WO2021161486A1 - 端末及び基地局 - Google Patents
端末及び基地局 Download PDFInfo
- Publication number
- WO2021161486A1 WO2021161486A1 PCT/JP2020/005673 JP2020005673W WO2021161486A1 WO 2021161486 A1 WO2021161486 A1 WO 2021161486A1 JP 2020005673 W JP2020005673 W JP 2020005673W WO 2021161486 A1 WO2021161486 A1 WO 2021161486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- harq
- dai
- ghz
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1614—Details of the supervisory signal using bitmaps
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
Definitions
- the present invention relates to terminals and base stations in wireless communication systems.
- the frequency band of NR would be expanded from 52.6 GHz to 114.25 GHz, but in Release 17, the examination time was limited, so the examination was conducted. It is assumed that the target frequency band is limited to 52.6 GHz to 71 GHz. Further, when expanding the frequency band of NR from 52.6 GHz to 71 GHz, it is assumed that the expansion is performed based on the design of the current FR2 (Freequency Range 2) of NR.
- FR2 Freequency Range 2
- the DCI includes a DAI (Downlink assignment index) field.
- the DAI includes a counter DAI (Counter DAI) and a total DAI (Total DAI).
- FR1 which is a low frequency band of the New Radio (NR) system
- FR2 Frequency Range 2
- a terminal comprising a control unit that changes the interpretation of at least one of them is provided.
- the wireless communication system in the following embodiment basically conforms to NR, but this is an example, and the wireless communication system in this embodiment is a wireless communication other than NR in a part or all of them. It may be compliant with a communication system (eg LTE).
- a communication system eg LTE
- FIG. 1 shows a configuration diagram of a wireless communication system according to the present embodiment.
- the wireless communication system according to the present embodiment includes a terminal 10 and a base station 20.
- FIG. 1 shows one terminal 10 and one base station 20, this is an example, and there may be a plurality of each.
- the terminal 10 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal 10, and a communication module for M2M (Machine-to-Machine).
- the terminal 10 uses various communication services provided by the wireless communication system by receiving the control signal or data from the base station 20 by DL and transmitting the control signal or data to the base station 20 by UL.
- the channels transmitted from the terminal 10 include PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel).
- the terminal 10 may be referred to as a UE, and the base station 20 may be referred to as a gNB.
- the duplex system may be a TDD (Time Division Duplex) system or an FDD (Frequency Division Duplex) system.
- a predetermined value is pre-configured in the base station 20 or the terminal 10. This may be the case, or it may be assumed that the base station 20 or the terminal 10 is pre-configured, or the radio parameter notified from the base station 20 or the terminal 10 is set. It may be set.
- the base station 20 is a communication device that provides one or more cells and performs wireless communication with the terminal 10.
- the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
- the base station 20 transmits a synchronization signal and system information to the terminal 10. Synchronous signals are, for example, NR-PSS and NR-SSS. A part of the system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information.
- the synchronization signal and the broadcast information may be periodically transmitted as an SS block (SS / PBCH block) composed of a predetermined number of OFDM symbols.
- the base station 20 transmits a control signal or data to the terminal 10 by DL (Downlink), and receives the control signal or data from the terminal 10 by UL (Uplink). Both the base station 20 and the terminal 10 can perform beamforming to transmit and receive signals.
- the reference signal transmitted from the base station 20 includes CSI-RS (Channel State Information Reference Signal), and the channels transmitted from the base station 20 are PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Digital). including.
- Multi-numerology In order to support a wide range of frequencies and use cases in 5G, it is necessary to support multiple numerologies (radio parameters such as subcarrier spacing and symbol length). Therefore, it is effective to design variable parameters in a scalable manner with reference to LTE numerology. Based on this idea, NR's Multi-Numerology has been introduced. Specifically, the reference subcarrier interval is the same as the LTE subcarrier interval, and is set to 15 kHz. Other subcarrier intervals are defined by multiplying the reference subcarrier interval by a power of 2. A plurality of subcarrier spacing configurations ⁇ are specified.
- Cyclic prefix Normal
- Cyclic prefix Normal
- Cyclic prefix Normal or Extended
- Cyclic prefix Normal
- the number of slots included in one frame is 10, 20, 40, 80, 160, and the slots included in one subframe.
- the numbers are 1, 2, 4, 8, and 16.
- the frequency band of NR would be expanded from 52.6 GHz to 114.25 GHz, but in Release 17, the examination time is limited, and FIG. 2 As shown in, it is assumed that the frequency band to be examined is limited to 52.6 GHz to 71 GHz. Further, when expanding the frequency band of NR from 52.6 GHz to 71 GHz, it is assumed that the expansion is performed based on the design of the current FR2 (Freequency Range 2) of NR. This is because it is expected that it will take a considerable amount of time to study a new waveform.
- FR2 Freequency Range 2
- the current frequency band for NR is composed of FR1 (Frequency Range 1) corresponding to the frequency band from 410 MHz to 7.125 GHz and FR2 corresponding to the frequency band from 24.25 GHz to 52.6 GHz.
- FR1 Frequency Range 1
- FR2 Frequency Range 2
- FR2 frequency band from 24.25 GHz to 52.6 GHz
- FR2 may be separated from the new Frequency Range (FR).
- BWP Bandwidth Part
- HARQ Hybrid Upomatic Repeat Request
- UE User Equipment
- PDSCH Physical Downlink SignalSequenceShars
- CSI Channel State Information
- SSB Synchronization Signal Block
- the physical layer processing may include a channel access mechanism that assumes beam-based operation to meet regulatory requirements applicable to the unlicensed frequency band from 52.6 GHz to 71 GHz.
- HARQ-ACK Codebook In the following embodiment, an example of transmitting HARQ-ACK from the terminal 10 to the base station 20 using the HARQ-ACK codebook will be described.
- the HARQ-ACK codebook defines a transmission method including a method of setting the number of transmission bits when one or more HARQ-ACKs are transmitted.
- HARQ-ACK codebooks include time domain (eg, slot), frequency domain (eg, component carrier (CC)), spatial domain (eg, layer), transport block (Transport Block (TB)), In addition, it may be configured to include a bit for HARQ-ACK in at least one unit of a group of code blocks (code block group (Code Block Group (CBG))) constituting TB.
- the CC is also called a cell, a serving cell, a carrier, or the like.
- the bit is also referred to as a HARQ-ACK bit, HARQ-ACK information, HARQ-ACK information bit, or the like.
- the HARQ-ACK codebook is also called a PDSCH-HARQ-ACK codebook (pdsch-HARQ-ACK-Codebook), a codebook, a HARQ codebook, a HARQ-
- the number of bits (size) and the like included in the HARQ-ACK codebook may be determined quasi-statically or dynamically.
- the quasi-static HARQ-ACK codebook is also called a Type I HARQ-ACK codebook, a quasi-static codebook, or the like.
- the dynamic HARQ-ACK codebook is also called a Type II HARQ-ACK codebook, a dynamic codebook, or the like.
- Type I HARQ-ACK codebook or the Type II HARQ-ACK codebook may be set in the terminal 10 by the upper layer parameter (for example, pdsch-HARQ-ACK-Codebook).
- the terminal 10 has a predetermined size (for example, a number set based on the upper layer parameter) regardless of whether or not the PDSCH corresponding to each HARQ process number of each CC is scheduled.
- the HARQ-ACK codebook may be generated and each bit in the codebook may be used to feed back the HARQ-ACK bits corresponding to each HARQ process.
- the predetermined size is set or activated in the terminal 10 for a predetermined period (for example, a set of a predetermined number of opportunities (occasion) for receiving a candidate PDSCH, or a predetermined number of monitoring opportunities (monitoring opportunity) m of the PDCCH). It may be determined based on at least one of the number of CCs to be performed, the maximum number of HARQ processes per CC, the number of TBs (number of layers or ranks), the number of CBGs per TB, and the presence or absence of spatial bundling. ..
- the predetermined range is also referred to as a HARQ-ACK bundling window, a HARQ-ACK feedback window, a bundling window, a feedback window, or the like.
- the terminal 10 feeds back the NACK bit even if there is no PDSCH scheduling for the terminal 10. Therefore, when using the Type I HARQ-ACK codebook, it is expected that the number of HARQ-ACK bits to be fed back will be larger than the number of scheduled PDSCHs that originally need to be reported.
- the terminal 10 may dynamically determine the HARQ-ACK codebook size and feed back only the HARQ-ACK bit for the scheduled PDSCH.
- the terminal 10 determines the number of bits of the Type II HARQ-ACK codebook based on a predetermined field in the DCI (for example, a DL allocation index (Downlink Indicator (Index) (DAI)) field). You may.
- the DAI field may be split into a counter DAI (counter DAI (cDAI)) and a total DAI (total DAI (tDAI)).
- the counter DAI may indicate a counter value of downlink transmission (PDSCH, data, TB) scheduled within a predetermined period.
- the counter DAI in the DCI that schedules data within the predetermined period may indicate the number counted first in the frequency domain (eg, CC) and then in the time domain within the predetermined period.
- the total DAI may indicate the total value (total number) of data scheduled within a predetermined period.
- the total DAI in the DCI that schedules data in a predetermined time unit (for example, PDCCH monitoring opportunity) within the predetermined period is up to the predetermined time unit (also referred to as point, timing, etc.) within the predetermined period. It may indicate the total number of scheduled data.
- the terminal 10 shares one or more HARQ-ACK bits determined (generated) based on the above Type I or Type II HARQ-ACK codebook with the uplink control channel (Physical Uplink Control Channel (PUCCH)). Transmission may be performed using at least one of channels (Physical Uplink Shared Channel (PUSCH)).
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- the 3GPP Release 15 / Release 16 specifications introduce slot offsets for scheduling and / or feedback (eg, K 0 , K 1 , K 2).
- K 0 may be a slot-by-slot offset in the scheduled cell from the slot position where DCI is transmitted to the slot position where PDSCH is transmitted.
- a slot including the PDSCH scheduled by DCI is set in the second slot from the slot in which DCI is transmitted.
- the value of K 0 is from 0 to 32.
- K 0 may be a value based on the numerology of PDSCH.
- K 1 may be offset by slots in the cell where the feedback corresponding from the slot position where the PDSCH is transmitted to the scheduling to the slot position of PUCCH to be transmitted.
- the feedback may be HARQ-ACK, HARQ information, HARQ response, or delivery confirmation information (value from 0 to 1) indicating the likelihood of delivery. May be.
- the value that can be set for K 1 is 0 to 15. Furthermore, as the possible values to K 1, release 16, non-numerical value is defined.
- K 2 may be a slot-by-slot offset in the scheduled cell from the slot position where DCI is transmitted to the slot position where PUSCH is transmitted.
- K 2 8.
- the value of K 2 is from 0 to 32.
- subcarrier spacing eg 240 kHz and 480 kHz
- the slot size is expected to be very short.
- the number of slots included in a period is very large.
- the subcarrier interval is 480 kHz
- the number of slots contained in one subframe is 32, or 64 or 128.
- channel occupancy may start from the DL and the corresponding feedback is at the end of the CO (or the last time resource that makes up the CO (eg, the final symbol)).
- ) May be assigned.
- Switching DL / UL in CO requires a time gap (overhead) for Contention Before Talk (LBT), and performing LBT during the gap period causes interference between nodes that have succeeded in LBT at the same time. there is a possibility. Therefore, it is not appropriate that a large number of DL / UL switchings are included in the middle of CO. Therefore, when the SCS becomes large, it is assumed that a larger value is required due to the slot offset.
- LBT Contention Before Talk
- the number of HARQ processes is used in the HARQ process.
- the number of HARQ processes is the number of processes for processing HARQ processes in parallel. If the number of HARQ processes is 1, the transmitting side transmits data by Physical Feedback Shared Channel (PDSCH), the receiving side receives the data, determines a data reception error, and sends the reception result to the transmitting side. You will give feedback. In this case, when the content of the feedback is ACK (acceptable response, positive acquired), the next data is transmitted. In this case, since the next data cannot be transmitted until the data is successfully received, the delay in the radio section may increase. To avoid such delays, a number of HARQ processes with a value greater than 1 may be used to process the HARQ processes in parallel.
- a number of HARQ processes with a value greater than 1 may be used to process the HARQ processes in parallel.
