[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021172470A1 - 積層体、及びその製造方法 - Google Patents

積層体、及びその製造方法 Download PDF

Info

Publication number
WO2021172470A1
WO2021172470A1 PCT/JP2021/007194 JP2021007194W WO2021172470A1 WO 2021172470 A1 WO2021172470 A1 WO 2021172470A1 JP 2021007194 W JP2021007194 W JP 2021007194W WO 2021172470 A1 WO2021172470 A1 WO 2021172470A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
adhesive layer
block copolymer
laminate according
laminate
Prior art date
Application number
PCT/JP2021/007194
Other languages
English (en)
French (fr)
Inventor
小西 大輔
佐々木 啓光
裕太 冨島
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202180017336.7A priority Critical patent/CN115135497A/zh
Priority to JP2022503721A priority patent/JPWO2021172470A1/ja
Priority to EP21759582.6A priority patent/EP4112297A4/en
Priority to US17/802,637 priority patent/US11951731B2/en
Publication of WO2021172470A1 publication Critical patent/WO2021172470A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength

Definitions

  • the present invention is an adhesive containing a hydrogenated block copolymer containing a block copolymer composed of a structural unit derived from an aromatic vinyl compound and a polymer block composed of a structural unit derived from a conjugated diene.
  • the present invention relates to a laminate having a layer and a method for producing the same.
  • Ceramics, metals, and synthetic resins are used in various applications such as home appliances, electronic parts, mechanical parts, and automobile parts because they have excellent durability, heat resistance, and mechanical strength. These members are laminated with an elastomer having excellent flexibility for the purpose of fixing to other structural members, shock absorption, damage prevention, sealing, etc., depending on the application, component configuration, usage method, etc. May be used.
  • a styrene-based thermoplastic elastomer having excellent flexibility, mechanical properties, and formability is preferably used.
  • the styrene-based thermoplastic elastomer refers to a block copolymer having a polymer block composed of a structural unit derived from an aromatic vinyl compound and a polymer block composed of a structural unit derived from a conjugated diene, or a hydrogenated product thereof. ..
  • ordinary styrene-based thermoplastic elastomers have a problem that they do not have sufficient adhesive force to ceramics, metals, etc., and it is difficult to melt-bond them as they are. Therefore, in order to bond the ceramic or metal to the styrene-based thermoplastic elastomer, a method of separately applying an adhesive or priming the surface of the ceramic, metal, or synthetic resin is disclosed. (See Patent Documents 1 to 6).
  • Patent Documents 1 to 6 are complicated because they require separate application of an adhesive, primer treatment, etc., and improvement is required because the adhesive strength is not sufficient.
  • the present invention has been made in view of the above circumstances, and a laminate in which base materials made of metal, resin, etc. are firmly adhered to each other even when no primer treatment or the like is applied, and a method for producing the same. The purpose is to provide.
  • the gist of the present invention is the following [1] to [19].
  • [1] A laminate having a base material (X), an adhesive layer (Y), and a base material (Z) in this order.
  • the mass ratio [(a) / (b)] of the polymer block (a) to the polymer block (b) is 1/99 to 50/50.
  • the polymer block (b) contains 1 to 100% by mass of a structural unit (b1) derived from farnesene and 0 to 99% by mass of a structural unit (b2) derived from a conjugated diene other than farnesene.
  • the base material (X) and the base material (Z) are at least one independently selected from metal, polar resin, polyolefin resin, carbon fiber, glass, and ceramics, respectively.
  • [12] The laminate according to any one of [1] to [11], wherein the adhesive layer (Y) satisfies the following relational expression (i). [(0 ° C. hardness / 23 ° C.
  • the hydrogenated block copolymer (A) is a mixture of two or more kinds of hydrogenated block copolymers, and the content of the diblock copolymer in the hydrogenated block copolymer (A) is The laminate according to any one of the above [1] to [12], which is 50% by mass or less.
  • the shear adhesive force of the adhesive layer (Y) at 23 ° C. is 10 N / cm 2 or more.
  • a method for producing a laminate which comprises a step (II) of injection molding a base material (Z).
  • Production method [19] The method for producing a laminate according to any one of [16] to [18], wherein the base material (X) is a metal and the base material (Z) is a polar resin or a polyolefin resin.
  • the present invention it is possible to provide a laminate in which base materials made of metal, resin or the like are firmly adhered to each other, and a method for producing the same, even when no primer treatment or the like is applied.
  • test piece used for measuring the adhesive force in an Example. It is a figure which looked at the test piece used for measuring the adhesive force in an Example from the base material (Z) side.
  • the laminated body of the present invention is a laminated body having a base material (X), an adhesive layer (Y), and a base material (Z) in this order, and the adhesive layer (Y) is , A block copolymer (P) hydrogenated with a block copolymer (P) containing a polymer block (a) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (b) composed of a structural unit derived from a conjugated diene.
  • the adhesive contains the copolymer (A) and has a mass ratio [(a) / (b)] of the polymer block (a) to the polymer block (b) of 1/99 to 50/50.
  • the layer (Y) has a storage elasticity G'at 100 ° C. of 1.20 ⁇ 10 5 to 4.00 ⁇ 10 5 Pa.
  • the adhesive layer (Y) in the present invention contains the hydrogenated block copolymer (A) described later, and has a storage elastic modulus G'at 1.20 at 100 ° C. measured by dynamic viscoelasticity measurement. It is ⁇ 10 5 to 4.00 ⁇ 10 5 Pa.
  • the storage modulus G 100 ° C. ' is used as a 1.20 ⁇ 10 5 ⁇ 4.00 ⁇ 10 5 Pa as an adhesive layer, in the conventional method the propylene resin was difficult to adhere It also exhibits excellent adhesiveness to substrates with low polarity such as. Although it is not clear why the excellent effect is obtained when the storage elastic modulus at 100 ° C.
  • the storage elastic modulus in the above is within the above range, it is 100 ° C., which is a temperature close to the temperature at which a laminate is manufactured by injection molding, press molding, or the like.
  • the storage elastic modulus in the above is within the range, it is considered that the hydrogenated block copolymer and the base material are easily compatible with each other and adhere to each other, so that the adhesiveness between the adhesive layer (Y) and the base material is improved.
  • the storage modulus G 100 ° C. ' is less than 3.50 ⁇ 10 5 Pa, is 3.00 ⁇ 10 5 Pa or less it is still more preferably not more than 2.80 ⁇ 10 5 Pa.
  • the storage modulus G ' is preferably 1.30 ⁇ 10 5 Pa or more, and more preferably at 1.50 ⁇ 10 5 Pa or more, 1.70 ⁇ 10 5 Pa or more More preferred.
  • the storage elastic modulus G'at 100 ° C. refers to a value measured by the method described in Examples.
  • the adhesive layer (Y) preferably has a storage elastic modulus G'at 0 ° C. measured by dynamic viscoelasticity measurement of 4.00 ⁇ 10 5 to 5.00 ⁇ 10 8 Pa.
  • the storage elastic modulus G'at 0 ° C. is not more than the above upper limit value, the laminate of the present invention exhibits strong adhesiveness even when exposed to an atmosphere of 0 ° C.
  • the storage elastic modulus G'at 0 ° C. is preferably 5.00 ⁇ 10 7 Pa or less, more preferably 5.00 ⁇ 10 6 Pa or less, and 8.00 ⁇ 10 5 Pa or less. Is more preferable.
  • storage modulus G 0 °C adhesive layer (Y) ' is preferably 4.00 ⁇ 10 5 Pa or more.
  • the storage elastic modulus G'at 0 ° C. refers to a value measured by the method described in Examples.
  • the hydrogenated block copolymer (A), which will be described later, has a loss elastic modulus G at 100 ° C. measured by dynamic viscoelasticity measurement. Is preferably 3.00 ⁇ 10 4 Pa to 2.50 ⁇ 10 5 Pa.
  • the loss elastic modulus G ”at 100 ° C. is preferably 3.50 ⁇ 10 4 Pa or more, and 4.00 ⁇ 10. more preferably 4 Pa or more, more preferably 4.50 ⁇ 10 4 Pa or more.
  • the elastic modulus G "at 100 ° C. is preferably 2.00 ⁇ 10 5 Pa or less, more preferably 1.50 ⁇ 10 5 Pa or less, and further preferably 1.00 ⁇ 10 5 Pa or less.
  • the loss elastic modulus G at 100 ° C. refers to a value measured by the method described in Examples.
  • the shear adhesive strength of the adhesive layer (Y) at 23 ° C. is preferably 10 N / cm 2 or more, more preferably 15 N / cm 2 or more, and further preferably 20 N / cm 2 .
  • the shear adhesive strength of the adhesive layer (Y) at 23 ° C. is the shear adhesive strength of the adhesive layer (Y) when a stainless steel plate is used as the base material (X) and a polyacetal resin is used as the base material (Z). It can be specifically measured by the measuring method described in the examples.
  • the hardness increase in a low temperature atmosphere is smaller than the hardness increase in a high temperature atmosphere. If the increase in hardness is large in a low temperature atmosphere, the elasticity of the rubber decreases, and it becomes easy to peel off when it receives an impact.
  • the s in the following relational expression (i) is preferably 140 or less, more preferably 130 or less, and 120 or less. It is more preferably 115 or less, and particularly preferably 115 or less. [(0 ° C. hardness / 23 ° C.
  • the thickness of the adhesive layer (Y) is not particularly specified, but from the viewpoint of reducing the weight of the laminated body and improving the degree of freedom in design, 0.001 to 10.00 mm is preferable, and 0.005 to 5.00 mm is more preferable.
  • 0.001 to 10.00 mm is preferable, and 0.005 to 5.00 mm is more preferable.
  • 0.01 to 2.50 mm is more preferable, 0.01 to 1.50 mm is particularly preferable, and 0.01 to 1.00 mm is most preferable.
  • the adhesive layer (Y) contains the hydrogenated block copolymer (A). Due to the flexibility of the hydrogenated block copolymer (A) due to the adhesive layer (Y) containing the hydrogenated block copolymer (A), the base material (X) and the base material (Z) And can be firmly adhered.
  • the hydrogenated block copolymer (A) contains a polymer block (a) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (b) composed of a structural unit derived from a conjugated diene.
  • aromatic vinyl compound constituting the polymer block (a) examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, and 4-t-butyl.
  • Styrene 4-cyclohexylstyrene, 4-dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) Examples thereof include styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene and divinylbenzene. These aromatic vinyl compounds may be used alone or in combination of two or more. Among these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are more preferable, and styrene is even more preferable.
  • the polymer block (a) is composed of a structural unit derived from styrene
  • its peak top molecular weight (Mp) is 2,000 to 55 from the viewpoint of improving the adhesiveness and molding processability of the adhesive layer (Y). It is preferably 000, more preferably 4,000 to 20,000, and even more preferably 5,000 to 10,000.
  • the peak top molecular weight (Mp) in the present specification means a value measured by the method described in Examples described later.
  • the "peak top molecular weights" described in the present specification and claims are all standard polystyrene-equivalent peak top molecular weights obtained by gel permeation chromatography (GPC) measurement, and are described in more detail in Examples. It is a value measured according to the method of.
  • the peak top molecular weight of each polymer block contained in the block copolymer (P) can be determined by measuring the sampled liquid each time the polymerization of each polymer block is completed in the production process. For example, when a triblock copolymer having an a1-b-a2 structure is sequentially polymerized in the order of a1, b, and a2 for synthesis, the peak top molecular weight of the first polymer block a1 is such that the polymerization of a1 is completed. It can sometimes be obtained by measuring the sampled liquid by GPC.
  • the peak top molecular weight of the diblock copolymer having the structure of a1-b was obtained by GPC measurement of the liquid sampled when the polymerization of b was completed, and the polymer was obtained from that value. It can be obtained by subtracting the peak top molecular weight of block a1. Further, for the peak top molecular weight of the polymer block a2, the peak top molecular weight of the triblock copolymer having the structure of a1-b-a2 was obtained by GPC measurement of the liquid sampled when the polymerization of a2 was completed, and the peak top molecular weight was obtained from the value. It can be obtained by subtracting the peak top molecular weight of the diblock copolymer having the structure a1-b.
  • Examples of the conjugated diene constituting the polymer block (b) include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenyl-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, and 1 , 3-Hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadene, 1,3,7-octatriene, milsen, farnesene, chloroprene and the like. These may be used alone or in combination of two or more. Of these, butadiene, isoprene, myrcene, and farnesene are more preferred, and farnesene is even more preferred.
  • the farnesene used as the conjugated diene may be either ⁇ -farnesene or ⁇ -farnesene represented by the following formula (I), but ⁇ -farnesene may be used from the viewpoint of easiness of producing a hydrogenated block copolymer. preferable. In addition, ⁇ -farnesene and ⁇ -farnesene may be used in combination.
  • the polymer block (b) in the present invention contains a structural unit derived from farnesene (b1) and a structural unit derived from a conjugated diene other than farnesene (b2) from the viewpoint of improving the adhesiveness of the adhesive layer (Y). It may be used together.
  • the content of the farnesene-derived structural unit (b1) in the polymer block (b) is preferably 1 to 100% by mass, more preferably 30 to 95% by mass, and 45 to 90% by mass. It is more preferably 50 to 80% by mass, and even more preferably 50 to 80% by mass.
  • the content of the structural unit (b2) derived from the conjugated diene other than farnesene in the polymer block (b) is preferably 0 to 99% by mass, more preferably 5 to 70% by mass, and 10 to 10 to 70% by mass. It is more preferably 55% by mass, and even more preferably 20 to 50% by mass.
  • the conjugated diene other than farnesene at least one selected from butadiene, isoprene and myrcene is preferable.
  • the mass ratio [(a) / (b)] of the polymer block (a) to the polymer block (b) is 1/99 to 50/50. If the content of the polymer block (a) is less than the lower limit, it is not possible to obtain a hydrogenated block copolymer having excellent flexibility and molding processability and having strong adhesive strength. On the other hand, when the content of the polymer block (a) exceeds the upper limit value, the molding processability and the adhesive strength are lowered.
  • the mass ratio [(a) / (b)] of the polymer block (a) to the polymer block (b) is preferably 5/95 to 40/60, preferably 8/92 to It is more preferably 30/70, and even more preferably 10/90 to 25/75.
  • the hydrogenated block copolymer (A) is a hydrogenated additive of the block copolymer (P) containing at least one polymer block (a) and one polymer block (b), respectively, and the polymer block (a). It is preferable that the block copolymer (P) is a hydrogenated product containing two or more of the block copolymer (P) and one or more of the polymer blocks (b).
  • the bonding form of the polymer block (a) and the polymer block (b) is not particularly limited, and may be linear, branched, radial, or a combination of two or more thereof.
  • each block is linearly bonded
  • the polymer block (a) is represented by a and the polymer block (b) is represented by b, (ab) l , a- (ba).
  • the binding form represented by m or b- (ab) n is preferable.
  • the above-mentioned l, m and n each independently represent an integer of 1 or more.
  • copolymers represented by ba-b-ab and a-ba are preferable from the viewpoints of flexibility, moldability, handleability and the like.
  • the hydrogenated block copolymer (A) may consist of one type of hydrogenated block copolymer, or may be a mixture of two or more types of hydrogenated block copolymers, for example, the above-mentioned bird. It may be a mixture of a block copolymer of blocks or more and a so-called diblock copolymer represented by (ab). However, from the viewpoint of improving the adhesive durability (heat resistance, etc.) of the adhesive layer (Y), the content of the diblock copolymer in the hydrogenated block copolymer (A) is 50% by mass or less. It is more desirable, more preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less.
  • a polymer arm having a bonding form represented by b1-a-b2-Li by anionic polymerization (“Li” represents an active terminal when anionic polymerization is performed using BuLi) was produced.
  • a polymer having a binding form represented by b1-a-b2-ab1 obtained by coupling with a coupling agent can also be used.
  • the content of the block copolymer in the bonded form represented by b1-a-b2 derived from the polymer arm that remains without coupling is from the viewpoint of not lowering the adhesive durability (heat resistance, etc.).
  • each polymer block is a polymer composed of the same structural unit. It may be a block or a polymer block composed of different structural units.
  • the respective aromatic vinyl compounds may be of the same type or different. good.
  • the peak top molecular weight (Mp) of the hydrogenated block copolymer (A) may be 4,000 to 1,500,000 from the viewpoint of improving the adhesiveness and molding processability of the adhesive layer (Y). It is preferably 10,000 to 1,200,000, more preferably 50,000 to 800,000, and even more preferably 80,000 to 500,000.
  • the peak top molecular weight (Mp) in the present specification means a value measured by the method described in Examples described later.
  • the molecular weight distribution (Mw / Mn) of the hydrogenated block copolymer (A) is preferably 1.00 to 4.00, more preferably 1.00 to 3.00, and 1.00 to 2 It is more preferably .00.
  • Mw / Mn The molecular weight distribution is preferably 1.00 to 4.00, more preferably 1.00 to 3.00, and 1.00 to 2 It is more preferably .00.
  • the block copolymer (P) is composed of the polymer block (a) and the polymer block (b), as well as the polymer block (c) composed of other monomers as long as the effects of the present invention are not impaired. May be contained.
  • examples of such other monomers include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-.
  • Unsaturated hydrocarbon compounds such as tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene; acrylic acid, methacrylate, methyl acrylate, methyl methacrylate , Acrylonitrile, methacrylonitrile, maleic acid, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, 2-methacrylamide-2 -Functional group-containing unsaturated compounds such as methylpropanesulfonic acid, vinylsulfonic acid, vinyl acetate, and methylvinyl ether; and the like.
  • block copolymer (P) has a polymer block (c)
  • its content is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. Is more preferable.
  • the hydrogenated block copolymer (A) is, for example, a polymerization step of obtaining a block copolymer (P) by anionic polymerization, and carbon-carbon dicarbonate in the polymer block (b) in the block copolymer (P). It can be suitably produced by the step of hydrogenating a heavy bond.
  • the block copolymer (P) can be produced by a solution polymerization method or the method described in JP-A-2012-502135 and JP-A-2012-502136.
  • the solution polymerization method is preferable, and for example, known methods such as an ionic polymerization method such as anionic polymerization and cationic polymerization, and a radical polymerization method can be applied.
  • the anionic polymerization method is preferable.
  • a block copolymer (P) is obtained by sequentially adding an aromatic vinyl compound, farnesene and / or a conjugated diene other than farnesene in the presence of a solvent, an anionic polymerization initiator, and if necessary, a Lewis base. ).
  • anion polymerization initiator examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium; the alkali metals and alkalis. Examples thereof include earth metals and compounds containing lanthanoid rare earth metals. Of these, compounds containing alkali metals and alkali metals are preferable, and organic alkali metal compounds are more preferable.
  • organic alkali metal compound examples include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stillbenlithium, dilithiomethane, dilythionaphthalene, and 1,4-dilithiobtan. , 1,4-Dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other organic lithium compounds; sodium naphthalene, potassium naphthalene and the like.
  • the organic alkali metal compound may be used as an organic alkali metal amide by reacting with a secondary amine such as diisopropylamine, dibutylamine, dihexylamine, or dibenzylamine.
  • the amount of the organic alkali metal compound used for the polymerization varies depending on the molecular weight of the block copolymer (P), but is usually 0.01 to 3 with respect to the total amount of the aromatic vinyl compound, farnesene and conjugated diene other than farnesene. It is in the range of mass%.
  • the solvent is not particularly limited as long as it does not adversely affect the anion polymerization reaction.
  • saturated aliphatic hydrocarbons such as n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, and methylcyclopentane.
  • Saturated alicyclic hydrocarbons such as; aromatic hydrocarbons such as benzene, toluene, xylene and the like. These may be used alone or in combination of two or more.
  • the amount of the solvent used is not particularly limited.
  • the Lewis base has a role of controlling the microstructure in the structural unit derived from farnesene and the structural unit derived from conjugated diene other than farnesene.
  • Lewis bases include ether compounds such as dibutyl ether, diethyl ether, tetrahydrofuran, dioxane, ethylene glycol diethyl ether and ditetrahydrofurylpropane; pyridine; N, N, N', N'-tetramethylethylenediamine, trimethylamine and the like. Examples thereof include tertiary amines; alkali metal alkoxides such as potassium t-butoxide; and phosphine compounds.
  • the amount is usually preferably in the range of 0.01-1000 mol equivalents per 1 mol of anionic polymerization initiator.
  • the temperature of the polymerization reaction is usually in the range of ⁇ 80 to 150 ° C., preferably 0 to 100 ° C., and more preferably 10 to 90 ° C.
  • the type of the polymerization reaction may be a batch type or a continuous type. Each monomer is continuously or intermittently supplied into the polymerization reaction solution so that the abundance of the aromatic vinyl compound, farnesene and / or conjugated diene other than farnesene in the polymerization reaction system is within a specific range.
  • the block copolymer (P) can be produced by sequentially polymerizing each monomer in the polymerization reaction solution so as to have a specific ratio.
  • the polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate the block copolymer (P), or the polymerization reaction solution is washed with water, separated, and dried to obtain the block copolymer (P). Can be isolated.
  • an unmodified block copolymer (P) may be obtained as described above, but a functional group is introduced into the block copolymer (P) before the hydrogenation step described later.
  • a modified block copolymer (P) may be obtained.
  • the functional group that can be introduced include an amino group, an alkoxysilyl group, a hydroxyl group, an epoxy group, a carboxy group, a carbonyl group, a mercapto group, an isocyanate group, a chloro group, an acid anhydride and the like.
  • Examples of the method for modifying the block copolymer (P) include tin tetrachloride, tetrachlorosilane, dichlorodimethylsilane, dimethyldiethoxysilane, and tetramethoxysilane that can react with the polymerization active terminal before adding the polymerization terminator. , Tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, 4,4'-bis (diethylamino) benzophenone, N-vinylpyrrolidone, etc.
  • Examples thereof include a method of adding a modifier or another modifier described in JP-A-2011-132298. Further, maleic anhydride or the like can be grafted onto the isolated copolymer and used.
  • the position where the functional group is introduced may be the polymerization terminal of the block copolymer (P) or the side chain. Further, the functional group may be used alone or in combination of two or more.
  • the modifier is usually preferably in the range of 0.01 to 10 molar equivalents with respect to the anionic polymerization initiator.
  • the hydrogenated block copolymer (A) can be obtained by subjecting the block copolymer (P) obtained by the above method or the modified block copolymer (P) to a step of hydrogenating.
  • a known method can be used as the method of hydrogenation.
  • a Cheegler-based catalyst nickel, platinum, palladium, ruthenium or rhodium supported on carbon, silica, rhodium, etc.
  • Rhodium metal catalyst an organic metal complex having cobalt, nickel, palladium, rhodium or ruthenium metal is allowed to exist as a hydrogenation catalyst to carry out a hydrogenation reaction.
  • the hydrogenation reaction may be carried out by adding a hydrogenation catalyst to the polymerization reaction solution containing the block copolymer (P) obtained by the above-mentioned method for producing the block copolymer (P). ..
  • palladium carbon in which palladium is supported on carbon is preferable.
  • the hydrogen pressure is preferably 0.1 to 20 MPa
  • the reaction temperature is preferably 100 to 200 ° C.
  • the reaction time is preferably 1 to 20 hours.
  • the hydrogenation rate of the carbon-carbon double bond in the polymer block (b) is preferably 70 to 100 mol%, preferably 80, from the viewpoint of obtaining a thermoplastic elastomer composition having excellent flexibility and moldability. It is more preferably to 100 mol%, further preferably 85 to 100 mol%.
  • the hydrogenation rate can be calculated by measuring 1 H-NMR of the block copolymer (P) and the hydrogenated block copolymer (A) after hydrogenation.
  • the adhesive layer (Y) of the present invention may consist of only the hydrogenated block copolymer (A), but the hydrogenated block copolymer (A), the polar group-containing polymer (B), and the like may be used. It may consist of a thermoplastic elastomer composition composed of other components.
  • the thermoplastic elastomer composition may contain a polar group-containing polymer (B).
  • the adhesive layer (Y) has appropriate flexibility and moldability, and even if primer treatment is not performed, ceramics, metal, resin, concrete, asphalt, etc. And you will be able to firmly adhere.
  • the reason why the adhesive strength is improved by using the polar group-containing polymer (B) is that the thermoplastic elastomer composition contains the polar group-containing polymer (B), so that the thermoplastic elastomer composition is made of ceramics.
  • an olefin having 2 to 10 carbon atoms is preferable, and an olefin having 2 to 8 carbon atoms is preferable.
  • examples of such olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclohexene and the like. These olefins may be used alone or in combination of two or more. Among these, ethylene and propylene are preferable, and propylene is more preferable.
  • Examples of the polar group contained in the polar group-containing polymer (B) include (meth) acryloyloxy group; hydroxyl group; amide group; amino group; halogen atom such as chlorine atom; carboxy group; ester group; acid anhydride group. And so on.
  • a (meth) acryloyloxy group, a carboxy group, an ester group, and an acid anhydride group are preferable from the viewpoint of improving adhesive strength, and a carboxy group and an acid anhydride group are more preferable.
  • the method for producing the polar group-containing polymer (B) is not particularly limited, but by performing random copolymerization, block copolymerization or graft copolymerization of an olefin and a polar group-containing copolymerizable monomer by a known method. can get. Among these, random copolymerization and graft copolymerization are preferable, and graft copolymers are more preferable. In addition to this, it can also be obtained by subjecting a polyolefin resin to a reaction such as oxidation or chlorination by a known method. It can also be produced by reacting a commercially available polyolefin with a polar group-containing compound to modify it.
  • Examples of the polar group-containing copolymerizable monomer include vinyl acetate, vinyl chloride, ethylene oxide, propylene oxide, acrylamide, unsaturated carboxylic acid or an ester thereof or an acid anhydride thereof. Of these, unsaturated carboxylic acids or esters thereof or acid anhydrides are preferred. Examples of unsaturated carboxylic acids or esters or acid anhydrides thereof include (meth) acrylic acid, (meth) acrylic acid ester, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, hymic acid, and anhydrous. Hymic acid and the like can be mentioned. Of these, maleic acid and maleic anhydride are more preferable. These polar group-containing copolymerizable monomers may be used alone or in combination of two or more.
  • (meth) acrylic acid ester exemplified as the polar group-containing copolymerizable monomer
  • Acrylic acid alkyl esters such as isobutyl acrylate, n-hexyl acrylate, isohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate , Methacrylic acid isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, n-octyl methacrylate, isooctyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • One of these (meth) acrylic acid esters may be used alone, or two or more thereof may be used in combination.
  • the polar group-containing polymer (B) is a polyolefin containing a carboxy group or an acid anhydride group as a polar group from the viewpoint of improving adhesiveness, that is, a carboxylic acid-modified olefin polymer or a carboxylic acid anhydride-modified olefin.
  • the polymer is preferable, and the maleic acid-modified olefin-based polymer and the maleic anhydride-modified olefin-based polymer are more preferable.
  • the polar group contained in the polar group-containing polymer (B) may be post-treated after the polymerization.
  • the (meth) acryloyloxy group or the carboxy group may be neutralized with a metal ion to form an ionomer, or may be esterified with methanol, ethanol or the like.
  • vinyl acetate may be hydrolyzed or the like.
  • the melt flow rate (MFR) of the polar group-containing polymer (B) under the conditions of 230 ° C. and a load of 2.16 kg (21N) is preferably 0.1 to 300 g / 10 minutes, more preferably 0.1 to 100 g. It is / 10 minutes, more preferably 0.1 to 80 g / 10 minutes, and even more preferably 0.1 to 50 g / 10 minutes.
  • MFR of the polar group-containing polymer (B) under the above conditions is 0.1 g / 10 minutes or more, good molding processability can be obtained.
  • the MFR is 300 g / 10 minutes or less, the mechanical properties are likely to be exhibited.
  • the melting point of the polar group-containing polymer (B) is preferably 100 ° C. or higher, more preferably 110 to 170 ° C., and even more preferably 120 to 145 ° C. from the viewpoint of heat resistance.
  • the amount of the polar group-containing structural unit contained in the polar group-containing polymer (B) is preferably 0.01 to 10% by mass in all the structural units. If it is 0.01% by mass or more, the adhesiveness to ceramics and the like is further improved.
  • the ratio of the polar group-containing structural unit is 10% by mass or less, the affinity with the hydrogenated block copolymer (A) is improved, the mechanical properties are good, and the obtained thermoplastic elastomer composition is flexible. It has excellent moldability.
  • the above ratio is more preferably 0.01 to 7% by mass, still more preferably 0.01 to 5% by mass.
  • the total content of the polar group-containing structural unit and the olefin-derived structural unit with respect to the structural unit of the polar group-containing polymer (B) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably. It is 95% by mass or more, more preferably 100% by mass.
  • the content of the polar group-containing polymer (B) in the thermoplastic elastomer composition is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the polar group-containing polymer (B) is at least the above lower limit value, it can be firmly adhered to ceramics and the like.
  • the polar group-containing polymer (B) is not more than the above upper limit value, sufficient adhesiveness can be obtained, and flexibility and moldability are also improved.
  • the content of the polar group-containing polymer (B) is preferably 10 to 90 parts by mass, more preferably 15 to 80 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A). be.
  • the thermoplastic elastomer composition may further contain a softening agent as long as it does not interfere with the effects of the present invention.
  • a softener generally used for rubber and plastics can be used.
  • paraffin-based, naphthen-based, aromatic-based process oils phthalic acid derivatives such as dioctylphthalate and dibutylphthalate
  • white oil mineral oil
  • liquid copolymer of ethylene and ⁇ -olefin liquid paraffin
  • polybutene low molecular weight poly Isobutylene
  • liquid polydiene such as liquid polybutadiene, liquid polyisoprene, liquid polyisoprene / butadiene copolymer, liquid styrene / butadiene copolymer, and liquid styrene / isoprene copolymer, and hydrogenated products thereof.
  • paraffin-based process oil paraffin-based process oil; liquid co-oligomer of ethylene and ⁇ -olefin; liquid paraffin; low molecular weight polyisobutylene and its hydrogenated product are preferable from the viewpoint of compatibility with the hydrogenated block copolymer (A).
  • Paraffinic process oil hydrogenated is more preferred.
  • organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters
  • organic phosphoric acid esters organic subphosphorus Phosphoric acid-based plasticizers
  • acid esters can also be used.
  • monobasic organic acid ester include triethylene glycol-dicaproic acid ester, triethylene glycol-di-2-ethylbutyric acid ester, triethylene glycol-di-n-octylate, and triethylene glycol-di-2.
  • -Glycols such as triethylene glycol, tetraethylene glycol, tripropylene glycol represented by ethylhexyl ester and the like, and butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid.
  • Pelargonic acid n-nonyl acid
  • decylic acid and other glycol-based esters obtained by reaction with monobasic organic acids.
  • polybasic acid organic ester examples include linear or linear with multibasic organic acids such as adipic acid, sebacic acid, and azelaic acid represented by sebacic acid dibutyl ester, azelaic acid dioctyl ester, and adipic acid dibutylcarbitol ester. Examples thereof include esters of branched alcohols. Examples of the organic phosphate ester include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate and the like. As the softener, one type may be used alone, or two or more types may be used in combination.
  • the content thereof is preferably in the range of 0.1 to 100 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the softening agent is within this range, the flexibility and moldability of the thermoplastic elastomer composition are further improved.
  • the content of the softening agent is more preferably 1 to 90 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the adhesive layer (Y) is, if necessary, another thermoplastic polymer, an inorganic filler, a tackifier resin, an antioxidant, a lubricant, a light stabilizer, and processing, as long as the effect of the present invention is not impaired.
  • a tackifier resin such as a pigments and pigments, flame retardants, antistatic agents, matting agents, silicon oil, blocking inhibitors, UV absorbers, mold release agents, foaming agents, antibacterial agents, antifungal agents, and fragrances.
  • the other thermoplastic polymer include an olefin polymer having no polar group, a styrene polymer, a polyphenylene ether resin, and polyethylene glycol.
  • an olefin polymer having no polar group is preferable from the viewpoint of improving the molding processability of the adhesive layer (Y).
  • the olefin-based polymer having no such polar group include polyethylene, polypropylene, polybutene, block copolymers of propylene and other ⁇ -olefins such as ethylene and 1-butene, and random copolymers.
  • the content thereof is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and more preferably more preferably 50 parts by mass or less with respect to 100 parts by mass of the hydrogenated block copolymer (A). It is 20 parts by mass or less, more preferably 10 parts by mass or less.
  • the inorganic filler can be contained for the purpose of improving physical properties such as heat resistance and weather resistance of the adhesive layer (Y), adjusting hardness, and improving economic efficiency as a bulking agent.
  • Examples of the inorganic filler include calcium carbonate, talc, magnesium hydroxide, aluminum hydroxide, mica, clay, natural silicic acid, synthetic silicic acid, titanium oxide, carbon black, barium sulfate, glass balloon, glass fiber and the like. Be done.
  • the inorganic filler one type may be used alone, or two or more types may be used in combination.
  • the content thereof is preferably within a range in which the flexibility of the thermoplastic elastomer composition is not impaired, and is preferably with respect to 100 parts by mass of the hydrogenated block copolymer (A). It is 100 parts by mass or less, more preferably 70 parts by mass or less, further preferably 30 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the tackifier resin examples include rosin-based resin, terpene phenol resin, terpene resin, aromatic hydrocarbon-modified terpene resin, aliphatic petroleum resin, alicyclic petroleum resin, aromatic petroleum resin, and Kumaron-inden resin. , Phenol-based resin, xylene resin and the like.
  • the content thereof is preferably within a range in which the mechanical properties of the thermoplastic elastomer composition are not impaired, and preferably with respect to 100 parts by mass of the hydrogenated block copolymer (A). It is 100 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 30 parts by mass or less.
  • antioxidants examples include hindered phenol-based, phosphorus-based, lactone-based, and hydroxyl-based antioxidants. Of these, hindered phenolic antioxidants are preferred.
  • the content thereof is preferably in a range in which the obtained thermoplastic elastomer composition is not colored when melt-kneaded, and is based on 100 parts by mass of the hydrogenated block copolymer (A). , Preferably 0.1 to 5 parts by mass.
  • the method for producing the thermoplastic elastomer composition used for the adhesive layer (Y) is not particularly limited, and a hydrogenated block copolymer (A), a polar group-containing polymer (B) used as necessary, and other components can be used. Any method may be used as long as it can be uniformly mixed.
  • melt-kneading for example, a melt-kneading device such as a single-screw extruder, a twin-screw extruder, a kneader, a batch mixer, a roller, or a Banbury mixer can be used, and melt-kneading is preferably performed at 170 to 270 ° C. Thereby, a thermoplastic elastomer composition can be obtained.
  • the laminate of the present invention has a base material (X) and a base material (Z).
  • the base material (X) and the base material (Z) include at least one selected independently from metal, polar resin, polyolefin resin, carbon fiber, artificial leather, glass, ceramics, and the like.
  • the base material may be the same type of material.
  • the metal that can be used for the base material (X) and the base material (Z) include iron, copper, aluminum, magnesium, nickel, chromium, zinc, and alloys such as stainless steel containing them as components. Further, it may have a metal surface formed by plating such as copper plating, nickel plating, chrome plating, tin plating, zinc plating, platinum plating, gold plating, and silver plating.
  • Examples of the polar resin that can be used for the base material (X) and the base material (Z) include polyamide resin, polyester resin, polycarbonate resin, polyphenylene sulfide resin, (meth) acrylonitrile-butadiene-styrene resin (ABS), and ( Meta) Acrylonitrile-styrene resin, (meth) acrylic acid ester-butadiene-styrene resin, (meth) acrylic acid ester-styrene resin, butadiene-styrene resin, epoxy resin, phenol resin, diallyl phthalate resin, polyimide resin, melamine resin, Polyacetal resin (POM), polysulfone resin, polyethersulfone resin, polyetherimide resin, polyphenylene ether resin, polyarylate resin, polyether ether ketone resin, polystyrene resin, syndiotactic polystyrene resin, polyurethane (thermoplastic, thermocurable) ) Et
  • These resins may be used alone or in combination of two or more. These resins may be reinforced with glass fibers or may be reinforced with carbon fibers.
  • polyamide resin for example, polyamide 6 (PA6), polyamide 66 (PA66) and the like are preferable.
  • PA6 polyamide 6
  • PA66 polyamide 66
  • polyester resin polylactic acid (PLA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and the like are preferable.
  • examples of the polyolefin resin that can be used for the base material (X) and the base material (Z) include polyethylene, polypropylene, polybutene-1, polyhexene-1, poly-3-methyl-butene-1, and poly-4-methyl-.
  • Penten-1, ethylene and ⁇ -olefins with 3 to 20 carbon atoms eg propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 3-methyl-1-butene
  • a copolymer with one or more of them an ethylene / propylene / diene copolymer (EPDM) , Ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer and the like, and further, cycloolefin (co) polymer such as ethylene-norbornene copolymer is also preferable.
  • These resins may be reinforced with glass fibers or may be reinforced with carbon fibers.
  • the ceramics that can be used for the base material (X) and the base material (Z) are not particularly limited as long as they are non-metallic inorganic materials, and examples thereof include metal oxides, metal carbides, and metal nitrides. Specific examples thereof include glass, cements, alumina, zirconia, zinc oxide-based ceramics, barium titanate, lead zirconate titanate, silicon carbide, silicon nitride, and ferrites.
  • the base material (X) and the base material (Z) include metals such as copper, aluminum, and stainless steel, polyacetal resin (POM), and polyamide 6 from the viewpoint of adhesiveness to the adhesive layer (Y).
  • Polar resin such as (PA6), polyester resin such as polybutylene terephthalate, polycarbonate resin, (meth) acrylonitrile-styrene resin (AS), (meth) acrylonitrile-butadiene-styrene resin (ABS), polyethylene, polyolefin resin such as polypropylene, etc. Is preferable.
  • the laminate of the present invention may have a base material (X) and a base material other than the base material (Z), or an adhesive layer (Y), but the base material (X), It is preferable that the laminated body is obtained by laminating only the adhesive layer (Y) and the base material (Z).
  • the thickness of the base material (X) and the base material (Z) is not particularly limited, but the following "first manufacturing method”, “second manufacturing method”, “third manufacturing method”, “fifth manufacturing method”
  • the thickness of each of the base material (X) and the base material (Z) is preferably 0.01 to 5.00 mm, more preferably 0.03 to 3.00 mm, and 0.04 to 2.00 mm. It is particularly preferable, and most preferably 0.05 to 1.00 mm.
  • the thickness of the base material (X) is preferably 0.01 to 1.00 mm, more preferably 0.02 to 0.50 mm, still more preferably 0.03 to 0.40 mm.
  • the base material (Z) is preferably 0.01 to 5.00 mm, more preferably 0.03 to 3.00 mm, and particularly preferably 0.04 to 2.00 mm. , 0.05 to 1.00 mm is most preferable. It is preferable that the thickness of the base material (X) and the base material (Y) is in the above range because it becomes easier to maintain the interlayer adhesive strength of the laminate of the present invention at a high level.
  • the surface roughness of the base material (X) and the base material (Z) is not particularly limited, but when the base material (X) and the base material (Z) are polar materials (for example, polar resin, metal, etc.), arithmetic is performed.
  • the base material (X) and the base material (Z) are non-polar materials (for example, polyolefin resin or the like)
  • the arithmetic mean roughness (Ra) in this case is preferably 0.010 to 10 ⁇ m, more preferably 0.100 to 7 ⁇ m, and particularly preferably 0.200 to 6 ⁇ m. Within the above range, it is preferable because it becomes easier to develop a shear adhesive force of 10 N / cm 2 or more.
  • the arithmetic surface roughness (Ra) is a value measured according to JIS B 0601-2001, and specifically, a value measured according to the method described in Examples.
  • the step (Ia) in the first manufacturing method is a step of press-molding the adhesive layer (Y) on the base material (X).
  • the conditions for press molding are not particularly limited, but after laminating the adhesive layer (Y) on the base material (X), the temperature is preferably 100 to 220 ° C, more preferably 120 to 200 ° C, and a load is applied. preferably at 10 ⁇ 100kgf / cm 2, more preferably 10 ⁇ 50kgf / cm 2, even more preferably 15 ⁇ 40kgf / cm 2, preferably wherein by 1 to 10 minutes, more preferably compressed 1-5 minutes
  • the base material (X) and the adhesive layer (Y) can be adhered to each other.
  • the step (II-a) is a step of injection molding the base material (Z) on the adhesive layer (Y) after the step (Ia).
  • the method of injection molding the base material (Z) on the adhesive layer (Y) is not particularly limited, but the temperature of the mold is preferably set to 190 to 360 ° C, more preferably 200 to 330 ° C.
  • the cylinder temperature for injecting the resin constituting the base material (Z) is preferably 40 to 160 ° C., more preferably 45 to 150 ° C. for injection molding.
  • a second method for producing a laminate of the present invention is to apply a solution and / or an aqueous emulsion containing the hydrogenated block copolymer (A) on the substrate (X) and then dry the laminate.
  • b) is a manufacturing method having the above.
  • the adhesive layer (Y) is formed by applying a solution containing the hydrogenated block copolymer (A) and / or an aqueous emulsion on the base material (X) and drying the mixture. Can be formed, so that the laminate can be produced relatively easily.
  • step (Ib) the adhesive layer (Y) is formed by applying a solution and / or an aqueous emulsion containing the thermoplastic elastomer composition on the base material (X) and then drying the mixture. It is a process.
  • step (Ib) first, a solution and / or an aqueous emulsion containing the thermoplastic elastomer composition is prepared. Specifically, the thermoplastic elastomer composition is dissolved or dispersed in an organic solvent or water by a known method.
  • an aqueous emulsion for example, a method using a homogenizer, a homomixer, a disperser mixer, a colloid mill, a pipeline mixer, a high-pressure homogenizer, an ultrasonic emulsifier, or the like can be mentioned, and these can be used alone or in combination.
  • thermoplastic elastomer composition in the solution and / or the aqueous emulsion containing the thermoplastic elastomer composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and 15 It is more preferably to 30% by mass.
  • the solution or aqueous emulsion is applied to the substrate (X) by one or more methods selected from, for example, coating, dipping, nozzle (spray) coating, brush coating and the like.
  • the adhesive layer (Y) is formed by drying under the conditions of preferably 30 to 80 ° C., more preferably 40 to 70 ° C., preferably 15 minutes to 2 hours, more preferably 20 minutes to 1 hour. can do.
  • the step (II-b) in the second manufacturing method is a step of injection molding the base material (Z) on the adhesive layer (Y) after the step (I-b).
  • a preferred embodiment of injection molding the base material (Z) on the adhesive layer (Y) is the same as the conditions described in the step (II-a) in the first manufacturing method.
  • a third method for producing a laminate of the present invention includes a step (Ic) of press-molding the adhesive layer (Y) on the base material (X), and the step (Ic) after the step (Ic).
  • This is a method for producing a laminate having a step (II-c) of press-molding the base material (Z) on the adhesive layer (Y).
  • the third manufacturing method since the press molding is performed twice in total in the step (Ic) and the step (IIc), the base material (X), the adhesive layer (Y) and the base material ( It is possible to firmly bond Z).
  • Step (Ic) in the third manufacturing method is a step of press-molding the adhesive layer (Y) on the base material (X), and a preferred embodiment is the step in the first manufacturing method (the step in the first manufacturing method).
  • the conditions are the same as those described in Ia).
  • the step (II-c) in the third manufacturing method is a step of press-molding the base material (Z) on the adhesive layer (Y) after the step (Ic).
  • a preferred embodiment in which the base material (Z) is press-molded on the adhesive layer (Y) is the same as the conditions described in the step (Ia) in the first manufacturing method.
  • a fourth method for producing a laminate of the present invention includes a step (Id) of coextruding the base material (X) and the adhesive layer (Y), and the step (Id) after the step (Id).
  • This is a method for producing a laminate having a step (II-d) of press-molding the base material (Z) on the adhesive layer (Y).
  • the base material (X) and the adhesive layer (Y) are firmly adhered by coextrusion in the step (Id), and further pressed in the step (IId). Since the molding is performed, the base material (X), the adhesive layer (Y), and the base material (Z) can be firmly adhered as a whole.
  • the step (Id) in the fourth manufacturing method is a step of coextruding the base material (X) and the adhesive layer (Y).
  • the coextrusion method is not particularly limited, and examples thereof include a method using a film forming device such as a T-die extrusion molding machine or an inflation molding machine.
  • the set temperature of the barrel on the base material (X) side at the time of coextrusion is preferably 150 to 250 ° C.
  • the set temperature of the barrel on the base material (Y) side is preferably 140 to 240 ° C. ..
  • the temperature of the T-die is more preferably 130 to 230 ° C.
  • the step (II-d) in the fourth manufacturing method is a step of press-molding the base material (Z) on the adhesive layer (Y) after the step (Id).
  • a preferred embodiment in which the base material (Z) is press-molded on the adhesive layer (Y) is the same as the conditions described in the step (Ia) in the first manufacturing method.
  • a fifth method for producing a laminate of the present invention includes a step (I) of injection molding the adhesive layer (Y) on the base material (X) and a step (Ie) after the step (Ie).
  • the injection molding is performed twice while taking advantage of the characteristics of the adhesive layer (Y), it becomes possible to firmly bond the base materials that could not be bonded by the conventional method.
  • the step (I) in the fifth manufacturing method is a step of injection molding the adhesive layer (Y) on the base material (X).
  • a preferred embodiment of injection molding the adhesive layer (Y) on the base material (X) is the same as the conditions described in the step (II-a) in the first manufacturing method.
  • the step (II-e) in the fifth manufacturing method is a step of injection molding the base material (Z) on the adhesive layer (Y) after the step (I-e).
  • a preferred embodiment of injection molding the base material (Z) on the adhesive layer (Y) is the same as the conditions described in the step (II-a) in the first manufacturing method.
  • the base material (X) is used from the viewpoint of more firmly adhering both base materials. It is preferably a metal, and the base material (Z) is preferably a polar resin or a polyolefin resin.
  • the laminate of the present invention can be widely applied to various uses.
  • synthetic resins, synthetic resins containing glass fibers, and light metals such as aluminum and magnesium alloys are used for housing materials for electronic / electrical equipment, OA equipment, home appliances, automobile parts, etc.
  • the laminate of the invention can be used. More specifically, large displays, laptop computers, mobile phones, PHS, PDAs (personal digital assistants, etc.), electronic dictionaries, video cameras, digital still cameras, portable radio cassette players, inverters, etc. It is preferable for applications such as shock absorbing materials, covering materials having an anti-slip function, waterproof materials, and design materials that are adhered to a housing.
  • a molded body or structure bonded to glass such as window moldings and gaskets for automobiles and buildings, glass sealants, and antiseptic materials.
  • it can be suitably used as a sealant for a joint between glass and an aluminum sash, a metal opening, etc. in a window of an automobile or a building, and a connection portion between glass and a metal frame in a solar cell module or the like.
  • various information terminal devices such as notebook personal computers, mobile phones and video cameras, and secondary battery separators used in hybrid vehicles, fuel cell vehicles and the like.
  • ⁇ -Farnesene (purity 97.6% by mass Amyris, manufactured by Incorporated) is purified by a 3 ⁇ molecular sieve and distilled in a nitrogen atmosphere to produce gingiberene, bisabolen, farnesene epoxide, and farnesol isomers. Hydrocarbon impurities such as isomers, E, E-farnesol, squalene, ergosterol and several dimers of farnesene were removed and used for the following polymerizations.
  • a hydrogenated block copolymer (A-1) was produced by the method described in Production Example 6 of JP-A-2018-024776, except that the formulations shown in Table 1 below were used. Specifically, it is as follows. In a pressure vessel substituted with nitrogen and dried, 50.0 kg of cyclohexane was charged as a solvent, 190.5 g of sec-butyllithium (10.5 mass% cyclohexane solution) as an anion polymerization initiator, and 0.40 kg of tetrahydrofuran as a Lewis base were charged.
  • a reaction solution containing (hereinafter referred to as "block copolymer (P1)") was obtained.
  • Palladium carbon (palladium-supported amount: 5% by mass) was added to this reaction solution as a hydrogenation catalyst in an amount of 5% by mass based on the block copolymer (P1), and the reaction was carried out at a hydrogen pressure of 2 MPa and 150 ° C. for 10 hours. Was done.
  • palladium carbon is removed by filtration, the filtrate is concentrated, and vacuum dried to obtain a poly ( ⁇ -farnesene) -polystyrene-polybutadiene-polystyrene-poly ( ⁇ -farnesene) pentablock co-weight.
  • a coalesced hydrogenated product (A-1) (hereinafter referred to as "hydrogenated block copolymer (A-1)") was obtained.
  • the obtained hydrogenated block copolymer (A-1) contains 90% by mass of a hydrogenated additive of a poly ( ⁇ -farnesene) -polystyrene-polybutadiene-polystyrene-poly ( ⁇ -farnesene) pentablock copolymer and polybutadiene-. It was a mixture containing 10% by mass of a hydrogenated product of a polystyrene-poly ( ⁇ -farnesene) triblock copolymer. The above physical characteristics of the obtained hydrogenated block copolymer (A-1) were measured. The results are shown in Table 1.
  • a hydrogenated block copolymer (A-2) was produced by the method described in Example 1 of International Publication No. 2019/103048, except that the formulations shown in Table 1 below were used. Specifically, it is as follows. In a pressure vessel substituted with nitrogen and dried, 87 g of a cyclohexane solution of sec-butyllithium having a concentration of 50 kg as a solvent and a concentration of 10.5% by mass as an anionic polymerization initiator (substantial amount of sec-butyllithium added: 9. 1g) was charged.
  • styrene (1) After raising the temperature inside the pressure-resistant container to 50 ° C., 1.0 kg of styrene (1) is added and polymerized for 1 hour. Polystyrene by adding 63 g of DTHP), adding a mixed solution of 8.16 kg of isoprene and 6.48 kg of butadiene over 5 hours and then polymerizing for 2 hours, and further adding 1.0 kg of styrene (2) and polymerizing for 1 hour. A reaction solution containing a poly (isoprene / butadiene) -polystyrene triblock copolymer was obtained.
  • a Ziegler-based hydrogenation catalyst formed of nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was carried out under the conditions of a hydrogen pressure of 1 MPa and 80 ° C. for 5 hours. After allowing the reaction solution to cool and pressurize, the catalyst is removed by washing with water and vacuum-dried to hydrogenate a polystyrene-poly (isoprene / butadiene) -polystyrene triblock copolymer (A-2). ) (Hereinafter referred to as "hydrogenated block copolymer (A-2)").
  • the obtained (A-2) was composed of 100% by mass of a hydrogenated additive of a polystyrene-poly (isoprene / butadiene) -polystyrene triblock copolymer, and hydrogen of a polystyrene-poly (isoprene / butadiene) diblock copolymer. No additives were substantially contained.
  • the above physical characteristics of the obtained hydrogenated block copolymer (A-2) were measured. The results are shown in Table 1.
  • a hydrogenated block copolymer (A-3) is produced by mixing SEB having a molecular weight of 38 mol% and a styrene content of 30% by mass so that the mass ratio [SEBS / SEB] is 3/7. bottom.
  • the mass ratio of SEBS [(a) / (b)] is 30/70, the hydrogenation rate is 99 mol%, and the mass ratio of SEB [(a) / (b)] is 30/70.
  • the hydrogenation rate was 99 mol%, and the content of the diblock copolymer in the hydrogenated block copolymer (A-3) was 30% by mass.
  • the peak top molecular weight (Mp) and molecular weight distribution (Mw / Mn) of the hydrogenated block copolymer are converted into standard polystyrene by GPC (gel permeation chromatography). It was determined by the molecular weight, and the peak top molecular weight (Mp) was determined from the position of the peak of the molecular weight distribution.
  • the measuring device and conditions are as follows.
  • the peak top molecular weight of the polymer block (a) was determined by measuring the sampled liquid after the polymerization of the polymer block (A) was completed.
  • GPC device GPC device "GPC8020” manufactured by Tosoh Corporation -Separation column: "TSKgelG4000HXL” manufactured by Tosoh Corporation -Detector: "RI-8020” manufactured by Tosoh Corporation -Eluent: tetrahydrofuran-Eluent flow rate: 1.0 ml / min-Sample concentration: 5 mg / 10 ml -Column temperature: 40 ° C
  • Hydrogenation rate ⁇ 1- (the number of moles of carbon-carbon double bonds contained in 1 mol of block copolymer after hydrogenation) / (carbon contained in 1 mol of block copolymer before hydrogenation) Number of moles of carbon double bond) ⁇ x 100 (mol%)
  • Examples 1 to 39 and Comparative Examples 1 to 15 A laminate was produced by using the materials shown in Table 2 and laminating each material by the production methods shown in Tables 3 to 10. The procedures and conditions of each manufacturing method shown in Tables 3 to 10 are as follows.
  • Step (Ia) Both sides of the base material (X) having a length of 100 mm, a width of 35 mm and a thickness of 1 mm were washed with an aqueous surfactant solution and distilled water in that order, and dried. After that, the base material (X) and the adhesive layer (Y) produced in the above (1) are arranged at the center of a metal spacer having outer dimensions of 200 mm ⁇ 200 mm, inner dimensions of 150 mm ⁇ 150 mm, and a thickness of 2 mm. bottom.
  • the laminated base material (X) and the adhesive layer (Y) are sandwiched between polytetrafluoroethylene sheets, and a load of 20 kgf / cm 2 (2 N / mm 2 ) is applied under a temperature condition of 180 ° C. using a compression molding machine.
  • the base material (X) and the adhesive layer (Y) were laminated by press molding for 3 minutes.
  • Step (II-a) After setting the laminate of the base material (X) and the adhesive layer (Y) on an injection molding machine (“EC75SX; 75 tons” manufactured by Toshiba Machine Co., Ltd.), the material constituting the base material (Z) is injected. By laminating by the insert molding method, a laminated body in which the base material (X), the adhesive layer (Y), and the base material (Z) were laminated in this order was produced. The thickness of the base material (Z) was 2.0 mm.
  • Step (Ib) A 25% by mass solution of the hydrogenated block copolymer (A) was prepared using cyclohexane as a solvent.
  • the base material (X) (thickness 1.0 mm) was dipped twice in the above solution for coating. Then, it was dried in a gear oven at 60 ° C. for 30 minutes, and the base material (X) and the adhesive layer (Y) were laminated. The thickness of the adhesive layer (Y) after drying was 0.2 mm.
  • Step (II-a) A laminate was obtained by the same method as that described in the first production method. The thickness of the base material (Z) was 2.8 mm.
  • Step (II-c) The adhesive layer (Y) and the base material (Z) were laminated by the same method as the method (Ia) described in the first manufacturing method.
  • the thickness of the base material (Z) was 1.0 mm.
  • Step (Id) The base material (X) is a single-screw extruder with a screw diameter of 30 mm (GM30-28, manufactured by GM Engineering Co., Ltd.), and the adhesive layer (Y) is a single-screw extruder with a screw diameter of 25 mm (GM-25-25, GM Engineering Co., Ltd.).
  • the film supplied from the T die (T300 hanger coat die) was wound up to obtain a coextruded film of the base material (X) and the adhesive layer (Y).
  • the thickness of the base material (X) was 0.03 to 0.05 mm, and the thickness of the base material (Y) was 0.005 to 0.03 mm.
  • Step (II-d) With respect to the coextruded film obtained in the step (Id), the substrate (Z) is placed on the adhesive layer (Y) by the same method as the method (Ia) described in the first manufacturing method. Was press-molded.
  • the layer structure of the obtained laminate had a base material (X), an adhesive layer (Y), and a base material (Z) in this order.
  • the thickness of the base material (Z) was 1.0 mm.
  • Step (I) After the base material (X) was set in an injection molding machine (“EC75SX; 75 tons” manufactured by Toshiba Machine Co., Ltd.), the materials constituting the adhesive layer (Y) were laminated by an injection insert molding method.
  • the thickness of the base material (X) was 1.0 mm, and the thickness of the base material (Y) was 1.0 mm.
  • Step (II-e) the material constituting the base material (Z) is laminated on the adhesive layer (Y) laminated on the base material (X) by an injection insert molding method to bond the base material (X).
  • a laminated body in which the agent layer (Y) and the base material (Z) were laminated in this order was produced.
  • the thickness of the base material (Z) was 1.0 mm.
  • the obtained laminate was evaluated as follows. The results are shown in Tables 3 and 4.
  • the layer (Y) was cut out to a length of 12.5 mm and a width of 35 mm, and this was placed at the center of a metal spacer having an outer dimension of 200 mm ⁇ 200 mm, an inner dimension of 150 mm ⁇ 150 mm, and a thickness of 2 mm.
  • the laminated base material (X) and the adhesive layer (Y) are sandwiched between polytetrafluoroethylene sheets, and a load of 20 kgf / cm 2 (2 N / mm 2) is applied under a temperature condition of 180 ° C. using a compression molding machine. ) For 3 minutes to laminate the base material (X) and the adhesive layer (Y).
  • an injection molding machine is used to attach a laminate of the base material (X) and the adhesive layer (Y) to which a polyimated film is attached to a portion where the adhesive layer (Y) is not laminated and a polyimide film.
  • the materials constituting the base material (Z) are laminated by the injection insert molding method to form the base material (X) and the adhesive layer.
  • a laminate in which (Y) and the base material (Z) were laminated in this order was produced (see FIG. 1).
  • the adhesive layer (Y) and the base material (Z) portion of the laminated body were cut out to a length of 12.5 mm and a width of 25 mm to prepare a test piece (see FIG. 2, although FIG. 2 shows the laminated body as a base material. It is a view seen from the (Z) side.)
  • Adhesive strength was low, and peeled off when preparing a sample or when attaching to a tensile tester.
  • the obtained sheet was cut into a size of about 5 cm ⁇ 5 cm, and 6 sheets were stacked to obtain a hardness of 6 mm in thickness in JIS K 6253-3: 2012 in a constant temperature bath at room temperature of 23 ° C. and 0 ° C. using an indenter of a Type A durometer. Measured according to. INDEX was calculated based on the following relational expression (i) using the values measured at the ambient temperature at room temperature of 23 ° C. and the values measured at the atmospheric temperature in a constant temperature bath at 0 ° C. (0 ° C hardness / 23 ° C hardness) ⁇ 100 ⁇ s (INDEX) (i)
  • the adhesive layer (Y) has a high rubber elastic modulus because the value derived by the relational expression (i) is 140 or less, and the base material (X) and the base material (Z) are firmly adhered to each other. However, it can be seen that it is difficult to peel off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

プライマー処理等を施さない場合であっても、金属及び樹脂等からなる基材同士を強固に接着した積層体、及びその製造方法を提供する。 基材(X)と、接着剤層(Y)と、基材(Z)とをこの順に有する積層体であり、前記接着剤層(Y)が、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、共役ジエン由来の構造単位からなる重合体ブロック(b)とを含むブロック共重合体(P)を水素添加した水添ブロック共重合体(A)を含み、前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]が1/99~50/50であり、前記接着剤層(Y)の100℃における貯蔵弾性率G'が1.2×105~4.0×105Paであることを特徴とする積層体。

Description

積層体、及びその製造方法
 本発明は、芳香族ビニル化合物由来の構造単位からなる重合体ブロックと共役ジエン由来の構造単位からなる重合体ブロックとを含むブロック共重合体を水素添加した水添ブロック共重合体を含む接着剤層を有する積層体、及びその製造方法に関する。
 セラミックス、金属、及び合成樹脂は、耐久性、耐熱性及び機械強度に優れていることから、家電製品、電子部品、機械部品及び自動車部品等の様々な用途において使用されている。これらの部材は、用途、部品構成及び使用方法等に応じて、他の構造部材への固定や、衝撃吸収、破損防止及びシーリング等を目的として、柔軟性に優れたエラストマーと積層した積層体として用いられることがある。
 このようなエラストマーとしては、柔軟性、力学特性及び成形加工性に優れるスチレン系熱可塑性エラストマーが好適に用いられている。ここで、スチレン系熱可塑性エラストマーとは、芳香族ビニル化合物由来の構造単位からなる重合体ブロックと共役ジエン由来の構造単位からなる重合体ブロックとを有するブロック共重合体又はその水素添加物を指す。
 しかしながら、通常のスチレン系熱可塑性エラストマーは、セラミックスや金属等に対する接着力が十分でなく、そのままでは溶融接着が困難であるという問題点があった。そのため、セラミックスや金属とスチレン系熱可塑性エラストマーとを接着させるためには、別途接着剤を塗布したり、セラミックス、金属、又は合成樹脂の表面に対してプライマー処理したりする方法が開示されている(特許文献1~6参照)。
特開2006-291019号公報 特開2006-206715号公報 特開昭63-25005号公報 特開平9-156035号公報 特開2009-227844号公報 特開2010-1364号公報
 前述のとおり特許文献1~6に記載された方法では、別途接着剤の塗布やプライマー処理等が必要であることから煩雑であり、また接着力が十分ではないことから改善が求められていた。
 本発明は、上記事情に鑑みてなされたものであって、プライマー処理等を施さない場合であっても、金属及び樹脂等からなる基材同士を強固に接着した積層体、及びその製造方法を提供することを目的とする。
 本発明者らが鋭意検討した結果、水添ブロック共重合体を含む接着剤層について、動的粘弾性測定により測定された100℃における貯蔵弾性率を特定の範囲に調整することにより、前記課題が解決できることを見出し、本発明に至った。
 すなわち本発明は、以下の[1]~[19]を要旨とするものである。
[1]基材(X)と、接着剤層(Y)と、基材(Z)とをこの順に有する積層体であり、
 前記接着剤層(Y)が、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、共役ジエン由来の構造単位からなる重合体ブロック(b)とを含むブロック共重合体(P)を水素添加した水添ブロック共重合体(A)を含み、
 前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]が1/99~50/50であり、
 前記接着剤層(Y)の100℃における貯蔵弾性率G’が1.20×105~4.00×105Paであることを特徴とする積層体。
[2]前記接着剤層(Y)の100℃における損失弾性率G”が、3.00×104~2.50×105Paである、前記[1]に記載の積層体。
[3]前記接着剤層(Y)が、水添ブロック共重合体(A)を含有する熱可塑性エラストマー組成物からなる、前記[1]又は[2]に記載の積層体。
[4]前記重合体ブロック(b)が、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を0~99質量%含有する、前記[1]~[3]のいずれかに記載の積層体。
[5]前記ファルネセン以外の共役ジエンが、ブタジエン、イソプレン、及びミルセンから選ばれる少なくとも1種である、前記[4]に記載の積層体。
[6]前記重合体ブロック(b)中の炭素-炭素二重結合の水素添加率が70モル%以上である、前記[1]~[5]のいずれかに記載の積層体。
[7]前記水添ブロック共重合体(A)のピークトップ分子量(Mp)が4,000~1,500,000である、前記[1]~[6]のいずれかに記載の積層体。
[8]前記水添ブロック共重合体(A)の分子量分布(Mw/Mn)が1.00~4.00である、前記[1]~[7]のいずれかに記載の積層体。
[9]前記芳香族ビニル化合物がスチレンである、前記[1]~[8]のいずれかに記載の積層体。
[10]前記スチレンに由来の構造単位からなる重合体ブロック(a)のピークトップ分子量が2,000~55,000である、前記[9]に記載の積層体。
[11]前記基材(X)及び前記基材(Z)は、それぞれ独立に、金属、極性樹脂、ポリオレフィン樹脂、炭素繊維、ガラス、及びセラミックスから選ばれる少なくとも1種である、前記[1]~[10]のいずれかに記載の積層体。
[12]前記接着剤層(Y)が下記関係式(i)を満たす、前記[1]~[11]のいずれかに記載の積層体。
     [(0℃硬度/23℃硬度)×100≦140]   (i)
[13]前記水添ブロック共重合体(A)が2種以上の水添ブロック共重合体の混合物であり、前記水添ブロック共重合体(A)中のジブロック共重合体の含有量が50質量%以下である、前記[1]~[12]のいずれか記載の積層体。
[14]基材(X)としてステンレス板、基材(Z)としてポリアセタール樹脂を用いた場合において、23℃における接着剤層(Y)のせん断接着力が10N/cm2で以上である、前記[1]~[13]のいずれかに記載の積層体。
[15]前記基材(X)及び前記基材(Y)の算術平均粗さ(Ra)が0.010~10μmである、前記[1]~[14]のいずれかに記載の積層体。
[16]前記[1]~[15]のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-a)と、前記工程(I-a)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II)とを有することを特徴とする、積層体の製造方法。
[17]前記[1]~[15]のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記水添ブロック共重合体(A)を含む溶液及び/又は水性エマルションを塗工した後、乾燥させることにより前記接着剤層(Y)を形成する工程(I-b)と、前記工程(I-b)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II)とを有することを特徴とする、積層体の製造方法。
[18]前記[1]~[15]のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-c)と、前記工程(I-c)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程(II-c)とを有することを特徴とする、積層体の製造方法。
[19]前記基材(X)が金属であり、前記基材(Z)が極性樹脂又はポリオレフィン樹脂である、前記[16]~[18]のいずれかに記載の積層体の製造方法。
 本発明によれば、プライマー処理等を施さない場合であっても、金属及び樹脂等からなる基材同士を強固に接着した積層体、及びその製造方法を提供することができる。
実施例における接着力の測定に用いた積層体(試験片)の断面図である。 実施例における接着力の測定に用いた試験片を基材(Z)側から見た図である。
[1]積層体
 本発明の積層体は、基材(X)と、接着剤層(Y)と、基材(Z)とをこの順に有する積層体であり、前記接着剤層(Y)が、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、共役ジエン由来の構造単位からなる重合体ブロック(b)とを含むブロック共重合体(P)を水素添加した水添ブロック共重合体(A)を含み、前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]が1/99~50/50であり、前記接着剤層(Y)の100℃における貯蔵弾性率G’が1.20×105~4.00×105Paであることを特徴とするものである。
 以下、本発明の構成について詳細に説明する。
[接着剤層(Y)]
 本発明における接着剤層(Y)は、後述する水添ブロック共重合体(A)を含むものであって、動的粘弾性測定により測定された100℃における貯蔵弾性率G’が1.20×105~4.00×105Paであるものである。
 本発明においては、100℃における貯蔵弾性率G’が1.20×105~4.00×105Paのものを接着剤層として用いているため、従来の方法では接着しにくかったプロピレン樹脂等の極性が低い基材に対しても優れた接着性を示す。なお、100℃における貯蔵弾性率が前記範囲内である場合に優れた効果を奏する理由は定かではないが、射出成形又はプレス成形等により積層体を製造する際の温度に近い温度である100℃における貯蔵弾性率が範囲内であると、水添ブロック共重合体と基材とがなじみやすくなり密着するため、接着剤層(Y)と基材との接着性が向上するものと考えられる。
 接着剤層(Y)の接着性をより一層向上させる観点から、100℃における貯蔵弾性率G’は3.50×105Pa以下であることが好ましく、3.00×105Pa以下であることがより好ましく、2.80×105Pa以下であることが更に好ましい。また、貯蔵弾性率G’は、1.30×105Pa以上であることが好ましく、1.50×105Pa以上であることがより好ましく、1.70×105Pa以上であることが更に好ましい。
 なお、本発明において100℃における貯蔵弾性率G’は、実施例に記載の方法で測定した値を指す。
 また、接着剤層(Y)については、動的粘弾性測定により測定された0℃における貯蔵弾性率G’が4.00×105~5.00×108Paであることが好ましい。0℃における貯蔵弾性率G’が前記上限値以下である場合、本発明の積層体が0℃の雰囲気下に暴露された場合でも強固な接着性を示す。この観点から、0℃における貯蔵弾性率G’は5.00×107Pa以下であることが好ましく、5.00×106Pa以下であることがより好ましく、8.00×105Pa以下であることが更に好ましい。また、0℃の雰囲気下における接着性の観点から、接着剤層(Y)の0℃における貯蔵弾性率G’は、4.00×105Pa以上であることが好ましい。
 なお、本発明において0℃における貯蔵弾性率G’は、実施例に記載の方法で測定した値を指す。
 また、接着剤層(Y)の接着性をより一層向上させる観点から、後述する水添ブロック共重合体(A)については、動的粘弾性測定により測定された100℃における損失弾性率G”が3.00×104Pa~2.50×105Paであることが好ましい。100℃における損失弾性率G”は3.50×104Pa以上であることが好ましく、4.00×104Pa以上であることがより好ましく、4.50×104Pa以上であることが更に好ましい。また、100℃における損失弾性率G”は2.00×105Pa以下であることが好ましく、1.50×105Pa以下がより好ましく、1.00×105Pa以下が更に好ましい。
 なお、本発明において100℃における損失弾性率G”は、実施例に記載の方法で測定した値を指す。
 接着剤層(Y)の23℃におけるせん断接着強度は10N/cm2以上であることが好ましく、より好ましくは15N/cm2以上、更に好ましくは20N/cm2である。
 なお、接着剤層(Y)の23℃におけるせん断接着強度は、基材(X)としてステンレス板、基材(Z)としてポリアセタール樹脂を用いた場合における接着剤層(Y)のせん断接着強度を指し、具体的には実施例に記載の測定方法で測定することができる。
 接着剤層(Y)は、幅広い温度範囲で使用する観点から、低温雰囲気下の硬度上昇が高温雰囲気下の硬度上昇よりも少ない方が好ましい。低温雰囲気下で硬度上昇が大きいと、ゴム弾性が低下して、衝撃を受けたとき剥離しやすくなる。上記の観点から、本実施態様の樹脂組成物の好ましい実施態様の一つとして、下記関係式(i)中のsが、140以下であることが好ましく、130以下であることがより好ましく、120以下であることが更に好ましく、115以下であることが特に好ましい。
   [(0℃硬度/23℃硬度)×100≦s]     (i)
 上記関係式(i)において、「23℃硬度」は、JIS K 6253-2:2012のタイプAデュロメータ法による雰囲気温度23℃で測定した硬度を表す。
 また、「0℃硬度」は、JIS K 6253-2:2012のタイプAデュロメータ法による雰囲気温度0℃で測定した硬度を表す。
 接着剤層(Y)の厚みに特に規定はないが、積層体の重量削減やデザインの自由度の向上の観点から、0.001~10.00mmが好ましく、0.005~5.00mmがより好ましく、0.01~2.50mmが更に好ましく、0.01~1.50mmが特に好ましく、0.01~1.00mmが最も好ましい。
<水添ブロック共重合体(A)>
 接着剤層(Y)は水添ブロック共重合体(A)を含むものである。接着剤層(Y)が水添ブロック共重合体(A)を含有することにより、水添ブロック共重合体(A)の柔軟性に起因して、基材(X)と基材(Z)とを強固に接着することが可能になる。
 水添ブロック共重合体(A)は、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、共役ジエン由来の構造単位からなる重合体ブロック(b)とを含むものである。
 前記重合体ブロック(a)を構成する芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン及びジビニルベンゼン等が挙げられる。これらの芳香族ビニル化合物は1種を単独で又は2種以上を併用してもよい。
 これらの中でも、スチレン、α-メチルスチレン、4-メチルスチレンがより好ましく、スチレンが更に好ましい。
 重合体ブロック(a)がスチレンに由来する構造単位からなる場合、そのピークトップ分子量(Mp)は、接着剤層(Y)の接着性及び成形加工性を向上させる観点から、2,000~55,000であることが好ましく、4,000~20,000であることがより好ましく、5,000~10,000であることが更に好ましい。なお、本明細書におけるピークトップ分子量(Mp)は後述する実施例に記載した方法で測定した値を意味する。
 なお、本明細書及び特許請求の範囲に記載の「ピークトップ分子量」は全て、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算のピークトップ分子量であり、より詳細には実施例に記載の方法に従って測定した値である。
 ブロック共重合体(P)が有する各重合体ブロックのピークトップ分子量は、製造工程において各重合体ブロックの重合が終了する都度、サンプリングした液を測定することで求めることができる。例えばa1-b-a2構造を有するトリブロック共重合体をa1、b、a2の順に逐次重合して合成する場合には、最初の重合体ブロックa1のピークトップ分子量は、a1の重合が終了した時にサンプリングした液をGPC測定することで求めることができる。また、重合体ブロックbのピークトップ分子量は、bの重合が終了した時にサンプリングした液をGPC測定してa1-bの構造のジブロック共重合体のピークトップ分子量を求め、その値から重合体ブロックa1のピークトップ分子量を引き算することにより求めることができる。更に、重合体ブロックa2のピークトップ分子量は、a2の重合が終了した時にサンプリングした液をGPC測定してa1-b-a2の構造のトリブロック共重合体のピークトップ分子量を求め、その値からa1-bの構造のジブロック共重合体のピークトップ分子量を引き算することにより求めることができる。
 前記重合体ブロック(b)を構成する共役ジエンとしては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、2-フェニル-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、ファルネセン及びクロロプレン等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
 これらの中でもブタジエン、イソプレン、ミルセン、及びファルネセンがより好ましく、ファルネセンが更に好ましい。
 共役ジエンとして用いるファルネセンは、α-ファルネセン又は下記式(I)で表されるβ-ファルネセンのいずれでもよいが、水添ブロック共重合体の製造容易性の観点から、β-ファルネセンを用いることが好ましい。なお、α-ファルネセンとβ-ファルネセンとは組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 本発明における重合体ブロック(b)は、接着剤層(Y)の接着性を向上させる観点から、ファルネセン由来の構造単位(b1)とファルネセン以外の共役ジエンに由来する構造単位(b2)とを併用してもよい。
 重合体ブロック(b)中のファルネセン由来の構造単位(b1)の含有量は、1~100質量%であることが好ましく、30~95質量%であることがより好ましく、45~90質量%であることが更に好ましく、50~80質量%であることがより更に好ましい。
 一方、重合体ブロック(b)がファルネセン以外の共役ジエン由来の構造単位(b2)の含有量は0~99質量%であることが好ましく、5~70質量%であることがより好ましく、10~55質量%であることが更に好ましく、20~50質量%であることがより更に好ましい。
 なお、ファルネセン以外の共役ジエンとしては、ブタジエン、イソプレン及びミルセンから選ばれる少なくとも1種が好ましい。
 前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]は1/99~50/50である。重合体ブロック(a)の含有量が前記下限値未満であると、柔軟性、成形加工性に優れると共に、強固な接着力を有する水添ブロック共重合体を得ることができない。一方、重合体ブロック(a)の含有量が前記上限値を超えると、成形加工性及び接着力が低下する。この観点から、前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]は、5/95~40/60であることが好ましく、8/92~30/70であることがより好ましく、10/90~25/75であることが更に好ましい。
 水添ブロック共重合体(A)は、重合体ブロック(a)及び重合体ブロック(b)をそれぞれ少なくとも1個含むブロック共重合体(P)の水素添加物であり、重合体ブロック(a)を2個以上、及び重合体ブロック(b)を1個以上含むブロック共重合体(P)の水素添加物であることが好ましい。
 重合体ブロック(a)及び重合体ブロック(b)の結合形態は特に制限されず、直線状、分岐状、放射状又はそれらの2つ以上の組み合わせであってもよい。中でも、各ブロックが直線状に結合した形態が好ましく、重合体ブロック(a)をa、重合体ブロック(b)をbで表したときに、(a-b)、a-(b-a)又はb-(a-b)で表される結合形態が好ましい。なお、前記l、m及びnはそれぞれ独立して1以上の整数を表す。
 前記結合形態としては、柔軟性、成形加工性及び取り扱い性等の観点から、b-a-b-a-b、a-b-aで表される共重合体が好ましい。
 なお、水添ブロック共重合体(A)は1種の水添ブロック共重合体からなってもよく、また2種以上の水添ブロック共重合体の混合物であってもよく、例えば、前記トリブロック以上のブロック共重合体と、(a-b)で表される、いわゆるジブロック共重合体との混合物であってもよい。しかしながら、接着剤層(Y)の接着耐久性(耐熱性等)を向上させる観点から、水添ブロック共重合体(A)中のジブロック共重合体の含有量は、50質量%以下であることが望ましく、40質量%以下であることが更に好ましく、30質量%以下であることが特に好ましく、20質量%以下であることが最も好ましい。
 また、本発明においては、アニオン重合によってb1-a-b2-Liで表される結合形態を有するポリマーアーム(「Li」はBuLiを用いてアニオン重合した際の活性末端を表す。)を製造した後、カップリング剤を用いてカップリングをすることにより得られる、b1-a-b2-a-b1で表される結合形態を有するポリマーを用いることもできる。この際、カップリングされずに残存したポリマーアーム由来のb1-a-b2で表される結合形態のブロック共重合体の含有量は、接着耐久性(耐熱性等)を低下させないようにする観点から、水添ブロック共重合体(A)中、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましく、20質量%以下であることがより更に好ましい。
 また、ブロック共重合体(P)が重合体ブロック(a)を2個以上又は重合体ブロック(b)を2個以上有する場合には、それぞれの重合体ブロックは、同じ構造単位からなる重合体ブロックであっても、異なる構造単位からなる重合体ブロックであってもよい。例えば、〔a-b-a〕で表されるトリブロック共重合体における2個の重合体ブロック(a)において、それぞれの芳香族ビニル化合物は、その種類が同じであっても異なっていてもよい。
 水添ブロック共重合体(A)のピークトップ分子量(Mp)は、接着剤層(Y)の接着性及び成形加工性を向上させる観点から、4,000~1,500,000であることが好ましく、10,000~1,200,000であることがより好ましく、50,000~800,000であることが更に好ましく、80,000~500,000であることがより更に好ましい。なお、本明細書におけるピークトップ分子量(Mp)は後述する実施例に記載した方法で測定した値を意味する。
 水添ブロック共重合体(A)の分子量分布(Mw/Mn)は1.00~4.00であることが好ましく、1.00~3.00であることがより好ましく、1.00~2.00であることが更に好ましい。分子量分布が前記範囲内であると、水添ブロック共重合体(A)の粘度のばらつきが小さく、取り扱いが容易である。
 ブロック共重合体(P)は、前記重合体ブロック(a)と重合体ブロック(b)のほか、本発明の効果を阻害しない限り、他の単量体で構成される重合体ブロック(c)を含有していてもよい。
 かかる他の単量体としては、例えばプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン等の不飽和炭化水素化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、メタクリロニトリル、マレイン酸、フマル酸、クロトン酸、イタコン酸、2-アクリロイルエタンスルホン酸、2-メタクリロイルエタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、ビニルスルホン酸、酢酸ビニル、メチルビニルエーテル等の官能基含有不飽和化合物;等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
 ブロック共重合体(P)が重合体ブロック(c)を有する場合、その含有量は50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
<水添ブロック共重合体(A)の製造方法>
 水添ブロック共重合体(A)は、例えばブロック共重合体(P)をアニオン重合により得る重合工程、及び該ブロック共重合体(P)中の重合体ブロック(b)中の炭素-炭素二重結合を水素添加する工程により好適に製造できる。
〔重合工程〕
 ブロック共重合体(P)は、溶液重合法又は特表2012-502135号公報、特表2012-502136号公報に記載の方法等により製造することができる。中でも溶液重合法が好ましく、例えば、アニオン重合やカチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。中でもアニオン重合法が好ましい。アニオン重合法としては、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物、ファルネセン及び/又はファルネセン以外の共役ジエンを逐次添加して、ブロック共重合体(P)を得る。
 アニオン重合開始剤としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属;前記アルカリ金属、アルカリ土類金属、ランタノイド系希土類金属を含有する化合物等が挙げられる。中でもアルカリ金属及びアルカリ金属を含有する化合物が好ましく、有機アルカリ金属化合物がより好ましい。
 前記有機アルカリ金属化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム、ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、n-ブチルリチウム、sec-ブチルリチウムがより好ましく、sec-ブチルリチウムが特に好ましい。なお、有機アルカリ金属化合物は、ジイソプロピルアミン、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして用いてもよい。
 重合に用いる有機アルカリ金属化合物の使用量は、ブロック共重合体(P)の分子量によっても異なるが、通常、芳香族ビニル化合物、ファルネセン及びファルネセン以外の共役ジエンの総量に対して0.01~3質量%の範囲である。
 溶媒としてはアニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の飽和脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。溶媒の使用量には特に制限はない。
 ルイス塩基はファルネセン由来の構造単位及びファルネセン以外の共役ジエン由来の構造単位におけるミクロ構造を制御する役割がある。かかるルイス塩基としては、例えばジブチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテル、ジテトラヒドロフリルプロパン等のエーテル化合物;ピリジン;N,N,N’,N’-テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;カリウムt-ブトキシド等のアルカリ金属アルコキシド;ホスフィン化合物等が挙げられる。ルイス塩基を使用する場合、その量は、通常、アニオン重合開始剤1モルに対して0.01~1000モル当量の範囲であることが好ましい。
 重合反応の温度は、通常、-80~150℃、好ましくは0~100℃、より好ましくは10~90℃の範囲である。重合反応の形式は回分式でも連続式でもよい。重合反応系中の芳香族ビニル化合物、ファルネセン及び/又はファルネセン以外の共役ジエンの存在量が特定範囲になるように、重合反応液中に各単量体を連続的あるいは断続的に供給するか、又は重合反応液中で各単量体が特定比となるように順次重合することで、ブロック共重合体(P)を製造できる。
 重合反応は、メタノール、イソプロパノール等のアルコールを重合停止剤として添加して停止できる。得られた重合反応液をメタノール等の貧溶媒に注いでブロック共重合体(P)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することによりブロック共重合体(P)を単離できる。
 本重合工程では、前記のように未変性のブロック共重合体(P)を得てもよいが、後述の水素添加工程の前に、前記ブロック共重合体(P)に官能基を導入して、変性したブロック共重合体(P)を得てもよい。導入可能な官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシ基、カルボニル基、メルカプト基、イソシアネート基、クロロ基、酸無水物等が挙げられる。
 ブロック共重合体(P)の変性方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジクロロジメチルシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン等の変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。また、単離後の共重合体に無水マレイン酸等をグラフト化して用いることもできる。
 官能基が導入される位置はブロック共重合体(P)の重合末端でも、側鎖でもよい。また上記官能基は1種を単独で又は2種以上を組み合わせてもよい。上記変性剤は、アニオン重合開始剤に対して、通常、0.01~10モル当量の範囲であることが好ましい。
〔水素添加工程〕
 前記方法により得られたブロック共重合体(P)又は変性されたブロック共重合体(P)を水素添加する工程に付すことにより、水添ブロック共重合体(A)を得ることができる。水素添加する方法は公知の方法を用いることができる。例えば、水素添加反応に影響を及ぼさない溶媒にブロック共重合体(P)を溶解させた溶液に、チーグラー系触媒;カーボン、シリカ、けいそう土等に担持されたニッケル、白金、パラジウム、ルテニウム又はロジウム金属触媒;コバルト、ニッケル、パラジウム、ロジウム又はルテニウム金属を有する有機金属錯体等を、水素添加触媒として存在させて水素化反応を行う。水素添加工程においては、前記したブロック共重合体(P)の製造方法によって得られたブロック共重合体(P)を含む重合反応液に水素添加触媒を添加して水素添加反応を行ってもよい。本発明においては、パラジウムをカーボンに担持させたパラジウムカーボンが好ましい。
 水素添加反応において、水素圧力は0.1~20MPaが好ましく、反応温度は100~200℃が好ましく、反応時間は1~20時間が好ましい。
 重合体ブロック(b)中の炭素-炭素二重結合の水素添加率は、柔軟性及び成形加工性に優れる熱可塑性エラストマー組成物を得る観点から、70~100モル%であることが好ましく、80~100モル%であることがより好ましく、85~100モル%であることが更に好ましい。なお、水素添加率は、ブロック共重合体(P)及び水素添加後の水添ブロック共重合体(A)の1H-NMRを測定することにより算出できる。
<接着剤層(Y)を構成する熱可塑性エラストマー組成物>
 本発明の接着剤層(Y)は前記水添ブロック共重合体(A)のみからなってもよいが、前記水添ブロック共重合体(A)と、極性基含有重合体(B)等のその他の成分とで構成される熱可塑性エラストマー組成物からなってもよい。
〔極性基含有重合体(B)〕
 熱可塑性エラストマー組成物は極性基含有重合体(B)を含有してもよい。極性基含有重合体を含有することにより、接着剤層(Y)が適度な柔軟性と成形加工性とを兼ね備え、かつプライマー処理等を施さなくても、セラミックス、金属、樹脂、コンクリート、アスファルト等と強固に接着力できるようになる。
 極性基含有重合体(B)を用いることにより接着力が向上する理由としては、熱可塑性エラストマー組成物が極性基含有系重合体(B)を含有することにより、熱可塑性エラストマー組成物が、セラミックス、金属、樹脂等の基材になじみやすくなること、また、被着体が極性基を有する場合は、極性基含有重合体(B)に含まれる極性基と被着体表面の極性基との間で化学結合を生じること、等が考えられる。
 極性基含有重合体(B)を構成するオレフィンとしては、炭素数2~10のオレフィンが好ましく、炭素数2~8のオレフィンが好ましい。このようなオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン、シクロヘキセン等が挙げられる。これらのオレフィンは、1種を単独で用いてもよいし、2種以上を組み合わせた共重合体であってもよい。これらの中でも、エチレン、プロピレンが好ましく、プロピレンがより好ましい。
 また、極性基含有重合体(B)が有する極性基としては、例えば(メタ)アクリロイルオキシ基;水酸基;アミド基;アミノ基;塩素原子等のハロゲン原子;カルボキシ基;エステル基;酸無水物基等が挙げられる。これらの中でも、(メタ)アクリロイルオキシ基、カルボキシ基、エステル基、酸無水物基が接着力向上の観点から好ましく、カルボキシ基及び酸無水物基がより好ましい。
 該極性基含有重合体(B)の製造方法に特に制限はないが、オレフィン及び極性基含有共重合性単量体を、公知の方法でランダム共重合、ブロック共重合又はグラフト共重合することによって得られる。これらの中でも、ランダム共重合、グラフト共重合が好ましく、グラフト共重合体がより好ましい。このほかにも、ポリオレフィン系樹脂を公知の方法で酸化又は塩素化等の反応に付することによっても得られる。また、市販のポリオレフィンに対し、極性基含有化合物を反応させて変性することによっても製造することができる。
 極性基含有共重合性単量体としては、例えば、酢酸ビニル、塩化ビニル、酸化エチレン、酸化プロピレン、アクリルアミド、不飽和カルボン酸又はそのエステルもしくは酸無水物が挙げられる。中でも、不飽和カルボン酸又はそのエステルもしくは酸無水物が好ましい。不飽和カルボン酸又はそのエステルもしくは酸無水物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、ハイミック酸、無水ハイミック酸等が挙げられる。中でも、マレイン酸、無水マレイン酸がより好ましい。これらの極性基含有共重合性単量体は、1種を単独で用いてもよいし、2種以上を組み合わせてもよい。
 前記極性基含有共重合性単量体として例示した(メタ)アクリル酸エステルとしては、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ヘキシル、アクリル酸イソヘキシル、アクリル酸n-オクチル、アクリル酸イソオクチル、アクリル酸2-エチルヘキシル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸イソヘキシル、メタクリル酸n-オクチル、メタクリル酸イソオクチル、メタクリル酸2-エチルヘキシル等のメタクリル酸アルキルエステルが挙げられる。これらの(メタ)アクリル酸エステルは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 極性基含有重合体(B)としては、接着性を向上させる観点から、極性基としてカルボキシ基又は酸無水物基を含有するポリオレフィン、つまりカルボン酸変性オレフィン系重合体又はカルボン酸無水物変性オレフィン系重合体が好ましく、マレイン酸変性オレフィン系重合体、無水マレイン酸変性オレフィン系重合体がより好ましい。
 極性基含有重合体(B)が有する極性基は、重合後に後処理されていてもよい。例えば、(メタ)アクリロイルオキシ基やカルボキシ基に対し金属イオンによる中和を行ってアイオノマーとしていてもよいし、メタノールやエタノール等によってエステル化していてもよい。また、酢酸ビニルの加水分解等を行っていてもよい。
 極性基含有重合体(B)の230℃、荷重2.16kg(21N)の条件下におけるメルトフローレート(MFR)は、好ましくは0.1~300g/10分、より好ましくは0.1~100g/10分、更に好ましくは0.1~80g/10分、より更に好ましくは0.1~50g/10分である。極性基含有重合体(B)の上記条件下におけるMFRが0.1g/10分以上であれば、良好な成形加工性が得られる。一方、該MFRが300g/10分以下であれば、力学特性が発現し易い。
 極性基含有重合体(B)の融点は、耐熱性の観点から、好ましくは100℃以上、より好ましくは110~170℃、更に好ましくは120~145℃である。
 極性基含有重合体(B)が有する極性基含有構造単位の量は、全構造単位中に、好ましくは0.01~10質量%である。0.01質量%以上であればセラミックス等に対する接着性がより一層向上する。極性基含有構造単位の割合が10質量%以下であれば、水添ブロック共重合体(A)との親和性が向上し、力学特性が良好となり、得られる熱可塑性エラストマー組成物は柔軟性、成形加工性に優れたものとなる。上記の割合は、より好ましくは0.01~7質量%、更に好ましくは0.01~5質量%である。極性基含有構造単位の割合が最適になるよう、極性基含有構造単位を高濃度で含有するポリオレフィン系樹脂を、極性基含有構造単位を有しないポリオレフィン系樹脂で希釈したものを極性基含有重合体(B)として用いてもよい。なお、極性基含有重合体(B)が有する構造単位に対する、極性基含有構造単位及びオレフィン由来構成単位の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、より更に好ましくは100質量%である。
 熱可塑性エラストマー組成物中の極性基含有重合体(B)の含有量は、水添ブロック共重合体(A)100質量部に対して、5~100質量部であることが好ましい。極性基含有重合体(B)が前記下限値以上であれば、セラミックス等とも強固に接着することが可能になる。一方、極性基含有重合体(B)が前記上限値以下であると、十分な接着性を得ることができると共に、柔軟性及び成形加工性も良好になる。この観点から、極性基含有重合体(B)の含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは10~90質量部、より好ましくは15~80質量部である。
〔軟化剤〕
 熱可塑性エラストマー組成物は、本発明の効果を阻害しない範囲であれば、更に軟化剤を含有してもよい。軟化剤としては、一般にゴム、プラスチックスに用いられる軟化剤を使用できる。例えばパラフィン系、ナフテン系、芳香族系のプロセスオイル;ジオクチルフタレート、ジブチルフタレート等のフタル酸誘導体;ホワイトオイル;ミネラルオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;ポリブテン;低分子量ポリイソブチレン;液状ポリブタジエン、液状ポリイソプレン、液状ポリイソプレン/ブタジエン共重合体、液状スチレン/ブタジエン共重合体、液状スチレン/イソプレン共重合体等の液状ポリジエン及びその水添物等が挙げられる。中でも、水添ブロック共重合体(A)との相容性の観点から、パラフィン系プロセスオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;低分子量ポリイソブチレン及びその水添物が好ましく、パラフィン系プロセスオイルの水添物がより好ましい。
 また、一般的にポリビニルアセタール樹脂と併せて使用される公知の軟化剤、例えば一塩基性有機酸エステル、多塩基性有機酸エステル等の有機酸エステル系可塑剤;有機リン酸エステル、有機亜リン酸エステル等のリン酸系可塑剤等も使用できる。
 一塩基性有機酸エステルとしては、例えば、トリエチレングリコール-ジカプロン酸エステル、トリエチレングリコール-ジ-2-エチル酪酸エステル、トリエチレングリコール-ジ-n-オクチル酸エステル、トリエチレングリコール-ジ-2-エチルヘキシル酸エステル等に代表されるトリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られたグリコール系エステルが挙げられる。
 多塩基酸有機エステルとしては、例えばセバシン酸ジブチルエステル、アゼライン酸ジオクチルエステル、アジピン酸ジブチルカルビトールエステル等に代表されるアジピン酸、セバシン酸、アゼライン酸等の多塩基性有機酸と直鎖状又は分岐状アルコールのエステル等が挙げられる。
 有機リン酸エステルとしては、例えばトリブトキシエチルホスフェート、イソデシルフェニルホスフェート、トリイソプロピルホスフェート等が挙げられる。
 軟化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 熱可塑性エラストマー組成物が軟化剤を含有する場合、その含有量は水添ブロック共重合体(A)100質量部に対して、0.1~100質量部の範囲が好ましい。軟化剤がこの範囲内であると、熱可塑性エラストマー組成物の柔軟性、成形加工性がより向上する。当該観点から、軟化剤の含有量は、水添ブロック共重合体(A)100質量部に対して、より好ましくは1~90質量部である。
〔その他の任意成分〕
 接着剤層(Y)は、本発明の効果を阻害しない範囲で、必要に応じて、他の熱可塑性重合体、無機充填材、粘着性付与樹脂、酸化防止剤、滑剤、光安定剤、加工助剤、顔料や色素等の着色剤、難燃剤、帯電防止剤、艶消し剤、シリコンオイル、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料を含有してもよい。
 前記他の熱可塑性重合体としては、例えば極性基を有さないオレフィン系重合体、スチレン系重合体、ポリフェニレンエーテル系樹脂、ポリエチレングリコール等が挙げられる。これらの中でも、接着剤層(Y)の成形加工性を向上させる観点から、極性基を有さないオレフィン系重合体が好ましい。このような極性基を有さないオレフィン系重合体としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、プロピレンとエチレンや1-ブテン等の他のα-オレフィンとのブロック共重合体やランダム共重合体等の1種又は2種以上を使用することができる。
 他の熱可塑性重合体を含有させる場合、その含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは100質量部以下、より好ましくは50質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。
 前記無機充填材は、接着剤層(Y)の耐熱性、耐候性等の物性の改良、硬度調整、増量剤としての経済性の改善等を目的として含有させることができる。無機充填材としては、例えば、炭酸カルシウム、タルク、水酸化マグネシウム、水酸化アルミニウム、マイカ、クレー、天然ケイ酸、合成ケイ酸、酸化チタン、カーボンブラック、硫酸バリウム、ガラスバルーン、ガラス繊維等が挙げられる。無機充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 無機充填材を含有させる場合、その含有量は、熱可塑性エラストマー組成物の柔軟性が損なわれない範囲であることが好ましく、水添ブロック共重合体(A)100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは30質量部以下、特に好ましくは10質量部以下である。
 前記粘着付与樹脂としては、例えばロジン系樹脂、テルペンフェノール樹脂、テルペン樹脂、芳香族炭化水素変性テルペン樹脂、脂肪族系石油樹脂、脂環式系石油樹脂、芳香族系石油樹脂、クマロン・インデン樹脂、フェノール系樹脂、キシレン樹脂等が挙げられる。
 粘着付与樹脂を含有させる場合、その含有量は、熱可塑性エラストマー組成物の力学特性が損なわれない範囲であることが好ましく、水添ブロック共重合体(A)100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは30質量部以下である。
 前記酸化防止剤としては、例えばヒンダードフェノール系、リン系、ラクトン系、ヒドロキシル系の酸化防止剤等が挙げられる。これらの中でも、ヒンダードフェノール系酸化防止剤が好ましい。酸化防止剤を含有させる場合、その含有量は、得られる熱可塑性エラストマー組成物を溶融混練する際に着色しない範囲であることが好ましく、水添ブロック共重合体(A)100質量部に対して、好ましくは0.1~5質量部である。
 接着剤層(Y)に用いる熱可塑性エラストマー組成物の製造方法に特に制限はなく、水添ブロック共重合体(A)、必要に応じて用いる極性基含有重合体(B)、その他の成分を均一に混合し得る方法であればいずれの方法で製造してもよい。溶融混練する場合は、例えば、単軸押出機、2軸押出機、ニーダー、バッチミキサー、ローラー、バンバリーミキサー等の溶融混練装置を用いて行うことができ、好ましくは170~270℃で溶融混練することにより、熱可塑性エラストマー組成物を得ることができる。
[基材(X)及び基材(Z)]
 本発明の積層体は、基材(X)及び基材(Z)を有する。
 基材(X)及び基材(Z)としては、例えば、それぞれ独立に、金属、極性樹脂、ポリオレフィン樹脂、炭素繊維、人工皮革、ガラス、及びセラミックス等から選ばれる少なくとも1種が挙げられ、両基材は同種の材質であってもよい。
 基材(X)及び基材(Z)に使用できる金属としては、例えば、鉄、銅、アルミニウム、マグネシウム、ニッケル、クロム、亜鉛、及びそれらを成分とするステンレス等の合金が挙げられる。また、銅メッキ、ニッケルメッキ、クロムメッキ、錫メッキ、亜鉛メッキ、白金メッキ、金メッキ、銀メッキ等のメッキによって形成された金属の表面を持つものでもよい。
 また、基材(X)及び基材(Z)に使用できる極性樹脂としては、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、(メタ)アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、(メタ)アクリロニトリル-スチレン樹脂、(メタ)アクリル酸エステル-ブタジエン-スチレン樹脂、(メタ)アクリル酸エステル-スチレン樹脂、ブタジエン-スチレン樹脂、エポキシ樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、メラミン樹脂、ポリアセタール樹脂(POM)、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂、シンジオタクティックポリスチレン樹脂、ポリウレタン(熱可塑性、熱硬化性)等が挙げられる。これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、これら樹脂は、ガラス繊維で強化されていてもよく、炭素繊維で強化されていてもよい。上記ポリアミド樹脂としては、例えば、ポリアミド6(PA6)、ポリアミド66(PA66)等が好ましい。また、上記ポリエステル樹脂としては、ポリ乳酸(PLA)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が好ましい。
 更に基材(X)及び基材(Z)に使用できるポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリヘキセン-1、ポリ-3-メチル-ブテン-1、ポリ-4-メチル-ペンテン-1、エチレンと炭素数3~20のα-オレフィン(例えばプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、6-メチル-1-ヘプテン、イソオクテン、イソオクタジエン、デカジエン等)の1種又は2種以上との共重合体、エチレン/プロピレン/ジエン共重合体(EPDM)、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体等が挙げられ、更に、エチレン-ノルボルネン共重合体等のシクロオレフィン(コ)ポリマーも好ましい。なお、これらの樹脂はガラス繊維で強化されていてもよく、炭素繊維で強化されていてもよい。
 基材(X)及び基材(Z)に使用できるセラミックスとしては、非金属系の無機材料であれば特に制限はないが、金属酸化物、金属炭化物、金属窒化物等が挙げられる。具体的には、ガラス、セメント類、アルミナ、ジルコニア、酸化亜鉛系セラミックス、チタン酸バリウム、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、フェライト類等が挙げられる。
 基材(X)及び基材(Z)としては、これらの中でも、前記接着剤層(Y)との接着性の観点から、銅、アルミニウム、ステンレス等の金属、ポリアセタール樹脂(POM)、ポリアミド6(PA6)等の極性樹脂、ポリブチレンテレフタレート等のポリエステル樹脂、ポリカーボネート樹脂、(メタ)アクリロニトリル-スチレン樹脂(AS)、(メタ)アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂が好ましい。
 なお、本発明の積層体は、前記基材(X)及び前記基材(Z)以外の基材、又は接着剤層(Y)を有していてもよいが、前記基材(X)、前記接着剤層(Y)及び前記基材(Z)のみを積層した積層体であること好ましい。
 基材(X)及び基材(Z)の厚みは特に限定されないが、下記「第1の製造方法」、「第2の製造方法」、「第3の製造方法」、「第5の製造方法」の場合は、基材(X)及び基材(Z)のそれぞれの厚みが0.01~5.00mmが好ましく、0.03~3.00mmが更に好ましく、0.04~2.00mmが特に好ましく、0.05~1.00mmが最も好ましい。一方、「第4の製造方法」の場合は、基材(X)の厚みが0.01~1.00mmが好ましく、0.02~0.50mm、更に好ましく、0.03~0.40mm特に好ましく、0.03~0.03mmが最も好ましい、基材(Z)は0.01~5.00mmが好ましく、0.03~3.00mmが更に好ましく、0.04~2.00mmが特に好ましく、0.05~1.00mmが最も好ましい。基材(X)及び基材(Y)の厚みが上述の範囲であることで、本発明の積層体の層間接着力を高いレベルに維持することがより容易になるため、好ましい。
 基材(X)及び基材(Z)の表面粗さは特に限定されないが、基材(X)及び基材(Z)が極性材料(例えば、極性樹脂や金属等)である場合は、算術平均粗さ(Ra)が小さい方が高い接着力を示す傾向にある。よって、この場合の算術平均粗さ(Ra)は、0.010~10μmであることが好ましく、0.010~1μmであることがより好ましく、0.010~0.500μmであることが更に好ましく、0.010~0.300μmであることが特に好ましく、0.010~0.200μmであることが最も好ましい。
 一方、基材(X)及び基材(Z)が非極性材料(例えば、ポリオレフィン樹脂等)の場合は、算術平均粗さ(Ra)が大きい方が高い接着力を示す傾向にある。よって、この場合の算術平均粗さ(Ra)は、0.010~10μmであることが好ましく、0.100~7μmであることがより好ましく、0.200~6μmであることが特に好ましい。上記範囲であれば、10N/cm2以上のせん断接着力を発現することがより容易になるため好ましい。
 なお、本発明において算術表面粗さ(Ra)は、JIS B 0601-2001に準じて測定した値であり、具体的には実施例に記載の方法にしたがって測定した値である。
[2]積層体の製造方法
[第1の製造方法]
 本発明の積層体の第1の製造方法としては、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-a)と、前記工程(I-a)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II-a)とを有する製造方法が挙げられる。
 第1の製造方法においては、プレス成形する工程(I-a)と、射出成形する工程(II-a)とを組み合わせて用いているため、これまでに接着できなかった樹脂、例えばポリアセタール樹脂(POM)とステンレス板等とを強固に接着することができる。特に前記接着剤層(Y)を構成する水添ブロック共重合体(A)がファルネセンブロックを有する場合においては、接着剤層(Y)が軟らかくなるためより一層接着性が向上する。
<工程(I-a)>
 第1の製造方法における工程(I-a)は、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程である。
 プレス成形する条件について特に制限はないが、前記基材(X)上に前記接着剤層(Y)を積層した後、温度を好ましくは100~220℃、より好ましくは120~200℃、荷重を好ましくは10~100kgf/cm2、より好ましくは10~50kgf/cm2、更により好ましくは15~40kgf/cm2で、好ましくは1~10分間、より好ましくは1~5分間圧縮することにより前記基材(X)と前記接着剤層(Y)とを接着させることができる。
<工程(II-a)>
 前記工程(II-a)は、前記工程(I-a)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程である。
 前記接着剤層(Y)上に、前記基材(Z)を射出成形する方法に特に制限はないが、金型の温度を好ましくは190~360℃、より好ましくは200~330℃に設定すると共に、基材(Z)を構成する樹脂を射出するためのシリンダー温度を好ましくは40~160℃、より好ましくは45~150℃として射出成形することが好ましい。
[第2の製造方法]
 本発明の積層体の第2の製造方法は、前記基材(X)上に前記水添ブロック共重合体(A)を含む溶液及び/又は水性エマルションを塗工した後、乾燥させることにより前記接着剤層(Y)を形成する工程(I-b)と、前記工程(I-b)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II-b)とを有する製造方法である。
 第2の製造方法においては、前記基材(X)上に前記水添ブロック共重合体(A)を含む溶液及び/又は水性エマルションを塗工し、乾燥させることにより前記接着剤層(Y)を形成することができるので、比較的簡便に積層体を製造することができる。
<工程(I-b)>
 工程(I-b)は、前記基材(X)上に前記熱可塑性エラストマー組成物を含む溶液及び/又は水性エマルションを塗工した後、乾燥させることにより前記接着剤層(Y)を形成する工程である。
 工程(I-b)においては、まず、前記熱可塑性エラストマー組成物を含む溶液及び/又は水性エマルションを作成する。具体的には、前記熱可塑性エラストマー組成物を有機溶媒又は水に対して、公知の方法により溶解又は分散させる。
 水性エマルションを得る場合においては、例えば、ホモジナイザー、ホモミキサー、ディスパーサーミキサー、コロイドミル、パイプラインミキサー、高圧ホモジナイザー、超音波乳化機等を用いる方法が挙げられ、これらを単独又は組み合わせて使用できる。
 本発明において用いる水性エマルジョンには、用途に応じて本発明の効果を損なわない範囲で更に各種の添加剤を加えてもよい。
 添加剤としては、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤、充填剤、改質剤、顔料等が挙げられる。ただし、界面活性剤は入れ過ぎると薄物成形体の耐性を損なうので、必要最小量に留める必要がある。
 前記熱可塑性エラストマー組成物を含む溶液及び/又は水性エマルション中の熱可塑性エラストマー組成物の含有量は、5~50質量%であることが好ましく、10~40質量%であることがより好ましく、15~30質量%であることが更に好ましい。
 前記方法により溶液又は水性エマルションを作成した後、例えば、塗布、浸漬、ノズル(スプレー)塗布、及び刷毛塗り等から選ばれる1種以上の方法により、基材(X)に対して溶液又は水性エマルションを塗工する。
 次いで、例えば好ましくは30~80℃、より好ましくは40~70℃の条件下、好ましくは15分間~2時間、より好ましくは20分間~1時間乾燥させることにより、接着剤層(Y)を形成することができる。
<工程(II-b)>
 第2の製造方法における工程(II-b)は、前記工程(I-b)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程である。前記接着剤層(Y)上に、前記基材(Z)を射出成形する好適な態様は、前記第1の製造方法における工程(II-a)において記載した条件と同じである。
[第3の製造方法]
 本発明の積層体の第3の製造方法は、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-c)と、前記工程(I-c)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程(II-c)とを有する積層体の製造方法である。
 第3の製造方法においては、工程(I-c)及び工程(II-c)において合計2回のプレス成形を行っているため、基材(X)、接着剤層(Y)及び基材(Z)を強固に接着させることが可能である。
<工程(I-c)>
 第3の製造方法における工程(I-c)は、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程であり、好適な態様は前記第1の製造方法における工程(I-a)に記載した条件と同じである。
<工程(II-c)>
 第3の製造方法における工程(II-c)は、前記工程(I-c)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程である。前記接着剤層(Y)上に、前記基材(Z)をプレス成形する好適な態様は、前記第1の製造方法における工程(I-a)に記載した条件と同じである。
[第4の製造方法]
 本発明の積層体の第4の製造方法は、前記基材(X)と前記接着剤層(Y)とを共押出する工程(I-d)と、前記工程(I-d)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程(II-d)とを有する積層体の製造方法である。
 第4の製造方法においては、工程(I-d)において共押出することにより前記基材(X)と前記接着剤層(Y)とが強固に接着し、更に工程(II-d)においてプレス成形を行っているため、基材(X)、接着剤層(Y)及び基材(Z)の全体としても強固に接着させることが可能である。
<工程(I-d)>
 第4の製造方法における工程(I-d)は、前記基材(X)と前記接着剤層(Y)とを共押出する工程である。
 共押出する方法に特に制限はないが、Tダイ押出成形機やインフレーション成形機等の製膜装置を使用する方法が挙げられる。
 共押出する際の基材(X)側のバレルの設定温度は、150~250℃であることが好ましく、基材(Y)側のバレルの設定温度は、140~240℃であることが好ましい。また、Tダイ押出成形する場合においてTダイの温度は、130~230℃であることがより好ましい。
<工程(II-d)>
 第4の製造方法における工程(II-d)は、前記工程(I-d)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程である。前記接着剤層(Y)上に、前記基材(Z)をプレス成形する好適な態様は、前記第1の製造方法における工程(I-a)に記載した条件と同じである。
[第5の製造方法]
 本発明の積層体の第5の製造方法は、前記基材(X)上に、前記接着剤層(Y)を射出成形する工程(I-e)と、前記工程(I-e)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II-e)とを有する積層体の製造方法である。
 第5の製造方法においては、接着剤層(Y)の特性を活かしつつ2回の射出成形を行うため、従来の方法では接着できなかった基材同士を強固に接着することが可能になる。
<工程(I-e)>
 第5の製造方法における工程(I-e)は、前記基材(X)上に、前記接着剤層(Y)を射出成形する工程である。前記基材(X)上に、前記接着剤層(Y)を射出成形する好適な態様は、前記第1の製造方法における工程(II-a)において記載した条件と同じである。
<工程(II-e)>
 第5の製造方法における工程(II-e)は、前記工程(I-e)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程である。前記接着剤層(Y)上に、前記基材(Z)を射出成形する好適な態様は、前記第1の製造方法における工程(II-a)において記載した条件と同じである。
 本発明の製造方法においては、いずれの製造方法においても基材(X)及び基材(Z)について制限はないが、両基材をより強固に接着させる観点から、前記基材(X)が金属であり、前記基材(Z)が極性樹脂又はポリオレフィン樹脂であることが好ましい。
[積層体の用途]
 本発明の積層体は、様々な用途に広く適用することができる。例えば、電子・電気機器、OA機器、家電機器、自動車用部材等のハウジング材に、合成樹脂、ガラス繊維を含有する合成樹脂、アルミニウム、マグネシウム合金といった軽金属が用いられるが、これらのハウジング材に本発明の積層体を用いることができる。より具体的には、大型ディスプレイ、ノート型パソコン、携帯用電話機、PHS、PDA(電子手帳等の携帯情報端末)、電子辞書、ビデオカメラ、デジタルスチルカメラ、携帯用ラジオカセット再生機、インバーター等のハウジングに接着され、衝撃緩和材、滑り止め防止機能を持った被覆材、防水材、意匠材等の用途に好ましい。
 また、自動車や建築物のウィンドウモールやガスケット、ガラスのシーリング材、防腐蝕材等、ガラスと接着された成形体や構造体として広い範囲の用途に有用である。また、自動車や建築物の窓におけるガラスとアルミニウムサッシや金属開口部等との接合部、太陽電池モジュール等におけるガラスと金属製枠体との接続部等のシーラントとしても好適に使用できる。更には、ノート型パソコン、携帯電話、ビデオカメラ等の各種情報端末機器や、ハイブリッド自動車、燃料電池自動車等に用いられる二次電池のセパレーター等にも好適に使用できる。
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、β-ファルネセン(純度97.6質量%アミリス,インコーポレイティド社製)は、3Åのモレキュラーシーブにより精製し、窒素雰囲気下で蒸留することで、ジンギベレン、ビサボレン、ファルネセンエポキシド、ファルネソール異性体、E,E-ファルネソール、スクアレン、エルゴステロール及びファルネセンの数種の二量体等の炭化水素系不純物を除き、以下の重合に用いた。
 実施例及び比較例に使用される各成分は次のとおりである。
<水添ブロック共重合体(A)>
〔製造例1:水添ブロック共重合体(A-1)の製造〕
 下記表1の配合としたこと以外は、特開2018-024776の製造例6に記載の方法により、水添ブロック共重合体(A-1)を製造した。具体的には以下のとおりである。
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)190.5g、ルイス塩基としてテトラヒドロフラン0.40kgを仕込み、50℃に昇温した後、β-ファルネセン6.34kgを加えて2時間重合を行い、引き続いてスチレン(1)2.50kgを加えて1時間重合させ、更にブタジエン3.66kgを加えて1時間重合を行った。続いてこの重合反応液にカップリング剤としてジクロロジメチルシラン0.02kgを加え1時間反応させることで、ポリ(β-ファルネセン)-ポリスチレン-ポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)ペンタブロック共重合体(以下、「ブロック共重合体(P1)」という。)を含む反応液を得た。この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体(P1)に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリ(β-ファルネセン)-ポリスチレン-ポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)ペンタブロック共重合体の水素添加物(A-1)(以下、「水添ブロック共重合体(A-1)」という。)を得た。得られた水添ブロック共重合体(A-1)は、ポリ(β-ファルネセン)-ポリスチレン-ポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)ペンタブロック共重合体の水素添加物90質量%及びポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)トリブロック共重合体の水素添加物10質量%を含む混合物であった。得られた水添ブロック共重合体(A-1)について、上記の物性を測定した。結果を表1に示す。
〔製造例2:水添ブロック共重合体(A-2)の製造〕
 また、下記表1の配合としたこと以外は、国際公開公報第2019/103048号の実施例1に記載の方法により水添ブロック共重合体(A-2)を製造した。具体的には以下のとおりである。
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液87g(sec-ブチルリチウムの実質的な添加量:9.1g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.0kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基として2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)63gを加え、イソプレン8.16kg及びブタジエン6.48kgの混合液を5時間かけて加えた後2時間重合させ、さらにスチレン(2)1.0kgを加えて1時間重合させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体の水素添加物(A-2)(以下、「水添ブロック共重合体(A-2)」という。)を得た。得られた(A-2)は、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体の水素添加物100質量%からなり、ポリスチレン-ポリ(イソプレン/ブタジエン)ジブロック共重合体の水素添加物は実質的に含まれていなかった。得られた水添ブロック共重合体(A-2)について、上記の物性を測定した。結果を表1に示す。
〔製造例3:水添ブロック共重合体(A-3)の製造〕
 分子量(Mp)が66,500であり、ジエンブロックのビニル結合量が38モル%であり、スチレン含有量30質量%であるSEBSと分子量(Mp)が33,500であり、ジエンブロックのビニル結合量が38モル%であり、スチレン含有量30質量%であるSEBとを質量比〔SEBS/SEB〕が3/7になるように混合し、水添ブロック共重合体(A-3)を製造した。
 なお、SEBSの質量比[(a)/(b)]は30/70であり、水素添加率は99モル%であり、SEBの質量比[(a)/(b)]は30/70であり、水素添加率は99モル%であり、水添ブロック共重合体(A-3)中のジブロック共重合体の含有量は30質量%であった。
 得られた水添ブロック共重合体(A-1)、(A-2)及び(A-3)について、下記測定を行った。結果を表1に示す。
(1)分子量分布及びピークトップ分子量(Mp)等の測定
 水添ブロック共重合体のピークトップ分子量(Mp)及び分子量分布(Mw/Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求め、分子量分布のピークの頂点の位置からピークトップ分子量(Mp)を求めた。測定装置及び条件は、以下のとおりである。
 なお、重合体ブロック(a)のピークトップ分子量は、重合体ブロック(A)の重合が終了した後、サンプリングした液を測定することにより求めた。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
(2)水素添加率の測定方法
 各製造例において、水素添加前のブロック共重合体及び水素添加後のブロック共重合体(水添ブロック共重合体)をそれぞれ重クロロホルム溶媒に溶解し、日本電子株式会社製「Lambda-500」を用いて50℃で1H-NMRを測定した。水添ブロック共重合体(A)中の重合体ブロック(b)の水素添加率は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
水素添加率={1-(水素添加後のブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前のブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100(モル%)
Figure JPOXMLDOC01-appb-T000002
〔実施例1~39及び比較例1~15〕
 表2に記載の材料を用いると共に、表3~10に記載の製造方法により各材料を積層して積層体を製造した。表3~10に記載の各製造方法の手順及び条件は以下のとおりである。
<第1の製造方法(〔1〕プレス成形工程、〔2〕射出成形工程)>
(1)接着剤層(Y)の製造
 水添ブロック共重合体(A)を(株)新藤金属工業所製圧縮プレス成形機「NF-37」を使用して、テフロン(登録商標)コーティング金属枠をスペーサーとして用い、200℃、100kgf/cm2の荷重で3分間、圧縮プレス成形した後、30℃、15kgf/cm2の荷重で1分間、圧縮プレス成形することで厚さ1mmの接着剤層(Y)を得た。
(2)工程(I-a)
 長さ100mm×幅35mm×厚さ1mmの基材(X)の両面を、界面活性剤水溶液、蒸留水を順に用いて洗浄し、乾燥させた。その後、該基材(X)と、前記(1)で作製した接着剤層(Y)とを、外寸200mm×200mm、内寸150mm×150mm、厚さ2mmの金属製スペーサーの中央部に配置した。
 積層した基材(X)と接着剤層(Y)とをポリテトラフルオロエチレン製シートで挟み、圧縮成形機を用いて180℃の温度条件下、荷重20kgf/cm2(2N/mm2)で3分間プレス成形することで、基材(X)と接着剤層(Y)とを積層した。
(3)工程(II-a)
 前記基材(X)と接着剤層(Y)との積層物を射出成形機(東芝機械株式会社製「EC75SX;75トン」)にセットした後、基材(Z)を構成する材料を射出インサート成形法により積層することにより、基材(X)、接着剤層(Y)及び基材(Z)をこの順に積層した積層体を作製した。なお、基材(Z)の厚みは2.0mmであった。
<第2の製造方法(〔1〕塗工乾燥工程、〔2〕射出成形工程)>
(1)工程(I-b)
 溶媒としてシクロヘキサンを用いて水添ブロック共重合体(A)の25質量%溶液を調製した。上記溶液に基材(X)(厚み1.0mm)を2回して浸漬することで塗工した。その後、60℃で30分間ギアオーブンで乾燥して、基材(X)と接着剤層(Y)とを積層した。乾燥後の接着剤層(Y)の厚みは0.2mmであった。
(3)工程(II-a)
 前記第1の製造方法に記載の方法と同様の方法により、積層体を得た。なお、基材(Z)の厚みは2.8mmであった。
<第3の製造方法(〔1〕プレス成形工程、〔2〕プレス成形工程)>
(1)接着剤層(Y)の製造
 前記第1の製造方法に記載の方法と同様の方法により接着剤層(Y)を得た。なお、基材(Y)の厚みは1.0mmであった。
(2)工程(I-c)
 前記第1の製造方法に記載の方法(I-a)と同様の方法により、基材(X)と接着剤層(Y)とを積層した。なお、基材(X)の厚みは1.0mmであった。
(3)工程(II-c)
 前記第1の製造方法に記載の方法(I-a)と同様の方法により、接着剤層(Y)と基材(Z)とを積層した。なお、基材(Z)の厚みは1.0mmであった。
<第4の製造方法(〔1〕共押出工程、〔2〕プレス成形工程)>
(1)工程(I-d)
 基材(X)をスクリュー径30mmの単軸押出機(GM30-28 株式会社GMエンジニアリング製)から、接着層(Y)をスクリュー径25mmの単軸押出機(GM-25-25 株式会社GMエンジニアリング製)から供給し、Tダイ(T300 ハンガーコートダイ)から出てきたフィルムを巻き取り、基材(X)と接着層(Y)の共押出フィルムを得た。なお、基材(X)の厚みは0.03~0.05mmであり、基材(Y)の厚みは0.005~0.03mmであった。
(2)工程(II-d)
 前記工程(I-d)で得られた共押出フィルムについて、前記第1の製造方法に記載の方法(I-a)と同様の方法により、接着剤層(Y)上に基材(Z)をプレス成形した。得られた積層体の層構成は、基材(X)、接着剤層(Y)及び基材(Z)をこの順に有するものであった。なお、基材(Z)の厚みは1.0mmであった。
<第5の製造方法(〔1〕射出成形工程、〔2〕射出成形工程)>
(1)工程(I-e)
 基材(X)を射出成形機(東芝機械株式会社製「EC75SX;75トン」)にセットした後、接着剤層(Y)を構成する材料を射出インサート成形法により積層した。なお、基材(X)の厚みは1.0mmであり、基材(Y)の厚みは1.0mmであった。
(2)工程(II-e)
 次いで、基材(X)の上に積層された接着剤層(Y)の上に、基材(Z)を構成する材料を射出インサート成形法により積層することにより、基材(X)、接着剤層(Y)及び基材(Z)をこの順に積層した積層体を作製した。なお、基材(Z)の厚みは1.0mmであった。
Figure JPOXMLDOC01-appb-T000003
 得られた積層体について、下記評価を行った。結果を表3及び表4に示す。
(1)接着剤層(Y)の貯蔵弾性率‘G,損失弾性率G“の測定
 圧縮プレス成形機で製造した接着剤層(Y)から直径8mm、厚さ1mmの円盤状の試験片を切り出した。この試験片についてARES-G2レオメーター(TA Instruments社製)を用いて、下記条件で動的粘弾性測定を行い、100℃及び0℃の貯蔵弾性率(G’)と100℃及び0℃の損失弾性率(G”)をそれぞれ測定した。
(動的粘弾性測定装置及び測定条件)
・平行プレート:直径8mm
・振動モード :ねじり振動
・歪み量   :0.1%
・周波数   :1Hz
・測定温度  :-70~200℃
・昇温速度  :3℃/分
(2)接着性の測定
 得られた積層体について基材(X)と基材(Z)とを手で剥がす際の挙動について下記基準で評価した。
1(良好) :手で剥がせない
2(合格) :手で無理やり剥がすことができる
3(不合格):手で簡単に剥がれる
(3)接着力の測定方法
<試験片の作製方法>
 長さ50mm、幅35mm、厚さ1mmの基材(X)の両面を、界面活性剤水溶液、及び蒸留水を順に用いて洗浄し、乾燥させた。その後、該基材(X)と、前記<第1の製造方法〔1〕プレス成形工程、〔2〕射出成形工程>における「(1)接着剤層(Y)の製造」で作製した接着剤層(Y)を、長さ12.5mm、幅35mmに切り出し、これを外寸200mm×200mm、内寸150mm×150mm、厚さ2mmの金属製スペーサーの中央部に配置した。
 次いで、積層した基材(X)と接着剤層(Y)とをポリテトラフルオロエチレン製シートで挟み、圧縮成形機を用いて180℃の温度条件下、荷重20kgf/cm2(2N/mm2)で3分間プレス成形することで、基材(X)と接着剤層(Y)とを積層した。
 その後、接着層(Y)を積層していない部分にポリイムドフィルムを貼った前記基材(X)と接着剤層(Y)との積層物とポリイミドフィルムを貼った治具を射出成形機(東芝機械株式会社製「EC75SX;75トン」)の金型にセットした後、基材(Z)を構成する材料を射出インサート成形法により積層することにより、基材(X)、接着剤層(Y)及び基材(Z)をこの順に積層した積層体を作製した(図1を参照)。
 本積層体の接着剤層(Y)及び基材(Z)部分を長さ12.5mm、幅25mmに切り出して試験片を作製した(図2を参照。ただし、図2は積層体を基材(Z)側から見た図である。)。
<接着力の測定方法>
 前記試験片の基材層(X)及び基材層(Z)部分を掴み、引張試験機(インストロン社製3345)にて、室温23℃下で、速度2mm/分で移動させた時の接着力を測定した。
<基材の表面粗さ>
 基材の表面をSurfcorder SE1700α(株式会社小坂研究所社製)を用いて、下記測定条件下、JIS B 0601-2001に準じて測定した。なお、基材の表面粗さの測定値は表10にのみ記載する。
(測定条件)
・触針R   :2μm
・送り速さ  :0.500mm/s
・カットオフ :λc=0.800mm
・測定長さ  :4.000mm
・フィルタ  :GAUSS(ASME)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 測定不可*:接着力が低く、サンプル作製時に剥離あるいは引張試験機に取り付ける時に剥離した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表3~表10の結果より明らかなように、本発明の積層体は接着性が良好であることが分かる。
<参考例:接着剤層(Y)の硬度測定方法>
 接着剤層(Y)の材料としてA-1~A-3を用いて以下の要領で接着剤層(Y)の硬度を測定した。まず、新藤金属工業所製圧縮プレス成形機「NF-37」を使用し、テフロン(登録商標)コーティング金属枠をスペーサーとして用いて、200℃、100kgf/cm2の荷重で3分間、圧縮プレス成形した後、30℃、15kgf/cm2の荷重で1分間、圧縮プレス成形することで厚さ1mmの接着剤層(Y)を得た。
 得られたシートを、およそ5cm×5cmに切り出し、6枚重ねて厚み6mmの硬度を、TypeA デュロメータの圧子を用い、室温23℃及び0℃の恒温槽内で、JIS K 6253-3:2012に準拠して測定した。
 雰囲気温度を室温23℃で測定した値と、雰囲気温度を0℃の恒温槽内で測定した値を用いて、下記関係式(i)に基づいてINDEXを算出した。
   (0℃硬度/23℃硬度)×100≦s(INDEX)  (i)
Figure JPOXMLDOC01-appb-T000012
 表11の結果より、接着剤層(Y)は関係式(i)により導かれる値が140以下であるためゴム弾性率が高く、基材(X)と基材(Z)とを強固に接着し、剥離しにくいことが分かる。

Claims (19)

  1.  基材(X)と、接着剤層(Y)と、基材(Z)とをこの順に有する積層体であり、
     前記接着剤層(Y)が、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、共役ジエン由来の構造単位からなる重合体ブロック(b)とを含むブロック共重合体(P)を水素添加した水添ブロック共重合体(A)を含み、
     前記重合体ブロック(b)に対する前記重合体ブロック(a)の質量比[(a)/(b)]が1/99~50/50であり、
     前記接着剤層(Y)の100℃における貯蔵弾性率G’が1.20×105~4.00×105Paであることを特徴とする積層体。
  2.  前記接着剤層(Y)の100℃における損失弾性率G”が、3.00×104~2.50×105Paである、請求項1に記載の積層体。
  3.  前記接着剤層(Y)が、水添ブロック共重合体(A)を含有する熱可塑性エラストマー組成物からなる、請求項1又は2に記載の積層体。
  4.  前記重合体ブロック(b)が、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を0~99質量%含有する、請求項1~3のいずれかに記載の積層体。
  5.  前記ファルネセン以外の共役ジエンが、ブタジエン、イソプレン、及びミルセンから選ばれる少なくとも1種である、請求項4に記載の積層体。
  6.  前記重合体ブロック(b)中の炭素-炭素二重結合の水素添加率が70モル%以上である、請求項1~5のいずれかに記載の積層体。
  7.  前記水添ブロック共重合体(A)のピークトップ分子量(Mp)が4,000~1,500,000である、請求項1~6のいずれかに記載の積層体。
  8.  前記水添ブロック共重合体(A)の分子量分布(Mw/Mn)が1.00~4.00である、請求項1~7のいずれかに記載の積層体。
  9.  前記芳香族ビニル化合物がスチレンである、請求項1~8のいずれかに記載の積層体。
  10.  前記スチレンに由来の構造単位からなる重合体ブロック(a)のピークトップ分子量が2,000~55,000である、請求項9に記載の積層体。
  11.  前記基材(X)及び前記基材(Z)は、それぞれ独立に、金属、極性樹脂、ポリオレフィン樹脂、炭素繊維、ガラス、及びセラミックスから選ばれる少なくとも1種である、請求項1~10のいずれかに記載の積層体。
  12.  前記接着剤層(Y)が下記関係式(i)を満たす、請求項1~11のいずれかに記載の積層体。
        [(0℃硬度/23℃硬度)×100≦140]   (i)
  13.  前記水添ブロック共重合体(A)が2種以上の水添ブロック共重合体の混合物であり、前記水添ブロック共重合体(A)中のジブロック共重合体の含有量が50質量%以下である、請求項1~12のいずれかに記載の積層体。
  14.  基材(X)としてステンレス板、基材(Z)としてポリアセタール樹脂を用いた場合において、23℃における接着剤層(Y)のせん断接着力が10N/cm2で以上である、請求項1~13のいずれかに記載の積層体。
  15.  前記基材(X)及び前記基材(Y)の算術平均粗さ(Ra)が0.010~10μmである、請求項1~14のいずれかに記載の積層体。
  16.  請求項1~15のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-a)と、前記工程(I-a)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II)とを有することを特徴とする、積層体の製造方法。
  17.  請求項1~15のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記水添ブロック共重合体(A)を含む溶液及び/又は水性エマルションを塗工した後、乾燥させることにより前記接着剤層(Y)を形成する工程(I-b)と、前記工程(I-b)後の前記接着剤層(Y)上に、前記基材(Z)を射出成形する工程(II)とを有することを特徴とする、積層体の製造方法。
  18.  請求項1~15のいずれかに記載の積層体の製造方法であって、前記基材(X)上に前記接着剤層(Y)をプレス成形する工程(I-c)と、前記工程(I-c)後の前記接着剤層(Y)上に、前記基材(Z)をプレス成形する工程(II-c)とを有することを特徴とする、積層体の製造方法。
  19.  前記基材(X)が金属であり、前記基材(Z)が極性樹脂又はポリオレフィン樹脂である、請求項16~18のいずれかに記載の積層体の製造方法。
PCT/JP2021/007194 2020-02-27 2021-02-25 積層体、及びその製造方法 WO2021172470A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180017336.7A CN115135497A (zh) 2020-02-27 2021-02-25 层叠体、和其制造方法
JP2022503721A JPWO2021172470A1 (ja) 2020-02-27 2021-02-25
EP21759582.6A EP4112297A4 (en) 2020-02-27 2021-02-25 MULTI-LAYER BODY AND PRODUCTION PROCESS THEREOF
US17/802,637 US11951731B2 (en) 2020-02-27 2021-02-25 Multilayer body and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032158 2020-02-27
JP2020-032158 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172470A1 true WO2021172470A1 (ja) 2021-09-02

Family

ID=77491579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007194 WO2021172470A1 (ja) 2020-02-27 2021-02-25 積層体、及びその製造方法

Country Status (6)

Country Link
US (1) US11951731B2 (ja)
EP (1) EP4112297A4 (ja)
JP (1) JPWO2021172470A1 (ja)
CN (1) CN115135497A (ja)
TW (1) TW202200649A (ja)
WO (1) WO2021172470A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029276A (ja) * 1996-07-15 1998-02-03 Polyplastics Co 積層体およびその製造方法
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2012502135A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ポリファルネセンを含む接着剤組成物
JP2012502136A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
JP2017008308A (ja) * 2015-06-17 2017-01-12 株式会社クラレ 伸縮性材料、フィルム及び不織布
JP2018024776A (ja) 2016-08-10 2018-02-15 株式会社クラレ 熱可塑性エラストマー組成物、積層構造体及び該積層構造体の製造方法
WO2018143373A1 (ja) * 2017-02-01 2018-08-09 デンカ株式会社 表皮材用多層シ-ト
WO2019103048A1 (ja) 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物
WO2020235663A1 (ja) * 2019-05-22 2020-11-26 株式会社クラレ 水添ブロック共重合体、樹脂組成物、及び、それらの各種用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615185B2 (ja) 1986-07-17 1994-03-02 三菱油化株式会社 積層体の製造方法
JPH09156035A (ja) 1995-12-11 1997-06-17 Dainippon Ink & Chem Inc 金属部品のラミネート成形方法
JP4901106B2 (ja) 2005-01-27 2012-03-21 東レ・ダウコーニング株式会社 車両モールディング用熱可塑性エラストマー組成物および車両用モールディング付きガラス板
JP4820569B2 (ja) 2005-04-08 2011-11-24 東レ・ダウコーニング株式会社 熱可塑性エラストマー組成物および車両用モールディング付きガラス板
JP2009227844A (ja) 2008-03-24 2009-10-08 Unitika Ltd 強化ポリアミド樹脂組成物
JP2010001364A (ja) 2008-06-19 2010-01-07 Unitika Ltd ガラス繊維強化ポリアミド樹脂組成物
CN102884097A (zh) * 2010-02-02 2013-01-16 日本瑞翁株式会社 用于封装太阳能电池元件的树脂组合物和太阳能电池组件
WO2015087955A1 (ja) 2013-12-11 2015-06-18 株式会社クラレ 熱可塑性エラストマー組成物、成形体及び接着剤
US20170158916A1 (en) * 2014-07-04 2017-06-08 Dic Corporation Adhesive tape, electronic device, and method for dismantling article
EP3255073B1 (en) 2015-02-06 2021-01-20 Kuraray Co., Ltd. Hydrogenated block copolymer
JPWO2019230872A1 (ja) 2018-05-31 2021-07-15 株式会社クラレ ブロック共重合体の水素添加物、樹脂組成物、及びこれらの各種用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029276A (ja) * 1996-07-15 1998-02-03 Polyplastics Co 積層体およびその製造方法
JP2012502135A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ポリファルネセンを含む接着剤組成物
JP2012502136A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2017008308A (ja) * 2015-06-17 2017-01-12 株式会社クラレ 伸縮性材料、フィルム及び不織布
JP2018024776A (ja) 2016-08-10 2018-02-15 株式会社クラレ 熱可塑性エラストマー組成物、積層構造体及び該積層構造体の製造方法
WO2018143373A1 (ja) * 2017-02-01 2018-08-09 デンカ株式会社 表皮材用多層シ-ト
WO2019103048A1 (ja) 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物
WO2020235663A1 (ja) * 2019-05-22 2020-11-26 株式会社クラレ 水添ブロック共重合体、樹脂組成物、及び、それらの各種用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112297A4

Also Published As

Publication number Publication date
US11951731B2 (en) 2024-04-09
JPWO2021172470A1 (ja) 2021-09-02
EP4112297A4 (en) 2024-03-20
TW202200649A (zh) 2022-01-01
CN115135497A (zh) 2022-09-30
US20230109535A1 (en) 2023-04-06
EP4112297A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US9994705B2 (en) Thermoplastic elastomer composition, molded article, and adhesive agent
US10745598B2 (en) Thermoplastic polymer composition and molded article
US9102849B2 (en) Thermoplastic polymer composition and molded article
US9670354B2 (en) Thermoplastic polymer composition and molded article
EP2599833B1 (en) Thermoplastic polymer composition and molded article
WO2014156651A1 (ja) 積層体、保護フィルム及び積層体の製造方法
KR102465037B1 (ko) 열가소성 엘라스토머 조성물, 성형품, 적층 구조체 및 그 적층 구조체의 제조 방법
EP3196250B1 (en) Thermoplastic polymer composition and molded article
WO2021172470A1 (ja) 積層体、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021759582

Country of ref document: EP

Effective date: 20220927