってもよく、50重量%以上であってもよい。材料100の含有率の上限値は、95重量%であってもよく、90重量%であってもよく、85重量%であってもよい。 The content of the material 100 in the positive electrode material 1000 is not particularly limited, and may be 30% by weight or more, or 50% by weight or more. The upper limit of the content of the material 100 may be 95% by weight, 90% by weight, or 85% by weight.
 正極材料1000は、材料100および炭素材料101以外の他の材料をさらに含んでいてもよい。他の材料としては、正極活物質、結着剤、導電助剤などが挙げられる。 The positive electrode material 1000 may further contain materials other than the material 100 and the carbon material 101. Other materials include positive electrode active materials, binders, conductive aids and the like.
 正極活物質としては、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物などが挙げられる。リチウム含有遷移金属酸化物としては、Li(NiCoAl)O2、Li(NiCoMn)O2、LiCoO2などが挙げられる。特に、正極活物質としてリチウム含有遷移金属酸化物を用いた場合には、電池の平均放電電圧を向上させることができる。 Examples of the positive electrode active material include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, and transition metal oxynitrides. Examples of the lithium-containing transition metal oxide include Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , and LiCoO 2 . In particular, when a lithium-containing transition metal oxide is used as the positive electrode active material, the average discharge voltage of the battery can be improved.
 正極活物質は、リチウム含有遷移金属酸化物として、ニッケルコバルトマンガン酸リチウムを含んでいてもよい。例えば、正極活物質は、Li(NiCoMn)O2であってもよい。以上の構成によれば、正極材料1000は、電池のエネルギー密度および電池の充放電効率をより向上させることができる。 The positive electrode active material may contain lithium nickel cobalt manganate as the lithium-containing transition metal oxide. For example, the positive electrode active material may be Li (NiComn) O 2 . According to the above configuration, the positive electrode material 1000 can further improve the energy density of the battery and the charge / discharge efficiency of the battery.
 結着剤は、例えば、正極材料1000から正極を作製したときに、粒子同士の密着性および正極を構成する材料の結着性を向上させるために用いられる。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴムおよびカルボキシメチルセルロースが挙げられる。テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸およびヘキサジエンからなる群より選択される2種以上の材料の共重合体も結着剤として用いられうる。これらの材料から選択される2種以上の混合物を結着剤として用いてもよい。 The binder is used, for example, to improve the adhesion between particles and the binding property of the materials constituting the positive electrode when a positive electrode is prepared from the positive electrode material 1000. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, and polyacrylic acid ethyl ester. , Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene Examples include rubber and carboxymethyl cellulose. 2 selected from the group consisting of tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid and hexadiene 2 Copolymers of more than seed materials can also be used as binders. A mixture of two or more selected from these materials may be used as a binder.
 導電助剤は、正極材料1000の電子導電性を向上させる目的で用いられうる。導電助剤としては、例えば、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、および、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが用いられうる。導電性高分子化合物は、正極材料1000から形成された正極の電子伝導性および可塑性を向上させることに適している。 The conductive auxiliary agent can be used for the purpose of improving the electronic conductivity of the positive electrode material 1000. Examples of the conductive auxiliary agent include conductive fibers such as metal fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, and conductive metal oxides such as titanium oxide. , And conductive polymer compounds such as polyacetylene, polyaniline, polypyrrole, polythiophene and the like can be used. The conductive polymer compound is suitable for improving the electron conductivity and plasticity of the positive electrode formed from the positive electrode material 1000.
 正極材料1000における他の材料の含有率は、特に限定されず、50重量%以下であってもよく、30重量%以下であってもよく、10重量%以下であってもよく、5重量%以下であってもよい。正極材料1000は、他の材料を実質的に含んでいなくてもよい。特に、正極材料1000は、他の材料として、正極活物質を実質的に含んでいなくてもよい。言い換えると、正極材料1000は、実質的に材料100および炭素材料101からなっていてもよい。「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味する。ただし、正極材料1000は、材料100および炭素材料101の他に不純物を含んでいてもよい。 The content of the other material in the positive electrode material 1000 is not particularly limited, and may be 50% by weight or less, 30% by weight or less, 10% by weight or less, or 5% by weight. It may be as follows. The positive electrode material 1000 does not have to substantially contain other materials. In particular, the positive electrode material 1000 does not have to substantially contain the positive electrode active material as another material. In other words, the positive electrode material 1000 may substantially consist of the material 100 and the carbon material 101. By "substantially consisting of" is meant eliminating other components that alter the essential characteristics of the mentioned material. However, the positive electrode material 1000 may contain impurities in addition to the material 100 and the carbon material 101.
 正極材料1000は、複数の材料100の粒子、複数の炭素材料101の粒子、および複数の正極活物質の粒子を含んでいてもよい。 The positive electrode material 1000 may include particles of a plurality of materials 100, particles of a plurality of carbon materials 101, and particles of a plurality of positive electrode active materials.
<組成式(1)により表される材料の製造方法>
 実施の形態1において、材料100は、例えば、下記の方法により製造されうる。
<Manufacturing method of material represented by composition formula (1)>
In the first embodiment, the material 100 can be produced, for example, by the following method.
 まず、目的の組成に応じた配合比で、二元系ハロゲン化物の原料粉を用意する。二元系ハロゲン化物とは、ハロゲン元素を含む2種の元素からなる化合物をいう。例えば、Li3YCl6を作製する場合には、LiClの原料粉とYCl3の原料粉とを3:1のモル比で用意する。 First, a raw material powder for a dual halide is prepared at a blending ratio according to the desired composition. The binary halide refers to a compound composed of two kinds of elements including a halogen element. For example, when Li 3 YCl 6 is prepared, the raw material powder of LiCl and the raw material powder of YCl 3 are prepared at a molar ratio of 3: 1.
 このとき、原料粉の種類によって、上述の組成式(1)における「M」および「X」の元素が決定される。原料粉の種類、配合比および合成プロセスによって、上述の組成式(1)における「a」、「b」および「c」の値が決定される。 At this time, the elements of "M" and "X" in the above composition formula (1) are determined depending on the type of raw material powder. The values of "a", "b" and "c" in the above-mentioned composition formula (1) are determined by the type of raw material powder, the blending ratio and the synthesis process.
 原料粉を十分に混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合、粉砕および反応させる。原料粉を十分に混合した後に、原料粉を真空中で焼結してもよい。 After sufficiently mixing the raw material powders, the raw material powders are mixed, crushed and reacted using the method of mechanochemical milling. After the raw material powder is sufficiently mixed, the raw material powder may be sintered in vacuum.
 これらの方法によって、上述した組成の結晶相を含む材料100が得られる。 By these methods, a material 100 containing a crystal phase having the above-mentioned composition can be obtained.
 なお、材料100における結晶相の構成(結晶構造)は、原料粉同士の反応方法および反応条件によって決定される。 The composition (crystal structure) of the crystal phase in the material 100 is determined by the reaction method and reaction conditions between the raw material powders.
(実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜省略される。
(Embodiment 2)
Hereinafter, the second embodiment will be described. The description overlapping with the above-described first embodiment will be omitted as appropriate.
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。 FIG. 2 is a cross-sectional view showing a schematic configuration of the battery 2000 according to the second embodiment.
 電池2000は、正極201、電解質層202および負極203を備える。 The battery 2000 includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
 正極201は、上述の実施の形態1における正極材料1000を含む。 The positive electrode 201 includes the positive electrode material 1000 according to the first embodiment described above.
 電解質層202は、正極201と負極203との間に配置される。 The electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203.
 以上の構成によれば、電池2000において、新しいメカニズムで充放電反応が進行する。さらに、電池2000の反応過電圧の上昇を抑制することができる。 According to the above configuration, in the battery 2000, the charge / discharge reaction proceeds by a new mechanism. Further, it is possible to suppress an increase in the reaction overvoltage of the battery 2000.
 正極201において、炭素材料101と材料100との体積比率「v1:100-v1」について、5≦v1≦95が満たされていてもよい。v1は、正極201に含まれる炭素材料101および材料100の合計体積を100と定義したときの炭素材料101の体積比率を表す。v1が5≦v1を満たす場合、十分な電池のエネルギー密度を確保しうる。v1がv1≦95を満たす場合、電池が高出力で動作しうる。 In the positive electrode 201, 5 ≦ v1 ≦ 95 may be satisfied with respect to the volume ratio “v1: 100−v1” between the carbon material 101 and the material 100. v1 represents the volume ratio of the carbon material 101 when the total volume of the carbon material 101 and the material 100 contained in the positive electrode 201 is defined as 100. When v1 satisfies 5 ≦ v1, sufficient battery energy density can be ensured. If v1 satisfies v1 ≦ 95, the battery can operate at high power.
 正極201の厚さは、5μm以上500μm以下であってもよい。正極201の厚さが5μm以上である場合、十分な電池のエネルギー密度を確保できる。正極201の厚さが500μm以下である場合、電池が高出力で動作しうる。 The thickness of the positive electrode 201 may be 5 μm or more and 500 μm or less. When the thickness of the positive electrode 201 is 5 μm or more, sufficient energy density of the battery can be secured. When the thickness of the positive electrode 201 is 500 μm or less, the battery can operate at a high output.
