WO2021161540A1 - Terminal, radio communication method, and base station - Google Patents
Terminal, radio communication method, and base station Download PDFInfo
- Publication number
- WO2021161540A1 WO2021161540A1 PCT/JP2020/005910 JP2020005910W WO2021161540A1 WO 2021161540 A1 WO2021161540 A1 WO 2021161540A1 JP 2020005910 W JP2020005910 W JP 2020005910W WO 2021161540 A1 WO2021161540 A1 WO 2021161540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- transmission
- resources
- scrambling
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/16—Code allocation
- H04J13/18—Allocation of orthogonal codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- LTE Long Term Evolution
- 5G 5th generation mobile communication system
- 5G + plus
- NR New Radio
- 3GPP Rel.15 3GPP Rel.15 or later, etc.
- the user terminal (User Equipment (UE)) is a UL data channel (eg, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (eg, Physical Uplink).
- PUSCH Physical Uplink Shared Channel
- UCI Uplink Control Information
- PUCCH Physical Uplink Control Channel
- CSI-reference signal In a wireless communication system (for example, Rel.15 NR), a plurality of channel state information (CSI) -reference signal (RS) is time division multiplexing (TDM). It is multiplexed with each other using at least one of frequency division multiplexing (FDM) and code division multiplexing (CDM), and each is transmitted using a plurality of CSI-RS ports.
- FDM frequency division multiplexing
- CDM code division multiplexing
- the accuracy of measurement (estimation, tracking) will decrease due to the interference of multiple CSI-RSs transmitted in the same resource element (RE). If the measurement accuracy of CSI-RS is lowered, the system performance may be lowered.
- one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that enhance the measurement accuracy of CSI-RS.
- the terminal receives setting information for using different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources, and each of the plurality of resources has a CSI-. It has an RS port, a code division multiplexing (CDM) group, and a cell, which is a receiving unit, and a control unit that performs measurement using a plurality of CSI-RS sequences based on the setting information.
- CSI channel state information
- CDM code division multiplexing
- the measurement accuracy of CSI-RS can be improved.
- FIG. 1 is a diagram showing an example of an existing slot and a CSI-RS position in the RB.
- FIG. 2A-2D is a diagram showing an example of FD-OCC and TD-OCC.
- FIG. 3 is a diagram showing an example of CSI-RS positions for each number of ports.
- FIG. 4 is a diagram showing an example of mapping of CSI-RS of 32 ports.
- FIG. 5 is a diagram showing an example of a CDM group.
- FIG. 6 is a diagram showing an example of the CSI-RS position in the slot and the RB.
- 7A and 7B are diagrams showing an example of the association between the PN sequence sample and the CDM group.
- FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 9 is a diagram showing an example of the configuration of the base station according to the embodiment.
- FIG. 10 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 11 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- CSI-RS CSI-RS Rel.
- the multi-port CSI-RS is multiplexed using at least one of frequency division multiplexing (FDM), time division multiplexing (TDM), and code division multiplexing (CDM (frequency domain OCC, time domain OCC)).
- FDM frequency division multiplexing
- TDM time division multiplexing
- CDM code division multiplexing
- NS time domain OCC
- the multi-port CSI-RS is used, for example, for orthogonalizing the multi-input multi-output (MIMO) layer.
- MIMO multi-input multi-output
- different DMRS ports are configured for each layer.
- different DMRS ports are set for each layer in one UE and for each UE.
- the CSI-RS supports up to 32 ports by at least one of the time domain OCC and the frequency domain OCC (up to 4 in the time direction, up to 2 in the frequency direction), FDM, TDM.
- DL RS for at least one of channel state information (CSI) acquisition, beam management (BM), beam failure recovery (BFR), and fine tracking of time and frequency.
- CSI-RS is used.
- the CSI-RS supports 1, 2, 4, 8, 12, 16, 24, and 32 ports (antenna port, CSI-RS port).
- CSI-RS supports periodic, semi-persistent, and aperiodic transmissions.
- the frequency density of the CSI-RS can be set to adjust the overhead and CSI estimation accuracy.
- FIG. 1 is a diagram showing an example of a CSI-RS location in a slot.
- Each row in the table includes row number, number of ports, frequency domain density, CDM type, time and frequency (time / frequency) position (component resource (CDM group) position (k bar, l bar)), CDM group index.
- Each resource position ((RE, symbol), (k', l')) in the component resource is shown.
- the time / frequency position is the position of the CSI-RS time and frequency resource (component resource) corresponding to one port.
- the k bar is a notation in which "k" is overlined.
- the k-bar indicates the start resource element (RE) index of the component resource
- the l-bar indicates the start symbol (OFDM symbol) index of the component resource.
- CDM groups include no CDM (no CDM, N / A), FD-CDM2, CDM4, and CDM8.
- the FD-CDM2 multiplexes the two-port CSI-RS at the same time and frequency by multiplying the frequency domain (FD) -orthogonal cover code (OCC) of length 2 in RE units (FD2). ).
- CDM4 multiplexes 4-port CSI-RS at the same time and frequency by multiplying FD-OCC of length 2 and time domain (TD) -OCC of length 2 in RE unit symbol units (FD2TD2). .
- the CDM8 multiplexes 8-port CSI-RS at the same time and frequency by multiplying the length 2 FD-OCC and the length 4 TD-OCC in units of RE units and symbols (FD2TD4).
- FIG. 2A-2D is a diagram showing an example of FD-OCC and TD-OCC.
- the FD-OCC series is represented by w f (k')
- the TD-OCC series is represented by w t (k').
- FIG. 2A shows the case where the CDM type is no CDM.
- FIG. 2B shows the case where the CDM type is FD-CDM2.
- FIG. 2C shows the case where the CDM type is CDM4.
- FIG. 2D shows the case where the CDM type is CDM8.
- FIG. 3 is a diagram showing an example of CSI-RS positions for each number of ports based on FIG. 1. This figure shows the frequency density, component resource size (frequency direction size [RE], time direction size [symbol]), and CDM type for each number of ports.
- frequency direction size [RE] frequency direction size [RE]
- time direction size [symbol] time direction size [symbol]
- FIG. 4 shows an example of CSI-RS resource element (RE) mapping in which the number of ports is 32 and the component resource size is set to 2 subcarriers ⁇ 2 symbols (row index 17 in FIG. 1).
- PRB physical resource block
- 4 component resources of 2 subcarriers x 2 symbols are multiplexed in the frequency domain (frequency division multiplexing (FDM)), and 2 in the time domain.
- FDM frequency division multiplexing
- TDM time division multiplexing
- CSI-RSs are multiplexed (code division). It is multiplexed (CDM) (CDM4, FD2TD2). Therefore, 32 ports of CSI-RS are transmitted in the resource of 1 PRB ⁇ 1 slot.
- the UE assumes that all CSI-RS resources in the resource set are set to the same starting RB, the same number of RBs, and the same CDM type.
- NZP-CSI-RS is used for time / frequency tracking, CSI calculation, L1-RSRP / SINR calculation, and mobility.
- NZP-CSI-RS The sequence generation for NZP-CSI-RS is based on the pseudo-random (Pseudo-Random, pseudo-noise, Pseudo-Noise (PN)) sequence defined by the following equation.
- c (n) is defined by:
- N C 1600.
- the second m series x 2 (n) is initialized by c init. c init depends on where the series is applied.
- the pseudo-random sequence generator for the CSI-RS sequence r (m) is initialized at the start of each OFDM symbol by init of the following equation.
- n s and f ⁇ are slot numbers in the radio frame.
- l is the OFDM symbol number in the slot.
- n ID is equal to the scrambling ID parameter (upper layer parameter scramblingID) or sequence generation configuration parameter (upper layer parameter sequenceGenerationConfig).
- n symb slot is the number of symbols per slot.
- the UE assumes that the sequence r (m) is mapped to the resource elements (RE) (k, l) p, ⁇ according to the following equation.
- the condition is that the resource elements (k, l) p, ⁇ are in the resource block occupied by the CSI-RS resource in which the UE is configured.
- ⁇ is given by the CSI-RS-ResourceMapping Information Element (IE) or the higher layer parameter density in CSI-RS-CellMobility IE.
- the number of ports X is given by the upper layer parameter nrofPorts.
- k is the index (position) of the frequency domain (subcarrier) with respect to the reference point.
- l is the index (position) of the time domain (symbol) with respect to the reference point.
- p is the antenna port index.
- ⁇ is the subcarrier interval setting.
- ⁇ CSIRS is the power offset specified by the upper layer parameter powerControlOffsetSS in NZP-CSI-RS-Resource IE if provided.
- w f (k') is the FD-OCC associated with the CDM group.
- w t (l') is the TD-OCC associated with the CDM group.
- r l, ns, f ⁇ (m') is the PN sequence initialized in the symbol l of slots n s, f ⁇ .
- k' is the RE sub-carrier index within the CDM group.
- l' is the symbol index of RE in the CDM group.
- N sc RB is the number of subcarriers per RB.
- the RE position of CSI-RS is common between cells. Even if a different scrambling ID is set for each cell, inter-series interference (inter-cell interference) of CSI-RS may increase. Generally, it is assumed that the interference of CSI-RS between cells is low, and CSI-RS is mapped to the same RE among a plurality of cells. Even if different scrambling IDs are set between a plurality of cells, cell-to-cell interference occurs because the finite-length PN sequence is not orthogonal (not an orthogonal sequence, a pseudo-orthogonal sequence, or a non-completely orthogonal sequence).
- the generated PN sequence is common to all ports.
- the measurement accuracy will decrease due to the interference of multiple CSI-RS series transmitted in the same RE in this way. If the measurement accuracy of CSI-RS is lowered, the system performance may be lowered.
- the present inventors have conceived a method of reducing the interference between a plurality of CSI-RSs transmitted in a resource having the same time / frequency.
- a / B" and “at least one of A and B” may be read as each other.
- the cell, the component carrier (CC), the carrier, the bandwidth portion (BWP), and the band may be read as each other.
- the index, the ID, the indicator, and the resource ID may be read as each other.
- the RRC parameter, the upper layer parameter, the RRC information element (IE), and the RRC message may be read as each other.
- the port, the CSI-RS port, and the antenna port may be read as each other.
- CSI-RS resources, CSI-RS settings, time and frequency resources for CSI-RS may be read interchangeably.
- the scrambling ID, scrambling ID, sequence generation setting, sequenceGenerationConfig, cell ID, pseudo cell ID, virtual cell ID, and nID may be read as each other.
- resources, CDM groups, CSI-RS ports, cells, parameters, indexes may be read interchangeably.
- the CDM group may be a plurality of CSI-RS resources orthogonalized by at least one of the time domain OCC and the frequency domain OCC in the same RE.
- measurement, estimation, calculation, CSI calculation, tracking, L1-RSRP / SINR calculation and mobility, channel estimation may be read as each other.
- the UE may measure CSI-RS to which at least one of the following embodiments is applied.
- a resource-specific PN sequence may be generated for a plurality of resources. Different PN sequences may be generated among multiple resources.
- Different scrambling IDs may be assigned to multiple resources.
- a resource-specific init is determined by this scrambling ID, and a resource-specific PN sequence may be generated.
- Embodiment 1-1 For the CDM group, a CDM group-specific PN sequence may be generated. Different PN sequences may be generated among multiple CDM groups.
- Different scrambling IDs may be assigned to the plurality of CDM groups.
- the scrambling ID may determine a CDM group-specific init and generate a CDM group-specific PN sequence.
- the UE may determine the scrambling ID for the CSI-RS series according to one of the following scrambling ID determination methods 1 and 2.
- the scrambling ID information (scramblingID) for each CDM group may be set by the RRC parameter.
- the UE may identify the scrambling ID unique to each CDM group based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, as shown in FIG. 6, the scrambling ID offset y i may be added to the table of FIG. The specific parameter x may be the number of ports. A scrambling ID offset y i may be associated with the CDM group i. The UE identifies the scrambling ID offset y i for each CDM group based on the specific parameter x, and adds y i to the set scrambling ID information to determine the scrambling ID unique to the CDM group. You may.
- at least some CSI-RS ports can increase the probability of using the CSI-RS series, which has a low correlation with the CSI-RS series of adjacent cells.
- Embodiment 1-2 A PN sequence of CSI-RS ports may be generated for the CSI-RS port (antenna port). Different PN sequences may be generated between multiple CSI-RS ports.
- Different scrambling IDs may be assigned to multiple CSI-RS ports.
- the scrambling ID may determine a CSI-RS port-specific init and generate a CSI-RS port-specific PN sequence.
- the UE may determine the scrambling ID for the CSI-RS series according to one of the following scrambling ID determination methods 1 and 2.
- the scrambling ID information (scramblingID) for each CSI-RS port may be set by the RRC parameter.
- the UE may identify the scrambling ID unique to each CSI-RS port based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, the scrambling ID offset y i may be added to the table of FIG.
- the specific parameter x may be the number of ports.
- a scrambling ID offset y i may be associated with the CSI-RS port i.
- the UE identifies the scrambling ID offset y i for each CSI-RS port based on the specific parameter x, and adds y i to the set scrambling ID information to scramble unique to the CSI-RS port.
- the ring ID may be determined.
- the association between the PN sequence sample index and the CDM group is common to all cells.
- the association between the PN sequence sample index and the CDM group may be different among a plurality of cells. This association may be specified in the specification or set by RRC parameters.
- the PN sequence sample indexes associated with one CDM group may be contiguous or non-contiguous (or evenly spaced).
- the association between the PN sequence sample index and the CSI-RS port may be different among a plurality of cells. This association may be specified in the specification or set by RRC parameters.
- the PN sequence sample indexes associated with one CSI-RS port may be contiguous or non-contiguous (may be evenly spaced).
- the mapping of the PN sequence sample index to RE may be different among a plurality of cells. This mapping may be specified in the specification or set by RRC parameters.
- a sample in which a plurality of cells have different indexes from the PN sequence may be used.
- a cell-specific value f (x cell ) may be added to the PN sequence sample index m'.
- the PN sequence sample index m' may be expressed by the following equation.
- f (x cell ) may be a scrambling ID.
- f (x cell ) may be the CSI-RS port index.
- f (x cell ) may be the CDM group index of CSI-RS.
- Multiple scrambling IDs may be set by RRC parameters.
- the number of scrambling IDs may be 2 or any other number.
- the plurality of scrambling IDs may be a scrambling ID list.
- One of a plurality of set scrambling IDs may be instructed (switched) based on the downlink control information (DCI) that triggers the A-CSI-RS or A-CSI report.
- DCI downlink control information
- the scrambling ID instruction based on DCI may be a new field added in a new release, a replacement (interpretation) of an existing field, or an implicit instruction.
- the implied indication may be based on at least one of the first Control Channel Element (CCE) index, the first PRB index, and the first RE index of the PDCCH carrying the DCI.
- CCE Control Channel Element
- the UE assumes that a new field exists if multiple scrambling IDs (a specific number of scrambling IDs) are set for the CSI-RS resource, otherwise there is no new field (new field size). Is 0 bit).
- Multiple scrambling IDs may be set for each of the plurality of resources.
- the UE may determine one scrambling ID for each resource based on the DCI.
- the UE may determine different scrambling IDs among the plurality of resources according to the first embodiment.
- Multiple scrambling IDs may be set for each CDM group.
- Multiple scrambling IDs may be set for each CSI-RS port.
- the scrambling ID can be dynamically changed, and the CSI series can be changed according to the situation of interference.
- the UE may report that it supports at least one of the functions described in the first to third embodiments by means of the UE capability information.
- a UE that reports that it supports a function may apply the function.
- UEs that have not reported support for the feature are referred to as Rel. 15 operations may be performed.
- the UE can operate appropriately according to the capability.
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
- -UTRA Dual Connectivity (NE-DC) may be included.
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the base station (gNB) of NR is MN
- the base station (eNB) of LTE (E-UTRA) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of the plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- downlink shared channels Physical Downlink Shared Channel (PDSCH)
- broadcast channels Physical Broadcast Channel (PBCH)
- downlink control channels Physical Downlink Control
- Channel PDCCH
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- MIB Master Information Block
- PBCH Master Information Block
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- the PDSCH may be read as DL data
- the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
- CORESET corresponds to a resource that searches for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
- the PRACH may transmit a random access preamble to establish a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 9 is a diagram showing an example of the configuration of the base station according to the embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
- the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
- IFFT inverse fast Fourier transform
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
- the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the transmission / reception unit 120 may transmit setting information for generating different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources.
- CSI channel state information
- RS reference signal
- Each of the plurality of resources may be either a CSI-RS port, a code division multiple access (CDM) group, or a cell.
- the control unit 110 may generate a plurality of CSI-RS sequences based on the setting information.
- FIG. 10 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- RLC layer processing for example, RLC retransmission control
- MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
- the transmission / reception unit 220 receives setting information for using different channel state information (CSI) -reference signal (RS) sequences among the plurality of resources, and each of the plurality of resources has a CSI-RS port and a code. It may be either a time division multiplexing (CDM) group or a cell.
- the control unit 210 may perform measurement using a plurality of CSI-RS sequences based on the setting information.
- the setting information may include different scrambling IDs for the plurality of resources.
- the plurality of CSI-RS sequences may be based on the different scrambling IDs.
- the setting information may include specific parameters for CSI-RS resources.
- the control unit 210 may determine different scrambling IDs for the plurality of resources based on the specific parameters.
- the plurality of CSI-RS sequences may be based on the different scrambling IDs.
- the setting information may include a plurality of scrambling IDs.
- the control unit 210 may determine one scrambling ID from the plurality of scrambling IDs based on the downlink control information.
- the plurality of CSI-RS sequences may be based on the one scrambling ID.
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the method of realizing each of them is not particularly limited.
- the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 11 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, such as at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the wireless frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may be a time unit based on numerology.
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- Physical RB Physical RB (PRB)
- SCG sub-carrier Group
- REG resource element group
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
- the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC medium access control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
- CE MAC Control Element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the terms “system” and “network” used in this disclosure may be used interchangeably.
- the “network” may mean a device (eg, a base station) included in the network.
- precoding "precoding weight”
- QCL Quality of Co-Co-Location
- TCI state Transmission Configuration Indication state
- space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
- Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
- Base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- RP Reception point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
- Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- an uplink channel, a downlink channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG xG (xG (x is, for example, integer, fraction)
- Future Radio Access FAA
- RAT New -Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- LTE 802.11 Wi-Fi®
- LTE 802.16 WiMAX®
- LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
- UMB Ultra-WideBand
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
- connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A terminal according to one aspect of the present disclosure includes: a receiving unit which receives setting information for using different channel state information (CSI)-reference signal (RS) sequences among a plurality of resources, wherein each of the plurality of resources is either a CSI-RS port, a code division multiplexing (CDM) group, or a cell; and a control unit which performs measurement using the plurality of CSI-RS sequences based on the setting information. According to this aspect of the present disclosure, the CSI-RS measuring accuracy can be improved.
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
Successor systems to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.) are also being considered. ..
既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(User Equipment(UE))は、ULデータチャネル(例えば、Physical Uplink Shared Channel(PUSCH))及びUL制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の少なくとも一方を用いて、上りリンク制御情報(Uplink Control Information(UCI))を送信する。
In an existing LTE system (eg, 3GPP Rel.8-14), the user terminal (User Equipment (UE)) is a UL data channel (eg, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (eg, Physical Uplink). Uplink Control Information (UCI) is transmitted using at least one of the Control Channel (PUCCH).
無線通信システム(例えば、Rel.15 NR)において、複数のチャネル状態情報(channel state information(CSI))-参照信号(reference signal(RS))は、時間分割多重(time division multiplexing(TDM))、周波数分割多重(frequency division multiplexing(FDM))、符号分割多重(code division multiplexing(CDM))の少なくとも1つを用いて互いに多重され、複数のCSI-RSポートを用いてそれぞれ送信される。
In a wireless communication system (for example, Rel.15 NR), a plurality of channel state information (CSI) -reference signal (RS) is time division multiplexing (TDM). It is multiplexed with each other using at least one of frequency division multiplexing (FDM) and code division multiplexing (CDM), and each is transmitted using a plurality of CSI-RS ports.
しかしながら、同じリソースエレメント(RE)において送信される複数のCSI-RSの干渉によって測定(推定、トラッキング)の精度が低下することが考えられる。CSI-RSの測定精度が低下すると、システム性能が低下するおそれがある。
However, it is conceivable that the accuracy of measurement (estimation, tracking) will decrease due to the interference of multiple CSI-RSs transmitted in the same resource element (RE). If the measurement accuracy of CSI-RS is lowered, the system performance may be lowered.
そこで、本開示は、CSI-RSの測定精度を高める端末、無線通信方法及び基地局を提供することを目的の1つとする。
Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that enhance the measurement accuracy of CSI-RS.
本開示の一態様に係る端末は、複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を用いるための設定情報を受信し、前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかである、受信部と、前記設定情報に基づく複数のCSI-RS系列を用いて測定を行う制御部と、を有する。
The terminal according to one aspect of the present disclosure receives setting information for using different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources, and each of the plurality of resources has a CSI-. It has an RS port, a code division multiplexing (CDM) group, and a cell, which is a receiving unit, and a control unit that performs measurement using a plurality of CSI-RS sequences based on the setting information.
本開示の一態様によれば、CSI-RSの測定精度を高められる。
According to one aspect of the present disclosure, the measurement accuracy of CSI-RS can be improved.
(CSI-RS)
Rel.15において、複数ポートのCSI-RSは、frequency division multiplexing(FDM)、time division multiplexing(TDM)、code division multiplexing(CDM(周波数ドメインOCC、時間ドメインOCC))、の少なくとも1つを用いて多重される。CSI-RSは最大32ポートをサポートする。 (CSI-RS)
Rel. At 15, the multi-port CSI-RS is multiplexed using at least one of frequency division multiplexing (FDM), time division multiplexing (TDM), and code division multiplexing (CDM (frequency domain OCC, time domain OCC)). NS. CSI-RS supports up to 32 ports.
Rel.15において、複数ポートのCSI-RSは、frequency division multiplexing(FDM)、time division multiplexing(TDM)、code division multiplexing(CDM(周波数ドメインOCC、時間ドメインOCC))、の少なくとも1つを用いて多重される。CSI-RSは最大32ポートをサポートする。 (CSI-RS)
Rel. At 15, the multi-port CSI-RS is multiplexed using at least one of frequency division multiplexing (FDM), time division multiplexing (TDM), and code division multiplexing (CDM (frequency domain OCC, time domain OCC)). NS. CSI-RS supports up to 32 ports.
複数ポートのCSI-RSは、例えば、multi-input multi-output(MIMO)レイヤの直交化に用いられる。例えば、シングルユーザMIMOのために、レイヤ毎に異なるDMRSポートが設定される。マルチユーザMIMOのために、1UE内のレイヤ毎、且つUE毎に異なるDMRSポートが設定される。
The multi-port CSI-RS is used, for example, for orthogonalizing the multi-input multi-output (MIMO) layer. For example, for single-user MIMO, different DMRS ports are configured for each layer. For multi-user MIMO, different DMRS ports are set for each layer in one UE and for each UE.
Rel.15において、CSI-RSは、時間ドメインOCC及び周波数ドメインOCC(時間方向は最大4、周波数方向は最大2)、FDM、TDM、の少なくとも1つによって、最大32ポートをサポートする。
Rel. At 15, the CSI-RS supports up to 32 ports by at least one of the time domain OCC and the frequency domain OCC (up to 4 in the time direction, up to 2 in the frequency direction), FDM, TDM.
Rel.15において、channel state information(CSI)取得、ビーム管理(beam management(BM))、ビーム障害回復(beam failure recovery(BFR))、時間及び周波数の細かい追従(tracking)の少なくとも1つのためのDL RSとして、例えば、CSI-RSが用いられる。CSI-RSは、1、2、4、8、12、16、24、32ポート(アンテナポート、CSI-RSポート)をサポートする。CSI-RSは、周期的(periodic)、セミパーシステント(semi-persistent)、非周期的(aperiodic)の送信をサポートする。オーバーヘッド及びCSI推定精度を調整するために、CSI-RSの周波数密度(density)が設定可能である。
Rel. In 15, DL RS for at least one of channel state information (CSI) acquisition, beam management (BM), beam failure recovery (BFR), and fine tracking of time and frequency. For example, CSI-RS is used. The CSI-RS supports 1, 2, 4, 8, 12, 16, 24, and 32 ports (antenna port, CSI-RS port). CSI-RS supports periodic, semi-persistent, and aperiodic transmissions. The frequency density of the CSI-RS can be set to adjust the overhead and CSI estimation accuracy.
図1は、スロット内のCSI-RS位置(location)の一例を示す図である。テーブルの各行は、行番号、ポート数、周波数ドメインの密度、CDMタイプ、時間及び周波数の(時間/周波数)位置(コンポーネントリソース(CDMグループ)の位置(kバー,lバー))、CDMグループインデックス、コンポーネントリソース内の各リソース位置((RE,シンボル)、(k’,l’))を示す。ここで、時間/周波数位置は、1つのポートに対応するCSI-RSの時間及び周波数のリソース(コンポーネントリソース)の位置である。kバーは「k」にオーバーラインを付した表記である。kバーは、コンポーネントリソースの開始リソースエレメント(RE)インデックスを示し、lバーは、コンポーネントリソースの開始シンボル(OFDMシンボル)インデックスを示す。
FIG. 1 is a diagram showing an example of a CSI-RS location in a slot. Each row in the table includes row number, number of ports, frequency domain density, CDM type, time and frequency (time / frequency) position (component resource (CDM group) position (k bar, l bar)), CDM group index. , Each resource position ((RE, symbol), (k', l')) in the component resource is shown. Here, the time / frequency position is the position of the CSI-RS time and frequency resource (component resource) corresponding to one port. The k bar is a notation in which "k" is overlined. The k-bar indicates the start resource element (RE) index of the component resource, and the l-bar indicates the start symbol (OFDM symbol) index of the component resource.
CDMグループとして、no CDM(CDMなし、N/A)、FD-CDM2、CDM4、CDM8がある。FD-CDM2は、長さ2の周波数ドメイン(FD)-直交カバーコード(orthogonal cover code(OCC))をRE単位で乗ずることによって同一の時間及び周波数に2ポートのCSI-RSを多重する(FD2)。CDM4は、長さ2のFD-OCCと長さ2の時間ドメイン(TD)-OCCとをRE単位シンボル単位で乗ずることによって同一の時間及び周波数に4ポートのCSI-RSを多重する(FD2TD2)。CDM8は、長さ2のFD-OCCと長さ4のTD-OCCとをRE単位シンボル単位で乗ずることによって同一の時間及び周波数に8ポートのCSI-RSを多重する(FD2TD4)。
CDM groups include no CDM (no CDM, N / A), FD-CDM2, CDM4, and CDM8. The FD-CDM2 multiplexes the two-port CSI-RS at the same time and frequency by multiplying the frequency domain (FD) -orthogonal cover code (OCC) of length 2 in RE units (FD2). ). CDM4 multiplexes 4-port CSI-RS at the same time and frequency by multiplying FD-OCC of length 2 and time domain (TD) -OCC of length 2 in RE unit symbol units (FD2TD2). .. The CDM8 multiplexes 8-port CSI-RS at the same time and frequency by multiplying the length 2 FD-OCC and the length 4 TD-OCC in units of RE units and symbols (FD2TD4).
