WO2021161449A1 - Component module and production method for same - Google Patents
Component module and production method for same Download PDFInfo
- Publication number
- WO2021161449A1 WO2021161449A1 PCT/JP2020/005554 JP2020005554W WO2021161449A1 WO 2021161449 A1 WO2021161449 A1 WO 2021161449A1 JP 2020005554 W JP2020005554 W JP 2020005554W WO 2021161449 A1 WO2021161449 A1 WO 2021161449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal layer
- layer
- electronic component
- insulating layer
- heat radiating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
Definitions
- the present invention relates to a component module and a manufacturing method thereof, for example, a component module on which an electronic component is mounted and a manufacturing method thereof.
- Patent Document 1 It is known to join a plurality of electronic components such as semiconductor chips on a heat radiating member (for example, Patent Document 1).
- a plurality of electronic components may be mounted on a heat radiating plate having a metal layer on the upper surface, and the metal layer of the heat radiating plate and the electrodes of the electronic components may be connected. Since the distance between the metal layers of the heat radiating plate is wide, therefore, when the distance between the electrodes of the electronic component is narrow, the metal layer of the heat radiating plate is rewired to connect the metal of the heat radiating plate and the electronic component. If the rewiring layer is provided on the heat radiating plate, the heat radiating property from the electronic components deteriorates. Therefore, it is conceivable to mount a part of a plurality of electronic components on the metal layer of the heat radiating plate and mount other electronic components on the heat radiating plate using the rewiring layer. However, if the rewiring layer is used, the component module becomes large.
- the present invention has been made in view of the above problems, and an object of the present invention is to reduce the size.
- a heat radiating plate having a first metal layer on the upper surface, a resin insulating layer adhered onto the heat radiating plate via an adhesive, and the adhesive and the resin insulating layer provided on the resin insulating layer are provided.
- a second metal layer connected to a part of the first metal layer through a through hole penetrating the first metal layer, a first electronic component mounted on the second metal layer, and another one of the first metal layer. It is a component module including a second electronic component mounted on the portion without a resin insulating layer.
- the minimum spacing of the first metal layer can be larger than the minimum spacing of the second metal layer.
- the first electronic component has a first electrode bonded to the second metal layer by a first bonding layer
- the second electronic component has a first electrode on the other part of the first metal layer. It can be configured to have a second electrode bonded by two bonding layers.
- the heat radiating plate may be provided with an insulating layer, and the first metal layer may be provided on the insulating layer.
- the first electronic component may be a discrete passive component
- the second electronic component may be a power semiconductor element
- the heat radiating plate may be a DBC or a DBA.
- the present invention relates to a step of adhering a resin insulating layer on a heat radiating plate having a first metal layer on the upper surface via an adhesive, and a step of adhering the resin insulating layer to the first metal layer through a through hole penetrating the resin insulating layer and the adhesive.
- the size can be reduced.
- FIG. 1 is a cross-sectional view of the component module according to the first embodiment.
- 2 (a) to 2 (d) are cross-sectional views (No. 1) showing a method of manufacturing a component module according to the first embodiment.
- 3 (a) to 3 (c) are cross-sectional views (No. 2) showing a method of manufacturing the component module according to the first embodiment.
- FIG. 4 is a cross-sectional view of the component module according to Comparative Example 1.
- FIG. 5 is a cross-sectional view of the component module according to the first embodiment.
- FIG. 1 is a cross-sectional view of the component module according to the first embodiment.
- the component module has regions 50 and 52.
- the region 50 is a region where the insulating layer 10 is bonded on the heat radiating plate 20, and the region 52 is a region where the insulating layer 10 is not bonded.
- the heat radiating plate 20 is, for example, a DBC (Direct Bonded Cupper) or a DBA (Direct Bonded Aluminum), and includes a metal layer 22, an insulating layer 24, and a metal layer 26.
- the insulating layer 24 is a ceramic whose main material is, for example, aluminum oxide and / or aluminum nitride.
- the metal layers 22 and 26 are mainly made of, for example, copper or aluminum.
- the thicknesses of the metal layers 22 and 26 are, for example, 100 ⁇ m to 500 ⁇ m, respectively.
- the thickness of the insulating layer 24 is, for example, 200 ⁇ m to 1000 ⁇ m.
- the metal layer 22 is patterned and functions as a conductor pattern such as a wiring connecting the electronic components 30a and 30b and a pad connecting the wiring to the upper layer.
- the minimum spacing D2 of the metal layer 22 is, for example, 100 ⁇ m to 1 mm.
- the metal layer 22 is thick in order to improve heat dissipation characteristics such as thermal conductivity and reduce resistance. Therefore, it is difficult to reduce the spacing and width of the metal layers 22.
- the insulating layer 10 is bonded to the heat radiating plate 20 via the adhesive 12.
- the insulating layer 10 is, for example, a resin layer such as a polyimide layer containing polyimide as a main component and has flexibility.
- the thickness of the insulating layer 10 is, for example, 7.5 ⁇ m to 125 ⁇ m.
- the adhesive 12 is a resin adhesive such as an epoxy resin adhesive.
- the thickness of the adhesive 12 is, for example, 5 ⁇ m to 50 ⁇ m after curing on the metal layer 22.
- the adhesive 12 is thinner than, for example, the insulating layer 10.
- the adhesive 12 is preferably a resin material having excellent heat resistance and a low dielectric constant.
- a metal layer 14 is provided on the insulating layer 10.
- the metal layer 14 is electrically connected to the metal layer 22 through a through hole 16 that penetrates the insulating layer 10 and the adhesive 12.
- the metal layer 14 uses, for example, copper as a main material.
- the thickness of the metal layer 14 is, for example, several ⁇ m to 100 ⁇ m, which is the thickness at which the through hole 16 is embedded.
- the size of the through hole 16 is, for example, 30 ⁇ m to 500 ⁇ m.
- the minimum spacing D1 of the metal layer 14 is, for example, 10 ⁇ m to several hundred ⁇ m.
- the metal layer 14 is thinner than the metal layer 22. Therefore, the spacing and width of the metal layers 14 can be smaller than the spacing and width of the metal layers 22, respectively.
- a resin layer 18 is provided on the insulating layer 10 so as to cover the metal layer 14.
- the resin layer 18 is, for example, a solder resist, for example, an epoxy resin.
- the resin layer 18 is provided with an opening 19 so that the metal layer 14 is exposed.
- the thickness of the resin layer 18 is, for example, 5 ⁇ m to 100 ⁇ m.
- a bonding layer 34 is provided in the opening 19.
- the bonding layer 34 is a sintered metal obtained by sintering a brazing material such as solder or a conductive paste.
- the electronic component 30a is mounted on the insulating layer 10.
- the electrode 32a of the electronic component 30a is bonded to the metal layer 14 via the bonding layer 34.
- a resin layer 18 is provided on the insulating layer 10 so as to cover the metal layer 14.
- the resin layer 18 is, for example, a solder resist, for example, an epoxy resin.
- the resin layer 18 is provided with an opening 19 so that the metal layer 14 is exposed.
- the thickness of the resin layer 18 is, for example, 5 ⁇ m to 100 ⁇ m.
- the resin layer 28 is provided on the heat radiating plate 20.
- the resin layer 28 is, for example, a solder resist, for example, an epoxy resin.
- the resin layer 28 is provided with an opening 29 so that the metal layer 22 is exposed.
- the thickness of the resin layer 28 is, for example, 5 ⁇ m to 100 ⁇ m.
- a bonding layer 36 is provided in the opening 29.
- the bonding layer 36 is a sintered metal obtained by sintering a brazing material such as solder or a conductive paste.
- the electronic component 30b is mounted on the heat radiating plate 20.
- the electrode 32b of the electronic component 30b is bonded to the metal layer 22 via the bonding layer 36.
- Electrodes 32a and 32b are integrated circuits that control power semiconductor elements such as transistors, discrete passive components such as chip capacitors, chip inductors or chip resistors, or power semiconductor elements.
- the electrodes 32a and 32b are metal layers mainly made of, for example, Cu (copper), Au (gold), Ag (silver), Ni (nickel), Al (aluminum), or the like.
- the power semiconductor element is, for example, a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET such as a FET (Field Effect Transistor).
- a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET such as a FET (Field Effect Transistor).
- a semiconductor material such as Si, GaN or SiC is used for the transistor.
- the electronic component 30a is, for example, a discrete component or an integrated circuit.
- the electrodes 32a may be provided on five surfaces of the side surface and the upper surface of the electronic component 30a in addition to the lower surface of the electronic component 30a. The distance between the electrodes 32a in the electronic component 30a is narrow due to the miniaturization of the electronic component 30a.
- the electronic component 30b is, for example, a power semiconductor element, which is a package in which a bare chip or a bare chip is sealed and mounted.
- the package on which the bare chip is mounted is a package such as WLP (Wafer Level Package) or SIP (Single Inline Package).
- the electrodes 32b are, for example, a source electrode and a drain electrode, or an emitter electrode and a collector electrode. A high voltage is applied between the electrodes 32b. Therefore, the distance between the electrodes 32b is wide in order to suppress dielectric breakdown. Therefore, the distance between the electrodes 32b is wider than the distance between the electrodes 32a.
- the metal layer 22 of the heat radiating plate 20 is patterned and divided into a plurality of conductor patterns.
- the patterning of the metal layer 22 is performed by, for example, etching.
- the adhesive 12 is applied on the heat radiating plate 20 of the region 50.
- the adhesive 12 may be applied under the insulating layer 10.
- the adhesive 12 is not applied on the heat radiating plate 20 of the region 52.
- a spin coating method, a spray coating method, an inkjet method or a screen printing method is used for the application of the adhesive 12.
- the insulating layer 10 is arranged on the adhesive 12.
- the heat treatment temperature is, for example, 150 ° C to 300 ° C.
- a through hole 16 penetrating the insulating layer 10 and the adhesive 12 is formed.
- the through hole 16 is formed by, for example, irradiating a laser beam. As a result, the upper surface of the metal layer 22 is exposed from the through hole 16.
- a metal layer 14 is formed on the lower surface of the insulating layer 10 and the inner surface of the through hole 16.
- the metal layer 14 is formed by, for example, the following method.
- a seed layer is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 16.
- the seed layer is formed, for example, by using a sputtering method or an electroless plating method.
- a plating layer is formed on the seed layer using the seed layer as an electrode, for example, by using an electrolytic plating method. The reliability is improved by bringing the metal layer 14 formed by the plating method into direct contact with the metal layer 22.
- the metal layer 14 is patterned by using, for example, a photolithography method and an etching method. As a result, a plurality of conductor patterns composed of the metal layer 14 are formed.
- a resin layer 18 covering the metal layer 14 is formed on the insulating layer 10 in the region 50, and a resin layer 28 covering the metal layer 22 is formed on the heat radiating plate 20 in the region 52.
- the openings 19 and 29 are formed in the resin layers 18 and 28 by using, for example, a photolithography method and an etching method.
- the bonding layers 34 and 36 are formed in the openings 19 and 29, respectively, and the bonding layers 34 and 36 are bonded to the electrodes 32a and 32b of the electronic components 30a and 30b, respectively. As a result, the component module of FIG. 1 is completed.
- FIG. 4 is a cross-sectional view of the component module according to Comparative Example 1.
- the resin layer 28 is provided on the heat radiating plate 20 also in the region 50.
- the insulating layer 10 is mounted on the heat radiating plate 20.
- a metal layer 38 is provided on the lower surface of the insulating layer 10. The metal layer 38 is electrically connected to the metal layer 22 via a bonding layer 37 provided in the opening 29 of the resin layer 28.
- Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
- the metal layer 22 is thick in order to improve heat dissipation and the like. Therefore, the distance D2 between the metal layers 22 is wide, for example, 100 ⁇ m or more. If the distance between the electrodes 32a of the electronic component 30a is narrower than the distance D2, the electronic component 30a cannot be directly mounted on the metal layer 22. Therefore, the electronic component 30a is mounted on the insulating layer 10 such as a glass epoxy board or an FPC (Flexible Printed Circuits) board.
- the insulating layer 10 such as a glass epoxy board or an FPC (Flexible Printed Circuits) board.
- the metal layer 38 formed under the insulating layer 10 and the metal layer 22 of the heat radiating plate 20 are joined by using a joining layer 37 such as solder or silver paste.
- a joining layer 37 such as solder or silver paste.
- the metal layers 22 and 38 and the solder are often different metals. Therefore, by firing the solder, the metal layers 22 and 38 and the metal layers 22 and 38 can be joined. Cavities and the like are formed in the bonding layer 37 by the particles entering each other with the solder. As a result, cracks are likely to occur in the joint layer 37, and the connection reliability is lowered.
- the bonding layers 37 and 34 when trying to manufacture a structure in which the bonding layers 37 and 34 are provided above and below the insulating layer 10, it is common to reflow one layer of the bonding layers 37 and 34 one by one.
- the bonding layer 37 may melt and the positions of the metal layers 22 and 38 may shift.
- the bonding layer 37 may flow out.
- the solder of the upper bonding layer 34 melts, and then the solder of the bonding layer 37 melts. Therefore, after the electronic component 30a is displaced from the metal layer 14, the solder of the bonding layer 37 is melted. Therefore, the electronic component 30a and the metal layer 14 are misaligned.
- solder There are two types of solder: high melting point solder and low melting point solder. Therefore, if high melting point solder is used for the bonding layer 34 and low melting point solder is used for the bonding layer 37, the metal layers 22 and 38 due to the melting of the solder of the bonding layer 37 during the second reflow will be formed. Positional slippage and solder outflow can be suppressed. Further, when the reflow is performed once, the misalignment between the electronic component 30a and the metal layer 14 can be suppressed.
- high melting point solder is expensive. Also, using different solders increases the manufacturing process. Therefore, the manufacturing cost is high.
- the distance D1 between the metal layers 14 on the insulating layer 10 can be narrowed to about the distance between the electrodes 32a.
- the electronic component 30b When the electronic component 30b generates heat like a power semiconductor element, if the electronic component 30b is mounted on the insulating layer 10, the heat dissipation from the electronic component 30b is low. Further, the distance between the electrodes 32b is wide in order to suppress dielectric breakdown. Therefore, when the distance between the electrodes 32b of the electronic component 30b is equal to or greater than the distance D2 between the metal layers 22, the electronic component 30b is directly mounted on the heat radiating plate 20. Thereby, the heat dissipation from the electronic component 30b can be improved.
- Comparative Example 1 since the insulating layer 10 is provided with two metal layers 14 and 38, the component module becomes large. Further, since the metal layer 38 is provided, the manufacturing cost becomes high.
- the insulating layer 10 (resin insulating layer) is adhered to the heat radiating plate 20 via the adhesive 12.
- the metal layer 14 (second metal layer) is provided on the insulating layer 10 and is connected to a part of the metal layer 22 (first metal layer) through the through hole 16.
- the electronic component 30a (first electronic component) is mounted on the metal layer 14.
- a bonding layer such as solder becomes one layer of the bonding layer 36.
- the electronic component 30b (second electronic component) is mounted on the other part of the metal layer 22 without the intervention of the insulating layer 10. As a result, the heat dissipation from the electronic component 30b is improved.
- the minimum spacing D2 of the metal layer 22 is larger than the minimum spacing D1 of the metal layer 14.
- the metal layer 14 can be rewired to a fine pitch. That is, the electronic component 30a in which the distance between the electrodes 32a is narrower than the minimum distance D2 of the metal layer 22 can be mounted on the metal layer 14. Since the metal layer 14 has a fine pitch, the minimum spacing D1 of the metal layer 14 is preferably 1/2 or less, more preferably 1/5 or less of the minimum spacing D2 of the metal layer 22. In order to narrow the minimum distance D1 of the metal layer 14, the metal layer 14 is preferably thinner than the metal layer 22, and the thickness of the metal layer 14 is more preferably 1/2 or less, and 1/5 of the thickness of the metal layer 22. The following is more preferable.
- the electronic component 30a has an electrode 32a (first electrode) bonded to the metal layer 14 by a bonding layer 34 (first bonding layer).
- the electronic component 30b has an electrode 32b (second electrode) bonded by a bonding layer 36 (second bonding layer) on the other part of the metal layer 22.
- the heat radiating plate 20 includes an insulating layer 24 having a thermal conductivity higher than that of the insulating layer 10, and the metal layer 22 is provided on the insulating layer 24.
- the metal layer 22 including the insulating layer 24 can be used as the heat radiating plate.
- DBC or DBA can be used as such a heat radiating plate 20.
- the electronic component 30a is a discrete passive component
- the electronic component 30b is a power semiconductor element.
- discrete passive components having a narrow space between the electrodes 32a can be mounted on the metal layer 14.
- a power semiconductor element having a larger calorific value than a discrete passive component can be directly mounted on the heat radiating plate 20. Therefore, the heat dissipation performance can be improved.
- FIG. 5 is a cross-sectional view of the component module according to the first embodiment.
- the heat sink 44 is bonded under the metal layer 26 via the bonding layer 43.
- a heat radiating plate 46 is bonded onto the electronic component 30b via a bonding layer 45.
- the heat radiating plate 46 includes a metal layer 46a, an insulating layer 46b, and a metal layer 46c, and is, for example, a DBC or a DBA.
- a heat sink 49 is bonded onto the heat radiating plate 46 via a bonding layer 48.
- the heat sinks 44 and 49 are insulators such as metal or alumina whose main material is copper or aluminum.
- the bonding layers 43 and 48 are, for example, heat conductive greases.
- a resin sealing portion 54 is provided so as to seal the heat radiating plates 20, 46, the insulating layer 10, and the electronic components 30a and 30b.
- the resin sealing portion 54 is mainly made of a thermosetting resin such as an epoxy resin or a thermoplastic resin.
- the resin sealing portion 54 may contain an inorganic filler or the like.
- a potting method, a vacuum printing method, a transfer molding method, an injection molding method or a compression molding method is used.
- Leads 50a and 50b extend from the resin sealing portion 54. One end of the lead 50a is joined to the metal layer 14 via the joining layer 34. One end of the lead 50b is joined to the metal layer 22 via the bonding layer 36.
- the heat generated in the electronic component 30b is mainly released from the heat sinks 44 and 49 into the air via the heat sinks 20 and 46.
- the external circuit is electrically connected to the electronic components 30a and 30b via the leads 50a and 50b.
- the component module of the first embodiment may be sealed in the resin sealing portion 54. Further, the heat sinks 20 and 46 may be connected to the heat sink.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A component module comprising: a radiator plate 20 which has a first metal layer 22 on the top surface thereof; a resin insulation layer 10 which is bonded onto the radiator plate using an adhesive agent 12; a second metal layer 14 which is provided on the resin insulation layer and which is connected to a portion of the first metal layer via a through-hole 16 that traverses both the adhesive agent and the resin insulation layer; a first electronic component 30a which is mounted on the second metal layer; and a first electronic component 30b which is mounted on another portion of the first metal layer without the resin insulation layer therebetween.
Description
本発明は、部品モジュールおよびその製造方法に関し、例えば電子部品を搭載する部品モジュールおよびその製造方法に関する。
The present invention relates to a component module and a manufacturing method thereof, for example, a component module on which an electronic component is mounted and a manufacturing method thereof.
放熱部材上に半導体チップ等の複数の電子部品を接合することが知られている(例えば特許文献1)。
It is known to join a plurality of electronic components such as semiconductor chips on a heat radiating member (for example, Patent Document 1).
上面に金属層を有する放熱板上に複数の電子部品を実装し、放熱板の金属層と電子部品の電極とを接続することがある。放熱板の金属層の間隔は広い、このため、電子部品の電極の間隔が狭い場合、放熱板の金属層を再配線し、放熱板の金属と電子部品とを接続する。放熱板上に再配線層を設けると電子部品からの放熱性が劣化する。そこで、複数の電子部品の一部を放熱板の金属層上に実装し、他の電子部品を、再配線層を用いて放熱板に実装することが考えられる。しかしながら、再配線層を用いると部品モジュールが大型化する。
A plurality of electronic components may be mounted on a heat radiating plate having a metal layer on the upper surface, and the metal layer of the heat radiating plate and the electrodes of the electronic components may be connected. Since the distance between the metal layers of the heat radiating plate is wide, therefore, when the distance between the electrodes of the electronic component is narrow, the metal layer of the heat radiating plate is rewired to connect the metal of the heat radiating plate and the electronic component. If the rewiring layer is provided on the heat radiating plate, the heat radiating property from the electronic components deteriorates. Therefore, it is conceivable to mount a part of a plurality of electronic components on the metal layer of the heat radiating plate and mount other electronic components on the heat radiating plate using the rewiring layer. However, if the rewiring layer is used, the component module becomes large.
本発明は、上記課題に鑑みなされたものであり小型化することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the size.
本発明は、上面に第1金属層を有する放熱板と、接着剤を介し前記放熱板上に接着された樹脂絶縁層と、前記樹脂絶縁層上に設けられ、前記接着剤および前記樹脂絶縁層を貫通する貫通孔を介し前記第1金属層の一部に接続された第2金属層と、前記第2金属層上に実装された第1電子部品と、前記第1金属層の他の一部上に前記樹脂絶縁層を介さずに実装された第2電子部品と、を備える部品モジュールである。
In the present invention, a heat radiating plate having a first metal layer on the upper surface, a resin insulating layer adhered onto the heat radiating plate via an adhesive, and the adhesive and the resin insulating layer provided on the resin insulating layer are provided. A second metal layer connected to a part of the first metal layer through a through hole penetrating the first metal layer, a first electronic component mounted on the second metal layer, and another one of the first metal layer. It is a component module including a second electronic component mounted on the portion without a resin insulating layer.
上記構成において、前記第1金属層の最小間隔は前記第2金属層の最小間隔より大きい構成とすることができる。
In the above configuration, the minimum spacing of the first metal layer can be larger than the minimum spacing of the second metal layer.
上記構成において、前記第1電子部品は前記第2金属層に第1接合層により接合された第1電極を有し、前記第2電子部品は前記第1金属層の他の一部上に第2接合層により接合された第2電極を有する構成とすることができる。
In the above configuration, the first electronic component has a first electrode bonded to the second metal layer by a first bonding layer, and the second electronic component has a first electrode on the other part of the first metal layer. It can be configured to have a second electrode bonded by two bonding layers.
上記構成において、前記放熱板は絶縁層を備え、前記第1金属層は前記絶縁層上に設けられている構成とすることができる。
In the above configuration, the heat radiating plate may be provided with an insulating layer, and the first metal layer may be provided on the insulating layer.
上記構成において、前記第1電子部品はディスクリート受動部品であり、前記第2電子部品はパワー半導体素子である構成とすることができる。
In the above configuration, the first electronic component may be a discrete passive component, and the second electronic component may be a power semiconductor element.
上記構成において、前記放熱板は、DBCまたはDBAである構成とすることができる。
In the above configuration, the heat radiating plate may be a DBC or a DBA.
本発明は、上面に第1金属層を有する放熱板上に接着剤を介し樹脂絶縁層を接着する工程と、前記樹脂絶縁層および前記接着剤を貫通する貫通孔を介し前記第1金属層の一部に接続する第2金属層を前記樹脂絶縁層上に形成する工程と、前記第2金属層上に第1電子部品を実装する工程と、前記第1金属層の他の一部上に前記樹脂絶縁層を介さず第2電子部品を実装する工程と、を含む部品モジュールの製造方法である。
The present invention relates to a step of adhering a resin insulating layer on a heat radiating plate having a first metal layer on the upper surface via an adhesive, and a step of adhering the resin insulating layer to the first metal layer through a through hole penetrating the resin insulating layer and the adhesive. A step of forming a second metal layer to be partially connected on the resin insulating layer, a step of mounting a first electronic component on the second metal layer, and a step of mounting the first electronic component on the other part of the first metal layer. It is a method of manufacturing a component module including a step of mounting a second electronic component without passing through the resin insulating layer.
本発明によれば、小型化することができる。
According to the present invention, the size can be reduced.
以下、図面を参照し本発明の実施例について説明する。
Hereinafter, examples of the present invention will be described with reference to the drawings.
図1は、実施例1に係る部品モジュールの断面図である。
FIG. 1 is a cross-sectional view of the component module according to the first embodiment.
図1に示すように、部品モジュールは領域50と52を有する。領域50は放熱板20上に絶縁層10が接合された領域であり、領域52は絶縁層10が接合されていない領域である。
As shown in FIG. 1, the component module has regions 50 and 52. The region 50 is a region where the insulating layer 10 is bonded on the heat radiating plate 20, and the region 52 is a region where the insulating layer 10 is not bonded.
放熱板20は、例えばDBC(Direct Bonded Cupper)またはDBA(Direct Bonded Aluminum)であり、金属層22、絶縁層24および金属層26を備えている。絶縁層24は、例えば酸化アルミニウムおよび/または窒化アルミニウムを主材料とするセラミックスである。金属層22および26は、例えば銅またはアルミニウムを主材料とする。金属層22および26の厚さは、例えば各々100μmから500μmである。絶縁層24の厚さは、例えば200μmから1000μmである。金属層22はパターニングされており、電子部品30aおよび30b間を接続する配線、配線を上層に接続するパッド等の導電体パターンとして機能する。金属層22の最小間隔D2は例えば100μm~1mmである。DBCおよびDBAでは熱伝導性等の放熱特性の向上および低抵抗化のため金属層22が厚い。このため、金属層22の間隔および幅を小さくすることは難しい。
The heat radiating plate 20 is, for example, a DBC (Direct Bonded Cupper) or a DBA (Direct Bonded Aluminum), and includes a metal layer 22, an insulating layer 24, and a metal layer 26. The insulating layer 24 is a ceramic whose main material is, for example, aluminum oxide and / or aluminum nitride. The metal layers 22 and 26 are mainly made of, for example, copper or aluminum. The thicknesses of the metal layers 22 and 26 are, for example, 100 μm to 500 μm, respectively. The thickness of the insulating layer 24 is, for example, 200 μm to 1000 μm. The metal layer 22 is patterned and functions as a conductor pattern such as a wiring connecting the electronic components 30a and 30b and a pad connecting the wiring to the upper layer. The minimum spacing D2 of the metal layer 22 is, for example, 100 μm to 1 mm. In DBC and DBA, the metal layer 22 is thick in order to improve heat dissipation characteristics such as thermal conductivity and reduce resistance. Therefore, it is difficult to reduce the spacing and width of the metal layers 22.
領域50において、放熱板20上に接着剤12を介し絶縁層10が接合されている。絶縁層10は、例えばポリイミドを主成分とするポリイミド層等の樹脂層であり、可撓性を有する。絶縁層10の厚さは例えば7.5μmから125μmである。接着剤12は、例えばエポキシ樹脂接着剤等の樹脂接着剤である。接着剤12の厚さは金属層22上において硬化後で例えば5μmから50μmである。接着剤12は例えば絶縁層10より薄い。接着剤12は耐熱性に優れ誘電率の小さい樹脂材料が好ましい。
In the region 50, the insulating layer 10 is bonded to the heat radiating plate 20 via the adhesive 12. The insulating layer 10 is, for example, a resin layer such as a polyimide layer containing polyimide as a main component and has flexibility. The thickness of the insulating layer 10 is, for example, 7.5 μm to 125 μm. The adhesive 12 is a resin adhesive such as an epoxy resin adhesive. The thickness of the adhesive 12 is, for example, 5 μm to 50 μm after curing on the metal layer 22. The adhesive 12 is thinner than, for example, the insulating layer 10. The adhesive 12 is preferably a resin material having excellent heat resistance and a low dielectric constant.
絶縁層10上に金属層14が設けられている。金属層14は、絶縁層10および接着剤12を貫通する貫通孔16を介し、金属層22に電気的に接続する。金属層14は、例えば銅を主材料とする。金属層14の厚さは例えば数μmから100μmであり、貫通孔16が埋め込まれる厚さである。貫通孔16の大きさは、例えば30μmから500μmである。金属層14の最小間隔D1は例えば10μm~数100μmである。金属層14は金属層22より薄い。このため、金属層14の間隔および幅は、金属層22のそれぞれ間隔および幅より小さくすることができる。
A metal layer 14 is provided on the insulating layer 10. The metal layer 14 is electrically connected to the metal layer 22 through a through hole 16 that penetrates the insulating layer 10 and the adhesive 12. The metal layer 14 uses, for example, copper as a main material. The thickness of the metal layer 14 is, for example, several μm to 100 μm, which is the thickness at which the through hole 16 is embedded. The size of the through hole 16 is, for example, 30 μm to 500 μm. The minimum spacing D1 of the metal layer 14 is, for example, 10 μm to several hundred μm. The metal layer 14 is thinner than the metal layer 22. Therefore, the spacing and width of the metal layers 14 can be smaller than the spacing and width of the metal layers 22, respectively.