 電解質層202は、電解質材料を含む層である。電解質層202に含まれる電解質材料は、例えば、固体電解質材料である。すなわち、電解質層202は、固体電解質層であってもよい。 The electrolyte layer 202 is a layer containing an electrolyte material. The electrolyte material contained in the electrolyte layer 202 is, for example, a solid electrolyte material. That is, the electrolyte layer 202 may be a solid electrolyte layer.
 電解質層202に含まれる固体電解質材料としては、例えば、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質および錯体水素化物固体電解質が挙げられる。電解質層202は、硫化物固体電解質を含んでいてもよい。 Examples of the solid electrolyte material contained in the electrolyte layer 202 include a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte. The electrolyte layer 202 may contain a sulfide solid electrolyte.
 電解質層202に含まれる固体電解質材料の組成は、上述の実施の形態1における正極材料1000の材料100の組成と同じであってもよい。すなわち、電解質層202は、固体電解質材料として、上述の実施の形態1における材料100を含んでいてもよい。 The composition of the solid electrolyte material contained in the electrolyte layer 202 may be the same as the composition of the material 100 of the positive electrode material 1000 in the above-described first embodiment. That is, the electrolyte layer 202 may include the material 100 according to the first embodiment described above as the solid electrolyte material.
 以上の構成によれば、電池の出力密度および充放電特性をより向上させることができる。 According to the above configuration, the output density and charge / discharge characteristics of the battery can be further improved.
 電解質層202に含まれる固体電解質材料の組成は、上述の実施の形態1における正極材料1000の材料100の組成と異なっていてもよい。電解質層202は、固体電解質材料として、上述の実施の形態1における材料100とは異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。 The composition of the solid electrolyte material contained in the electrolyte layer 202 may be different from the composition of the material 100 of the positive electrode material 1000 in the above-described first embodiment. The electrolyte layer 202 may contain, as the solid electrolyte material, a halide solid electrolyte having a composition different from that of the material 100 in the first embodiment described above.
 以上の構成によれば、電池の充放電特性をより向上させることができる。 According to the above configuration, the charge / discharge characteristics of the battery can be further improved.
 硫化物固体電解質としては、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが用いられうる。これらの硫化物固体電解質には、LiX、Li2O、MOq、LipMOqなどが添加されていてもよい。ここで、Xは、F、Cl、BrおよびIからなる群より選択される少なくとも1つである。Mは、P、Si、Ge、B、Al、Ga、In、FeおよびZnからなる群より選択される少なくとも1つである。pおよびqは、それぞれ、自然数である。 Examples of the sulfide solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like can be used. These sulfide solid electrolyte, LiX, Li 2 O, MO q, like Li p MO q may be added. Here, X is at least one selected from the group consisting of F, Cl, Br and I. M is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe and Zn. p and q are natural numbers, respectively.
 以上の構成によれば、電解質層202は、優れた還元安定性を有する硫化物固体電解質を含むため、負極材料として黒鉛、金属リチウムなどの低電位材料を用いることができる。これにより、電池のエネルギー密度を向上させることができる。 According to the above configuration, since the electrolyte layer 202 contains a sulfide solid electrolyte having excellent reduction stability, a low potential material such as graphite or metallic lithium can be used as the negative electrode material. Thereby, the energy density of the battery can be improved.
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3NおよびそのH置換体、Li3PO4およびそのN置換体、ならびに、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックスが用いられうる。 Examples of the oxide solid electrolyte include a NASICON type solid electrolyte typified by LiTi 2 (PO 4 ) 3 and its elemental substituent, a (LaLi) TiO 3 based perovskite type solid electrolyte, Li 14 ZnGe 4 O 16 , Li. 4 SiO 4 , LiGeO 4 and LISION type solid electrolyte typified by its element substitution product, Li 7 La 3 Zr 2 O 12 and garnet type solid electrolyte typified by its element substitution product, Li 3 N and its H substitution product , Li 3 PO 4 and its N-substituted products, and glass or glass ceramics based on Li-BO compounds such as Li BO 2 and Li 3 BO 3 with added Li 2 SO 4 , Li 2 CO 3 and the like. Can be used.
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物が用いられうる。高分子化合物は、エチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。そのため、電解質層202のイオン導電率をより上昇させることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが使用されうる。例示されたリチウム塩から選択される1つのリチウム塩が単独で使用されうる。例示されたリチウム塩から選択される2つ以上のリチウム塩の混合物が使用されてもよい。 As the polymer solid electrolyte, for example, a compound of a polymer compound and a lithium salt can be used. The polymer compound may have an ethylene oxide structure. The polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity of the electrolyte layer 202 can be further increased. The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and the like can be used. One lithium salt selected from the exemplified lithium salts can be used alone. A mixture of two or more lithium salts selected from the exemplified lithium salts may be used.
 錯体水素化物固体電解質としては、例えば、LiBH4-LiIおよびLiBH4-P25が用いられうる。 As the complex hydride solid electrolyte, for example, LiBH 4- LiI and LiBH 4- P 2 S 5 can be used.
 電解質層202は、固体電解質材料を主成分として含んでいてもよい。すなわち、電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する重量割合で50重量%以上含んでいてもよい。 The electrolyte layer 202 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 202 may contain, for example, 50% by weight or more of the solid electrolyte material as a weight ratio with respect to the whole of the electrolyte layer 202.
 以上の構成によれば、電池の充放電特性をより向上させることができる。 According to the above configuration, the charge / discharge characteristics of the battery can be further improved.
 電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する重量割合で70重量%以上含んでいてもよい。 The electrolyte layer 202 may contain, for example, 70% by weight or more of the solid electrolyte material as a weight ratio to the whole of the electrolyte layer 202.
 以上の構成によれば、電池の充放電特性をより向上させることができる。 According to the above configuration, the charge / discharge characteristics of the battery can be further improved.
 電解質層202は、固体電解質材料を主成分として含み、さらに、不可避的な不純物、固体電解質材料を合成するときに用いられる出発原料、副生成物、分解生成物などを含んでいてもよい。 The electrolyte layer 202 contains a solid electrolyte material as a main component, and may further contain unavoidable impurities, a starting material used when synthesizing the solid electrolyte material, by-products, decomposition products, and the like.
 電解質層202は、固体電解質材料を、例えば、混入が不可避的な不純物を除いて、電解質層202の全体に対する重量割合で100重量%含んでいてもよい。 The electrolyte layer 202 may contain 100% by weight of the solid electrolyte material as a weight ratio to the whole of the electrolyte layer 202, excluding impurities that are unavoidably mixed, for example.
 以上の構成によれば、電池の充放電特性をより向上させることができる。 According to the above configuration, the charge / discharge characteristics of the battery can be further improved.
 以上のように、電解質層202は、実質的に固体電解質材料のみから構成されていてもよい。 As described above, the electrolyte layer 202 may be substantially composed of only the solid electrolyte material.
 電解質層202は、固体電解質材料として挙げられた材料のうちの2種以上を含んでいてもよい。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでいてもよい。 The electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials. For example, the electrolyte layer 202 may contain a halide solid electrolyte and a sulfide solid electrolyte.
 電解質層202の厚さは、1μm以上300μm以下であってもよい。電解質層202の厚さが1μm以上である場合、正極201と負極203とをより確実に分離することができる。電解質層202の厚さが300μm以下である場合、電池が高出力で動作しうる。 The thickness of the electrolyte layer 202 may be 1 μm or more and 300 μm or less. When the thickness of the electrolyte layer 202 is 1 μm or more, the positive electrode 201 and the negative electrode 203 can be separated more reliably. When the thickness of the electrolyte layer 202 is 300 μm or less, the battery can operate at high output.
 電解質層202は、互いに異なる組成を有する2つ以上の層が積層された多層構造を有していてもよい。例えば、電解質層202において、ハロゲン化物固体電解質を含む層と、硫化物固体電解質を含む層とが積層されていてもよい。 The electrolyte layer 202 may have a multilayer structure in which two or more layers having different compositions are laminated. For example, in the electrolyte layer 202, a layer containing a halide solid electrolyte and a layer containing a sulfide solid electrolyte may be laminated.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。詳細には、負極203は、リチウムを吸蔵しうる負極活物質を含んでいてもよい。以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 The negative electrode 203 includes a material having the property of occluding and releasing metal ions (for example, lithium ions). The negative electrode 203 contains, for example, a negative electrode active material. Specifically, the negative electrode 203 may contain a negative electrode active material that can occlude lithium. According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。金属材料は、合金であってもよい。金属材料の例としては、金属リチウム、リチウム合金などが挙げられる。炭素材料の例としては、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。電池の容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物および錫化合物が使用されうる。 As the negative electrode active material, a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, etc. can be used. The metal material may be a single metal. The metal material may be an alloy. Examples of metallic materials include metallic lithium and lithium alloys. Examples of carbon materials include natural graphite, coke, developing carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of the capacity density of the battery, silicon (Si), tin (Sn), a silicon compound and a tin compound can be used.
 負極203は、負極活物質として、金属リチウム、リチウム合金、金属インジウム、インジウム合金、炭素材料、シリコン、シリコン合金、酸化ケイ素およびチタン酸リチウムからなる群より選択される少なくとも1つを含んでいてもよい。 The negative electrode 203 may contain at least one selected from the group consisting of metallic lithium, lithium alloy, metallic indium, indium alloy, carbon material, silicon, silicon alloy, silicon oxide and lithium titanate as the negative electrode active material. good.
 以上の構成によれば、より良好な充放電特性を有する電池を実現できる。 According to the above configuration, a battery having better charge / discharge characteristics can be realized.
 負極203は、固体電解質材料を含んでいてもよい。負極203に含まれる固体電解質材料として、電解質層202を構成する材料として例示した固体電解質材料を用いてもよい。以上の構成によれば、負極203の内部のリチウムイオン伝導性を向上させることができ、電池が高出力で動作しうる。 The negative electrode 203 may contain a solid electrolyte material. As the solid electrolyte material contained in the negative electrode 203, the solid electrolyte material exemplified as the material constituting the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 can be improved, and the battery can operate at a high output.
 負極活物質の形状は、特に限定されず、例えば粒子状である。負極活物質の形状が粒子状(例えば、球状)である場合、負極活物質のメジアン径は、0.1μm以上100μm以下であってもよい。負極活物質のメジアン径が0.1μm以上である場合、負極203において、負極活物質と固体電解質材料とが良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。負極活物質のメジアン径が100μm以下である場合、負極活物質内でのリチウムの拡散速度が増加する。これにより、電池が高出力で動作しうる。 The shape of the negative electrode active material is not particularly limited, and is, for example, particulate. When the shape of the negative electrode active material is particulate (for example, spherical), the median diameter of the negative electrode active material may be 0.1 μm or more and 100 μm or less. When the median diameter of the negative electrode active material is 0.1 μm or more, the negative electrode active material and the solid electrolyte material can form a good dispersed state in the negative electrode 203. This improves the charge / discharge characteristics of the battery. When the median diameter of the negative electrode active material is 100 μm or less, the diffusion rate of lithium in the negative electrode active material increases. This allows the battery to operate at high output.
 負極203において、負極活物質のメジアン径は、固体電解質材料のメジアン径より大きくてもよい。これにより、負極活物質と固体電解質材料とが良好な分散状態を形成できる。 In the negative electrode 203, the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material. As a result, the negative electrode active material and the solid electrolyte material can form a good dispersed state.
 負極203において、負極活物質と固体電解質材料との体積比率「v2:100-v2」について、30≦v2≦95が満たされていてもよい。v2は、負極203に含まれる負極活物質および固体電解質材料の合計体積を100と定義したときの負極活物質の体積比率を表す。v2が30≦v2を満たす場合、十分な電池のエネルギー密度を確保できる。v2がv2≦95を満たす場合、電池が高出力で動作しうる。 In the negative electrode 203, 30 ≦ v2 ≦ 95 may be satisfied with respect to the volume ratio “v2: 100-v2” between the negative electrode active material and the solid electrolyte material. v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 is defined as 100. When v2 satisfies 30 ≦ v2, sufficient battery energy density can be secured. If v2 satisfies v2 ≦ 95, the battery can operate at high power.
 負極203の厚さは、10μm以上500μm以下であってもよい。負極203の厚さが10μm以上である場合、十分な電池のエネルギー密度を確保できる。負極203の厚さが500μm以下である場合、電池が高出力で動作しうる。 The thickness of the negative electrode 203 may be 10 μm or more and 500 μm or less. When the thickness of the negative electrode 203 is 10 μm or more, sufficient energy density of the battery can be secured. When the thickness of the negative electrode 203 is 500 μm or less, the battery can operate at a high output.
 電解質層202および負極203からなる群より選択される少なくとも1つは、粒子同士の密着性を向上させる目的で、結着剤を含んでいてもよい。結着剤は、例えば、負極203を構成する材料の結着性を向上させるために用いられる。結着剤としては、例えば、正極材料1000について上述した結着剤を用いることができる。 At least one selected from the group consisting of the electrolyte layer 202 and the negative electrode 203 may contain a binder for the purpose of improving the adhesion between the particles. The binder is used, for example, to improve the binding property of the material constituting the negative electrode 203. As the binder, for example, the binder described above for the positive electrode material 1000 can be used.
 負極203は、電子導電性を向上させる目的で、導電助剤を含んでいてもよい。負極203に含まれる導電助剤としては、例えば、天然黒鉛、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、および、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが用いられうる。導電助剤として炭素導電助剤を用いた場合、低コスト化を図ることができる。 The negative electrode 203 may contain a conductive auxiliary agent for the purpose of improving electronic conductivity. Examples of the conductive auxiliary agent contained in the negative electrode 203 include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, and carbon fluoride. , Metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene can be used. .. When a carbon conductive auxiliary agent is used as the conductive auxiliary agent, the cost can be reduced.
 電池2000の形状としては、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型などが挙げられる。 Examples of the shape of the battery 2000 include a coin type, a cylindrical type, a square type, a sheet type, a button type, a flat type, and a laminated type.
 以下、実施例を用いて、本開示の詳細が説明される。なお、本開示は、以下の実施例に限定されない。 Hereinafter, the details of the present disclosure will be described with reference to examples. The present disclosure is not limited to the following examples.
≪実施例1≫
[組成式(1)により表される材料の作製]
 露点-60℃以下のアルゴン雰囲気下で、原料粉として、LiCl、YCl3およびYBr3をLiCl:YCl3:YBr3=3.000:0.333:0.666のモル比で秤量した。これらの原料粉を乳鉢で粉砕して混合した。次に、得られた混合物について、アルゴン雰囲気下、500℃で3時間焼成した。焼成には、電気炉を用いた。乳棒および乳鉢を用いて、得られた焼成物を粉砕した。これにより、組成式(1)により表される材料の粉末を得た。本明細書では、上記の方法によって得られた材料をLYBCと呼ぶことがある。
<< Example 1 >>
[Preparation of material represented by composition formula (1)]
LiCl, YCl 3 and YBr 3 were weighed as raw material powders at a molar ratio of LiCl: YCl 3 : YBr 3 = 3.000: 0.333: 0.666 under an argon atmosphere having a dew point of −60 ° C. or lower. These raw material powders were crushed in a mortar and mixed. Next, the obtained mixture was calcined at 500 ° C. for 3 hours under an argon atmosphere. An electric furnace was used for firing. The resulting calcined product was crushed using a pestle and a mortar. As a result, a powder of the material represented by the composition formula (1) was obtained. In the present specification, the material obtained by the above method may be referred to as LYBC.
[正極材料の作製]
 露点-60℃以下のアルゴン雰囲気下で、組成式(1)により表される材料の粉末と炭素材料の粉末とを92.6:7.4の質量比で秤量した。炭素材料としては、3μmのメジアン径を有する黒鉛を用いた。次に、メノウ乳鉢を用いて、これらの材料を混合することによって正極材料を作製した。
[Preparation of positive electrode material]
The powder of the material represented by the composition formula (1) and the powder of the carbon material were weighed at a mass ratio of 92.6: 7.4 under an argon atmosphere having a dew point of −60 ° C. or lower. As the carbon material, graphite having a median diameter of 3 μm was used. Next, a positive electrode material was prepared by mixing these materials using an agate mortar.
[電池の作製]
 絶縁性を有する外筒の中で、硫化物固体電解質であるLi6PS5Cl、LYBCの粉末および正極材料をこの順に積層させた。Li6PS5Clの重量は60mgであった。LYBCの重量は20mgであった。正極材料の重量は5mgであった。次に、これらの材料に対して、720MPaの圧力を印加することによって、固体電解質層と、正極である第1電極とを得た。
[Battery production]
In an outer cylinder having an insulating property, powders of Li 6 PS 5 Cl and LYBC, which are sulfide solid electrolytes, and a positive electrode material were laminated in this order. The weight of Li 6 PS 5 Cl was 60 mg. The weight of LYBC was 20 mg. The weight of the positive electrode material was 5 mg. Next, a solid electrolyte layer and a first electrode, which is a positive electrode, were obtained by applying a pressure of 720 MPa to these materials.
 次に、固体電解質層の第1電極と接する表面とは反対側の表面に、金属In箔および金属Li箔を積層させた。これらの金属箔に対して、80MPaの圧力を印加することにより、第1電極、固体電解質層、および負極である第2電極からなる積層体を作製した。 Next, the metal In foil and the metal Li foil were laminated on the surface of the solid electrolyte layer opposite to the surface in contact with the first electrode. By applying a pressure of 80 MPa to these metal foils, a laminate composed of a first electrode, a solid electrolyte layer, and a second electrode as a negative electrode was produced.
 次に、正極および負極のそれぞれの上にステンレス鋼でできた集電体を配置し、これらの集電体に集電リードを設けた。次に、絶縁性フェルールを用いて、絶縁性外筒の内部を外気雰囲気から遮断および密閉することによって実施例1の電池を作製した。 Next, current collectors made of stainless steel were placed on each of the positive electrode and the negative electrode, and current collector leads were provided on these current collectors. Next, the battery of Example 1 was produced by blocking and sealing the inside of the insulating outer cylinder from the outside air atmosphere using an insulating ferrule.
[充放電試験]
 実施例1の電池について、次の方法によって充放電試験を行った。まず、25℃に設定された恒温槽に電池を配置した。電池に対して、0.05mAの電流値で定電流充電を行った。充電は、電池の電圧が4.0Vに達するまで行った。次に、0.05mAの電流値で電池の放電を行った。放電は、電池の電圧が1.9Vに達するまで行った。
[Charge / discharge test]
The battery of Example 1 was subjected to a charge / discharge test by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. The battery was charged with a constant current at a current value of 0.05 mA. Charging was carried out until the voltage of the battery reached 4.0 V. Next, the battery was discharged at a current value of 0.05 mA. The discharge was carried out until the voltage of the battery reached 1.9 V.
≪実施例2≫
 組成式(1)により表される材料の粉末と炭素材料の粉末とを83.0:17.0の質量比で用いて正極材料を作製したことを除き、実施例1と同じ方法によって実施例2の電池を作製した。さらに、実施例1と同じ方法によって、実施例2の電池について充放電試験を行った。
<< Example 2 >>
Example by the same method as in Example 1 except that the positive electrode material was prepared by using the powder of the material represented by the composition formula (1) and the powder of the carbon material at a mass ratio of 83.0: 17.0. 2 batteries were produced. Further, a charge / discharge test was performed on the battery of Example 2 by the same method as in Example 1.
≪実施例3≫
 組成式(1)により表される材料の粉末と炭素材料の粉末とを76.5:23.5の質量比で用いて正極材料を作製したことを除き、実施例1と同じ方法によって実施例3の電池を作製した。さらに、実施例1と同じ方法によって、実施例3の電池について充放電試験を行った。
<< Example 3 >>
Example by the same method as in Example 1 except that the positive electrode material was prepared by using the powder of the material represented by the composition formula (1) and the powder of the carbon material in a mass ratio of 76.5: 23.5. 3 batteries were produced. Further, a charge / discharge test was performed on the battery of Example 3 by the same method as in Example 1.
≪実施例4≫
 正極材料の作製において、炭素材料としてアセチレンブラックを用いたことを除き、実施例1と同じ方法によって実施例4の電池を作製した。さらに、実施例1と同じ方法によって、実施例4の電池について充放電試験を行った。
<< Example 4 >>
In the production of the positive electrode material, the battery of Example 4 was produced by the same method as in Example 1 except that acetylene black was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 4 by the same method as in Example 1.
≪実施例5≫
 正極材料の作製において、炭素材料としてカーボンブラックを用いたことを除き、実施例1と同じ方法によって実施例5の電池を作製した。さらに、実施例1と同じ方法によって、実施例5の電池について充放電試験を行った。
<< Example 5 >>
In the production of the positive electrode material, the battery of Example 5 was produced by the same method as in Example 1 except that carbon black was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 5 by the same method as in Example 1.
≪実施例6≫
 正極材料の作製において、炭素材料として気相成長炭素繊維(VGCF(登録商標))を用いたことを除き、実施例1と同じ方法によって実施例6の電池を作製した。さらに、実施例1と同じ方法によって、実施例6の電池について充放電試験を行った。
<< Example 6 >>
In the production of the positive electrode material, the battery of Example 6 was produced by the same method as in Example 1 except that the vapor-grown carbon fiber (VGCF (registered trademark)) was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 6 by the same method as in Example 1.
≪実施例7≫
 正極材料の作製において、炭素材料としてグラフェンを用いたことを除き、実施例1と同じ方法によって実施例7の電池を作製した。さらに、実施例1と同じ方法によって、実施例7の電池について充放電試験を行った。
<< Example 7 >>
In the production of the positive electrode material, the battery of Example 7 was produced by the same method as in Example 1 except that graphene was used as the carbon material. Further, a charge / discharge test was performed on the battery of Example 7 by the same method as in Example 1.
≪実施例8≫
 正極材料の作製において、組成式(1)により表される材料としてLi3YBr6を用いたことを除き、実施例4と同じ方法によって実施例8の電池を作製した。実施例8では、充放電試験に用いられる電池と、後述するサイクリックボルタンメトリー測定に用いられる電池とを準備した。Li3YBr6は、次の方法によって作製した。まず、露点-60℃以下のアルゴングローブボックス内で、原料粉として、LiBrおよびYBr3をLiBr:YBr3=3:1のモル比で秤量した。次に、これらの原料粉の混合物について、遊星型ボールミル(フリッチュ社製、P-7型)を用いて、回転速度600rpmで25時間ミリング処理を行った。これにより、Li3YBr6の粉末を得た。本明細書では、Li3YBr6をLYBと呼ぶことがある。さらに、実施例1と同じ方法によって、実施例8の電池について充放電試験を行った。
<< Example 8 >>
In the production of the positive electrode material, the battery of Example 8 was produced by the same method as in Example 4 except that Li 3 YBr 6 was used as the material represented by the composition formula (1). In Example 8, a battery used for the charge / discharge test and a battery used for the cyclic voltammetry measurement described later were prepared. Li 3 YBr 6 was prepared by the following method. First, LiBr and YBr 3 were weighed as raw material powders at a molar ratio of LiBr: YBr 3 = 3: 1 in an argon glove box having a dew point of −60 ° C. or lower. Next, the mixture of these raw material powders was milled for 25 hours at a rotation speed of 600 rpm using a planetary ball mill (manufactured by Fritsch, P-7 type). As a result, a powder of Li 3 YBr 6 was obtained. In the present specification, Li 3 YBr 6 may be referred to as LYB. Further, a charge / discharge test was performed on the battery of Example 8 by the same method as in Example 1.
 実施例8の電池については、以下の方法によってサイクリックボルタンメトリー(CV)測定も行った。まず、25℃に設定された恒温槽に電池を配置した。電池をポテンシオガルバノスタットに接続して、CV測定を行った。CV測定では、掃引速度を10mV/sに設定した。走査範囲を4.0Vから1.9Vvs.In-Liに設定した。 For the battery of Example 8, cyclic voltammetry (CV) measurement was also performed by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. A battery was connected to the potencio galvanostat and CV measurements were taken. In the CV measurement, the sweep speed was set to 10 mV / s. The scanning range is 4.0 V to 1.9 V vs. It was set to In-Li.
≪実施例9≫
 正極材料の作製において、組成式(1)により表される材料としてLi2.71.1Cl6を用いたことを除き、実施例4と同じ方法によって実施例9の電池を作製した。実施例9では、充放電試験に用いられる電池と、CV測定に用いられる電池とを準備した。Li2.71.1Cl6は、次の方法によって作製した。まず、露点-60℃以下のアルゴングローブボックス内で、原料粉として、LiClおよびYCl3をLiCl:YCl3=2.7:1.1のモル比で秤量した。次に、これらの原料粉の混合物について、遊星型ボールミル(フリッチュ社製、P-7型)を用いて、回転速度600rpmで25時間ミリング処理を行った。これにより、Li2.71.1Cl6の粉末を得た。本明細書では、Li2.71.1Cl6をLYCと呼ぶことがある。さらに、実施例1と同じ方法によって、実施例9の電池について充放電試験を行った。実施例8と同じ方法によって、実施例9の電池についてCV測定を行った。
<< Example 9 >>
In the production of the positive electrode material, the battery of Example 9 was produced by the same method as in Example 4 except that Li 2.7 Y 1.1 Cl 6 was used as the material represented by the composition formula (1). In Example 9, a battery used for the charge / discharge test and a battery used for the CV measurement were prepared. Li 2.7 Y 1.1 Cl 6 was prepared by the following method. First, LiCl and YCl 3 were weighed as raw material powders at a molar ratio of LiCl: YCl 3 = 2.7: 1.1 in an argon glove box having a dew point of −60 ° C. or lower. Next, the mixture of these raw material powders was milled for 25 hours at a rotation speed of 600 rpm using a planetary ball mill (manufactured by Fritsch, P-7 type). As a result, a powder of Li 2.7 Y 1.1 Cl 6 was obtained. In the present specification, Li 2.7 Y 1.1 Cl 6 may be referred to as LYC. Further, a charge / discharge test was performed on the battery of Example 9 by the same method as in Example 1. CV measurement was performed on the battery of Example 9 by the same method as in Example 8.