図2A-2Dは、FD-OCC及びTD-OCCの一例を示す図である。FD-OCCの系列はwf(k’)で表され、TD-OCCの系列はwt(k’)で表される。図2Aは、CDMタイプがno CDMである場合を示す。図2Bは、CDMタイプがFD-CDM2である場合を示す。図2Cは、CDMタイプがCDM4である場合を示す。図2Dは、CDMタイプがCDM8である場合を示す。
FIG. 2A-2D is a diagram showing an example of FD-OCC and TD-OCC. The FD-OCC series is represented by w f (k'), and the TD-OCC series is represented by w t (k'). FIG. 2A shows the case where the CDM type is no CDM. FIG. 2B shows the case where the CDM type is FD-CDM2. FIG. 2C shows the case where the CDM type is CDM4. FIG. 2D shows the case where the CDM type is CDM8.
図3は、図1に基づく、ポート数毎のCSI-RS位置の一例を示す図である。この図は、ポート数毎に、周波数密度、コンポーネントリソースサイズ(周波数方向のサイズ[RE],時間方向のサイズ[シンボル])、CDMタイプ、を示す。
FIG. 3 is a diagram showing an example of CSI-RS positions for each number of ports based on FIG. 1. This figure shows the frequency density, component resource size (frequency direction size [RE], time direction size [symbol]), and CDM type for each number of ports.
例えば、図4は、ポート数が32、コンポーネントリソースサイズが2サブキャリア×2シンボルに設定されるCSI-RSのリソースエレメント(RE)マッピングの一例を示す(図1の行インデックス17)。1physical resource block(PRB)×1スロットの周波数ドメイン及び時間ドメインにおいて、2サブキャリア×2シンボルのコンポーネントリソースが、周波数ドメインで4個多重(frequency division multiplexing(FDM))され、時間ドメインで2個多重(time division multiplexing(TDM))されることによって、4×2個のコンポーネントリソースがマップされる。さらに、各コンポーネントリソースにおけるCSI-RSに、長さ2サブキャリアのFD-OCCと、長さ2シンボルのTD-OCCと、が乗算されることによって、4個のCSI-RSが多重(code division multiplexing(CDM))される(CDM4、FD2TD2)。したがって、1PRB×1スロットのリソースにおいて32ポートのCSI-RSが送信される。
For example, FIG. 4 shows an example of CSI-RS resource element (RE) mapping in which the number of ports is 32 and the component resource size is set to 2 subcarriers × 2 symbols (row index 17 in FIG. 1). In the frequency domain and time domain of 1 physical resource block (PRB) x 1 slot, 4 component resources of 2 subcarriers x 2 symbols are multiplexed in the frequency domain (frequency division multiplexing (FDM)), and 2 in the time domain. By (time division multiplexing (TDM)), 4x2 component resources are mapped. Further, by multiplying the CSI-RS in each component resource by the FD-OCC having a length of 2 subcarriers and the TD-OCC having a length of 2 symbols, 4 CSI-RSs are multiplexed (code division). It is multiplexed (CDM) (CDM4, FD2TD2). Therefore, 32 ports of CSI-RS are transmitted in the resource of 1 PRB × 1 slot.
UEは、リソースセットの全てのCSI-RSリソースが、同じ開始RB及び同じRB数及び同じCDMタイプに設定されると想定する。
The UE assumes that all CSI-RS resources in the resource set are set to the same starting RB, the same number of RBs, and the same CDM type.
NRにおいて、NZP-CSI-RSは、時間/周波数のトラッキングと、CSI計算と、L1-RSRP/SINR計算と、モビリティと、に用いられる。
In NR, NZP-CSI-RS is used for time / frequency tracking, CSI calculation, L1-RSRP / SINR calculation, and mobility.
NZP-CSI-RS用の系列生成は、次式によって定義される疑似ランダム(Pseudo-Random、擬似雑音、Pseudo-Noise(PN))系列に基づく。
The sequence generation for NZP-CSI-RS is based on the pseudo-random (Pseudo-Random, pseudo-noise, Pseudo-Noise (PN)) sequence defined by the following equation.
NC=1600である。第1m系列x1(n)は、x1(0)=1、x1(n)=0、n=1,2,...,30によって初期化される。第2m系列x2(n)は、cinitによって初期化される。cinitは系列の適用先によって異なる。CSI-RS系列r(m)に対する疑似ランダム系列生成器は、次式のcinitによって、各OFDMシンボルの開始において初期化される。
N C = 1600. The first m series x 1 (n) is initialized by x1 (0) = 1, x1 (n) = 0, n = 1,2, ..., 30. The second m series x 2 (n) is initialized by c init. c init depends on where the series is applied. The pseudo-random sequence generator for the CSI-RS sequence r (m) is initialized at the start of each OFDM symbol by init of the following equation.
ns,f
μは、無線フレーム内のスロット番号である。lは、スロット内のOFDMシンボル番号である。nIDは、スクランブリングIDパラメータ(上位レイヤパラメータscramblingID)又は系列生成設定パラメータ(上位レイヤパラメータsequenceGenerationConfig)に等しい。nsymb
slotは、スロット当たりのシンボル数である。
n s and f μ are slot numbers in the radio frame. l is the OFDM symbol number in the slot. n ID is equal to the scrambling ID parameter (upper layer parameter scramblingID) or sequence generation configuration parameter (upper layer parameter sequenceGenerationConfig). n symb slot is the number of symbols per slot.
設定された各CSI-RSに対し、条件が満たされる場合、UEは、系列r(m)が次式に従ってリソースエレメント(RE)(k,l)p,μへマップされると想定する。
If the conditions are met for each configured CSI-RS, the UE assumes that the sequence r (m) is mapped to the resource elements (RE) (k, l) p, μ according to the following equation.
条件は、リソースエレメント(k,l)p,μがUEが設定されるCSI-RSリソースによって占有されるリソースブロック内にあることである。k=0に対する参照ポイントは共通リソースブロック0内のサブキャリア0である。ρはCSI-RS-ResourceMapping情報要素(IE)又はCSI-RS-CellMobility IE内の上位レイヤパラメータdensityによって与えられる。ポート数Xは上位レイヤパラメータnrofPortsによって与えられる。kは参照ポイントに対する周波数ドメイン(サブキャリア)のインデックス(位置)である。lは参照ポイントに対する時間ドメイン(シンボル)のインデックス(位置)である。pはアンテナポートインデックスである。μはサブキャリア間隔設定である。
The condition is that the resource elements (k, l) p, μ are in the resource block occupied by the CSI-RS resource in which the UE is configured. The reference point for k = 0 is subcarrier 0 in common resource block 0. ρ is given by the CSI-RS-ResourceMapping Information Element (IE) or the higher layer parameter density in CSI-RS-CellMobility IE. The number of ports X is given by the upper layer parameter nrofPorts. k is the index (position) of the frequency domain (subcarrier) with respect to the reference point. l is the index (position) of the time domain (symbol) with respect to the reference point. p is the antenna port index. μ is the subcarrier interval setting.
NZP-CSI-RSに対し、UEは、βCSIRS>0が満たされると想定する。βCSIRSは、もし提供される場合にNZP-CSI-RS-Resource IE内の上位レイヤパラメータpowerControlOffsetSSによって特定される電力オフセットである。wf(k')は、CDMグループに関連付けられたFD-OCCである。wt(l')は、CDMグループに関連付けられたTD-OCCである。rl,ns,fμ(m')は、スロットns,f
μはのシンボルlにおいて初期化されたPN系列である。k'はCDMグループ内のREのサブキャリアインデックスである。l'はCDMグループ内のREのシンボルインデックスである。Nsc
RBは、RB当たりのサブキャリア数である。
For NZP-CSI-RS, the UE assumes that β CSIRS > 0 is satisfied. β CSIRS is the power offset specified by the upper layer parameter powerControlOffsetSS in NZP-CSI-RS-Resource IE if provided. w f (k') is the FD-OCC associated with the CDM group. w t (l') is the TD-OCC associated with the CDM group. r l, ns, f μ (m') is the PN sequence initialized in the symbol l of slots n s, f μ. k'is the RE sub-carrier index within the CDM group. l'is the symbol index of RE in the CDM group. N sc RB is the number of subcarriers per RB.
また、CSI-RSのRE位置は、セル間に共通である。セル毎に異なるスクランブリングIDを設定しても、CSI-RSの系列間干渉(セル間干渉)が高くなる場合がある。一般的に、セル間のCSI-RSの干渉は低いと想定し、複数セル間において同じREにCSI-RSがマップされる。複数セル間に異なるスクランブリングIDが設定されても、有限長のPN系列は直交しない(直交系列ではない、疑似直交系列、非完全直交系列である)ため、セル間干渉が発生する。
Also, the RE position of CSI-RS is common between cells. Even if a different scrambling ID is set for each cell, inter-series interference (inter-cell interference) of CSI-RS may increase. Generally, it is assumed that the interference of CSI-RS between cells is low, and CSI-RS is mapped to the same RE among a plurality of cells. Even if different scrambling IDs are set between a plurality of cells, cell-to-cell interference occurs because the finite-length PN sequence is not orthogonal (not an orthogonal sequence, a pseudo-orthogonal sequence, or a non-completely orthogonal sequence).
また、生成されるPN系列は全てのポートに共通である。
Also, the generated PN sequence is common to all ports.
12個のCSI-RSポートを想定する。図1のrowが12、k0=0、k1=4、k2=8、l0=3である場合、図5のようなCDMグループ0、1、2が用いられる。この場合、全12ポートは次の2つのPN系列rl,ns,fμ(m')を用いる。
・3番目のOFDMシンボルに対するPN系列r3,ns,fμ(m')は[r3(0),r3(1),...]。
・4番目のOFDMシンボルに対するPN系列r4,ns,fμ(m')は[r4(0),r4(1),...]。 Assume 12 CSI-RS ports. When the row in FIG. 1 is 12, k 0 = 0, k 1 = 4, k 2 = 8, l 0 = 3, CDM groups 0, 1 and 2 as shown in FIG. 5 are used. In this case, all 12 ports use the following two PN sequences r l, ns, fμ (m').
-The PN sequence r 3, ns, fμ (m') for the third OFDM symbol is [r 3 (0), r 3 (1), ...].
-The PN sequence r 4, ns, fμ (m') for the 4th OFDM symbol is [r 4 (0), r 4 (1), ...].
・3番目のOFDMシンボルに対するPN系列r3,ns,fμ(m')は[r3(0),r3(1),...]。
・4番目のOFDMシンボルに対するPN系列r4,ns,fμ(m')は[r4(0),r4(1),...]。 Assume 12 CSI-RS ports. When the row in FIG. 1 is 12, k 0 = 0, k 1 = 4, k 2 = 8, l 0 = 3,
-The PN sequence r 3, ns, fμ (m') for the third OFDM symbol is [r 3 (0), r 3 (1), ...].
-The PN sequence r 4, ns, fμ (m') for the 4th OFDM symbol is [r 4 (0), r 4 (1), ...].
各CDMグループ内のポートに対して、これらのPN系列から異なるサンプルが選択される。例えば、CDMグループ0に対して[r3(0),r3(4),r4(1),r4(9)]が選択され、CDMグループ1に対して[r3(1),r3(5),r4(0),r4(10)]が選択される。
Different samples are selected from these PN sequences for the ports in each CDM group. For example, [r 3 (0), r 3 (4), r 4 (1), r 4 (9)] is selected for CDM group 0, and [r 3 (1), r 3 (1), for CDM group 1]. r 3 (5), r 4 (0), r 4 (10)] is selected.
全ポートが同じPN系列を用いるため、隣接セルが同じPN系列を用いる可能性がある。この場合、CSI-RSに基づくチャネル推定の精度が低くなる。
Since all ports use the same PN sequence, there is a possibility that adjacent cells will use the same PN sequence. In this case, the accuracy of channel estimation based on CSI-RS is low.
このように同じREにおいて送信される複数のCSI-RS系列の干渉によって測定精度が低下することが考えられる。CSI-RSの測定精度が低下すると、システム性能が低下するおそれがある。
It is conceivable that the measurement accuracy will decrease due to the interference of multiple CSI-RS series transmitted in the same RE in this way. If the measurement accuracy of CSI-RS is lowered, the system performance may be lowered.
そこで、本発明者らは、同じ時間/周波数のリソースにおいて送信される複数のCSI-RSの間の干渉を低減する方法を着想した。
Therefore, the present inventors have conceived a method of reducing the interference between a plurality of CSI-RSs transmitted in a resource having the same time / frequency.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、少なくとも2つを組み合わせて適用されてもよい。
Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied individually or in combination of at least two.
本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。本開示において、セル、コンポーネントキャリア(CC)、キャリア、帯域幅部分(BWP)、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、RRCパラメータ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
In the present disclosure, "A / B" and "at least one of A and B" may be read as each other. In the present disclosure, the cell, the component carrier (CC), the carrier, the bandwidth portion (BWP), and the band may be read as each other. In the present disclosure, the index, the ID, the indicator, and the resource ID may be read as each other. In the present disclosure, the RRC parameter, the upper layer parameter, the RRC information element (IE), and the RRC message may be read as each other.
本開示において、ポート、CSI-RSポート、アンテナポート、は互いに読み替えられてもよい。本開示において、CSI-RSリソース、CSI-RS設定、CSI-RSのための時間及び周波数のリソース、は互いに読み替えられてもよい。
In the present disclosure, the port, the CSI-RS port, and the antenna port may be read as each other. In the present disclosure, CSI-RS resources, CSI-RS settings, time and frequency resources for CSI-RS may be read interchangeably.
(無線通信方法)
本開示において、スクランブリングID、scramblingID、系列生成設定、sequenceGenerationConfig、セルID、疑似セルID、仮想セルID、nID、は互いに読み替えられてもよい。 (Wireless communication method)
In the present disclosure, the scrambling ID, scrambling ID, sequence generation setting, sequenceGenerationConfig, cell ID, pseudo cell ID, virtual cell ID, and nID may be read as each other.
本開示において、スクランブリングID、scramblingID、系列生成設定、sequenceGenerationConfig、セルID、疑似セルID、仮想セルID、nID、は互いに読み替えられてもよい。 (Wireless communication method)
In the present disclosure, the scrambling ID, scrambling ID, sequence generation setting, sequenceGenerationConfig, cell ID, pseudo cell ID, virtual cell ID, and nID may be read as each other.
本開示において、リソース、CDMグループ、CSI-RSポート、セル、パラメータ、インデックス、は互いに読み替えられてもよい。
In this disclosure, resources, CDM groups, CSI-RS ports, cells, parameters, indexes may be read interchangeably.
本開示において、CDMグループは、同一のREにおいて時間ドメインOCC及び周波数ドメインOCCの少なくとも1つによって直交化される複数のCSI-RSリソースであってもよい。
In the present disclosure, the CDM group may be a plurality of CSI-RS resources orthogonalized by at least one of the time domain OCC and the frequency domain OCC in the same RE.
本開示において、測定、推定、計算、CSI計算、トラッキング、L1-RSRP/SINR計算と、モビリティ、チャネル推定、は互いに読み替えられてもよい。
In the present disclosure, measurement, estimation, calculation, CSI calculation, tracking, L1-RSRP / SINR calculation and mobility, channel estimation may be read as each other.
UEは、以下の少なくとも1つの実施形態を適用されたCSI-RSを測定してもよい。
The UE may measure CSI-RS to which at least one of the following embodiments is applied.
<実施形態1>
複数のリソースに対して、リソース固有のPN系列が生成されてもよい。複数のリソースの間において異なるPN系列が生成されてもよい。 <Embodiment 1>
A resource-specific PN sequence may be generated for a plurality of resources. Different PN sequences may be generated among multiple resources.
複数のリソースに対して、リソース固有のPN系列が生成されてもよい。複数のリソースの間において異なるPN系列が生成されてもよい。 <
A resource-specific PN sequence may be generated for a plurality of resources. Different PN sequences may be generated among multiple resources.
複数のリソースに対して異なるスクランブリングIDが割り当てられてもよい。このスクランブリングIDによって、リソース固有のcinitが決定され、リソース固有のPN系列が生成されてもよい。
Different scrambling IDs may be assigned to multiple resources. A resource-specific init is determined by this scrambling ID, and a resource-specific PN sequence may be generated.
《実施形態1-1》
CDMグループに対して、CDMグループ固有のPN系列が生成されてもよい。複数のCDMグループの間において異なるPN系列が生成されてもよい。 << Embodiment 1-1 >>
For the CDM group, a CDM group-specific PN sequence may be generated. Different PN sequences may be generated among multiple CDM groups.
CDMグループに対して、CDMグループ固有のPN系列が生成されてもよい。複数のCDMグループの間において異なるPN系列が生成されてもよい。 << Embodiment 1-1 >>
For the CDM group, a CDM group-specific PN sequence may be generated. Different PN sequences may be generated among multiple CDM groups.
複数のCDMグループに対して異なるスクランブリングIDが割り当てられてもよい。このスクランブリングIDによって、CDMグループ固有のcinitが決定され、CDMグループ固有のPN系列が生成されてもよい。
Different scrambling IDs may be assigned to the plurality of CDM groups. The scrambling ID may determine a CDM group-specific init and generate a CDM group-specific PN sequence.
UEは、次のスクランブリングID決定方法1、2のいずれかに従って、CSI-RS系列のためのスクランブリングIDを決定してもよい。
The UE may determine the scrambling ID for the CSI-RS series according to one of the following scrambling ID determination methods 1 and 2.
[スクランブリングID決定方法1]
RRCパラメータによって各CDMグループに対するスクランブリングID情報(scramblingID)が設定されてもよい。 [Scrambled ID determination method 1]
The scrambling ID information (scramblingID) for each CDM group may be set by the RRC parameter.
RRCパラメータによって各CDMグループに対するスクランブリングID情報(scramblingID)が設定されてもよい。 [Scrambled ID determination method 1]
The scrambling ID information (scramblingID) for each CDM group may be set by the RRC parameter.
[スクランブリングID決定方法2]
UEは、CSI-RSリソースに与えられるスクランブリングID情報(scramblingID)と特定パラメータxとに基づいて、各CDMグループに固有のスクランブリングIDを識別してもよい。例えば、図6に示すように、図1のテーブルにスクランブリングIDオフセットyiが追加されてもよい。特定パラメータxはポート数であってもよい。CDMグループiに対してスクランブリングIDオフセットyiが関連付けられてもよい。UEは、特定パラメータxに基づいて、各CDMグループに対するスクランブリングIDオフセットyiを特定し、設定されたスクランブリングID情報にyiを加算することによって、CDMグループに固有のスクランブリングIDを決定してもよい。 [Scrambled ID determination method 2]
The UE may identify the scrambling ID unique to each CDM group based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, as shown in FIG. 6, the scrambling ID offset y i may be added to the table of FIG. The specific parameter x may be the number of ports. A scrambling ID offset y i may be associated with the CDM group i. The UE identifies the scrambling ID offset y i for each CDM group based on the specific parameter x, and adds y i to the set scrambling ID information to determine the scrambling ID unique to the CDM group. You may.
UEは、CSI-RSリソースに与えられるスクランブリングID情報(scramblingID)と特定パラメータxとに基づいて、各CDMグループに固有のスクランブリングIDを識別してもよい。例えば、図6に示すように、図1のテーブルにスクランブリングIDオフセットyiが追加されてもよい。特定パラメータxはポート数であってもよい。CDMグループiに対してスクランブリングIDオフセットyiが関連付けられてもよい。UEは、特定パラメータxに基づいて、各CDMグループに対するスクランブリングIDオフセットyiを特定し、設定されたスクランブリングID情報にyiを加算することによって、CDMグループに固有のスクランブリングIDを決定してもよい。 [Scrambled ID determination method 2]
The UE may identify the scrambling ID unique to each CDM group based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, as shown in FIG. 6, the scrambling ID offset y i may be added to the table of FIG. The specific parameter x may be the number of ports. A scrambling ID offset y i may be associated with the CDM group i. The UE identifies the scrambling ID offset y i for each CDM group based on the specific parameter x, and adds y i to the set scrambling ID information to determine the scrambling ID unique to the CDM group. You may.
これによって、複数のCDMグループの間において、隣接セルのCSI-RS系列との相関が高いCSI-RS系列を用いる確率を低減できる。また、少なくとも一部のCSI-RSポートにおいて、隣接セルのCSI-RS系列との相関が低いCSI-RS系列を用いる確率を高められる。
This makes it possible to reduce the probability of using the CSI-RS series, which has a high correlation with the CSI-RS series of adjacent cells, among a plurality of CDM groups. In addition, at least some CSI-RS ports can increase the probability of using the CSI-RS series, which has a low correlation with the CSI-RS series of adjacent cells.
《実施形態1-2》
CSI-RSポート(アンテナポート)に対して、CSI-RSポートのPN系列が生成されてもよい。複数のCSI-RSポートの間において異なるPN系列が生成されてもよい。 << Embodiment 1-2 >>
A PN sequence of CSI-RS ports may be generated for the CSI-RS port (antenna port). Different PN sequences may be generated between multiple CSI-RS ports.
CSI-RSポート(アンテナポート)に対して、CSI-RSポートのPN系列が生成されてもよい。複数のCSI-RSポートの間において異なるPN系列が生成されてもよい。 << Embodiment 1-2 >>
A PN sequence of CSI-RS ports may be generated for the CSI-RS port (antenna port). Different PN sequences may be generated between multiple CSI-RS ports.
複数のCSI-RSポートに対して異なるスクランブリングIDが割り当てられてもよい。このスクランブリングIDによって、CSI-RSポート固有のcinitが決定され、CSI-RSポート固有のPN系列が生成されてもよい。
Different scrambling IDs may be assigned to multiple CSI-RS ports. The scrambling ID may determine a CSI-RS port-specific init and generate a CSI-RS port-specific PN sequence.
UEは、次のスクランブリングID決定方法1、2のいずれかに従って、CSI-RS系列のためのスクランブリングIDを決定してもよい。
The UE may determine the scrambling ID for the CSI-RS series according to one of the following scrambling ID determination methods 1 and 2.
[スクランブリングID決定方法1]
RRCパラメータによって各CSI-RSポートに対するスクランブリングID情報(scramblingID)が設定されてもよい。 [Scrambled ID determination method 1]
The scrambling ID information (scramblingID) for each CSI-RS port may be set by the RRC parameter.
RRCパラメータによって各CSI-RSポートに対するスクランブリングID情報(scramblingID)が設定されてもよい。 [Scrambled ID determination method 1]
The scrambling ID information (scramblingID) for each CSI-RS port may be set by the RRC parameter.
[スクランブリングID決定方法2]
UEは、CSI-RSリソースに与えられるスクランブリングID情報(scramblingID)と特定パラメータxとに基づいて、各CSI-RSポートに固有のスクランブリングIDを識別してもよい。例えば、図1のテーブルにスクランブリングIDオフセットyiが追加されてもよい。特定パラメータxはポート数であってもよい。CSI-RSポートiに対してスクランブリングIDオフセットyiが関連付けられてもよい。UEは、特定パラメータxに基づいて、各CSI-RSポートに対するスクランブリングIDオフセットyiを特定し、設定されたスクランブリングID情報にyiを加算することによって、CSI-RSポートに固有のスクランブリングIDを決定してもよい。 [Scrambled ID determination method 2]
The UE may identify the scrambling ID unique to each CSI-RS port based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, the scrambling ID offset y i may be added to the table of FIG. The specific parameter x may be the number of ports. A scrambling ID offset y i may be associated with the CSI-RS port i. The UE identifies the scrambling ID offset y i for each CSI-RS port based on the specific parameter x, and adds y i to the set scrambling ID information to scramble unique to the CSI-RS port. The ring ID may be determined.
UEは、CSI-RSリソースに与えられるスクランブリングID情報(scramblingID)と特定パラメータxとに基づいて、各CSI-RSポートに固有のスクランブリングIDを識別してもよい。例えば、図1のテーブルにスクランブリングIDオフセットyiが追加されてもよい。特定パラメータxはポート数であってもよい。CSI-RSポートiに対してスクランブリングIDオフセットyiが関連付けられてもよい。UEは、特定パラメータxに基づいて、各CSI-RSポートに対するスクランブリングIDオフセットyiを特定し、設定されたスクランブリングID情報にyiを加算することによって、CSI-RSポートに固有のスクランブリングIDを決定してもよい。 [Scrambled ID determination method 2]
The UE may identify the scrambling ID unique to each CSI-RS port based on the scrambling ID information (scramblingID) given to the CSI-RS resource and the specific parameter x. For example, the scrambling ID offset y i may be added to the table of FIG. The specific parameter x may be the number of ports. A scrambling ID offset y i may be associated with the CSI-RS port i. The UE identifies the scrambling ID offset y i for each CSI-RS port based on the specific parameter x, and adds y i to the set scrambling ID information to scramble unique to the CSI-RS port. The ring ID may be determined.
これによって、全CSI-RSポート(例えば、32ポート)において、隣接セルのCSI-RS系列との相関が高いCSI-RS系列を用いる確率を低減できる。また、少なくとも一部のCSI-RSポートにおいて、隣接セルのCSI-RS系列との相関が低いCSI-RS系列を用いる確率を高められる。
This makes it possible to reduce the probability of using the CSI-RS series, which has a high correlation with the CSI-RS series of the adjacent cell, in all CSI-RS ports (for example, 32 ports). In addition, at least some CSI-RS ports can increase the probability of using the CSI-RS series, which has a low correlation with the CSI-RS series of adjacent cells.
<実施形態2>
既存のNRにおけるCSI-RS設計において、全てのセルは、CSI-RSに対して同じ時間/周波数リソースを用いる。これによって、複数のセルが、生成されたPN系列から同じインデックスのサンプルを用いる可能性がある。例えば、セルiとセルjがCDMグループ2に対して同じインデックスのサンプルを用いる。セルiがCDMグループ2に対して[r3 i(0),r3 i(4),r4 i(1),r4 i(9)]を選択し、セルjがCDMグループ2に対して[r3 j(0),r3 j(4),r4 j(1),r4 j(9)]を選択する。この場合、セルi、jの間において、同じPN系列を用いることになり、セル間干渉が大きくなる。 <Embodiment 2>
In the CSI-RS design in existing NR, all cells use the same time / frequency resources for CSI-RS. This allows multiple cells to use samples with the same index from the generated PN sequence. For example, cells i and j use samples with the same index forCDM group 2. Cell i selects [r 3 i (0), r 3 i (4), r 4 i (1), r 4 i (9)] for CDM group 2, and cell j is for CDM group 2. Select [r 3 j (0), r 3 j (4), r 4 j (1), r 4 j (9)]. In this case, the same PN sequence is used between cells i and j, and the interference between cells becomes large.
既存のNRにおけるCSI-RS設計において、全てのセルは、CSI-RSに対して同じ時間/周波数リソースを用いる。これによって、複数のセルが、生成されたPN系列から同じインデックスのサンプルを用いる可能性がある。例えば、セルiとセルjがCDMグループ2に対して同じインデックスのサンプルを用いる。セルiがCDMグループ2に対して[r3 i(0),r3 i(4),r4 i(1),r4 i(9)]を選択し、セルjがCDMグループ2に対して[r3 j(0),r3 j(4),r4 j(1),r4 j(9)]を選択する。この場合、セルi、jの間において、同じPN系列を用いることになり、セル間干渉が大きくなる。 <
In the CSI-RS design in existing NR, all cells use the same time / frequency resources for CSI-RS. This allows multiple cells to use samples with the same index from the generated PN sequence. For example, cells i and j use samples with the same index for
既存のNRにおいて、例えば、図7Aに示すように、PN系列サンプルインデックスとCDMグループとの関連付けは、全てのセルに共通である。
In the existing NR, for example, as shown in FIG. 7A, the association between the PN sequence sample index and the CDM group is common to all cells.
図7Bに示すように、複数のセルの間において、PN系列サンプルインデックスとCDMグループとの関連付けが異なってもよい。この関連付けは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよい。1つのCDMグループに関連付けられるPN系列サンプルインデックスは、連続であってもよいし非連続であってもよい(等間隔であってもよい)。
As shown in FIG. 7B, the association between the PN sequence sample index and the CDM group may be different among a plurality of cells. This association may be specified in the specification or set by RRC parameters. The PN sequence sample indexes associated with one CDM group may be contiguous or non-contiguous (or evenly spaced).
複数のセルの間において、PN系列サンプルインデックスとCSI-RSポートとの関連付けが異なってもよい。この関連付けは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよい。1つのCSI-RSポートに関連付けられるPN系列サンプルインデックスは、連続であってもよいし非連続であってもよい(等間隔であってもよい)。
The association between the PN sequence sample index and the CSI-RS port may be different among a plurality of cells. This association may be specified in the specification or set by RRC parameters. The PN sequence sample indexes associated with one CSI-RS port may be contiguous or non-contiguous (may be evenly spaced).
複数のセルの間において、PN系列サンプルインデックスのREへのマッピングが異なってもよい。このマッピングは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよい。
The mapping of the PN sequence sample index to RE may be different among a plurality of cells. This mapping may be specified in the specification or set by RRC parameters.
複数のセルが、PN系列から異なるインデックスを有するサンプルを用いてもよい。
A sample in which a plurality of cells have different indexes from the PN sequence may be used.
PN系列のサンプルインデックスm'に対し、セル固有の値f(xcell)を加算してもよい。例えば、PN系列のサンプルインデックスm'は次式によって表されてもよい。
A cell-specific value f (x cell ) may be added to the PN sequence sample index m'. For example, the PN sequence sample index m'may be expressed by the following equation.
f(xcell)は、スクランブリングIDであってもよい。
f (x cell ) may be a scrambling ID.
f(xcell)は、CSI-RSポートインデックスであってもよい。
f (x cell ) may be the CSI-RS port index.
f(xcell)は、CSI-RSのCDMグループインデックスであってもよい。
f (x cell ) may be the CDM group index of CSI-RS.
以上の実施形態2によれば、複数のセルの間において同じPN系列を用いる場合であっても、PN系列の異なるサンプルを用いることによって、干渉を低減できる。
According to the above second embodiment, even when the same PN sequence is used among a plurality of cells, interference can be reduced by using samples having different PN sequences.
<実施形態3>
RRCパラメータによって複数のスクランブリングIDが設定されてもよい。スクランブリングIDの数は、2であってもよいし、他の数であってもよい。複数のスクランブリングIDは、スクランブリングIDリストであってもよい。 <Embodiment 3>
Multiple scrambling IDs may be set by RRC parameters. The number of scrambling IDs may be 2 or any other number. The plurality of scrambling IDs may be a scrambling ID list.
RRCパラメータによって複数のスクランブリングIDが設定されてもよい。スクランブリングIDの数は、2であってもよいし、他の数であってもよい。複数のスクランブリングIDは、スクランブリングIDリストであってもよい。 <
Multiple scrambling IDs may be set by RRC parameters. The number of scrambling IDs may be 2 or any other number. The plurality of scrambling IDs may be a scrambling ID list.
A-CSI-RS又はA-CSI報告をトリガする下りリンク制御情報(DCI)に基づいて、設定された複数のスクランブリングIDの1つが指示され(切り替えられ)てもよい。
One of a plurality of set scrambling IDs may be instructed (switched) based on the downlink control information (DCI) that triggers the A-CSI-RS or A-CSI report.
DCIに基づくスクランブリングIDの指示は、新たなリリースにおいて追加される新規フィールドであってもよいし、既存フィールドの読み替え(解釈)であってもよいし、暗示的指示であってもよい。暗示的指示は、当該DCIを運ぶPDCCHの、最初の制御チャネル要素(CCE)インデックスと、最初のPRBインデックスと、最初のREインデックスと、の少なくとも1つに基づいてもよい。
The scrambling ID instruction based on DCI may be a new field added in a new release, a replacement (interpretation) of an existing field, or an implicit instruction. The implied indication may be based on at least one of the first Control Channel Element (CCE) index, the first PRB index, and the first RE index of the PDCCH carrying the DCI.
UEは、CSI-RSリソースに対して複数のスクランブリングID(特定数のスクランブリングID)を設定された場合、新規フィールドが存在すると想定し、そうでない場合、新規フィールドが存在しない(新規フィールドサイズが0ビットである)と想定してもよい。
The UE assumes that a new field exists if multiple scrambling IDs (a specific number of scrambling IDs) are set for the CSI-RS resource, otherwise there is no new field (new field size). Is 0 bit).
複数のリソースのそれぞれに対して複数のスクランブリングIDが設定されてもよい。UEは、DCIに基づいて各リソースに対する1つのスクランブリングIDを決定してもよい。UEは、実施形態1に従って、複数のリソースの間において異なるスクランブリングIDを決定してもよい。各CDMグループに対し複数のスクランブリングIDが設定されてもよい。各CSI-RSポートに対し複数のスクランブリングIDが設定されてもよい。
Multiple scrambling IDs may be set for each of the plurality of resources. The UE may determine one scrambling ID for each resource based on the DCI. The UE may determine different scrambling IDs among the plurality of resources according to the first embodiment. Multiple scrambling IDs may be set for each CDM group. Multiple scrambling IDs may be set for each CSI-RS port.
以上の実施形態3によれば、スクランブリングIDを動的に変更することができ、干渉の状況に応じてCSI系列を変更できる。
According to the above-described third embodiment, the scrambling ID can be dynamically changed, and the CSI series can be changed according to the situation of interference.
<実施形態4>
UEは、実施形態1~3に記載された機能の少なくとも1つをサポートすることを、UE能力情報によって報告してもよい。 <Embodiment 4>
The UE may report that it supports at least one of the functions described in the first to third embodiments by means of the UE capability information.
UEは、実施形態1~3に記載された機能の少なくとも1つをサポートすることを、UE能力情報によって報告してもよい。 <
The UE may report that it supports at least one of the functions described in the first to third embodiments by means of the UE capability information.
機能をサポートすることを報告したUEは、当該機能を適用してもよい。機能をサポートすることを報告していないUEは、Rel.15の動作を行ってもよい。
A UE that reports that it supports a function may apply the function. UEs that have not reported support for the feature are referred to as Rel. 15 operations may be performed.
以上の実施形態4によれば、UEは、能力に応じて適切に動作することができる。
According to the above-described fourth embodiment, the UE can operate appropriately according to the capability.
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
Further, the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the base station (gNB) of NR is MN, and the base station (eNB) of LTE (E-UTRA) is SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble to establish a connection with the cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
FIG. 9 is a diagram showing an example of the configuration of the base station according to the embodiment. Thebase station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
FIG. 9 is a diagram showing an example of the configuration of the base station according to the embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
送受信部120は、複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を生成するための設定情報を送信してもよい。前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかであってもよい。制御部110は、前記設定情報に基づく複数のCSI-RS系列を生成してもよい。
The transmission / reception unit 120 may transmit setting information for generating different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources. Each of the plurality of resources may be either a CSI-RS port, a code division multiple access (CDM) group, or a cell. The control unit 110 may generate a plurality of CSI-RS sequences based on the setting information.
(ユーザ端末)
図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
FIG. 10 is a diagram showing an example of the configuration of the user terminal according to the embodiment. Theuser terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
FIG. 10 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
Whether or not to apply the DFT process may be based on the transform precoding setting. When the transform precoding is enabled for a channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
送受信部220は、複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を用いるための設定情報を受信し、前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかであってもよい。制御部210は、前記設定情報に基づく複数のCSI-RS系列を用いて測定を行ってもよい。
The transmission / reception unit 220 receives setting information for using different channel state information (CSI) -reference signal (RS) sequences among the plurality of resources, and each of the plurality of resources has a CSI-RS port and a code. It may be either a time division multiplexing (CDM) group or a cell. The control unit 210 may perform measurement using a plurality of CSI-RS sequences based on the setting information.
前記設定情報は、前記複数のリソースに対して異なるスクランブリングIDを含んでもよい。前記複数のCSI-RS系列は、前記異なるスクランブリングIDに基づいてもよい。
The setting information may include different scrambling IDs for the plurality of resources. The plurality of CSI-RS sequences may be based on the different scrambling IDs.
前記設定情報は、CSI-RSリソースに対する特定パラメータを含んでもよい。前記制御部210は、前記特定パラメータに基づいて、前記複数のリソースに対して異なるスクランブリングIDを決定してもよい。前記複数のCSI-RS系列は、前記異なるスクランブリングIDに基づいてもよい。
The setting information may include specific parameters for CSI-RS resources. The control unit 210 may determine different scrambling IDs for the plurality of resources based on the specific parameters. The plurality of CSI-RS sequences may be based on the different scrambling IDs.
前記設定情報は、複数のスクランブリングIDを含んでもよい。前記制御部210は、下りリンク制御情報に基づいて、前記複数のスクランブリングIDから、1つのスクランブリングIDを決定してもよい。前記複数のCSI-RS系列は、前記1つのスクランブリングIDに基づいてもよい。
The setting information may include a plurality of scrambling IDs. The control unit 210 may determine one scrambling ID from the plurality of scrambling IDs based on the downlink control information. The plurality of CSI-RS sequences may be based on the one scrambling ID.
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 11 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, such as at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). In addition, the slot may be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one minislot is called TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of the transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
The terms "system" and "network" used in this disclosure may be used interchangeably. The "network" may mean a device (eg, a base station) included in the network.
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, integer, fraction)), Future Radio Access (FRA), New -Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB) , LTE 802.11 (Wi-Fi®), LTE 802.16 (WiMAX®), LTE 802.20, Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
In addition, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "judgment (decision)" such as "accessing" (for example, accessing data in memory).
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as an amended or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.
Claims (6)
- 複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を用いるための設定情報を受信し、前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかである、受信部と、
前記設定情報に基づく複数のCSI-RS系列を用いて測定を行う制御部と、を有する端末。 It receives configuration information for using different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources, and each of the plurality of resources has a CSI-RS port and code division multiplexing (CDM). A receiver, which is either a group or a cell,
A terminal having a control unit that performs measurement using a plurality of CSI-RS sequences based on the setting information. - 前記設定情報は、前記複数のリソースに対して異なるスクランブリングIDを含み、
前記複数のCSI-RS系列は、前記異なるスクランブリングIDに基づく、請求項1に記載の端末。 The setting information includes different scrambling IDs for the plurality of resources.
The terminal according to claim 1, wherein the plurality of CSI-RS series are based on the different scrambling IDs. - 前記設定情報は、CSI-RSリソースに対する特定パラメータを含み、
前記制御部は、前記特定パラメータに基づいて、前記複数のリソースに対して異なるスクランブリングIDを決定し、
前記複数のCSI-RS系列は、前記異なるスクランブリングIDに基づく、請求項1に記載の端末。 The configuration information includes specific parameters for the CSI-RS resource.
The control unit determines different scrambling IDs for the plurality of resources based on the specific parameters.
The terminal according to claim 1, wherein the plurality of CSI-RS series are based on the different scrambling IDs. - 前記設定情報は、複数のスクランブリングIDを含み、
前記制御部は、下りリンク制御情報に基づいて、前記複数のスクランブリングIDから、1つのスクランブリングIDを決定し、
前記複数のCSI-RS系列は、前記1つのスクランブリングIDに基づく、請求項1に記載の端末。 The setting information includes a plurality of scrambling IDs, and includes a plurality of scrambling IDs.
The control unit determines one scrambling ID from the plurality of scrambling IDs based on the downlink control information.
The terminal according to claim 1, wherein the plurality of CSI-RS series are based on the one scrambling ID. - 複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を用いるための設定情報を受信し、前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかである、ステップと、
前記設定情報に基づく複数のCSI-RS系列を用いて測定を行うステップと、を有する、端末の無線通信方法。 It receives configuration information for using different channel state information (CSI) -reference signal (RS) sequences among a plurality of resources, and each of the plurality of resources has a CSI-RS port and code division multiplexing (CDM). Steps, which are either groups or cells,
A wireless communication method for a terminal, comprising a step of performing measurement using a plurality of CSI-RS sequences based on the setting information. - 複数のリソースの間において異なるチャネル状態情報(CSI)-参照信号(RS)系列を用いるための設定情報を送信し、前記複数のリソースのそれぞれは、CSI-RSポートと、符号分割多重(CDM)グループと、セルと、のいずれかである、送信部と、
前記設定情報に基づく複数のCSI-RS系列を生成する制御部と、を有する基地局。 Different channel state information (CSI) -reference signal (RS) sequences are transmitted among a plurality of resources, and each of the plurality of resources has a CSI-RS port and code division multiplexing (CDM). A transmitter, which is either a group or a cell,
A base station having a control unit that generates a plurality of CSI-RS sequences based on the setting information.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005910 WO2021161540A1 (en) | 2020-02-14 | 2020-02-14 | Terminal, radio communication method, and base station |
CN202080096674.XA CN115104357A (en) | 2020-02-14 | 2020-02-14 | Terminal, wireless communication method, and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005910 WO2021161540A1 (en) | 2020-02-14 | 2020-02-14 | Terminal, radio communication method, and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161540A1 true WO2021161540A1 (en) | 2021-08-19 |
Family
ID=77293036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005910 WO2021161540A1 (en) | 2020-02-14 | 2020-02-14 | Terminal, radio communication method, and base station |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115104357A (en) |
WO (1) | WO2021161540A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022215143A1 (en) * | 2021-04-05 | 2022-10-13 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
EP4120643A4 (en) * | 2020-03-12 | 2023-11-29 | Ntt Docomo, Inc. | Terminal, wireless communication method, and base station |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190074886A1 (en) * | 2017-08-11 | 2019-03-07 | Lg Electronics Inc. | Method for transmitting and receiving reference signal and apparatus therefor |
JP2020501393A (en) * | 2017-10-31 | 2020-01-16 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for determining an initial value of a sequence in a wireless communication system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149186B (en) * | 2018-02-13 | 2022-03-29 | 大唐移动通信设备有限公司 | Channel state information measuring method and device |
-
2020
- 2020-02-14 CN CN202080096674.XA patent/CN115104357A/en active Pending
- 2020-02-14 WO PCT/JP2020/005910 patent/WO2021161540A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190074886A1 (en) * | 2017-08-11 | 2019-03-07 | Lg Electronics Inc. | Method for transmitting and receiving reference signal and apparatus therefor |
JP2020501393A (en) * | 2017-10-31 | 2020-01-16 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for determining an initial value of a sequence in a wireless communication system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4120643A4 (en) * | 2020-03-12 | 2023-11-29 | Ntt Docomo, Inc. | Terminal, wireless communication method, and base station |
WO2022215143A1 (en) * | 2021-04-05 | 2022-10-13 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
Also Published As
Publication number | Publication date |
---|---|
CN115104357A (en) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021024494A1 (en) | Terminal and wireless communication method | |
JP7193549B2 (en) | Terminal, wireless communication method and system | |
JP7177168B2 (en) | Terminal, wireless communication method, base station and system | |
WO2022153395A1 (en) | Terminal, wireless communication method, and base station | |
WO2020261389A1 (en) | Terminal and wireless communication method | |
JPWO2020090060A1 (en) | User terminal and wireless communication method | |
WO2020209282A1 (en) | User terminal and wireless communication method | |
JPWO2020090122A1 (en) | User terminal and wireless communication method | |
WO2021186700A1 (en) | Terminal, wireless communication method, and base station | |
WO2021124585A1 (en) | Terminal and wireless communication method | |
WO2020217517A1 (en) | User terminal and wireless communication method | |
WO2020230243A1 (en) | User terminal and wireless communication method | |
WO2021161475A1 (en) | Terminal, radio communication method, and base station | |
WO2021124586A1 (en) | Terminal, and radio communication method | |
WO2021009916A1 (en) | Terminal and wireless communication method | |
WO2022039164A1 (en) | Terminal, wirless communication method, and base station | |
WO2021215379A1 (en) | Terminal, wireless communication method, and base station | |
WO2021220856A1 (en) | Terminal, wireless communication method, and base station | |
WO2021161540A1 (en) | Terminal, radio communication method, and base station | |
JPWO2020090061A1 (en) | Terminals, wireless communication methods, base stations and systems | |
WO2021220411A1 (en) | Terminal, wireless communication method and base station | |
WO2021070337A1 (en) | Terminal and wireless communication method | |
WO2021014509A1 (en) | Terminal and wireless communication method | |
WO2020183721A1 (en) | User terminal and wireless communication method | |
WO2020230862A1 (en) | User terminal and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |