[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021164901A1 - Appareil de compression et station de remplissage comprenant un tel appareil - Google Patents

Appareil de compression et station de remplissage comprenant un tel appareil Download PDF

Info

Publication number
WO2021164901A1
WO2021164901A1 PCT/EP2020/079586 EP2020079586W WO2021164901A1 WO 2021164901 A1 WO2021164901 A1 WO 2021164901A1 EP 2020079586 W EP2020079586 W EP 2020079586W WO 2021164901 A1 WO2021164901 A1 WO 2021164901A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
compression
compression chamber
fluid
cavity
Prior art date
Application number
PCT/EP2020/079586
Other languages
English (en)
Inventor
Cyril BENISTAND-HECTOR
Guillaume Petitpas
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CA3168517A priority Critical patent/CA3168517A1/fr
Priority to CN202080095677.1A priority patent/CN115066554A/zh
Priority to JP2022547925A priority patent/JP2023517475A/ja
Priority to US17/800,995 priority patent/US20230085780A1/en
Priority to EP20790342.8A priority patent/EP4107396A1/fr
Priority to KR1020227032080A priority patent/KR20220140832A/ko
Publication of WO2021164901A1 publication Critical patent/WO2021164901A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/021Pumping installations or systems having reservoirs the pump being immersed in the reservoir
    • F04B23/023Pumping installations or systems having reservoirs the pump being immersed in the reservoir only the pump-part being immersed, the driving-part being outside the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0814Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/082Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0824Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0826Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • 1 / invention relates to an apparatus for compressing cryogenic fluid as well as to a filling station comprising such an apparatus.
  • the invention relates more particularly to a fluid compression apparatus with several compression stages comprising a first compression chamber, a second compression chamber, an intake system communicating with the first compression chamber configured to allow the entry of fluid. to compress in said first compression chamber, a transfer system configured to allow in the open position the transfer of fluid from the first compression chamber to the second compression chamber, a movable piston to ensure the compression of the fluid in the first and second compression chambers, the apparatus further comprising an evacuation orifice communicating with the second compression chamber and configured to allow the outlet of compressed fluid, the piston being movable in translation in a longitudinal direction, the first compression chamber being delimited by a fixed lower cavity, a lower end of the piston and a first sealing system formed between the piston and a wall of the lower cavity, the second compression chamber being delimited by a fixed upper cavity, an upper end of the piston and a second sealing system formed between the piston and a wall of the upper cavity.
  • the invention relates in particular to an apparatus for compressing or pumping cryogenic gases and / or liquids.
  • compression device in fact relates to a pumping and / or pumping apparatus. compression of liquid and / or gaseous and / or supercritical cryogenic fluid.
  • cryogenic fluids have much higher densities than gaseous fluids. Therefore, cryogenic pumps (as opposed to gas compressors) offer higher mass flow rates, smaller volume consume less energy and require less maintenance. This is why cryogenic pumps are used in many fields such as air separation units, reformers, filling stations, maritime sectors.
  • the fluids involved generally include oxygen, nitrogen, natural gas, argon, helium or hydrogen.
  • the function of these compression devices (or pumps) is to pressurize a cryogenic fluid to a target flow rate.
  • a cryogenic piston pump can be placed directly in line at the outlet of the cryogenic source storage or even in a dedicated cryogenic bath (also called "sump" in English), located next to and directly fed by a main storage tank .
  • cryogenic pump is reciprocating and is inserted into a reservoir so as to be submerged in the cryogenic fluid to be pumped.
  • Cryogenic pumps typically have inlet pressures of 1 to 12 bar and outlet pressures of 20 to 1000 bar, depending on the application. Pumps can have one or more stages of compression using a reciprocating motion.
  • a two-stage compression mechanism is often preferred because this allows to decouple the intake phase (during which the fluid must be as dense and therefore as cold as possible) and the pressurization phase (where harmful amounts of heat for the process can be generated).
  • the main performance indicators of cryogenic piston pumps are: volumetric efficiency, evaporative losses, energy consumption, footprint and durability.
  • the main characteristics of reciprocating cryogenic pumps should therefore be: the highest possible suction density, very good thermal insulation with the environment, minimum dead volume (therefore a high compression ratio), simple assembly and robust for rapid maintenance and high reliability, good management of evaporative losses in order to limit their impact.
  • Document US7410348 describes a two-stage horizontal piston compression pump with an axial inlet via a non-return valve and a radial discharge. This architecture has a significant dead volume. In addition, the leakage losses are relatively high at the level of two high pressure seal systems located on either side of the high pressure chamber.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the compression apparatus is essentially characterized in that, in the operating configuration of the apparatus, the longitudinal direction translation of the piston is vertical, the intake system being located at a lower end of the device, the discharge port being located in an upper part of the device, above the transfer system.
  • embodiments of the invention may include one or more of the following characteristics: the lower cavity and the upper cavity are separate entities, the piston comprising an internal duct providing the fluidic connection between the first and second compression chambers, the piston is mechanically connected to an actuator such as a motor and / or a system for transmitting the movement of an engine, for example, via at least one axis arranged around the upper cavity and extending in a direction of the longitudinal axis, the transfer system is located at the upper end of the piston, the second sealing system formed between the piston and a wall of the upper cavity is located only at the level of the lower end of the second compression chamber and / or below the second compression chamber, the The discharge port is located at the upper end of the upper cavity, the apparatus comprising a compressed gas discharge line comprising a first end connected to the discharge port.
  • the intake system is located at a lower end of the lower cavity, the compression of the fluid in the second compression chamber is caused by an upward stroke of the piston, the The apparatus is housed in a sealed enclosure containing a bath) of cryogenic cooling fluid.
  • the invention also relates to a station for filling pressurized gas tanks comprising a source of liquefied gas, in particular liquefied hydrogen, a withdrawal circuit having a first end connected to the source and at least one second end intended to be connected. to a reservoir to be filled, the withdrawal circuit comprising a pumping device or a fluid compression device conforms to any of the above or below specifications.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a view in longitudinal and vertical section, schematic and partial, illustrating the structure of an exemplary embodiment of a compression apparatus according to the invention
  • FIG. 2 represents a view in longitudinal and vertical section, schematic and partial, illustrating a first configuration of an operating cycle of the compression apparatus according to the invention
  • FIG. 3 represents a view in longitudinal and vertical section, schematic and partial, illustrating a second configuration of an operating cycle of the compression apparatus according to the invention
  • FIG. 4 represents a view in longitudinal and vertical section, schematic and partial, illustrating a third configuration of an operating cycle of the compression apparatus according to the invention
  • FIG. 5 is a view in longitudinal and vertical section, schematic and partial, illustrating a fourth configuration of an operating cycle of the compression apparatus according to the invention
  • FIG. 6 is a view in longitudinal and vertical section, schematic and partial, illustrating a fifth configuration of an operating cycle of the compression apparatus according to the invention
  • FIG. 7 shows a view in longitudinal and vertical section, schematic and partial, illustrating the structure of another embodiment of a compression apparatus according to the invention
  • FIG. 8 shows a view in longitudinal and vertical section, schematic and partial, illustrating the structure of yet another exemplary embodiment of a compression apparatus according to the invention
  • FIG. 9 is a schematic and partial view illustrating an example of a filling station using such a compression device.
  • the fluid compression apparatus 1 shown in [Fig. 1] comprises two compression stages in series.
  • the apparatus 1 comprises in particular a first compression chamber 3 (at relative low pressure) and a second compression chamber 4 (at relative high pressure).
  • the apparatus 1 comprises an intake system 2 communicating with the first compression chamber 3 and which is configured to allow the entry of fluid to be compressed into said first compression chamber 3.
  • the intake system 2 may for example comprise at least one of: one or more non-return valves, one or more orifices or lumens, at least one flat disc valve or any other device or valve allowing the fluid entry to be compressed into the first compression chamber 3 during an intake phase and preventing the fluid from entering the compression phase.
  • this system 2 opens in the event of a determined pressure differential between its two ends.
  • the first chamber may optionally be equipped with a valve or other safety element configured to limit the pressure within the chamber below a determined safety threshold.
  • the apparatus 1 also comprises a system 6 allowing or not (depending on its state) the transfer of fluid from the first chamber.
  • This transfer system 6 may be of the same type as that of the admission system 2.
  • the apparatus 1 comprises a piston 5 movable in translation to ensure the compression of the fluid in the first 3 and second
  • the apparatus 1 further comprises an evacuation orifice 7 communicating with the second compression chamber 4 and configured to allow the outlet of compressed fluid into the second compression chamber 4 (during or at the end of the compression phase in this chamber) .
  • the discharge port 7 may be provided with a valve or non-return system which may be of the same type as that of the intake system 2 (for example closed as long as the pressure differential between the second compression chamber 4 and the exterior is below a determined threshold).
  • the first compression chamber 3 is delimited by a fixed lower cavity 14 (for example a cylindrical vessel), a lower end of the piston 5 and a first sealing system 22 formed between the piston 5 and a wall of the lower cavity 14.
  • the intake system 2 may be located at a lower end of the lower cavity 14.
  • the second compression chamber 4 is delimited by a fixed upper cavity 24 (for example a cylindrical vessel), an upper end of the piston 5 and a second sealing system 10 formed between the piston 5 and a wall of the upper cavity 24.
  • the piston 5 is movable in translation in a longitudinal direction A. In the operating configuration of the device 1, the longitudinal direction A of translation of the piston 5 is vertical.
  • the intake system 2 is located at a lower end of the apparatus 1, the discharge port 7 being located in an upper part of the apparatus 1, above the transfer system 6.
  • This configuration ensures an inlet of fluid to be compressed in the lower part, that is to say in the coldest region of the device 1.
  • the discharge and any leaks are located in the upper region of the device. 'device. This configuration promotes minimal or no mixing between the two relatively cold and hot regions.
  • This vertical arrangement with vertical compression stroke allows a good separation of the relatively cold (at the intake) and hot (at the exhaust) fluid flows.
  • the compression stroke in the second compression chamber 4 is upward (traction of the piston rod 5 upwards and towards the hot part of the device 1).
  • this upward stroke of the piston 5 during high pressure compression generates a tensile force on the piston rod.
  • the rod is not subjected to buckling during this traction (unlike compression / thrust).
  • this arrangement of tensile compression does not require guiding the piston rod regularly over its length. This also makes it possible to reduce the area of the section of the piston rod (by hollowing out the rod or reducing its diameter, for example). In addition, this makes it possible to reduce the length of the piston rod according to the acceptable level of heat loss.
  • the piston 5 can be driven by an actuator 21 such as a motor located in the upper part of the apparatus 1.
  • the piston 5 can be mechanically connected to an actuator 21 via at least one pin 23 arranged around the upper cavity 24 (that is to say at least one pin 23 extending longitudinally around the upper cavity) .
  • pins 23 are connected on the one hand to a lower end of the piston 5 and, on the other hand, to a plate 27 or support integral with a shaft 26 connected to the actuating member 21.
  • the structure is shaped to allow the sliding of the piston 5 relatively in the plate 24 (or other (s) support (s)).
  • the pins 23 can be shaped to slide through a fixed support (not shown) for holding the plate 24.
  • the piston 5 may comprise at least one internal duct 25 providing the fluidic connection between the first 3 and second 4 compression chambers.
  • the transfer system 6 can be located at the upper end of the piston 5, for example at the upper end of the internal duct 25 opening into the second compression chamber 4.
  • the second sealing system 10 formed between the piston 5 and a wall of the upper cavity 24 is located only at the level of the lower end of the second compression chamber 4 and / or below the second chamber 4. compression.
  • This architecture thus makes it possible to provide a single dynamic sealing system at high pressure at a single end (lower) of the second compression chamber 4.
  • this high pressure sealing system 10 can be located only at the level of the lower end of the second compression chamber 4 and / or below the second chamber
  • the discharge orifice 7 is located for example at the level of the upper end of the upper cavity 24.
  • the apparatus 1 may comprise a pipe 11 for discharging the compressed gas comprising a first end connected to the orifice 7 d. 'drain and a second end located at the top of the device 1.
  • the compression apparatus may be housed in a sealed enclosure 13 thermally insulated and containing a bath 16 of cryogenic cooling fluid.
  • the first 3 and the second 4 compression chambers can be immersed in a liquid phase.
  • the upper part of the enclosure 16 may include a gaseous sky which collects any leaks in the device 1.
  • the cold head of the apparatus 1 can be immersed vertically in a cryogenic bath 16 (sometimes called a sump).
  • a cryogenic bath 16 sometimes called a sump
  • the first compression chamber 3 could be fixed directly to the bottom of the bath 16.
  • the piston 5 can be driven by an actuator 21 (for example a motor member 21) located in the upper part, that is to say that the motor 21 or actuator is located, along the longitudinal axis A. and in relation to the room 3 compression, on the side opposite to the inlet 2 and on the same side as the outlet 7 and the outlet 11 (or even beyond this 7 outlet orifice.
  • an actuator 21 for example a motor member 21 located in the upper part, that is to say that the motor 21 or actuator is located, along the longitudinal axis A. and in relation to the room 3 compression, on the side opposite to the inlet 2 and on the same side as the outlet 7 and the outlet 11 (or even beyond this 7 outlet orifice.
  • the discharge orifice 7 may be located between, on the one hand, the inlet orifice 2 and, on the other hand, the discharge pipe 11 and / or the member. 21 actuation).
  • the actuator 21 (motor or other) is advantageously located outside the enclosure 13, in the upper part of the compression apparatus and the two compression chambers 3, 4 in the enclosure 13.
  • Cold fluid at low pressure located at the bottom of the enclosure 13 can be admitted into the first compression chamber 3 via the intake system 2 when the piston 5 rises (and the fluid is pressurized in the second compression chamber 4) cf. [Fig. 3].
  • the piston As the piston is reassembled ([Fig. 3]), more fluid fills the first compression chamber 3.
  • the fluid in the second compression chamber 4 is compressed.
  • the first compression chamber 3 is filled.
  • the evacuation system 7 opens, emptying the high-pressure fluids upwards via the evacuation line 11.
  • the appliance returns to the initial configuration and can restart a cycle ([Fig. 6]).
  • the fluid intake is carried out at the level where the fluid is coldest and densest while the hotter fluids are deported upwards. This minimizes the risks of mixing and boiling the bath 16. Hot fluids (leaks) can be collected directly in the upper part without the need for dedicated piping.
  • the assembly can be housed in a housing.
  • the lower part of the piston 5 has a profile configured to promote the escape of gas through the ports or valves.
  • one or several openings 126 can be formed in the upper part of the lower cavity 14. These slots 126 allow, when the piston 5 uncovers them (piston 5 above at least part of the slots 126) communication between the first compression chamber 3 and the outside.
  • any gas present in the first compression chamber 3 can escape through these openings 126 and give way to the liquid from the surrounding bath. This ensures a completely liquid filling at the inlet.
  • these openings 126 let the excess liquid escape by measuring the volume of liquid that will be trapped there (this volume is determined for example by the longitudinal position of the lights 126).
  • an optional gas leakage evacuation circuit 12 may be provided.
  • the circuit 12 comprises a pipe having a first end communicating with the space between the piston 5 and the upper cavity, below the second sealing system 10.
  • the first chamber may optionally be equipped with a valve or other safety element configured to limit the pressure within the chamber below a determined safety threshold.
  • the lower ends of the pins 23 are connected to an intermediate part of the piston, for example, at the level of a crown formed transversely to the body of the piston. This makes it possible to move the first chamber 3 away from the second chamber 4 and thus to better separate the cold fluid to be compressed from the hot fluid. compressed.
  • the geometry of the lower end of the piston 5, of the first cavity 14 and / or of the second cavity 24 can be adapted to modify the ratio of the volumes of the two compression chambers 3, 4, for example to increase the size of the compression chamber. first compression chamber 3 relative to the second compression chamber 4.
  • a compression device 1 of this type (or several in series or in parallel) can be used in any cryogenic installation requiring the pumping or compressing of a cryogenic fluid.
  • a station for filling pressurized gas tanks can comprise a source 17 of liquefied gas, a withdrawal circuit 18 having a first end connected to the source and at least one second end intended to be connected. to a reservoir 190 to be filled, the withdrawal circuit 18 comprising such a pumping device 1.
  • the pumped fluid can be vaporized in an exchanger 19 downstream and optionally stored in one or more buffer tanks 20 under pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Reciprocating Pumps (AREA)
  • Basic Packing Technique (AREA)

Abstract

Appareil (1) de compression de fluide à plusieurs étages de compression comprenant une première chambre (3) de compression, une seconde chambre (4) de compression, un système (2) d'admission communiquant avec la première chambre (3) de compression configuré pour permettre l'entrée de fluide à comprimer dans ladite première chambre (3) de compression, un système (6) de transfert configuré pour permettre en position ouverte le transfert de fluide de la première chambre (3) de compression vers la seconde (4) chambre de compression, un piston (5) mobile pour assurer la compression du fluide dans les première (3) et seconde (4) chambres de compression, l'appareil (1) comprenant en outre un orifice (7) d'évacuation communiquant avec la seconde chambre (4) de compression et configuré pour permettre la sortie de fluide comprimé, le piston (5) étant mobile en translation selon une direction (A) longitudinale, la première chambre (3) de compression étant délimitée par une cavité (14) inférieure fixe, une extrémité inférieure du piston (5) et un premier système d'étanchéité (22) formé entre le piston (5) et une paroi de la cavité (14) inférieure, la seconde chambre (4) de compression étant délimitée par une cavité (24) supérieure fixe, une extrémité supérieure du piston (5) et un second système d'étanchéité (10) formé entre le piston (5) et une paroi de la cavité (24) supérieure, caractérisé en ce que, en configuration de fonctionnement de l'appareil (1), la direction (A) longitudinale de translation du piston (5) est verticale, le système (2) d'admission étant situé à une extrémité inférieure de l'appareil (1), l'orifice (7) d'évacuation étant situé dans une partie supérieure de l'appareil (1), au-dessus du système (6) de transfert.

Description

DESCRIPTION
Titre : Appareil de compression et station de remplissage comprenant un tel appareil
1/ invention concerne un appareil de compression de fluide cryogénique ainsi qu'une station de remplissage comprenant un tel appareil.
L'invention concerne plus particulièrement un appareil de compression de fluide à plusieurs étages de compression comprenant une première chambre de compression, une seconde chambre de compression, un système d'admission communiquant avec la première chambre de compression configuré pour permettre l'entrée de fluide à comprimer dans ladite première chambre de compression, un système de transfert configuré pour permettre en position ouverte le transfert de fluide de la première chambre de compression vers la seconde chambre de compression, un piston mobile pour assurer la compression du fluide dans les première et seconde chambres de compression, l'appareil comprenant en outre un orifice d'évacuation communiquant avec la seconde chambre de compression et configuré pour permettre la sortie de fluide comprimé, le piston étant mobile en translation selon une direction longitudinale, la première chambre de compression étant délimitée par une cavité inférieure fixe, une extrémité inférieure du piston et un premier système d'étanchéité formé entre le piston et une paroi de la cavité inférieure, la seconde chambre de compression étant délimitée par une cavité supérieure fixe, une extrémité supérieure du piston et un second système d'étanchéité formé entre le piston et une paroi de la cavité supérieure .
L'invention concerne en particulier un appareil de compression ou de pompage de gaz et/ou liquides cryogéniques.
Dans la suite, notamment les termes « appareil de compression », « pompe » peuvent être utilisés indistinctement de même que pour les termes « pompage » et « compression ». L'appareil objet de l'invention concerne en effet un appareil de pompage et/ou de compression de fluide cryogénique liquide et/ou gazeux et/ou supercritique .
Les fluides cryogéniques présentent des densités beaucoup plus élevées que les fluides gazeux. Par conséquent, les pompes cryogéniques (par opposition aux compresseurs à gaz) offrent des débits massiques plus importants, un volume plus petit consomment moins d'énergie et nécessitent moins d'entretien. C'est pourquoi les pompes cryogéniques sont utilisées dans de nombreux domaines tels que les unités de séparation des gaz de l'air, les reformeurs, les stations de remplissage, les secteurs maritimes.
Les fluides concernés comprennent généralement l'oxygène, l'azote, le gaz naturel, l'argon, l'hélium ou l'hydrogène. Ces appareils de compression (ou pompes) ont pour fonction de pressuriser un fluide cryogénique à un débit cible.
Par exemple, une pompe à piston cryogénique peut être placée directement en ligne à la sortie du stockage source cryogénique ou encore dans un bain cryogénique dédié (également appelé "sump" en anglais), situé à côté et directement alimenté par un réservoir de stockage principal.
Pour diverses raisons, notamment la commodité de l'entretien et de la conception, généralement la pompe cryogénique est à mouvement alternatif et est insérée dans un réservoir de sorte à être immergée dans le fluide cryogénique à pomper.
Les pompes cryogéniques ont généralement des pressions d'entrée comprises entre 1 et 12 bars et des pressions de sortie de 20 à 1000 bar, selon l'application. Les pompes peuvent comporter un ou plusieurs étages de compression en utilisant un mouvement de va-et-vient .
Un mécanisme à deux étages de compression est souvent préféré car celui-ci permet de découpler la phase d'admission (pendant laquelle le fluide doit être aussi dense et donc aussi froid que possible) et la phase de pressurisation (où des quantités de chaleur néfastes pour le procédé peuvent être générées). Les principaux indicateurs de performance des pompes cryogéniques à piston sont : le rendement volumétrique, les pertes par évaporation, la consommation d'énergie, l'empreinte au sol et la durabilité.
Les principales caractéristiques des pompes cryogéniques à mouvement alternatif devraient donc être : une densité la plus élevée possible à l'aspiration, une très bonne isolation thermique avec l'environnement, un volume mort minimal (donc un taux de compression élevé), un montage simple et robuste pour une maintenance rapide et une fiabilité élevée, une bonne gestion des pertes par évaporation afin de limiter leur impact.
Le document US7410348 décrit une pompe à deux étages de compression à piston horizontale avec une admission axiale par un clapet anti-retour et une décharge radiale. Cette architecture présente un volume mort conséquent. De plus, les pertes de fuites sont relativement importantes au niveau de deux systèmes de joints à haute pression situés de part et d'autre de la chambre à haute pression.
Ceci provoque également un montage et un entretien plus difficiles .
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, l'appareil de compression selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que, en configuration de fonctionnement de l'appareil, la direction longitudinale de translation du piston est verticale, le système d'admission étant situé à une extrémité inférieure de l'appareil, l'orifice d'évacuation étant situé dans une partie supérieure de l'appareil, au-dessus du système de transfert.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : la cavité inférieure et la cavité supérieure sont des entités distinctes, le piston comprenant un conduit interne assurant la liaison fluidique entre les première et seconde chambres de compression, le piston est relié mécaniquement à un organe d'actionnement tel qu'un moteur et/ou un système de transmission de mouvement d'un moteur par exemple, via au moins un axe disposé autour de la cavité supérieure et s'étendant selon une direction de l'axe longitudinal, le système de transfert est situé au niveau de l'extrémité supérieure du piston, le second système d'étanchéité formé entre le piston et une paroi de la cavité supérieure est situé uniquement au niveau de l'extrémité inférieure de la seconde chambre de compression et/ou au-dessous de la seconde chambre de compression, l'orifice d'évacuation est situé au niveau de l'extrémité supérieure de la cavité supérieure, l'appareil comprenant une conduite d'évacuation du gaz comprimé comprenant une première extrémité reliée à l'orifice d'évacuation et une seconde extrémité située en partie supérieure de l'appareil, le système d'admission est situé à une extrémité inférieure de la cavité inférieure, la compression du fluide dans la seconde chambre de compression est provoquée par une course ascendante du piston, l'appareil est logé dans une enceinte étanche contenant un bain) de fluide cryogénique de refroidissement.
L'invention concerne également une station de remplissage de réservoirs de gaz sous pression comprenant une source de gaz liquéfié, notamment d'hydrogène liquéfié, un circuit de soutirage ayant une première extrémité reliée à la source et au moins une seconde extrémité destinée à être raccordée à un réservoir à remplir, le circuit de soutirage comprenant un appareil de pompage ou un appareil de compression de fluide conforme à l'une quelconque des caractéristiques ci-dessus ou ci-dessous.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci- dessus ou ci-dessous dans le cadre des revendications.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
[Fig. 1] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant la structure d'un exemple de réalisation d'un appareil de compression selon l'invention,
[Fig. 2] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant une première configuration d'un cycle de fonctionnement de l'appareil de compression selon 1'invention,
[Fig. 3] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant une seconde configuration d'un cycle de fonctionnement de l'appareil de compression selon 1'invention,
[Fig. 4] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant une troisième configuration d'un cycle de fonctionnement de l'appareil de compression selon 1'invention,
[Fig. 5] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant une quatrième configuration d'un cycle de fonctionnement de l'appareil de compression selon 1'invention,
[Fig. 6] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant une cinquième configuration d'un cycle de fonctionnement de l'appareil de compression selon 1'invention, [Fig. 7] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant la structure d'un autre exemple de réalisation d'un appareil de compression selon 1'invention,
[Fig. 8] représente une vue en coupe longitudinale et verticale, schématique et partielle, illustrant la structure d'encore un autre exemple de réalisation d'un appareil de compression selon 1'invention,
[Fig. 9] représente une vue schématique et partielle, illustrant un exemple de station de remplissage utilisant un tel appareil de compression.
L'appareil 1 de compression de fluide représenté à la [Fig. 1] comprend deux étages de compression en série.
L'appareil 1 comprend en particulier une première chambre 3 de compression (à relative basse pression) et une seconde chambre 4 de compression (à relative haute pression).
L'appareil 1 comprend un système 2 d'admission communiquant avec la première chambre 3 de compression et qui est configuré pour permettre l'entrée de fluide à comprimer dans ladite première chambre 3 de compression. Le système 2 d'admission peut comprendre par exemple au moins l'un parmi : un ou plusieurs clapets anti-retour, un ou plusieurs orifices ou lumière(s), au moins un clapet à disque plat ou tout autre dispositif ou vanne permettant l'entrée de fluide à comprimer dans la première chambre 3 de compression lors d'une phase d'admission et empêchant la sortie de fluide en phase de compression. En particulier, dans un mode de réalisation possible, ce système 2 s'ouvre en cas de différentiel de pression déterminé entre ses deux extrémités. De plus, la première chambre peut éventuellement être équipée d'une soupape ou autre élément de sécurité configuré pour limiter la pression au sein de la chambre en dessous d'un seuil de sécurité déterminé. L'appareil 1 comprend également un système 6 permettant ou non (selon son état) le transfert de fluide de la première chambre
3 de compression vers la seconde 4 chambre de compression (lors et/ou en fin de phase de compression du fluide dans la première chambre 3 de compression) mais qui reste fermé lors de la phase de compression dans la seconde chambre 4 de compression. Ce système 6 de transfert peut être du même type que celui du système 2 d'admission.
L'appareil 1 comprend un piston 5 mobile en translation pour assurer la compression du fluide dans les première 3 et seconde
4 chambres de compression (comme détaillé ci-après).
L'appareil 1 comprend en outre un orifice 7 d'évacuation communiquant avec la seconde chambre 4 de compression et configuré pour permettre la sortie de fluide comprimé dans la seconde chambre 4 de compression (pendant ou en fin de phase de compression dans cette chambre). L'orifice 7 d'évacuation peut être pourvu d'un clapet ou système anti-retour qui peut être du même type que celui du système 2 d'admission (par exemple fermé tant que le différentiel de pression entre la seconde chambre 4 de compression et l'extérieur est inférieur à un seuil déterminé) .
La première chambre 3 de compression est délimitée par une cavité 14 inférieure fixe (par exemple une cuve cylindrique), une extrémité inférieure du piston 5 et un premier système d'étanchéité 22 formé entre le piston 5 et une paroi de la cavité 14 inférieure. Le système 2 d'admission peut être situé à une extrémité inférieure de la cavité 14 inférieure.
La seconde chambre 4 de compression est délimitée par une cavité 24 supérieure fixe (par exemple une cuve cylindrique), une extrémité supérieure du piston 5 et un second système d'étanchéité 10 formé entre le piston 5 et une paroi de la cavité 24 supérieure. Le piston 5 est mobile en translation selon une direction A longitudinale. En configuration de fonctionnement de l'appareil 1, la direction A longitudinale de translation du piston 5 est verticale. Le système 2 d'admission est situé à une extrémité inférieure de l'appareil 1, l'orifice 7 d'évacuation étant situé dans une partie supérieure de l'appareil 1, au-dessus du système 6 de transfert.
Cette configuration assure une admission de fluide à comprimer dans la partie inférieure, c'est-à-dire dans la région la plus froide de l'appareil 1. De plus, le refoulement et les éventuelles fuites sont localisées dans la région supérieure de l'appareil. Cette configuration favorise un mélange minimal ou nul entre les deux régions relativement froide et chaude.
Cet agencement vertical avec course de compression verticale permet une bonne séparation des flux de fluide relativement froid (à l'admission) et chaud (à l'échappement). En particulier, la course de compression dans la seconde chambre 4 de compression est ascendante (traction de la tige du piston 5 vers le haut et vers la partie chaude de l'appareil 1).
En particulier, cette course ascendante du piston 5 lors de la compression à haute pression génère un effort de traction sur la tige du piston. Ceci est favorable mécaniquement. En effet, la tige n'est pas soumise au flambement lors de cette traction (au contraire d'une compression/ poussée). De plus, cet agencement de compression en traction ne nécessite pas de guider la tige de piston régulièrement sur sa longueur. Ceci permet en outre de réduire la surface de la section de la tige de piston (en évidant a tige ou en réduisant son diamètre par exemple). De plus, ceci permet de réduire la longueur de la tige de piston selon le niveau de pertes thermiques acceptable.
Comme schématisé, le piston 5 peut être entraîné par un organe 21 d'actionnement tel qu'un moteur situé en partie supérieure de 1'appareil 1. Le piston 5 peut être relié mécaniquement à un organe 21 d'actionnement via au moins un axe 23 disposé autour de la cavité supérieure 24 (c'est-à-dire au moins un axe 23 s'étendant longitudinalement autour de la cavité supérieure).
Par exemple, plusieurs axes 23 sont reliés d'une part à une extrémité inférieure du piston 5 et, d'autre part à un plateau 27 ou support solidaire d'un arbre 26 relié à l'organe 21 d'actionnement .
Bien entendu la structure est conformée pour permettre le coulissement du piston 5 relativement dans le plateau 24 (ou autre (s) support(s)). Ainsi, par exemple, les axes 23 peuvent être conformés pour coulisser au travers d'un support fixe (non représenté) de maintien du plateau 24.
Comme illustré, les cavité 14 inférieure et cavité 24 supérieure peuvent être des entités physiques distinctes. Le piston 5 peut comprendre au moins un conduit 25 interne assurant la liaison fluidique entre les première 3 et seconde 4 chambres de compression
Le système 6 de transfert peut être situé au niveau de l'extrémité supérieure du piston 5, par exemple à l'extrémité supérieure du conduit 25 interne débouchant dans la seconde chambre 4 de compression.
De préférence le second système d'étanchéité 10 formé entre le piston 5 et une paroi de la cavité 24 supérieure est situé uniquement au niveau de l'extrémité inférieure de la seconde chambre 4 de compression et/ou au-dessous de la seconde chambre 4 de compression.
Cette architecture permet ainsi de prévoir un unique système d'étanchéité dynamique à haute pression à une seule extrémité (inférieure) de la seconde chambre 4 de compression. Ainsi, ce système d'étanchéité 10 à haute pression peut être situé uniquement au niveau de l'extrémité inférieure de la seconde chambre 4 de compression et/ou au-dessous de la seconde chambre
4.
Au contraire, dans l'art antérieur mentionné précédemment, deux systèmes d'étanchéités haute pression dynamiques étaient prévus de part et d'autre de la chambre de compression à haute pression (de part et d'autre selon la course de déplacement du piston 5).
Cet agencement réduit fortement les contraintes de fabrication de maintenance et le risque de fuite par rapport à l'art antérieur .
L'orifice 7 d'évacuation est situé par exemple au niveau de l'extrémité supérieure de la cavité supérieure 24. L'appareil 1 peut comprendre une conduite 11 d'évacuation du gaz comprimé comprenant une première extrémité reliée à l'orifice 7 d'évacuation et une seconde extrémité située en partie supérieure de l'appareil 1.
Comme illustré à la [Fig. 1], l'appareil de compression peut être logé dans une enceinte 13 étanche isolée thermiquement et contenant un bain 16 de fluide cryogénique de refroidissement. En particulier, la première 3 et la seconde 4 chambres de compression peuvent être immergées dans une phase liquide. La partie supérieure de l'enceinte 16 peut comporter un ciel gazeux qui récupère les éventuelles fuites dans l'appareil 1.
Ainsi, la tête froide de l'appareil 1 peut être immergée verticalement dans une bain 16 cryogénique (parfois appelé puisard) .
La première chambre 3 de compression pourrait être fixée directement au fond du bain 16.
Comme schématisé, le piston 5 peut être entraîné par un organe d'actionnement 21 (par exemple un organe 21 moteur) situé en partie supérieure c'est-à-dire que le moteur 21 ou actionneur est situé, selon l'axe A longitudinal et par rapport à la chambre 3 de compression, du côté opposé à l'orifice 2 d'admission et du même côté que l'orifice 7 d'évacuation et la conduite 11 d'évacuation (ou même au-delà de cet orifice 7 d'évacuation.
Comme illustré, selon la direction A longitudinale, l'orifice 7 d'évacuation peut être situé entre d'une part l'orifice 2 d'admission et, d'autre part, la conduite 11 d'évacuation et/ou l'organe 21 d'actionnement).
L'organe d'actionnement 21 (moteur ou autre) est avantageusement situé hors de l'enceinte 13, en partie supérieure de l'appareil de compression et les deux chambres de compression 3, 4 dans 1'enceinte 13.
Ceci permet en outre de prévoir une course du piston 5 en traction vers l'extrémité supérieure de l'appareil lors de la phase de compression dans la seconde chambre 4 de compression.
Un exemple de cycle de compression va à présent être décrit en liaison aux [Fig. 2] à [Fig. 6].
A la [Fig. 2] le piston 5 est en position extrême basse (première chambre 3 de compression vide et fluide à une pression par exemple comprise entre 2 et 20 bar dans la seconde chambre 4 de compression) .
Du fluide froid à basse pression (par exemple de 1 à 10 bar) situé au fond de l'enceinte 13 peut être admis dans la première chambre 3 de compression via le système 2 d'admission lors de la remontée du piston 5 (et le fluide est pressurisé dans la seconde chambre 4 de compression) cf. [Fig. 3].
A mesure que le piston est remonté ([Fig. 3]), davantage de fluide remplit la première chambre 3 de compression. Le fluide dans la seconde chambre 4 de compression est comprimé. La première chambre 3 de compression est remplie. Lorsque la pression dans la seconde chambre 4 de compression devient supérieure à la pression déterminée en aval (par exemple 100 à 1000 bars, selon l'application), le système 7 d'évacuation s'ouvre, vidant les fluides à haute pression vers le haut via la conduite 11 d'évacuation.
En position extrême haute ([Fig. 4]), la seconde chambre 4 de compression est vidée et la première chambre 3 de compression est pleine.
Après le point mort haut ([Fig. 5]), lors de la descente du piston 5 comme la pression de la seconde chambre 4 du cycle précédent diminue en dessous de la pression dans la première chambre 3 de compression, le fluide se déplace de la première chambre 3 de compression vers la seconde chambre 4 de compression via le système 6 de transfert ([Fig. 5]). Lorsque la pression s'équilibre après le point mort bas, la seconde chambre 4 de compression est isolée
L'appareil revient à la configuration de départ et peut recommencer un cycle ([Fig. 6]).
Cette architecture avec une course de compression et la séparation des parties froides (en bas) et chaude (en haut) permet un meilleur fonctionnement de la compression. La relative grande distance entre l'admission en bas et l'évacuation en haut favorise cet avantage.
En effet, l'admission de fluide est réalisée au niveau où le fluide est le plus froid et le plus dense tandis que les fluides plus chaud sont déportés vers le haut. Ceci minimise les risques de mélange et d'ébullition du bain 16. Les fluides chauds (fuites) peuvent être collectés directement en partie haute sans nécessité de tuyauterie dédiée.
L'ensemble peut être logé dans un carter.
De préférence, la partie inférieure du piston 5 a un profil configuré pour favoriser l'échappement du gaz par les lumières ou clapets. Par exemple, comme schématisé à la [Fig. 8] une ou plusieurs lumières 126 (ou orifices) peuvent être ménagées dans la partie supérieure de la cavité 14 inférieure. Ces lumières 126 permettent, lorsque le piston 5 les découvre (piston 5 au- dessus d'au moins une partie des lumières 126) la communication entre la première chambre 3 de compression et l'extérieur.Ainsi, en phase d'admission (agrandissement de la chambre 3), du gaz éventuellement présent dans la première chambre 3 de compression peut s'échapper par ces lumières 126 et laisser sa place à du liquide du bain environnant. Ceci assure un remplissage totalement liquide à l'admission. De plus, en phase de compression (piston 5 plongeant dans la première chambre 3 de compression) ces lumières 126 laissent échapper le surplus de liquide en dosant le volume de liquide qui y sera emprisonné (ce volume est déterminé par exemple par la position longitudinale des lumières 126).
Comme illustré, un circuit 12 d'évacuation de fuite de gaz facultatif peut être prévu. Par exemple le circuit 12 comprend une conduite ayant une première extrémité communiquant avec l'espace entre le piston 5 et la cavité supérieure, en dessous du second système 10 d'étanchéité.
Dans la variante de la [Fig. 7], des clapets à disque plats ou équivalents sont prévus à l'extrémité inférieure du piston 5 pour permettre l'admission du fluide dans la première chambre 3 de compression.
De plus, la première chambre peut éventuellement être équipée d'une soupape ou autre élément de sécurité configuré pour limiter la pression au sein de la chambre en dessous d'un seuil de sécurité déterminé. Dans la variante de la [Fig. 8], les extrémités inférieures des axes 23 sont reliées à une partie intermédiaire du piston, par exemple, au niveau d'une couronne formée transversalement au corps du piston. Ceci permet d'éloigner la première chambre 3 de la deuxième chambre 4 et de mieux séparer ainsi le fluide froid à comprimer du fluide chaud comprimé. La géométrie de l'extrémité inférieure du piston 5, de la première cavité 14 et/ou de la seconde cavité 24 peuvent être adaptées pour modifier le rapport des volumes des deux chambres 3, 4 de compression, par exemple pour augmenter la taille de la première chambre 3 de compression par rapport à la seconde chambre 4 de compression.
Un appareil 1 de compression de ce type (ou plusieurs en série ou en parallèle) peut être utilisé dans toute installation cryogénique nécessitant de pomper ou comprimer un fluide cryogénique.
Par exemple, une station de remplissage de réservoirs de gaz sous pression (hydrogène par exemple) peut comprendre une source 17 de gaz liquéfié, un circuit 18 de soutirage ayant une première extrémité reliée à la source et au moins une seconde extrémité destinée à être raccordée à un réservoir 190 à remplir, le circuit 18 de soutirage comprenant un tel appareil 1 de pompage. Le fluide pompé peut être vaporisé dans un échangeur 19 en aval et éventuellement stocké dans un ou plusieurs réservoir 20 tampon sous pression.

Claims

REVENDICATIONS
1. Appareil (1) de compression de fluide à plusieurs étages de compression comprenant une première chambre (3) de compression, une seconde chambre (4) de compression, un système (2) d'admission communiquant avec la première chambre (3) de compression configuré pour permettre l'entrée de fluide à comprimer dans ladite première chambre (3) de compression, un système (6) de transfert configuré pour permettre en position ouverte le transfert de fluide de la première chambre (3) de compression vers la seconde (4) chambre de compression, un piston (5) mobile pour assurer la compression du fluide dans les première (3) et seconde (4) chambres de compression, l'appareil (1) comprenant en outre un orifice (7) d'évacuation communiquant avec la seconde chambre (4) de compression et configuré pour permettre la sortie de fluide comprimé, le piston (5) étant mobile en translation selon une direction (A) longitudinale, la première chambre (3) de compression étant délimitée par une cavité (14) inférieure fixe, une extrémité inférieure du piston (5) et un premier système d'étanchéité (22) formé entre le piston (5) et une paroi de la cavité (14) inférieure, la seconde chambre (4) de compression étant délimitée par une cavité (24) supérieure fixe, une extrémité supérieure du piston (5) et un second système d'étanchéité (10) formé entre le piston (5) et une paroi de la cavité (24) supérieure, caractérisé en ce que, en configuration de fonctionnement de l'appareil (1), la direction (A) longitudinale de translation du piston (5) est verticale, le système (2) d'admission étant situé à une extrémité inférieure de l'appareil (1), en-dessous de l'orifice (7) d'évacuation qui est situé dans une partie supérieure de l'appareil (1), l'orifice (7) d'évacuation étant situé au-dessus du système (6) de transfert.
2. Appareil selon la revendication 1 caractérisé en ce qu'il comprend un organe (21) d'actionnement qui déplace le piston (5), ledit organe d'actionnement (21) étant situé, selon la direction (A) longitudinale, dans la partie supérieure de l'appareil (1) au niveau ou au-dessus de l'orifice (7) d'évacuation.
3. Appareil selon la revendication 1 ou 2, caractérisé en ce que la cavité (14) inférieure et cavité (24) supérieure sont des entités distinctes, le piston (5) comprenant un conduit (25) interne assurant la liaison fluidique entre les première (3) et seconde (4) chambres de compression.
4. Appareil selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le piston (5) est relié mécaniquement à un organe (21) d'actionnement via au moins un axe (23) disposé autour de la cavité supérieure (24) et s'étendant selon une direction de l'axe (A) longitudinal.
5. Appareil selon l'une quelconque des revendication 1 à 4, caractérisé en ce que le système (6) de transfert est situé au niveau de l'extrémité supérieure du piston (5).
6. Appareil selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le second système d'étanchéité (10) formé entre le piston (5) et une paroi de la cavité (24) supérieure est situé uniquement au niveau de l'extrémité inférieure de la seconde chambre (4) de compression et/ou au-dessous de la seconde chambre (4) de compression.
7. Appareil selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'orifice (7) d'évacuation est situé au niveau de l'extrémité supérieure de la cavité supérieure (24), l'appareil (1) comprenant une conduite (11) d'évacuation du fluide comprimé comprenant une première extrémité reliée à l'orifice (7) d'évacuation et une seconde extrémité située en partie supérieure de l'appareil (1).
8. Appareil selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le système (2) d'admission est situé à une extrémité inférieure de la cavité (14) inférieure.
9. Appareil selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la compression du fluide dans la seconde chambre (4) de compression est provoquée par une course ascendante du piston (5).
10. Appareil selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il est logé dans une enceinte (13) étanche contenant un bain (16) de fluide cryogénique de refroidissement, ladite enceinte (13) faisant partie de l'appareil
11. Station de remplissage de réservoirs de gaz sous pression comprenant une source (17) de gaz liquéfié, notamment d'hydrogène liquéfié, un circuit (18) de soutirage ayant une première extrémité reliée à la source et au moins une seconde extrémité destinée à être raccordée à un réservoir (190) à remplir, le circuit (18) de soutirage comprenant un appareil (1) de compression de fluide conforme à l'une quelconque des revendications 1 à 9.
PCT/EP2020/079586 2020-02-21 2020-10-21 Appareil de compression et station de remplissage comprenant un tel appareil WO2021164901A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3168517A CA3168517A1 (fr) 2020-02-21 2020-10-21 Appareil de compression et station de remplissage comprenant un tel appareil
CN202080095677.1A CN115066554A (zh) 2020-02-21 2020-10-21 压缩设备和包括这种设备的充装站
JP2022547925A JP2023517475A (ja) 2020-02-21 2020-10-21 圧縮装置及びそのような装置を含む充填ステーション
US17/800,995 US20230085780A1 (en) 2020-02-21 2020-10-21 Compression apparatus and filling station comprising such an apparatus
EP20790342.8A EP4107396A1 (fr) 2020-02-21 2020-10-21 Appareil de compression et station de remplissage comprenant un tel appareil
KR1020227032080A KR20220140832A (ko) 2020-02-21 2020-10-21 압축 장치, 및 그러한 장치를 포함하는 충전소

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2001726 2020-02-21
FR2001726A FR3107572B1 (fr) 2020-02-21 2020-02-21 Appareil de compression et station de remplissage comprenant un tel appareil

Publications (1)

Publication Number Publication Date
WO2021164901A1 true WO2021164901A1 (fr) 2021-08-26

Family

ID=70154789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/079586 WO2021164901A1 (fr) 2020-02-21 2020-10-21 Appareil de compression et station de remplissage comprenant un tel appareil

Country Status (8)

Country Link
US (1) US20230085780A1 (fr)
EP (1) EP4107396A1 (fr)
JP (1) JP2023517475A (fr)
KR (1) KR20220140832A (fr)
CN (1) CN115066554A (fr)
CA (1) CA3168517A1 (fr)
FR (1) FR3107572B1 (fr)
WO (1) WO2021164901A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139074A (ko) * 2021-04-07 2022-10-14 한국과학기술원 장력을 이용하여 고압 액체를 생성하는 극저온 왕복동 펌프 및 이의 동작 방법
CN115263706A (zh) * 2021-09-30 2022-11-01 宋丰伟 流体介质增压装置及海水淡化系统、海水冷却系统
WO2023096427A1 (fr) * 2021-11-25 2023-06-01 한국기계연구원 Pompe alternative pour liquide cryogénique ayant une structure de cylindre pour refroidissement auxiliaire
KR20230077772A (ko) * 2021-11-25 2023-06-02 한국기계연구원 체크밸브 내장 피스톤을 갖는 극저온 액체 왕복동 펌프

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107103B1 (fr) * 2020-02-12 2022-07-01 Air Liquide Dispositif de compression, installation, station de remplissage et procédé utilisant un tel dispositif
EP4443000A1 (fr) * 2023-04-03 2024-10-09 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Installation de cyclage d'un réservoir d'hydrogène

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136136A (en) * 1961-10-03 1964-06-09 Union Carbide Corp High-pressure pump for cryogenic fluids
US4369633A (en) * 1981-09-03 1983-01-25 Snyder David A Multiple stage compressor with flash gas injection assembly
US4639197A (en) * 1984-07-20 1987-01-27 Jean Tornare Pump for cryogenic fluids
US5511955A (en) * 1995-02-07 1996-04-30 Cryogenic Group, Inc. Cryogenic pump
EP1030971A1 (fr) * 1997-11-07 2000-08-30 Westport Research Inc. Systeme d'alimentation en carburant haute pression pour vehicules au gaz naturel
US7410348B2 (en) 2005-08-03 2008-08-12 Air Products And Chemicals, Inc. Multi-speed compressor/pump apparatus
JP2012163105A (ja) * 2005-01-07 2012-08-30 Mitsubishi Heavy Ind Ltd 低温流体用昇圧装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087896B1 (en) * 2012-10-14 2018-10-02 Alberto Martin Perez Liquefied light hydrocarbon fuel system for hybrid vehicle and methods thereto
US20180180035A1 (en) * 2016-12-22 2018-06-28 Electro-Motive Diesel, Inc. Submerged cryogenic pump with a magnetic linear coupling
CA3047852A1 (fr) * 2016-12-23 2018-06-28 Westport Power Inc. Appareil et procede de filtration de fluide cryogenique
US20180266405A1 (en) * 2017-03-17 2018-09-20 Progress Rail Locomotive Inc. Cryogenic pump system
US11205133B2 (en) * 2018-01-12 2021-12-21 IonQ, Inc. Vibrationally isolated cryogenic shield for local high-quality vacuum
DE102018109443B4 (de) * 2018-04-19 2020-10-01 Sera Gmbh Kompressorvorrichtung und Kompressionsverfahren
US20200116143A1 (en) * 2018-10-11 2020-04-16 Corken, Inc. Compressor diaphragm piston rod seal
FR3090756B1 (fr) * 2018-12-19 2021-04-09 Air Liquide Dispositif de pompage, installation et procédé de fourniture d’hydrogène liquide
US20210180751A1 (en) * 2019-12-16 2021-06-17 Bharat Barney Patel Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories
FR3109610B1 (fr) * 2020-04-23 2022-04-08 Air Liquide Appareil de compression et station de remplissage comprenant un tel appareil
JP2022099360A (ja) * 2020-12-23 2022-07-05 株式会社神戸製鋼所 ピストンリングユニットおよび圧縮機
GB2604609A (en) * 2021-03-08 2022-09-14 Bamford Excavators Ltd Hydraulic pump system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136136A (en) * 1961-10-03 1964-06-09 Union Carbide Corp High-pressure pump for cryogenic fluids
US4369633A (en) * 1981-09-03 1983-01-25 Snyder David A Multiple stage compressor with flash gas injection assembly
US4639197A (en) * 1984-07-20 1987-01-27 Jean Tornare Pump for cryogenic fluids
US5511955A (en) * 1995-02-07 1996-04-30 Cryogenic Group, Inc. Cryogenic pump
EP1030971A1 (fr) * 1997-11-07 2000-08-30 Westport Research Inc. Systeme d'alimentation en carburant haute pression pour vehicules au gaz naturel
JP2012163105A (ja) * 2005-01-07 2012-08-30 Mitsubishi Heavy Ind Ltd 低温流体用昇圧装置
US7410348B2 (en) 2005-08-03 2008-08-12 Air Products And Chemicals, Inc. Multi-speed compressor/pump apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139074A (ko) * 2021-04-07 2022-10-14 한국과학기술원 장력을 이용하여 고압 액체를 생성하는 극저온 왕복동 펌프 및 이의 동작 방법
KR102709580B1 (ko) * 2021-04-07 2024-09-25 한국과학기술원 장력을 이용하여 고압 액체를 생성하는 극저온 왕복동 펌프 및 이의 동작 방법
CN115263706A (zh) * 2021-09-30 2022-11-01 宋丰伟 流体介质增压装置及海水淡化系统、海水冷却系统
WO2023096427A1 (fr) * 2021-11-25 2023-06-01 한국기계연구원 Pompe alternative pour liquide cryogénique ayant une structure de cylindre pour refroidissement auxiliaire
KR20230077772A (ko) * 2021-11-25 2023-06-02 한국기계연구원 체크밸브 내장 피스톤을 갖는 극저온 액체 왕복동 펌프
KR20230077793A (ko) * 2021-11-25 2023-06-02 한국기계연구원 냉각보조용 실린더구조를 갖는 극저온 액체 왕복동 펌프
KR102666921B1 (ko) * 2021-11-25 2024-05-21 한국기계연구원 체크밸브 내장 피스톤을 갖는 극저온 액체 왕복동 펌프
KR102666929B1 (ko) * 2021-11-25 2024-05-21 한국기계연구원 냉각보조용 실린더구조를 갖는 극저온 액체 왕복동 펌프

Also Published As

Publication number Publication date
FR3107572B1 (fr) 2022-02-25
EP4107396A1 (fr) 2022-12-28
JP2023517475A (ja) 2023-04-26
KR20220140832A (ko) 2022-10-18
US20230085780A1 (en) 2023-03-23
FR3107572A1 (fr) 2021-08-27
CA3168517A1 (fr) 2021-08-26
CN115066554A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2021164901A1 (fr) Appareil de compression et station de remplissage comprenant un tel appareil
EP4107397B1 (fr) Appareil de compression et station de remplissage comprenant un tel appareil
EP4107395B1 (fr) Appareil de compression et station de remplissage comprenant un tel appareil
EP1767783B1 (fr) Pompe de surpression et réservoir pour liquide basse température muni de cette pompe
EP3901458B1 (fr) Appareil de compression et station de remplissage comprenant un tel appareil
WO2022084021A1 (fr) Appareil de compression et station de remplissage comprenant un tel appareil
FR3122707A1 (fr) Appareil et procédé de compression de fluide cryogénique.
FR3140655A3 (fr) Appareil et procédé de compression de fluide cryogénique
FR2904401A1 (fr) Procede et dispositif d'alimentation en gaz d'une installation
FR3123643A1 (fr) Installation et procédé de stockage et de distribution de fluide
FR3146957A1 (fr) Dispositif et procédé de compression
KR102666929B1 (ko) 냉각보조용 실린더구조를 갖는 극저온 액체 왕복동 펌프
RU2752331C1 (ru) Криогенный поршневой насос
FR3146958A1 (fr) Dispositif et procédé de compression
FR3148279A1 (fr) Dispositif de fourniture de fluide cryogénique et installation de remplissage de réservoirs
FR3112589A1 (fr) Système de chargement de gaz naturel liquide.
KR20230068212A (ko) 극저온 연료 이송용 연료 펌프 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547925

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3168517

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227032080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020790342

Country of ref document: EP

Effective date: 20220921