≪実施例10≫
 正極材料の作製において、組成式(1)により表される材料としてLi2.50.5Zr0.5Cl6を用いたことを除き、実施例4と同じ方法によって実施例10の電池を作製した。Li2.50.5Zr0.5Cl6は、次の方法によって作製した。まず、露点-60℃以下のアルゴングローブボックス内で、原料粉として、LiCl、YCl3およびZrCl4をLiCl:YCl3:ZrCl4=2.5:0.5:0.5のモル比で秤量した。次に、これらの原料粉の混合物について、遊星型ボールミル(フリッチュ社製、P-7型)を用いて、回転速度600rpmで25時間ミリング処理を行った。これにより、Li2.50.5Zr0.5Cl6の粉末を得た。本明細書では、Li2.50.5Zr0.5Cl6をLYZCと呼ぶことがある。さらに、実施例1と同じ方法によって、実施例10の電池について充放電試験を行った。
<< Example 10 >>
In the production of the positive electrode material, the battery of Example 10 was produced by the same method as in Example 4 except that Li 2.5 Y 0.5 Zr 0.5 Cl 6 was used as the material represented by the composition formula (1). Li 2.5 Y 0.5 Zr 0.5 Cl 6 was prepared by the following method. First, LiCl, YCl 3 and ZrCl 4 are weighed as raw material powders at a molar ratio of LiCl: YCl 3 : ZrCl 4 = 2.5: 0.5: 0.5 in an argon glove box having a dew point of -60 ° C or lower. bottom. Next, the mixture of these raw material powders was milled for 25 hours at a rotation speed of 600 rpm using a planetary ball mill (manufactured by Fritsch, P-7 type). As a result, a powder of Li 2.5 Y 0.5 Zr 0.5 Cl 6 was obtained. In the present specification, Li 2.5 Y 0.5 Zr 0.5 Cl 6 may be referred to as LYZC. Further, a charge / discharge test was performed on the battery of Example 10 by the same method as in Example 1.
≪参考例1≫
[正極材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉として、LiBr、LiClおよび炭素材料をLiBr:LiCl:炭素材料=29:29:42の質量比で秤量した。炭素材料としては、8μmのメジアン径を有する黒鉛を用いた。次に、遊星型ボールミル(フリッチュ社製、P-7型)を用いて、これらの原料粉を混合した。遊星型ボールミルによる混合は、回転速度200rpmで10分間、回転速度400rpmで30分間、および回転速度500rpmで30分間行った。
≪Reference example 1≫
[Preparation of positive electrode material]
In an argon glove box having a dew point of −60 ° C. or lower, LiBr, LiCl and a carbon material were weighed as raw material powders at a mass ratio of LiBr: LiCl: carbon material = 29:29:42. As the carbon material, graphite having a median diameter of 8 μm was used. Next, these raw material powders were mixed using a planetary ball mill (P-7 type manufactured by Fritsch). Mixing with a planetary ball mill was performed at a rotation speed of 200 rpm for 10 minutes, a rotation speed of 400 rpm for 30 minutes, and a rotation speed of 500 rpm for 30 minutes.
 次に、露点-60℃以下のアルゴン雰囲気下で、得られた混合物と硫化物固体電解質であるLi6PS5Clとを74.8:25.2の質量比で秤量した。次に、メノウ乳鉢を用いて、これらの材料を混合することによって正極材料を作製した。 Next, the obtained mixture and Li 6 PS 5 Cl, which is a sulfide solid electrolyte, were weighed at a mass ratio of 74.8: 25.2 under an argon atmosphere having a dew point of −60 ° C. or lower. Next, a positive electrode material was prepared by mixing these materials using an agate mortar.
[電池の作製]
 上記の正極材料を用いたことを除き、実施例1と同じ方法によって参考例1の電池を作製した。
[Battery production]
The battery of Reference Example 1 was produced by the same method as in Example 1 except that the above positive electrode material was used.
[充放電試験]
 カットオフ電圧を3.6Vに設定したことを除き、実施例1と同じ方法によって、参考例1の電池について充放電試験を行った。
[Charge / discharge test]
A charge / discharge test was performed on the battery of Reference Example 1 by the same method as in Example 1 except that the cutoff voltage was set to 3.6 V.
≪参考例2≫
 正極材料の作製において、炭素材料の代わりに金属Alの粉末を用いたこと、および、組成式(1)により表される材料の粉末と金属Alの粉末とを90:10の質量比で用いたことを除き、実施例1と同じ方法によって参考例2の電池を作製した。さらに、実施例1と同じ方法によって、参考例2の電池について充放電試験を行った。
≪Reference example 2≫
In the preparation of the positive electrode material, the powder of metal Al was used instead of the carbon material, and the powder of the material represented by the composition formula (1) and the powder of metal Al were used at a mass ratio of 90:10. Except for the above, the battery of Reference Example 2 was produced by the same method as in Example 1. Further, a charge / discharge test was performed on the battery of Reference Example 2 by the same method as in Example 1.
 実施例および参考例の電池の充放電試験の結果を表1に示す。表1には、正極に含まれる炭素材料の種類、正極における炭素材料の含有率、炭素材料における比ID/IG、炭素材料のメジアン径、炭素材料のBET比表面積、組成式(1)により表される材料の種類なども示されている。炭素材料における比ID/IGは、上述のとおり、炭素材料のラマンスペクトルにおいて、1500cm-1以上1700cm-1以下の範囲内に現れるピークの強度IGに対する、1300cm-1以上1400cm-1以下の範囲内に現れるピークの強度IDの比を意味する。比ID/IG、メジアン径およびBET比表面積は、正極材料を作製する前の炭素材料について測定した値である。充放電試験では、充電開始後に速やかにカットオフ電圧に達した電池、および、充電時に電流が流れた一方、放電開始後に速やかにカットオフ電圧に達した電池については、充放電ができないと評価した。 Table 1 shows the results of the battery charge / discharge tests of Examples and Reference Examples. Table 1, the type of the carbon material contained in the positive electrode, the content of the carbon material in the positive electrode, the median size of the ratio I D / I G, the carbon material in the carbon material, BET specific surface area of the carbon material, the composition formula (1) The types of materials represented by are also shown. The ratio I D / I G in the carbon material, as described above, in the Raman spectrum of the carbon material, to the intensity I G of the peak appearing in the range of 1500 cm -1 or 1700 cm -1 or less, 1300 cm -1 or 1400 cm -1 or less It means the ratio of the intensity ID of the peaks appearing in the range of. The ratio I D / I G, median diameter and BET specific surface area is a value measured for the carbon material prior to making the cathode material. In the charge / discharge test, it was evaluated that the battery that reached the cutoff voltage immediately after the start of charging and the battery that reached the cutoff voltage quickly after the start of discharge while the current flowed during charging could not be charged / discharged. ..
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<考察>
 図3は、実施例1、2および3の電池の初回の充放電曲線を示すグラフである。図3は、電池の放電特性を示している。
<Discussion>
FIG. 3 is a graph showing the initial charge / discharge curves of the batteries of Examples 1, 2 and 3. FIG. 3 shows the discharge characteristics of the battery.
 実施例1の充放電試験では、まず、電池の電圧が開回路電圧からカットオフ電圧である4.0Vvs.In-Liに達するまで、負極から正極に向かう順方向に定電流を流した。次に、電池の電圧がカットオフ電圧である1.9Vvs.In-Liに達するまで、充電時とは逆方向に定電流を流した。図3に示すとおり、実施例1の充放電試験では、電池の充放電に伴うプラトー領域が観測された。さらに、実施例1から3の比較からわかるとおり、正極における炭素材料の含有率が高ければ高いほど、充放電による電気量が増加した。 In the charge / discharge test of Example 1, first, the battery voltage is 4.0 Vvs., Which is the cutoff voltage from the open circuit voltage. A constant current was applied in the forward direction from the negative electrode to the positive electrode until In-Li was reached. Next, the voltage of the battery is the cutoff voltage of 1.9 Vvs. A constant current was applied in the direction opposite to that during charging until In-Li was reached. As shown in FIG. 3, in the charge / discharge test of Example 1, a plateau region associated with the charge / discharge of the battery was observed. Further, as can be seen from the comparison of Examples 1 to 3, the higher the content of the carbon material in the positive electrode, the greater the amount of electricity due to charging and discharging.
 充放電試験によってプラトー領域が観測されたことから、実施例1の電池は、キャパシタとは異なる挙動を示すことがわかる。キャパシタでは、電流に対して電圧が直線的に上昇する傾向がある。プラトー領域が観測されたことから、実施例1の電池では、充放電試験中に電気化学的な酸化還元反応が生じていることが推定される。すなわち、順方向に電流を流すことによって充電反応が進行し、逆方向に電流を流すことによって放電反応が進行したことがわかる。さらに、正極における炭素材料の含有率が高ければ高いほど、充放電による電気量が増加したことから、炭素材料と組成式(1)により表される材料とが電気化学的に反応したことが推定される。実施例1では、負極としてIn-Li合金を用いて、可逆的な充放電反応が進行しているため、電荷キャリアは、Liイオンであることがわかる。すなわち、実施例1の電池では、充電時に、電荷キャリアであるLiイオンが、固体電解質層を介して正極から負極に移動している。 Since the plateau region was observed by the charge / discharge test, it can be seen that the battery of Example 1 behaves differently from the capacitor. In capacitors, the voltage tends to rise linearly with respect to the current. Since the plateau region was observed, it is presumed that in the battery of Example 1, an electrochemical redox reaction occurred during the charge / discharge test. That is, it can be seen that the charging reaction proceeded by passing the current in the forward direction, and the discharge reaction proceeded by passing the current in the reverse direction. Furthermore, the higher the content of the carbon material in the positive electrode, the greater the amount of electricity due to charging and discharging. Therefore, it is estimated that the carbon material and the material represented by the composition formula (1) have reacted electrochemically. Will be done. In Example 1, since an In—Li alloy is used as the negative electrode and the reversible charge / discharge reaction is proceeding, it can be seen that the charge carriers are Li ions. That is, in the battery of Example 1, Li ions, which are charge carriers, move from the positive electrode to the negative electrode via the solid electrolyte layer during charging.
 図4は、参考例1および2の電池の初回の充放電曲線を示すグラフである。 FIG. 4 is a graph showing the initial charge / discharge curves of the batteries of Reference Examples 1 and 2.
 参考例1では、組成式(1)により表される材料の代わりにLiBrおよびLiClの混合物を用いた。混合物において、BrとClとのモル比は、1:2であった。この混合物と炭素材料とについては、ボールミルを用いてよく混合した。これにより得られた混合物と、Liイオン伝導性を有する硫化物固体電解質とをさらに混合することによって正極材料を作製した。参考例1の電池の充放電試験では、電池の充電が進行したことを示す充電曲線が確認された。しかし、参考例1の電池は、放電することができなかった。 In Reference Example 1, a mixture of LiBr and LiCl was used instead of the material represented by the composition formula (1). In the mixture, the molar ratio of Br to Cl was 1: 2. This mixture and the carbon material were mixed well using a ball mill. A positive electrode material was prepared by further mixing the mixture thus obtained with a sulfide solid electrolyte having Li ion conductivity. In the battery charge / discharge test of Reference Example 1, a charging curve indicating that the charging of the battery has progressed was confirmed. However, the battery of Reference Example 1 could not be discharged.
 参考例2では、実施例1で用いた組成式(1)により表される材料を金属Alの粉末と混合することによって正極材料を作製した。参考例2の電池の充放電試験では、充電時および放電時のいずれにおいても、電池に電流が流れず、電池の電圧がカットオフ電圧に達した。 In Reference Example 2, a positive electrode material was prepared by mixing the material represented by the composition formula (1) used in Example 1 with the powder of metallic Al. In the battery charge / discharge test of Reference Example 2, no current flowed through the battery during both charging and discharging, and the battery voltage reached the cutoff voltage.
 以上の結果から、電池において、充電反応が進行するためには、組成式(1)により表される材料および炭素材料を組み合わせる必要があることがわかる。さらに、放電反応が進行するためには、組成式(1)により表される材料において、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つが必要であることがわかる。 From the above results, it can be seen that in order for the charging reaction to proceed in the battery, it is necessary to combine the material represented by the composition formula (1) and the carbon material. Further, it can be seen that in order for the discharge reaction to proceed, at least one selected from the group consisting of metal elements other than Li and metalloid elements is required in the material represented by the composition formula (1).
 詳細なメカニズムは現在検討中であるが、炭素材料と組成式(1)により表される材料とが接触することによって、組成式(1)により表される材料の酸化還元反応が促進されると推定される。さらに、黒鉛などの層構造を有する炭素材料は、その層構造中に種々の元素を吸着しうることが知られている。このことから、炭素材料および組成式(1)により表される材料を含む正極において、炭素材料は、組成式(1)により表される材料の酸化還元反応によって生じたハロゲン単体またはハロゲン化物を吸蔵していると推定される。この炭素材料の機能により、電池において、可逆的な充放電反応が進行すると推定される。 The detailed mechanism is currently under investigation, but it is said that the contact between the carbon material and the material represented by the composition formula (1) promotes the redox reaction of the material represented by the composition formula (1). Presumed. Further, it is known that a carbon material having a layered structure such as graphite can adsorb various elements in the layered structure. From this, in the positive electrode including the carbon material and the material represented by the composition formula (1), the carbon material occludes the halogen simple substance or the halide generated by the redox reaction of the material represented by the composition formula (1). It is presumed that it is. It is presumed that the function of this carbon material causes a reversible charge / discharge reaction to proceed in the battery.
 組成式(1)により表される材料がLi以外の金属元素または半金属元素を含むことによって、電池の充電時において、当該材料に含まれるハロゲン元素の酸化によってハロゲンガスが発生しにくい。そのため、電池の充電時に、正極の内部に空隙が生じにくい。すなわち、正極の内部の構造が変化しにくい。これにより、電池の充放電時に、電子およびリチウムイオンの伝導が阻害されにくく、可逆的な充放電反応が進行すると推定される。参考例1では、電池の充電時に、正極の内部の構造が変化したため、電子およびリチウムイオンの伝導が阻害され、放電反応が進行しなかったと推定される。 Since the material represented by the composition formula (1) contains a metal element or a metalloid element other than Li, halogen gas is less likely to be generated by oxidation of the halogen element contained in the material when charging the battery. Therefore, when the battery is charged, voids are less likely to occur inside the positive electrode. That is, the internal structure of the positive electrode is unlikely to change. As a result, it is presumed that the conduction of electrons and lithium ions is less likely to be hindered during charging / discharging of the battery, and a reversible charging / discharging reaction proceeds. In Reference Example 1, it is presumed that the internal structure of the positive electrode changed when the battery was charged, so that the conduction of electrons and lithium ions was inhibited and the discharge reaction did not proceed.
 図5は、実施例4から7の電池の初回の充放電曲線を示すグラフである。 FIG. 5 is a graph showing the initial charge / discharge curves of the batteries of Examples 4 to 7.
 図5からわかるとおり、黒鉛以外の炭素材料を用いた場合であっても、電池において、可逆的な充放電反応が進行した。実施例4から7で用いた炭素材料は、黒鉛状構造、ダイヤモンド状構造などを含む。実施例4から7の電池では、炭素材料に含まれる黒鉛状構造に起因して、充放電反応が進行したと推定される。すなわち、実施例4から7の電池では、炭素材料に含まれる層構造に起因して、充放電反応が進行したと推定される。実施例1と、実施例4から7との比較からわかるとおり、アセチレンブラックなどのカーボンブラック、気相成長炭素繊維およびグラフェンは、黒鉛に比べて、電池の放電容量を向上させることに適している。 As can be seen from FIG. 5, a reversible charge / discharge reaction proceeded in the battery even when a carbon material other than graphite was used. The carbon materials used in Examples 4 to 7 include a graphite-like structure, a diamond-like structure, and the like. In the batteries of Examples 4 to 7, it is presumed that the charge / discharge reaction proceeded due to the graphite-like structure contained in the carbon material. That is, in the batteries of Examples 4 to 7, it is presumed that the charge / discharge reaction proceeded due to the layer structure contained in the carbon material. As can be seen from the comparison between Example 1 and Examples 4 to 7, carbon black such as acetylene black, vapor-grown carbon fibers and graphene are suitable for improving the discharge capacity of the battery as compared with graphite. ..
 図6は、実施例4、8および9の電池の初回の充放電曲線を示すグラフである。 FIG. 6 is a graph showing the initial charge / discharge curves of the batteries of Examples 4, 8 and 9.
 組成式(1)により表される材料としてLYBまたはLYCを用いた場合であっても、LYBCを用いたときと同様に、電池において、可逆的な充放電反応が進行した。この結果から、組成式(1)により表される材料は、BrおよびClの両方を含んでいなくてもよく、1種類のハロゲン元素を含んでいればよいことがわかる。特に、組成式(1)により表される材料に含まれるハロゲン元素の種類は、電池の電圧をハロゲン元素の酸化還元が生じる電圧まで掃引できる限り、BrまたはClに制限されないと推定される。 Even when LYB or LYC was used as the material represented by the composition formula (1), the reversible charge / discharge reaction proceeded in the battery as in the case of using LYBC. From this result, it can be seen that the material represented by the composition formula (1) does not have to contain both Br and Cl, and may contain only one kind of halogen element. In particular, it is presumed that the type of halogen element contained in the material represented by the composition formula (1) is not limited to Br or Cl as long as the voltage of the battery can be swept to the voltage at which the redox of the halogen element occurs.
 図7は、実施例9、10および参考例2の電池のサイクリックボルタモグラムを示すグラフである。 FIG. 7 is a graph showing the cyclic voltammograms of the batteries of Examples 9, 10 and Reference Example 2.
 図7からわかるとおり、参考例2の電池では、組成式(1)により表される材料の酸化還元に起因するピークが観察されなかった。このことから、金属Alと組成式(1)により表される材料との組み合わせでは、組成式(1)により表される材料の酸化還元反応がほとんど進行しないことがわかる。 As can be seen from FIG. 7, in the battery of Reference Example 2, no peak due to redox of the material represented by the composition formula (1) was observed. From this, it can be seen that the redox reaction of the material represented by the composition formula (1) hardly proceeds in the combination of the metal Al and the material represented by the composition formula (1).
 一方、図7からわかるとおり、実施例9および10の電池では、組成式(1)により表される材料の酸化還元に起因するピークをはっきりと観察することができた。このことから、組成式(1)により表される材料として、LYCまたはLYZCを用いた場合であっても、当該材料の酸化還元反応が進行することがわかる。すなわち、組成式(1)により表される材料に含まれるLi以外の金属元素および半金属元素の種類に関わらず、当該材料の酸化還元反応が進行することがわかる。組成式(1)により表される材料に含まれるLi以外の金属元素および半金属元素の種類に関わらず、当該材料から生じたハロゲン単体またはハロゲン化物は、炭素材料に吸蔵されることがわかる。 On the other hand, as can be seen from FIG. 7, in the batteries of Examples 9 and 10, the peak caused by the redox of the material represented by the composition formula (1) could be clearly observed. From this, it can be seen that the redox reaction of the material proceeds even when LYC or LYZC is used as the material represented by the composition formula (1). That is, it can be seen that the redox reaction of the material proceeds regardless of the types of metal elements and metalloid elements other than Li contained in the material represented by the composition formula (1). It can be seen that regardless of the types of metal elements and metalloid elements other than Li contained in the material represented by the composition formula (1), the halogen simple substance or the halide generated from the material is occluded in the carbon material.
≪実施例11≫
[組成式(1)により表される材料の作製]
 実施例1と同じ方法によって、組成式(1)により表される材料であるLYBCの粉末を得た。
<< Example 11 >>
[Preparation of material represented by composition formula (1)]
By the same method as in Example 1, a powder of LYBC, which is a material represented by the composition formula (1), was obtained.
[正極材料の作製]
 露点-60℃以下のアルゴン雰囲気下で、LYBCの粉末と炭素材料であるグラフェンの粉末とを92.6:7.4の質量比で秤量した。次に、メノウ乳鉢を用いて、これらの材料を混合することによって正極材料を作製した。
[Preparation of positive electrode material]
The LYBC powder and the graphene powder, which is a carbon material, were weighed at a mass ratio of 92.6: 7.4 under an argon atmosphere having a dew point of −60 ° C. or lower. Next, a positive electrode material was prepared by mixing these materials using an agate mortar.
[電池の作製]
 絶縁性を有する外筒の中で、硫化物固体電解質であるLi6PS5Cl、LYBCの粉末および正極材料をこの順に積層させた。Li6PS5Clの重量は60mgであった。LYBCの重量は20mgであった。正極材料の重量は5mgであった。次に、これらの材料に対して、720MPaの圧力を印加することによって、固体電解質層と、正極である第1電極とを得た。
[Battery production]
In an outer cylinder having an insulating property, powders of Li 6 PS 5 Cl and LYBC, which are sulfide solid electrolytes, and a positive electrode material were laminated in this order. The weight of Li 6 PS 5 Cl was 60 mg. The weight of LYBC was 20 mg. The weight of the positive electrode material was 5 mg. Next, a solid electrolyte layer and a first electrode, which is a positive electrode, were obtained by applying a pressure of 720 MPa to these materials.
 次に、固体電解質層の第1電極と接する表面とは反対側の表面に、金属Li箔を積層させた。この金属箔に対して、80MPaの圧力を印加することにより、第1電極、固体電解質層、および負極である第2電極からなる積層体を作製した。 Next, a metal Li foil was laminated on the surface of the solid electrolyte layer opposite to the surface in contact with the first electrode. By applying a pressure of 80 MPa to this metal foil, a laminate composed of a first electrode, a solid electrolyte layer, and a second electrode as a negative electrode was produced.
 次に、正極および負極のそれぞれの上にステンレス鋼でできた集電体を配置し、これらの集電体に集電リードを設けた。次に、絶縁性フェルールを用いて、絶縁性外筒の内部を外気雰囲気から遮断および密閉することによって実施例11の電池を作製した。 Next, current collectors made of stainless steel were placed on each of the positive electrode and the negative electrode, and current collector leads were provided on these current collectors. Next, the battery of Example 11 was produced by blocking and sealing the inside of the insulating outer cylinder from the outside air atmosphere using an insulating ferrule.
[充電試験]
 実施例11の電池について、次の方法によって充電試験を行った。まず、25℃に設定された恒温槽に電池を配置した。電池に対して、0.1mAの電流値で定電流充電を行った。定電流充電は、電池の電圧が4.4Vに達するまで行った。次に、電流値が0.01mAに低下するまで、電池に対して定電圧充電を行った。
[Charging test]
The battery of Example 11 was charged by the following method. First, the batteries were placed in a constant temperature bath set at 25 ° C. The battery was charged with a constant current at a current value of 0.1 mA. Constant current charging was performed until the battery voltage reached 4.4 V. Next, the battery was charged at a constant voltage until the current value dropped to 0.01 mA.
[放電試験]
 定電流-定電圧充電を行った電池に対して、0.01mAの電流値で定電流放電を行った。定電流放電は、電池の電圧が2.5Vに達するまで行った。次に、電流値が0.002mAに低下するまで、電池に対して定電圧放電を行った。
[Discharge test]
A constant current-constant voltage charged battery was discharged at a constant current value of 0.01 mA. Constant current discharge was performed until the battery voltage reached 2.5 V. Next, the battery was discharged at a constant voltage until the current value dropped to 0.002 mA.
[ラマン分光測定]
 実施例11の電池の正極材料について、充電試験前、充電試験後および放電試験後にラマン分光測定を行った。ラマン分光測定は、次の方法によって行った。まず、電池から上述の積層体を取り出した。次に、積層体を気密セル中に封入した状態で、ラマン分光測定を行った。ラマン分光測定は、日本分光社製のNRS-5500を用いて、457nmの波長の光を出射するArイオンレーザーにより行った。詳細には、積層体の正極側の表面をマッピング測定した。得られたデータについて、多変量スペクトル解析(MCR:multivariate curve resolution)法を行うことによって、炭素由来のピークを分離した。これにより、正極材料中の炭素材料のラマンスペクトルを得た。
[Raman spectroscopy]
Raman spectroscopic measurements were performed on the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test. Raman spectroscopy was performed by the following method. First, the above-mentioned laminate was taken out from the battery. Next, Raman spectroscopic measurement was performed with the laminated body enclosed in an airtight cell. Raman spectroscopic measurement was performed using an NRS-5500 manufactured by JASCO Corporation with an Ar ion laser that emits light having a wavelength of 457 nm. Specifically, the surface of the laminate on the positive electrode side was mapped and measured. Carbon-derived peaks were separated from the obtained data by performing a multivariate spectrum analysis (MCR) method. As a result, a Raman spectrum of the carbon material in the positive electrode material was obtained.
 図8は、実施例11の電池の正極材料について、充電試験前、充電試験後および放電試験後にラマン分光測定を行った結果を示すグラフである。図8のグラフは、グラフェンの粉末についてラマン分光測定を行った結果も示している。図8からわかるとおり、充電試験後の正極材料中の炭素材料のラマンスペクトルでは、充電試験前の正極材料中の炭素材料のラマンスペクトルに比べて、1580cm-1付近に現れるGバンドのピークがブロードになり、高波数側にシフトしていた。このことから、充電試験によって、炭素材料が、組成式(1)により表される材料に由来するハロゲン単体またはハロゲン化物を吸着したことが推定される。 FIG. 8 is a graph showing the results of Raman spectroscopic measurement of the positive electrode material of the battery of Example 11 before the charge test, after the charge test, and after the discharge test. The graph in FIG. 8 also shows the results of Raman spectroscopic measurements on graphene powder. As can be seen from FIG. 8, in the Raman spectrum of the carbon material in the positive electrode material after the charging test, the G band peak appearing near 1580 cm -1 is broader than the Raman spectrum of the carbon material in the positive electrode material before the charging test. It became, and it was shifting to the high wave number side. From this, it is presumed that the carbon material adsorbed the halogen simple substance or the halide derived from the material represented by the composition formula (1) by the charging test.
 さらに、図8からわかるとおり、放電試験後の正極材料中の炭素材料のラマンスペクトルでは、充電試験後の正極材料中の炭素材料のラマンスペクトルに比べて、Gバンドのピークが低波数側にシフトしていた。このことから、放電試験によって、炭素材料に吸着されていたハロゲン単体またはハロゲン化物が炭素材料から脱離したことが推定される。 Further, as can be seen from FIG. 8, in the Raman spectrum of the carbon material in the positive electrode material after the discharge test, the peak of the G band shifts to the low wavenumber side as compared with the Raman spectrum of the carbon material in the positive electrode material after the charge test. Was. From this, it is presumed that the halogen simple substance or the halide adsorbed on the carbon material was desorbed from the carbon material by the discharge test.
 本開示の正極材料は、例えば、全固体二次電池などに利用されうる。 The positive electrode material of the present disclosure can be used, for example, in an all-solid-state secondary battery.

Claims (14)

  1.  下記の組成式(1)により表される材料と、
     ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つを吸蔵しうる炭素材料と、
    を含む、正極材料。
     Liabc ・・・式(1)
     ここで、a、bおよびcは、それぞれ、0より大きい値であり、
     Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つを含み、
     Xは、ハロゲン元素を含む。
    The material represented by the following composition formula (1) and
    A carbon material capable of occluding at least one selected from the group consisting of elemental halogens and halides,
    Including positive electrode material.
    Li a M b X c・ ・ ・ Equation (1)
    Here, a, b, and c are values larger than 0, respectively.
    M contains at least one selected from the group consisting of metallic elements other than Li and metalloid elements.
    X contains a halogen element.
  2.  前記炭素材料のラマンスペクトルにおいて、1500cm-1以上1700cm-1以下の範囲内に現れるピークの強度IGに対する、1300cm-1以上1400cm-1以下の範囲内に現れるピークの強度IDの比ID/IGが0以上2以下である、請求項1に記載の正極材料。 In the Raman spectrum of the carbon material, to the peak intensity I G appearing in the range of 1500 cm -1 or 1700 cm -1 or less, the ratio I D intensity I D of the peak appearing in the range of 1300 cm -1 or 1400 cm -1 or less The positive electrode material according to claim 1, wherein / IG is 0 or more and 2 or less.
  3.  前記炭素材料のBET比表面積が5m2-1より大きい、請求項1または2に記載の正極材料。 The positive electrode material according to claim 1 or 2, wherein the carbon material has a BET specific surface area of more than 5 m 2 g -1.
  4.  前記炭素材料は、黒鉛、グラフェン、酸化グラフェン、還元型酸化グラフェン、カーボンナノチューブ、フラーレン、カーボンファイバー、カーボンブラック、ソフトカーボン、ハードカーボン、メソポーラスカーボンおよび活性炭からなる群より選択される少なくとも1つを含む、請求項1から3のいずれか一項に記載の正極材料。 The carbon material comprises at least one selected from the group consisting of graphite, graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, fullerene, carbon fiber, carbon black, soft carbon, hard carbon, mesoporous carbon and activated carbon. , The positive electrode material according to any one of claims 1 to 3.
  5.  前記炭素材料は、カーボンブラック、気相成長炭素繊維およびグラフェンからなる群より選択される少なくとも1つを含む、請求項1から3のいずれか一項に記載の正極材料。 The positive electrode material according to any one of claims 1 to 3, wherein the carbon material contains at least one selected from the group consisting of carbon black, vapor-grown carbon fibers and graphene.
  6.  前記Mは、Yを含む、請求項1から5のいずれか一項に記載の正極材料。 The positive electrode material according to any one of claims 1 to 5, wherein M contains Y.
  7.  前記Mは、YおよびZrを含む、請求項1から5のいずれか一項に記載の正極材料。 The positive electrode material according to any one of claims 1 to 5, wherein M contains Y and Zr.
  8.  前記Xは、ClおよびBrからなる群より選択される少なくとも1つを含む、請求項1から7のいずれか一項に記載の正極材料。 The positive electrode material according to any one of claims 1 to 7, wherein X comprises at least one selected from the group consisting of Cl and Br.
  9.  請求項1から8のいずれか一項に記載の正極材料を含む正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
     を備えた、電池。
    A positive electrode containing the positive electrode material according to any one of claims 1 to 8.
    With the negative electrode
    An electrolyte layer arranged between the positive electrode and the negative electrode,
    With a battery.
  10.  前記負極は、リチウムを吸蔵しうる負極活物質を含む、請求項9に記載の電池。 The battery according to claim 9, wherein the negative electrode contains a negative electrode active material capable of occluding lithium.
  11.  前記負極は、金属リチウム、リチウム合金、金属インジウム、インジウム合金、炭素材料、シリコン、シリコン合金、酸化ケイ素およびチタン酸リチウムからなる群より選択される少なくとも1つを含む、請求項9または10に記載の電池。 9. or 10, wherein the negative electrode comprises at least one selected from the group consisting of metallic lithium, lithium alloy, metallic indium, indium alloy, carbon material, silicon, silicon alloy, silicon oxide and lithium titanate. Battery.
  12.  前記電解質層は、固体電解質材料を含み、
     前記固体電解質材料の組成は、前記組成式(1)により表される材料の組成と異なる、請求項9から11のいずれか一項に記載の電池。
    The electrolyte layer contains a solid electrolyte material and contains
    The battery according to any one of claims 9 to 11, wherein the composition of the solid electrolyte material is different from the composition of the material represented by the composition formula (1).
  13.  前記電解質層は、硫化物固体電解質を含む、請求項9から12のいずれか一項に記載の電池。 The battery according to any one of claims 9 to 12, wherein the electrolyte layer contains a sulfide solid electrolyte.
  14.  充電時に、前記組成式(1)により表される材料に含まれるハロゲン元素が酸化されることによって、ハロゲン単体およびハロゲン化物からなる群より選択される少なくとも1つが生成し、
     放電時に、前記ハロゲン単体および前記ハロゲン化物からなる群より選択される少なくとも1つに含まれるハロゲン元素が還元される、請求項9から13のいずれか一項に記載の電池。
    At the time of charging, the halogen element contained in the material represented by the composition formula (1) is oxidized to generate at least one selected from the group consisting of simple substances of halogen and halides.
    The battery according to any one of claims 9 to 13, wherein the halogen element contained in at least one selected from the group consisting of the halogen simple substance and the halide is reduced at the time of discharge.
PCT/JP2021/008285 2020-03-05 2021-03-03 Positive electrode material and battery WO2021177382A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21764175.2A EP4117054A4 (en) 2020-03-05 2021-03-03 Positive electrode material and battery
CN202180015390.8A CN115136349A (en) 2020-03-05 2021-03-03 Positive electrode material and battery
JP2022504442A JPWO2021177382A1 (en) 2020-03-05 2021-03-03
US17/888,055 US20220393168A1 (en) 2020-03-05 2022-08-15 Positive electrode material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-037677 2020-03-05
JP2020037677 2020-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/888,055 Continuation US20220393168A1 (en) 2020-03-05 2022-08-15 Positive electrode material and battery

Publications (1)

Publication Number Publication Date
WO2021177382A1 true WO2021177382A1 (en) 2021-09-10

Family

ID=77613444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008285 WO2021177382A1 (en) 2020-03-05 2021-03-03 Positive electrode material and battery

Country Status (5)

Country Link
US (1) US20220393168A1 (en)
EP (1) EP4117054A4 (en)
JP (1) JPWO2021177382A1 (en)
CN (1) CN115136349A (en)
WO (1) WO2021177382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312833A (en) * 2022-08-31 2022-11-08 南开大学 All-solid-state battery based on rare earth halide solid electrolyte and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64293B2 (en) 1984-03-23 1989-01-06 Beloit Corp
JP4578684B2 (en) * 1998-11-10 2010-11-10 パナソニック株式会社 Lithium secondary battery
WO2018025582A1 (en) 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Solid electrolyte material, and cell
WO2019130863A1 (en) * 2017-12-25 2019-07-04 国立研究開発法人産業技術総合研究所 Halogen-containing composite body and method for producing same
WO2019146295A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Negative electrode material and battery using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146293A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Battery
EP3745500A4 (en) * 2018-01-26 2021-03-31 Panasonic Intellectual Property Management Co., Ltd. Battery
JP7390692B2 (en) * 2019-04-29 2023-12-04 国聯汽車動力電池研究院有限責任公司 Lithium secondary battery solid electrolyte materials, electrodes and batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64293B2 (en) 1984-03-23 1989-01-06 Beloit Corp
JP4578684B2 (en) * 1998-11-10 2010-11-10 パナソニック株式会社 Lithium secondary battery
WO2018025582A1 (en) 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Solid electrolyte material, and cell
WO2019130863A1 (en) * 2017-12-25 2019-07-04 国立研究開発法人産業技術総合研究所 Halogen-containing composite body and method for producing same
WO2019146295A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Negative electrode material and battery using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117054A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312833A (en) * 2022-08-31 2022-11-08 南开大学 All-solid-state battery based on rare earth halide solid electrolyte and preparation method thereof
CN115312833B (en) * 2022-08-31 2024-01-23 南开大学 All-solid-state battery based on rare earth halide solid electrolyte and preparation method thereof

Also Published As

Publication number Publication date
US20220393168A1 (en) 2022-12-08
EP4117054A1 (en) 2023-01-11
JPWO2021177382A1 (en) 2021-09-10
EP4117054A4 (en) 2024-08-07
CN115136349A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
CN111566865B (en) Battery cell
JP7316564B2 (en) battery
JP7199038B2 (en) Negative electrode material and battery using the same
WO2019135322A1 (en) Positive electrode material and battery
WO2019135346A1 (en) Positive electrode material and battery
WO2019146236A1 (en) Positive electrode material and battery
US8748036B2 (en) Non-aqueous secondary battery
WO2019135315A1 (en) Solid electrolyte material and battery
US9577246B2 (en) Negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6194794B2 (en) Lithium secondary battery
WO2021220924A1 (en) Positive electrode material, and battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
WO2021161752A1 (en) Coated positive electrode active substance, positive electrode material, battery, and method for producing coated positive electrode active substance
JPWO2013042419A1 (en) Non-aqueous secondary battery
WO2021205821A1 (en) Positive electrode material and battery
WO2021157361A1 (en) Positive electrode material and battery
JP2012181975A (en) Nonaqueous secondary battery
CN112400242B (en) Negative electrode material and battery
JPWO2020174868A1 (en) Positive electrode material and battery
CN116529205A (en) Solid electrolyte material and battery using the same
WO2021220927A1 (en) Positive electrode material, and battery
WO2021177382A1 (en) Positive electrode material and battery
CN116348416A (en) Solid electrolyte material and battery using the same
US20200403224A1 (en) Lithium molybdate anode material
CN108666565B (en) Negative electrode active material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764175

Country of ref document: EP

Effective date: 20221005