- the HARQ process number (HPN: HARQ process number) is specified by the value of a 4-bit field included in the DCI, and represents the number of the HARQ process scheduled by the DCI.
- HPN HARQ process number
- FIG. 4 is a diagram showing a situation in which feedback is given after 16 HARQ processes. As shown in FIG. 4, after the transmission of the 16-slot PDSCH, it is necessary to receive the feedback from the terminal, and it is not assumed that the PDSCH is transmitted during the period for receiving the feedback.
- subcarrier spacing eg 240 kHz and 480 kHz
- the slot size is expected to be very short.
- the number of slots included in a period is very large.
- the subcarrier interval is 480 kHz
- the number of slots contained in one subframe is 32, or 64 or 128.
- channel occupancy may start from the DL and the corresponding feedback is at the end of the CO (or the last time resource that makes up the CO (eg, the final symbol)).
- LBT Contention Before Talk
- the DCI includes a DAI (Downlink assignment index) field.
- DAI includes counter DAI (Counter DAI) and total DAI (Total DAI).
- the counter DAI (2 bits when included in DCI) is information for counting the scheduled CC.
- the terminal 10 In the case of the Type II HARQ-ACK codebook, the terminal 10 generates a number of HARQ-ACK bits corresponding to the number of PDSCHs actually transmitted from the base station 20. Since the terminal 10 may not be able to receive the PDCCH signal from the base station 20, it is possible to notify the number of PDCCHs transmitted by the base station 20 to the terminal 10 including the DAI in the DCI. Is.
- FIG. 5 is a diagram showing an example of notifying DCI including DAI. As shown in FIG. 5, the numerical values on the left side in parentheses such as (0, 1), (1, 1), (2, 3), (3, 3) correspond to the counter DAI.
- the terminal 10 has (0, 1) among the DCIs shown by (0, 1), (1, 1), (2, 3), and (3, 3). Even if the DCI indicated by (1) cannot be detected, the terminal 10 detects the DCI indicated by (1, 1), so that (0, 1) is preceded by (0, 1). Recognizing that there should be 1), the HARQ-ACK bit corresponding to the PDSCH scheduled by the PDCCH including (0, 1) can be set to NACK and transmitted. In this way, in the case of the Type II HARQ-ACK codebook, the number of HARQ-ACK bits transmitted by the terminal 10 can be set to the same number as the number of HARQ-ACK bits assumed on the base station 20 side. Become.
- the total DAI (for example, if it is included in the DCI, it may be 2 bits) is a counter that counts the total number of PDCCHs transmitted to schedule the CC for each timing.
- the total number is counted up by two.
- the numerical values on the right side in parentheses such as (0, 1), (1, 1), (2, 3), (3, 3) correspond to the total DAI. Since the total number is counted up by 2, the total DAI takes values of 1 and 3.
- DCI represented by (3, 3) among (0, 1), (1, 1), (2, 3), and (3, 3) can be detected.
- the terminal 10 detects the DCI indicated by (2, 3), it is unknown whether or not the DCI of (3, 3) is transmitted by the counter DAI. Also, from the total DAI value 3 of (2, 3), it was recognized that there should be a DCI of (3, 3), and HARQ- corresponding to the PDSCH scheduled by the PDCCH including (3, 3).
- the ACK bit can be set to NACK for transmission.
- the size of the DAI is 2 bits for the counter DAI and 2 bits for the total DAI, if four or more DCI detection errors occur consecutively due to bit size restrictions, the error determination by the DAI can be performed. become unable.
- the current DAI size is considered to be inadequate in the case of the unlicensed frequency band, and it is assumed that it will be necessary to increase the DAI size.
- increasing the size of the DCI can also reduce the performance of the PDCCH.
- the same timing at the latest in time that is, the last timing of the PDCCH that schedules the PDSCH corresponding to the HARQ-ACK bit included in the feedback
- the same timing at the latest in time that is, the last timing of the PDCCH that schedules the PDSCH corresponding to the HARQ-ACK bit included in the feedback
- the total number of received DCIs cannot be detected on the terminal 10 side, and the recognition of the total number of DCIs does not match between the base station 20 side and the terminal 10 side. there is a possibility.
- DCI format1_1 indicates HARQ feedback for one scheduled PDSCH group or two groups.
- the two groups may be two groups, group 0 for HARQ feedback in COT # 0 and group 1 for HARQ feedback in COT # 1.
- the number of groups may be two, in which case the index is 0 or 1.
- FIG. 6 is a diagram showing an example of using the Enhanced Dynamic Chord Book. As shown in FIG. 6, for example, it is assumed that the feedback for group 0 (HARQ ACK1) was scheduled, but the feedback for group 0 (HARQ ACK1) could not be transmitted because the LBT failed. In such a case, the feedback to the PDSCH group 0 can be performed again at another timing.
- the counter DAI value and the total DAI value are counted for each group. Therefore, even if all PDCCH detections for group 0 are unsuccessful, there is no effect on the HARQ-ACK feedback of group 1 (that is, if the PDCCH of group 1 is detected correctly). , The HARQ-ACK codebook size of group 1 can be derived correctly).
- the maximum number of PDSCH groups is 2. If it is possible to set a larger number of PDSCH groups, it is possible to reduce the impact of continuous false detection of PDCCH.
- At least one of the following extensions may be introduced in the NR unlicensed band above 52.6 GHz (eg, 59 GHz-64 GHz, 57 GHz-66 GHz, 57 GHz-64 GHz, and 57 GHz-71 GHz). ..
- the maximum value that can be set to K 0 is made larger than 32.
- the maximum value that can be set for K 2 is made larger than 32.
- the maximum value that can be set in K 1 (the parameter name of RRC is dl-DataToUL-ACK) is made larger than 16.
- the DCI field used when actually indicating the value of K 1 by DCI is PDSCH-to-HARQ_fedback timing indicator field, and specifically, eight candidates determined as dl-DataToUL-ACK.
- the PDSCH-to-HARQ_fedback timing indicator field indicates which of the values to use in 3 bits.
- the size of the PDSCH-to-HARQ_feedback timing indicator field may be made larger than 3 bits, and the number of candidate values that can be specified by dl-DataToUL-ACK may be made larger than 8.
- the maximum number of HARQ processes may be greater than 16.
- the size of the DCI HARQ process number field may be larger than 4 bits.
- the terminal 10 When the DCI that schedules the PDSCH indicates a non-numerical value (inapplicable value) in the PDSCH-to-HARQ_fedback timing indicator field, the terminal 10 receives the HARQ-ACK feedback timing corresponding to the PDSCH after the terminal 10 receives the feedback timing. It may be determined by another DCI, which shows a value other than the non-numerical value (inapplicable value) in the PDSCH-to-HARQ_feedback timing indicator field.
- the terminal 10 that supports the above extension may transmit the support for the extension to the base station 20 as UE capacity.
- Alt. Support for the above extensions may be mandatory for terminals 10 operating from 1: 52.6 GHz to 71 GHz, and the above extensions do not apply to terminals 10 not operating from 52.6 GHz to 71 GHz. You may. In this case, in particular, when the terminal 10 operates at 52.6 GHz to 71 GHz even if the terminal 10 does not notify the base station 20 of the UE capacity, the base station 20 is extended by the terminal 10 as described above. It may be interpreted as supporting. If the terminal 10 does not operate at 52.6 GHz to 71 GHz, the base station 20 may interpret that the terminal 10 does not support the above extensions.
- the above extension may be optional for the terminal 10 operating from 52.6 GHz to 71 GHz, even if the above extension is not applied to the terminal 10 not operating from 52.6 GHz to 71 GHz. good.
- the terminal 10 operating at 52.6 GHz to 71 GHz may transmit to the base station 20 whether or not to support the above extension as UE capacity.
- Alt. Support for the above extensions may be mandatory for terminals 10 operating from 3: 1: 52.6 GHz to 71 GHz, and the above extensions are optional for terminals 10 not operating from 52.6 GHz to 71 GHz. It may be.
- a new default time domain resource allocation setting (defalt time domain reserve). allocation configuration) may be defined and applied.
- the default PDSCH time domain resource allocations A and C may be defined and applied.
- a non- zero K 0 value may be introduced in the new table.
- the default PDSCH time domain resource allocation B may be defined and applied.
- a value of K 0 greater than 1 may be introduced in the new table.
- the default PUSCH time domain resource allocation A may be defined and applied.
- the value of j may be greater than or equal to 3 for SCS greater than 120 kHz and / or the value of K 2 may be greater than j + 3 (eg, j + 4). ).
- a new default candidate value for PDSCH-to-HARQ feedback timing indicator may be defined.
- the candidate values for the PDSCH-to-HARQ feedback timing indicator in DCI format 1_0 are ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
- the new default candidate value may contain a number greater than 8.
- K 0, K 1, and K 2 are also offsets for determining the time resource (eg, slot or symbol) from receiving the control information to receiving the downlink information (eg, CC or TB).
- it may be an offset for determining a slot or symbol).
- the size of the counter DAI may be larger than 2 bits.
- a minimum channel bandwidth (BW) wider than 400 MHz may be specified.
- the minimum channel bandwidth eg, 400 MHz or higher
- the maximum number of CCs at 52.6 GHz-71 GHz is not significantly increased.
- the Type2 HARQ-ACK codebook may not be supported / applied.
- a new HARQ-ACK codebook function (# 1) may be introduced.
- the total DAI field (or part of it) may be used to indicate the size of the HARQ-ACK codebook.
- Terminal 10 may assume that the HARQ-ACK codebooks for the same feedback, notified in different DCIs, have the same size.
- the base station 20 may set a candidate value for the HARQ-ACK codebook size by RRC signaling, for example, or one of the candidate values may be selected by DCI.
- the counter DAI may be expanded in size so that it can indicate the counter value without modulo operation.
- FIG. 7 shows an example of notifying DCI including DAI.
- the size of the counter DAI is 2 bits, and the size of the total DAI is 2 bits.
- the numerical values on the left side in parentheses such as (0, 1), (1, 1), (2, 3), (3, 3) correspond to the counter DAI.
- the numerical values on the right side in parentheses such as (0, 1), (1, 1), (2, 3), (3, 3) correspond to the total DAI.
- the size of the HARQ-ACK codebook is 4 bits.
- the size of the HARQ-ACK codebook is 8 bits.
- the counter DAI takes values of 0, 1, 2, and 3 and then repeats the values of 0, 1, 2, and 3. This is because the modulo operation (mod 4) is applied.
- the counter DAI values 0, 1 are performed at the subsequent timings. Since 2, 3 are repeated, the terminal 10 may erroneously determine that the size of the HARQ-ACK codebook is 4 bits.
- FIG. 8 is a diagram showing an example of the New HARQ-ACK codebook # 1.
- the size of the counter DAI has been extended to 3 bits and no modulo operation has been applied.
- the total DAI also indicates the size of the HARQ-ACK codebook.
- the size of the HARQ-ACK codebook is 4 bits, and when the total DAI value is 1, the size of the HARQ-ACK codebook is 8 bits. It may be set.
- the counter DAI and the total DAI in this way, it is possible to avoid a mismatch in the recognition of the HARQ-ACK codebook size between the terminal 10 and the base station 20. Further, based on the missing value of the counter DAI, the corresponding HARQ-ACK bit can be set to NACK for transmission.
- the maximum number of PDSCH groups may be greater than 2.
- a new HARQ-AKC codebook (# 2) may be introduced.
- DAI values may be generated based on DCI at predetermined intervals.
- the DAI value may be generated based on the DCI at each PDCCH monitoring cycle.
- the value of DAI may be generated based on DCI for each period set by RRC (for example, for each predetermined number of slots or for each predetermined number of monitoring opportunities).
- the terminal 10 may report to the base station 20 whether or not the terminal 10 has detected the scheduling DCI at each PDCCH monitoring opportunity.
- the information indicating whether or not the terminal 10 has detected DCI at each PDCCH monitoring opportunity is encoded separately from HARQ-ACK for the data and may be multiplexed in UCI.
- the HARQ-ACK codebook size may be determined based on 1) the number of PDCCH monitoring opportunities in which DCI was detected, and 2) the value of DAI indicated in each DCI.
- FIG. 9 shows an example of notifying DCI including DAI.
- the size of the counter DAI is 2 bits, and the size of the total DAI is 2 bits.
- the numerical values on the left side in parentheses such as (0, 3), (1, 3), (2, 3), (3, 3) correspond to the counter DAI.
- the numerical values on the right side in parentheses such as (0, 3), (1, 3), (2, 3), (3, 3) correspond to the total DAI.
- the counter DAI repeats the values 0, 1, 2, 3, 0, 1, 2, and 3. Since the total DAI has four DL cells, the value 3 is taken up to the second slot from the left. Further, in the third slot from the left, the DCI from the DL cell 4 is not transmitted, so the total DAI takes a value of 2.
- the corresponding HARQ-ACK bit can be set to NACK and transmitted based on the missing value of the counter DAI.
- the terminal 10 may mistakenly recognize the size of the HARQ-ACK codebook as 7 bits.
- the recognition of the size of the HARQ-ACK codebook does not match between the base station 20 and the terminal 10. there is a possibility.
- FIG. 10 is a diagram showing an example of a new HARQ-AKC codebook (# 2).
- the size of the counter DAI is 2 bits
- the size of the total DAI is 2 bits.
- the numerical values on the left side in parentheses such as (0, 3), (1, 3), (2, 3), (3, 3) correspond to the counter DAI.
- the numerical values on the right side in parentheses such as (0, 3), (1, 3), (2, 3), (3, 3) correspond to the total DAI.
- the terminal 10 when returning feedback, transmits a bitmap indicating whether or not the PDCCH could be received.
- the terminal 10 can receive at least one DCI in the first slot, the second slot, and the third slot from the left, was it possible to receive the PDCCH? As a bitmap indicating whether or not, the bitmap (1, 1, 1) is returned.
- the terminal 10 recognizes the size of the HARQ-ACK codebook as 7 bits.
- the DCI that could not be detected in the second slot from the left in the example shown on the right side of FIG. 10 is excluded based on the bitmap (1, 0, 1) indicating whether or not the PDCCK could be received. It can be recognized that the terminal 10 is transmitting the 7-bit HARQ-ACK codebook. This makes it possible to avoid a mismatch in the recognition of the HARQ-ACK codebook size between the base station 20 and the terminal 10.
- the terminal 10 and the base station 20 have all the functions described in the present embodiment. However, the terminal 10 and the base station 20 may have only a part of all the functions described in the present embodiment.
- the terminal 10 and the base station 20 may be collectively referred to as a communication device.
- FIG. 11 is a diagram showing an example of the functional configuration of the terminal 10. As shown in FIG. 11, the terminal 10 has a transmitting unit 110, a receiving unit 120, and a control unit 130.
- the functional configuration shown in FIG. 11 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the present embodiment can be executed.
- the transmitter 110 may be referred to as a transmitter
- the receiver 120 may be referred to as a receiver.
- the transmission unit 110 creates a transmission from the transmission data and wirelessly transmits the transmission signal. Further, the transmission unit 110 can form one or a plurality of beams.
- the receiving unit 120 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 120 includes a measuring unit that measures the received signal and acquires the received power and the like.
- the control unit 130 controls the terminal 10.
- the function of the control unit 130 related to transmission may be included in the transmission unit 110, and the function of the control unit 130 related to reception may be included in the reception unit 120.
- the control unit 130 of the terminal 10 includes the PDSCH scheduled by the PDCCH from the slot containing the PDCCH when performing the operation of the Hybrid Automatic Repeat Request (HARQ).
- the number of slots larger than 32 slots may be set as the value of the offset to the slots.
- the control unit 130 of the terminal 10 may set the number of slots larger than 15 slots as an offset value from the slot that received the PDSCH to the slot that returns the feedback corresponding to the PDSCH.
- the control unit 130 of the terminal 10 may set the number of slots larger than 32 slots as the offset value from the slot including the PDCCH to the slot with the PUSCH when scheduling the uplink.
- the control unit 130 of the terminal 10 may set a value larger than 16 as the number of HARQ processes per CC.
- the receiving unit 120 of the terminal 10 receives the setting information transmitted from the base station 20, and the control unit 130 of the terminal 10 receives the control information transmitted from the base station 20.
- DAI Downlink Assignent Indicator
- the interpretation of the counter DAI and the total DAI may be changed.
- the control unit 130 of the terminal 10 may interpret that the total DAI specifies the size of the codebook for transmitting the feedback information. Further, the control unit 130 of the terminal 10 may interpret that the counter DAI counts the number of times the DCI is received.
- the control unit 130 of the terminal 10 reports to the base station 20 whether or not the receiving unit 120 of the terminal 10 has detected DCI at each PDCCH monitoring opportunity.
- the transmission unit 110 of the terminal 10 encodes information indicating whether or not the reception unit 120 of the terminal 10 has detected DCI at each PDCCH monitoring opportunity, separately from HARQ-ACK for the data, and multiplexes and transmits the data in UCI.
- the control unit 130 of the terminal 10 creates a bitmap indicating whether or not the PDCCH can be received in each slot, and the transmission unit 110 of the terminal 10 transmits the bitmap together with the HARQ-ACK codebook. May be good.
- FIG. 12 is a diagram showing an example of the functional configuration of the base station 20.
- the base station 20 includes a transmission unit 210, a reception unit 220, and a control unit 230.
- the functional configuration shown in FIG. 12 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the present embodiment can be executed.
- the transmitter 210 may be referred to as a transmitter, and the receiver 220 may be referred to as a receiver.
- the transmission unit 210 includes a function of generating a signal to be transmitted to the terminal 10 side and transmitting the signal wirelessly.
- the receiving unit 220 includes a function of receiving various signals transmitted from the terminal 10 and acquiring information of, for example, a higher layer from the received signals. Further, the receiving unit 220 includes a measuring unit that measures the received signal and acquires the received power and the like.
- the control unit 230 controls the base station 20.
- the function of the control unit 230 related to transmission may be included in the transmission unit 210, and the function of the control unit 230 related to reception may be included in the reception unit 220.
- the control unit 230 of the base station 20 when the control unit 230 of the base station 20 performs the operation of Hybrid Automatic Repeat Request (HARQ), the PDSCH scheduled by the PDCCH is included from the slot including the PDCCH. It may be set that the number of slots larger than 32 slots is set as the value of the offset to the slot. Further, the control unit 230 of the base station 20 may set the number of slots larger than 15 slots as an offset value from the slot in which the PDSCH is transmitted to the slot in which the feedback corresponding to the PDSCH is received. Further, the control unit 230 of the base station 20 may set the number of slots larger than 32 slots as the offset value from the slot including the PDCCH to the slot with the PUSCH when scheduling the uplink. Further, the control unit 230 of the base station 20 may set a value larger than 16 as the number of HARQ processes per CC.
- HARQ Hybrid Automatic Repeat Request
- the control unit 230 of the base station 20 has a counter DAI and a total of the Downlink Indicator Indicator (DAI) included in the control information transmitted from the transmission unit 210 of the base station 20.
- DAI Downlink Indicator Indicator
- Setting information for changing the interpretation of the DAI may be set, and the transmission unit 210 may transmit the setting information to the terminal 10.
- the control unit 230 of the base station 20 may include in the setting information that the total DAI specifies the size of the codebook for transmitting the feedback information. Further, the control unit 230 of the base station 20 may include information for setting the counter DAI as a counter for counting the number of times DCI is received in the setting information.
- the receiving unit 220 of the base station 20 provides information indicating whether or not the receiving unit 120 of the terminal 10 has detected DCI at each PDCCH monitoring opportunity. It may be received from 10. Even if the receiving unit 220 of the base station 20 receives information indicating whether or not the terminal 10 has detected DCI at each PDCCH monitoring opportunity, which is encoded separately from HARQ-ACK for the data and multiplexed in UCI. good. Further, the receiving unit 220 of the base station 20 may receive a bitmap indicating whether or not the terminal 10 has received the PDCCH in each slot together with the HARQ-ACK codebook.
- each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices that are physically and / or logically separated may be directly and / or logically separated. / Or indirectly (for example, wired and / or wireless) connection may be realized by these plurality of devices.
- FIG. 13 is a diagram showing an example of the hardware configuration of the terminal 10 and the base station 20 according to the present embodiment.
- the terminal 10 and the base station 20 described above may each be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the word “device” can be read as a circuit, device, unit, etc.
- the hardware configuration of the terminal 10 and the base station 20 may be configured to include one or more of the devices shown in 1001 to 1006 shown in the figure, or may be configured not to include some of the devices. May be good.
- the processor 1001 For each function of the terminal 10 and the base station 20, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an calculation, and the communication device 1004 communicates with the memory 1002 and the memory 1002. This is achieved by controlling the reading and / or writing of data in the storage 1003.
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
- CPU Central Processing Unit
- the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
- the transmission unit 110, the reception unit 120, and the control unit 130 of the terminal 10 shown in FIG. 11 may be realized by a control program stored in the memory 1002 and operated by the processor 1001.
- the transmission unit 210, the reception unit 220, and the control unit 230 of the base station 20 shown in FIG. 12 may be realized by a control program stored in the memory 1002 and operated by the processor 1001.
- the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
- Processor 1001 may be mounted on one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium, and is, for example, a ROM (Read Only Memory), an EPROM (Erasable Program ROM), an EPROM (Electrically Erasable Program ROM), a RAM (Random Access Memory), or a RAM (Random Access). May be done.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to perform the process according to the embodiment of the present invention.
- the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- the storage 1003 may be referred to as an auxiliary storage device.
- the storage medium described above may be, for example, a database, server or other suitable medium containing memory 1002 and / or storage 1003.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via a wired and / or wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the transmission unit 110 and the reception unit 120 of the terminal 10 may be realized by the communication device 1004.
- the transmitting unit 210 and the receiving unit 220 of the base station 20 may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- Bus 1007 may be composed of a single bus, or may be composed of different buses between devices.
- terminal 10 and the base station 20 are a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device) hardware, an FPGA, and an FPGA, respectively. It may be configured to include hardware, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented on at least one of these hardware.
- FR1 which is a low frequency band of the New Radio (NR) system
- FR2 Frequency Range 2
- the transmission is performed from the base station in a high frequency band equal to or higher than the frequency band of the FR2.
- a terminal equipped with a control unit and a control unit.
- the control unit may change the interpretation that the total DAI specifies the size of the codebook for transmitting feedback information.
- the control unit may change the interpretation when the counter DAI counts the true value of the number of times the downlink control information is received.
- the terminal further includes a transmitting unit that transmits a radio signal, and the control unit creates bitmap information indicating whether or not the receiving unit has detected the downlink control information at each monitoring opportunity of the downlink control information.
- the transmission unit may transmit the bitmap information.
- the base station can grasp the DCI reception information by the terminal from the bitmap information.
- the frequency band is transmitted from the base station in a higher frequency band than the FR2 frequency band.
- DAI Downlink Frequency Indicator
- a control unit that sets setting information for changing the interpretation of at least one of the counter DAI and the total DAI, and a transmission unit that transmits the setting information. Base station to prepare.
- the boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component.
- the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
- the processing order may be changed as long as there is no contradiction.
- the terminal 10 and the base station 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
- the software operated by the processor of the terminal 10 according to the embodiment of the present invention and the software operated by the processor of the base station 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
- information notification includes physical layer signaling (for example, DCI (Broadcast Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access) Signaling). Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals or a combination thereof may be used.
- RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRC Signaling Setup) message, an RRC connection reconfiguration (RRC Signaling Configuration) message, or the like.
- Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered Trademarks), GSM (Registered Trademarks), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), LTE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), It may be applied to Bluetooth®, other systems that utilize suitable systems and / or next-generation systems that are extended based on them.
- the specific operation performed by the base station 20 in the present specification may be performed by its upper node (upper node).
- various operations performed for communication with the terminal 10 are performed on a network other than the base station 20 and / or the base station 20. It is clear that it can be done by a node (eg, MME or S-GW, but not limited to these).
- a node eg, MME or S-GW, but not limited to these.
- MME Mobility Management Entity
- the terminal 10 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal 10, or a mobile terminal 10 by a person skilled in the art.
- Wireless terminal 10, remote terminal 10 handset, user agent, mobile client, client, or some other suitable term.
- Base station 20 may also be referred to by one of ordinary skill in the art by NB (NodeB), eNB (enhanced NodeB), base station (Base Station), gNB, or some other suitable term.
- NB NodeB
- eNB enhanced NodeB
- Base Station Base Station
- gNB Base Station
- the bandwidth portion (BWP: Bandwidth Part) (which may also be referred to as partial bandwidth) may represent a subset of consecutive common RBs (common resources blocks) for a certain neurology in a carrier. good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission / reception.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- one subframe may be referred to as a transmission time interval (TTI)
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- At least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station 20 schedules each user terminal 10 to allocate radio resources (frequency bandwidth that can be used in each user terminal 10, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the time interval for example, the number of symbols
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the time domain of the RB may also include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs include a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
- the resource block may be composed of one or a plurality of resource elements (RE: Resource Elements).
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- determining and “determining” used herein may include a wide variety of actions.
- “Judgment” and “decision” include, for example, judgment, calculation, computing, processing, deriving, investigating, searching (for example, table). , Searching in a database or another data structure), ascertaining can be regarded as “judgment” or “decision”.
- "judgment” and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Acquiring) (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
- judgment and “decision” are regarded as “judgment” and “decision” that the things such as solving, selecting, selecting, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”.
- Terminal 110 Transmitter 120 Receiver 130 Control 20
- Base station 210 Transmitter 220 Receiver 230
- Control 1001 Processor 1002 Memory
- Storage 1004 Communication device
- Input device 1006 Output device
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される設定情報する受信部と、前記設定情報に基づき、前記基地局から受信する制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIのうちの少なくともいずれか1つに対する解釈を変更する制御部と、を備える端末。
Description
本発明は、無線通信システムにおける端末及び基地局に関連するものである。
3GPP(Third Generation Partnership Project)のリリース15のNR(New Radio)及びリリース16のNRでは、上限が52.6GHzまでの周波数帯を対象としている。52.6GHz以上の周波数帯にNRを拡張することについて、リリース16で、各種規制(regulation)、ユースケース、要求条件(requirement)等を検討するTSG RAN(Technical Specification Group Radio Access Network)レベルのstudy itemが存在する。このstudy itemの検討は、2019年12月に完了しており、リリース17で、仕様を実際に52.6GHz以上に拡張するためのstudy item及びwork itemが合意されている。
リリース16での検討項目では、NRの周波数帯として、52.6GHzから114.25GHzまで拡張することを想定していたが、リリース17では、検討の時間が限られていることもあり、検討の対象とする周波数帯を、52.6GHzから71GHzまでに限定することが想定されている。さらに、NRの周波数帯を、52.6GHzから71GHzまでに拡張する際に、現在のNRのFR2(Frequency Range 2)のデザインに基づいて拡張を行うことが想定されている。
3GPP TSG RAN Meeting #86、RP-193229、Sitges、Spain、December 9-12、2019
3GPP TS 38.101-2 V15.8.0 (2019-12)
3GPP TSG-RAN4 Meeting #92bis、R4-1912870、Chongqing、China、14-18 Oct、2019
3GPP TSG-RAN4 Meeting #93、R4-1916167、Reno、United States、18th-22nd November、2019
3GPP TSG-RAN4 Meeting #92bis、R4-1912982、Chongqing、China、14th-18th October 2019
3GPP TSG-RAN4 Meeting #93、R4-1915982、Reno、US、November 18-22、2019
3GPP TS 38.331 V15.8.0 (2019-12)
3GPP TS 38.213 V15.8.0 (2019-12)
3GPP TS 38.214 V15.7.0 (2019-09)
3GPP TS 38.212 V16.0.0 (2019-12)
DCIにはDAI(Downlink assignment index)フィールドが含まれる。DAIは、カウンタDAI(Counter DAI)及びトータルDAI(Total DAI)を含む。
基地局と端末との間で、HARQ-ACKコードブックのサイズの認識が一致させる技術が必要とされている。
本発明の一態様によれば、 New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される設定情報する受信部と、前記設定情報に基づき、前記基地局から受信する制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIのうちの少なくともいずれか1つに対する解釈を変更する制御部と、を備える端末、が提供される。
基地局と端末との間で、HARQ-ACKコードブックのサイズの認識が一致させる技術が必要とされている。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
以下の実施の形態における無線通信システムは基本的にNRに準拠することを想定しているが、それは一例であり、本実施の形態における無線通信システムはその一部又は全部において、NR以外の無線通信システム(例:LTE)に準拠していてもよい。
(システム全体構成)
図1に本実施の形態に係る無線通信システムの構成図を示す。本実施の形態に係る無線通信システムは、図1に示すように、端末10、及び基地局20を含む。図1には、端末10、及び基地局20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
図1に本実施の形態に係る無線通信システムの構成図を示す。本実施の形態に係る無線通信システムは、図1に示すように、端末10、及び基地局20を含む。図1には、端末10、及び基地局20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
端末10は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末10、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。端末10は、DLで制御信号又はデータを基地局20から受信し、ULで制御信号又はデータを基地局20に送信することで、無線通信システムにより提供される各種通信サービスを利用する。例えば、端末10から送信されるチャネルには、PUCCH(Physical Uplink Control Channel)及びPUSCH(Physical Uplink Shared Channel)が含まれる。また、端末10をUEと称し、基地局20をgNBと称してもよい。
本実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよい。
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」又は「規定される」とは、所定の値が基地局20又は端末10に予め設定(Pre-configure)されることであってもよいし、基地局20又は端末10に予め設定(Pre-configure)されることを想定することであってもよいし、基地局20又は端末10から通知される無線パラメータが設定されることであってもよい。
基地局20は、1つ以上のセルを提供し、端末10と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局20は、同期信号及びシステム情報を端末10に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報の一部は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及び報知情報は、所定数のOFDMシンボルから構成されるSSブロック(SS/PBCH block)として周期的に送信されてもよい。例えば、基地局20は、DL(Downlink)で制御信号又はデータを端末10に送信し、UL(Uplink)で制御信号又はデータを端末10から受信する。基地局20及び端末10はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。例えば、基地局20から送信される参照信号はCSI-RS(Channel State Information Reference Signal)を含み、基地局20から送信されるチャネルは、PDCCH(Physical Downlink Control Channel)及びPDSCH(Physical Downlink Shared Channel)を含む。
(Multi-numerology)
5Gにおける幅広い周波数やユースケースをサポートするためには、複数のNumerology(サブキャリア間隔やシンボル長等の無線パラメータ)をサポートする必要がある。このため、LTEのNumerologyを基準として、スケーラブルに可変パラメータを設計することが有効である。この考え方の下で、NRのMulti-Numerologyが導入されている。具体的には、基準サブキャリア間隔は、LTEのサブキャリア間隔と同じで、15kHzとされている。基準サブキャリア間隔に2のべき乗を乗算することで、その他のサブキャリア間隔が規定されている。複数サブキャリア間隔構成(subcarrier spacing configuration)μが規定されている。具体的には、μ=0に対して、サブキャリア間隔Δf=15kHz、Cyclic prefix=Normal、μ=1に対して、サブキャリア間隔Δf=30kHz、Cyclic prefix=Normal、μ=2に対して、サブキャリア間隔Δf=60kHz、Cyclic prefix=Normal又はExtended、μ=3に対して、サブキャリア間隔Δf=120kHz、Cyclic prefix=Normal、μ=4に対して、サブキャリア間隔Δf=240kHz、Cyclic prefix=Normalが指定されてもよい。
5Gにおける幅広い周波数やユースケースをサポートするためには、複数のNumerology(サブキャリア間隔やシンボル長等の無線パラメータ)をサポートする必要がある。このため、LTEのNumerologyを基準として、スケーラブルに可変パラメータを設計することが有効である。この考え方の下で、NRのMulti-Numerologyが導入されている。具体的には、基準サブキャリア間隔は、LTEのサブキャリア間隔と同じで、15kHzとされている。基準サブキャリア間隔に2のべき乗を乗算することで、その他のサブキャリア間隔が規定されている。複数サブキャリア間隔構成(subcarrier spacing configuration)μが規定されている。具体的には、μ=0に対して、サブキャリア間隔Δf=15kHz、Cyclic prefix=Normal、μ=1に対して、サブキャリア間隔Δf=30kHz、Cyclic prefix=Normal、μ=2に対して、サブキャリア間隔Δf=60kHz、Cyclic prefix=Normal又はExtended、μ=3に対して、サブキャリア間隔Δf=120kHz、Cyclic prefix=Normal、μ=4に対して、サブキャリア間隔Δf=240kHz、Cyclic prefix=Normalが指定されてもよい。
サブキャリア間隔構成μ=0、1、2、3、4のいずれに対しても、1つのスロットに含まれるOFDMシンボルの数は、14とされている。しかしながら、サブキャリア間隔構成μ=0、1、2、3、4に対して、1フレームに含まれるスロット数は、10、20、40、80、160であり、かつ1サブフレームに含まれるスロット数は、1、2、4、8、16となっている。ここで、フレームの長さは、10msなので、サブキャリア間隔構成μ=0、1、2、3、4に対して、スロット長は、1ms、0.5ms、0.25ms、0.125ms、0.0625msとなる。サブキャリア間隔構成μ=0、1、2、3、4のいずれに対しても、1つのスロットに含まれるOFDMシンボルの数は、14なので、サブキャリア間隔構成毎にOFDMシンボル長が異なる。サブキャリア間隔構成μ=0、1、2、3、4に対して、OFDMシンボル長は、(1/14)ms、(0.5/14)ms、(0.25/14)ms、(0.125/14)ms、(0.0625/14)msとなる。このように、スロット長及びOFDMシンボル長を短くすることで、低遅延の通信を実現することができる。例えば、基地局20は、情報要素BWPのパラメータであるsubcarrierSpacingにおいて、μ=0、1、2、3、4のいずれかを指定することにより、端末10に対してサブキャリア間隔を設定することができる。
(52.6GHz以上の周波数帯へのNRの拡張)
3GPP(Third Generation Partnership Project)のリリース15のNR(New Radio)及びリリース16のNRでは、上限が52.6GHzまでの周波数帯を対象としている。52.6GHz以上の周波数帯にNRを拡張することについて、リリース16で、各種規制(regulation)、ユースケース、要求条件(requirement)等を検討するTSG RAN(Technical Specification Group Radio Access Network)レベルのstudy itemが存在する。このstudy itemの検討は、2019年12月に完了しており、リリース17で、仕様を実際に52.6GHz以上に拡張するためのstudy item及びwork itemが合意されている。
3GPP(Third Generation Partnership Project)のリリース15のNR(New Radio)及びリリース16のNRでは、上限が52.6GHzまでの周波数帯を対象としている。52.6GHz以上の周波数帯にNRを拡張することについて、リリース16で、各種規制(regulation)、ユースケース、要求条件(requirement)等を検討するTSG RAN(Technical Specification Group Radio Access Network)レベルのstudy itemが存在する。このstudy itemの検討は、2019年12月に完了しており、リリース17で、仕様を実際に52.6GHz以上に拡張するためのstudy item及びwork itemが合意されている。
リリース16での検討項目では、NRの周波数帯として、52.6GHzから114.25GHzまで拡張することを想定していたが、リリース17では、検討の時間が限られていることもあり、図2に示されるように、検討の対象とする周波数帯を、52.6GHzから71GHzまでに限定することが想定されている。さらに、NRの周波数帯を、52.6GHzから71GHzまでに拡張する際に、現在のNRのFR2(Frequency Range 2)のデザインに基づいて拡張を行うことが想定されている。これは、新しいwave formの検討を行うには、かなり時間を費やすことが想定されるためである。
また、検討の対象の周波数帯を、52.6GHzから71GHzに限定する理由として、例えば、71GHz以下では、既に、各国で使えるアンライセンス周波数帯として、54GHzから71GHzといった周波数帯が存在しており、かつWorld Radiocommunication Conference 2019(WRC-2019)でもIMT(International Mobile Telecommunications)向けの新しい周波数帯の候補として、66GHzから71GHzが最も高い周波数帯となっており、71GHz以上には、直ちにライセンスバンドとして使用できるような周波数帯が存在しない点が挙げられる。
現在のNR用の周波数帯は、410MHzから7.125GHzまでの周波数帯に対応するFR1(Frequency Range 1)及び24.25GHzから52.6GHzまでの周波数帯に対応するFR2で構成されている。
なお、52.6GHzから71GHzまでの周波数帯については、現状のFR2(24.25GHzから52.6GHzまでの周波数帯)の定義を変更して、変更後のFR2に含めてもよく、代替的に、FR2とは分けて、新しいFrequency Range(FR)としてもよい。
(Work ItemのObjectives)
(RAN1:物理レイヤの特徴)
52.6GHzから71GHzまでの周波数帯で端末10及び基地局20が動作するための新しい1又は複数のニューメロロジー。Study Item(SI)で特定される物理信号/チャネルへの影響がある場合には、その影響に対処する。
(RAN1:物理レイヤの特徴)
52.6GHzから71GHzまでの周波数帯で端末10及び基地局20が動作するための新しい1又は複数のニューメロロジー。Study Item(SI)で特定される物理信号/チャネルへの影響がある場合には、その影響に対処する。
新しいニューメロロジーそれぞれに適合するタイムラインに関する特徴。例えば、BWP(Bandwidth Part)及びビーム切り替え時間、HARQ(Hybrid Automatic Repeat Request)スケジューリング、UE(User Equipment)処理、PDSCH(Physical Downlink Shared Channel)、PUSCH(Physical Uplink Shared Channel)/SRS(Sounding Reference Signal)及びCSI(Channel State Information)、それぞれを準備する時間及び計算する時間。
52.6GHzから71GHzまでの周波数帯におけるライセンス周波数帯での動作及びアンライセンス周波数帯での動作のための最大で64のSSB(Synchronization Signal Block)ビーム。
物理レイヤの処理は、52.6GHzから71GHzまでのアンライセンス周波数帯に適用可能な規制要件を満たすための、ビームベースの動作を想定したチャネルアクセスメカニズムを含んでもよい。
(HARQ-ACKコードブック)
なお、以下の実施例において、HARQ-ACKコードブックを使用した、端末10から基地局20へのHARQ-ACKの送信の例を説明する。
なお、以下の実施例において、HARQ-ACKコードブックを使用した、端末10から基地局20へのHARQ-ACKの送信の例を説明する。
HARQ-ACKコードブック(codebook)は、一つまたは複数のHARQ-ACKが送信される場合に、その送信ビット数の設定方法を含めた送信方法を規定している。HARQ-ACKコードブックは、時間領域(例えば、スロット)、周波数領域(例えば、コンポーネントキャリア(Component Carrier(CC)))、空間領域(例えば、レイヤ)、トランスポートブロック(Transport Block(TB))、及び、TBを構成するコードブロックのグループ(コードブロックグループ(Code Block Group(CBG)))の少なくとも一つの単位でのHARQ-ACK用のビットを含んで構成されてもよい。なお、CCは、セル、サービングセル(serving cell)、キャリア等とも呼ばれる。また、当該ビットは、HARQ-ACKビット、HARQ-ACK情報又はHARQ-ACK情報ビット等とも呼ばれる。HARQ-ACKコードブックは、PDSCH-HARQ-ACKコードブック(pdsch-HARQ-ACK-Codebook)、コードブック、HARQコードブック、HARQ-ACKサイズ等とも呼ばれる。
HARQ-ACKコードブックに含まれるビット数(サイズ)等は、準静的(semi-static)又は動的に(dynamic)決定されてもよい。準静的なHARQ-ACKコードブックは、Type I HARQ-ACKコードブック、準静的コードブック等とも呼ばれる。動的なHARQ-ACKコードブックは、Type II HARQ-ACKコードブック、動的コードブック等とも呼ばれる。
Type I HARQ-ACKコードブック又はType II HARQ-ACKコードブックのいずれを用いるかは、上位レイヤパラメータ(例えば、pdsch-HARQ-ACK-Codebook)により端末10に設定されてもよい。
Type I HARQ-ACKコードブックの場合、端末10は、各CCの各HARQプロセス番号に対応するPDSCHのスケジューリングの有無に関係なく、所定のサイズ(例えば、上位レイヤパラメータに基づいて設定される数)のHARQ-ACKコードブックを生成し、コードブック内の各ビットを用いて各HARQプロセスに対応するHARQ-ACKビットをフィードバックしてもよい。
当該所定サイズは、所定期間(例えば、候補となるPDSCH受信用の所定数の機会(occasion)のセット、又は、PDCCHの所定数のモニタリング機会(monitoring occasion)m)、端末10に設定又はアクティブ化されるCCの数、CC毎の最大HARQプロセス数、TBの数(レイヤ数又はランク)、1TBあたりのCBG数、空間バンドリングの適用の有無、の少なくとも一つに基づいて定められてもよい。当該所定範囲は、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウ、バンドリングウィンドウ、フィードバックウィンドウなどとも呼ばれる。
Type I HARQ-ACKコードブックでは、端末10に対するPDSCHのスケジューリングが無い場合でも、端末10は、NACKビットをフィードバックする。このため、Type I HARQ-ACKコードブックを用いる場合、本来報告が必要であるスケジューリングされたPDSCH数と比べフィードバックするHARQ-ACKビット数が多くなることが想定される。
一方、Type II HARQ-ACKコードブックの場合、端末10は、HARQ-ACKコードブックサイズを動的に決定し、スケジューリングされたPDSCHに対するHARQ-ACKビットのみをフィードバックしてもよい。
具体的には、端末10は、Type II HARQ-ACKコードブックのビット数を、DCI内の所定フィールド(例えば、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))フィールド)に基づいて決定してもよい。DAIフィールドは、カウンタDAI(counter DAI(cDAI))及びトータルDAI(total DAI(tDAI))に分割(split)されてもよい。
カウンタDAIは、所定期間内でスケジューリングされる下り送信(PDSCH、データ、TB)のカウンタ値を示してもよい。例えば、当該所定期間内にデータをスケジューリングするDCI内のカウンタDAIは、当該所定期間内で最初に周波数領域(例えば、CC)で、その後に時間領域でカウントされた数を示してもよい。
トータルDAIは、所定期間内でスケジューリングされるデータの合計値(総数)を示してもよい。例えば、当該所定期間内の所定の時間ユニット(例えば、PDCCHモニタリング機会)でデータをスケジューリングするDCI内のトータルDAIは、当該所定期間内で当該所定の時間ユニット(ポイント、タイミング等ともいう)までにスケジューリングされたデータの総数を示してもよい。
端末10は、以上のType I又はType IIのHARQ-ACKコードブックに基づいて決定(生成)される一以上のHARQ-ACKビットを、上り制御チャネル(Physical Uplink Control Channel(PUCCH))及び上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の少なくとも一方を用いて送信してもよい。
(課題1)
3GPPのリリース15/リリース16の仕様で、スケジューリング及び/又はフィードバックを行う場合のスロットオフセットが導入されている(例えば、K0、K1、K2)。
3GPPのリリース15/リリース16の仕様で、スケジューリング及び/又はフィードバックを行う場合のスロットオフセットが導入されている(例えば、K0、K1、K2)。
ここで、K0は、DCIが送信されるスロット位置からPDSCHが送信されるスロット位置までのスケジューリングされるセルにおけるスロット単位のオフセットであってもよい。図3の例では、DCIが送信されるスロットから2スロット目に、DCIのスケジューリングするPDSCHを含むスロットが設定されている。K0の値は、0から32までとされている。なお、K0はPDSCHのニューメロロジーに基づく値であってもよい。
K1は、PDSCHが送信されるスロット位置から対応するフィードバックが送信されるPUCCHのスロット位置までのスケジューリングするセルにおけるスロット単位のオフセットであってもよい。なお、フィードバックは、HARQ-ACKでもよいし、HARQ情報であってもよいし、HARQ応答であってもよいし、送達有無の尤度を示すような送達確認情報(0~1までの値)であってもよい。
図3の例では、K1=9は、PDSCHを2番のスロットで受信した後、そのPDSCHに対応するフィードバックを、PDSCHを受信したスロットから9個目のスロット、すなわち、11番目のスロットで返すことを意味する。K1に設定可能な値は、0から15までとされる。さらに、K1に設定可能な値として、リリース16で、non-numerical valueが規定されている。
K2は、DCIが送信されるスロット位置からPUSCHが送信されるスロット位置までのスケジューリングされるセルにおけるスロット単位のオフセットであってもよい。図3の例では、K2=8である。K2の値は、0から32までとされる。
52.6GHzから71GHzまでの周波数帯域では、より大きなサブキャリア間隔(SCS)(例えば、240kHz及び480kHz)が使用される。この場合、スロットのサイズ(時間間隔)は、非常に短くなることが想定される。言い換えれば、ある期間に含まれスロットの数は、非常に多くなる。例えば、サブキャリア間隔が480kHzの場合、1つのサブフレームに含まれるスロットの数は32、は64及び128のいずれかになることが想定される。
アンライセンス周波数の場合、チャネルの占有(channel occupancy (CO))は、DLから開始されてもよく、対応するフィードバックは、COの末尾(又はCOを構成する最後の時間リソース(例えば、最終シンボル))に割り当てられてもよい。COにおけるDL/ULの切替えには、Listen Before Talk(LBT)のための時間ギャップ(オーバヘッド)が必要であり、また当該ギャップ期間にLBTを行うことにより同時にLBTに成功したノード間で干渉を引き起こす可能性がある。従って、COの途中にDL/ULの切替えが多数含まれることは適切ではない。従って、SCSが大きくなる場合には、スロットオフセットのためにより大きな値が必要になると想定される。
(課題2)
HARQ処理において、HARQプロセス数が使用されている。HARQプロセス数は、HARQプロセスを並列処理するためのプロセス数である。仮にHARQプロセス数が1であった場合、送信側は、Physical Downlink Shared Channel(PDSCH)でデータを送信し、受信側はデータを受信してデータの受信誤りを判定し、送信側に受信結果のフィードバックを行うことになる。この場合、フィードバックの内容がACK(肯定応答、positive acknowledgement)であった場合に、次のデータの送信が行われることになる。この場合、データの受信に成功するまで、次のデータの送信を行えないため、無線区間における遅延が増大する可能性がある。このような遅延を回避するために、HARQプロセスを並列処理するための1より大きな値のHARQプロセス数が使用されてもよい。
HARQ処理において、HARQプロセス数が使用されている。HARQプロセス数は、HARQプロセスを並列処理するためのプロセス数である。仮にHARQプロセス数が1であった場合、送信側は、Physical Downlink Shared Channel(PDSCH)でデータを送信し、受信側はデータを受信してデータの受信誤りを判定し、送信側に受信結果のフィードバックを行うことになる。この場合、フィードバックの内容がACK(肯定応答、positive acknowledgement)であった場合に、次のデータの送信が行われることになる。この場合、データの受信に成功するまで、次のデータの送信を行えないため、無線区間における遅延が増大する可能性がある。このような遅延を回避するために、HARQプロセスを並列処理するための1より大きな値のHARQプロセス数が使用されてもよい。
1つのコンポーネントキャリア(CC)に対して、最大で16個のHARQプロセスを設定することが可能である。HARQプロセス番号(HPN:HARQ process number)は、DCIに含まれる4ビットのフィールドの値によって指定され、そのDCIがスケジューリングするHARQプロセスの番号を表す。基地局20が端末10に対して、16個のHARQプロセスを割り当てた場合には、16個のPDSCHの送信の後に、次のPDSCHを送るためには端末にフィードバックを行わせることが必要となる。図4は、16個のHARQプロセスの後にフィードバックを行う状況を示す図である。図4に示されるように16スロットのPDSCHの送信の後には、端末からのフィードバックを受信する必要があり、フィードバックを受信する期間において、PDSCHの送信を行うことは想定されていない。
52.6GHzから71GHzまでの周波数帯域では、より大きなサブキャリア間隔(SCS)(例えば、240kHz及び480kHz)が使用される。この場合、スロットのサイズ(時間間隔)は、非常に短くなることが想定される。言い換えれば、ある期間に含まれスロットの数は、非常に多くなる。例えば、サブキャリア間隔が480kHzの場合、1つのサブフレームに含まれるスロットの数は32、は64及び128のいずれかになることが想定される。
アンライセンス周波数の場合、チャネルの占有(channel occupancy (CO))は、DLから開始されてもよく、対応するフィードバックは、COの末尾(又はCOを構成する最後の時間リソース(例えば、最終シンボル))に割り当てられてもよい。COにおけるDL/ULの切替えには、Listen Before Talk(LBT)のための時間ギャップ(オーバヘッド)が必要であり、また当該ギャップ期間にLBTを行うことにより同時にLBTに成功したノード間で干渉を引き起こす可能性がある。従って、COの途中にDL/ULの切替えが多数含まれることは適切ではない。従って、SCSが大きくなる場合には、より大きなHARQプロセス数が必要になると想定される。
(課題3)
DCIにはDAI(Downlink assignment index)フィールドが含まれる。DAIは、カウンタDAI(Counter DAI)及びトータルDAI(Total DAI)を含む。
DCIにはDAI(Downlink assignment index)フィールドが含まれる。DAIは、カウンタDAI(Counter DAI)及びトータルDAI(Total DAI)を含む。
カウンタDAI(DCIに含まれる場合には2ビット)はスケジューリングされたCCをカウントするための情報である。Type IIのHARQ-ACKコードブックの場合、端末10は、基地局20から実際に送信されたことが想定されるPDSCHの数に対応する数のHARQ-ACKビットを生成する。なお、端末10において、基地局20からのPDCCHの信号を受信できない可能性もあるため、DCIにDAIを含めて、基地局20が端末10に対して送信するPDCCHの数を通知することが可能である。図5は、DCIにDAIを含めて通知する例を示す図である。図5に示されるように、(0、1)、(1、1)、(2、3)、(3、3)等の括弧内の左側の数値は、カウンタDAIに対応する。例えば、図5の左端に示されるように、端末10が、(0、1)、(1、1)、(2、3)、(3、3)で示されるDCIのうち、(0、1)で示されるDCIを検出することができなかった場合であっても、端末10は、(1、1)で示されるDCIを検出しているため、(1、1)の前に(0、1)があるはずだということを認識し、(0、1)を含むPDCCHでスケジューリングされたPDSCHに対応するHARQ-ACKビットをNACKに設定して送信することができる。このように、Type IIのHARQ-ACKコードブックの場合、端末10が送信するHARQ-ACKビットの数を、基地局20側で想定するHARQ-ACKビットの数と同じ数にすることが可能となる。
トータルDAI(例えば、DCIに含まれる場合には2ビットであってもよい)は、タイミング毎に、CCをスケジューリングするために送信したPDCCHのトータルの数をカウントするカウンタである。図5の例では、一回のタイミングで2つのダウンリンクセルに対するスケジューリングを行っているので、トータルの数は2ずつカウントアップされる。図5に示されるよう、(0、1)、(1、1)、(2、3)、(3、3)等の括弧内の右側の数値は、トータルDAIに対応する。トータルの数は2ずつカウントアップされるので、トータルDAIは、1及び3の値をとっている。例えば、図5の真ん中の部分で、(0、1)、(1、1)、(2、3)、(3、3)のうち、(3、3)で示されるDCIを検出することができなかった場合であっても、端末10は、(2、3)で示されるDCIを検出しているため、カウンタDAIでは(3、3)のDCIが送信されているか否か不明であっても、(2、3)のトータルDAIの値3から、(3、3)のDCIがあるはずだということを認識し、(3、3)を含むPDCCHでスケジューリングされたPDSCHに対応するHARQ-ACKビットをNACKに設定して送信することができる。
DAIのサイズは、カウンタDAIで2ビットであり、トータルDAIで2ビットであるため、ビットサイズの制約から、4個以上連続してDCIの検出誤りが発生すると、DAIによる誤り判定を行うことができなくなる。
周波数がより高いアンライセンス周波数帯において、パスのブロッキング(blocking)及び/又は共存システムとの衝突により、このような連続した検出誤りが生じる可能性がある。従って、現状のDAIのサイズは、アンライセンス周波数帯の場合には、不十分であると考えられ、DAIのサイズをより大きくすることが必要になると想定される。しかしながら、DCIのサイズを増大することは、PDCCHの性能を低下させる可能性もある。また、DAIのサイズを増大したとしても、時間的に一番後(すなわち、フィードバックに含められるHARQ-ACKビットに対応するPDSCHをスケジューリングしたPDCCHを送信したタイミングのうち最後のタイミング)の同じタイミングの複数のDCIを検出することができない場合には、端末10側では、受信したDCIの総数を検出することができず、基地局20側と端末10側とで、DCIの総数の認識が一致しない可能性がある。
リリース16のNRでは、Enhancedダイナミックコードブックが導入されている。これは、NR-Uのために導入されたメカニズムである。DCI format1_1はスケジューリングされた1つのPDSCHのグループ又は2つのグループのためのHARQフィードバックを示す。例えば、グループ数が2つの場合、2つのグループは、COT#0におけるHARQフィードバックのためのグループ0とCOT#1におけるHARQフィードバックのためのグループ1の2つのグループであってもよい。このように、PDSCHをスケジューリングする際に、グループ番号を示すインデックスを予め付与することが可能である。グループ数は2個であってもよく、この場合、インデックスは0又は1である。
図6は、Enhancedダイナミックコードブックを使用する例を示す図である。図6に示されるように、例えば、group 0に対するフィードバック(HARQ ACK1)をスケジューリングしていたが、LBTに失敗したため、group 0に対するフィードバック(HARQ ACK1)を送信することができなかったとする。このような場合において、PDSCHグループ0に対するフィードバックを、もう一度、別のタイミングで行うことが可能である。
この場合において、カウンタDAIの値及びトータルDAIの値は、グループ毎にカウントされる。このため、グループ0に対するPDCCHの検出が全て失敗であった場合であっても、グループ1のHARQ-ACKフィードバックに対しては、影響がない(つまり、グループ1のPDCCHが正しく検出されていれば、グループ1のHARQ-ACKコードブックサイズは正しく導出することが可能である)。
現状では、PDSCHグループの最大数は2である。PDSCHグループの数をより大きく設定することが可能であれば、連続したPDCCHの誤検出によるインパクトを低減することが可能である。
(Proposal 1)
52.6GHzより高い周波数帯のNRアンライセンス帯域(例えば、59GHz-64GHz、57GHz-66GHz、57GHz-64GHz、及び57GHz-71GHz)において、少なくとも以下の拡張のうちの一つの拡張が導入されてもよい。
52.6GHzより高い周波数帯のNRアンライセンス帯域(例えば、59GHz-64GHz、57GHz-66GHz、57GHz-64GHz、及び57GHz-71GHz)において、少なくとも以下の拡張のうちの一つの拡張が導入されてもよい。
K0に設定可能な値の最大値を32よりも大きくする。
K2に設定可能な値の最大値を32よりも大きくする。
K1(RRCのパラメータ名は、dl-DataToUL-ACK)に設定可能な値の最大値を16よりも大きくする。なお、K1の値を実際にDCIで指示する場合に使用するDCIのフィールドは、PDSCH-to-HARQ_feedback timing indicator fieldであり、具体的には、dl-DataToUL-ACKとして決めていた8つの候補値のうちのどの値を使用するのかを3ビットで指示するのがPDSCH-to-HARQ_feedback timing indicator fieldである。PDSCH-to-HARQ_feedback timing indicator fieldのサイズを3ビットよりも大きくし、かつdl-DataToUL-ACKで指定可能な候補値の数を8よりも大きくしてもよい。
HARQプロセス数の最大値は、16よりも大きくてもよい。DCIのHARQ process number fieldのサイズは、4ビットよりも大きくてもよい。
K1(dl-DataToUL-ACK)のNon-numerical value(inapplicable value)は、enhancedダイナミックHARQコードブック(pdsch-HARQ-ACK-Codebook = enhancedDynamic-r16)が設定された場合だけでなく、enhancedダイナミックHARQコードブックが設定されない場合においても適用可能であってもよい。
PDSCHをスケジュールするDCIがPDSCH-to-HARQ_feedback timing indicator fieldにおいて、non-numerical value(inapplicable value)を示す場合には、PDSCHに対応するHARQ-ACKフィードバックタイミングは、端末10が当該DCIの後に受信する別のDCIであって、PDSCH-to-HARQ_feedback timing indicator fieldにおいて、non-numerical value(inapplicable value)以外の値を示す、他のDCI、によって決定されてもよい。
上記の拡張をサポートする端末10は、当該拡張をサポートすることを、UE capabilityとして、基地局20に送信してもよい。
Alt.1:52.6GHzから71GHzで動作する端末10に対して、上記の拡張のサポートは必須であってもよく、52.6GHzから71GHzで動作しない端末10に対して、上記の拡張は適用されなくてもよい。この場合、特に端末10は、基地局20に対してUE capabilityを通知しなくても、端末10が52.6GHzから71GHzで動作する場合には、基地局20は、端末10が上記の拡張をサポートすると解釈してもよい。端末10が、52.6GHzから71GHzで動作しない場合には、基地局20は、端末10が上記の拡張をサポートしないと解釈してもよい。
Alt.2:52.6GHzから71GHzで動作する端末10に対して、上記の拡張はオプションであってもよく、52.6GHzから71GHzで動作しない端末10に対して、上記の拡張は適用されなくてもよい。52.6GHzから71GHzで動作する端末10は、上記の拡張をサポートするか否かをUE capabilityとして、基地局20に送信してもよい。
Alt.3:1:52.6GHzから71GHzで動作する端末10に対して、上記の拡張のサポートは必須であってもよく、52.6GHzから71GHzで動作しない端末10に対して、上記の拡張はオプションであってもよい。
Alt.4:上記の拡張のサポートは、端末10に対してオプションであってもよい。
異なる拡張に対して、上記Alt.1からAlt.4までのうちの異なるAltが適用されてもよい。
52.6GHzより高い周波数帯のNRアンライセンス帯域(例えば、59GHz-64GHz、57GHz-66GHz、57GHz-64GHz、及び57GHz-71GHz)において、新たなデフォルトの時間領域のリソース割り当ての設定(default time domain resource allocation configuration)が定義及び適用されてもよい。
例えば、デフォルトのPDSCHの時間領域のリソース割り当てA及びCが定義されて適用されてもよい。新しいテーブルにおいて、0ではないK0の値が導入されてもよい。
例えば、デフォルトのPDSCHの時間領域のリソース割り当てBが定義されて適用されてもよい。新しいテーブルにおいて、1より大きいK0の値が導入されてもよい。
例えば、デフォルトのPUSCHの時間領域のリソース割り当てAが定義されて適用されてもよい。リリース15では、K2の値は、{j、j+1、j+2、j+3}であり、15/30/60/120 kHz SCSに対してj={1、1、2、3}である。新しいテーブルにおいて、jの値は、120kHzよりも大きいSCSに対して3以上であってもよく、かつ/又はK2の値は、j+3よりも大きくてもよい(例えば、j+4であってもよい)。
例えば、PDSCH-to-HARQ feedback timing indicatorの新しいデフォルト候補値が定義されてもよい。リリース15では、DCIフォーマット1_0におけるPDSCH-to-HARQ feedback timing indicatorの候補値は、{1、2、3、4、5、6、7、8}である。新しいデフォルト候補値は、8より大きい数を含んでもよい。
なお、DCIを受信すること、PDSCHの受信に対してHARQ情報を送信することを記載したが、DCIは将来の規格で規定される制御情報であってもよいし、PDSCHはCC又はTBであってもよいし、HARQ情報はこれに代わるフィードバック情報であってもよい。この場合に、K0、K1、K2も、制御情報を受信してから下り情報(例えば、CC又はTB)を受信するまでの時間リソース(例えばスロット又はシンボル)を決定するためのオフセット、それぞれ受信からフィードバックを送信するための時間リソース(例えばスロット又はシンボル)を決定するためのオフセット、フィードバック情報を送信してから次の上り情報(例えば、CC又はTB)を送信するまでの時間リソース(例えばスロット又はシンボル)を決定するためのオフセットであってもよい。
(Proposal 2)
52.6GHzより高い周波数帯のNRアンライセンス帯域(例えば、59GHz-64GHz、57GHz-66GHz、57GHz-64GHz、及び57GHz-71GHz)において、少なくとも以下の拡張又は制約のうちの一つの拡張が導入されてもよい。
52.6GHzより高い周波数帯のNRアンライセンス帯域(例えば、59GHz-64GHz、57GHz-66GHz、57GHz-64GHz、及び57GHz-71GHz)において、少なくとも以下の拡張又は制約のうちの一つの拡張が導入されてもよい。
カウンタDAIのサイズは2ビットよりも大きくてもよい。
トータルDAIのサイズは2ビットよりも大きくてもよい。NFI-TotalDAI-Included-r16 = enableかつ1CCよりも多いCCがDLに設定されている場合、T-DAIのサイズは4ビットよりも大きくてもよい。
400MHzよりも広い最小のチャネル帯域幅(BW)が規定されてもよい。
最小のチャネル帯域幅を、広い最小のチャネル帯域幅(BW)(例えば、400MHz以上)に制限することで、52.6GHz-71GHzにおけるCCの数の最大数は、それほど大きくならない。
最小のチャネル帯域幅を、広い最小のチャネル帯域幅(BW)(例えば、400MHz以上)に制限することで、52.6GHz-71GHzにおけるCCの数の最大数は、それほど大きくならない。
Type2 HARQ-ACKコードブックは、サポートされなくてもよい/適用されなくてもよい。
新しいHARQ-ACKコードブックの機能(#1)が導入されてもよい。
トータルDAIのフィールドは(又はその一部は)、HARQ-ACKコードブックのサイズを示すために使用されてもよい。端末10は、異なるDCIにおいて通知される、同じフィードバックに対するHARQ-ACKコードブックのサイズは同じであると想定してもよい。基地局20は、例えば、RRCシグナリングでHARQ-ACKコードブックサイズの候補値を設定してもよく、DCIによって候補値のうちの1つが選択されてもよい。カウンタDAIは、modulo演算なしで、カウンタ値を示すことができるように、サイズが拡張されてもよい。
図7は、DCIにDAIを含めて通知する例を示す。図7の例では、カウンタDAIのサイズを2ビットとし、トータルDAIのサイズを2ビットとする。図7に示されるように、(0、1)、(1、1)、(2、3)、(3、3)等の括弧内の左側の数値は、カウンタDAIに対応する。また、(0、1)、(1、1)、(2、3)、(3、3)等の括弧内の右側の数値は、トータルDAIに対応する。図7の左端に示される例では、HARQ-ACKコードブックのサイズが4ビットである。これに対して、図7の右側に示される例では、HARQ-ACKコードブックのサイズが8ビットである。図7の右側に示される例では、カウンタDAIは、0、1、2、3の値を取った後、0、1、2、3の値を繰り返す。これはmodulo演算(mod 4)が適用されるためである。図7の右側に示される例では、時間に関して前方に位置するカウンタDAIの値0、1、2、3に対応するDCIの検出ができなかった場合、その後のタイミングでカウンタDAIの値0、1、2、3が繰り返されるので、端末10は、HARQ-ACKコードブックのサイズを4ビットであると誤った判定を行う可能性がある。
これに対して、図8は、New HARQ-ACKコードブック#1の例を示す図である。図8に示されるように、カウンタDAIのサイズは3ビットに拡張されており、modulo演算は適用されていない。また、トータルDAIは、HARQ-ACKコードブックのサイズを示す。トータルDAIの値が0の場合は、HARQ-ACKコードブックのサイズが4ビットであり、トータルDAIの値が1の場合、HARQ-ACKコードブックのサイズは8ビットであることを、RRCで予め設定してもよい。このようにカウンタDAI及びトータルDAIを設定することにより、端末10と基地局20との間でのHARQ-ACKコードブックサイズの認識の不一致を回避することができる。また、カウンタDAIの値の抜けに基づき、対応するHARQ-ACKビットをNACKに設定して送信することができる。
enhanced ダイナミックHARQコードブック(pdsch-HARQ-ACK-Codebook = enhancedDynamic-r16)について、PDSCHグループの最大数は、2より大きくてもよい。
また、新しいHARQ-AKCコードブック(#2)を導入してもよい。新しいHARQ-AKCコードブックのメカニズム(#2)において、DAIの値は、所定の期間毎に、DCIに基づいて生成されてもよい。例えば、DAIの値は、PDCCHのモニタリングの周期毎にDCIに基づいて生成されてもよい。また、例えば、DAIの値は、RRCで設定された期間毎(例えば、所定のスロット数毎、又は所定数のモニタリング機会毎)にDCIに基づいて生成されてもよい。
端末10は、PDCCHモニタリング機会毎に、端末10がスケジューリングDCIを検出したか否かを基地局20に報告してもよい。端末10がPDCCHモニタリング機会毎にDCIを検出したか否かを示す情報は、データに対するHARQ-ACKとは別に符号化され、UCIにおいて多重化されてもよい。
HARQ-ACKコードブックサイズは、1)DCIが検出されたPDCCHモニタリング機会の数、及び2)各DCIにおいて示されるDAIの値に基づいて決定されてもよい。
図9は、DCIにDAIを含めて通知する例を示す。図9の例では、カウンタDAIのサイズを2ビットとし、トータルDAIのサイズを2ビットとする。図9に示されるように、(0、3)、(1、3)、(2、3)、(3、3)等の括弧内の左側の数値は、カウンタDAIに対応する。また、(0、3)、(1、3)、(2、3)、(3、3)等の括弧内の右側の数値は、トータルDAIに対応する。
図9の左側の図では、DLセルが4つあるので、カウンタDAIは、0、1、2、3、0、1、2、3という値を繰り返す。トータルDAIは、DLセルが4つあるため、左から2番目のスロットまでは値3を取る。また、左から3番目のスロットでは、DL cell 4からのDCIは送信されていないので、トータルDAIは値2をとる。図9の左側の図では、カウンタDAIの値の抜けに基づいて、対応するHARQ-ACKビットをNACKに設定して送信することができる。
図9の右端の図では、左から2番目のスロットで、DL cell1~DL cell4のDCIの検出を行えていない。このため、端末10は、HARQ-ACKコードブックのサイズを、7ビットと誤って認識する可能性がある。これに対して、基地局20では、HARQ-ACKコードブックのサイズを11ビットと仮定しているので、基地局20と端末10との間で、HARQ-ACKコードブックのサイズの認識が一致しない可能性がある。
図10は、新しいHARQ-AKCコードブック(#2)の例を示す図である。図10の例では、カウンタDAIのサイズを2ビットとし、トータルDAIのサイズを2ビットとする。図10に示されるように、(0、3)、(1、3)、(2、3)、(3、3)等の括弧内の左側の数値は、カウンタDAIに対応する。また、(0、3)、(1、3)、(2、3)、(3、3)等の括弧内の右側の数値は、トータルDAIに対応する。図10の例では、フィードバックを返す時に、端末10は、PDCCHを受信できたか否かを示すビットマップを送信する。
図10の左側に示す例では、左から1番目のスロット、2番目のスロット、及び3番目のスロットで、端末10は少なくとも1つDCIを受信することができているため、PDCCHを受信できたか否かを示すビットマップとして、(1、1、1)というビットマップを返す。
図10の右側に示す例では、左から2番目のスロットで、端末10は、DCIを検出できていないため、PDCCHを受信できたか否かを示すビットマップとして、(1、0、1)というビットマップを返す。
図10の右側に示す例の場合、端末10は、HARQ-ACKコードブックのサイズを7ビットと認識する。基地局20としては、PDCCKを受信できたか否かを示すビットマップ(1、0、1)に基づいて、図10の右側に示す例における左から2番目のスロットにおいて検出できなかったDCIを除いて、端末10が7ビットのHARQ-ACKコードブックを送信していることを認識できる。これにより、基地局20と端末10との間での、HARQ-ACKコードブックのサイズの認識の不一致を回避することができる。
(装置構成)
次に、これまでに説明した処理動作を実行する端末10及び基地局20の機能構成例を説明する。端末10及び基地局20は、本実施の形態で説明した全ての機能を備えている。ただし、端末10及び基地局20は、本実施の形態で説明した全ての機能のうちの一部のみの機能を備えてもよい。なお、端末10及び基地局20を総称して通信装置と称してもよい。
次に、これまでに説明した処理動作を実行する端末10及び基地局20の機能構成例を説明する。端末10及び基地局20は、本実施の形態で説明した全ての機能を備えている。ただし、端末10及び基地局20は、本実施の形態で説明した全ての機能のうちの一部のみの機能を備えてもよい。なお、端末10及び基地局20を総称して通信装置と称してもよい。
<端末10>
図11は、端末10の機能構成の一例を示す図である。図11に示されるように、端末10は、送信部110と、受信部120と、制御部130を有する。図11に示される機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部110を送信機と称し、受信部120を受信機と称してもよい。
図11は、端末10の機能構成の一例を示す図である。図11に示されるように、端末10は、送信部110と、受信部120と、制御部130を有する。図11に示される機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部110を送信機と称し、受信部120を受信機と称してもよい。
送信部110は、送信データから送信を作成し、当該送信信号を無線で送信する。また、送信部110は、1つ又は複数のビームを形成することができる。受信部120は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部120は受信する信号の測定を行って、受信電力等を取得する測定部を含む。
制御部130は、端末10の制御を行う。なお、送信に関わる制御部130の機能が送信部110に含まれ、受信に関わる制御部130の機能が受信部120に含まれてもよい。
例えば、52.6GHzから71GHzの周波数帯において、端末10の制御部130は、Hybrid Automatic Repeat Request(HARQ)の動作を行う場合に、PDCCHの含まれるスロットから、当該PDCCHのスケジューリングするPDSCHの含まれるスロットまでのオフセットの値として、32スロットよりも大きいスロット数を設定してもよい。また、端末10の制御部130は、PDSCHを受信したスロットから、そのPDSCHに対応するフィードバックを返すスロットまでのオフセット値として、15スロットよりも大きいスロット数を設定してもよい。また、端末10の制御部130は、アップリンクのスケジューリングを行う際のPDCCHの含まれるスロットからPUSCHがあるスロットまでのオフセット値として、32スロットよりも大きいスロット数を設定してもよい。また、端末10の制御部130は、CCあたりのHARQプロセス数として、16よりも大きい値を設定してもよい。
例えば、52.6GHzから71GHzの周波数帯において、端末10の受信部120は、基地局20から送信される設定情報を受信し、端末10の制御部130は、基地局20から送信される制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIの解釈を変更してもよい。端末10の制御部130は、トータルDAIは、フィードバック情報を送信するためのコードブックのサイズを指定すると解釈してもよい。また、端末10の制御部130は、カウンタDAIは、DCIを受信した回数をカウントすると解釈してもよい。また、例えば、52.6GHzから71GHzの周波数帯において、端末10の制御部130は、PDCCHのモニタリング機会毎に、端末10の受信部120がDCIを検出したか否かを基地局20に報告してもよい。端末10の送信部110は、端末10の受信部120がPDCCHモニタリング機会毎にDCIを検出したか否かを示す情報を、データに対するHARQ-ACKとは別に符号化してUCIにおいて多重化して送信してもよい。また、端末10の制御部130は、各スロットにおいて、PDCCHを受信できたか否かを示すビットマップを作成し、端末10の送信部110は、HARQ-ACKコードブックと共に、ビットマップを送信してもよい。
<基地局20>
図12は、基地局20の機能構成の一例を示す図である。図12に示されるように、基地局20は、送信部210と、受信部220と、制御部230を有する。図12に示される機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部210を送信機と称し、受信部220を受信機と称してもよい。
図12は、基地局20の機能構成の一例を示す図である。図12に示されるように、基地局20は、送信部210と、受信部220と、制御部230を有する。図12に示される機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部210を送信機と称し、受信部220を受信機と称してもよい。
送信部210は、端末10側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部220は、端末10から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、受信部220は受信する信号の測定を行って、受信電力等を取得する測定部を含む。
制御部230は、基地局20の制御を行う。なお、送信に関わる制御部230の機能が送信部210に含まれ、受信に関わる制御部230の機能が受信部220に含まれてもよい。
例えば、52.6GHzから71GHzの周波数帯において、基地局20の制御部230は、Hybrid Automatic Repeat Request(HARQ)の動作を行う場合に、PDCCHの含まれるスロットから、当該PDCCHのスケジューリングするPDSCHの含まれるスロットまでのオフセットの値として、32スロットよりも大きいスロット数が設定されることを設定してもよい。また、基地局20の制御部230は、PDSCHを送信したスロットから、そのPDSCHに対応するフィードバックが受信されるスロットまでのオフセット値として、15スロットよりも大きいスロット数を設定してもよい。また、基地局20の制御部230は、アップリンクのスケジューリングを行う際のPDCCHの含まれるスロットからPUSCHがあるスロットまでのオフセット値として、32スロットよりも大きいスロット数を設定してもよい。また、基地局20の制御部230は、CCあたりのHARQプロセス数として、16よりも大きい値を設定してもよい。
例えば、52.6GHzから71GHzの周波数帯において、基地局20の制御部230は、基地局20の送信部210から送信される制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIの解釈を変更するための設定情報を設定し、送信部210は、設定情報を端末10に送信してもよい。基地局20の制御部230は、トータルDAIが、フィードバック情報を送信するためのコードブックのサイズを指定することを設定情報に含めてもよい。また、基地局20の制御部230は、カウンタDAIを、DCIを受信した回数をカウントするカウンタとして設定する情報を設定情報に含めてもよい。また、例えば、52.6GHzから71GHzの周波数帯において、基地局20の受信部220は、PDCCHのモニタリング機会毎に、端末10の受信部120がDCIを検出したか否かを示す情報を、端末10から受信してもよい。基地局20の受信部220は、データに対するHARQ-ACKとは別に符号化してUCIにおいて多重化された、PDCCHモニタリング機会毎に端末10がDCIを検出したか否かを示す情報を受信してもよい。また、基地局20の受信部220は、各スロットにおいて、端末10がPDCCHを受信できたか否かを示すビットマップをHARQ-ACKコードブックと共に受信してもよい。
<ハードウェア構成>
上記実施の形態の説明に用いたブロック図(図11~図12)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
上記実施の形態の説明に用いたブロック図(図11~図12)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
また、例えば、本発明の一実施の形態における端末10と基地局20はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図13は、本実施の形態に係る端末10と基地局20のハードウェア構成の一例を示す図である。上述の端末10と基地局20はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。端末10と基地局20のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
端末10と基地局20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図11に示される端末10の送信部110、受信部120、制御部130は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図12に示される基地局20の送信部210と、受信部220と、制御部230は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、端末10の送信部110及び受信部120は、通信装置1004で実現されてもよい。また、基地局20の送信部210及び受信部220は、通信装置1004で実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、端末10と基地局20はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(実施の形態のまとめ)
本明細書には、少なくとも以下の端末及び基地局が開示されている。
本明細書には、少なくとも以下の端末及び基地局が開示されている。
New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される設定情報する受信部と、前記設定情報に基づき、前記基地局から受信する制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIのうちの少なくともいずれか1つに対する解釈を変更する制御部と、を備える端末。
上記の構成によれば、端末と基地局との間でのHARQ-ACKコードブックサイズの認識の不一致を回避することができる。
前記制御部は、トータルDAIは、フィードバック情報を送信するためのコードブックのサイズを指定すると解釈を変更してもよい。
上記の構成によれば、端末と基地局との間でのHARQ-ACKコードブックサイズの認識の不一致を回避することができる。
前記制御部は、カウンタDAIは、下り制御情報を受信した回数の真値をカウントすると解釈を変更してもよい。
上記の構成によれば、端末と基地局との間でのHARQ-ACKコードブックサイズの認識の不一致を回避することができる。
前記端末は無線信号を送信する送信部をさらに備え、制御部は、下り制御情報のモニタリング機会毎に、前記受信部が前記下り制御情報を検出したか否かを示すビットマップ情報を作成し、前記送信部は、前記ビットマップ情報を送信してもよい。
上記の構成によれば、基地局は、ビットマップ情報により、端末によるDCIの受信情報を把握することが可能となる。
New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIの少なくともいずれかの解釈を変更するための設定情報を設定する制御部と、前記設定情報を送信する送信部と、を備える基地局。
上記の構成によれば、端末と基地局との間でのHARQ-ACKコードブックサイズの認識の不一致を回避することができる。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、端末10と基地局20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って端末10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、端末10と基地局20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って端末10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局20によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局20を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末10との通信のために行われる様々な動作は、基地局20および/または基地局20以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局20以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
端末10は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末10、モバイル端末10、ワイヤレス端末10、リモート端末10、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
基地局20は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、gNB、またはいくつかの他の適切な用語で呼ばれる場合もある。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局20が各ユーザ端末10に対して、無線リソース(各ユーザ端末10において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
10 端末
110 送信部
120 受信部
130 制御部
20 基地局
210 送信部
220 受信部
230 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
110 送信部
120 受信部
130 制御部
20 基地局
210 送信部
220 受信部
230 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
Claims (5)
- New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される設定情報する受信部と、
前記設定情報に基づき、前記基地局から受信する制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIのうちの少なくともいずれか1つに対する解釈を変更する制御部と、
を備える端末。 - 前記制御部は、トータルDAIは、フィードバック情報を送信するためのコードブックのサイズを指定すると解釈を変更する、
請求項1に記載の端末。 - 前記制御部は、カウンタDAIは、下り制御情報を受信した回数の真値をカウントすると解釈を変更する、
請求項2に記載の端末。 - 前記端末は無線信号を送信する送信部をさらに備え、
制御部は、下り制御情報のモニタリング機会毎に、前記受信部が前記下り制御情報を検出したか否かを示すビットマップ情報を作成し、
前記送信部は、前記ビットマップ情報を送信する、
請求項1に記載の端末。 - New Radio(NR)システムの低い周波数帯域であるFrequency Range1(FR1)及び高い周波数帯域であるFrequency Range 2(FR2)のうち、前記FR2の周波数帯域以上の高周波数帯域において、基地局から送信される制御情報に含まれるDownlink Assignment Indicator(DAI)のうち、カウンタDAI及びトータルDAIの少なくともいずれかの解釈を変更するための設定情報を設定する制御部と、
前記設定情報を送信する送信部と、
を備える基地局。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/759,576 US20230076328A1 (en) | 2020-02-13 | 2020-02-13 | Terminal and base station |
PCT/JP2020/005673 WO2021161486A1 (ja) | 2020-02-13 | 2020-02-13 | 端末及び基地局 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005673 WO2021161486A1 (ja) | 2020-02-13 | 2020-02-13 | 端末及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161486A1 true WO2021161486A1 (ja) | 2021-08-19 |
Family
ID=77291727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005673 WO2021161486A1 (ja) | 2020-02-13 | 2020-02-13 | 端末及び基地局 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230076328A1 (ja) |
WO (1) | WO2021161486A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022018322A1 (en) * | 2020-07-21 | 2022-01-27 | Nokia Technologies Oy | Triggered hybrid automatic repeat request acknowledgement reporting for downlink semi-persistent scheduling data transmission |
US11950238B2 (en) * | 2020-09-10 | 2024-04-02 | Qualcomm Incorporated | Techniques for a delay-imposed HARQ-ACK/NACK reporting |
KR20230062645A (ko) * | 2020-10-08 | 2023-05-09 | 애플 인크. | 부반송파 간격에 기초한 뉴 라디오(nr)에서의 수신 및 송신 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018535604A (ja) * | 2015-11-16 | 2018-11-29 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | キャリアアグリゲーションにおけるダウンリンク割当てインデックス(dai)管理のための技法 |
WO2019212628A1 (en) * | 2018-05-04 | 2019-11-07 | Qualcomm Incorporated | Methods and apparatus related to ack/nack feedback with multi-trp transmissions |
WO2019244735A1 (ja) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | 通信システムおよび通信端末装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11483810B2 (en) * | 2017-04-03 | 2022-10-25 | Huawei Technologies Co., Ltd. | Methods and systems for resource configuration of wireless communication systems |
WO2019061367A1 (zh) * | 2017-09-29 | 2019-04-04 | 华为技术有限公司 | 数据传输的方法、终端设备和网络设备 |
US11259237B2 (en) * | 2018-01-15 | 2022-02-22 | Qualcomm Incorporated | System and method for locating a downlink data channel |
US10419259B1 (en) * | 2018-04-16 | 2019-09-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Time-domain table for PUSCH and Msg3 |
US20210321446A1 (en) * | 2018-08-21 | 2021-10-14 | Idac Holdings, Inc. | Methods and apparatus for wireless transmit/receive unit (wtru) power control |
JP2020053849A (ja) * | 2018-09-27 | 2020-04-02 | シャープ株式会社 | 基地局装置、端末装置、通信方法、および、集積回路 |
JP7240843B2 (ja) * | 2018-09-27 | 2023-03-16 | シャープ株式会社 | 基地局装置、端末装置、通信方法、および、集積回路 |
CN113330705A (zh) * | 2018-11-30 | 2021-08-31 | 瑞典爱立信有限公司 | 使用混合参数集来触发非周期性信道状态信息参考信号 |
JP7249785B2 (ja) * | 2019-01-10 | 2023-03-31 | シャープ株式会社 | 端末装置、基地局装置、および通信方法 |
US11296829B2 (en) * | 2019-02-01 | 2022-04-05 | Electronics And Telecommunications Research Institute | Feedback method for repetitive uplink transmission in communication system |
US20220255680A1 (en) * | 2019-06-14 | 2022-08-11 | Electronics And Telecommunications Research Institute | Method and apparatus for sidelink communication |
CN111835489B (zh) * | 2019-08-16 | 2022-05-10 | 维沃移动通信有限公司 | 一种传输方法、配置方法、终端及网络侧设备 |
-
2020
- 2020-02-13 US US17/759,576 patent/US20230076328A1/en active Pending
- 2020-02-13 WO PCT/JP2020/005673 patent/WO2021161486A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018535604A (ja) * | 2015-11-16 | 2018-11-29 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | キャリアアグリゲーションにおけるダウンリンク割当てインデックス(dai)管理のための技法 |
WO2019212628A1 (en) * | 2018-05-04 | 2019-11-07 | Qualcomm Incorporated | Methods and apparatus related to ack/nack feedback with multi-trp transmissions |
WO2019244735A1 (ja) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | 通信システムおよび通信端末装置 |
Non-Patent Citations (1)
Title |
---|
RANI CHAIRMAN: "Highlights from RAN#86", 3GPP TSC RAN WG1 #100 R1-2000002, 21 January 2020 (2020-01-21), pages 1 - 5, XP051844820 * |
Also Published As
Publication number | Publication date |
---|---|
US20230076328A1 (en) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11924849B2 (en) | Method and apparatus for transmitting control and data information in wireless cellular communication system | |
US10999044B2 (en) | User terminal and radio communication method | |
EP3605981B1 (en) | User terminal and wireless communication method | |
US11191062B2 (en) | User terminal and radio communication method | |
US10764880B2 (en) | Configuration of downlink transmissions | |
EP4221026A1 (en) | User terminal and radio communication method | |
WO2021161486A1 (ja) | 端末及び基地局 | |
EP3557931A1 (en) | User terminal and wireless communications method | |
WO2021157098A1 (ja) | 端末及び基地局 | |
WO2021161487A1 (ja) | 端末及び基地局 | |
US20240023081A1 (en) | Terminal, base station and communication method | |
WO2021152863A1 (ja) | 端末及び基地局 | |
WO2021161485A1 (ja) | 端末及び基地局 | |
WO2021152865A1 (ja) | 端末及び基地局 | |
WO2021157095A1 (ja) | 端末及び基地局 | |
WO2021157096A1 (ja) | 端末及び基地局 | |
EP4304231A1 (en) | Communication device and communication method | |
WO2021157097A1 (ja) | 端末及び基地局 | |
EP4304232A1 (en) | Communication device and communication method | |
WO2022219976A1 (ja) | 端末、通信方法及び基地局 | |
EP4351196A1 (en) | Terminal and communication method | |
EP4366417A1 (en) | Terminal and communication method | |
WO2021152864A1 (ja) | 端末及び基地局 | |
EP4271098A1 (en) | Terminal and communication method | |
OA19011A (en) | User terminal and wireless communication method. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20918146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |