[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021174960A1 - 一种功率分配方法及装置 - Google Patents

一种功率分配方法及装置 Download PDF

Info

Publication number
WO2021174960A1
WO2021174960A1 PCT/CN2020/137293 CN2020137293W WO2021174960A1 WO 2021174960 A1 WO2021174960 A1 WO 2021174960A1 CN 2020137293 W CN2020137293 W CN 2020137293W WO 2021174960 A1 WO2021174960 A1 WO 2021174960A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
information
power
grid
sharing group
Prior art date
Application number
PCT/CN2020/137293
Other languages
English (en)
French (fr)
Inventor
魏兴
王晓龙
闫琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021174960A1 publication Critical patent/WO2021174960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a power distribution method and device based on user location and traffic distribution.
  • LTE and NR technologies are mainly static control when performing downlink power control.
  • the terminal performs parameter configuration of reference power or power offset according to the coverage capability of each channel or signal, and then adjusts the transmit power of the uplink channel according to the determined parameter configuration.
  • a base station (BS) in FIG. 1 is located at the intersection of three adjacent cells, and an area covered by the base station of a cell is a sector.
  • one cell corresponds to one sector, but in some actual situations, multiple sectors may be combined into one cell.
  • three sectors can form one cell.
  • a sector is equivalent to a cell.
  • the frequency point can be expressed as a fixed frequency number.
  • the frequency point can also mean a frequency range with a fixed frequency as the center frequency point.
  • F1 and F2 may be two frequency points of the F band, and the frequency range may be 1885-1915 MHz.
  • the frequency range of the F1 frequency point may be 1885-1905 MHz, and the center frequency point may be 1895 MHz; the frequency range of the F2 frequency point may be 1904.4-1914.4 MHz, and the center frequency point may be 1909.4 MHz.
  • the fluctuation of data services between different frequency points in the same cell is also very obvious, for example, as shown in FIG. 2. It can be seen that the data service fluctuations of the F1 frequency of cell 1 and the F2 frequency of the same cell 1 are completely different. The same is true for cell 2 and cell 3.
  • the embodiment of the present application provides a power allocation method, which collects parameter information of each cell to divide different numbers of cells into multiple power sharing groups. Among them, power sharing can be performed among the cells in the power sharing group. For each power sharing group, the power in the power sharing group is allocated according to different requirements, so that multiple cells in the power sharing group can optimally allocate the shared power while meeting the demand.
  • a method for power allocation includes: collecting parameter information of each cell in a plurality of cells.
  • the parameter information includes: measurement report MR, transmit power information, load information, and power sharing group information, where each cell Corresponding to a frequency point, the frequency points of different cells can be the same or different; according to the power sharing group information, multiple cells are divided into at least one power sharing group, where the power sharing between each cell in the power sharing group; A power sharing group, according to the MR, transmit power information and load information of each cell in the power sharing group, construct a multi-frequency model of the power sharing group; according to the multi-frequency model and preset configuration information, the power is shared The transmit power of the group is allocated to obtain the transmit power of each cell in the power sharing group; the transmit power allocated to each cell is delivered to the base station of the corresponding cell.
  • the power of multiple systems can be optimized collaboratively, and the overall spectral efficiency of the system, the best energy saving, or a more balanced load can be ensured.
  • transmit power information, and load information of each cell in the power sharing group includes: dividing the area of each cell in the power sharing group into multiple A grid; determine the load-power function of each cell based on the load information, transmit power information and coverage area information of each cell, where the coverage area information is determined based on the grid; determine the grid based on the MR and transmit power information of each cell Path loss information to each cell; for each grid, determine the home serving cell of the grid according to the transmit power information of each cell and the path loss information from the grid to each cell; According to the MR and load of the home serving cell- Power function, build a multi-frequency point model of the power sharing group.
  • MR includes reference signal received power RSRP information, which is used to indicate the signal strength of the cell; according to the MR and transmit power information of each cell, determining the path loss information from the grid to each cell includes: The grid determines X cells covering the grid, where X is a positive integer and less than or equal to the number of cells collected; according to the RSRP information and transmit power information of each cell in the X cells, determine the grid to Path loss information of each cell in X cells.
  • RSRP information reference signal received power RSRP information
  • determining the home serving cell of each grid according to the changed transmission power information and the path loss information from the grid to each cell includes: according to the changed transmission power information and the grid The path loss information to each cell is used to determine the changed RSRP information of each of the X cells; according to the changed RSRP information of each cell, one of the X cells is determined as the home serving cell of the grid.
  • the parameter information further includes signal-to-noise ratio information; according to the changed RSRP information and signal-to-noise ratio information of each cell, one of the X cells is determined as the home serving cell of the grid. This makes the determination of the home serving cell more accurate.
  • constructing a multi-frequency point model of the power sharing group according to the MR and load-power function of each home serving cell includes: for each frequency point of each grid, according to the attribution of the grid The MR of the serving cell, the MR of the neighboring cell of the home serving cell, and the load-power function of the home serving cell of the grid, construct a single grid single frequency point model; construct a single grid single frequency point model based on each single grid single frequency point model of the same grid Single-grid multi-frequency point model; According to the single-grid multi-frequency point model of each grid, the multi-frequency point model of the power sharing group is constructed to optimize based on the higher throughput rate of the cell.
  • the parameter information further includes: cell frequency information; according to the MR and load-power function of each home serving cell, constructing the multi-frequency model of the power sharing group includes: according to the load of the home serving cell-
  • the power function and frequency point information are used to construct a single frequency point model; according to the single frequency point model and preset configuration information, a multi-frequency point model of the power sharing group is constructed. It can be optimized based on the load balance of different cells.
  • the parameter information further includes: cell frequency information and cell bandwidth information; according to the MR and load-power function of each home serving cell, constructing the multi-frequency model of the power sharing group includes: The home serving cell constructs a single-cell power consumption model based on the load-power function, transmit power information, and cell bandwidth information of the home serving cell; constructs a single-frequency power consumption model based on the cell frequency information and the single-cell power consumption model Quantity model; according to the single-frequency power consumption model and preset configuration information, a multi-frequency model of the power sharing group is constructed. It can be optimized based on the power consumption of different communities, making it more energy-saving and environmentally friendly.
  • the configuration information includes priority coefficients of multiple frequency points.
  • the method further includes: constructing an entire network model according to the multi-frequency point model of each power sharing group; according to the entire network model and configuration information, allocating the transmit power of each power sharing group to obtain Each power shares the transmit power of each cell in the group; the transmit power of each cell is delivered to the base station of the corresponding cell. Collaborative optimization among multiple power sharing groups can be performed, which further guarantees the expansion of the optimization range.
  • the method further includes: obtaining power sharing group information through the base station.
  • the parameter information further includes the connection relationship between the baseband processing unit BBU and the AAU, and the MR includes latitude and longitude information; the method further includes: obtaining power sharing group information according to the longitude and latitude information in the MR and the connection relationship between the BBU and the AAU.
  • a power allocation device in a second aspect, includes: a receiver for collecting parameter information of each cell in multiple cells.
  • the parameter information includes: measurement report MR, transmit power information, load information, and power sharing group information , Each cell corresponds to a frequency point, and the frequency points of different cells can be the same or different;
  • the processor is used to couple with the memory, and read and execute the instructions in the memory; when the processor is running, the instructions are executed to make the processor It is also used to: divide multiple cells into at least one power sharing group according to the power sharing group information, where the power sharing between the cells in the power sharing group; for each power sharing group, according to the power sharing group
  • the MR, transmit power information and load information of the cell are used to construct a multi-frequency model of the power sharing group; according to the multi-frequency model and preset configuration information, the transmit power of the power sharing group is allocated to obtain the power sharing group Transmit power of each cell in the internal; transmitter, used to deliver the transmit power allocated to each cell to the base station of the corresponding cell.
  • the processor is further used to: divide the area of each cell in the power sharing group into multiple grids; determine the load of each cell according to the load information, transmit power information, and coverage area information of each cell -Power function, where the coverage area information is determined according to the grid; the path loss information from the grid to each cell is determined according to the MR and transmit power information of each cell; for each grid, the transmit power information of each cell and the grid are determined Based on the path loss information from the grid to each cell, the grid’s home serving cell is determined; according to the home serving cell’s MR and load-power function, a multi-frequency model of the power sharing group is constructed.
  • the MR includes reference signal received power RSRP information, which is used to indicate the signal strength of the cell; the processor is further used to determine X cells covering the grid for each grid, where X is positive It is an integer and less than or equal to the number of cells collected; according to the RSRP information and transmit power information of each cell in the X cells, the path loss information from the grid to each cell in the X cells is determined.
  • RSRP information reference signal received power
  • the processor is further configured to: determine the changed RSRP information of each of the X cells according to the changed transmit power information and the path loss information from the grid to each cell; The RSRP information after the cell change determines one of the X cells as the home serving cell of the grid.
  • the parameter information further includes signal-to-noise ratio information; the processor is further configured to: according to the changed RSRP information and signal-to-noise ratio information of each cell, determine one of the X cells as the grid Home serving cell. This makes the determination of the home serving cell more accurate.
  • the processor is further configured to: for each frequency point of each grid, according to the MR of the home serving cell of the grid and the MR of the neighboring cell of the home serving cell, and the home of the grid
  • the load-power function of the serving cell is used to construct a single-grid single-frequency model; a single-grid multi-frequency model is constructed based on the single-grid single-frequency model of the same grid; a single-grid multi-frequency model is constructed according to the single-grid multi-frequency of each grid Point model to construct a multi-frequency point model of the power sharing group to optimize based on the higher throughput rate of the cell.
  • the parameter information further includes: cell frequency information; the processor is further configured to: construct a single frequency model according to the load-power function and frequency information of the home serving cell; and according to the single frequency model and The preset configuration information constructs a multi-frequency point model of the power sharing group. It can be optimized based on the load balance of different cells.
  • the parameter information further includes: cell frequency information and cell bandwidth information; the processor is further configured to: for each home serving cell, according to the load-power function, transmit power information and information of the home serving cell Cell bandwidth information, build a single cell power consumption model; build a single frequency power consumption model based on cell frequency information and a single cell power consumption model; build a single frequency power consumption model based on the single frequency power consumption model and preset configuration information
  • the multi-frequency point model of the power sharing group It can be optimized based on the power consumption of different communities, making it more energy-saving and environmentally friendly.
  • the configuration information includes priority coefficients of multiple frequency points.
  • the processor is further used to: construct an entire network model according to the multi-frequency point model of each power sharing group; and allocate the transmit power of each power sharing group according to the entire network model and configuration information , To obtain the transmit power of each cell in each power sharing group; the transmitter is also used to deliver the transmit power of each cell to the base station of the corresponding cell. Collaborative optimization among multiple power sharing groups can be performed, which further guarantees the expansion of the optimization range.
  • the receiver is also used to obtain power sharing group information through the base station.
  • the parameter information further includes the connection relationship between the baseband processing unit BBU and the AAU, and the MR includes latitude and longitude information; the processor is also used to obtain the power sharing group according to the longitude and latitude information in the MR and the connection relationship between the BBU and the AAU information.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, which are characterized in that, when the instructions are executed on a terminal, the terminal is caused to execute any one of the methods of the first aspect.
  • a computer program device containing instructions, which when running on a terminal, causes the terminal to execute the method of any one of the first aspects.
  • the present application discloses a power allocation method and device.
  • the multiple cells are divided into at least one power sharing group according to the power sharing group information in the parameter information.
  • a multi-frequency model is constructed according to the MR, transmit power information, and load information of each cell in the power sharing group.
  • the transmit power of the power sharing group is allocated to obtain the transmit power of each cell in the power sharing group.
  • the transmit power of each cell is delivered to the base station of the corresponding cell.
  • the power of multiple systems can be optimized collaboratively, and the overall spectral efficiency of the system, the best energy saving, or a more balanced load can be ensured.
  • Figure 1 is a schematic diagram of user distribution in an existing communication network
  • Figure 2 is a schematic diagram of data service fluctuations in an existing communication network
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a connection relationship between AAU and BBU according to an embodiment of the application
  • FIG. 5 is a schematic diagram of power sharing according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of power allocation between LTE and NR according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of a unidirectional power adjustment provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of network-level power adjustment provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the framework of a power distribution system provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another power distribution system framework provided by an embodiment of this application.
  • FIG. 11 is a flowchart of a power allocation method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of grid division according to an embodiment of this application.
  • FIG. 13 is a schematic diagram of a power allocation effect provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a power distribution device provided by an embodiment of the application.
  • the power sharing group may include multiple cells.
  • the power sharing group 1 includes cells 1 to 7
  • the power sharing group 2 includes cells 8 to 10
  • the power sharing group 3 includes cells 11 to 14 .
  • there can be more power sharing groups and the number of cells in each power sharing group can also be any other value.
  • multiple cells in the group share a certain amount of power, that is, multiple cells in the group share power.
  • Shared power means that for a multi-mode base station, when the power utilization rate of a cell is low, the cell can share idle power to other cells in the group for use.
  • other cells in the group have low power utilization, other cells in the group can also share the idle power for use by the cell.
  • FIG. 4 shows a schematic diagram of the connection relationship between an active antenna unit (AAU) and a baseband processing unit (BBU).
  • AAU is an integrated component of a base station radio unit (RU) and antenna (antenna unit, AU).
  • the BBU is mainly used to complete the processing of the baseband signal of the base station. It is understandable that multiple cells in the same power sharing group share one AAU, which may be referred to as a common AAU. Among them, different cells may correspond to different frequency points, and multiple cells share one AAU, which means that multiple frequency points can share one AAU. As shown in FIG.
  • the AAU of each cell may include a macro (macro) AAU, an optical fiber (optical fiber), and a micro (micro) AAU, and the AAUs of different cells may be connected to the BBU through an optical fiber transmission network.
  • multiple AAUs connected through a BBU can be regarded as a whole, that is, multiple AAUs connected through a BBU can be regarded as one AAU, so that multiple cells connected to each other share an AAU.
  • the gray power part in Figure 5 shows a power pool with a total of AAU.
  • the power pool of the common AAU can be regarded as the total power that can be used by the common AAU.
  • the LTE cell in the common AAU uses a part of the power in the power pool
  • the NR cell in the common AAU also uses a part of the power in the power pool.
  • the power of the LTE cell may not be fully utilized, and the idle power that is not utilized can be allocated to the NR cell in the common AAU to achieve power sharing between cells.
  • the power sharing can be achieved between different cells in the common AAU.
  • a network-level joint adjustment can be performed to achieve the corresponding optimization goal.
  • part of the power in the power pool can be allocated to the LTE cell for use, and the other part of the power can be allocated to the NR cell for use.
  • the power P of the power pool is divided into P LTE and P NR , and then subdivided for LTE cells or NR cells.
  • NR1 cell is allocated d1 power
  • NR2 cell is allocated d2 power
  • LTE1 cell is allocated d3 power
  • LTE3 cell is allocated d4 power
  • LTE2 cell is allocated d5 power.
  • part of the power of the original LTE cell may be allocated to the NR cell for use, thereby increasing the throughput of the NR cell and reducing the interference of the LTE cell, thereby improving the LTE cell Quality of service.
  • one-way power control of a mobile station can be used to achieve power adjustment.
  • Mobile stations refer to terminal devices of mobile users, such as mobile phones, tablets, wearable devices, in-vehicle devices, and so on.
  • the mobile station measures the propagation loss between the mobile station and the base station according to the strength of the pilot signal received from the base station, thereby determining the size of the transmission power.
  • the transmission power of the mobile station is controlled within a certain range. If the received power of the mobile station is small, it indicates that the forward link (downlink) loss is large, and the mobile station can be considered that the reverse link (uplink) loss is also large. Therefore, the mobile station can increase its own transmission power.
  • FIG. 7 shows a schematic diagram of one-way power adjustment.
  • MS 1 determines the received power based on the received pilot signal strength of the base station as And judge the power loss of the forward link, and then MS 1 controls its own transmission power as In order to make up for the loss of the corresponding reverse link.
  • MS 2 controls its own transmission power and adjust it to Obviously, for different MSs, they control their own transmission powers differently.
  • this solution only adjusts the power of the mobile station serving itself in the cell, and this adjustment will cause mutual interference between multiple mobile stations in different cells. For example, there may be problems such as “near-far effect".
  • the “near-far effect” is a phenomenon in which MSs that are closer to the base station will interfere with MSs that are far away from the base station.
  • the cells are shared AAU cells, that is, power is allocated from the same power pool.
  • the power optimization is only an adjustment from the perspective of network optimization at that frequency point. It is likely that the power of the power pool in the total AAU is not used up, or the overall network performance of an important frequency point is relatively poor. Therefore, it is impossible to guarantee the best overall spectrum efficiency, the best service quality of each cell, the most energy-saving, or a more uniform load. Therefore, controlling power allocation has become a key issue for network downlink planning and optimization.
  • This application aims at power sharing between cells at different frequency points in the network. For the same physical area, there may be multiple different frequency points. The number of base stations corresponding to each cell, the location of the base station, the number of users served by the cell, and the load are also all Are not the same. Therefore, by collecting parameter information of each cell, power allocation is performed on multiple cells in the common AAU according to different optimization goals. For different frequency points of the same cell, and power allocation among multiple different cells, that is, the transmission power is reasonably configured. It solves the interference between multiple cells at different frequency points, and at the same time ensures the optimal network performance.
  • the overall network system performance can be optimized, and the network coverage quality and user service experience can be effectively improved, such as the best throughput rate of a certain frequency point, the best throughput rate of the entire network,
  • the load is the most balanced or the power consumption is the lowest (the most energy efficient).
  • FIG. 9 is a schematic diagram of the framework of a power distribution system provided by an embodiment of the application.
  • the present application first collects parameter information of each cell through the data collection module 901.
  • the data collection module 901 can collect parameter information of different cells through the base station. Of course, in some cases, it can also be collected manually. For example, the staff uses terminal equipment to directly collect the parameter information of the cell.
  • the data processing module 902 calculates the characteristic information of each cell according to the collected parameter information of the different cells, and constructs a multi-frequency point model.
  • the calculated feature information may be, for example, road loss information, location information, and/or load information. Then build a multi-frequency model based on the collected parameter information and the calculated path loss information.
  • the power allocation module 903 obtains the transmit power of each cell in the common AAU through the frequency point model according to different optimization goals.
  • the transmission power of different cells is delivered to the base station of the corresponding cell through the command issuing module 904.
  • Different cells correspond to the same or different frequency points, such as frequency points f1, f2, and f3.
  • the power in the power pool is allocated according to the calculated transmit power, so that each cell no longer interferes with each other and can meet the expected optimization goal.
  • FIG. 10 is a schematic diagram of another power distribution system framework provided by an embodiment of the application.
  • the data processing module 902 can also construct a multi-frequency point model according to a preset configuration; and the power allocation module 903 can also refer to the preset configuration to obtain a power allocation scheme for a specific optimization target.
  • the preset configuration is specific information that is preset before power allocation, such as some variable constraints, preset thresholds, priority corresponding to different frequency points, power constraints of different power sharing groups, and specific optimization goals. .
  • FIG. 11 is a flowchart of a power allocation method provided by an embodiment of the application.
  • a power distribution method is provided.
  • the method is applied to the system framework shown in FIG. 9 and FIG. 10.
  • the method may include the following steps:
  • S1101 Collect parameter information of each cell in multiple cells.
  • the data collection module 901 collects parameter information of multiple cells.
  • the areas where multiple cells are collected may be different.
  • the parameter information may include measurement report (MR) of each cell, transmit power information of each cell, load information of each cell, or power sharing group information.
  • the power sharing group information may also be referred to as common AAU information, and the common AAU information records which other cells share the AAU with the cell.
  • the data collection module 901 can implement parameter information collection of multiple cells through a network management tool.
  • the collected MR can be as shown in Table 1.
  • the parameter information may also include the location information of each cell, the frequency information of each cell, and the model information of the AAU connected to each cell.
  • the location information can exist alone or included in the MR.
  • the MR may also include cell location information, such as latitude and longitude, as shown in Table 2.
  • the parameter information includes the transmit power information of each cell, the frequency point information of each cell, and the model information of the AAU connected to each cell, for example, as shown in Table 3.
  • the parameter information may also include, for example, the bandwidth of the cell and the slot number of the AAU cabinet frame.
  • the AAU cabinet frame slot number is used to describe the connection information between the AAU and the BBU.
  • the same cabinet frame slot number in different cells indicates that the AAUs of these cells are connected to the same BBU, thereby forming a common AAU.
  • the AAU model is used to indicate which type of AAU is the AAU connected to the cell. It is understandable that, under normal circumstances, the AAU models connected to multiple cells sharing the AAU are the same. However, it is worth noting that multiple cells with the same type of AAU may not share the AAU. For which cells share the AAU, it is also necessary to determine the shared AAU information.
  • Cell ID bandwidth Frequency Transmit power
  • AAU cabinet frame slot number AAU model 123 100M F1 20w 123 AAAA 456 20M F2 40w 123 AAAA ... ... ... ... ... ... ... ...
  • the load information of each cell included in the collected parameter information is shown in Table 4, for example.
  • Table 4 contains the incoming water volume of the cell and the utilization of physical resource block (PRB).
  • PRB physical resource block
  • the incoming water volume indicates the number of communication services carried by the cell
  • the PRB utilization rate indicates the usage status of the PRB of the cell.
  • the inflow water volume is basically proportional to the PRB utilization rate, that is, the higher the inflow water volume of a cell, the higher the PRB utilization rate of the cell.
  • PRB physical resource block
  • S1102 Divide multiple cells into at least one power sharing group.
  • the data processing module 902 performs corresponding feature calculations according to the parameter information of each cell collected by the data collection module 901. For example, the characteristics of the total AAU of each cell are calculated according to the collected information of the total AAU of each cell.
  • the data processing module 902 divides multiple cells sharing AAU into a group.
  • the collected power sharing group information of each cell may be that the shared AAU information of cell A is shared with cell C and cell D; the shared AAU information of cell B is shared with cell E; the shared AAU information of cell C is Shared AAU with cell A and cell D; shared AAU information for cell D is shared AAU with cell A and cell C; shared AAU information for cell E is shared AAU with cell B.
  • cell A, cell C, and cell D can be divided into a common AAU
  • cell B and cell E can be divided into another common AAU.
  • the shared AAU information may directly record the cell IDs of other cells sharing the AAU with the cell. For example, as shown in Table 5.
  • the common AAU situation of each cell is recorded in Table 5.
  • cell 123 and cell 456 share AAU, and the AAU model connected to cell 123 is AAAA; cell 456 shares AAU with cell 123, and is connected to cell 456
  • the AAU model of cell 789 is AAAA; cell 789 does not share AAU with any other cell, and the model of AAU connected to cell 789 is BBBB.
  • it can be determined which cells are common AAU cells for example, it can be determined that cell 123 and cell 456 are common AAU cells, and cell 789 is not common AAU cells.
  • the power sharing group information can also be determined according to the location information of the cell and the connection between the AAU and the BBU. It is understandable that if the collected parameter information does not include the location information of the cell, a positioning algorithm can be used to add the latitude and longitude information to the MR in the parameter information of the cell.
  • the positioning algorithm may use, for example, a fingerprint positioning algorithm, a triangulation positioning algorithm, a cell positioning algorithm, an indoor/outdoor distinguishing algorithm, etc., which are not limited in this application.
  • the MR to which the location information is added can be regarded as combining Table 1 and Table 2 into one table, as shown in Table 6, for example.
  • the latitude and longitude information of each cell recorded in Table 6 and the AAU cabinet frame slot number (AAU and BBU connection information) recorded in Table 3 can be used to determine the total of each cell as shown in Table 5.
  • AAU situation For example, the AAU of cell A, the AAU of cell C, and the AAU of cell D are connected to one BBU, and the AAU of cell B and the AAU of cell E are connected to one BBU. Since different physical areas may have the same AAU cabinet slot number, according to the latitude and longitude information of each cell, when different cells in the same area have the same AAU cabinet slot number, it is considered that these cells share AAU.
  • the location information if it is determined that the cell A, the cell C, and the cell D are located in the same fixed area, the cell B and the cell D are located in the same fixed area. Then, cell A, cell C, and cell D can be divided into a common AAU, and cell B and cell E can be divided into another common AAU. For example, cell A, cell C, and cell D are all in the Beijing area, and cell B and cell D are all in the Shanxi area.
  • S1103 For each power sharing group, calculate the path loss information of each cell in the power sharing group, and construct a multi-frequency point model.
  • the data processing module 902 determines the geographic area covered by the collected multiple cells according to the collected location information of the multiple cells.
  • the geographic areas of multiple cells are divided into squares of the same size, and each square is called a grid. For example, as shown in FIG. 12, the entire area is an area of multiple cells collected, and each corresponding small square is a divided grid.
  • MR includes reference signal receiving power (RSRP) information.
  • RSRP reference signal receiving power
  • the RSRP information is the cell level shown in Table 1, and the unit is decibels, milliwatts, and dBm.
  • the path loss information can be obtained by subtracting the cell level from the transmit power.
  • the path loss information from each grid to each cell can be obtained, for example, as shown in Table 7.
  • the location information (latitude and longitude) of the grid and the location information (latitude and longitude) of each cell can be used to determine which cells each grid can be covered by. Then, for each grid, the path loss information of multiple cells that can cover the grid is calculated.
  • the data processing module 902 may also determine the load-power function of each cell according to the collected load information of each cell, the coverage area of each cell, and the transmit power information of each cell, for example, as shown in Table 8.
  • the power-load function can be determined by first calculating the function of the cell's incoming water and PRB utilization by calculating the incoming water and PRB utilization, and then using the relationship between power and incoming water to bring the power into The function of incoming water volume and PRB utilization rate, thereby obtaining the function of power and PRB utilization rate, that is, the power-load function.
  • the data processing module 902 calculates the collected data by means of machine learning to obtain a load-power function common to each cell. So that when a new power is input, the PRB utilization rate of each cell under the new power can be obtained.
  • the preset configuration information may be preset in the data processing module 902, or may be collected through the data acquisition module 901.
  • the configuration information includes various possible optimization goals, such as optimizing 5G throughput, more uniform overall load, and overall more energy-saving goals.
  • the configuration information may also include the priorities of different frequency points and corresponding priority coefficients. You can refer to Table 9 below.
  • NR and LTE cells share AAU cells, and different cells can share power.
  • part of the power of the LTE cell can be used by the NR cell. After the LTE cell is borrowed power, the coverage area of the cell is reduced, and the interference of LTE to NR is reduced; for the NR cell, the coverage area is increased, and the signal-to-noise ratio or the signal-to-interference-to-noise ratio of the cell is also improved.
  • f1 is a possible expression form of the aforementioned single-grid single-frequency point model f; N represents an algebraic form of noise and/or other interference factors.
  • the multi-frequency point model G1 is a possible expression form of the above-mentioned single-grid multi-frequency point model F, and ⁇ represents the cumulative sum.
