[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021172542A1 - Mature-cardiomyocyte production method - Google Patents

Mature-cardiomyocyte production method Download PDF

Info

Publication number
WO2021172542A1
WO2021172542A1 PCT/JP2021/007466 JP2021007466W WO2021172542A1 WO 2021172542 A1 WO2021172542 A1 WO 2021172542A1 JP 2021007466 W JP2021007466 W JP 2021007466W WO 2021172542 A1 WO2021172542 A1 WO 2021172542A1
Authority
WO
WIPO (PCT)
Prior art keywords
cardiomyocytes
cells
cdkn1a
gene
expression
Prior art date
Application number
PCT/JP2021/007466
Other languages
French (fr)
Japanese (ja)
Inventor
善紀 吉田
カカセ アントニオ ルセナ
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022503759A priority Critical patent/JPWO2021172542A1/ja
Publication of WO2021172542A1 publication Critical patent/WO2021172542A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing mature cardiomyocytes.
  • pluripotent stem cells such as induced pluripotent stem (iPS) cells and embryonic stem (ES) cells
  • iPS induced pluripotent stem
  • ES embryonic stem
  • Non-Patent Documents 1 and 2 Long-term culture (for example, Non-Patent Documents 1 and 2) 2) Culture on an undiluted Matrigel layer (Matrigel mattress) (for example, Non-Patent Document 3) 3) Combination of three-dimensional culture (formation of biowire) and electrical stimulation (for example, Non-Patent Documents 4 to 6) 4) Addition of cardiomyocyte maturation promoter (for example, Patent Document 1) 5) Transient expression of Sall1 gene and Mesp1 gene (for example, Patent Document 2)
  • an object of the present invention is to provide a method for efficiently obtaining mature cardiomyocytes that can be used for drug discovery screening and cell transplantation in a short period of time.
  • the present inventors have conducted diligent studies to solve the above problems, and first, in the process of cardiomyocyte maturation using a cardiomyocyte maturation promoter (Patent Document 1), CDKN1A (cyclin-dependent kinase inhibitor 1, also known as p21). ) was found to increase. Then, they found that increasing the expression level of CDKN1A in immature cardiomyocytes efficiently obtained mature cardiomyocytes in a short period of time, and completed the present invention.
  • a cardiomyocyte maturation promoter Patent Document 1
  • the gist of the present invention is as follows.
  • a method for producing mature cardiomyocytes which comprises a step of increasing the expression level of cyclin-dependent kinase inhibitor 1 in immature cardiomyocytes.
  • cardiomyocytes can be efficiently matured in a short period of time without using a special culture medium or the like.
  • mature cardiomyocytes when combined with the induction of differentiation from pluripotent stem cells, mature cardiomyocytes can be easily and mass-produced.
  • FIG. 1 It is a schematic diagram which shows one aspect of the differentiation induction method of this invention. “Day” indicates the number of days from the start of differentiation induction. It is a schematic diagram of the change detected in the process of differentiation and maturation of the reporter iPS cells (1390D4 strain) used in the examples into cardiomyocytes. Since EmGFP is inserted under the promoter control of the TNNI1 gene and mCherry is inserted under the promoter control of the TNNI3 gene, when differentiation is induced into cardiomyocytes, immature cardiomyocytes that are EmGFP-positive and mCherry-negative are first produced.
  • FIG. 3B is a list of genes included in “Kinase inhibitor activity” in FIG. 3A.
  • mRNA Time course of expression (mRNA) of CDKN1A and TNNI3 genes in mouse heart development using the National Center for Biotechnology Information (NCBI) gene expression information database (GEO, Acc. No. GSE51483)
  • NCBI National Center for Biotechnology Information
  • GSE51483 Gene expression information database
  • A This is the result of analyzing the correlation (B) between the expression levels of both genes.
  • the analysis samples in each stage of A are as follows; E8.5 heart tubes, left and right ventures at E9.5, E12.5, E14.5, E18.5, 3 days after birth (Postnatal 3d), adult heart (mCM)
  • the results of analyzing the mRNA amounts of the CDKN1A and HOPX genes of human ES cells and mature cardiomyocytes obtained from the cells using the cardiomyocyte maturation promoter are shown (A, C).
  • B is a graph obtained by analyzing the correlation between the expression levels of the CDKN1A gene and the HOPX gene in human cardiomyocytes using GEO: GSE46224.
  • D shows the result of analyzing the mRNA amount of the CDKN1A gene in human adult and human fetal cardiomyocytes using the above GEO: GSE50704.
  • HOPX is a gene that has been suggested to contribute to heart development by regulating serum response factor (SRF) -dependent heart-specific gene expression. It is a graph which analyzed the correlation of the expression level of the CDKN1A gene and the TNNI3 gene (A), and the expression level of the CDKN1A gene and the HIC1 gene (B) in human heart development using the above GEO: GSE46224, respectively.
  • SRF serum response factor
  • cardiomyocyte-specific genes Myh6: Myosin
  • MHC- ⁇ Myl7: myosin light chain 7
  • Ttn titin
  • cTnT troponin T2
  • fibroblast-specific genes Tgfbi: transforming growth factor, beta- Induced, 68 kDa
  • Col11a1 collagen type XI alpha 1 chain
  • Fbln1 fibulin 1
  • Thy thymidylate synthase
  • B is a graph showing the correlation analysis (Pearson correlation) between CD36 and CDKN1A
  • C is a graph showing the correlation analysis (Pearson correlation) between HOPX and CDKN1A.
  • the exogenous CDKN1A gene is introduced (expression started). It is the analysis result of the cell 4 or 5 days after (Day 20 or Day 21).
  • A is a graph showing the analysis results of the fluorescence intensities of mCherry and GFP.
  • the image of B is a fluorescence micrograph in which fluorescence of mCherry and GFP is detected, and the graph of B is a graph obtained by analyzing the amount of mRNA of a group of genes involved in cardiomyocyte maturation.
  • CDKN1A in A and B represents a cell infected with a lentivirus (virus particle) encoding the CDKN1A gene.
  • pLenti6.3 in A and “Control” in B both represent cells infected with a lentivirus (virus particle) that does not encode the CDKN1A gene (negative control).
  • FIG. A represents a heat map that analyzes the amount of mRNA for negative control cells for the gene set involved in cardiomyocyte maturation.
  • B represents a phase-contrast microscopic image, TNN3 and / or TNN1 fluorescence observation image of mature cardiomyocytes on Day 60 (all co-field images).
  • the results of evaluation of the maturation-inducing effect of CDKN1A on more immature early cardiomyocytes are shown.
  • the workflow of the CDKN1A expression experiment in early immature cardiomyocytes is shown in A. “Day” indicates the number of days from the start of differentiation induction. CDKN1A was expressed in cardiomyocytes on Day 14.
  • B is a graph in which the mRNA expressions of CDKN1A and TNNI3 on Day 30 were analyzed by quantitative PCR.
  • the method for producing mature cardiomyocytes of the present invention includes a step of increasing the expression level of cyclin-dependent kinase inhibitor 1: CDKN1A in immature cardiomyocytes.
  • cardiomyocytes are cells expressing at least one marker gene selected from the group consisting of myocardial troponin (cTNT), ⁇ MHC ( ⁇ myosin heavy chain, MYH6) and ⁇ MHC (MYH7).
  • cTNT myocardial troponin
  • ⁇ MHC ⁇ myosin heavy chain
  • MYH6 myocardial troponin
  • MYH7 ⁇ MHC
  • cTNT myocardial troponin
  • NM_000364 NCBI accession number NM_000364
  • NM_001130176 is exemplified in the case of mice.
  • NM_002471 NCBI accession number NM_002471 is exemplified in the case of humans
  • NM_001164171 is exemplified in the case of mice.
  • NM_000257 NCBI accession number NM_000257 is exemplified in the case of humans, and NM_080728 is exemplified in the case of mice.
  • the cardiomyocytes are not particularly limited, but are preferably derived from mammals (eg, mice, rats, hamsters, rabbits, cats, dogs, cows, sheep, pigs, monkeys, humans), and more preferably derived from humans. Is.
  • TNNI1 troponin I1
  • TNNI3 troponin I3
  • the immature cardiomyocyte means a cardiomyocyte in which the expression level of TNNI3 is very low and TNNI1 is predominantly expressed. Immature cardiomyocytes are sometimes called fetal-like cardiomyocytes.
  • the mature cardiomyocyte means a cardiomyocyte in which the expression level of TNNI1 is very low and TNNI3 is predominantly expressed. Mature cardiomyocytes are sometimes called adult-like cardiomyocytes.
  • the expression level of TNNI3 was the expression of TNNI3 in fetal myocardial cells.
  • a mature myocardial cell can be a myocardial cell having an amount of 5 times or more, more preferably 10 times or more, still more preferably 25 times or more, and particularly preferably 100 times or more.
  • the expression levels of TNNI3 and TNNI1 are measured, for example, by measuring the mRNA levels of these genes using PCR or the like; analyzing the protein expression levels by Western blotting or the like; analyzing by the expression levels of reporter molecules; or fluorescent labeling or It can be analyzed by a method such as analysis by a microscope or a flow cytometer based on the fluorescence intensity of the fluorescent reporter.
  • the maturity of cardiomyocytes is indexed by morphology, structure (eg, sarcomere, mitochondria), properties (eg, pulsatile state, potential physiological maturity), etc. You may.
  • the depth of the resting membrane potential by a patch clamp or the like can be used as an index of the potential physiological maturity.
  • the microstructure of sarcomere and mitochondrial indicators can be observed with an electron microscope; analyzed with a microscope or flow cytometer with a fluorescent label; or functionally analyzed with an extracellular flux analyzer or the like. These indicators are compared with control mature cardiomyocytes such as adult cardiomyocytes and control immature cardiomyocytes such as fetal cardiomyocytes to determine whether the cardiomyocytes to be evaluated are mature or immature. It can also be determined.
  • CDKN1A means cyclin-dependent kinase inhibitor 1 (also known as p21), and its sequence and origin as long as it can exert the function of maturing immature myocardial cells.
  • cyclin-dependent kinase inhibitor 1 also known as p21
  • p21 cyclin-dependent kinase inhibitor 1
  • SEQ ID NO: 1 The nucleotide sequence of this CDKN1A gene is shown in SEQ ID NO: 1, and the encoding amino acid sequence is shown in SEQ ID NO: 2.
  • the CDKN1A gene has stringent conditions (eg, 65 ° C., 0.1 ⁇ SSC, 0 after hybridization) with the polynucleotide having the complementary nucleotide sequence of SEQ ID NO: 1 as long as it can exert the function of maturing immature cardiomyocytes. It may be a gene that hybridizes under the condition of washing with 1% SDS).
  • the CDKN1A protein is a protein having an amino acid sequence having 90% or more, 95% or more, or 98% or more identity of the amino acid sequence of SEQ ID NO: 2 as long as it can exert the function of maturing immature cardiomyocytes. It may be there.
  • increasing the expression level of CDKN1A means increasing the expression level of CDKN1A mRNA and / or CDKN1A protein, specifically, 5 times or more, preferably 10 times or more, and more. It means that the increase is preferably 20 times or more, more preferably 50 times or more, and most preferably 100 times or more. Further, the increase may be based on, for example, the expression level of CDKN1A in immature cardiomyocytes having a TNNI1 / TNNI3 expression level ratio of 10 or more or fetal cardiomyocytes.
  • the CDKN1A mRNA or CDKN1A protein may be derived from either an endogenous or exogenous CDKN1A gene.
  • the CDKN1A gene endogenously present in immature myocardial cells may be activated, or the CDKN1A gene may be exogenously introduced into immature myocardial cells for expression. You may let me. Activation of the CDKN1A gene endogenously present in immature cardiomyocytes can be performed, for example, by modifying the expression regulation mechanism of the endogenously present CDKN1A gene.
  • the method for introducing the CDKN1A gene into immature cardiomyocytes exogenously is not particularly limited, but for example, the following method can be used.
  • a vector such as a virus, a plasmid, or an artificial chromosome can be introduced into immature myocardial cells by a method such as lipofection, liposome, or microinjection.
  • the viral vector include a retrovirus vector, a lentiviral vector, an adenovirus vector, an adeno-associated virus vector, and a Sendai virus vector.
  • the artificial chromosome vector includes, for example, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) and the like.
  • plasmid a plasmid for mammalian cells can be used.
  • the vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the gene of interest can be expressed, and if desired, drug resistance genes (eg, canamycin). It can include selection marker sequences such as resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidin kinase gene, diphtheriatoxin gene, fluorescent protein, ⁇ -glucuronidase (GUS), reporter gene sequence such as FLAG, and the like.
  • regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc.
  • drug resistance genes eg, canamycin
  • It can include selection marker sequences such as resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidin kinase gene, diphtheriatoxin gene
  • SV40 promoter As promoters, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcomavirus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (herpes simpleplex virus thymidine kinase) promoter, EF- ⁇ promoter, CAG
  • a promoter and a TRE promoter a CMV minimum promoter having a Tet response sequence in which the tetO sequence is consecutive 7 times).
  • a vector having a TRE promoter and capable of expressing a fusion protein with reverse tetR (rtetR) and VP16AD is an example of a drug-responsive induction vector.
  • the above vector has a transposon sequence before and after the expression cassette in order to incorporate the expression cassette consisting of the promoter and the CDKN1A gene that binds to the chromosome of the pluripotent cell into the chromosome, and to excise it if necessary. But it may be.
  • the transposon sequence is not particularly limited, but piggyBac is exemplified.
  • LoxP sequences may be present before and after the expression cassette for the purpose of removing the expression cassette.
  • the expression time of the introduced CDKN1A gene can be controlled. That is, the CDKN1A gene can be expressed by introducing the CDKN1A gene into cells in advance and adding a drug at a required time.
  • a drug is used. It may be added to express the CDKN1A gene.
  • an appropriate drug can be used in relation to the drug-responsive promoter, and for example, doxycycline and the like are used.
  • a vector having a LoxP sequence it is also possible to stop the expression by introducing Cre into the cell after the lapse of a desired period.
  • RNA When introduced in the form of RNA, it may be introduced into pluripotent stem cells by a method such as electroporation, lipofection, or microinjection.
  • pluripotent stem cells When introduced in the form of a protein, it may be introduced into pluripotent stem cells by a method such as lipofection, fusion with a cell membrane penetrating peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
  • a cell membrane penetrating peptide for example, HIV-derived TAT and polyarginine
  • the period of "increasing the expression level of CDKN1A" in immature cardiomyocytes may be a period sufficient for the immature cardiomyocytes to change into mature cardiomyocytes, and is not particularly limited. More than a day, more than 5 days, more than 6 days, more than 7 days, more than 8 days, more than 9 days, or more than 10 days. There is no particular upper limit, and the state in which the expression level of CDKN1A is increased may be maintained even after the immature cardiomyocytes are transformed into mature cardiomyocytes, but the CDKN1A gene is not always required after the immature cardiomyocytes are transformed into mature cardiomyocytes. It is not necessary to continue the state in which the expression level of is increased.
  • the operation of "increasing the expression level of CDKN1A" such as the introduction of the CDKN1A gene into the cell can be performed once or multiple times.
  • the introduction may be performed multiple times.
  • the number of introductions can be appropriately set, but for example, twice. Three times, four times, five times or more are exemplified.
  • the operation of "increasing the expression level of CDKN1A" in immature cardiomyocytes can be started at an appropriate timing. For example, it may be started immediately after differentiation into immature cardiomyocytes occurs. At this time, the differentiation into immature cardiomyocytes is at least one cardiomyocyte marker gene selected from the group consisting of, for example, TNNI1, myocardial troponin (cTNT), ⁇ MHC ( ⁇ myosin heavy chain, MYH6) and ⁇ MHC (MYH7). It can be confirmed by the expression of, but is not limited to this, and can be confirmed by an appropriate means.
  • the operation of "increasing the expression level of CDKN1A” may be performed, for example, on cells expressing at least one cardiomyocyte marker gene.
  • immature cardiomyocytes By culturing immature cardiomyocytes in a state where the expression level of CDKN1A is increased, immature cardiomyocytes can be converted (induced) into mature cardiomyocytes.
  • the culture conditions may be those used for normal cardiomyocyte culture, and are, for example, 30 to 40 ° C, preferably 36 to 38 ° C, and more preferably about 37 ° C. Further, the culture is preferably carried out in an atmosphere containing oxygen and carbon dioxide, and the oxygen concentration is preferably about 5 to 20%, and the carbon dioxide concentration is preferably about 2 to 5%.
  • the culture period may be a period sufficient for the immature cardiomyocytes to be transformed into mature cardiomyocytes, and is not particularly limited. 4 days or more, 5 days or more, 6 days or more, 7 days or more, 8 days or more, 9 days or more, or 10 days or more. There is no particular upper limit, and even after the immature cardiomyocytes are transformed into mature cardiomyocytes, the culture may be continued as long as the properties of the mature cardiomyocytes can be maintained. Although it depends on the expression level of CDKN1A, as a guide, mature cardiomyocytes are obtained about 12 to 13 days after "increasing the expression level of CDKN1A" (about Day 30 by the method described in FIG. 1). be able to. After that, the proportion of mature cardiomyocytes continued to increase, and after about 22 to 23 days (by the method shown in FIG. 1, about Day 40), 70% or more, 80% or more, and 90% or more of all cells matured. Become a cardiomyocyte.
  • a medium known per se can be used without particular limitation.
  • IMDM medium Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies), StemPro34 ( Invitrogen), StemFit AK02 medium (AJINOMOTO), Essential 6 medium (Thermo Fischer Scientific) and a mixed medium thereof are used.
  • Additives known per se can be added to these media for each cell and culture condition.
  • the medium may contain serum or may be serum-free.
  • media include, for example, albumin, transferase, Knockout Serum Replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, insulin, It may contain one or more serum substitutes such as collagen precursors, trace elements, 2-mercaptoethanol, 1-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may contain one or more substances such as growth factors, low molecular weight compounds, antibiotics, antioxidants, serum, buffers, inorganic salts and the like.
  • cytokines such as activin A, BMP4, bFGF, VEGF, and VEGF, and compounds such as GSK-3 ⁇ inhibitors and Wnt inhibitors may be appropriately added.
  • the immature cardiomyocyte may be a cardiomyocyte isolated from a living body, but is preferably an immature cardiomyocyte whose differentiation is induced from a pluripotent stem cell.
  • Pluripotent stem cells are stem cells that have pluripotency that can differentiate into many cells existing in the living body and also have proliferative ability, and include arbitrary cells induced in the primitive endoderm. Will be done.
  • the pluripotent stem cells are not particularly limited, and are, for example, embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, sperm stem cells (“GS cells”), and embryonic germ cells (“EG cells””. ), Cultured fibroblasts, pluripotent cells derived from bone marrow stem cells (Muse cells), and the like.
  • Preferred pluripotent stem cells are iPS cells and ES cells.
  • the pluripotent stem cells are preferably derived from mammals, more preferably from primates, and even more preferably from humans.
  • the method for producing iPS cells is known in the art, and can be produced by introducing a reprogramming factor into any somatic cell or the like.
  • the reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, Eras, ECAT15.
  • Genes or gene products such as -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 are exemplified, and these reprogramming factors may be used alone or in combination. Is also good.
  • the somatic cells used to make iPS cells include both fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as the primary. All of cultured cells, passaged cells, and established cells are included.
  • the somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, and (3) blood cells (peripheral).
  • Blood cells umbilical cord blood cells, etc.
  • lymphocytes epithelial cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.) Etc.
  • differentiated cells such as brain cells, lung cells, renal cells and fat cells are exemplified.
  • Immature cardiomyocytes can be produced from pluripotent stem cells by a method known per se.
  • a method for inducing differentiation of pluripotent stem cells into immature cardiomyocytes for example, the methods disclosed in the following documents are exemplified. Laflamme MA & Murry CE, Nature 2011, May 19; 473 (7347): 326-35 Review Funakoshi, S. et al. Sci Rep 8, 19111 (2016) Miki, K. et al. Cell Stem Cell.
  • a method for producing cardiomyocytes by forming cell clusters (embryonic bodies) by suspension culture of induced pluripotent stem cells (WO2016 / 104614), Bone Morphogenic Protein (BMP) signal.
  • BMP Bone Morphogenic Protein
  • Method of producing cardiomyocytes in the presence of a substance that suppresses transmission (WO2005 / 033298), method of producing cardiomyocytes by adding Activin A and BMP in order (WO2007 / 002136), activation of canonical Wnt signal pathway Method for producing cardiomyocytes in the presence of promoting substances (WO2007 / 126077) and method for isolating FLk / KDR-positive cells from induced pluripotent stem cells and producing cardiomyocytes in the presence of cyclosporin A (WO2009 / 118928) Etc. are exemplified.
  • the operation of "increasing the expression level of CDKN1A” can be started at an appropriate timing.
  • the differentiation-induced immature cardiomyocytes are, for example, at least one cardiomyocyte selected from the group consisting of TNNI1, myocardial troponin (cTNT), ⁇ MHC ( ⁇ myosin heavy chain, MYH6) and ⁇ MHC (MYH7). It may be a cell in which expression of a marker gene has been confirmed. That is, the operation of "increasing the expression level of CDKN1A" may be performed on cells expressing at least one cardiomyocyte marker gene, for example.
  • the mature cardiomyocytes obtained by increasing the expression of CDKN1A have excellent characteristics that the transplant engraftment ability is improved when transplanted into myocardial tissue and can function as myocardium. Therefore, cardiomyocytes. It is suitably used as a cell preparation for transplantation to patients in need of transplantation.
  • Patients who require cardiomyocyte transplantation include, but are not limited to, patients with diseases caused by cardiomyocyte deficiency such as myocarditis, myocardial infarction, and myocardial damage.
  • the amount of cells to be transplanted is appropriately selected depending on the type and degree of the disease, and the number of transplants may be one or more.
  • the method of transplantation is not limited, and injection may be performed at the diseased site, or a cardiomyocyte sheet may be prepared and applied to the diseased site.
  • the mature cardiomyocytes obtained by the method of the present invention can be used for cardiac regenerative medicine.
  • a composition containing a cell mass of cardiomyocytes produced by the method of the present invention can be administered to the heart of a patient suffering from heart disease.
  • the cardiomyocytes obtained by the method of the present invention may be transplanted into the heart of a heart disease patient as it is as a cell suspension or in the form of a myocardial sheet (single layer or multi-layer).
  • myocardial sheet refer to, for example, WO2012 / 133945, WO2013 / 137491, WO2014 / 192909, WO2016 / 076368.
  • the mature cardiomyocytes obtained by the method of the present invention are uniformly mature and can be used for drug screening for the treatment of heart disease and cardiotoxicity evaluation of the drug.
  • the effect and toxicity of the test drug can be evaluated by administering the test drug to the cardiomyocytes obtained by the method of the present invention and examining the response of the cardiomyocytes.
  • the reporter cells described in Examples of Patent Document 1 were used as cells for inducing differentiation into cardiomyocytes so that the degree of maturation of cardiomyocytes could be easily detected.
  • the cell is a double knock-in human iPS cell line (1390D4 strain) in which the EmGFP gene sequence is inserted at the TNNI1 locus and the mCherry gene sequence is inserted at the TNNI3 locus via the 2A sequence.
  • TNNI1 and EmGFP and TNNI3 and mCherry are polycistronically expressed in the 1390D4 strain
  • the expression level of TNNI1 should be evaluated using the expression level of EmGFP as an index
  • the expression level of TNNI3 should be evaluated using the expression level of mCherry as an index. Can be done. Therefore, by using the 1390D4 strain, the change from immature cardiomyocytes to mature cardiomyocytes can be detected by the change in fluorescent color (Fig. 2).
  • Method 1 Induction of differentiation of iPS cells into immature cardiomyocytes StemFit on a culture dish coated with iMatrix511 (Nippi) as described in Nakagawa et al. (Sci. Rep. 2014; 4: 3594.). 1390D4 cells were cultured in AK02N medium (Ajinomoto). Then, the protocol described in Dubois et al. (Nat Biotechnol. 2011 Oct 23; 29 (11): 1011-1018.) was modified to use a 6-well low-adhesion plate (Corning) to cardiomyocytes. Differentiation was induced.
  • DayX X days after the start date of differentiation induction is referred to as DayX.
  • the medium was replaced with 2 ml of StemPro-34 medium supplemented with 2 mM L-glutamine, 4 ⁇ 10 -4 MTG, 50 ⁇ g / ml AA, 150 ⁇ g / ml transferrin and 5 ng / ml VEGF. Then, the medium was changed to the medium having the same composition every 2-3 days. The plate was placed in a hypoxic environment (5% O 2 ) from Day 0 to Day 10 and then moved to a normal oxygen environment. Immature cardiomyocytes were obtained on Day 14.
  • Method 2 Maturation of immature cardiomyocytes using a cardiomyocyte maturation promoter (positive control experiment) Using the following T112 and T623 as maturation promoters, pluripotency by the method described in Test Example 2 of Patent Document 1.
  • Mature cardiomyocytes were obtained from sex stem cells. Specifically, T112 or T623 was added to the medium for 6 days from Day 10 to Day 16 (final concentration 40 nM).
  • mature cardiomyocytes obtained by this method are referred to as “accelerator-treated cells”, and cells that have only been induced to differentiate into cardiomyocytes without the accelerator treatment (cardiomyocytes that remain immature) are used. Sometimes referred to as "accelerator-untreated cells”. Then, for the comparative analysis of both cells, cells on the same day from the start of differentiation induction were used.
  • Method 3 CDKN1A gene transfer using a lentiviral vector (Example, FIG. 1)
  • HEK293FT cells were transfected with pLenti6.3-CDKN1A (pLenti6.3 / V5DEST from which the human CDKN1A gene was cloned; obtained from Thermofisher Scientific) to package lentivirus particles containing the CDKN1A gene.
  • the human CDKN1A cDNA clone was obtained from the DNA type derived from clone ID H04D013O09. The medium was changed 24 hours after transfection, and the culture supernatant containing the virus particles was collected 24 hours later. The immature cardiomyocytes of Day 17 were cultured in the HEK293FT-derived culture supernatant for 24 hours to infect the virus particles. After that, the culture was continued, and the expression analysis and the expression of the reporter protein at each time point were analyzed. A lentiviral vector encoding blue fluorescent protein (BFP) was used as a positive control for lentiviral infection.
  • BFP blue fluorescent protein
  • Method 4 CDKN1A gene transfer using a lentiviral vector into earlier immature cardiomyocytes (Example)
  • a culture supernatant containing lentivirus particles containing the CDKN1A gene was collected from pLenti6.3-CDKN1A.
  • the immature cardiomyocytes of Day 14 obtained in Method 1 were cultured in the culture supernatant for 24 hours to infect the virus particles.
  • a lentiviral vector encoding blue fluorescent protein (BFP) was used as a positive control for lentiviral infection. After that, the culture was continued, and the expression of CDKN1A and TNNI3 was analyzed by quantitative RT-PCR at Day 30. In addition, GAPDH was used as an internal control for quantitative RT-PCR.
  • FIG. 3 (A) shows the results of OG enrichment analysis of the gene cluster expressed and enriched in the accelerator-treated cells with respect to the accelerator-untreated cells. Multiple GO Termes that were significantly (p ⁇ 0.05) enriched were found, and in particular, it was revealed that the expression of genes whose kinase inhibitory activity was GO was significantly enriched.
  • the gene cluster contained 15 types of genes shown in FIG. 3 (FIG. 3 (B)).
  • FIG. 5 shows the expression level of CDKN1A in human adult and human fetal cardiomyocytes. The expression level of CDKN1A was significantly increased in human adult cardiomyocytes as compared with human fetal cells.
  • FIG. 6 shows the results of analyzing the correlation between the expression levels of the CDKN1A gene and the TNNI3 gene (A) and the CDKN1A gene and the HIC1 gene (tumor suppressor gene) (B) in human heart development using GEO: GSE46224. It can be seen that the expression of the CDKN1A gene increases with cardiac development, and the increase correlates with the increased expression of TNNI3 and HIC1. From this result, it is considered that CDKN1A regulates the expression levels of HIC1 and TNNI3.
  • FIG. 7A From the results of principal component analysis (Fig. 7B) 7 days, 14 days, and 21 days after the induction of differentiation, it was clarified that the gene expression pattern changed dramatically between Day 7 and Day 14.
  • FIG. 8 shows a heat map analysis (A) of genes whose expression levels change between Day 7 vs. Day 14 or Day 7 vs. Day 21 in accelerator-treated cells, and a Venn diagram of the number of genes whose expression increased or decreased between Day 7 vs. Day 21 (B). ) Is shown. Although the expression of a large number of genes changes (Fig. 8B), it was shown that many of the genes whose expression increased or decreased on Day 21 had already increased or decreased as of Day 14 (Fig. 8B). It was also clarified that the expression level of TNNI3 remained almost unchanged until Day 7, decreased on Day 14, and then increased, whereas CDKN1A continued to increase from Day 7 to Day 21 (Fig. 8C). Furthermore, it was revealed that the expression levels of CDKN1A and TNNI3 were significantly higher on Day 40 than on Day 20, and there was no significant difference between Day 40 and Day 60 (Fig. 9).
  • GEO GSE51483 was used to extract genes (DEG; Differently Expressed Genes) whose expression was observed to fluctuate in the development of fetal myocardium, and pathway analysis of signals related to CDKN1A was performed in Fig. 11. show.
  • R2 genomics analysis and visualization platform (http://r2.amc.nl/) was used for the analysis, and the high expression group and the low expression group were defined as having a difference of 1 SD (standard deviation) or more from the mean value. .. According to this result, a significant correlation was found in pathways including those involved in myocardial maturation, such as “cardiac muscle contraction and maturation”.
  • FIG. 12 shows the time course of maturation-related gene expression analyzed by dividing the atrium and ventricle of the mouse fetal heart using GEO: GSE51483. As a result, it was found that the expression of CDKN1A increased with time in both the atrial and ventricle, like other maturation-related genes.
  • CDKN1A may contribute to the maturation of immature cardiomyocytes and may be involved in the maturation of both atria and ventricles and become a biomarker for maturation.
  • a viral vector expressing the CDKN1A gene was introduced into immature cardiomyocytes obtained by inducing differentiation of reporter iPS cells, and the effect of CDKN1A on cardiomyocyte maturation was investigated.
  • the mCherry fluorescence intensity was significantly higher in the cardiomyocytes into which the CDKN1A expression vector was introduced than in the cardiomyocytes into which the negative control vector was introduced (Fig. 13A left graph), and GFP.
  • the fluorescence intensity was remarkably low (Fig. 13A right graph).
  • CDKN1A the maturation-inducing effect of CDKN1A on more immature early cardiomyocytes was evaluated.
  • CDKN1A gene transfer was performed with lentivirus into immature cardiomyocytes on the 14th day after the start of differentiation induction, and gene expression was evaluated on the 30th day.
  • a marked increase in TNNI3 expression was confirmed ( FIG. 15). From this result, it was confirmed that CDKN1A also has a mature cardiomyocyte-inducing effect in immature cardiomyocytes 14 days after the start of differentiation induction, which is a cell that has just differentiated into cardiomyocytes at an earlier stage.
  • CDKN1A has the effect of promoting the expression of genes required for maturation and promoting maturation of immature cardiomyocytes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a mature-cardiomyocyte production method including a step for increasing the expression level of cyclin-dependent kinase inhibitor 1 in immature cardiomyocytes.

Description

成熟心筋細胞の製造法Manufacturing method of mature cardiomyocytes
 本発明は成熟心筋細胞の製造方法に関する。 The present invention relates to a method for producing mature cardiomyocytes.
 近年、人工多能性幹(iPS)細胞や胚性幹(ES)細胞などの多能性幹細胞を各種体細胞に分化誘導し、再生医療等に使用することが試みられている。多能性幹細胞から心筋細胞に分化誘導する系もいくつか報告されているが、得られた心筋細胞は胎児型心筋細胞に類似した未熟な心筋細胞がほとんどであり、実用化のためには成熟化の操作が必要である。 In recent years, attempts have been made to induce differentiation of pluripotent stem cells such as induced pluripotent stem (iPS) cells and embryonic stem (ES) cells into various somatic cells and use them in regenerative medicine and the like. Although some systems that induce differentiation from pluripotent stem cells to cardiomyocytes have been reported, most of the obtained cardiomyocytes are immature cardiomyocytes similar to fetal cardiomyocytes and mature for practical use. The operation of conversion is necessary.
 心筋細胞を成熟させる方法としては、以下のような方法が知られていた。
1)長期間培養(例えば、非特許文献1,2)
2)未希釈のマトリゲル層(マトリゲルマットレス)上での培養(例えば、非特許文献3)
3)三次元培養(biowireの形成)と電気刺激との組み合わせ(例えば、非特許文献4~6)
4)心筋細胞成熟促進剤の添加(例えば、特許文献1)
5)Sall1遺伝子及びMesp1遺伝子の一過的発現(例えば、特許文献2)
The following methods have been known as methods for maturing cardiomyocytes.
1) Long-term culture (for example, Non-Patent Documents 1 and 2)
2) Culture on an undiluted Matrigel layer (Matrigel mattress) (for example, Non-Patent Document 3)
3) Combination of three-dimensional culture (formation of biowire) and electrical stimulation (for example, Non-Patent Documents 4 to 6)
4) Addition of cardiomyocyte maturation promoter (for example, Patent Document 1)
5) Transient expression of Sall1 gene and Mesp1 gene (for example, Patent Document 2)
国際公開2019/189554号パンフレットInternational Publication 2019/189554 Pamphlet 特開2017-60422号公報JP-A-2017-60422
 上記の通り、心筋細胞を成熟化させる技術はいくつか報告されているが、コスト面や技術面で改善の余地があった。
 そこで、本発明は、創薬スクリーニングや細胞移植に使用しうる成熟心筋細胞を短期間で効率よく得るための方法を提供することを課題とする。
As mentioned above, some techniques for maturing cardiomyocytes have been reported, but there is room for improvement in terms of cost and technology.
Therefore, an object of the present invention is to provide a method for efficiently obtaining mature cardiomyocytes that can be used for drug discovery screening and cell transplantation in a short period of time.
 本発明者らは上記課題を解決するために鋭意検討を行い、まず、心筋細胞成熟促進剤(特許文献1)を用いた心筋細胞成熟化の過程でCDKN1A(cyclin-dependent kinase inhibitor 1、別名p21)の発現が増加することを見出した。そして、未成熟心筋細胞においてCDKN1Aの発現量を増加させると短期間で効率よく成熟心筋細胞が得られることを見出し、本発明を完成させるに至った。 The present inventors have conducted diligent studies to solve the above problems, and first, in the process of cardiomyocyte maturation using a cardiomyocyte maturation promoter (Patent Document 1), CDKN1A (cyclin-dependent kinase inhibitor 1, also known as p21). ) Was found to increase. Then, they found that increasing the expression level of CDKN1A in immature cardiomyocytes efficiently obtained mature cardiomyocytes in a short period of time, and completed the present invention.
 本発明の要旨は以下の通りである。
[1]未成熟心筋細胞において、サイクリン依存性キナーゼ阻害因子1(cyclin-dependent kinase inhibitor 1)の発現量を増加させる工程を含む、成熟心筋細胞の製造方法。
[2]前記発現量の増加が、3日以上維持される、[1]に記載の成熟心筋細胞の製造方法。
[3]前記心筋細胞がヒト心筋細胞である、[1]または[2]に記載の成熟心筋細胞の製造方法。
[4]前記未成熟心筋細胞が多能性幹細胞から分化誘導された未成熟心筋細胞である、[1]~[3]のいずれかに記載の成熟心筋細胞の製造方法。 
[5]前記多能性幹細胞が人工多能性幹細胞である、[4]に記載の成熟心筋細胞の製造方法。 
[6][1]~[5]のいずれかに記載の方法によって増殖された、成熟心筋細胞。
The gist of the present invention is as follows.
[1] A method for producing mature cardiomyocytes, which comprises a step of increasing the expression level of cyclin-dependent kinase inhibitor 1 in immature cardiomyocytes.
[2] The method for producing mature cardiomyocytes according to [1], wherein the increase in the expression level is maintained for 3 days or more.
[3] The method for producing a mature cardiomyocyte according to [1] or [2], wherein the cardiomyocyte is a human cardiomyocyte.
[4] The method for producing a mature cardiomyocyte according to any one of [1] to [3], wherein the immature cardiomyocyte is an immature cardiomyocyte in which differentiation is induced from a pluripotent stem cell.
[5] The method for producing mature cardiomyocytes according to [4], wherein the pluripotent stem cells are induced pluripotent stem cells.
[6] Mature cardiomyocytes proliferated by the method according to any one of [1] to [5].
 本発明によれば、特別な培養基質などを用いなくとも、短期間で効率よく心筋細胞を成熟させることができる。特に、多能性幹細胞からの分化誘導と組み合わせることで、成熟心筋細胞を容易且つ大量に製造できるようになる。 According to the present invention, cardiomyocytes can be efficiently matured in a short period of time without using a special culture medium or the like. In particular, when combined with the induction of differentiation from pluripotent stem cells, mature cardiomyocytes can be easily and mass-produced.
本発明の分化誘導法の一態様を示す模式図である。“Day”は分化誘導開始からの日数を示す。It is a schematic diagram which shows one aspect of the differentiation induction method of this invention. “Day” indicates the number of days from the start of differentiation induction. 実施例で使用したレポーターiPS細胞(1390D4株)が心筋細胞へと分化・成熟する過程で検出される変化の模式図である。当該細胞は、TNNI1遺伝子のプロモーター制御下にEmGFP、TNNI3遺伝子のプロモーター制御下にmCherryが挿入されているため、心筋細胞に分化誘導されると、まずEmGFP陽性mCherry陰性の未熟な心筋細胞を生じる。その後、成熟化の進行とともにEmGFPの発現量が減少しmCherryが発現誘導されるため、やがてEmGFP陰性mCherry陽性の成熟心筋細胞になる。It is a schematic diagram of the change detected in the process of differentiation and maturation of the reporter iPS cells (1390D4 strain) used in the examples into cardiomyocytes. Since EmGFP is inserted under the promoter control of the TNNI1 gene and mCherry is inserted under the promoter control of the TNNI3 gene, when differentiation is induced into cardiomyocytes, immature cardiomyocytes that are EmGFP-positive and mCherry-negative are first produced. After that, as the maturation progresses, the expression level of EmGFP decreases and the expression of mCherry is induced, so that the mature cardiomyocytes eventually become EmGFP-negative mCherry-positive mature cardiomyocytes. レポーターiPS細胞から心筋細胞成熟促進剤を用いて得られた成熟心筋細胞(成熟促進剤処理細胞)と、該促進剤で処理せずに得られた未成熟心筋細胞(促進剤非処理細胞)について、促進剤非処理細胞に対する促進剤処理細胞の遺伝子オントロジー(GO)エンリッチメント解析結果(A)を示す。図3Bは、図3Aにおける「Kinase inhibitor activity」に含まれる遺伝子のリストである。About mature cardiomyocytes (maturation-promoting agent-treated cells) obtained from reporter iPS cells using a cardiomyocyte maturation promoter, and immature cardiomyocytes (promoter-non-treated cells) obtained without treatment with the promoter. The gene ontology (GO) enrichment analysis results (A) of accelerator-treated cells for accelerator-treated cells are shown. FIG. 3B is a list of genes included in “Kinase inhibitor activity” in FIG. 3A. 米国立バイオテクノロジー情報センター(NCBI)の遺伝子発現情報データベース(GEO、Acc. No. GSE51483)を用いて、マウスの心臓発生におけるCDKN1A遺伝子とTNNI3遺伝子の発現量(mRNA量)の経時変化(A)と、両遺伝子の発現量の相関(B)を解析した結果である。Aの各ステージにおける解析サンプルは以下の通り;E8.5 heart tubes, left and right ventricle tissues at E9.5, E12.5, E14.5, E18.5, 3 days after birth (Postnatal 3d), adult heart(mCM)Time course of expression (mRNA) of CDKN1A and TNNI3 genes in mouse heart development using the National Center for Biotechnology Information (NCBI) gene expression information database (GEO, Acc. No. GSE51483) (A) This is the result of analyzing the correlation (B) between the expression levels of both genes. The analysis samples in each stage of A are as follows; E8.5 heart tubes, left and right ventures at E9.5, E12.5, E14.5, E18.5, 3 days after birth (Postnatal 3d), adult heart (mCM) ヒトES細胞および該細胞から前記心筋細胞成熟促進剤を用いて得られた成熟心筋細胞について、CDKN1A、HOPX遺伝子のmRNA量を解析した結果を示す(A、C)。Bは、GEO:GSE46224を用いて、ヒト心筋細胞におけるCDKN1A遺伝子とHOPX遺伝子の発現量の相関を解析したグラフである。Dは、上記のGEO:GSE50704を用いて、ヒト成人およびヒト胎児の心筋細胞におけるCDKN1A遺伝子のmRNA量を解析した結果を示す。HOPXは、serum response factor (SRF)依存性心臓特異的遺伝子発現を調節して心臓発生に寄与することが示唆されている遺伝子である。The results of analyzing the mRNA amounts of the CDKN1A and HOPX genes of human ES cells and mature cardiomyocytes obtained from the cells using the cardiomyocyte maturation promoter are shown (A, C). B is a graph obtained by analyzing the correlation between the expression levels of the CDKN1A gene and the HOPX gene in human cardiomyocytes using GEO: GSE46224. D shows the result of analyzing the mRNA amount of the CDKN1A gene in human adult and human fetal cardiomyocytes using the above GEO: GSE50704. HOPX is a gene that has been suggested to contribute to heart development by regulating serum response factor (SRF) -dependent heart-specific gene expression. 上記のGEO:GSE46224を用いて、ヒトの心臓発生におけるCDKN1A遺伝子とTNNI3遺伝子(A)、CDKN1A遺伝子とHIC1遺伝子(B)の発現量の相関をそれぞれ解析したグラフである。It is a graph which analyzed the correlation of the expression level of the CDKN1A gene and the TNNI3 gene (A), and the expression level of the CDKN1A gene and the HIC1 gene (B) in human heart development using the above GEO: GSE46224, respectively. レポーターiPS細胞から得られた成熟心筋細胞(促進剤処理細胞)と未成熟心筋細胞(促進剤非処理細胞)について、促進剤非処理細胞に対する促進剤処理細胞の心筋細胞特異的遺伝子(Myh6:Myosin heavy chain, α isoform (MHC-α)、Myl7: myosin light chain 7、Ttn: titin、cTnT(=TNNT): troponin T2, cardiac type)と線維芽細胞特異的遺伝子(Tgfbi: Transforming growth factor, beta-induced, 68kDa、Col11a1: collagen type XI alpha 1 chain、Fbln1: fibulin 1、Thy: thymidylate synthase)の発現量を解析した結果(A)と、分化誘導から7日後、14日後、21日後における主成分分析(PCA、n=3)の結果(B)を表す。For mature cardiomyocytes (accelerator-treated cells) and immature cardiomyocytes (accelerator-untreated cells) obtained from reporter iPS cells, cardiomyocyte-specific genes (Myh6: Myosin) of accelerator-treated cells relative to accelerator-untreated cells heavy chain, α isoform (MHC-α), Myl7: myosin light chain 7, Ttn: titin, cTnT (= TNNT): troponin T2, cardiac type) and fibroblast-specific genes (Tgfbi: transforming growth factor, beta- Induced, 68 kDa, Col11a1: collagen type XI alpha 1 chain, Fbln1: fibulin 1, Thy: thymidylate synthase) expression level (A) and main component analysis 7 days, 14 days, and 21 days after induction of differentiation The result (B) of (PCA, n = 3) is shown. レポーターiPS細胞から心筋細胞分化誘導剤によって成熟心筋細胞に分化する過程において、Day7対Day14、Day7対Day21で発現量が変化している遺伝子の解析結果(ヒートマップ:A)、Day7対Day21で発現増加または発現減少した遺伝子数の解析結果(ベン図:B)、およびTNNI3またはCDKN1A遺伝子のmRNA量の経時変化(C)を表す。In the process of differentiating from reporter iPS cells to mature myocardial cells with a myocardial cell differentiation inducer, analysis results of genes whose expression levels change between Day7 vs. Day14 and Day7 vs. Day21 (heat map: A), expressed on Day7 vs. Day21 It shows the analysis result of the number of genes whose expression was increased or decreased (Ben diagram: B), and the time course of the mRNA amount of the TNNI3 or CDKN1A gene (C). レポーターiPS細胞から成熟促進剤処理によって得られた成熟心筋細胞について、分化誘導開始から長期間経過した時点(Day40,Day60)での、CDKN1AとTNNI3のmRNA量を解析したグラフである。It is a graph which analyzed the mRNA amount of CDKN1A and TNNI3 at the time point (Day40, Day60) which a long time passed from the start of differentiation induction about the mature cardiomyocyte obtained from the reporter iPS cell by the maturation accelerator treatment. GEO(Gene Expression Omnibus)のGSE1479のデータを用いて、マウス胎児心臓における心筋細胞の成熟関連遺伝子とCDKN1Aを解析した結果を示す。AはCD36遺伝子発現の経時的変化(n=6)を示し、BはCD36とCDKN1Aの相関解析(Pearson correlation)を示し、CはHOPXとCDKN1Aの相関解析(Pearson correlation)を示すグラフである。The results of analysis of cardiomyocyte maturation-related genes and CDKN1A in the mouse fetal heart using GEO (Gene Expression Omnibus) GSE1479 data are shown. A is a graph showing the time course of CD36 gene expression (n = 6), B is a graph showing the correlation analysis (Pearson correlation) between CD36 and CDKN1A, and C is a graph showing the correlation analysis (Pearson correlation) between HOPX and CDKN1A. GEOのGSE51483のデータを使用し、胎児心筋の発達において、CDKN1Aと関連するパスウェイにおける発現変動遺伝子(differentially expressed genes; DEGs)を解析した結果を示すグラフである。*はp-value<0.05を、**はp-value<0.01を、***はp-value<0.001を示す(pearson r)。It is a graph which shows the result of having analyzed the expression variation gene (differentially expressed genes; DEGs) in the pathway associated with CDKN1A in the development of fetal myocardium using the data of GEO GSE51483. * Indicates p-value <0.05, ** indicates p-value <0.01, and *** indicates p-value <0.001 (pearson r). マウス胎児の心臓の心房および心室に分けて解析を行った結果を示すヒートマップである。Aは心房筋における成熟関連遺伝子発現の経時的変化を、Bは心室における成熟関連遺伝子発現の経時的変化を示す。It is a heat map which shows the result of having divided into the atrium and the ventricle of the heart of a mouse fetal. A shows the time course of maturation-related gene expression in the atrial muscle, and B shows the time-course change of maturation-related gene expression in the ventricles. レポーターiPS細胞から図1に記載の方法(未成熟心筋細胞に外来性CDKN1A遺伝子を導入・発現させて成熟化させる方法)によって成熟心筋細胞を製造する工程において、外来性CDKN1A遺伝子の導入(発現開始)から4または5日後(Day20またはDay21)の細胞の解析結果である。Aは、mCherryとGFPの蛍光強度の解析結果を示すグラフである。Bのイメージは、mCherryとGFPの蛍光を検出した蛍光顕微鏡写真であり、Bのグラフは、心筋細胞の成熟に関わる遺伝子群のmRNA量を解析したグラフである。A、Bにおける“CDKN1A”は、CDKN1A遺伝子をコードするレンチウイルス(ウイルス粒子)を感染させた細胞を表す。また、Aにおける“pLenti6.3”、Bにおける“Control”は、いずれも、CDKN1A遺伝子をコードしていないレンチウイルス(ウイルス粒子)を感染させた細胞(陰性コントロール)を表す。In the step of producing mature cardiomyocytes from the reporter iPS cells by the method shown in FIG. 1 (method of introducing and expressing the exogenous CDKN1A gene into immature cardiomyocytes to mature them), the exogenous CDKN1A gene is introduced (expression started). It is the analysis result of the cell 4 or 5 days after (Day 20 or Day 21). A is a graph showing the analysis results of the fluorescence intensities of mCherry and GFP. The image of B is a fluorescence micrograph in which fluorescence of mCherry and GFP is detected, and the graph of B is a graph obtained by analyzing the amount of mRNA of a group of genes involved in cardiomyocyte maturation. “CDKN1A” in A and B represents a cell infected with a lentivirus (virus particle) encoding the CDKN1A gene. In addition, "pLenti6.3" in A and "Control" in B both represent cells infected with a lentivirus (virus particle) that does not encode the CDKN1A gene (negative control). レポーターiPS細胞から図1に記載の方法によって得られた成熟心筋細胞について解析した結果である。Aは、心筋細胞の成熟に関わる遺伝子セットについて、陰性コントロール細胞に対するmRNA量を解析したヒートマップを表す。Bは、Day60の成熟心筋細胞について、位相差顕微鏡イメージ、TNN3及び/またはTNN1の蛍光観察イメージを表す(すべて同視野イメージ)。This is the result of analysis of mature cardiomyocytes obtained from reporter iPS cells by the method shown in FIG. A represents a heat map that analyzes the amount of mRNA for negative control cells for the gene set involved in cardiomyocyte maturation. B represents a phase-contrast microscopic image, TNN3 and / or TNN1 fluorescence observation image of mature cardiomyocytes on Day 60 (all co-field images). より未熟な早期の心筋細胞におけるCDKN1Aの成熟誘導効果について評価を行った結果を示す。早期の未成熟心筋細胞におけるCDKN1A発現実験のワークフローをAに示す。“Day”は分化誘導開始からの日数を示す。Day14の心筋細胞にCDKN1Aを発現させた。Bは、Day30におけるCDKN1AとTNNI3のmRNA発現を、定量的PCRで解析したグラフである。The results of evaluation of the maturation-inducing effect of CDKN1A on more immature early cardiomyocytes are shown. The workflow of the CDKN1A expression experiment in early immature cardiomyocytes is shown in A. “Day” indicates the number of days from the start of differentiation induction. CDKN1A was expressed in cardiomyocytes on Day 14. B is a graph in which the mRNA expressions of CDKN1A and TNNI3 on Day 30 were analyzed by quantitative PCR.
 本発明の成熟心筋細胞の製造方法は、未成熟心筋細胞において、サイクリン依存性キナーゼ阻害因子1(cyclin-dependent kinase inhibitor 1:CDKN1A)の発現量を増加させる工程を含む。 The method for producing mature cardiomyocytes of the present invention includes a step of increasing the expression level of cyclin-dependent kinase inhibitor 1: CDKN1A in immature cardiomyocytes.
 本発明において、心筋細胞とは、心筋トロポニン(cTNT)、αMHC(α myosin heavy chain、MYH6)およびβMHC(MYH7)から成る群から選択される少なくとも一つ以上のマーカー遺伝子を発現している細胞を意味する。cTNTは、ヒトの場合NCBIのaccession番号NM_000364が例示され、マウスの場合、NM_001130176が例示される。αMHCは、ヒトの場合NCBIのaccession番号NM_002471が例示され、マウスの場合、NM_001164171が例示される。βMHCは、ヒトの場合NCBIのaccession番号NM_000257が例示され、マウスの場合、NM_080728 が例示される。
 なお、心筋細胞は、特に限定されないが、好ましくは、哺乳動物(例、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、ブタ、サル、ヒト)由来であり、より好ましくはヒト由来である。
In the present invention, cardiomyocytes are cells expressing at least one marker gene selected from the group consisting of myocardial troponin (cTNT), αMHC (α myosin heavy chain, MYH6) and βMHC (MYH7). means. For cTNT, NCBI accession number NM_000364 is exemplified in the case of humans, and NM_001130176 is exemplified in the case of mice. For αMHC, NCBI accession number NM_002471 is exemplified in the case of humans, and NM_001164171 is exemplified in the case of mice. For βMHC, NCBI accession number NM_000257 is exemplified in the case of humans, and NM_080728 is exemplified in the case of mice.
The cardiomyocytes are not particularly limited, but are preferably derived from mammals (eg, mice, rats, hamsters, rabbits, cats, dogs, cows, sheep, pigs, monkeys, humans), and more preferably derived from humans. Is.
 心筋細胞は成熟化するにつれてトロポニンI1(TNNI1)の発現が減少し、トロポニンI3(TNNI3)の発現が上昇するアイソフォームスイッチが起こることが知られている(Fikru B. Bedada,(2014) 3(4): 594-605.)。 It is known that as cardiomyocytes mature, the expression of troponin I1 (TNNI1) decreases, and an isoform switch occurs in which the expression of troponin I3 (TNNI3) increases (Fikru B. Bedada, (2014) 3 (Fikru B. Bedada, (2014) 3 ( 4): 594-605.).
 本明細書において、未成熟心筋細胞とは、TNNI3の発現量が非常に低く、TNNI1を優位に発現している心筋細胞を意味する。未成熟心筋細胞は胎児型心筋細胞(fetal-like cardiomyocyte)と呼ばれることもある。 In the present specification, the immature cardiomyocyte means a cardiomyocyte in which the expression level of TNNI3 is very low and TNNI1 is predominantly expressed. Immature cardiomyocytes are sometimes called fetal-like cardiomyocytes.
 本明細書において、成熟心筋細胞とは、TNNI1の発現量が非常に低く、TNNI3を優位に発現している心筋細胞を意味する。成熟心筋細胞は成人型心筋細胞(adult-like cardiomyocyte)と呼ばれることもある。例えば、TNNI3とTNNI1の発現量を遺伝子レベル又はタンパク質レベルで測定し、それぞれ、恒常的発現マーカーの発現量などで標準化して比較したときに、TNNI3の発現量が胎児型心筋細胞のTNNI3の発現量の5倍以上、より好ましくは10倍以上、さらに好ましくは25倍以上、特に好ましくは100倍以上である心筋細胞を成熟心筋細胞とすることができる。 In the present specification, the mature cardiomyocyte means a cardiomyocyte in which the expression level of TNNI1 is very low and TNNI3 is predominantly expressed. Mature cardiomyocytes are sometimes called adult-like cardiomyocytes. For example, when the expression levels of TNNI3 and TNNI1 were measured at the gene level or protein level, and standardized and compared with the expression levels of constitutive expression markers, respectively, the expression level of TNNI3 was the expression of TNNI3 in fetal myocardial cells. A mature myocardial cell can be a myocardial cell having an amount of 5 times or more, more preferably 10 times or more, still more preferably 25 times or more, and particularly preferably 100 times or more.
 TNNI3およびTNNI1の発現レベルは、例えば、これらの遺伝子のmRNA量をPCR等を用いて測定する;タンパク質の発現量をウエスタンブロット等により解析する;レポーター分子の発現量により解析する;または蛍光標識や蛍光レポーターの蛍光強度に基づき顕微鏡もしくはフローサイトメーターにより解析する;などの方法によって解析することができる。 The expression levels of TNNI3 and TNNI1 are measured, for example, by measuring the mRNA levels of these genes using PCR or the like; analyzing the protein expression levels by Western blotting or the like; analyzing by the expression levels of reporter molecules; or fluorescent labeling or It can be analyzed by a method such as analysis by a microscope or a flow cytometer based on the fluorescence intensity of the fluorescent reporter.
 なお、心筋細胞の成熟度は、上記のTNNI3とTNNI1の発現レベル以外に、形態や構造(例、サルコメア、ミトコンドリア)、性質(例、拍動状態、電位生理学的な成熟度)などを指標にしてもよい。例えば、電位生理学的な成熟度の指標は、パッチクランプ等による静止膜電位の深さ等を用いることができる。サルコメアの微細構造やミトコンドリアの指標は、電子顕微鏡により観察するか;蛍光標識により顕微鏡もしくはフローサイトメーターにより解析するか;またはextracellular flux analyzerなどにより機能解析することができる。これらの指標を成人型心筋細胞などの対照成熟心筋細胞や、胎児型心筋細胞などの対照未成熟心筋細胞と比較し、評価対象の心筋細胞が成熟型であるか、未成熟型であるかを判別することもできる。 In addition to the above-mentioned expression levels of TNNI3 and TNNI1, the maturity of cardiomyocytes is indexed by morphology, structure (eg, sarcomere, mitochondria), properties (eg, pulsatile state, potential physiological maturity), etc. You may. For example, the depth of the resting membrane potential by a patch clamp or the like can be used as an index of the potential physiological maturity. The microstructure of sarcomere and mitochondrial indicators can be observed with an electron microscope; analyzed with a microscope or flow cytometer with a fluorescent label; or functionally analyzed with an extracellular flux analyzer or the like. These indicators are compared with control mature cardiomyocytes such as adult cardiomyocytes and control immature cardiomyocytes such as fetal cardiomyocytes to determine whether the cardiomyocytes to be evaluated are mature or immature. It can also be determined.
 本明細書において、CDKN1Aとは、サイクリン依存性キナーゼ阻害因子1(cyclin-dependent kinase inhibitor 1)(別名p21)を意味し、未成熟心筋細胞を成熟化させるという機能を発揮できる限りその配列や由来する生物種に特に制限はないが、例えば、ヒトのCDKN1A遺伝子としては、NCBIのGene ID 1026として登録されている遺伝子を例示することができる(https://www.ncbi.nlm.nih.gov/gene/1026)。
 このCDKN1A遺伝子の塩基配列を配列番号1に、コードするアミノ酸配列を配列番号2に示す。CDKN1A遺伝子は未成熟心筋細胞を成熟化させるという機能を発揮できる限り、配列番号1の相補塩基配列を有するポリヌクレオチドとストリンジェントな条件(例えば、ハイブリダイゼーション後に65℃、0.1×SSC、0.1%SDSで洗浄する条件)でハイブリダイズする遺伝子であってよい。また、CDKN1Aタンパク質は未成熟心筋細胞を成熟化させるという機能を発揮できる限り、配列番号2のアミノ酸配列を90%以上、95%以上、または98%以上の同一性を有するアミノ酸配列を有するタンパク質であってよい。
In the present specification, CDKN1A means cyclin-dependent kinase inhibitor 1 (also known as p21), and its sequence and origin as long as it can exert the function of maturing immature myocardial cells. There are no particular restrictions on the species to be used, but for example, as the human CDKN1A gene, a gene registered as Gene ID 1026 of NCBI can be exemplified (https://www.ncbi.nlm.nih.gov). / gene / 1026).
The nucleotide sequence of this CDKN1A gene is shown in SEQ ID NO: 1, and the encoding amino acid sequence is shown in SEQ ID NO: 2. The CDKN1A gene has stringent conditions (eg, 65 ° C., 0.1 × SSC, 0 after hybridization) with the polynucleotide having the complementary nucleotide sequence of SEQ ID NO: 1 as long as it can exert the function of maturing immature cardiomyocytes. It may be a gene that hybridizes under the condition of washing with 1% SDS). In addition, the CDKN1A protein is a protein having an amino acid sequence having 90% or more, 95% or more, or 98% or more identity of the amino acid sequence of SEQ ID NO: 2 as long as it can exert the function of maturing immature cardiomyocytes. It may be there.
 本明細書において、「CDKN1Aの発現量を増加させる」とは、CDKN1A mRNAおよび/またはCDKN1Aタンパク質の発現量を増加させることを指し、具体的には、5倍以上、好ましくは10倍以上、より好ましくは20倍以上、さらに好ましくは50倍以上、最も好ましくは100倍以上増加させることを意味する。また、当該増加は、例えば、TNNI1/TNNI3の発現量比が10以上である未成熟心筋細胞や、胎児心筋細胞におけるCDKN1A発現量を基準にしてもよい。
また、前記CDKN1A mRNAまたはCDKN1Aタンパク質は、内在性または外来性CDKN1A遺伝子のいずれに由来するものであってもよい。
As used herein, "increasing the expression level of CDKN1A" means increasing the expression level of CDKN1A mRNA and / or CDKN1A protein, specifically, 5 times or more, preferably 10 times or more, and more. It means that the increase is preferably 20 times or more, more preferably 50 times or more, and most preferably 100 times or more. Further, the increase may be based on, for example, the expression level of CDKN1A in immature cardiomyocytes having a TNNI1 / TNNI3 expression level ratio of 10 or more or fetal cardiomyocytes.
In addition, the CDKN1A mRNA or CDKN1A protein may be derived from either an endogenous or exogenous CDKN1A gene.
 CDKN1A mRNAおよび/またはCDKN1Aタンパク質の発現量を増加させる場合、未成熟心筋細胞に内在的に存在するCDKN1A遺伝子を活性化してもよいし、未成熟心筋細胞に外来的にCDKN1A遺伝子を導入して発現させてもよい。未成熟心筋細胞に内在的に存在するCDKN1A遺伝子の活性化は、例えば、内在的に存在するCDKN1A遺伝子の発現調節機構の改変などにより行うことができる。 When increasing the expression level of CDKN1A mRNA and / or CDKN1A protein, the CDKN1A gene endogenously present in immature myocardial cells may be activated, or the CDKN1A gene may be exogenously introduced into immature myocardial cells for expression. You may let me. Activation of the CDKN1A gene endogenously present in immature cardiomyocytes can be performed, for example, by modifying the expression regulation mechanism of the endogenously present CDKN1A gene.
 未成熟心筋細胞へCDKN1A遺伝子を外来的に導入する方法は特に限定されないが、例えば、以下の方法を用いることができる。 The method for introducing the CDKN1A gene into immature cardiomyocytes exogenously is not particularly limited, but for example, the following method can be used.
 遺伝子(DNA)の形態で導入する場合、例えば、ウイルス、プラスミド、人工染色体などのベクターをリポフェクション、リポソーム、マイクロインジェクションなどの手法によって未成熟心筋細胞に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる。ベクターには、目的遺伝子が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、蛍光タンパク質、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。プロモーターとして、SV40プロモーター、 LTRプロモーター、CMV (cytomegalovirus)プロモーター、RSV (Rous sarcoma virus)プロモーター、MoMuLV (Moloney mouse leukemia virus) LTR、HSV-TK (herpes simplex virus thymidine kinase)プロモーター、EF-αプロモーター、CAGプロモーターおよびTREプロモーター(tetO 配列が7回連続したTet応答配列をもつCMV 最小プロモーター)が例示される。TREプロモーターを用いた場合、同一の細胞において、tetRおよびVP16ADとの融合タンパク質またはreverse tetR (rtetR)およびVP16ADとの融合タンパク質を同時に発現させることが望ましい。ここで、TREプロモーターを有しreverse tetR (rtetR)およびVP16ADとの融合タンパク質を発現させることが可能なベクターは薬剤応答性誘導ベクターの一例である。また、上記ベクターには、多能性細胞の染色体へプロモーターとそれに結合するCDKN1A遺伝子からなる発現カセットを取り込み、さらに必要に応じて切除するために、この発現カセットの前後にトランスポゾン配列を有していでもよい。トランスポゾン配列として特に限定されないが、piggyBacが例示される。他の態様として、発現カセットを除去する目的のため、発現カセットの前後にLoxP配列を有してもよい。 When introducing in the form of a gene (DNA), for example, a vector such as a virus, a plasmid, or an artificial chromosome can be introduced into immature myocardial cells by a method such as lipofection, liposome, or microinjection. Examples of the viral vector include a retrovirus vector, a lentiviral vector, an adenovirus vector, an adeno-associated virus vector, and a Sendai virus vector. Further, the artificial chromosome vector includes, for example, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) and the like. As the plasmid, a plasmid for mammalian cells can be used. The vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the gene of interest can be expressed, and if desired, drug resistance genes (eg, canamycin). It can include selection marker sequences such as resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidin kinase gene, diphtheriatoxin gene, fluorescent protein, β-glucuronidase (GUS), reporter gene sequence such as FLAG, and the like. As promoters, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcomavirus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (herpes simpleplex virus thymidine kinase) promoter, EF-α promoter, CAG An example is a promoter and a TRE promoter (a CMV minimum promoter having a Tet response sequence in which the tetO sequence is consecutive 7 times). When using the TRE promoter, it is desirable to simultaneously express the fusion protein with tetR and VP16AD or the fusion protein with reverse tetR (rtetR) and VP16AD in the same cell. Here, a vector having a TRE promoter and capable of expressing a fusion protein with reverse tetR (rtetR) and VP16AD is an example of a drug-responsive induction vector. In addition, the above vector has a transposon sequence before and after the expression cassette in order to incorporate the expression cassette consisting of the promoter and the CDKN1A gene that binds to the chromosome of the pluripotent cell into the chromosome, and to excise it if necessary. But it may be. The transposon sequence is not particularly limited, but piggyBac is exemplified. In another embodiment, LoxP sequences may be present before and after the expression cassette for the purpose of removing the expression cassette.
 薬剤応答性誘導ベクターを用いる場合には、導入されたCDKN1A遺伝子の発現時期を制御することができる。すなわち、CDKN1A遺伝子をあらかじめ細胞に導入しておき、必要な時期に薬剤を添加することで、CDKN1A遺伝子を発現させることができる。例えば、未成熟心筋細胞を後述のように多能性幹細胞から得る際には、多能性幹細胞の段階でCDKN1A遺伝子を導入しておき、未成熟心筋細胞に分化誘導されたときに、薬剤を添加してCDKN1A遺伝子を発現させてもよい。薬剤としては、薬剤応答性プロモーターとの関係で適切なものを使用することができるが、例えば、ドキシサイクリンなどが使用される。
 なお、LoxP配列を有するベクターを用いる場合、所望の期間経過後、Creを細胞内に導入することで発現を停止する態様も可能である。
When a drug-responsive induction vector is used, the expression time of the introduced CDKN1A gene can be controlled. That is, the CDKN1A gene can be expressed by introducing the CDKN1A gene into cells in advance and adding a drug at a required time. For example, when immature cardiomyocytes are obtained from pluripotent stem cells as described later, the CDKN1A gene is introduced at the stage of pluripotent stem cells, and when differentiation is induced into immature cardiomyocytes, a drug is used. It may be added to express the CDKN1A gene. As the drug, an appropriate drug can be used in relation to the drug-responsive promoter, and for example, doxycycline and the like are used.
When a vector having a LoxP sequence is used, it is also possible to stop the expression by introducing Cre into the cell after the lapse of a desired period.
 RNAの形態で導入する場合、例えばエレクトロポレーション、リポフェクション、マイクロインジェクションなどの手法によって多能性幹細胞内に導入してもよい。 When introduced in the form of RNA, it may be introduced into pluripotent stem cells by a method such as electroporation, lipofection, or microinjection.
 タンパク質の形態で導入する場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって多能性幹細胞内に導入してもよい。 When introduced in the form of a protein, it may be introduced into pluripotent stem cells by a method such as lipofection, fusion with a cell membrane penetrating peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
 未成熟心筋細胞において「CDKN1Aの発現量を増加させる」期間は、未成熟心筋細胞が成熟心筋細胞に変化するのに十分な期間であればよく、特に制限されないが、例えば、3日以上、4日以上、5日以上、6日以上、7日以上、8日以上、9日以上、または10日以上である。上限は特になく、未成熟心筋細胞が成熟心筋細胞に変化したのちもCDKN1Aの発現量が増加した状態を維持してもよいが、未成熟心筋細胞が成熟心筋細胞に変化したのちは必ずしもCDKN1A遺伝子の発現量が増加した状態を続ける必要はない。 The period of "increasing the expression level of CDKN1A" in immature cardiomyocytes may be a period sufficient for the immature cardiomyocytes to change into mature cardiomyocytes, and is not particularly limited. More than a day, more than 5 days, more than 6 days, more than 7 days, more than 8 days, more than 9 days, or more than 10 days. There is no particular upper limit, and the state in which the expression level of CDKN1A is increased may be maintained even after the immature cardiomyocytes are transformed into mature cardiomyocytes, but the CDKN1A gene is not always required after the immature cardiomyocytes are transformed into mature cardiomyocytes. It is not necessary to continue the state in which the expression level of is increased.
 CDKN1A遺伝子の細胞内への導入など、「CDKN1Aの発現量を増加させる」操作は1回または複数回行うことができる。例えば、CDKN1Aを遺伝子産物の形態で導入する場合に、当該遺伝子産物の半減期が短い場合には当該導入を複数回にわたって行ってもよい、導入回数は、適宜設定できるが、例えば、2回、3回、4回、5回またはそれ以上が例示される。 The operation of "increasing the expression level of CDKN1A" such as the introduction of the CDKN1A gene into the cell can be performed once or multiple times. For example, when CDKN1A is introduced in the form of a gene product, if the half-life of the gene product is short, the introduction may be performed multiple times. The number of introductions can be appropriately set, but for example, twice. Three times, four times, five times or more are exemplified.
 未成熟心筋細胞において「CDKN1Aの発現量を増加させる」操作は、適当なタイミングで開始することができる。例えば、未成熟心筋細胞への分化が起きた直後に開始してもよい。このとき、未成熟心筋細胞への分化は、例えば、TNNI1、心筋トロポニン(cTNT)、αMHC(α myosin heavy chain、MYH6)およびβMHC(MYH7)から成る群から選択される少なくとも一つの心筋細胞マーカー遺伝子の発現によって確認することができるが、これに限定されるものでなく、適切な手段で確認できる。「CDKN1Aの発現量を増加させる」操作は、一例として、少なくとも一つの前記心筋細胞マーカー遺伝子が発現する細胞に行ってよい。 The operation of "increasing the expression level of CDKN1A" in immature cardiomyocytes can be started at an appropriate timing. For example, it may be started immediately after differentiation into immature cardiomyocytes occurs. At this time, the differentiation into immature cardiomyocytes is at least one cardiomyocyte marker gene selected from the group consisting of, for example, TNNI1, myocardial troponin (cTNT), αMHC (α myosin heavy chain, MYH6) and βMHC (MYH7). It can be confirmed by the expression of, but is not limited to this, and can be confirmed by an appropriate means. The operation of "increasing the expression level of CDKN1A" may be performed, for example, on cells expressing at least one cardiomyocyte marker gene.
 「CDKN1Aの発現量が増加した」状態で未成熟心筋細胞を培養することで、未成熟心筋細胞を成熟心筋細胞に変換(誘導)することができる。
 培養条件は通常の心筋細胞の培養に使用される条件でよいが、例えば、30~40℃、好ましくは36~38℃、より好ましくは約37℃である。また、酸素および二酸化炭素含有空気の雰囲気下で培養が行われることが好ましく、酸素濃度は好ましくは約5~20%であり、二酸化炭素濃度は好ましくは約2~5%である。
By culturing immature cardiomyocytes in a state where the expression level of CDKN1A is increased, immature cardiomyocytes can be converted (induced) into mature cardiomyocytes.
The culture conditions may be those used for normal cardiomyocyte culture, and are, for example, 30 to 40 ° C, preferably 36 to 38 ° C, and more preferably about 37 ° C. Further, the culture is preferably carried out in an atmosphere containing oxygen and carbon dioxide, and the oxygen concentration is preferably about 5 to 20%, and the carbon dioxide concentration is preferably about 2 to 5%.
 培養期間は未成熟心筋細胞が成熟心筋細胞に変化するのに十分な期間であればよく、特に制限されないが、上記の「CDKN1Aの発現量を増加させる」期間と同様、例えば、3日以上、4日以上、5日以上、6日以上、7日以上、8日以上、9日以上、または10日以上である。上限は特になく、未成熟心筋細胞が成熟心筋細胞に変化したのちも成熟心筋細胞の性質が維持できる限りにおいて培養を続けてよい。
 なお、CDKN1Aの発現量にも依るが、目安として、「CDKN1Aの発現量を増加」させてから約12~13日後に(図1に記載した方法では、Day30くらいに)、成熟心筋細胞を得ることができる。以降、成熟心筋細胞の割合は増加し続け、約22~23日後には(図1に記載した方法では、Day40くらいには)、全細胞の70%以上、80%以上、90%以上が成熟心筋細胞となる。
The culture period may be a period sufficient for the immature cardiomyocytes to be transformed into mature cardiomyocytes, and is not particularly limited. 4 days or more, 5 days or more, 6 days or more, 7 days or more, 8 days or more, 9 days or more, or 10 days or more. There is no particular upper limit, and even after the immature cardiomyocytes are transformed into mature cardiomyocytes, the culture may be continued as long as the properties of the mature cardiomyocytes can be maintained.
Although it depends on the expression level of CDKN1A, as a guide, mature cardiomyocytes are obtained about 12 to 13 days after "increasing the expression level of CDKN1A" (about Day 30 by the method described in FIG. 1). be able to. After that, the proportion of mature cardiomyocytes continued to increase, and after about 22 to 23 days (by the method shown in FIG. 1, about Day 40), 70% or more, 80% or more, and 90% or more of all cells matured. Become a cardiomyocyte.
 「CDKN1Aの発現量が増加した」状態で未成熟心筋細胞を培養・維持するために使用される培地としては、自体公知の培地を特に限定されずに用いることができる。例えば、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)、StemPro34(invitrogen)、StemFit AK02培地(AJINOMOTO)、Essential 6 medium (Thermo Fischer Scientific)およびこれらの混合培地などが用いられる。
 これらの培地には、細胞や培養条件毎に、自体公知の添加物を添加することができる。例えば、培地は、血清が含有されていてもよいし、あるいは無血清でもよい。さらに必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、1-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質を含んでいてもよい。
 また、アクチビンA、BMP4、bFGF、VEGF、VEGFなどのサイトカインやGSK-3β阻害剤やWnt阻害剤などの化合物を適宜添加してもよい。
As the medium used for culturing and maintaining immature cardiomyocytes in the state of "increased expression level of CDKN1A", a medium known per se can be used without particular limitation. For example, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies), StemPro34 ( Invitrogen), StemFit AK02 medium (AJINOMOTO), Essential 6 medium (Thermo Fischer Scientific) and a mixed medium thereof are used.
Additives known per se can be added to these media for each cell and culture condition. For example, the medium may contain serum or may be serum-free. Further, if desired, media include, for example, albumin, transferase, Knockout Serum Replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, insulin, It may contain one or more serum substitutes such as collagen precursors, trace elements, 2-mercaptoethanol, 1-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may contain one or more substances such as growth factors, low molecular weight compounds, antibiotics, antioxidants, serum, buffers, inorganic salts and the like.
In addition, cytokines such as activin A, BMP4, bFGF, VEGF, and VEGF, and compounds such as GSK-3β inhibitors and Wnt inhibitors may be appropriately added.
 未成熟心筋細胞は、生体から単離された心筋細胞でもよいが、多能性幹細胞から分化誘導された未成熟心筋細胞であることが好ましい。 The immature cardiomyocyte may be a cardiomyocyte isolated from a living body, but is preferably an immature cardiomyocyte whose differentiation is induced from a pluripotent stem cell.
 多能性幹細胞とは、生体に存在する多くの細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、原始内胚葉に誘導される任意の細胞が包含される。多能性幹細胞には、特に限定されないが、例えば、胚性幹(ES)細胞、人工多能性幹(iPS)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。好ましい多能性幹細胞は、iPS細胞およびES細胞である。多能性幹細胞の由来は哺乳動物由来であることが好ましく、霊長類由来であることがより好ましく、ヒト由来であることがさらに好ましい。 Pluripotent stem cells are stem cells that have pluripotency that can differentiate into many cells existing in the living body and also have proliferative ability, and include arbitrary cells induced in the primitive endoderm. Will be done. The pluripotent stem cells are not particularly limited, and are, for example, embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, sperm stem cells (“GS cells”), and embryonic germ cells (“EG cells””. ), Cultured fibroblasts, pluripotent cells derived from bone marrow stem cells (Muse cells), and the like. Preferred pluripotent stem cells are iPS cells and ES cells. The pluripotent stem cells are preferably derived from mammals, more preferably from primates, and even more preferably from humans.
 iPS細胞の製造方法は当該分野で公知であり、任意の体細胞へ初期化因子を導入することなどによって製造され得る。ここで、初期化因子とは、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等の遺伝子または遺伝子産物が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO2010/111409、WO2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu  D,et  al.(2008),Nat.Biotechnol.,26:795-797、Shi  Y,et  al.(2008),Cell  Stem  Cell,2:525-528、Eminli  S,et  al.(2008),Stem  Cells.26:2467-2474、Huangfu  D,et  al.(2008),Nat.Biotechnol.26:1269-1275、Shi  Y,et  al.(2008),Cell  Stem  Cell,3,568-574、Zhao  Y,et  al.(2008),Cell  Stem  Cell,3:475-479、Marson  A,(2008),Cell  Stem  Cell,3,132-135、Feng  B,et  al.(2009),Nat.Cell  Biol.11:197-203、R.L.Judson  et  al.,(2009),Nat.Biotechnol.,27:459-461、Lyssiotis  CA,et  al.(2009),Proc  Natl  Acad  Sci  U  S  A.106:8912-8917、Kim  JB,et  al.(2009),Nature.461:649-643、Ichida  JK,et  al.(2009),Cell  Stem  Cell.5:491-503、Heng  JC,et  al.(2010),Cell  Stem  Cell.6:167-74、Han  J,et  al.(2010),Nature.463:1096-100、Mali  P,et  al.(2010),Stem  Cells.28:713-720、Maekawa  M,et  al.(2011),Nature.474:225-9.に記載の組み合わせが例示される。 The method for producing iPS cells is known in the art, and can be produced by introducing a reprogramming factor into any somatic cell or the like. Here, the reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, Eras, ECAT15. Genes or gene products such as -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 are exemplified, and these reprogramming factors may be used alone or in combination. Is also good. As a combination of reprogramming factors, WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920, WO2010 / 042800, WO2010 WO2010 / 056831, WO2010 / 068955, WO2010 / 098419, WO2010 / 102267, WO2010 / 111409, WO2010 / 111422, WO2010 / 115050, WO2010 / 124290, WO2010 / 147395, WO2010 / 147612, Hungfu D, et. (2008), Nat. Biotechnol. , 26: 795-797, Shi Y, et al. (2008), CellStem Cell, 2: 525-528, Eminli S, et al. (2008), Stem Cells. 26: 2467-2474, Hungfu D, et al. (2008), Nat. Biotechnol. 26: 1269-1275, Shi Y, et al. (2008), CellStem Cell, 3,568-574, Zhao Y, et al. (2008), CellStem Cell, 3: 475-479, Marson A, (2008), CellStem Cell, 3,132-135, Feng B, et al. (2009), Nat. Cell Biol. 11: 197-203, R.M. L. Judson et al. , (2009), Nat. Biotechnol. , 27: 459-461, Lyssiotics CA, et al. (2009), Proc Natl Acad Sci U S A. 106: 8912-8917, Kim JB, et al. (2009), Nature. 461: 649-643, Ichida JK, et al. (2009), CellStem Cell. 5: 491-503, Heng JC, et al. (2010), CellStem Cell. 6: 167-74, Han J, et al. (2010), Nature. 463: 1096-100, Mary P, et al. (2010), Stem Cells. 28: 713-720, Maekawa M, et al. (2011), Nature. 474: 225-9. The combinations described in are exemplified.
 iPS細胞の作製に使用される体細胞は、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)血液細胞(末梢血細胞、臍帯血細胞等)、リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。 The somatic cells used to make iPS cells include both fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as the primary. All of cultured cells, passaged cells, and established cells are included. Specifically, the somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, and (3) blood cells (peripheral). Blood cells, umbilical cord blood cells, etc.), lymphocytes, epithelial cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.) Etc.), differentiated cells such as brain cells, lung cells, renal cells and fat cells are exemplified.
 未成熟心筋細胞は、自体公知の方法により、多能性幹細胞から製造することができる。多能性幹細胞から未成熟の心筋細胞への分化誘導方法として、例えば、以下の文献に開示された方法が例示される。
Laflamme MA & Murry CE, Nature 2011, May 19;473(7347):326-35 Review
Funakoshi, S. et al. Sci Rep 8, 19111 (2016)
Miki, K. et al. Cell Stem Cell. 2015 Jun 4;16(6):699-711
 この他にも特に特定されないが、例えば、人工多能性幹細胞を浮遊培養により細胞塊(胚様体)を形成させて心筋細胞を製造する方法(WO2016/104614)、Bone Morphogenic Protein (BMP)シグナル伝達を抑制する物質の存在下で心筋細胞を製造する方法(WO2005/033298)、Activin AとBMPを順に添加させて心筋細胞を製造する方法(WO2007/002136)、カノニカルWntシグナル経路の活性化を促す物質の存在下で心筋細胞を製造する方法(WO2007/126077)および人工多能性幹細胞からFLk/KDR陽性細胞を単離し、シクロスポリンAの存在下で心筋細胞を製造する方法(WO2009/118928)などが例示される。
 また、胚様体形成法でサイトカインを用いて心筋細胞を分化誘導する方法(Yang L, et al.、 Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population.、 Nature.、 2008 May 22;453(7194):524-8)、接着培養でサイトカインを使わずに心筋細胞を分化誘導する方法(Lian X, et al.、 Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling.、 Proc Natl Acad Sci U S A.、 2012 July 3;109(27):E1848-57)、接着培養と、浮遊培養とを併用し、サイトカインを使わずに心筋細胞を分化誘導する方法(Minami I, et al.、 A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.、 Cell Rep.、 2012 Nov 29;2(5):1448-60)なども提案されている。
Immature cardiomyocytes can be produced from pluripotent stem cells by a method known per se. As a method for inducing differentiation of pluripotent stem cells into immature cardiomyocytes, for example, the methods disclosed in the following documents are exemplified.
Laflamme MA & Murry CE, Nature 2011, May 19; 473 (7347): 326-35 Review
Funakoshi, S. et al. Sci Rep 8, 19111 (2016)
Miki, K. et al. Cell Stem Cell. 2015 Jun 4; 16 (6): 699-711
In addition to this, although not particularly specified, for example, a method for producing cardiomyocytes by forming cell clusters (embryonic bodies) by suspension culture of induced pluripotent stem cells (WO2016 / 104614), Bone Morphogenic Protein (BMP) signal. Method of producing cardiomyocytes in the presence of a substance that suppresses transmission (WO2005 / 033298), method of producing cardiomyocytes by adding Activin A and BMP in order (WO2007 / 002136), activation of canonical Wnt signal pathway Method for producing cardiomyocytes in the presence of promoting substances (WO2007 / 126077) and method for isolating FLk / KDR-positive cells from induced pluripotent stem cells and producing cardiomyocytes in the presence of cyclosporin A (WO2009 / 118928) Etc. are exemplified.
In addition, a method of inducing differentiation of myocardial cells using cytokines in the embryonic body formation method (Yang L, et al., Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population., Nature., 2008 May 22; 453 (7194): 524-8), Method of inducing differentiation of myocardial cells without using cytokines in adherent culture (Lian X, et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling ., Proc Natl Acad Sci US A., 2012 July 3; 109 (27): E1848-57), A method of inducing differentiation of myocardial cells without using cytokines by using adhesive culture and suspension culture together (Minami I) , et al., A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions., Cell Rep., 2012 Nov 29; 2 (5): 1448-60) ing.
 未成熟心筋細胞が多能性幹細胞から分化誘導された未成熟心筋細胞である場合において、「CDKN1Aの発現量を増加させる」操作は、適当なタイミングで開始することができる。例えば、上記いずれかの心筋細胞を製造する方法、又は心筋細胞を分化誘導する方法において、未成熟心筋細胞が分化誘導された直後に開始してもよい。このとき、分化誘導された未成熟心筋細胞とは、例えば、TNNI1、心筋トロポニン(cTNT)、αMHC(α myosin heavy chain、MYH6)およびβMHC(MYH7)から成る群から選択される少なくとも一つの心筋細胞マーカー遺伝子の発現が確認された細胞であってよい。すなわち、「CDKN1Aの発現量を増加させる」操作は、一例として、少なくとも一つの前記心筋細胞マーカー遺伝子が発現する細胞に行ってよい。 When the immature cardiomyocytes are immature cardiomyocytes induced to differentiate from pluripotent stem cells, the operation of "increasing the expression level of CDKN1A" can be started at an appropriate timing. For example, in any of the above methods for producing cardiomyocytes or inducing differentiation of cardiomyocytes, it may be started immediately after immature cardiomyocytes are induced to differentiate. At this time, the differentiation-induced immature cardiomyocytes are, for example, at least one cardiomyocyte selected from the group consisting of TNNI1, myocardial troponin (cTNT), αMHC (α myosin heavy chain, MYH6) and βMHC (MYH7). It may be a cell in which expression of a marker gene has been confirmed. That is, the operation of "increasing the expression level of CDKN1A" may be performed on cells expressing at least one cardiomyocyte marker gene, for example.
 本発明において、CDKN1Aの発現増加により得られた成熟心筋細胞は、心筋組織に移植されたときに移植生着能が向上し、心筋として機能できるという優れた特性を有しているため、心筋細胞の移植を必要とする患者に対して移植されるための細胞製剤として好適に使用される。心筋細胞の移植を必要とする患者としては、心筋炎や心筋梗塞や心筋損傷などの心筋細胞の欠損によって生じる疾患患者が例示されるが、これらには限定されない。移植される細胞の量は、疾患の種類や程度によって適宜選択され、移植の回数も1回または複数回でありうる。移植の方法も限定されず、疾患部位への注射であってもよいし、心筋細胞シートを作製して疾患部位に適用してもよい。 In the present invention, the mature cardiomyocytes obtained by increasing the expression of CDKN1A have excellent characteristics that the transplant engraftment ability is improved when transplanted into myocardial tissue and can function as myocardium. Therefore, cardiomyocytes. It is suitably used as a cell preparation for transplantation to patients in need of transplantation. Patients who require cardiomyocyte transplantation include, but are not limited to, patients with diseases caused by cardiomyocyte deficiency such as myocarditis, myocardial infarction, and myocardial damage. The amount of cells to be transplanted is appropriately selected depending on the type and degree of the disease, and the number of transplants may be one or more. The method of transplantation is not limited, and injection may be performed at the diseased site, or a cardiomyocyte sheet may be prepared and applied to the diseased site.
 一つの実施形態では、本発明の方法により得られた成熟心筋細胞は心臓の再生医療に用いることができる。例えば、心臓疾患に罹患している患者の心臓に、本発明の方法で製造した心筋細胞の細胞塊を含む組成物を投与することができる。具体的には、本発明の方法で得られた心筋細胞は、そのまま細胞懸濁液として、あるいは、心筋シート(単層または多層)の形で、心疾患患者の心臓に移植してもよい。心筋シートの製造法については、例えば、WO2012/133945、WO2013/137491、WO2014/192909、WO2016/076368を参照のこと。 In one embodiment, the mature cardiomyocytes obtained by the method of the present invention can be used for cardiac regenerative medicine. For example, a composition containing a cell mass of cardiomyocytes produced by the method of the present invention can be administered to the heart of a patient suffering from heart disease. Specifically, the cardiomyocytes obtained by the method of the present invention may be transplanted into the heart of a heart disease patient as it is as a cell suspension or in the form of a myocardial sheet (single layer or multi-layer). For the manufacturing method of myocardial sheet, refer to, for example, WO2012 / 133945, WO2013 / 137491, WO2014 / 192909, WO2016 / 076368.
 別の実施形態では、本発明の方法により得られた成熟心筋細胞は均一に成熟しており、心疾患の治療のための薬剤スクーニングや薬剤の心毒性評価に利用することもできる。例えば、本発明の方法で得られた心筋細胞に試験薬剤を投与し、心筋細胞の応答を調べることにより、試験薬剤の効果や毒性の評価を行うことができる。 In another embodiment, the mature cardiomyocytes obtained by the method of the present invention are uniformly mature and can be used for drug screening for the treatment of heart disease and cardiotoxicity evaluation of the drug. For example, the effect and toxicity of the test drug can be evaluated by administering the test drug to the cardiomyocytes obtained by the method of the present invention and examining the response of the cardiomyocytes.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明の態様は以下の実施例には限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the aspects of the present invention are not limited to the following examples.
<レポーター細胞>
 心筋細胞の成熟化の程度を容易に検出できるように、心筋細胞に分化誘導する細胞として、特許文献1の実施例に記載されたレポーター細胞を用いた。当該細胞は、TNNI1の遺伝子座にEmGFP、TNNI3の遺伝子座にmCherryの遺伝子配列を、それぞれ2A配列を介して挿入したダブルノックインのヒトiPS細胞株(1390D4株)である。1390D4株では、TNNI1とEmGFP、TNNI3とmCherryがそれぞれポリシストロニックに発現するため、EmGFPの発現量を指標にTNNI1の発現量を、mCherryの発現量を指標にTNNI3の発現量をそれぞれ評価することができる。
 よって、1390D4株を使用することで、未成熟心筋細胞から成熟心筋細胞への変化を蛍光色の変化により検出することができる(図2)。
<Reporter cell>
The reporter cells described in Examples of Patent Document 1 were used as cells for inducing differentiation into cardiomyocytes so that the degree of maturation of cardiomyocytes could be easily detected. The cell is a double knock-in human iPS cell line (1390D4 strain) in which the EmGFP gene sequence is inserted at the TNNI1 locus and the mCherry gene sequence is inserted at the TNNI3 locus via the 2A sequence. Since TNNI1 and EmGFP and TNNI3 and mCherry are polycistronically expressed in the 1390D4 strain, the expression level of TNNI1 should be evaluated using the expression level of EmGFP as an index, and the expression level of TNNI3 should be evaluated using the expression level of mCherry as an index. Can be done.
Therefore, by using the 1390D4 strain, the change from immature cardiomyocytes to mature cardiomyocytes can be detected by the change in fluorescent color (Fig. 2).
方法1:iPS細胞から未成熟心筋細胞への分化誘導
 Nakagawa et al.(Sci. Rep. 2014;4:3594.)に記載されたように、iMatrix511(ニッピ)でコーティングされた培養皿上でStemFit AK02N培地(Ajinomoto)を用いて1390D4細胞を培養した。そして、Dubois et al.(Nat Biotechnol. 2011 Oct 23; 29(11): 1011-1018.)に記載されたプロトコルを改変して、6ウェル低接着性プレート(Corning)を用いて心筋細胞への分化誘導を行った。
 具体的には、0.5×TrypLE select(Thermo Fisher Scientific)(0.5mM EDTAで希釈された1×TrypLE select)を用いて1390D4細胞を単一細胞に解離させたのち、胚葉体を形成させるために、前記細胞を2mM L-グルタミン(Invitrogen)、4×10-4 Mモノチオグリセロール(MTG)、50μg/mlアスコルビン酸(AA)、150μg/mlトランスフェリン、10μM ROCK阻害剤(Y-27632)、0.5%マトリゲル(Corning)、および2ng/ml BMP4(R&D Systems)を添加した培地に懸濁し、2×106細胞 in 1.5ml/ウェルとなるように播種した(Day0:分化誘導を開始した日)。以降、分化誘導開始日からX日後をDayXと呼ぶ。
 Day1に、2mM L-グルタミン、4×10-4MTG、50μg/ml AA、150μg/mlトランスフェリン、10ng/ml bFGF(最終5ng/ml)、12ng/mlアクチビンA(最終6ng/ml)および18ng/ml BMP4(最終10ng/ml)を添加したStemPro-34培地1.5mlをウェルに添加した。
 Day3に、形成されたEBをIscove改良Dulbecco培地(IMDM;Invitrogen)で1回洗浄し、次いで、2mM L-グルタミン、4×10-4MTG、50μg/ml AA、150μg/mlトランスフェリン、10ng/ml血管内皮増殖因子(VEGF; R&D Systems)、1μM IWP3(Stemgent)、0.6μmドルソモルフィンおよび5.4μm SB431542を加えた3mlのStemPro-34培地中で培養した。
 Day6に培地を2mM L-グルタミン、4×10-4MTG、50μg/ml AA、150μg/mlトランスフェリンおよび5ng/ml VEGFを添加したStemPro-34培地2mlに交換した。
 その後,2-3日ごとに培地を同じ組成の培地に変えた。
 前記プレートは、Day0~Day10までは低酸素環境下(5%O2)に置き、以降は正常酸素環境に移した。
 Day14に未成熟心筋細胞を得た。
Method 1: Induction of differentiation of iPS cells into immature cardiomyocytes StemFit on a culture dish coated with iMatrix511 (Nippi) as described in Nakagawa et al. (Sci. Rep. 2014; 4: 3594.). 1390D4 cells were cultured in AK02N medium (Ajinomoto). Then, the protocol described in Dubois et al. (Nat Biotechnol. 2011 Oct 23; 29 (11): 1011-1018.) was modified to use a 6-well low-adhesion plate (Corning) to cardiomyocytes. Differentiation was induced.
Specifically, in order to dissociate 1390D4 cells into single cells using 0.5 × TrypLE select (Thermo Fisher Scientific) (1 × TrypLE select diluted with 0.5 mM EDTA), and then to form embryonic bodies, 2 mM L-glutamine (Invitrogen), 4 × 10 -4 M monothioglycerol (MTG), 50 μg / ml ascorbic acid (AA), 150 μg / ml transtransferase, 10 μM ROCK inhibitor (Y-27632), 0.5% The cells were suspended in a medium supplemented with Matrigel (Corning) and 2 ng / ml BMP4 (R & D Systems) and seeded to 2 × 10 6 cells in 1.5 ml / well (Day 0: day when differentiation induction was started). Hereinafter, X days after the start date of differentiation induction is referred to as DayX.
On Day 1, 2 mM L-glutamine, 4 × 10 -4 MTG, 50 μg / ml AA, 150 μg / ml transferrin, 10 ng / ml bFGF (final 5 ng / ml), 12 ng / ml activin A (final 6 ng / ml) and 18 ng / 1.5 ml of StemPro-34 medium supplemented with ml BMP4 (final 10 ng / ml) was added to the wells.
On Day 3, the formed EB was washed once with Iscove-modified Dulbecco medium (IMDM; Invitrogen), followed by 2 mM L-glutamine, 4 × 10 -4 MTG, 50 μg / ml AA, 150 μg / ml transferrin, 10 ng / ml. Incubate in 3 ml StemPro-34 medium supplemented with Vascular Endothelial Growth Factor (VEGF; R & D Systems), 1 μM IWP3 (Stemgent), 0.6 μm dolsomorphin and 5.4 μm SB431542.
On Day 6, the medium was replaced with 2 ml of StemPro-34 medium supplemented with 2 mM L-glutamine, 4 × 10 -4 MTG, 50 μg / ml AA, 150 μg / ml transferrin and 5 ng / ml VEGF.
Then, the medium was changed to the medium having the same composition every 2-3 days.
The plate was placed in a hypoxic environment (5% O 2 ) from Day 0 to Day 10 and then moved to a normal oxygen environment.
Immature cardiomyocytes were obtained on Day 14.
方法2:心筋細胞成熟促進剤を用いた未成熟心筋細胞の成熟化(陽性コントロール実験) 下記のT112とT623を成熟促進剤として用い、特許文献1の試験例2に記載された方法によって多能性幹細胞から成熟心筋細胞を得た。具体的には、Day10~Day16の6日間、T112またはT623を培地に添加した(終濃度40nM)。実施例では、この方法によって得られた成熟心筋細胞を“促進剤処理細胞”、前記促進剤処理を行わずに心筋細胞への分化誘導のみを行った細胞(未成熟なままの心筋細胞)を“促進剤非処理細胞”と呼ぶ場合がある。そして、両細胞の比較解析には、分化誘導開始から同日の細胞を用いた。
Figure JPOXMLDOC01-appb-C000001
Method 2: Maturation of immature cardiomyocytes using a cardiomyocyte maturation promoter (positive control experiment) Using the following T112 and T623 as maturation promoters, pluripotency by the method described in Test Example 2 of Patent Document 1. Mature cardiomyocytes were obtained from sex stem cells. Specifically, T112 or T623 was added to the medium for 6 days from Day 10 to Day 16 (final concentration 40 nM). In the examples, mature cardiomyocytes obtained by this method are referred to as “accelerator-treated cells”, and cells that have only been induced to differentiate into cardiomyocytes without the accelerator treatment (cardiomyocytes that remain immature) are used. Sometimes referred to as "accelerator-untreated cells". Then, for the comparative analysis of both cells, cells on the same day from the start of differentiation induction were used.
Figure JPOXMLDOC01-appb-C000001
方法3:レンチウイルスベクターを用いたCDKN1A遺伝子導入(実施例、図1)
 方法1で得られたDay14の未成熟心筋細胞を解離させ、1×106細胞/ウェルの細胞密度で3日間平板培養して接着させた(=Day17の未成熟心筋細胞)。
 並行して、HEK293FT細胞にpLenti6.3-CDKN1A(ヒトCDKN1A遺伝子がクローニングされたpLenti6.3/V5DEST;Thermofisher Scientificから入手)をトランスフェクションして、CDKN1A 遺伝子を含むレンチウイルス粒子をパッケージングした。ヒトCDKN1A cDNAクローンはクローンID H04D013O09由来のDNA型から得た。トランスフェクションから24時間後に培地を交換し、24時間後にウイルス粒子を含む培養上清を回収した。
 前記Day17の未成熟心筋細胞を前記HEK293FT由来培養上清中で24時間培養して前記ウイルス粒子を感染させた。それ以降、培養を継続し、各時点での発現解析やレポータータンパク質の発現などを解析した。青色蛍光タンパク質(BFP)をコードするレンチウイルスベクターをレンチウイルス感染の陽性対照として用いた。
Method 3: CDKN1A gene transfer using a lentiviral vector (Example, FIG. 1)
The immature cardiomyocytes of Day 14 obtained in Method 1 were dissociated, and plated and adhered at a cell density of 1 × 10 6 cells / well for 3 days (= immature cardiomyocytes of Day 17).
In parallel, HEK293FT cells were transfected with pLenti6.3-CDKN1A (pLenti6.3 / V5DEST from which the human CDKN1A gene was cloned; obtained from Thermofisher Scientific) to package lentivirus particles containing the CDKN1A gene. The human CDKN1A cDNA clone was obtained from the DNA type derived from clone ID H04D013O09. The medium was changed 24 hours after transfection, and the culture supernatant containing the virus particles was collected 24 hours later.
The immature cardiomyocytes of Day 17 were cultured in the HEK293FT-derived culture supernatant for 24 hours to infect the virus particles. After that, the culture was continued, and the expression analysis and the expression of the reporter protein at each time point were analyzed. A lentiviral vector encoding blue fluorescent protein (BFP) was used as a positive control for lentiviral infection.
方法4:より早期の未成熟心筋細胞に対するレンチウイルスベクターを用いたCDKN1A遺伝子導入(実施例)
 方法3と同様に、pLenti6.3-CDKN1AからCDKN1A 遺伝子を含むレンチウイルス粒子を含む培養上清を回収した。
 方法1で得られたDay14の未成熟心筋細胞に、前記培養上清中で24時間培養して前記ウイルス粒子を感染させた。青色蛍光タンパク質(BFP)をコードするレンチウイルスベクターをレンチウイルス感染の陽性対照として用いた。それ以降、培養を継続し、Day30時点でCDKN1A及びTNNI3の発現を、定量的RT-PCRで解析した。また、定量的RT-PCRの内部コントロールとして、GAPDHを用いた。
Method 4: CDKN1A gene transfer using a lentiviral vector into earlier immature cardiomyocytes (Example)
In the same manner as in Method 3, a culture supernatant containing lentivirus particles containing the CDKN1A gene was collected from pLenti6.3-CDKN1A.
The immature cardiomyocytes of Day 14 obtained in Method 1 were cultured in the culture supernatant for 24 hours to infect the virus particles. A lentiviral vector encoding blue fluorescent protein (BFP) was used as a positive control for lentiviral infection. After that, the culture was continued, and the expression of CDKN1A and TNNI3 was analyzed by quantitative RT-PCR at Day 30. In addition, GAPDH was used as an internal control for quantitative RT-PCR.
結果
<心筋細胞の成熟化に寄与する新たな遺伝子の同定>
 1390D4細胞から方法1によって得られた成熟心筋細胞と、該促進剤非処理の未成熟心筋細胞について、遺伝子発現プロファイルの比較解析を行った。図3(A)に、促進剤非処理細胞に対して促進剤処理細胞で発現濃縮されている遺伝子群のOG enrichment解析結果を示す。有意(p<0.05)に濃縮されているGO Termが複数見いだされ、特に、キナーゼ阻害活性をGOとする遺伝子群の発現が有意に濃縮されていていることが明らかとなった。当該遺伝子群には、図3に示す15種類の遺伝子が含まれていた(図3(B))。
Results <Identification of new genes that contribute to cardiomyocyte maturation>
A comparative analysis of gene expression profiles was performed on mature cardiomyocytes obtained from 1390D4 cells by Method 1 and immature cardiomyocytes not treated with the accelerator. FIG. 3 (A) shows the results of OG enrichment analysis of the gene cluster expressed and enriched in the accelerator-treated cells with respect to the accelerator-untreated cells. Multiple GO Termes that were significantly (p <0.05) enriched were found, and in particular, it was revealed that the expression of genes whose kinase inhibitory activity was GO was significantly enriched. The gene cluster contained 15 types of genes shown in FIG. 3 (FIG. 3 (B)).
 種々の解析結果よりCDKN1Aに注目し、NCBIの遺伝子発現情報データベース(GEO、Acc.No. GSE51483)を用いて、マウスの心臓発生過程におけるCDKN1A遺伝子とTNNI3遺伝子の発現変化を解析した(図4)。
 心臓の発生が進むにつれて両遺伝子ともに発現量が増加し、CDKN1Aの発現は発生後期には成体マウスとほぼ同レベルになることが明らかになった(図4A)。また、両遺伝子の転写レベルは有意に相関していることも確認された(図4B)。
Focusing on CDKN1A from various analysis results, we analyzed changes in the expression of CDKN1A gene and TNNI3 gene during cardiac development in mice using NCBI's gene expression information database (GEO, Acc.No. GSE51483) (Fig. 4). ..
The expression levels of both genes increased as cardiac development progressed, and it was revealed that the expression of CDKN1A reached almost the same level as that of adult mice in the late development stage (Fig. 4A). It was also confirmed that the transcription levels of both genes were significantly correlated (Fig. 4B).
 続いて、ヒトES細胞からも前記成熟促進剤を用いて成熟心筋細胞を製造し、CDKN1Aの発現量を解析した(図5)。ヒトES細胞ではCDKN1Aの発現はほとんど検出されず(図5A)、HOPXの発現も非常に低いが(図5C)、ヒトES細胞由来成熟心筋細胞では、CDKN1A、HOPXともに前記ES細胞よりも発現量が大幅に増加しいたており(図5A、C)。さらに、ヒト心筋細胞における両遺伝子の発現量は有意に相関していた(図5B)。図5Dに、ヒト成人およびヒト胎児の心筋細胞におけるCDKN1Aの発現量を示す。ヒト胎児に比べてヒト成人の心筋細胞では、CDKN1Aの発現量が大幅に増加していた。
 よって、多能性幹細胞(iPS細胞、ES細胞を含む)由来心筋細胞に成熟促進剤を作用させて成熟化させる工程だけでなく、生体内で(自然に)成熟化する工程においても、ヒト心筋細胞では、成熟化に伴ってCDKN1Aの発現が顕著に増加することが明らかとなった。
Subsequently, mature cardiomyocytes were also produced from human ES cells using the maturation promoter, and the expression level of CDKN1A was analyzed (FIG. 5). The expression of CDKN1A was hardly detected in human ES cells (Fig. 5A), and the expression of HOPX was also very low (Fig. 5C). Has increased significantly (Figs. 5A and C). Furthermore, the expression levels of both genes in human cardiomyocytes were significantly correlated (Fig. 5B). FIG. 5D shows the expression level of CDKN1A in human adult and human fetal cardiomyocytes. The expression level of CDKN1A was significantly increased in human adult cardiomyocytes as compared with human fetal cells.
Therefore, not only in the step of allowing a maturation promoter to act on cardiomyocytes derived from pluripotent stem cells (including iPS cells and ES cells) to mature them, but also in the step of (naturally) maturing in vivo, human myocardium In cells, it was revealed that the expression of CDKN1A increased remarkably with maturation.
 図6は、GEO:GSE46224を用いて、ヒトの心臓発生におけるCDKN1A遺伝子とTNNI3遺伝子(A)、CDKN1A遺伝子とHIC1遺伝子(tumor suppressor gene)(B)の発現量の相関を解析した結果である。心臓発生に伴いCDKN1A遺伝子の発現が増加し、その増加はTNNI3およびHIC1の発現増加と相関していることが分かる。この結果より、CDKN1Aは、HIC1およびTNNI3の発現量を制御していると考えられる。 FIG. 6 shows the results of analyzing the correlation between the expression levels of the CDKN1A gene and the TNNI3 gene (A) and the CDKN1A gene and the HIC1 gene (tumor suppressor gene) (B) in human heart development using GEO: GSE46224. It can be seen that the expression of the CDKN1A gene increases with cardiac development, and the increase correlates with the increased expression of TNNI3 and HIC1. From this result, it is considered that CDKN1A regulates the expression levels of HIC1 and TNNI3.
 心筋細胞成熟促進剤を用いて得られた成熟心筋細胞では、非処理の未成熟心筋細胞と比べて、心筋細胞特異的遺伝子の発現が顕著に亢進し、線維芽細胞特異的遺伝子の発現は大幅に減少していた(図7A)。そして、分化誘導から7日後、14日後、21日後における主成分分析の結果(図7B)から、Day7~Day14の間に遺伝子発現パターンが劇的に変化することが明らかになった。 In mature cardiomyocytes obtained using a cardiomyocyte maturation promoter, the expression of cardiomyocyte-specific genes is significantly enhanced and the expression of fibroblast-specific genes is significantly higher than that of untreated immature cardiomyocytes. (Fig. 7A). From the results of principal component analysis (Fig. 7B) 7 days, 14 days, and 21 days after the induction of differentiation, it was clarified that the gene expression pattern changed dramatically between Day 7 and Day 14.
 図8に、促進剤処理細胞において、Day7対Day14またはDay7対Day21で発現量が変化している遺伝子のヒートマップ解析(A)、Day7対Day21で発現増加または発現減少した遺伝子数のベン図(B)を示す。非常に多くの遺伝子の発現が変化するが(図8B)、Day21で発現が増減している遺伝子の多くは、既にDay14の時点で増減していることが示された(図8B)。また、TNNI3はDay7までは発現量がほぼ変わらず、Day14で減少しその後増加するのに対し、CDKN1AはDay7~Day21までずっと増加し続けることも明らかとなった(図8C)。さらに、CDKN1AとTNNI3の発現量はDay20よりもDay40の方が大幅に高く、Day40とDay60では有意差はないことも明らかになった(図9)。 FIG. 8 shows a heat map analysis (A) of genes whose expression levels change between Day 7 vs. Day 14 or Day 7 vs. Day 21 in accelerator-treated cells, and a Venn diagram of the number of genes whose expression increased or decreased between Day 7 vs. Day 21 (B). ) Is shown. Although the expression of a large number of genes changes (Fig. 8B), it was shown that many of the genes whose expression increased or decreased on Day 21 had already increased or decreased as of Day 14 (Fig. 8B). It was also clarified that the expression level of TNNI3 remained almost unchanged until Day 7, decreased on Day 14, and then increased, whereas CDKN1A continued to increase from Day 7 to Day 21 (Fig. 8C). Furthermore, it was revealed that the expression levels of CDKN1A and TNNI3 were significantly higher on Day 40 than on Day 20, and there was no significant difference between Day 40 and Day 60 (Fig. 9).
 さらに、GEO:GSE1479を用いて、マウス胎児心臓における心筋細胞の成熟関連遺伝子とCDKN1Aの発現の相関を調べた。その結果、図10に示されるように、マウスの心臓発生過程において、CDKN1Aと、既知の成熟マーカー遺伝子であるCD36及び、成熟と関連する転写因子であるHOPX1との間に、有意な相関が見られた。 Furthermore, using GEO: GSE1479, the correlation between the maturation-related gene of cardiomyocytes and the expression of CDKN1A in the mouse fetal heart was investigated. As a result, as shown in FIG. 10, a significant correlation was found between CDKN1A and the known maturation marker gene CD36 and the transcription factor HOPX1 associated with maturation during cardiac development in mice. Was done.
 また、GEO:GSE51483を用いて、胎児心筋の発達における発現変動が見られた遺伝子群(DEG; Differentially Expressed Genes)を抽出し、CDKN1Aと関連のあるシグナルのパスウェイ解析を行った結果を図11に示す。解析にはR2: genomics analysis and visualization platform (http://r2.amc.nl/)を使用し、高発現グループおよび低発現グループは平均値より1SD(標準偏差)以上差があるものと定義した。この結果によれば、“cardiac muscle contraction and maturation”などの、心筋の成熟に関与するものを含むパスウェイにおいて、有意な相関が見られた。 In addition, GEO: GSE51483 was used to extract genes (DEG; Differently Expressed Genes) whose expression was observed to fluctuate in the development of fetal myocardium, and pathway analysis of signals related to CDKN1A was performed in Fig. 11. show. R2: genomics analysis and visualization platform (http://r2.amc.nl/) was used for the analysis, and the high expression group and the low expression group were defined as having a difference of 1 SD (standard deviation) or more from the mean value. .. According to this result, a significant correlation was found in pathways including those involved in myocardial maturation, such as “cardiac muscle contraction and maturation”.
 図12には、GEO:GSE51483を用いて、マウス胎児の心臓の心房および心室に分けて解析を行った、成熟関連遺伝子発現の経時的変化を示す。その結果、心房心室ともに、他の成熟関連遺伝子と同様、CDKN1Aはその発現が経時的に上昇することがわかった。 FIG. 12 shows the time course of maturation-related gene expression analyzed by dividing the atrium and ventricle of the mouse fetal heart using GEO: GSE51483. As a result, it was found that the expression of CDKN1A increased with time in both the atrial and ventricle, like other maturation-related genes.
 以上の結果から、CDKN1Aが、未成熟心筋細胞の成熟化に寄与している可能性及び、心房心室両方の成熟化に関与し、成熟のバイオマーカーとなる可能性が示唆された。 From the above results, it was suggested that CDKN1A may contribute to the maturation of immature cardiomyocytes and may be involved in the maturation of both atria and ventricles and become a biomarker for maturation.
<CDKN1Aの心筋細胞成熟促進効果の解析>
 方法3に従い、レポーターiPS細胞を分化誘導して得られる未成熟心筋細胞にCDKN1A遺伝子を発現するウイルスベクターを導入して、CDKN1Aの心筋細胞成熟化に対する影響を調べた。
 導入から4~5日後(Day20~21)には、陰性コントロールベクターを導入した心筋細胞に比べてCDKN1A発現ベクターを導入した心筋細胞では、mCherry蛍光強度が大幅に高く(図13A左グラフ)、GFP蛍光強度が顕著に低かった(図13A右グラフ)。そして、CDKN1A発現ベクターを導入した細胞では、Day30の時点ではTNNI1とTNNI3が両陽性の心筋細胞が多数観察されたが、Day40の時点ではTNNI1陰性TNNI3陽性の心筋細胞が多数であった(図13Bイメージパネル)。さらに、心筋細胞の成熟に関わる遺伝子群の発現を解析したところ、陰性コントロールベクターを導入した心筋細胞に比べてCDKN1A発現ベクターを導入した心筋細胞では、いずれも大幅に増加していた(図13Bグラフ)。
 よって、未成熟心筋細胞においてCDKN1Aの発現量を増加させると、心筋細胞としての成熟が顕著に促進されることが示された。その結果、分化誘導開始から30日後(Day30)にはTNNI1の発現量が低下してTNNI3の発現量が上昇する変化が顕著に起こり、40日後(Day40)にはTNNI1の発現量が非常に低く、TNNI3を優位に発現する成熟心筋細胞が得られることが明らかとなった。
<Analysis of cardiomyocyte maturation promoting effect of CDKN1A>
According to Method 3, a viral vector expressing the CDKN1A gene was introduced into immature cardiomyocytes obtained by inducing differentiation of reporter iPS cells, and the effect of CDKN1A on cardiomyocyte maturation was investigated.
Four to five days after the introduction (Days 20 to 21), the mCherry fluorescence intensity was significantly higher in the cardiomyocytes into which the CDKN1A expression vector was introduced than in the cardiomyocytes into which the negative control vector was introduced (Fig. 13A left graph), and GFP. The fluorescence intensity was remarkably low (Fig. 13A right graph). In the cells into which the CDKN1A expression vector was introduced, many cardiomyocytes positive for both TNNI1 and TNNI3 were observed at Day 30, but many cardiomyocytes were TNNI1-negative and TNNI3-positive at Day 40 (Fig. 13B). Image panel). Furthermore, when the expression of genes involved in the maturation of cardiomyocytes was analyzed, the expression of the CDKN1A expression vector was significantly increased in the cardiomyocytes introduced with the CDKN1A expression vector as compared with the cardiomyocytes introduced with the negative control vector (Fig. 13B graph). ).
Therefore, it was shown that increasing the expression level of CDKN1A in immature cardiomyocytes remarkably promotes maturation as cardiomyocytes. As a result, 30 days after the start of differentiation induction (Day 30), the expression level of TNNI1 decreased and the expression level of TNNI3 increased remarkably, and 40 days later (Day 40), the expression level of TNNI1 was very low. , It was clarified that mature cardiomyocytes that predominantly express TNNI3 can be obtained.
 続いて、心筋細胞の成熟に関わる既知の遺伝子セットの発現を解析した。その結果、陰性コントロールベクターを導入した心筋細胞に対しCDKN1A発現ベクターを導入した心筋細胞では、HCN4を除く前記遺伝子の発現がすべて増加していた(図14A)。よって、未成熟心筋細胞においてCDKN1Aの発現量が増加すると、成熟化に関わる(本来の)遺伝子発現が基本的に誘導されて成熟化が加速されることが強く示唆された。また、CDKN1Aは、前記心筋細胞の成熟化に関わる既知の遺伝子の発現を直接または間接的に制御し得ることも示唆された。
さらに、CDKN1A発現ベクターを導入した心筋細胞について、Day60の時点で顕微鏡観察を行った結果、生体内の成熟心筋細胞と同様に、細長く変形したTNNI1陰性TNNI3陽性成熟心筋細胞が互いに寄り添っている様相が観察された(図14B)。
Subsequently, the expression of a known gene set involved in cardiomyocyte maturation was analyzed. As a result, the expression of all the genes except HCN4 was increased in the cardiomyocytes into which the CDKN1A expression vector was introduced into the cardiomyocytes into which the negative control vector was introduced (FIG. 14A). Therefore, it was strongly suggested that when the expression level of CDKN1A increased in immature cardiomyocytes, the (original) gene expression involved in maturation was basically induced and the maturation was accelerated. It was also suggested that CDKN1A can directly or indirectly regulate the expression of known genes involved in the maturation of cardiomyocytes.
Furthermore, as a result of microscopic observation of cardiomyocytes into which the CDKN1A expression vector was introduced at Day 60, it was found that elongated and deformed TNNI1-negative TNNI3-positive mature cardiomyocytes were close to each other, similar to mature cardiomyocytes in vivo. It was observed (Fig. 14B).
 さらに、方法4に従い、より未熟な早期の心筋細胞におけるCDKN1Aの成熟誘導効果について評価を行った。分化誘導開始14日目の未成熟心筋細胞に対してレンチウイルスでCDKN1Aの遺伝子導入を行い、30日目に遺伝子発現の評価を行ったところ、TNNI3の発現の著明な上昇が確認された(図15)。この結果から、より早期の、心筋細胞に分化したばかりの細胞である、分化誘導開始14日目の未成熟心筋細胞においても同様に、CDKN1Aは成熟心筋細胞誘導効果を持つことが確認された。 Furthermore, according to Method 4, the maturation-inducing effect of CDKN1A on more immature early cardiomyocytes was evaluated. CDKN1A gene transfer was performed with lentivirus into immature cardiomyocytes on the 14th day after the start of differentiation induction, and gene expression was evaluated on the 30th day. As a result, a marked increase in TNNI3 expression was confirmed ( FIG. 15). From this result, it was confirmed that CDKN1A also has a mature cardiomyocyte-inducing effect in immature cardiomyocytes 14 days after the start of differentiation induction, which is a cell that has just differentiated into cardiomyocytes at an earlier stage.
 以上の結果より、CDKN1Aには、未成熟心筋細胞に対し、成熟化に必要な遺伝子発現を促して成熟化を促進する効果があることが明らかになった。 From the above results, it was clarified that CDKN1A has the effect of promoting the expression of genes required for maturation and promoting maturation of immature cardiomyocytes.

Claims (6)

  1. 未成熟心筋細胞において、サイクリン依存性キナーゼ阻害因子1(cyclin-dependent kinase inhibitor 1)の発現量を増加させる工程を含む、成熟心筋細胞の製造方法。 A method for producing mature cardiomyocytes, which comprises a step of increasing the expression level of cyclin-dependent kinase inhibitor 1 in immature cardiomyocytes.
  2. 前記発現量の増加が、3日以上維持される、請求項1に記載の成熟心筋細胞の製造方法。 The method for producing mature cardiomyocytes according to claim 1, wherein the increase in the expression level is maintained for 3 days or more.
  3. 前記心筋細胞がヒト心筋細胞である、請求項1または2に記載の成熟心筋細胞の製造方法。 The method for producing mature cardiomyocytes according to claim 1 or 2, wherein the cardiomyocytes are human cardiomyocytes.
  4. 前記未成熟心筋細胞が多能性幹細胞から分化誘導された未成熟心筋細胞である、請求項1~3のいずれか一項に記載の成熟心筋細胞の製造方法。  The method for producing a mature cardiomyocyte according to any one of claims 1 to 3, wherein the immature cardiomyocyte is an immature cardiomyocyte in which differentiation is induced from a pluripotent stem cell.
  5. 前記多能性幹細胞が人工多能性幹細胞である、請求項4に記載の成熟心筋細胞の製造方法。  The method for producing mature cardiomyocytes according to claim 4, wherein the pluripotent stem cells are induced pluripotent stem cells.
  6. 請求項1~5のいずれか一項に記載の方法によって増殖された、成熟心筋細胞。  Mature cardiomyocytes proliferated by the method according to any one of claims 1 to 5.
PCT/JP2021/007466 2020-02-28 2021-02-26 Mature-cardiomyocyte production method WO2021172542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503759A JPWO2021172542A1 (en) 2020-02-28 2021-02-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032716 2020-02-28
JP2020-032716 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172542A1 true WO2021172542A1 (en) 2021-09-02

Family

ID=77491953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007466 WO2021172542A1 (en) 2020-02-28 2021-02-26 Mature-cardiomyocyte production method

Country Status (2)

Country Link
JP (1) JPWO2021172542A1 (en)
WO (1) WO2021172542A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054357A1 (en) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 Method for producing pluripotent stem cells
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107487A1 (en) * 2014-06-10 2017-04-20 President And Fellows Of Harvard College Methods for differentiation
WO2019113432A1 (en) * 2017-12-08 2019-06-13 University Of Washington Methods and compositions for detecting and promoting cardiolipin remodeling and cardiomyocyte maturation and related methods of treating mitochondrial dysfunction
WO2019189554A1 (en) * 2018-03-30 2019-10-03 国立大学法人京都大学 Cardiomyocyte maturation promoter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107487A1 (en) * 2014-06-10 2017-04-20 President And Fellows Of Harvard College Methods for differentiation
WO2019113432A1 (en) * 2017-12-08 2019-06-13 University Of Washington Methods and compositions for detecting and promoting cardiolipin remodeling and cardiomyocyte maturation and related methods of treating mitochondrial dysfunction
WO2019189554A1 (en) * 2018-03-30 2019-10-03 国立大学法人京都大学 Cardiomyocyte maturation promoter

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
UOSAKI, HIDEKI ET AL.: "Transcriptional Landscape of Cardiomyocyte Maturation", CELL REPORTS, vol. 13, no. 8, 2015, pages 1705 - 1716, XP055832155, DOI: 10.1016/j.celrep. 2015.10.03 2 *
YANG, XIULAN ET AL.: "Tri-iodo-L-thyronine Promotes the Maturation of Human Cardiomyocytes- Derived from Induced Pluripotent Stem Cells", JOURNAL OF MOLECULAR CELLULAR CARDIOLOGY, vol. 72, 2014, pages 296 - 304, XP055594759, DOI: 10.1016/j.yjmcc. 2014.04.00 5. *
YOSHIDA, YOSHINORI: "SY-14-4: Development of a method for producing human pluripotent stem cell -derived cardiomyocyte maturation and efforts to the development and clinical application", REGENERATIVE MEDICINE, vol. 19, 12 March 2020 (2020-03-12), JP, pages 170, XP009530869, ISSN: 1347-7919 *
YOSHINORI YOSHIDA: "The forefront of developments in heart disease and heart failure treatment 5. Linking disease- specific iPS cells to drug development for heart disease", EXPERIMENTAL MEDICINE, vol. 37, no. 5, 30 November 2018 (2018-11-30), JP, pages 161 (799) - 167 (805), XP009530798, ISSN: 0288-5514 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054357A1 (en) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 Method for producing pluripotent stem cells
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion

Also Published As

Publication number Publication date
JPWO2021172542A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US20230282445A1 (en) Method of nuclear reprogramming
Liu et al. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications
Walker et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation
KR102066761B1 (en) Highly efficient method for establishing induced pluripotent stem cell
US9163217B2 (en) Method for increasing the efficiency of inducing pluripotent stem cells
US20090186414A1 (en) Methods of Generating Cardiomyocytes and Cardiac Progenitors and Compositions
JP5987063B2 (en) Method for producing pluripotent stem cells
JP6612736B2 (en) Cardiomyocyte sorting method
WO2021187380A1 (en) Arrhythmogenic-cardiomyopathy-patient-derived pluripotent stem cells, use thereof, and drug for treating arrhythmogenic cardiomyopathy
JP6893633B2 (en) Extraction method of differentiated cells
WO2021172542A1 (en) Mature-cardiomyocyte production method
KR101781693B1 (en) Process for differentiation of cardiovascular cells from induced pluripotent stem cells prepared by human circulation multipotent adult stem cells(CiMS) and uses thereof
JP2021520215A (en) Reprogramming vector
US11661582B2 (en) Method for producing sinoatrial node cells (pacemaker cells) from stem cells, and use of the produced sinoatrial node cells
CA3051162A1 (en) Conditionally immortalized cells and methods for their preparation
US20220010271A1 (en) Method for producing brain organoids
WO2023282290A1 (en) Microglial progenitor cells, method for manufacturing microglia, and manufactured microglial progenitor cells and microglia
WO2020203712A1 (en) Method for producing pluripotent stem cells capable of differentiating into specific cells, and application thereof
EP3564385A1 (en) Evaluation method and selection method for induced pluripotent stem cells, and production method for induced pluripotent stem cells
CN112805370A (en) Synergistic transcription factor inducing high resistance across endothelial barrier
JP7548494B2 (en) Cell Production Method
WO2022102742A1 (en) Cell surface marker for high efficiency purification of skeletal muscle lineage cells and skeletal muscle stem cells, and use thereof
US20230174949A1 (en) Engineered vascularized organoids
WO2021095811A1 (en) Method for direct transdifferentiation of somatic cell
US20210010030A1 (en) Method for reprogramming somatic cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761939

Country of ref document: EP

Kind code of ref document: A1