[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021166396A1 - オルガノポリシロキサン、ゴム組成物およびタイヤ - Google Patents

オルガノポリシロキサン、ゴム組成物およびタイヤ Download PDF

Info

Publication number
WO2021166396A1
WO2021166396A1 PCT/JP2020/046849 JP2020046849W WO2021166396A1 WO 2021166396 A1 WO2021166396 A1 WO 2021166396A1 JP 2020046849 W JP2020046849 W JP 2020046849W WO 2021166396 A1 WO2021166396 A1 WO 2021166396A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
organopolysiloxane
formula
rubber composition
Prior art date
Application number
PCT/JP2020/046849
Other languages
English (en)
French (fr)
Inventor
宗直 廣神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP20919984.3A priority Critical patent/EP4108707A4/en
Priority to US17/800,466 priority patent/US20230136438A1/en
Publication of WO2021166396A1 publication Critical patent/WO2021166396A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to an organopolysiloxane, a rubber composition and a tire, and more specifically to a novel organopolysiloxane, a rubber composition and a tire containing an organic group having a sulfide group and an aryl group or an aralkyl group.
  • the sulfur-containing organosilicon compound is useful as an essential component in the production of tires made of silica-filled rubber compositions.
  • Silica-filled tires have excellent performance in automotive applications, especially in abrasion resistance, rolling resistance and wet grip. Since these improvements in performance are closely related to the improvement in fuel efficiency of tires, they have been actively studied these days.
  • the silica-filled rubber composition reduces the rolling resistance of the tire and improves the wet grip property, it has an unvulcanized viscosity. It is expensive, requires multi-step kneading, etc., and has a problem in workability. Therefore, in the rubber composition in which an inorganic filler such as silica is simply blended, there arises a problem that the dispersion of the filler is insufficient and the fracture strength and the abrasion resistance are significantly lowered. Therefore, a sulfur-containing organosilicon compound is indispensable in order to improve the dispersibility of the inorganic filler in the rubber and to chemically bond the inorganic filler and the rubber matrix.
  • sulfur-containing organic silicon compound compounds containing an alkoxysilyl group and a polysulfidesilyl group in the molecule, for example, bis-triethoxysilylpropyltetrasulfide, bis-triethoxysilylpropyldisulfide and the like are known to be effective.
  • Patent Documents 1 to 4 Further, in addition to the above-mentioned organosilicon compound having a polysulfide group, a thioester-type sealing mercapto group-containing organosilicon compound which is advantageous for silica dispersibility and a hydrolyzable silyl group moiety which is advantageous for affinity with silica due to hydrogen bonding. Also known are applications of sulfur-containing organosilicon compounds in which an aminoalcohol compound is ester-exchanged (Patent Documents 5 to 9).
  • Patent Documents 10 and 11 disclose examples of using polysiloxane having a polysulfide group and a long-chain alkyl group, and when these polysiloxanes are used, rolling resistance and wet grip are improved, but hardness and wet grip are improved. Since the tensile properties are deteriorated, it has not been possible to obtain a rubber composition for a tire that realizes a desired fuel efficiency.
  • the present invention has been made in view of the above circumstances, and is an organopolysiloxane that provides a rubber composition that is excellent in hardness, tensile properties, rolling resistance and wet grip properties and can realize a desired fuel-efficient tire, and the organopolysiloxane. It is an object of the present invention to provide a rubber composition containing.
  • the present inventor has made an organopolysiloxane containing a sulfide group-containing organic group, an aryl group or an aralkyl group, and a hydrolyzable group and / or a hydroxyl group into a rubber composition. It has been found that when added to, rolling resistance and wet grip properties can be improved without reducing the hardness and tensile properties of the cured product, and this rubber composition can achieve the desired fuel-efficient tire properties. We found that and completed the present invention.
  • Organopolysiloxane represented by the following average composition formula (1), (R 1 ) a (R 2 ) b (OR 3 ) c (R 4 ) d SiO (4-2a-bcd) / 2 (1)
  • R 1 independently represents a sulfide group-containing divalent organic group
  • R 2 independently represents an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
  • R 3 each independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
  • R 4 independently represents an alkyl group having 1 to 12 carbon atoms, and a, b, c and d are 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ . Represents a number that satisfies d ⁇ 1 and 0 ⁇ 2a + b + c + d ⁇ 4.) 2.
  • R 1 is an organopolysiloxane of 1 which is a sulfide group-containing divalent organic group represented by the following average formula (2).
  • n independently represents a number from 1 to 10
  • x represents a number from 1 to 6, and a broken line represents a bond.
  • 3. 3. 1 or 2 organopolysiloxanes in which R 2 represents a phenyl group, 4.
  • the organopolysiloxane of the present invention has a sulfide group-containing organic group, an aryl group-containing organic group, and a hydrolyzable group and / or a hydroxyl group, and a rubber composition containing this organopolysiloxane as a compounding agent for rubber.
  • the tires formed using the above can satisfy the desired fuel-efficient tire characteristics.
  • Organopolysiloxane The organopolysiloxane according to the present invention is represented by the following average composition formula (1). (R 1 ) a (R 2 ) b (OR 3 ) c (R 4 ) d SiO (4-2a-bcd) / 2 (1)
  • R 1 independently represents a sulfide group-containing divalent organic group.
  • this organic group include an alkylene group, an arylene group, an alkylene group and the like, but an alkylene group having 2 to 20 carbon atoms is preferable, and one represented by the following average formula (2) is more preferable.
  • n independently represents a number of 1 to 10, preferably 1 to 5, x represents a number of 1 to 6, preferably 2 to 4, and a broken line represents a bond.
  • sulfide group-containing divalent organic group represented by the above formula (2) include, but are not limited to, the groups represented by the following formula.
  • R 2 independently represents an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
  • aryl group having 6 to 10 carbon atoms include phenyl, tolyl, xylyl, naphthyl group and the like.
  • aralkyl group having 7 to 10 carbon atoms include phenylmethyl (benzyl) and a phenylethyl group. Among these, a phenyl group is preferable as R 2.
  • R 3 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. ..
  • Specific examples of the alkyl group having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, n-decyl, octadecyl group and the like.
  • Specific examples of the alkenyl group having 2 to 10 carbon atoms include vinyl, propenyl, pentenyl group and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms and the aralkyl group having 7 to 10 carbon atoms include the same groups as those exemplified in R 2 above.
  • R 3 a hydrogen atom, a methyl group, and an ethyl group are preferable, and an ethyl group is more preferable.
  • the ratio of R 3 to a hydrogen atom is preferably 0 to 30 mol%, more preferably 0 to 10 mol% of the total number of R 3.
  • R 4 independently represents an alkyl group having 1 to 12 carbon atoms, and as a specific example thereof, among the alkyl groups having 1 to 20 carbon atoms exemplified in R 3 above, those having 1 to 12 carbon atoms are used. Can be mentioned. Among these, an alkyl group having 6 to 12 carbon atoms is preferable as R 4 from the viewpoint of improving workability by lowering the viscosity of the rubber composition and further improving fuel efficiency.
  • a, b, c and d mean the average number of moles of each organic group when the total number of moles of silicon atoms is 1, and 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, It represents a number satisfying 0 ⁇ d ⁇ 1 and 0 ⁇ 2a + b + c + d ⁇ 4, preferably 0.2 ⁇ 2a ⁇ 0.95, 0.05 ⁇ b ⁇ 0.8, 1 ⁇ c ⁇ 2.5, 0.
  • kinematic viscosity at 25 ° C. by capillary Shikido viscometer organopolysiloxane from the viewpoint of processability, preferably 2 ⁇ 10,000mm 2 / s, more preferably 10 ⁇ 5,000mm 2 / s.
  • the organopolysiloxane of the present invention is, for example, an organosilicon compound represented by the following general formula (3), an organosilicon compound represented by the following general formula (4), and if necessary, the following general formula (5). It can be produced by co-hydrolyzing and condensing with the represented organosilicon compound.
  • R 3 , n and x have the same meanings as above, and R 5 independently have an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms, or 7 to 7 carbon atoms. Represents an aralkyl group of 10, y represents an integer of 1 to 3, preferably 2 or 3).
  • Examples of the alkyl group having 1 to 12 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the aralkyl group having 7 to 10 carbon atoms of R 5 include the same groups as those exemplified in R 2 and R 4 above. Among them, as R 5 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • organic silicon compound represented by the above formula (3) examples include bis (trimethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (trimethoxysilylpropyl) disulfide, and bis (tri). Ethoxysilylpropyl) disulfide and the like can be mentioned.
  • organosilicon compound represented by the above formula (4) include phenyltriethoxysilane, phenyltrimethoxysilane, phenyldiethoxymethylsilane, and phenyldimethoxymethylsilane.
  • organosilicon compound represented by the above formula (5) examples include methyltriethoxysilane, methylethyldiethoxysilane, propyltriethoxysilane, propylmethyldiethoxysilane, hexyltriethoxysilane, and octyltriethoxysilane. Examples thereof include decyltriethoxysilane.
  • the amount of the organosilicon compound represented by the above formulas (3), (4) and (5) is selected so that a to d are the above-mentioned numbers in the above formula (1).
  • the organosilicon compound represented by the formula (3) is preferably 20 to 95 mol%, more preferably 20 to 90, based on the whole organosilicon compounds represented by the formulas (3), (4) and (5).
  • the organosilicon compound which is mol% and is represented by the formula (4) is preferably 5 to 80 mol%, more preferably 5 to 70 mol%, particularly preferably 5 to 60 mol%, and is of the formula (5).
  • the organosilicon compound represented by is preferably 0 to 60 mol%, more preferably 5 to 50 mol%.
  • Co-hydrolysis condensation can be carried out by a known method.
  • the amount of water used can also be a known amount, and is usually 0.3 to 0.99 mol with respect to 1 mol of the total hydrolyzable silyl group in the organosilicon compound, but 0.4 to 0.4 to 0.8 mol is preferable.
  • organic solvent may be used in the production of the organopolysiloxane of the present invention, if necessary.
  • the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane and decane; ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; formamide, dimethylformamide, N-methylpyrrolidone and the like.
  • Amide-based solvent aromatic hydrocarbon-based solvent such as benzene, toluene, xylene
  • alcohol-based solvent such as methanol, ethanol, propanol and the like.
  • the amount used is not particularly limited, but it is preferably about twice the mass of the organosilicon compound or less, and particularly preferably about the same amount or less as the mass of the organosilicon compound.
  • a catalyst may be used in the production of the organopolysiloxane of the present invention, if necessary.
  • the catalyst include acidic catalysts such as hydrochloric acid and acetic acid; Lewis acid catalysts such as tetrabutyl orthotitanate and ammonium fluoride; sodium hydroxide, potassium hydroxide, sodium carbonate, sodium acetate, potassium acetate, sodium hydrogen carbonate, etc.
  • Alkali metal salts such as potassium carbonate, potassium hydrogen carbonate, calcium carbonate, sodium methoxydo and sodium ethoxide; amine compounds such as triethylamine, tributylamine, pyridine and 4-dimethylaminopyridine can be mentioned.
  • Hydrochloric acid for example, can be used as a catalyst for the hydrolysis reaction (and / or partial condensation) of silane
  • potassium hydroxide for example, can be used as a catalyst for the condensation (oligomerization) of silanol.
  • the amount of the catalyst is a total of 1 hydrolyzable silyl group in the organosilicon compound from the viewpoint of excellent reactivity. It is preferably 0.001 to 0.05 (unit: molar equivalent) with respect to the molar.
  • the reaction conditions for co-hydrolysis condensation are usually 20 to 100 ° C., preferably 60 to 85 ° C., usually 30 minutes to 20 hours, preferably 1 minute to 10 hours.
  • the rubber composition of the present invention contains the organopolysiloxane (A) represented by the above formula (1), and further contains a diene-based rubber (B) and a filler (C). May include.
  • the blending amount of the organopolysiloxane (A) represented by the above formula (1) is a filler (C) described later in consideration of the physical properties of the obtained rubber, the degree of the effect exerted and the balance between economy and the like. ) 3 to 20 parts by mass is preferable, and 5 to 12 parts by mass is more preferable with respect to 100 parts by mass.
  • any rubber conventionally generally used in various rubber compositions can be used, and specific examples thereof include natural rubber (NR); various isoprene rubber (IR). , Various styrene-butadiene copolymer rubber (SBR), various polybutadiene rubber (BR), diene rubber such as acrylonitrile-butadiene copolymer rubber (NBR), etc., and these may be used alone. Two or more kinds may be mixed and used. Further, in addition to the diene rubber, non-diene rubber such as butyl rubber (IIR) and ethylene-propylene copolymer rubber (EPR, EPDM) can be used in combination.
  • NR natural rubber
  • IR isoprene rubber
  • SBR styrene-butadiene copolymer rubber
  • BR polybutadiene rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • non-diene rubber such as butyl rubber (IIR) and ethylene-propylene
  • the filler (C) examples include silica, talc, clay, aluminum hydroxide, magnesium hydroxide, calcium carbonate, titanium oxide and the like.
  • silica is preferable, and the rubber composition of the present invention is more preferably used as a silica-containing rubber composition.
  • the blending amount of the filler (C) is 5 to 200 mass with respect to 100 parts by mass of the diene rubber in consideration of the physical characteristics of the obtained rubber, the degree of the effect exerted and the balance between economy and the like. Parts are preferable, and 30 to 120 parts by mass are more preferable.
  • the rubber composition of the present invention contains carbon black, a vulcanizing agent, a cross-linking agent, a vulcanization accelerator, a cross-linking accelerator, various oils, and anti-aging.
  • Various additives generally blended for tires such as agents and plasticizers, and for general rubber can be blended.
  • the blending amount of these additives can also be a conventional general blending amount as long as it does not contradict the object of the present invention.
  • the rubber composition of the present invention can be obtained by adding an organopolysiloxane (A), a filler (C) and other components to a diene rubber (B) and kneading them according to a conventional method.
  • A organopolysiloxane
  • C filler
  • B diene rubber
  • the rubber composition of the present invention comprises the above-mentioned components (A) to (C) and other components as a composition by a general method, and vulcanizes or crosslinks the components, for example, a rubber product such as a tire. Can be used in manufacturing. In particular, when manufacturing a tire, it is preferable that the rubber composition of the present invention is used for the tread.
  • the tire obtained by using the rubber composition of the present invention has significantly reduced rolling resistance and significantly improved wear resistance, so that desired fuel efficiency can be achieved.
  • the structure of the tire can be a conventionally known structure, and a conventionally known manufacturing method may be adopted as the manufacturing method thereof.
  • an inert gas such as nitrogen, argon or helium can be used as the gas to be filled in the tire.
  • part means a mass part
  • viscosity is a value measured at 25 ° C. using a capillary kinematic viscometer.
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 6 H 5 ) 0.28 (-OC 2 H 5 ) 2.00 SiO 0.50
  • Example 1-2 In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 539 g (1.0 mol) of bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Chemical Co., Ltd.), Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) 96 g (0.4 mol), propyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3033) 83 g (0.4 mol), ethanol 200 g 25.2 g (1.4 mol of water) of 0.5N hydrochloric acid was added dropwise at room temperature.
  • KBE-846 bis (triethoxysilylpropyl) tetrasulfide
  • Phenyltriethoxysilane manufactured
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 6 H 5 ) 0.14 (-C 3 H 7 ) 0.14 (-OC 2 H 5 ) 2.00 SiO 0.50
  • Example 1-3 In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 539 g (1.0 mol) of bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Chemical Co., Ltd.), Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) 96 g (0.4 mol), hexyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3063) 99 g (0.4 mol), ethanol 200 g 25.2 g (1.4 mol of water) of 0.5N hydrochloric acid was added dropwise at room temperature.
  • KBE-846 bis (triethoxysilylpropyl) tetrasulfide
  • Phenyltriethoxysilane
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 6 H 5 ) 0.14 (-C 6 H 13 ) 0.14 (-OC 2 H 5 ) 2.00 SiO 0.50
  • Example 1-4 In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 539 g (1.0 mol) of bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Chemical Co., Ltd.), Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) 96 g (0.4 mol), Octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) 111 g (0.4 mol), ethanol 200 g 25.2 g (1.4 mol of water) of 0.5N hydrochloric acid was added dropwise at room temperature.
  • KBE-846 bis (triethoxysilylpropyl) tetrasulfide
  • Phenyltriethoxysilane manufactured
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 6 H 5 ) 0.14 (-C 8 H 17 ) 0.14 (-OC 2 H 5 ) 2.00 SiO 0.50
  • Example 1-5 In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 539 g (1.0 mol) of bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Chemical Co., Ltd.), Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) 48 g (0.2 mol), octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) 166 g (0.6 mol), ethanol 200 g 25.2 g (1.4 mol of water) of 0.5N hydrochloric acid was added dropwise at room temperature.
  • KBE-846 bis (triethoxysilylpropyl) tetrasulfide
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 6 H 5 ) 0.07 (-C 8 H 17 ) 0.21 (-OC 2 H 5 ) 2.00 SiO 0.50
  • the obtained organopolysiloxane was represented by the following average composition formula. (-C 3 H 6 -S 4 -C 3 H 6- ) 0.36 (-C 8 H 17 ) 0.28 (-OC 2 H 5 ) 2.00 SiO 0.50
  • the obtained rubber was kneaded again using an internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.) until the internal temperature reached 140 ° C., discharged, and then stretched using a roll.
  • Zinc oxide, a vulcanization accelerator and sulfur shown in Table 1 were added thereto and kneaded to obtain a rubber composition.
  • SBR SLR-4602 (manufactured by Trinseo)
  • BR BR-01 (manufactured by JSR Corporation)
  • Oil AC-12 (manufactured by Idemitsu Kosan Co., Ltd.)
  • Carbon Black Seest 3 (manufactured by Tokai Carbon Co., Ltd.)
  • Silica Nipsil AQ (manufactured by Tosoh Silica Co., Ltd.)
  • Sulfide silane KBE-846 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Stearic acid Industrial stearic acid (manufactured by Kao Corporation)
  • Anti-aging agent Nocrack 6C (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.)
  • Wax Ozo Ace 0355 (manufactured by Nippon Seiro Co., Ltd.)
  • Zinc oxide Zinc oxide No.
  • Sulfur 5% oil-treated sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.)
  • the unvulcanized and vulcanized physical properties of the rubber compositions obtained in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2 were measured by the following methods. The results are also shown in Tables 1 and 2. Regarding the vulcanized physical characteristics, the obtained rubber composition was press-molded (160 ° C. for 10 to 40 minutes) to prepare a vulcanized rubber sheet (thickness 2 mm).
  • the rate E'(3.0%) was measured, and the value of [E'(0.5%)-E'(3.0%)] was calculated.
  • a sheet having a thickness of 0.2 cm and a width of 0.5 cm was used as the test piece, and the initial load was set to 1 N with a distance between the sandwiches used of 2 cm.
  • the value of [E'(0.5%)-E'(3.0%)] is expressed as an exponent with Comparative Example 2-1 as 100, and the smaller the exponential value, the better the dispersibility of silica. Is shown.
  • the vulcanized products of the rubber compositions of Examples 2-1 to 2-5 maintained the hardness and tensile properties as compared with the vulcanized products of the rubber compositions of Comparative Example 1-1.
  • the value of strain dispersion [E'(0.5%)-E'(3.0%)] is small, and it can be seen that the silica dispersibility is excellent.
  • the value of the dynamic viscoelastic tan ⁇ (0 ° C.) is high, the wet grip property is excellent, the dynamic viscoelastic tan ⁇ (60 ° C.) is low, the hysteresis loss is small, and the heat generation is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Tires In General (AREA)

Abstract

下記平均組成式(1)で表されるオルガノポリシロキサンは、硬度、引張特性、転がり抵抗およびウェットグリップ性に優れ、所望の低燃費タイヤを実現し得るゴム組成物を与える。 (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2 (1) (式中、R1は、それぞれ独立してスルフィド基含有二価有機基を表し、R2は、それぞれ独立して、炭素数6~10のアリール基または炭素数7~10のアラルキル基を表し、R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表し、R4は、それぞれ独立して炭素数1~12のアルキル基を表し、a、b、cおよびdは、0<2a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表す。)

Description

オルガノポリシロキサン、ゴム組成物およびタイヤ
 本発明は、オルガノポリシロキサン、ゴム組成物およびタイヤに関し、さらに詳述すると、スルフィド基を有する有機基およびアリール基またはアラルキル基を含有する新規なオルガノポリシロキサン、ゴム組成物およびタイヤに関する。
 含硫黄有機ケイ素化合物は、シリカ充填ゴム組成物からなるタイヤの製造に必須成分として有用である。シリカ充填タイヤは、自動車用途で優れた性能を有し、特に、耐磨耗性、転がり抵抗およびウェットグリップ性に優れている。これらの性能の向上は、タイヤの低燃費性向上と密接に関連しているため、昨今盛んに研究されている。
 低燃費性向上には、ゴム組成物のシリカ充填率を上げることが必須であるが、シリカ充填ゴム組成物は、タイヤの転がり抵抗を低減し、ウェットグリップ性を向上させるものの、未加硫粘度が高く、多段練り等を要し、作業性に問題がある。そのため、シリカ等の無機質充填剤を単に配合したゴム組成物では、充填剤の分散が不足し、破壊強度および耐磨耗性が大幅に低下するといった問題が生じる。
 そこで、無機質充填剤のゴム中への分散性を向上させるとともに、無機質充填剤とゴムマトリックスとを化学結合させるために、含硫黄有機ケイ素化合物が必須であった。
 含硫黄有機ケイ素化合物としては、アルコキシシリル基とポリスルフィドシリル基を分子内に含む化合物、例えば、ビス-トリエトキシシリルプロピルテトラスルフィドやビス-トリエトキシシリルプロピルジスルフィド等が有効であることが知られている(特許文献1~4)。
 また、上記ポリスルフィド基を有する有機ケイ素化合物の他に、シリカの分散性に有利なチオエステル型の封鎖メルカプト基含有有機ケイ素化合物や、水素結合によるシリカとの親和性に有利な加水分解性シリル基部分にアミノアルコール化合物をエステル交換したタイプの含硫黄有機ケイ素化合物の応用も知られている(特許文献5~9)。
 しかし、上記各特許文献に開示された含硫黄有機ケイ素化合物を使用しても、所望の低燃費性を実現するタイヤ用ゴム組成物を得るには至っていない。また、これらの含硫黄有機ケイ素化合物は、スルフィド型の化合物と比較して高コストであるうえ、製造法が複雑であることから、生産性に問題があるなど、種々課題が残されている。
 また、特許文献10および11では、ポリスルフィド基と長鎖アルキル基を有するポリシロキサンを用いた例が開示され、これらのポリシロキサンを用いた場合、転がり抵抗およびウェットグリップ性は改善するものの、硬度や引張特性が低下してしまい、所望の低燃費性を実現するタイヤ用ゴム組成物を得るには至っていない。
特表2004-525230号公報 特開2004-18511号公報 特開2002-145890号公報 米国特許第6229036号明細書 特開2005-8639号公報 特開2008-150546号公報 特開2010-132604号公報 特許第4571125号公報 米国特許第6414061号明細書 特許第5574063号公報 特許第6384338号公報
 本発明は、上記事情に鑑みなされたもので、硬度、引張特性、転がり抵抗およびウェットグリップ性に優れ、所望の低燃費タイヤを実現し得るゴム組成物を与えるオルガノポリシロキサン、およびこのオルガノポリシロキサンが配合されたゴム組成物を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、スルフィド基含有有機基、アリール基またはアラルキル基、並びに加水分解性基および/または水酸基を含有するオルガノポリシロキサンが、ゴム組成物に添加した場合にその硬化物の硬度や引張特性を低下させずに転がり抵抗およびウェットグリップ性を改善することができることを見出すとともに、このゴム組成物が、所望の低燃費タイヤ特性を実現し得ることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 下記平均組成式(1)で表されるオルガノポリシロキサン、
 (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2   (1)
(式中、R1は、それぞれ独立してスルフィド基含有二価有機基を表し、R2は、それぞれ独立して、炭素数6~10のアリール基または炭素数7~10のアラルキル基を表し、R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表し、R4は、それぞれ独立して炭素数1~12のアルキル基を表し、a、b、cおよびdは、0<2a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表す。)
2. 前記R1が、下記平均式(2)で表されるスルフィド基含有二価有機基である1のオルガノポリシロキサン、
Figure JPOXMLDOC01-appb-C000002
(式中、nは、それぞれ独立して1~10の数を表し、xは、1~6の数を表し、破線は結合手を表す。)
3. 前記R2が、フェニル基を表す1または2のオルガノポリシロキサン、
4. 前記dが、0<d<1を満たす数を表す1~3のいずれかのオルガノポリシロキサン、
5. 前記R4が、炭素数6~12のアルキル基を表す1~4のいずれかのオルガノポリシロキサン、
6. 1~5のいずれかのオルガノポリシロキサンを含むゴム組成物、
7. ジエン系ゴムおよび充填剤を含む6のゴム組成物、
8. 6または7のゴム組成物を成形してなるタイヤ、
9. 6または7のゴム組成物の硬化物、
10. 9の硬化物を用いたタイヤ
を提供する。
 本発明のオルガノポリシロキサンは、スルフィド基含有有機基、アリール基含有有機基、並びに加水分解性基および/または水酸基を有しており、このオルガノポリシロキサンをゴム用配合剤として含有するゴム組成物を用いて形成されたタイヤは、所望の低燃費タイヤ特性を満足することができる。
 以下、本発明について具体的に説明する。
[1]オルガノポリシロキサン
 本発明に係るオルガノポリシロキサンは、下記平均組成式(1)で表される。
 (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2   (1)
 上記式(1)において、R1は、それぞれ独立してスルフィド基含有二価有機基を表す。
 この有機基としては、アルキレン基、アリーレン基、アルキレン基等が挙げられるが、炭素数2~20のアルキレン基が好ましく、下記平均式(2)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、nは、それぞれ独立して1~10、好ましくは1~5の数を表し、xは、1~6、好ましくは2~4の数を表し、破線は結合手を表す。)
 上記式(2)で表されるスルフィド基含有二価有機基の具体例としては、下記式で表される基が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
(式中、破線は結合手を表す。)
 R2は、それぞれ独立して、炭素数6~10のアリール基または炭素数7~10のアラルキル基を表す。
 炭素数6~10のアリール基の具体例としては、フェニル、トリル、キシリル、ナフチル基等が挙げられる。
 炭素数7~10のアラルキル基の具体例としては、フェニルメチル(ベンジル)、フェニルエチル基等が挙げられる。
 これらの中でもR2としては、フェニル基が好ましい。
 R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表す。
 炭素数1~20のアルキル基の具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-オクチル、n-デシル、オクタデシル基等が挙げられる。
 炭素数2~10のアルケニル基の具体例としては、ビニル、プロペニル、ペンテニル基等が挙げられる。
 炭素数6~10のアリール基および炭素数7~10のアラルキル基としては、上記R2で例示した基と同様のものが挙げられる。
 これらの中でも、R3としては、水素原子、メチル基、エチル基が好ましく、エチル基がより好ましい。なお、R3が水素原子である割合は、R3の全数のうち0~30モル%が好ましく、0~10モル%がより好ましい。
 R4は、それぞれ独立して炭素数1~12のアルキル基を表し、その具体例としては、上記R3で例示した炭素数1~20のアルキル基のうち、炭素数1~12のものが挙げられる。
 これらの中でも、ゴム組成物の粘度を低下させることで加工性を向上させ、さらには低燃費性をより向上させる観点から、R4としては、炭素数6~12のアルキル基が好ましい。
 a、b、cおよびdは、ケイ素原子の合計モル数を1とした場合の各有機基の平均モル数を意味し、0<2a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表すが、好ましくは0.2≦2a≦0.95、0.05≦b≦0.8、1≦c≦2.5、0≦d≦0.6、かつ1.3≦2a+b+c+d<4を満たす数、より好ましくは、0.3≦2a≦0.80、0.05≦b≦0.6、1≦c≦2.5、0.05≦d≦0.5、かつ1.5≦2a+b+c+d<4を満たす数である。
 本発明において、オルガノポリシロキサンの毛細管式動粘度計による25℃における動粘度は、加工性の点から、2~10,000mm2/sが好ましく、10~5,000mm2/sがより好ましい。
 本発明のオルガノポリシロキサンは、例えば、下記一般式(3)で表される有機ケイ素化合物と、下記一般式(4)で表される有機ケイ素化合物と、必要により、下記一般式(5)で表される有機ケイ素化合物とを共加水分解縮合することにより製造することができる。
Figure JPOXMLDOC01-appb-C000005
(式中、R3、nおよびxは上記と同じ意味を表し、R5は、それぞれ独立して、炭素数1~12のアルキル基、炭素数6~10のアリール基、または炭素数7~10のアラルキル基を表し、yは、1~3の整数、好ましくは、2または3を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R2、R3、R5およびyは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、R3、R4およびyは、上記と同じ意味を表す。)
 R5の炭素数1~12のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基としては、上記R2およびR4で例示した基と同様のものが挙げられるが、それらの中でも、R5としては、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 上記式(3)で表される有機ケイ素化合物の具体的としては、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)ジスルフィド等が挙げられる。
 上記式(4)で表される有機ケイ素化合物の具体的としては、フェニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルジエトキシメチルシラン、フェニルジメトキシメチルシラン等が挙げられる。
 上記式(5)で表される有機ケイ素化合物の具体的としては、メチルトリエトキシシラン、メチルエチルジエトキシシラン、プロピルトリエトキシシラン、プロピルメチルジエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン等が挙げられる。
 ここで、上記式(3)、(4)および(5)で表される有機ケイ素化合物の使用量は、上記式(1)において、a~dが上述した数となるように選択される。式(3)、(4)および(5)で表される有機ケイ素化合物全体に対し、式(3)で表される有機ケイ素化合物は、好ましくは20~95モル%、より好ましくは20~90モル%であり、式(4)で表される有機ケイ素化合物は、好ましくは5~80モル%、より好ましくは5~70モル%、特に好ましくは5~60モル%であり、式(5)で表される有機ケイ素化合物は、好ましくは0~60モル%、より好ましくは5~50モル%である。
 共加水分解縮合は、公知の方法によって行うことができる。使用する水の量も公知の量とすることができ、通常、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し、0.3~0.99モルであるが、0.4~0.8モルが好ましい。
 本発明のオルガノポリシロキサンの製造には、必要に応じて有機溶媒を用いてもよい。
 有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタン、デカン等の脂肪族炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ホルムアミド、ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;メタノール、エタノール、プロパノール等のアルコール系溶媒などが挙げられる。
 これらの中でも、加水分解反応性に優れるという観点から、エタノール、i-プロパノールが好ましい。上記溶媒を使用する場合、その使用量は特に限定されないが、上記有機ケイ素化合物の質量の2倍量以下程度が好適であり、特に有機ケイ素化合物の質量と同量以下程度が好ましい。
 また、本発明のオルガノポリシロキサンの製造には、必要に応じて触媒を用いてもよい。
 触媒の具体例としては、塩酸、酢酸等の酸性触媒;テトラブチルオルトチタネート、アンモニウムフルオリド等のルイス酸触媒;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、酢酸ナトリウム、酢酸カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸カルシウム、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属塩;トリエチルアミン、トリブチルアミン、ピリジン、4-ジメチルアミノピリジン等のアミン化合物などが挙げられる。
 シランの加水分解反応(および/または一部縮合)の触媒として、例えば塩酸を使用することができ、シラノールの縮合(オリゴマー化)の触媒として、例えば水酸化カリウムを使用することができる。
 触媒の量(シランの加水分解反応の触媒とシラノールの縮合反応の触媒を併用する場合はそれぞれの量)は、反応性に優れるという観点から、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し、0.001~0.05(単位:モル当量)が好ましい。
 共加水分解縮合の反応条件は、通常、20~100℃、好ましくは60~85℃にて、通常30分~20時間、好ましくは1分~10時間である。
[2]ゴム組成物
 本発明のゴム組成物は、上述した式(1)で表されるオルガノポリシロキサン(A)を含むものであり、さらに、ジエン系ゴム(B)、充填剤(C)を含んでいてもよい。
 上記式(1)で表されるオルガノポリシロキサン(A)の配合量は、得られるゴムの物性や、発揮される効果の程度と経済性とのバランス等を考慮すると、後述する充填剤(C)100質量部に対し、3~20質量部が好ましく、5~12質量部がより好ましい。
 ジエン系ゴム(B)としては、従来、各種ゴム組成物に一般的に用いられている任意のゴムを用いることができ、その具体例としては、天然ゴム(NR);各種イソプレンゴム(IR)、各種スチレン-ブタジエン共重合体ゴム(SBR)、各種ポリブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴムなどが挙げられ、これらは、1種単独で用いても、2種以上混合して用いてもよい。また、ジエン系ゴム以外に、ブチルゴム(IIR)、エチレン-プロピレン共重合体ゴム(EPR,EPDM)等の非ジエン系ゴムなどを併用することができる。
 充填剤(C)としては、シリカ、タルク、クレー、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、酸化チタン等が挙げられる。これらの中でも、シリカが好ましく、本発明のゴム組成物は、シリカ含有ゴム組成物として用いることがより好ましい。
 この場合、充填剤(C)の配合量は、得られるゴムの物性や、発揮される効果の程度と経済性とのバランス等を考慮すると、ジエン系ゴム100質量部に対し、5~200質量部が好ましく、30~120質量部がより好ましい。
 なお、本発明のゴム組成物には、上記(A)~(C)の各成分に加えて、カーボンブラック、加硫剤、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、可塑剤等のタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができる。これら添加剤の配合量も本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
 本発明のゴム組成物は、常法に従い、ジエン系ゴム(B)に、オルガノポリシロキサン(A)、充填剤(C)およびその他の成分を加えて混練することで得ることができる。
[3]ゴム製品(タイヤ)
 本発明のゴム組成物は、上述した(A)~(C)成分およびその他の成分を一般的な方法で組成物とし、これを加硫または架橋するゴム製品、例えば、タイヤ等のゴム製品の製造に使用することができる。特に、タイヤを製造する場合、本発明のゴム組成物がトレッドに用いられていることが好ましい。
 本発明のゴム組成物を用いて得られるタイヤは、転がり抵抗が大幅に低減されていることに加え、耐磨耗性も大幅に向上していることから、所望の低燃費性を実現できる。
 なお、タイヤの構造は、従来公知の構造とすることができ、その製法も、従来公知の製法を採用すればよい。また、気体入りのタイヤの場合、タイヤ内に充填する気体として通常空気や、酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記例において、「部」は質量部を意味し、粘度は毛細管式動粘度計を用いて25℃で測定した値である。
[1]オルガノポリシロキサンの合成
[実施例1-1]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、フェニルトリエトキシシラン(信越化学工業(株)製、KBE-103)192g(0.8mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、粘度が240mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C650.28(-OC252.00SiO0.50
[実施例1-2]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、フェニルトリエトキシシラン(信越化学工業(株)製、KBE-103)96g(0.4mol)、プロピルトリエトキシシラン(信越化学工業(株)製、KBE-3033)83g(0.4mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が150mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C650.14(-C370.14(-OC252.00SiO0.50
[実施例1-3]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、フェニルトリエトキシシラン(信越化学工業(株)製、KBE-103)96g(0.4mol)、ヘキシルトリエトキシシラン(信越化学工業(株)製、KBE-3063)99g(0.4mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、粘度が120mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C650.14(-C6130.14(-OC252.00SiO0.50
[実施例1-4]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、フェニルトリエトキシシラン(信越化学工業(株)製、KBE-103)96g(0.4mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)111g(0.4mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、粘度が80mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C650.14(-C8170.14(-OC252.00SiO0.50
[実施例1-5]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、フェニルトリエトキシシラン(信越化学工業(株)製、KBE-103)48g(0.2mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)166g(0.6mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、粘度が80mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C650.07(-C8170.21(-OC252.00SiO0.50
[比較例1-1]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)539g(1.0mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)222g(0.8mol)、エタノール200gを納めた後、室温にて0.5N塩酸25.2g(水1.4mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、粘度が80mm2/sの褐色透明液体を得た。得られたオルガノポリシロキサンは、下記平均組成式で表されるものであった。
(-C36-S4-C36-)0.36(-C8170.28(-OC252.00SiO0.50
[2]ゴム組成物の調製
[実施例2-1~2-5,比較例2-1~2-2]
 4Lのインターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて、表1記載のSBRとBRを30秒間混練した。
 次いで、表1記載のオイル成分、カーボンブラック、シリカ、スルフィドシラン、実施例および比較例で得られたオルガノポリシロキサン、ステアリン酸、老化防止剤、並びにワックスを加え、内温を150℃まで上昇させ、150℃で2分間保持をかけた後、排出した。その後、ロールを用いて延伸した。得られたゴムを、再度インターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて内温が140℃になるまで混練し、排出した後、ロールを用いて延伸した。
 これに表1記載の酸化亜鉛、加硫促進剤および硫黄を加えて混練し、ゴム組成物を得た。
 SBR:SLR-4602(トリンセオ製)
 BR:BR-01(JSR(株)製)
 オイル:AC-12(出光興産(株)製)
 カーボンブラック:シースト3(東海カーボン(株)製)
 シリカ:ニプシルAQ(東ソー・シリカ(株)製)
 スルフィドシラン:KBE-846(信越化学工業(株)製)
 ステアリン酸:工業用ステアリン酸(花王(株)製)
 老化防止剤:ノクラック6C(大内新興化学工業(株)製)
 ワックス:オゾエース0355(日本精蝋(株)製)
 酸化亜鉛:亜鉛華3号(三井金属鉱業(株)製)
 加硫促進剤(a):ノクセラーD(大内新興化学工業(株)製)
 加硫促進剤(b):ノクセラーDM-P(大内新興化学工業(株)製)
 加硫促進剤(c):ノクセラーCZ-G(大内新興化学工業(株)製)
 硫黄:5%オイル処理硫黄(細井化学工業(株)製)
 上記実施例2-1~2-5、比較例2-1~2-2で得られたゴム組成物について、未加硫物性および加硫物性を下記の方法で測定した。結果を表1,2に併せて示す。なお、加硫物性に関しては、得られたゴム組成物をプレス成形(160℃、10~40分)して、加硫ゴムシート(厚み2mm)を作製した。
〔未加硫物性〕
(1)ムーニー粘度
 JIS K 6300-1:2013に準拠し、余熱1分、測定4分、温度130℃にて測定し、比較例2-1を100として指数で表した。指数値が小さいほど、ムーニー粘度が低く加工性に優れている。
〔加硫物性〕
(2)硬度
 JIS K 6253-3:2012に準拠しデュロメーター(タイプA)硬さを測定し、比較例2-1を100として指数で表した。指数値が大きいほど、硬度が高く優れている。
(3)引張特性
 JIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、300%モジュラス(M300)[MPa]を室温にて測定した。得られた結果を、比較例2-1を100として指数表示した。指数値が大きいほど、モジュラスが高く引張特性に優れることを示す。
(4)動的粘弾性(歪分散)
 粘弾性測定装置(メトラビブ社製)を使用し、温度25℃、周波数55Hzの条件にて、歪0.5%の貯蔵弾性率E’(0.5%)と歪3.0%の貯蔵弾性率E’(3.0%)を測定し、[E’(0.5%)-E’(3.0%)]の値を算出した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。
 [E’(0.5%)-E’(3.0%)]の値は、比較例2-1を100として指数で表し、指数値が小さい程、シリカの分散性が良好であることを示す。
(5)動的粘弾性(温度分散)
 粘弾性測定装置(メトラビブ社製)を使用し、引張の動歪1%、周波数55Hzの条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。
 tanδ(0℃)、tanδ(60℃)の値は、比較例2-1を100として指数で表した。tanδ(0℃)の値は、指数値が大きいほどウェットグリップ性が良好であることを示す。tanδ(60℃)の値は、指数値が小さいほど転がり抵抗が良好であることを示す。
(6)耐磨耗性
 FPS試験機(上島製作所製)を用いて、サンプルスピード200m/分、荷重20N、路面温度30℃、スリップ率5%の条件で試験を行った。
 得られた結果を、比較例2-1を100として指数表示した。指数値が大きいほど、磨耗量が少なく耐磨耗性に優れることを示す。
Figure JPOXMLDOC01-appb-T000008
 表1に示されるように、実施例2-1~2-5のゴム組成物の加硫物は、比較例1-1のゴム組成物の加硫物に比べ、硬度や引張特性を維持したまま、歪分散[E’(0.5%)-E’(3.0%)]の値が小さく、シリカ分散性に優れていることがわかる。また、動的粘弾性tanδ(0℃)の値が高く、ウェットグリップ性に優れ、動的粘弾性tanδ(60℃)が低く、ヒステリシスロスが小さく低発熱性である。

Claims (10)

  1.  下記平均組成式(1)で表されるオルガノポリシロキサン。
     (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2   (1)
    (式中、R1は、それぞれ独立してスルフィド基含有二価有機基を表し、R2は、それぞれ独立して、炭素数6~10のアリール基または炭素数7~10のアラルキル基を表し、R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表し、R4は、それぞれ独立して炭素数1~12のアルキル基を表し、a、b、cおよびdは、0<2a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表す。)
  2.  前記R1が、下記平均式(2)で表されるスルフィド基含有二価有機基である請求項1記載のオルガノポリシロキサン。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは、それぞれ独立して1~10の数を表し、xは、1~6の数を表し、破線は結合手を表す。)
  3.  前記R2が、フェニル基を表す請求項1または2記載のオルガノポリシロキサン。
  4.  前記dが、0<d<1を満たす数を表す請求項1~3のいずれか1項記載のオルガノポリシロキサン。
  5.  前記R4が、炭素数6~12のアルキル基を表す請求項1~4のいずれか1項記載のオルガノポリシロキサン。
  6.  請求項1~5のいずれか1項記載のオルガノポリシロキサンを含むゴム組成物。
  7.  ジエン系ゴムおよび充填剤を含む請求項6記載のゴム組成物。
  8.  請求項6または7記載のゴム組成物を成形してなるタイヤ。
  9.  請求項6または7記載のゴム組成物の硬化物。
  10.  請求項9記載の硬化物を用いたタイヤ。
PCT/JP2020/046849 2020-02-18 2020-12-16 オルガノポリシロキサン、ゴム組成物およびタイヤ WO2021166396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20919984.3A EP4108707A4 (en) 2020-02-18 2020-12-16 ORGANOPOLYSILOXANE, RUBBER COMPOSITION, AND TIRE
US17/800,466 US20230136438A1 (en) 2020-02-18 2020-12-16 Organopolysiloxane, rubber composition, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020024945A JP2021130730A (ja) 2020-02-18 2020-02-18 オルガノポリシロキサン、ゴム組成物およびタイヤ
JP2020-024945 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166396A1 true WO2021166396A1 (ja) 2021-08-26

Family

ID=77391542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046849 WO2021166396A1 (ja) 2020-02-18 2020-12-16 オルガノポリシロキサン、ゴム組成物およびタイヤ

Country Status (4)

Country Link
US (1) US20230136438A1 (ja)
EP (1) EP4108707A4 (ja)
JP (2) JP2021130730A (ja)
WO (1) WO2021166396A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101081A1 (ja) * 2022-11-10 2024-05-16 信越化学工業株式会社 オルガノポリシロキサンおよびゴム組成物

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194638A (ja) * 1996-01-11 1997-07-29 Michelin & Cie 機能化ポリオルガノシロキサン及びオルガノシラン化合物をベースとする強化添加剤を含むシリカをベースとするタイヤケーシング用ゴム組成物
JP2000038395A (ja) * 1998-06-10 2000-02-08 Degussa Huels Ag オリゴマ―のオルガノシランポリスルファン、その製造方法、それを含有するゴム混合物、その製造方法及びゴム混合物から得られた成形体
JP2000128990A (ja) * 1998-10-27 2000-05-09 Degussa Huels Ag 硫黄官能性ポリオルガノシロキサン、その製造法、該化合物を含有するゴム混合物、その製造法および該混合物からなる成形体
US6229036B1 (en) 1998-09-29 2001-05-08 Degussa-Hüls Aktiengesellschaft Sulfanylsilanes
JP2002145890A (ja) 2000-11-08 2002-05-22 Shin Etsu Chem Co Ltd 有機珪素化合物及びその製造方法
US6414061B1 (en) 1997-08-21 2002-07-02 Crompton Corporation Blocked mercaptosilane coupling agents for filled rubbers
JP2003113243A (ja) * 2001-07-06 2003-04-18 Degussa Ag オリゴマーオルガノシラン、その製法、その使用、それを含有するゴム混合物、およびその混合物を含有する成形体
JP2004018511A (ja) 2002-06-20 2004-01-22 Shin Etsu Chem Co Ltd 有機珪素化合物、その製造方法、及びゴム用配合剤
JP2004525230A (ja) 2001-04-10 2004-08-19 ソシエテ ド テクノロジー ミシュラン カップリング剤としてビス‐アルコキシシランテトラスルフィドを含むタイヤおよびトレッド
JP2005008639A (ja) 2003-06-20 2005-01-13 Degussa Ag オルガノ珪素化合物
JP2008150546A (ja) 2006-12-20 2008-07-03 Shin Etsu Chem Co Ltd ゴム用配合剤
JP2010132604A (ja) 2008-12-04 2010-06-17 Bridgestone Corp 有機ケイ素化合物、並びにそれを用いたゴム組成物及びタイヤ
JP4571125B2 (ja) 2003-03-03 2010-10-27 モーメンティブ・パフォーマンス・マテリアルズ・インク ブロックトメルカプトシランの製造方法
WO2010140551A1 (ja) * 2009-06-02 2010-12-09 日産化学工業株式会社 スルフィド結合を有するシリコン含有レジスト下層膜形成組成物
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
JP5574063B2 (ja) 2012-06-27 2014-08-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014214091A (ja) * 2013-04-23 2014-11-17 信越化学工業株式会社 有機官能基含有オルガノポリシロキサンの製造方法
JP2017507206A (ja) * 2014-01-15 2017-03-16 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH オリゴマーオルガノシラン、その製造およびゴム混合物におけるその使用
JP2018505917A (ja) * 2014-11-13 2018-03-01 ダウ コーニング コーポレーションDow Corning Corporation 硫黄含有ポリオルガノシロキサン組成物及び関連する態様
JP6384338B2 (ja) 2015-01-26 2018-09-05 信越化学工業株式会社 オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194638A (ja) * 1996-01-11 1997-07-29 Michelin & Cie 機能化ポリオルガノシロキサン及びオルガノシラン化合物をベースとする強化添加剤を含むシリカをベースとするタイヤケーシング用ゴム組成物
US6414061B1 (en) 1997-08-21 2002-07-02 Crompton Corporation Blocked mercaptosilane coupling agents for filled rubbers
JP2000038395A (ja) * 1998-06-10 2000-02-08 Degussa Huels Ag オリゴマ―のオルガノシランポリスルファン、その製造方法、それを含有するゴム混合物、その製造方法及びゴム混合物から得られた成形体
US6229036B1 (en) 1998-09-29 2001-05-08 Degussa-Hüls Aktiengesellschaft Sulfanylsilanes
JP2000128990A (ja) * 1998-10-27 2000-05-09 Degussa Huels Ag 硫黄官能性ポリオルガノシロキサン、その製造法、該化合物を含有するゴム混合物、その製造法および該混合物からなる成形体
JP2002145890A (ja) 2000-11-08 2002-05-22 Shin Etsu Chem Co Ltd 有機珪素化合物及びその製造方法
JP2004525230A (ja) 2001-04-10 2004-08-19 ソシエテ ド テクノロジー ミシュラン カップリング剤としてビス‐アルコキシシランテトラスルフィドを含むタイヤおよびトレッド
JP2003113243A (ja) * 2001-07-06 2003-04-18 Degussa Ag オリゴマーオルガノシラン、その製法、その使用、それを含有するゴム混合物、およびその混合物を含有する成形体
JP2004018511A (ja) 2002-06-20 2004-01-22 Shin Etsu Chem Co Ltd 有機珪素化合物、その製造方法、及びゴム用配合剤
JP4571125B2 (ja) 2003-03-03 2010-10-27 モーメンティブ・パフォーマンス・マテリアルズ・インク ブロックトメルカプトシランの製造方法
JP2005008639A (ja) 2003-06-20 2005-01-13 Degussa Ag オルガノ珪素化合物
JP2008150546A (ja) 2006-12-20 2008-07-03 Shin Etsu Chem Co Ltd ゴム用配合剤
JP2010132604A (ja) 2008-12-04 2010-06-17 Bridgestone Corp 有機ケイ素化合物、並びにそれを用いたゴム組成物及びタイヤ
WO2010140551A1 (ja) * 2009-06-02 2010-12-09 日産化学工業株式会社 スルフィド結合を有するシリコン含有レジスト下層膜形成組成物
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
JP5574063B2 (ja) 2012-06-27 2014-08-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014214091A (ja) * 2013-04-23 2014-11-17 信越化学工業株式会社 有機官能基含有オルガノポリシロキサンの製造方法
JP2017507206A (ja) * 2014-01-15 2017-03-16 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH オリゴマーオルガノシラン、その製造およびゴム混合物におけるその使用
JP2018505917A (ja) * 2014-11-13 2018-03-01 ダウ コーニング コーポレーションDow Corning Corporation 硫黄含有ポリオルガノシロキサン組成物及び関連する態様
JP6384338B2 (ja) 2015-01-26 2018-09-05 信越化学工業株式会社 オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108707A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101081A1 (ja) * 2022-11-10 2024-05-16 信越化学工業株式会社 オルガノポリシロキサンおよびゴム組成物

Also Published As

Publication number Publication date
EP4108707A4 (en) 2024-03-20
JP2023153343A (ja) 2023-10-17
EP4108707A1 (en) 2022-12-28
US20230136438A1 (en) 2023-05-04
JP2021130730A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
TW201802219A (zh) 有機矽化合物、以及使用其之橡膠用摻合劑及橡膠組成物
JP6349999B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2008163125A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
TW201808971A (zh) 有機矽化合物、以及使用其之橡膠用摻合劑及橡膠組成物
JP6213091B2 (ja) アンダートレッド用ゴム組成物
WO2018105707A1 (ja) タイヤ用ゴム組成物の製造方法
JP6424597B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2023153343A (ja) オルガノポリシロキサンを含むゴム組成物およびタイヤ
JP6384338B2 (ja) オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ
JP2002201278A (ja) ゴム反応性ポリシロキサン及びそれを含むゴム組成物
JP4336920B2 (ja) ゴム組成物
JP7413987B2 (ja) ゴム組成物およびタイヤ
TW202043313A (zh) 橡膠組成物
JP2015205844A (ja) 含硫黄有機ケイ素化合物及びその製造方法、ゴム用配合剤、ゴム組成物並びにタイヤ
JP7021650B2 (ja) ゴム組成物及び有機ケイ素化合物
WO2024101081A1 (ja) オルガノポリシロキサンおよびゴム組成物
WO2024101082A1 (ja) ゴム組成物およびオルガノポリシロキサン
JP7415961B2 (ja) 有機ケイ素化合物を含むゴム組成物
JP2019137778A (ja) タイヤ用ゴム組成物の製造方法
TWI688584B (zh) 矽烷改質聚合物、以及使用其之橡膠用摻合劑及橡膠組成物
WO2021053981A1 (ja) 有機ケイ素化合物、有機ケイ素化合物の混合物およびその製造方法、有機ケイ素化合物の混合物を含有するゴム組成物並びにタイヤ
JP2023143258A (ja) ゴム組成物および表面処理シリカ
JP2019156930A (ja) タイヤ用ゴム組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919984

Country of ref document: EP

Effective date: 20220919