  • G1 is a possible expression form of the above-mentioned multi-frequency point model G.
  • the multi-frequency point model G1 of each power sharing group can also be combined to construct the entire network model Z1.
  • the level information of each cell detected by each grid can be calculated from the path loss information and the new transmit power of each cell. Since the level information of the cell can characterize the signal strength of the cell detected by the grid, the cell level information can be used to determine the home serving cell of the grid. Among them, the level information of multiple cells that can cover the grid detected by each grid can be shown in Table 10.
  • the grid detected by the grid can be obtained.
  • the level of each cell that is, the signal strength.
  • the home serving cell of the grid can be determined according to the A3 standard side or the S standard side. Obviously, each grid belongs to only one cell. Among them, the A3 criterion can be used to trigger the handover between grid cells with the same frequency or between cells with different frequencies.
  • the data processing module 902 detects that the signal strength of the neighboring cell is higher than the signal strength of the original cell, it can trigger the switch of the home serving cell. Switch.
  • the handover of the home serving cell may be triggered.
  • the offset can be a preset fixed value.
  • the S criterion is used to continue camping on the cell when the signal strength of the current cell meets the preset requirements, that is, the home serving cell does not perform handover. In some other examples, it is also possible to continue to camp on the cell when the signal strength and signal quality of the current cell meet the preset requirements.
  • the grid can be calculated independently.
  • a certain cell in NR Since the frequency points used by LTE and NR are different, by extension, for each grid, the home serving cell under each frequency point can be calculated based on different frequency points.
  • NR and LTE cells share AAU cells, and different cells can share power.
  • part of the power of the LTE cell can be used by the NR cell. After the LTE cell is borrowed power, the coverage area of the cell is reduced, and the load capacity of LTE is reduced at the same time; for the NR cell, the coverage area is increased, and the load capacity of the cell is also improved, making the overall load more balanced.
  • the construction of the multi-frequency model may be to first construct a single-frequency model s, and then construct a multi-frequency model G according to multiple single-frequency models s and priority coefficients.
  • the PRB utilization rate of each cell at the current power may be calculated first according to the transmit power information and the load-power function of each cell. Obviously, if the transmit power of each cell is changed, the PRB utilization rate of each cell will also change. As the power of each cell changes, the coverage of each cell changes accordingly, and the number of grids belonging to the cell also changes accordingly.
  • the determination of the grid home serving cell can refer to the manner described in Table 10, which will not be repeated here.
  • s1 (( ⁇ PRB utilization rate of the frequency point cell)*( ⁇ PRB utilization rate of the frequency point cell))/(number of cells at this frequency point* ⁇ ( PRB utilization rate of other frequency point cells * PRB utilization rate of other frequency point cells))
  • s1 is a possible expression form of the above-mentioned multi-cell single frequency point model s.
  • other frequency cells are cells of other frequency points except this frequency point.
  • the single frequency point model in each power sharing group if there is only one cell at that frequency point in the power sharing group, the single frequency point model is a single frequency point model of a single cell; of course, if the There are only multiple cells at the frequency point in the power sharing group, and the single frequency point model is a multi-cell single frequency point model.
  • the multi-frequency point model G2 is obtained by calculation.
  • G2 is a possible expression form of the above-mentioned multi-frequency point model G.
  • the multi-frequency point model G2 of each power sharing group can also be combined to construct the entire network model Z2.
  • the concept of the entire network is similar to that of Z1, so it will not be repeated here for the convenience of description.
  • Z2 ⁇ G2
  • different power sharing groups have different priority coefficients j
  • the NR and LTE cells share the AAU cell, and different cells can share power.
  • part of the power of the LTE cell can be used by the NR cell. After the LTE cell is borrowed power, the coverage of the cell is reduced, and the power consumption of LTE is slightly increased; for the NR cell, the coverage is increased, and the power consumption of the cell is also increased. But the overall power consumption is lower, making the entire network more energy-efficient.
  • the construction of the multi-frequency model may be to first construct a single-cell power consumption model 1, and then construct a single-frequency power consumption model L according to multiple single-cell power consumption models l. Finally, a multi-frequency model G is constructed according to multiple single-frequency power consumption models F and the priority coefficient k of each frequency.
  • l1 is a possible expression form of the above-mentioned single-cell power consumption model l.
  • L the frequency of each cell may be the same or different.
  • L1 is a possible expression form of the above-mentioned single frequency point power consumption model L. It is understandable that for the single-frequency power consumption model in each power sharing group, if there is only one cell at that frequency in the power sharing group, the single-frequency power consumption model is a single-cell single-frequency power consumption model.
  • the single-frequency power consumption model is a multi-cell single-frequency power consumption model.
  • G3 is a possible expression form of the above-mentioned multi-frequency point model G.
  • the multi-frequency point model G3 of each power sharing group can also be combined to construct the entire network model Z3.
  • the concept of the entire network is similar to that of Z1, so it will not be repeated here for the convenience of description.
  • S1104 Perform power allocation to multiple cells in the power sharing group according to preset configuration information and a multi-frequency point model.
  • the power allocation module 903 allocates the transmit power in the power sharing group for each power sharing group according to the preset configuration information and the multi-frequency point model of each power sharing group constructed by the data processing module 902. It is understandable that the allocated transmit power of each cell can fully use the maximum power of the power sharing group, and of course, it is also possible to allocate only a part of the power in the power sharing group.
  • the preset configuration information may include the maximum transmit power of different AAU models and the corresponding power constraints of different AAU models.
  • the power constraint can include the minimum transmit power and the power difference with the common AAU cell, as shown in Table 11.
  • the power ratio range describes the ratio of the transmit power of a certain cell to the transmit power of other cells in the common AAU.
  • the AAU model of the AAU connected to a certain cell is AAAA
  • the transmit power allocated to this cell is aW
  • the transmit power of other cells sharing the AAU with the cell is bW.
  • the power ratio range defines the ratio between a and b, for example, between 0.5-2, that is, 0.5 ⁇ a/b ⁇ 2.
  • the above-mentioned numerical values are merely examples, and are not intended to limit the application.
  • the configuration information may also include coverage requirements for different frequency points.
  • the signal strength of different frequency points must be greater than the signal strength threshold, and the signal-noise ratio (SNR) of different frequency points must be greater than the signal-noise ratio (SNR).
  • the noise ratio threshold or signal to interference plus noise ratio (SINR) needs to be greater than the signal to interference plus noise ratio threshold, etc.
  • the signal strength, signal-to-noise ratio, or signal-to-noise ratio of different frequency points may also be greater than or equal to their respective thresholds, which are not limited in this application.
  • the signal strength can be expressed by RSRP, of course, in other examples, it can also be expressed by other parameters.
  • the coverage requirements for different frequency points may be as shown in Table 12, for example.
  • an optimization algorithm may be used to solve the optimal solution of the multi-frequency point model under the power limitation condition of each cell in the power sharing group.
  • the optimization algorithm may be a non-linear optimization algorithm, a particle swarm algorithm, or a heuristic algorithm, etc., which is not limited in this application.
  • the example group algorithm is used to calculate the optimal power of each cell, first M particles need to be randomly generated, and each example contains the random power allocated by a certain cell in the current power sharing group. Then calculate the fitness function of M particles, and keep the particles with the best fitness. Update the power allocation plan of the power sharing group according to the power plan contained in the particles with the best fitness. And iteratively calculate the fitness of M particles until the fitness function no longer improves. Obtain the current power allocation plan of each cell under each frequency. Among them, the fitness function can be calculated through the multi-frequency point model under different optimization objectives given in S1103. Of course, if the overall optimal allocation is performed for multiple power sharing groups, calculations can be made through the entire network model to finally obtain the optimal solution under the model.
  • configuration information involved in this application can be manually configured, or dynamically configured based on statistics, machine learning, or online functions. Of course, other equivalent methods can also be used for configuration. There is no limitation here.
  • S1105 Deliver the allocated power to the base station corresponding to each cell.
  • the optimal transmit power of each cell in the power sharing group calculated in S1104 is delivered to the base station corresponding to each cell, so that each base station communicates at the corresponding cell with the corresponding transmit power according to the corresponding transmit power.
  • a network management tool can be used for delivery.
  • a manual method can also be used to deliver the optimal power information of each cell to the base station corresponding to each cell.
  • the power allocation module 903 calculates the optimal transmit power of each cell
  • a schematic diagram of the power allocation effect is shown in FIG.
  • the new transmit power when the mobile station passes through a certain area, the grid of this area on the LTE side undergoes reselection of the home serving cell, for example, it selects and switches to the cell of FDD1800. Since the LTE cell shares the AAU with the NR cell, the LTE cell shares part of the power for the NR cell. Therefore, the grid is switched to the home serving cell on the LTE side to a cell with a higher signal-to-noise ratio or throughput rate. But for the NR cell in this area, it can still stay in the original cell, because the NR cell gets more power, and its edge signal-to-noise ratio or signal-to-interference-to-noise ratio is better than before the power change.
  • NR can "borrow" power from LTE.
  • Improve the gain of NR throughput improve the interference on the LTE side and improve the perception on the LTE side.
  • the optimization target is the degree of load balance
  • the multi-frequency model or the entire network model in S1103 is used for calculation, and the optimal solution is obtained. This makes the load of the entire network at each frequency point more balanced, so that the user's service quality experience in each cell is more stable.
  • the optimization target is the power consumption of a single Hz
  • energy saving is currently only performed within a single frequency point, and collaboration between multiple frequency points is not used. Therefore, the multi-frequency point model or the whole network model in S1103 can be used for calculation, and the optimal solution can be obtained.
  • the overall energy saving is made, which can save more electricity bills for operators, and at the same time, it is more green and environmentally friendly, which is conducive to energy saving and emission reduction.
  • the present application collects the parameter information of each cell in the multiple cells, and divides the multiple cells into at least one power sharing group according to the power sharing group information in the parameter information.
  • a multi-frequency model is constructed according to the MR, transmit power information, and load information of each cell in the power sharing group.
  • the transmit power of the power sharing group is allocated to obtain the transmit power of each cell in the power sharing group. Then the transmit power of each cell is delivered to the base station of the corresponding cell.
  • the power of multiple systems can be optimized collaboratively, and the overall spectral efficiency of the system, the best energy saving, or a more balanced load can be ensured.
  • FIG. 14 is a schematic diagram of a VM migration apparatus provided by an embodiment of the application.
  • a power distribution device 1400 is provided.
  • the device 1400 may include a processor 1401, a memory 1402, a receiver 1403, a transmitter 1404, and a bus 1405.
  • the processor 1401, the memory 1402, the receiver 1403, and the transmitter 1404 in the device 1400 may establish a communication connection through the bus 1405.
  • the receiver 1403 is used to receive external information; the transmitter 1404 is used to send information to the outside.
  • the processor 1401 may be a central processing unit (CPU).
  • the memory 1402 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory 1402 may also include non-volatile memory (English: non-volatile memory), such as read-only memory (read-only memory, ROM), flash memory, hard disk drive (HDD), or solid state drive (SSD); the memory 1402 may also include a combination of the foregoing types of memory.
  • volatile memory such as random-access memory (RAM)
  • RAM random-access memory
  • non-volatile memory English: non-volatile memory
  • read-only memory read-only memory
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the memory 1402 may also include a combination of the foregoing types of memory.
  • the receiver 1403 is used to collect parameter information of each cell in multiple cells.
  • the parameter information includes: measurement report MR, transmit power information, load information, and power sharing group information, where each cell corresponds to one frequency point, and one frequency point corresponds to One or more cells.
  • the processor 1401 is used to couple with the memory 1402 and read and execute instructions in the memory 1402; when the processor 1401 is running, the instructions are executed, so that the processor 1401 is also used to: divide multiple subdivisions according to the power sharing group information Is at least one power sharing group, where the power sharing between cells in the power sharing group; for each power sharing group, construct the power sharing group according to the MR, transmit power information, and load information of each cell in the power sharing group.
  • the multi-frequency point model of the power sharing group according to the multi-frequency point model and preset configuration information, the transmit power of the power sharing group is allocated to obtain the transmit power of each cell in the power sharing group.
  • the transmitter 1404 is configured to deliver the transmit power allocated to each cell to the base station of the corresponding cell.
  • the processor 1401 is further configured to: divide the area of each cell in the power sharing group into multiple grids; and determine the load information, transmit power information, and coverage area information of each cell.
  • Load-power function where the coverage area information is determined according to the grid; the path loss information from the grid to each cell is determined according to the MR and transmit power information of each cell; for each grid, the transmission power information of each cell and the The path loss information from the grid to each cell determines the home serving cell of the grid; according to the MR and load-power function of the home serving cell, a multi-frequency point model of the power sharing group is constructed.
  • the MR includes reference signal received power RSRP information, which is used to indicate the signal strength of the cell; the processor 1401 is further configured to: determine X cells covering the grid for each grid, where X is A positive integer and less than or equal to the number of cells collected; according to the RSRP information and transmit power information of each cell in the X cells, the path loss information from the grid to each cell in the X cells is determined.
  • RSRP information reference signal received power
  • the processor 1401 is further configured to: determine the changed RSRP information of each of the X cells according to the changed transmit power information and the path loss information from the grid to each cell; After changing the RSRP information of each cell, determine one of the X cells as the home serving cell of the grid.
  • the parameter information further includes signal-to-noise ratio information; the processor 1401 is further configured to: according to the changed RSRP information and signal-to-noise ratio information of each cell, determine one of the X cells as a grid ’S home serving cell.
  • the processor 1401 is further configured to: for each frequency point of each grid, according to the MR of the home serving cell of the grid and the MR of the neighboring cell of the home serving cell, and the MR of the grid Construct a single-grid single-frequency model based on the load-power function of the home serving cell; construct a single-grid multi-frequency model based on the single-grid single-frequency model of the same grid; Frequency point model to construct a multi-frequency point model of the power sharing group.
  • the parameter information further includes: cell frequency point information; the processor 1401 is further configured to: construct a single frequency point model according to the load-power function and frequency point information of the home serving cell; and according to the single frequency point model And preset configuration information to construct a multi-frequency point model of the power sharing group.
  • the parameter information further includes: cell frequency information and cell bandwidth information; the processor 1401 is further configured to: for each home serving cell, according to the load-power function and transmit power information of the home serving cell Build a single-cell power consumption model based on cell bandwidth information; build a single-frequency power consumption model based on cell frequency information and a single-cell power consumption model; build a single-frequency power consumption model based on the single-frequency power consumption model and preset configuration information, Construct a multi-frequency model of the power sharing group.
  • the configuration information includes priority coefficients of multiple frequency points.
  • the processor 1401 is further configured to: construct an entire network model according to the multi-frequency point model of each power sharing group; and calculate the transmit power of each power sharing group according to the entire network model and configuration information. Allocate to obtain the transmit power of each cell in each power sharing group; the transmitter 1404 is also used to deliver the transmit power of each cell to the base station of the corresponding cell.
  • the receiver 1403 is further configured to obtain power sharing group information through the base station.
  • the parameter information further includes the connection relationship between the baseband processing unit BBU and the AAU, and the MR includes latitude and longitude information; the processor 1401 is further configured to obtain power sharing according to the longitude and latitude information in the MR and the connection relationship between the BBU and the AAU Group information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种功率分配方法,应用于多频点的功率共享小区。方法包括:采集多个小区中各小区的参数信息,参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点;根据功率共享组信息,将多个小区分为至少一个功率共享组,其中,功率共享组中各小区之间的功率共享;针对每个功率共享组,构建该功率共享组的多频点模型;根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率;将分配给各小区的发射功率下发至对应小区的基站。可以协同优化多种制式的功率,并保证系统整体的谱效率、节能最佳或者负荷更均衡。

Description

一种功率分配方法及装置
本申请要求于2020年3月2日提交中国国家知识产权局、申请号为202010136988.X、发明名称为“一种功率分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种基于用户位置与流量分布的功率分配方法及其装置。
背景技术
当前长期演进(long term evolution,LTE)与新无线接入(new radio,NR)技术在进行下行功率控制时主要为静态控制。而静态控制是终端根据各个信道或者信号的覆盖能力,进行基准功率或者功率偏置的参数配置,然后根据确定的参数配置调整上行信道的发射功率。
然而在无线网络的覆盖中,例如图1中的一个基站(base station,BS)位于三个彼此相邻小区的交汇点,一个小区被该基站覆盖的区域即为一个扇区。一般一个小区对应一个扇区,但在实际的一些情况下,也会存在多个扇区合并为一个小区,例如可以由3个扇区构成一个小区。为了简化小区与扇区的概念,可以通俗的认为一个扇区等同于一个小区。对于同一个小区的不同频点之间,用户分布数量差异是比较明显。正如图1中示出的两个频点F1和F2,其中频点可以表示为固定频率的编号,通常情况下频点也可以表示以固定频率为中心频点的一个频率范围。当然在一个例子中,F1、F2可以为F频段的两个频点,频率范围可以是1885-1915MHz。其中,F1频点的频率范围可以是1885-1905MHz,中心频点可以是1895MHz;F2频点的频率范围可以是1904.4-1914.4MHz,中心频点可以是1909.4MHz。显然,两个不同频点用户分布的数量差异明显,例如F1频点仅分布1个用户,而F2频点分布了5个用户。当然对于同一个小区的不同频点之间数据业务的波动也是十分明显的,例如图2示出的。可以看出,小区1的F1频点与同为小区1的F2频点的数据业务波动完全不同。对于小区2和小区3亦是如此。
显然,对于不同小区以及相同小区的不同频点,可以配置不同的功率,以达到保证通信质量的同时,还可避免相互之间的干扰。
发明内容
本申请实施例提供了一种功率分配方法,通过采集各个小区的参数信息,将不同数量的小区分为多个功率共享组。其中,功率共享组内的各小区之间可以进行功率共享。针对每个功率共享组,根据不同需求,将该功率共享组内的功率进行分配,使得该功率共享组中的多个小区在满足需求的同时,将共享功率进行最优分配。
第一方面,提供了一种功率分配方法,方法包括:采集多个小区中各小区的参数信息,参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点,不同小区的频点可以相同或不同;根据功率共享组信息,将多个小区分为至少一个功率共享组,其中,功率共享组中的各小区之间的功率共享;针对每个功率共享组,根据该功率共享组内各小区的MR、发射功率信息和负荷信息,构建该功率共享组的多频点模型;根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享 组内各小区的发射功率;将分配给各小区的发射功率下发至对应小区的基站。可以协同优化多种制式的功率,并保证系统整体的谱效率、节能最佳或者负荷更均衡。
在一个可能的实施方式中,根据该功率共享组内各小区的MR、发射功率信息和负荷信息,构建该功率共享组的多频点模型包括:将功率共享组内各小区的区域划分为多个栅格;根据各小区的负荷信息、发射功率信息和覆盖面积信息,确定各小区的负荷-功率函数,其中覆盖面积信息根据栅格确定;根据各小区的MR和发射功率信息,确定栅格到各小区的路损信息;针对每个栅格,根据各小区的发射功率信息和该栅格到各小区的路损信息,确定栅格的归属服务小区;根据归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型。
在一个可能的实施方式中,MR包括参考信号接收功率RSRP信息,用于表示小区的信号强度;根据各小区的MR和发射功率信息,确定栅格到各小区的路损信息包括:针对每个栅格确定覆盖栅格的X个小区,其中,X为正整数且小于或等于采集到的小区的个数;根据X个小区中每个小区的RSRP信息和发射功率信息,确定该栅格到X个小区中各小区的路损信息。
在一个可能的实施方式中,根据改变后的发射功率信息和该栅格到各小区的路损信息,确定每个栅格的归属服务小区,包括:根据改变后的发射功率信息和该栅格到各小区的路损信息,确定X个小区中每个小区改变后的RSRP信息;根据每个小区改变后的RSRP信息,确定X个小区中的一个小区作为栅格的归属服务小区。
在一个可能的实施方式中,参数信息还包括信噪比信息;根据每个小区改变后的RSRP信息和信噪比信息,确定X个小区中的一个小区作为栅格的归属服务小区。使得归属服务小区的确定更加准确。
在一个可能的实施方式中,根据各归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型包括:针对每个栅格的每个频点,根据该栅格的归属服务小区的MR和归属服务小区的邻区的MR、该栅格的归属服务小区的负荷-功率函数,构建单栅格单频点模型;根据同一栅格各单栅格单频点模型,构建单栅格多频点模型;根据每个栅格的单栅格多频点模型,构建该功率共享组的多频点模型,以基于小区的更高吞吐率而进行优化。
在一个可能的实施方式中,参数信息还包括:小区频点信息;根据各归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型包括:根据归属服务小区的负荷-功率函数和频点信息,构建单频点模型;根据单频点模型和预设的配置信息,构建该功率共享组的多频点模型。可以基于不同小区的负荷均衡进行优化。
在一个可能的实施方式中,参数信息还包括:小区频点信息和小区带宽信息;根据各归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型包括:针对每个归属服务小区,根据该归属服务小区的负荷-功率函数、发射功率信息和小区带宽信息,构建单小区耗电量模型;根据小区频点信息和单小区耗电量模型,构建单频点耗电量模型;根据单频点耗电量模型和预设的配置信息,构建该功率共享组的多频点模型。可以基于不同小区的电量消耗进行优化,使得更加节能环保。
在一个可能的实施方式中,配置信息包括多个频点的优先级系数。
在一个可能的实施方式中,方法还包括:根据每个功率共享组的多频点模型,构建整网模型;根据整网模型和配置信息,将该各功率共享组的发射功率进行分配,得到每个功率共享组内各小区的发射功率;将各小区的发射功率下发至对应小区的基站。可以进行多个功率共享组之间的协同优化,进一步保障了扩大了优化范围。
在一个可能的实施方式中,方法还包括:通过基站获取功率共享组信息。
在一个可能的实施方式中,参数信息还包括基带处理单元BBU与AAU的连接关系,MR包括经纬度信息;方法还包括:根据MR中的经纬度信息以及BBU与AAU的连接关系获取功率共享组信息。
第二方面,提供了一种功率分配装置,装置包括:接收器,用于采集多个小区中各小区的参数信息,参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点,不同小区的频点可以相同或不同;处理器,用于与存储器耦合,以及读取并执行存储器中的指令;当处理器运行时执行指令,使得处理器还用于:根据功率共享组信息,将多个小区分为至少一个功率共享组,其中,功率共享组中各小区之间的功率共享;针对每个功率共享组,根据该功率共享组内各小区的MR、发射功率信息和负荷信息,构建该功率共享组的多频点模型;根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率;发送器,用于将分配给各小区的发射功率下发至对应小区的基站。可以协同优化多种制式的功率,并保证系统整体的谱效率、节能最佳或者负荷更均衡。
在一个可能的实施方式中,处理器还用于:将功率共享组内各小区的区域划分为多个栅格;根据各小区的负荷信息、发射功率信息和覆盖面积信息,确定各小区的负荷-功率函数,其中覆盖面积信息根据栅格确定;根据各小区的MR和发射功率信息,确定栅格到各小区的路损信息;针对每个栅格,根据各小区的发射功率信息和该栅格到各小区的路损信息,确定栅格的归属服务小区;根据归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型。
在一个可能的实施方式中,MR包括参考信号接收功率RSRP信息,用于表示小区的信号强度;处理器还用于:针对每个栅格确定覆盖栅格的X个小区,其中,X为正整数且小于或等于采集到的小区的个数;根据X个小区中每个小区的RSRP信息和发射功率信息,确定该栅格到X个小区中各小区的路损信息。
在一个可能的实施方式中,处理器还用于:根据改变后的发射功率信息和该栅格到各小区的路损信息,确定X个小区中每个小区改变后的RSRP信息;根据每个小区改变后的RSRP信息,确定X个小区中的一个小区作为栅格的归属服务小区。
在一个可能的实施方式中,参数信息还包括信噪比信息;处理器还用于:根据每个小区改变后的RSRP信息和信噪比信息,确定X个小区中的一个小区作为栅格的归属服务小区。使得归属服务小区的确定更加准确。
在一个可能的实施方式中,处理器还用于:针对每个栅格的每个频点,根据该栅格的归属服务小区的MR和归属服务小区的邻区的MR、该栅格的归属服务小区的负荷-功率函数,构建单栅格单频点模型;根据同一栅格各单栅格单频点模型,构建单栅格多频点模型;根据每个栅格的单栅格多频点模型,构建该功率共享组的多频点模型,以基于小区的更高吞吐率而进行优化。
在一个可能的实施方式中,参数信息还包括:小区频点信息;处理器还用于:根据归属服务小区的负荷-功率函数和频点信息,构建单频点模型;根据单频点模型和预设的配置信息,构建该功率共享组的多频点模型。可以基于不同小区的负荷均衡进行优化。
在一个可能的实施方式中,参数信息还包括:小区频点信息和小区带宽信息;处理器还用于:针对每个归属服务小区,根据该归属服务小区的负荷-功率函数、发射功率信息和小区带宽信息,构建单小区耗电量模型;根据小区频点信息和单小区耗电量模型,构建单频点耗 电量模型;根据单频点耗电量模型和预设的配置信息,构建该功率共享组的多频点模型。可以基于不同小区的电量消耗进行优化,使得更加节能环保。
在一个可能的实施方式中,配置信息包括多个频点的优先级系数。
在一个可能的实施方式中,处理器还用于:根据每个功率共享组的多频点模型,构建整网模型;根据整网模型和配置信息,将该各功率共享组的发射功率进行分配,得到每个功率共享组内各小区的发射功率;发送器还用于,将各小区的发射功率下发至对应小区的基站。可以进行多个功率共享组之间的协同优化,进一步保障了扩大了优化范围。
在一个可能的实施方式中,接收器还用于通过基站获取功率共享组信息。
在一个可能的实施方式中,参数信息还包括基带处理单元BBU与AAU的连接关系,MR包括经纬度信息;处理器还用于,根据MR中的经纬度信息以及BBU与AAU的连接关系获取功率共享组信息。
第三方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,其特征在于,当指令在终端上运行时,使得终端执行第一方面任意一项的方法。
第四方面,提供了一种包含指令的计算机程序设备,当其在终端上运行时,使得终端执行第一方面中的任一项的方法。
本申请公开了一种功率分配方法及装置,通过采集多个小区中各小区的参数信息,根据参数信息中的功率共享组信息将多个小区分为至少一个功率共享组。针对每个功率共享组,根据该功率共享组内各小区的MR、发射功率信息和负荷信息,构建多频点模型。根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率。再将各小区的发射功率下发至对应小区的基站。可以协同优化多种制式的功率,并保证系统整体的谱效率、节能最佳或者负荷更均衡。
附图说明
图1为现有通信网络用户分布示意图;
图2为现有通信网络数据业务波动示意图;
图3为本申请实施例提供的一种应用场景示意图;
图4为本申请实施例提供的一种AAU与BBU连接关系示意图;
图5为本申请实施例提供的一种功率共享示意图;
图6为本申请实施例提供的一种LTE与NR的功率分配示意图;
图7为本申请实施例提供的一种单向功率调整示意图;
图8为本申请实施例提供的一种网络级功率调整示意图;
图9为本申请实施例提供的一种功率分配系统框架示意图;
图10为本申请实施例提供的另一种功率分配系统框架示意图;
图11为本申请实施例提供的一种功率分配方法流程图;
图12为本申请实施例提供的一种栅格划分示意图;
图13为本申请实施例提供的一种功率分配效果示意图;
图14为本申请实施例提供的一种功率分配装置示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请主要应用在多个小区之间进行功率共享的场景。图3为一种应用场景示意图。功率共享组内可以包括有多个小区,例如功率共享组1内包含有小区1至小区7,功率共享组2内包含小区8至小区10,以及功率共享组3内包含有小区11至小区14。当然可以理解的是,还可以更多的功率共享组,并且对于每一个功率共享组内的小区数量也可以是其他任意数值。对于每个功率共享组,组内的多个小区共用一定额度的功率,即组内的多个小区之间共享功率。共享功率是指对于多模基站,当一个小区的功率利用率低时,该小区可将空闲的功率共享给组内的其他小区使用。当然,若组内的其他小区出现功率利用率低的情况时,组内的其他小区同样可将空闲的功率共享给该小区使用。
对于功率共享的场景的实际物理连接可以例如图4所示。图4示出了一种有源天线单元(active antenna unit,AAU)与基带处理单元(base band unit,BBU)连接关系示意图。其中,AAU为基站射频模块(radio unit,RU)与天线(antenna unit,AU)的集成部件。BBU主要用于完成基站基带信号的处理。可以理解的是,同一个功率共享组的多个小区共用一个AAU,可以简称共AAU。其中不同的小区可能对应着不同的频点,多个小区共用一个AAU,也就意味着多个频点可以共用一个AAU。如图4示出的,每个小区的AAU可以包括宏(macro)AAU、光纤(optical fiber)以及微型(micro)AAU,不同小区的AAU可以通过光纤传输网络与BBU相连接。而通过BBU相连接的多个AAU可以看做一个整体,即多个通过BBU相连接的AAU可以看作为一个AAU,从而使得互相连接的多个小区共AAU。
值得注意的是,在本申请中“功率共享组”与“共AAU”可以理解为相同的含义。
对于共AAU中的多个小区之间,功率是可以共享的,例如图5示出的一种功率共享示意图。图5中的灰色功率部分示意出了一种共AAU的功率池。对于该共AAU内的多个小区,也意味着需要共同使用该共AAU中功率池中的功率。共AAU的功率池可以看作该共AAU可以使用的全部功率。其中,例如该共AAU内的LTE小区使用了功率池中的一部分功率,而该共AAU内的NR小区也使用了功率池中的一部分功率。但是可能在某些时刻下,LTE小区的功率并不一定可以完全利用,对于并未利用到的空闲功率,则可以分配给该共AAU内的NR小区使用,实现了小区之间的功率共享。当然可以理解的是,对于该共AAU内的全部功率均可针对该共AAU内的不同小区之间实现功率共享。通过将功率共享组(共AAU)内的小区的剩余功率共享给其他有数传需求且功率受限的小区,从而提高功率利用率和小区业务的吞吐率,并提升用户感受。
在一个例子中,对于一个共AAU中LTE小区与NR小区共享功率的情况,由于LTE的站点密度比NR的站点密度要高,因此可以进行网络级的联合调整,从而达到相应的优化目标。例如图6示出的对于一个共AAU内,可以将功率池中的一部分功率分给LTE小区使用,另一部分功率分给NR小区使用。例如将功率池的功率P分为P LTE和P NR,然后再针对LTE小区或NR小区进行细分。例如,NR1小区分配d1功率、NR2小区分配d2功率、LTE1小区分配d3功率、LTE3小区分配d4功率、LTE2小区分配d5功率。通过对共AAU内的多个小区进行功率分配后,可能将原本LTE小区的部分功率分给了NR小区使用,从而提升了NR小区的吞吐率,并且降低了LTE小区的干扰,从而提升LTE小区的服务质量。反之,也有可能将原本NR小区的部分功率分给了LTE小区使用,从而提升LTE小区的覆盖能力。
在一些方案中,可以通过移动台(mobile station,MS)的单向功率控制,从而实现功率调整。移动台表示移动用户的终端设备,例如手机、平板电脑、可穿戴设备、车载设备等等。例如,移动台根据接收到基站的导频信号强度,衡量该移动台与基站之间的传播损耗, 从而确定发射功率的大小。使移动台的发射功率控制在一定的范围内。如果移动台接收功率较小,则表示前向链路(下行链路)损耗较大,移动台则可以认为反向链路(上行链路)的损耗也很大。因此移动台可以增大自身的发射功率。相反,若移动台接收功率较大,则减小移动台的发射功率。通过移动台自身进行功率控制,显然该方案仅针对单一用户。例如图7示出的一种单向功率调整示意图。MS 1通过接收到的基站的导频信号强度确定接收到的功率为
Figure PCTCN2020137293-appb-000001
并判断前向链路的功率损耗,然后MS 1控制自身的发射功率为
Figure PCTCN2020137293-appb-000002
以使得弥补对应的反向链路的损耗。同理,对于MS 2则根据接收到
Figure PCTCN2020137293-appb-000003
功率,控制自身的发射功率调整为
Figure PCTCN2020137293-appb-000004
显然对于不同的MS,各自控制自身的发射功率也不相同。可以看出,该方案仅仅是在但小区中针对自身服务的移动台进行功率的调整,该调整则会导致不同小区之间的多个移动台之间存在相互干扰。例如可能会出现“远近效应”等问题。“远近效应”是与基站距离较近的MS将会干扰到与基站距离较远的MS的现象。
当然在另一些方案中,针对某一个频点,移动台在工作发送信号时,相对于服务小区是有用信号,而对于非服务小区而言则是干扰信号。因此对于不同小区所接收到的有用信号和干扰信号是不同的。根据各个小区接收到的信号与干扰的比例,调整移动台的发射功率至合理水平,从而给整个网络的性能带来增益。显然该方案调整功率是网络级别的,而不是针对某个基站,或是某个移动台。例如图8示出的一种网络级功率调整示意图,可以看出,每个移动台发送的信号仅仅对该移动台所处的服务小区是有用信号。相对于其他相邻小区而言则是干扰信号。针对多个运行商存在多个频点而言,其中部分小区或者全部小区为共AAU小区,即从同一个功率池中分配功率。对于单频点而言,功率的优化仅仅是从该频点的网络优化角度进行的调整,很可能导致共AAU中功率池的功率没有使用完,或者某个重要的频点整体网络性能比较差,从而无法保障整体频谱的效率最优、各小区服务质量最优、最节能或者负荷更均匀。因此控制功率分配成为了网络下行规划以及优化的关键问题。
本申请针对网络中不同频点的小区之间进行功率共享,对于同一物理区域内,可能存在多个不同的频点,各小区对应的基站数量、基站位置、小区服务的用户数以及负荷也均不相同。因此通过采集各个小区的参数信息,根据不同的优化目标对共AAU内的多个小区进行功率分配。针对同一个小区的不同频点,以及多个不同小区之间进行功率分配,即合理配置发射功率。解决了不同频点的多个小区之间的干扰,同时保证了网络性能的最优。通过为不同物理信道和物理信号配置不同的功率,可以使得整体网络系统性能最优化,并且有效提升网络覆盖质量和用户业务体验,如某个频点吞吐率最优、整网吞吐率最优、负荷最均衡或功耗最低(最节能)。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细描述。
图9为本申请实施例提供的一种功率分配系统框架示意图。
如图9所示,本申请首先通过数据采集模块901采集各小区的参数信息。数据采集模块901可以通过基站采集不同小区的参数信息。当然在一些情况下,也可以通过人工的方式进行采集,例如工作人员采用终端设备直接采集小区的参数信息。然后数据处理模块902根据采集到的不同小区的参数信息计算各小区的特征信息,以及构建多频点模型。计算的特征信息例如可以是路损信息、位置信息和/或负荷信息等。然后根据采集到的参数信息以及计算得到的路损信息,构建多频点模型。功率分配模块903依据不同的优化目标,通过频点模型得到共AAU内各小区的发射功率。通过优化算法获取特定优化目标的功率分配方案。通过命令下发模块904将不同小区的发射功率下发至对应小区的基站。不同小区对应着相同或不同的 频点,例如频点f1、f2以及f3。将功率池中的功率分别按照计算好的发射功率进行分配,以使得各个小区之间不再相互干扰,并且可以满足预期的优化目标。
图10为本申请实施例提供的另一种功率分配系统框架示意图。
如图10示出的,数据处理模块902还可以根据预设配置,构建多频点模型;以及功率分配模块903也可以参考预设配置获取特定优化目标的功率分配方案。预设配置是在进行功率分配之前预先设置的特定信息,例如可以是一些变量的约束、预设的阈值、不同频点对应的优先级、不同功率共享组的功率约束以及特定的优化目标等信息。
图11为本申请实施例提供的一种功率分配方法流程图。
如图11所示,提供了一种功率分配方法,该方法应用于图9和图10中示出系统框架,该方法可以包括以下步骤:
S1101,采集多个小区中各小区的参数信息。
通过数据采集模块901采集多个小区的参数信息。其中采集的多个小区所处的区域可能不同,例如采集的区域包括某某城区以及某某县等。参数信息可以包括各小区的测量报告(measurement report,MR)、各小区的发射功率信息、各小区的负荷信息或功率共享组信息。其中,功率共享组信息也可以称为共AAU信息,共AAU信息记录了该小区与哪些其他小区共AAU。在一个例子中,数据采集模块901可以通过网管工具来实现多个小区的参数信息采集。其中,采集到的MR可如表1所示。
Figure PCTCN2020137293-appb-000005
表1
当然,在一些例子中,参数信息还可以包括各小区的位置信息、各小区的频点信息、以及各小区连接的AAU的型号信息等。其中,位置信息可以单独存在,或是在MR中包含。在一个例子中,MR中还可以包含小区的位置信息,例如经纬度,可以如表2所示。
小区ID 经度 纬度
123 104.027 30.618
456 189.473 28.796
表2
对于参数信息中包括各小区的发射功率信息、各小区的频点信息以及各小区连接的AAU的型号信息,可以例如表3示出的。其中,参数信息中还可以包括如小区的带宽和AAU柜框槽号。其中AAU柜框槽号用于描述AAU与BBU的连接信息,不同小区的相同柜框槽号表示这些小区的AAU共同连接同一个BBU,从而形成共AAU。AAU型号用于表示该小区连接的AAU是哪一个型号的AAU。可以理解的是,通常情况下,共AAU的多个小区连接的AAU型号是相同的。但值得注意的是,具有相同型号AAU的多个小区也有可能不是共AAU,对于哪些小区共AAU,还需要通过共AAU信息进行确定。
小区ID 带宽 频点 发射功率 AAU柜框槽号 AAU型号
123 100M F1 20w 123 AAAA
456 20M F2 40w 123 AAAA
表3
在又一个例子中,采集的参数信息中包含的各小区的负荷信息,例如表4示出的。
小区ID 来水量 PRB利用率
123 9999 25%
456 1000000 50%
表4
表4中包含小区的来水量和物理资源块(physical resource block,PRB)利用率。其中,来水量表示该小区所承载的通信业务数量,PRB利用率表示该小区PRB的使用状况。其中,来水量与PRB利用率基本呈正比,即小区的来水量越高,该小区的PRB利用率也越高。显然,当某个小区来水量比较大且PRB利用率也较高时,意味着该小区的负荷也比较大。
S1102,将多个小区划分为至少一个功率共享组。
数据处理模块902根据数据采集模块901采集到的各个小区的参数信息,进行相应的特征计算。例如根据采集到的各小区的共AAU信息计算得到各个小区共AAU的特征。数据处理模块902将共AAU的多个小区划分为一组。例如,采集到的各小区的功率共享组信息可以是小区A的共AAU信息是与小区C和小区D共AAU;小区B的共AAU信息是与小区E共AAU;小区C的共AAU信息是与小区A和小区D共AAU;小区D的共AAU信息是与小区A和小区C共AAU;小区E的共AAU信息是与小区B共AAU。根据上述信息,可以将小区A、小区C和小区D划分为一个共AAU,将小区B和小区E划分为另一个共AAU。
在一个例子中,共AAU信息中可以是直接记录与该小区共AAU的其他小区的小区ID。例如表5示出的。
小区ID AAU型号 与哪些小区共AAU 是否共AAU
123 AAAA 456
456 AAAA 123
789 BBBB  
表5
可以看出,表5中记录了每个小区的共AAU情况,例如小区123与小区456共AAU,且与小区123连接的AAU型号为AAAA;小区456与小区123共AAU,且与小区456连接的AAU型号为AAAA;小区789不与其他任何小区共AAU,且与小区789连接的AAU型号为BBBB。并且可以确定哪些小区为共AAU小区,例如可以确定小区123和小区456是共AAU小区,小区789不是共AAU小区。
当然,功率共享组信息还可以是根据小区的位置信息以及AAU与BBU连接情况确定的。可以理解的是,若采集的参数信息中不包含小区的位置信息,则可以采用定位算法将经纬度信息添加至小区的参数信息中的MR中。在一个例子中,定位算法例如可以采用指纹定位算法、三角定位算法、小区定位算法、室内外区分算法等,本申请在此不做限定。添加了位置信息 的MR可以看作将表1和表2合并为一个表,例如表6示出的。
Figure PCTCN2020137293-appb-000006
表6
在一个例子中,例如可以通过表6中记录的各个小区的经纬度信息以及表3中记录的AAU柜框槽号(AAU与BBU连接信息),确定出如表5种示出的各个小区的共AAU情况。例如,小区A的AAU、小区C的AAU和小区D的AAU共同连接一个BBU,以及,小区B的AAU和小区E的AAU共同连接一个BBU。由于不同物理地区可能具有相同的AAU柜框槽号,因此还可以根据各小区的经纬度信息,当位于同一块区域内不同小区具有相同的AAU柜框槽号时,则认为这些小区共AAU。根据位置信息,若确定小区A、小区C和小区D位于同一片固定区域内,小区B和小区D位于同一片固定区域内。则可以将小区A、小区C和小区D划分为一个共AAU,以及将小区B和小区E划分为另一个共AAU。例如小区A、小区C和小区D均为北京地区,小区B和小区D均为山西地区。当然若是小区A和小区D为北京地区,小区C为河南地区,则虽然小区C的AAU柜框槽号与小区A、小区D相同,但仍然仅可以将小区A和小区D划分为一个共AAU,该共AAU内不包括小区D。
值得注意的是,在一种极端的情况下,一个功率共享组中可以仅有一个小区,当然在另一种极端的情况下,可以是采集到的整个范围内的所有小区位于同一个功率共享组内。
S1103,针对每个功率共享组,计算该功率共享组内各小区的路损信息,并构建多频点模型。
首先,数据处理模块902针对根据采集到的多个小区的位置信息,确定采集的多个小区所覆盖的地理区域。并将多个小区的地理区域进行划分,划分为大小相同的方格,每个方格称为栅格。例如图12示出的,整个区域为采集的多个小区的区域,对应的每个小方格即划分出的栅格。
针对每个栅格,根据各小区的MR以及发射功率信息,计算每个栅格到各小区之间的路损信息。这里的路损既可以看做是上行链路的路损,也可以作为下行链路的路损,可以理解的是,若基站与移动台位置不变的情况下,上行链路的路损与下行链路的路损可以看做是相同的。因此通过下行信息确定出的路损信息既可以作为下行链路的路损也可作为上行链路的路损。其中,MR包含参考信号接收功率(reference signal receiving power,RSRP)信息,RSRP信息即表1中示出小区电平,单位为分贝毫瓦dBm。在一个例子中,路损信息可以通过发射功率减去小区电平得到。当然在其他例子中还可以根据实际情况考虑更多其他信息,共同计算得到路损信息,本申请在此不做限定。根据各个小区的电平以及发射功率,可以得到每个栅格到各小区之间的路损信息,例如表7示出的。
Figure PCTCN2020137293-appb-000007
表7
值得注意的是,在计算路损信息的时候,可以根据栅格的位置信息(经纬度)以及各小区的位置信息(经纬度),确定每个栅格可以被哪几个小区覆盖到。然后在针对每个栅格,计算能够覆盖到该栅格的多个小区的路损信息。
数据处理模块902还可以根据采集到的各小区的负荷信息、各小区的覆盖面积以及各小区的发射功率信息,确定每个小区的负荷-功率函数,例如表8示出的。
Figure PCTCN2020137293-appb-000008
表8
可以看出,负荷与功率的关系可以通过线性函数表示。为方便描述,再次仅用一元线性方程表示负荷-功率函数,其中k1、k2、k3用于表示函数方程中的系数,b1、b2、b3用于表示函数方程中的常数。显然,系数以及常数在此处仅仅是示意,在其他例子中,可以通过机器学习,并参考更多的参数进行展开,本申请在此不作限定。在一些例子中,对于功率-负荷函数的确定,可以是首先通过来水量与PRB利用率计算得到小区的来水量与PRB利用率的函数,然后再通过功率与来水量的关系,将功率带入来水量与PRB利用率的函数,从而得到功率与PRB利用率的函数,即功率-负荷函数。
数据处理模块902通过机器学习的方式将采集到的数据进行计算,得到各个小区通用的负荷-功率函数。使得当输入一个新的功率时,可以得到新功率下各个小区的PRB利用率。
数据处理模块902针对至少一个功率共享组中的每个功率共享组,根据预设的配置信息、该功率共享组内各个小区的MR以及上述计算得到的该功率共享组内各小区的负荷-功率函数,构建该功率共享组的多频点模型。对于预设的配置信息,可以是预先设置在数据处理模块902内的,也可以是通过数据采集模块901采集到的。
配置信息包括可能的各种优化目标,例如优化5G的吞吐率、整体负荷更均匀、整体更节能等等目标。在又一些例子中,配置信息还可以包括不同频点的优先级,以及对应的优先级系数。可以参照表9所示。
频点 优先级 优先级系数
F1 1 0.9
F2 2 0.3
F3 3 0
表9
可以看出,不同频点具有不同的优先级。同时,对于不同的优先级在构建多频点模型时也具有不同的优先级系数。显然优先级越高的频点,其对应的优先级系数也越高。
在一个例子中,若优化目标为优化5G吞吐率时,例如在非独立组网(non-stand alone,NSA)的场景下,NR与LTE小区为共AAU小区,不同小区之间可以共用功率。为了优化NR小区的吞吐率,因此可以将LTE小区的部分功率给NR小区使用。使得LTE小区被借用功率后减小了小区的覆盖范围内,同时降低了LTE对NR的干扰;对于NR小区则提升了覆盖范围,同时也提升了小区的信噪比或信干噪比。
多频点模型的构建可以是首先构建单栅格单频点模型f,然后根据多个单栅格单频点模型f以及优先级系数,构建单栅格多频点模型F,例如可以通过F=∑k*f计算得到。其中,k为每频点的优先级系数。最后根据多个单栅格多频点模型F构建多频点模型G,例如可以通过G=∑F计算得到。
在一个例子中,在构建单栅格单频点模型时,可以参考每个栅格所归属的归属服务小区的信号强度、PRB利用率以及该归属服务小区的邻区的信号强度、PRB利用率得到。当然还可以考虑噪声等一些干扰因素。例如,可以通过f1=(当前栅格归属服务小区的信号强度)/(该归属服务小区邻区的信号强度*邻区的PRB利用率+N)得到单栅格单频点模型。其中,f1为上述单栅格单频点模型f的一种可能表述形式;N表示噪声和/或其它干扰因素的一个代数形式。当然还可以针对同频小区进行计算,例如f1’=(当前栅格归属服务小区的信号强度)/(与该归属服务小区同频的邻区的信号强度*该邻区的PRB利用率+与该归属服务小区异频但有重叠的邻区的信号强度*频域重叠系数*该邻区的PRB利用率+N)。可以理解的是,N的取值可以根据实际检测到的噪声情况进行取值。然后根据得到的多个单频点单栅格模型f1,参考不同频点的优先级系数k,通过F1=∑k*f1得到单栅格多频点模型F1。其中,F1为上述单栅格多频点模型F的一种可能表述形式,Σ表示累加求和。最后,通过G1=∑F1计算得到多频点模型G1。其中,G1为上述多频点模型G的一种可能表述形式。在其他例子中,对于存在多个功率共享组而言,还可结合每个功率共享组的多频点模型G1,构建整网模型Z1。其中,在采集的多个小区的范围内,可能存在多个功率共享组,而多个功率共享组构成了整网的网络环境。对于整网的调整,可以是基于多个不同的功率共享组进行宏观上的整体调整。例如可通过Z1=∑G1,或是不同的功率共享组具有不同的优先级系数j,还可以通过Z1’=∑j*G1计算得到整网模型。
对于构建多频点模型中的每个栅格的归属服务小区的确定,可以理解的是,当小区的发射功率变化后,每个栅格检测到的各个小区的电平也会产生变化。由于栅格到各个小区的路损信息是不变的,因此可以通过路损信息以及各小区的新发射功率计算出该栅格检测到的各小区电平信息。由于小区的电平信息可以表征该栅格检测到的小区的信号强度,因此,可以通过小区电平信息,确定该栅格的归属服务小区。其中,每个栅格检测到的能覆盖该栅格的多个小区的电平信息可以如表10所示。
Figure PCTCN2020137293-appb-000009
表10
可以看出,根据各个小区新的发射功率减去数据处理模块902计算出的每个栅格到所覆盖该栅格的各个小区的路损,可以得到该栅格检测到所覆盖该栅格的各个小区的电平,即信号强度。然后可以根据A3准侧或者S准侧,判断该栅格的归属服务小区。显然每个栅格仅归属于一个小区。其中,A3准则可以用于触发栅格同频小区或者异频小区之间的切换,当数据处理模块902检测到相邻小区的信号强度高于原小区的信号强度时,可以触发归属服务小区的切换。切换后,在该栅格位置的移动台与基站进行通信时,便可以通过新的归属服务小区进行数据以及业务传输。当然在其他例子中,还可以当数据处理模块902检测到相邻小区的信号强度高于原小区信号强度一定偏置量时,触发归属服务小区的切换。其中偏置量可以是预设的某个固定数值。S准则是用于当检测到当前小区的信号强度满足预设的要求时,则继续驻留在该小区,即归属服务小区不进行切换。在一些其他例子中,还可以根据当前小区的信号强度以及信号质量均满足预设的要求时,继续驻留在该小区。值得注意的是,对于LTE和NR可以独立计算栅格的归属服务小区,例如同一个栅格若在LTE网络中其仅归属于某一个小区;若在NR网络中,该栅格还可以归属与NR中的某一个小区。由于LTE和NR所使用的频点不同,推而广之,针对每个栅格,可以基于不同的频点,分别计算各频点下的归属服务小区。
在另一个例子中,若优化目标为负荷均衡度时,例如在非独立组网(non-stand alone,NSA)的场景下,NR与LTE小区为共AAU小区,不同小区之间可以共用功率。为了优化负荷均衡度,因此可以将LTE小区的部分功率给NR小区使用。使得LTE小区被借用功率后减小了小区的覆盖范围内,同时降低了LTE的负荷能力;对于NR小区则提升了覆盖范围,同时也提升了小区的负荷能力,使得整体负荷更加均衡。
多频点模型的构建可以是首先构建单频点模型s,然后根据多个单频点模型s以及优先级系数,构建构建多频点模型G。
在一个例子中,在构建单频点模型时,可以是首先根据各小区的发射功率信息以及负荷-功率函数,计算各小区在当前功率下的PRB利用率。显然若各小区的发射功率改变后,则各小区的PRB利用率也随之改变。由于各小区功率改变,从而导致各小区的覆盖范围也随之改变,以及归属于该小区的栅格数量也随之改变。其中栅格归属服务小区的确定可以参考表10所述的方式,在此不再赘述。然后构建多小区单频点模型,例如可以通过s1=((Σ该频点小区的PRB利用率)*(Σ该频点小区的PRB利用率))/(该频点的小区数量*Σ(其他频点小区的PRB利用率*其他频点小区的PRB利用率))计算得到多小区单频点模型。s1为上述多小区单频点模型s的一种可能表述形式。其中,其它频点小区为除该频点以外其他频点的小区。可以理解的是,对于每个功率共享组内的单频点模型,若该功率共享组内该频点仅存在一个 小区,则单频点模型为单小区的单频点模型;当然,若该功率共享组内该频点仅存在多个小区,则单频点模型为多小区的单频点模型。最后结合各频点的优先级系数k,构建多频点模型G2,例如可以通过G2=((Σk*s1)*(Σk*s1))/(频点个数*Σ(k*s1*s1))计算得到多频点模型G2。其中,G2为上述多频点模型G的一种可能表述形式。在其他例子中,对于存在多个功率共享组而言,还可结合每个功率共享组的多频点模型G2,构建整网模型Z2。其中,整网概念与Z1类似,为方便描述,在此不再赘述。例如可通过Z2=∑G2,或是不同的功率共享组具有不同的优先级系数j,还可以通过Z2’=∑j*G2计算得到整网模型。
在又一个例子中,若优化目标为单赫兹消耗的电量时,例如在非独立组网(non-stand alone,NSA)的场景下,NR与LTE小区为共AAU小区,不同小区之间可以共用功率。为了优化负荷均衡度,因此可以将LTE小区的部分功率给NR小区使用。使得LTE小区被借用功率后减小了小区的覆盖范围内,稍微提升了LTE的电量消耗;对于NR小区则提升了覆盖范围,同时也提升了小区的电量消耗。但整体电量消耗更低,使得整个网路更加节能。
多频点模型的构建可以是首先构建单小区耗电量模型l,然后根据多个单小区耗电量模型l构建单频点耗电量模型L。最后根据多个单频点耗电量模型F以及各频点的优先级系数k构建多频点模型G。
在一个例子中,在构建单小区耗电量模型时,可以是首先根据各小区的发射功率信息以及负荷-功率函数,计算各小区在当前功率下的PRB利用率。显然若各小区的发射功率改变后,则各小区的PRB利用率也随之改变。显然由于各小区功率改变,从而导致各小区的覆盖范围也随之改变,以及归属于该小区的栅格数量也随之改变。其中栅格归属服务小区的确定可以参考表10所述的方式,在此不再赘述。然后构建单小区耗电量模型例如可以通过l1=当前小区的发射功率/(当前小区的PRB利用率*小区带宽)计算得到。其中,l1为上述单小区耗电量模型l的一种可能表述形式。之后,再构建单频点耗电量模型L,可以理解的是由于每个小区的频点可能相同也可能不同,针对相同频点的小区,可以通过L1=Σl1计算得到单频点耗电量模型。其中,L1为上述单频点耗电量模型L的一种可能表述形式。可以理解的是,对于每个功率共享组内的单频点耗电量模型,若该功率共享组内该频点仅存在一个小区,则单频点耗电量模型为单小区的单频点耗电量模型;当然,若该功率共享组内该频点仅存在多个小区,则单频点耗电量模型为多小区的单频点耗电量模型。最后结合各单频点耗电量模型以及频点的优先级系数k,构建多频点模型G3,例如可以通过G3=∑k*F2计算得到。其中,G3为上述多频点模型G的一种可能表述形式。在其他例子中,对于存在多个功率共享组而言,还可结合每个功率共享组的多频点模型G3,构建整网模型Z3。其中,整网概念与Z1类似,为方便描述,在此不再赘述。例如可通过Z3=∑G3,或是不同的功率共享组具有不同的优先级系数j,还可以通过Z3’=∑j*G3计算得到整网模型。
S1104,根据预设的配置信息以及多频点模型,对功率共享组内的多个小区进行功率分配。
功率分配模块903根据预设的配置信息以及数据处理模块902构建的每个功率共享组的多频点模型,针对每个功率共享组,将该功率共享组中的发射功率进行分配。可以理解的是,分配得到的各个小区的发射功率可以将功率共享组的最大功率全部分完,当然也可以仅将该功率共享组中的一部分功率进行分配。
其中,预设的配置信息可以包括不同AAU型号的最大发射功率以及不同AAU型号相应的功率约束。其中,功率约束可以包括最小发射功率以及与共AAU小区的功率差,例如表11所 示。
AAU型号 最大发射功率 最小发射功率(可选) 功率比范围
AAAA 100W 20W 0.5~2
BBBB 500W 10W 0.5~2
XXXX 320W 5W 0.5~4
表11
其中,功率比范围描述了某个小区的发射功率与共AAU中其他小区的发射功率的比值。例如,某个小区连接的AAU的AAU型号为AAAA,该小区分配到的发射功率为a W,而与该小区共AAU的其他小区的发射功率为b W。功率比范围则限定了a与b之间的比值,例如在0.5-2之间,即0.5≤a/b≤2。当然上述的数值仅仅作为示例,并不作为对本申请的限定。
在又一些例子中,配置信息还可以包括不同频点的覆盖要求,例如不同频点的信号强度要大于信号强度阈值,以及不同频点的信噪比(signal-noise ratio,SNR)需要大于信噪比阈值或信干噪比(signal to interference plus noise ratio,SINR)需要大于信干噪比阈值等。当然不同频点的信号强度、信噪比或信干噪比也可以是大于或等于各自对应的阈值,本申请在此不作限定。其中,信号强度可以用RSRP表示,当然在其他例子中还可以用其他参数表示。在一个例子中,对于不同频点的覆盖要求,可以例如表12示出的。
频点 信号强度 信噪比(或信干噪比)
F1 -100 -3
F2 -105 -2
F3 -100 -3
表12
可以理解的是,将功率共享组的发射功率进行分配时,必须满足各个配置信息要求,并且还需到达配置信息中的优化目标的要求。
在一种可能实施的方式中,可以采用优化算法,求解多频点模型在该功率共享组中各个小区功率限制条件下的最优解。其中,优化算法可以是非线性优化算法、粒子群算法或启发式算法等等,本申请在此不作限定。
在一个例子中,若采用例子群算法进行计算各小区的最优功率,首先需要随机出M个粒子,每个例子包含当前功率共享组内某一个小区分配的随机功率。然后计算M个粒子的适应度函数,并保留适应度最好的粒子。根据适应度最好的粒子包含的功率方案,更新该功率共享组的功率分配方案。并重复计算M个粒子的适应度,直至适应度函数不再提升。获取当前各个频率下各个小区的功率分配方案。其中计算适应度函数,可以通过S1103中给出的不同优化目标下的多频点模型计算得到。当然若针对多个功率共享组进行整体优化分配时,则可以通过整网模型进行计算,最终得到该模型下的最优解。
本领域人员应当注意的是,本申请涉及到的配置信息,可以是人工配置,或是基于统计、机器学习或在线等功能实现动态配置,当然还可以采用其它等效的方式进行配置,本申请在此不做限定。
S1105,将分配的功率下发至各个小区对应的基站。
将S1104中计算得到的功率共享组内各个小区的最优发射功率,下发至各个小区对应的基站,以使得各基站按照对应的发射功率在相应的小区以该功率进行通信。在一个例子中,可以采用网管工具进行下发,当然在其他例子中,也可以采用人工的方式,将各小区的最优功率信息下发至各个小区对应的基站。
例如,若优化目标为优化5G吞吐率时,当通过功率分配模块903计算出各个小区的最优发射功率后,如图13所示出的一种功率分配效果示意图,通过计算得到的各小区的新发射功率,当移动台经过某个区域时,对于LTE侧该区域的栅格经过归属服务小区的重新选择后,例如选择切换至FDD1800的小区。由于LTE小区与NR小区共AAU,LTE小区将一部分功率分享给NR小区使用,因此,该栅格在LTE侧的归属服务小区进行了切换,切换到了信噪比或者吞吐率更高的小区。但是对于该区域的NR小区来讲则可以仍然驻留在原小区,因为该NR小区获得了更多的功率,其边缘的信噪比或者信干噪比要优于功率变更之前。
由于LTE小区与NR小区共享功率,但LTE整体基站密度高于NR。当调整NR功率获取增益却受到限制时,假设NR侧功率调整优先级较高,由于功率限制LTE侧的剩余功率不一定会全部利用,因此可以通过NR向LTE“借用”功率的方式,一方面提升NR吞吐率的增益,另一方面还可以降低LTE侧的干扰,提升LTE侧的感知。
又例如,若优化目标为负荷均衡度时,当前仅依赖于NR侧功率调整,没有把LTE侧的剩余功率利用起来。因此通过借用功率的方式,采用S1103中的多频点模型或整网模型进行计算,并得到最优解。使得整网在各个频点的负荷更加均衡,从而使得用户在各小区的服务质量体验更加的平稳。
再例如,若优化目标为单赫兹消耗的电量时,当前仅在单个频点内部进行节能,未利用多个频点之前的协作。因此可以通过S1103中的多频点模型或整网模型进行计算,并得到最优解。通过协调多个频点间的功率与负荷,使得整体更加节能,可以为运营商节约更多的电费,同时更加绿色环保,有利于节能减排。
本申请通过采集多个小区中各小区的参数信息,根据参数信息中的功率共享组信息将多个小区分为至少一个功率共享组。针对每个功率共享组,根据该功率共享组内各小区的MR、发射功率信息和负荷信息,构建多频点模型。根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率。再将各小区的发射功率下发至对应小区的基站。可以协同优化多种制式的功率,并保证系统整体的谱效率、节能最佳或者负荷更均衡。
图14为本申请实施例提供的一种VM迁移装置示意图。
如图14所示,提供了一种功率分配装置1400,该装置1400可以包括处理器1401、存储器1402、接收器1403、发送器1404以及总线1405。装置1400中的处理器1401、存储器1402、接收器1403、发送器1404可以通过总线1405建立通信连接。接收器1403用于接收外部信息;发送器1404用于发送信息至外部。
处理器1401可以为中央处理器(central processing unit,CPU)。
存储器1402可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1402也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid state drive,SSD);存储器1402还可以包括上述种类的存储器的 组合。
接收器1403,用于采集多个小区中各小区的参数信息,参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点,一个频点对应一个或多个小区。
处理器1401,用于与存储器1402耦合,以及读取并执行存储器1402中的指令;当处理器1401运行时执行指令,使得处理器1401还用于:根据功率共享组信息,将多个小区分为至少一个功率共享组,其中,功率共享组中各小区之间的功率共享;针对每个功率共享组,根据该功率共享组内各小区的所述MR、发射功率信息和负荷信息,构建该功率共享组的多频点模型;根据多频点模型和预设的配置信息,将该功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率。
发送器1404,用于将分配给各小区的发射功率下发至对应小区的基站。
在一个可能的实施方式中,处理器1401还用于:将功率共享组内各小区的区域划分为多个栅格;根据各小区的负荷信息、发射功率信息和覆盖面积信息,确定各小区的负荷-功率函数,其中覆盖面积信息根据栅格确定;根据各小区的MR和发射功率信息,确定栅格到各小区的路损信息;针对每个栅格,根据各小区的发射功率信息和该栅格到各小区的路损信息,确定栅格的归属服务小区;根据归属服务小区的MR和负荷-功率函数,构建该功率共享组的多频点模型。
在一个可能的实施方式中,MR包括参考信号接收功率RSRP信息,用于表示小区的信号强度;处理器1401还用于:针对每个栅格确定覆盖栅格的X个小区,其中,X为正整数且小于或等于采集到的小区的个数;根据X个小区中每个小区的RSRP信息和发射功率信息,确定该栅格到X个小区中各小区的路损信息。
在一个可能的实施方式中,处理器1401还用于:根据改变后的发射功率信息和该栅格到各小区的路损信息,确定X个小区中每个小区改变后的RSRP信息;根据每个小区改变后的RSRP信息,确定X个小区中的一个小区作为栅格的归属服务小区。
在一个可能的实施方式中,参数信息还包括信噪比信息;处理器1401还用于:根据每个小区改变后的RSRP信息和信噪比信息,确定X个小区中的一个小区作为栅格的归属服务小区。
在一个可能的实施方式中,处理器1401还用于:针对每个栅格的每个频点,根据该栅格的归属服务小区的MR和归属服务小区的邻区的MR、该栅格的归属服务小区的负荷-功率函数,构建单栅格单频点模型;根据同一栅格各单栅格单频点模型,构建单栅格多频点模型;根据每个栅格的单栅格多频点模型,构建该功率共享组的多频点模型。
在一个可能的实施方式中,参数信息还包括:小区频点信息;处理器1401还用于:根据归属服务小区的负荷-功率函数和频点信息,构建单频点模型;根据单频点模型和预设的配置信息,构建该功率共享组的多频点模型。
在一个可能的实施方式中,参数信息还包括:小区频点信息和小区带宽信息;处理器1401还用于:针对每个归属服务小区,根据该归属服务小区的负荷-功率函数、发射功率信息和小区带宽信息,构建单小区耗电量模型;根据小区频点信息和单小区耗电量模型,构建单频点耗电量模型;根据单频点耗电量模型和预设的配置信息,构建该功率共享组的多频点模型。
在一个可能的实施方式中,配置信息包括多个频点的优先级系数。
在一个可能的实施方式中,处理器1401还用于:根据每个功率共享组的多频点模型,构建整网模型;根据整网模型和配置信息,将该各功率共享组的发射功率进行分配,得到每个功率共享组内各小区的发射功率;发送器1404还用于,将各小区的发射功率下发至对应小区的基站。
在一个可能的实施方式中,接收器1403还用于通过基站获取功率共享组信息。
在一个可能的实施方式中,参数信息还包括基带处理单元BBU与AAU的连接关系,MR包括经纬度信息;处理器1401还用于,根据MR中的经纬度信息以及BBU与AAU的连接关系获取功率共享组信息。
本领域普通技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (22)

  1. 一种功率分配方法,其特征在于,所述方法包括:
    采集多个小区中各小区的参数信息,所述参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点;
    根据所述功率共享组信息,将多个所述小区分为至少一个功率共享组,其中,所述功率共享组中各小区之间的功率共享;
    针对每个功率共享组,根据该功率共享组内各小区的所述MR、所述发射功率信息和所述负荷信息,构建该功率共享组的多频点模型;
    根据所述多频点模型和预设的配置信息,将该所述功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率;
    将分配给各小区的所述发射功率下发至对应小区的基站。
  2. 如权利要求1所述的方法,其特征在于,所述根据该功率共享组内各小区的所述MR、所述发射功率信息和所述负荷信息,构建该功率共享组的多频点模型包括:
    将所述功率共享组内各所述小区的区域划分为多个栅格;
    根据各小区的所述负荷信息、所述发射功率信息和覆盖面积信息,确定各小区的负荷-功率函数,其中所述覆盖面积信息根据所述栅格确定;
    根据各小区的所述MR和所述发射功率信息,确定所述栅格到各小区的路损信息;
    针对每个所述栅格,根据各小区的所述发射功率信息和所述该栅格到各小区的路损信息,确定所述栅格的归属服务小区;
    根据所述归属服务小区的所述MR和所述负荷-功率函数,构建该功率共享组的多频点模型。
  3. 如权利要求2所述的方法,其特征在于,所述MR包括参考信号接收功率RSRP信息,用于表示小区的信号强度;所述根据各所述小区的所述MR和所述发射功率信息,确定所述栅格到各小区的路损信息包括:
    针对每个所述栅格确定覆盖所述栅格的X个小区,其中,X为正整数且小于或等于采集到的小区的个数;
    根据X个所述小区中每个小区的所述RSRP信息和所述发射功率信息,确定该所述栅格到所述X个小区中各小区的路损信息。
  4. 如权利要求3所述的方法,其特征在于,所述根据改变后的所述发射功率信息和所述该栅格到各小区的路损信息,确定每个所述栅格的归属服务小区,包括:
    根据改变后的发射功率信息和该所述栅格到各小区的所述路损信息,确定X个所述小区中每个小区改变后的RSRP信息;
    根据每个所述小区改变后的RSRP信息,确定X个所述小区中的一个小区作为所述栅格的所述归属服务小区。
  5. 如权利要求2-4任一所述的方法,其特征在于,所述根据各归属服务小区的所述MR和所述负荷-功率函数,构建该功率共享组的多频点模型包括:
    针对每个所述栅格的每个频点,根据该栅格的归属服务小区的所述MR和所述归属服务小区的邻区的所述MR、该栅格的归属服务小区的所述负荷-功率函数,构建单栅格单频点模型;
    根据同一所述栅格各所述单栅格单频点模型,构建单栅格多频点模型;
    根据每个所述栅格的所述单栅格多频点模型,构建该功率共享组的所述多频点模型。
  6. 如权利要求2-4任一所述的方法,其特征在于,所述参数信息还包括:小区频点信息;所述根据各归属服务小区的所述MR和所述负荷-功率函数,构建该功率共享组的多频点模型包括:
    根据所述归属服务小区的所述负荷-功率函数和所述频点信息,构建单频点模型;
    根据所述单频点模型和预设的配置信息,构建该功率共享组的所述多频点模型。
  7. 如权利要求2-4任一所述的方法,其特征在于,所述参数信息还包括:小区频点信息和小区带宽信息;所述根据各归属服务小区的所述MR和所述负荷-功率函数,构建该功率共享组的多频点模型包括:
    针对每个所述归属服务小区,根据该归属服务小区的所述负荷-功率函数、所述发射功率信息和所述小区带宽信息,构建单小区耗电量模型;
    根据所述小区频点信息和所述单小区耗电量模型,构建单频点耗电量模型;
    根据所述单频点耗电量模型和预设的配置信息,构建该功率共享组的所述多频点模型。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    根据每个所述功率共享组的所述多频点模型,构建整网模型;
    根据所述整网模型和所述配置信息,将该各功率共享组的发射功率进行分配,得到每个所述功率共享组内各小区的发射功率;
    将各小区的所述发射功率下发至对应小区的基站。
  9. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    通过基站获取所述功率共享组信息。
  10. 如权利要求1所述的方法,其特征在于,所述参数信息还包括基带处理单元BBU与AAU的连接关系,所述MR包括经纬度信息;所述方法还包括:
    根据所述MR中的经纬度信息以及所述BBU与AAU的连接关系获取所述功率共享组信息。
  11. 一种功率分配装置,其特征在于,所述装置包括:
    接收器,用于采集多个小区中各小区的参数信息,所述参数信息包括:测量报告MR、发射功率信息、负荷信息和功率共享组信息,其中每个小区对应一个频点;
    处理器,用于与存储器耦合,以及读取并执行所述存储器中的指令;
    当所述处理器运行时执行所述指令,使得所述处理器还用于:
    根据所述功率共享组信息,将多个所述小区分为至少一个功率共享组,其中,所述功率共享组中各小区之间的功率共享;
    针对每个功率共享组,根据该功率共享组内各小区的所述MR、所述发射功率信息和所述负荷信息,构建该功率共享组的多频点模型;
    根据所述多频点模型和预设的配置信息,将该所述功率共享组的发射功率进行分配,得到该功率共享组内各小区的发射功率;
    发送器,用于将分配给各小区的所述发射功率下发至对应小区的基站。
  12. 如权利要求11所述的装置,其特征在于,所述处理器还用于:
    将所述功率共享组内各所述小区的区域划分为多个栅格;
    根据各小区的所述负荷信息、所述发射功率信息和覆盖面积信息,确定各小区的负荷-功率函数,其中所述覆盖面积信息根据所述栅格确定;
    根据各小区的所述MR和所述发射功率信息,确定所述栅格到各小区的路损信息;
    针对每个所述栅格,根据各小区的所述发射功率信息和所述该栅格到各小区的路损信息,确定所述栅格的归属服务小区;
    根据所述归属服务小区的所述MR和所述负荷-功率函数,构建该功率共享组的多频点模型。
  13. 如权利要求12所述的装置,其特征在于,所述MR包括参考信号接收功率RSRP信息,用于表示小区的信号强度;所述处理器还用于:
    针对每个所述栅格确定覆盖所述栅格的X个小区,其中,X为正整数且小于或等于采集到的小区的个数;
    根据X个所述小区中每个小区的所述RSRP信息和所述发射功率信息,确定该所述栅格到所述X个小区中各小区的路损信息。
  14. 如权利要求13所述的装置,其特征在于,所述处理器还用于:
    根据改变后的发射功率信息和该所述栅格到各小区的所述路损信息,确定X个所述小区中每个小区改变后的RSRP信息;
    根据每个所述小区改变后的RSRP信息,确定X个所述小区中的一个小区作为所述栅格的所述归属服务小区。
  15. 如权利要求12-14任一所述的装置,其特征在于,所述处理器还用于:
    针对每个所述栅格的每个频点,根据该栅格的归属服务小区的所述MR和所述归属服务小区的邻区的所述MR、该栅格的归属服务小区的所述负荷-功率函数,构建单栅格单频点模型;
    根据同一所述栅格各所述单栅格单频点模型,构建单栅格多频点模型;
    根据每个所述栅格的所述单栅格多频点模型,构建所述该功率共享组的多频点模型。
  16. 如权利要求12-14任一所述的装置,其特征在于,所述参数信息还包括:小区频点信息;所述处理器还用于:
    针对每个所述频点,根据所述归属服务小区的所述负荷-功率函数和所述频点信息,构建单频点模型;
    根据所述单频点模型和预设的配置信息,构建该功率共享组的所述多频点模型。
  17. 如权利要求12-14任一所述的装置,其特征在于,所述参数信息还包括:小区频点信息和小区带宽信息;所述处理器还用于:
    针对每个所述归属服务小区,根据该归属服务小区的所述负荷-功率函数、所述发射功率信息和所述小区带宽信息,构建单小区耗电量模型;
    根据所述小区频点信息和所述单小区耗电量模型,构建单频点耗电量模型;
    根据所述单频点耗电量模型和预设的配置信息,构建该功率共享组的所述多频点模型。
  18. 如权利要求11-17任一所述的装置,其特征在于,所述处理器还用于:
    根据每个所述功率共享组的所述多频点模型,构建整网模型;
    根据所述整网模型和所述配置信息,将该各功率共享组的发射功率进行分配,得到每个所述功率共享组内各小区的发射功率;
    所述发送器还用于,将各小区的所述发射功率下发至对应小区的基站。
  19. 如权利要求11所述的装置,其特征在于,所述接收器还用于通过基站获取所述功率共享组信息。
  20. 如权利要求11所述的装置,其特征在于,所述参数信息还包括基带处理单元BBU与AAU的连接关系,所述MR包括经纬度信息;所述处理器还用于,根据所述MR中的经纬度信息以及所述BBU与AAU的连接关系获取所述功率共享组信息。
  21. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令在终端上运行时,使得所述终端执行如权利要求1-10任意一项所述的方法。
  22. 一种包含指令的计算机程序设备,当其在终端上运行时,使得所述终端执行如权利要求1-10中的任一项所述的方法。
PCT/CN2020/137293 2020-03-02 2020-12-17 一种功率分配方法及装置 WO2021174960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010136988.X 2020-03-02
CN202010136988.XA CN113347696B (zh) 2020-03-02 2020-03-02 一种功率分配方法及装置

Publications (1)

Publication Number Publication Date
WO2021174960A1 true WO2021174960A1 (zh) 2021-09-10

Family

ID=77467263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137293 WO2021174960A1 (zh) 2020-03-02 2020-12-17 一种功率分配方法及装置

Country Status (2)

Country Link
CN (1) CN113347696B (zh)
WO (1) WO2021174960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422949A (zh) * 2021-12-29 2022-04-29 中国电信股份有限公司 网络质量评估方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567906B (zh) * 2022-03-07 2024-06-11 重庆大学 一种基于区域热力图及终端使用特性的5g基站时序电负荷确定方法
CN117412338A (zh) * 2022-07-08 2024-01-16 中兴通讯股份有限公司 终端设备的切换方法、基站、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964208A (zh) * 2006-09-22 2007-05-16 华为技术有限公司 一种提高多载波系统功率利用率的方法
CN101242664A (zh) * 2007-12-27 2008-08-13 华为技术有限公司 一种多载波功率共享实现方法及设备
US20100189069A1 (en) * 2009-01-26 2010-07-29 Zafer Sahinoglu Joint Carrier Allocation and Time Sharing for OFDMA/TDMA Networks
CN101808396A (zh) * 2010-03-24 2010-08-18 华为技术有限公司 功率共享方法和基站
CN101969646A (zh) * 2009-07-28 2011-02-09 鼎桥通信技术有限公司 一种多频段混合小区的载波功率共享方法和装置
CN102056307A (zh) * 2009-11-11 2011-05-11 中兴通讯股份有限公司 资源管理方法及装置
CN102308641A (zh) * 2009-02-09 2012-01-04 高通股份有限公司 多载波增强型上行链路中的功率分配
CN102843692A (zh) * 2011-06-22 2012-12-26 中兴通讯股份有限公司 一种多运营商共享同一rru下多载波功率的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0202845D0 (sv) * 2002-05-13 2002-09-23 Ericsson Telefon Ab L M Measurements for radio resource management for high-speed downlink shared channel (HS-DSCH)
CN1917409B (zh) * 2005-08-18 2011-03-16 上海原动力通信科技有限公司 多频点hsdpa通信系统中共享数据信道扩充的方法
CN101938749B (zh) * 2009-06-30 2014-12-10 中兴通讯股份有限公司 一种时分同步码分多址接入系统中小区建立方法
EP3277012A4 (en) * 2015-04-29 2018-03-14 Huawei Technologies Co., Ltd. Cell power sharing and adjusting method and base station
CN106376074A (zh) * 2015-07-22 2017-02-01 成都鼎桥通信技术有限公司 小区功率配置方法和装置
CN106941675A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 一种分配频谱资源的方法及系统
CN108064075B (zh) * 2016-11-07 2021-03-09 中国移动通信集团河北有限公司 调整一个或多个小区的参考信号发射功率的方法和装置
CN108271163B (zh) * 2017-01-03 2021-04-16 中兴通讯股份有限公司 一种频谱资源的共享方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964208A (zh) * 2006-09-22 2007-05-16 华为技术有限公司 一种提高多载波系统功率利用率的方法
CN101242664A (zh) * 2007-12-27 2008-08-13 华为技术有限公司 一种多载波功率共享实现方法及设备
US20100189069A1 (en) * 2009-01-26 2010-07-29 Zafer Sahinoglu Joint Carrier Allocation and Time Sharing for OFDMA/TDMA Networks
CN102308641A (zh) * 2009-02-09 2012-01-04 高通股份有限公司 多载波增强型上行链路中的功率分配
CN101969646A (zh) * 2009-07-28 2011-02-09 鼎桥通信技术有限公司 一种多频段混合小区的载波功率共享方法和装置
CN102056307A (zh) * 2009-11-11 2011-05-11 中兴通讯股份有限公司 资源管理方法及装置
CN101808396A (zh) * 2010-03-24 2010-08-18 华为技术有限公司 功率共享方法和基站
CN102843692A (zh) * 2011-06-22 2012-12-26 中兴通讯股份有限公司 一种多运营商共享同一rru下多载波功率的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Power control for CA and DC", 3GPP DRAFT; R1-1706904, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051272135 *
QUALCOMM INCORPORATED: "RAN2 impacts due to the introduction of DB-DC-HSUPA", 3GPP DRAFT; R2-153695_RAN2 IMPACTS DUE TO THE INTRODUCTION OF DB-DC-HSUPA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Beijing, China; 20150824 - 20150828, 23 August 2015 (2015-08-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051004352 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422949A (zh) * 2021-12-29 2022-04-29 中国电信股份有限公司 网络质量评估方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113347696B (zh) 2023-04-11
CN113347696A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Peng et al. Traffic-driven power saving in operational 3G cellular networks
Jin et al. Fractional frequency reuse aided twin-layer femtocell networks: Analysis, design and optimization
WO2021174960A1 (zh) 一种功率分配方法及装置
CN104641695B (zh) 蜂窝通信系统中节能的方法
CN106454850A (zh) 蜂窝异构网络能效优化的资源分配方法
CN105451244B (zh) 一种小型基站协作的覆盖概率估计方法
Qi et al. Interference-aware user association under cell sleeping for heterogeneous cloud cellular networks
CN104640149B (zh) 一种用于异构网络中的自适应小区扩展偏置调整方法
JP5512473B2 (ja) ホーム基地局におけるキャリア選択方法およびホーム基地局
CN112235804A (zh) 基站远端单元动态划归方法和装置、小区组网方法和系统
Rasti et al. A distributed dynamic target-SIR-tracking power control algorithm for wireless cellular networks
Hossain et al. Energy efficient deployment of HetNets: Impact of power amplifier and delay
Yang et al. Interference-aware spectral-and-energy efficiency tradeoff in heterogeneous networks
You et al. A novel cell zooming strategy towards energy efficient based on load balancing in random heterogeneous networks
CN104168634B (zh) 用于lte-a蜂窝网络的分布式用户位置感知小区关闭方法
Li et al. Load-aware energy efficiency with unequal user priority in downlink heterogeneous network system
CN106550401B (zh) 一种小区偏置和abs比例的联合配置方法及装置
CN116209033A (zh) 蜂窝系统功率控制方法、装置、基站及计算机存储介质
Bu et al. Distributed energy-efficient resource allocation with fairness in wireless multicell OFDMA networks
Gao et al. An I-FFR algorithm for interference coordination in twin-layer femtocell networs
Maaz et al. Achieving power and energy efficiency in self-organizing networks
CN105682211B (zh) 一种蜂窝流量卸载网络中基于分组交换的用户接入和功率联合调度方法
CN110446229A (zh) 一种基于干扰水平的5g网络负荷均衡方法
Ansari et al. Energy optimization of a cellular network with minimum bit-rate guarantee
Karnila et al. Analysis of cell zooming technique using adaptive traffic load balancing method on macrocell base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923184

Country of ref document: EP

Kind code of ref document: A1