絶縁層10上に金属層14を覆うように樹脂層18が設けられている。樹脂層18は、例えばソルダーレジストであり例えばエポキシ樹脂である。樹脂層18には金属層14が露出するように開口19が設けられている。樹脂層18の厚さは例えば5μmから100μmである。
A resin layer 18 is provided on the insulating layer 10 so as to cover the metal layer 14. The resin layer 18 is, for example, a solder resist, for example, an epoxy resin. The resin layer 18 is provided with an opening 19 so that the metal layer 14 is exposed. The thickness of the resin layer 18 is, for example, 5 μm to 100 μm.
開口19内に接合層34が設けられている。接合層34は半田等のロウ材または導電性ペーストが焼結された焼結金属である。絶縁層10上に電子部品30aが実装されている。電子部品30aの電極32aは接合層34を介し金属層14に接合されている。
A bonding layer 34 is provided in the opening 19. The bonding layer 34 is a sintered metal obtained by sintering a brazing material such as solder or a conductive paste. The electronic component 30a is mounted on the insulating layer 10. The electrode 32a of the electronic component 30a is bonded to the metal layer 14 via the bonding layer 34.
絶縁層10上に金属層14を覆うように樹脂層18が設けられている。樹脂層18は、例えばソルダーレジストであり例えばエポキシ樹脂である。樹脂層18には金属層14が露出するように開口19が設けられている。樹脂層18の厚さは例えば5μmから100μmである。
A resin layer 18 is provided on the insulating layer 10 so as to cover the metal layer 14. The resin layer 18 is, for example, a solder resist, for example, an epoxy resin. The resin layer 18 is provided with an opening 19 so that the metal layer 14 is exposed. The thickness of the resin layer 18 is, for example, 5 μm to 100 μm.
領域52において、放熱板20上に樹脂層28が設けられている。樹脂層28は、例えばソルダーレジストであり例えばエポキシ樹脂である。樹脂層28には金属層22が露出するように開口29が設けられている。樹脂層28の厚さは例えば5μmから100μmである。
In the region 52, the resin layer 28 is provided on the heat radiating plate 20. The resin layer 28 is, for example, a solder resist, for example, an epoxy resin. The resin layer 28 is provided with an opening 29 so that the metal layer 22 is exposed. The thickness of the resin layer 28 is, for example, 5 μm to 100 μm.
開口29内に接合層36が設けられている。接合層36は半田等のロウ材または導電性ペーストが焼結された焼結金属である。放熱板20上に電子部品30bが実装されている。電子部品30bの電極32bは接合層36を介し金属層22に接合されている。
A bonding layer 36 is provided in the opening 29. The bonding layer 36 is a sintered metal obtained by sintering a brazing material such as solder or a conductive paste. The electronic component 30b is mounted on the heat radiating plate 20. The electrode 32b of the electronic component 30b is bonded to the metal layer 22 via the bonding layer 36.
電子部品30aおよび30bは、例えばトランジスタ等のパワー半導体素子、チップコンデンサ、チップインダクタもしくはチップ抵抗等のディスクリート受動部品、またはパワー半導体素子を制御する集積回路である。電極32aおよび32bは、例えばCu(銅)、Au(金)、Ag(銀)、Ni(ニッケル)またはAl(アルミニウム)等を主材料とする金属層である。
Electronic components 30a and 30b are integrated circuits that control power semiconductor elements such as transistors, discrete passive components such as chip capacitors, chip inductors or chip resistors, or power semiconductor elements. The electrodes 32a and 32b are metal layers mainly made of, for example, Cu (copper), Au (gold), Ag (silver), Ni (nickel), Al (aluminum), or the like.
パワー半導体素子は、例えばIGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタまたはFET(Field Effect Transistor)などのFET等のトランジスタである。トランジスタには、Si、GaNまたはSiC等の半導体材料が用いられる。
The power semiconductor element is, for example, a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET such as a FET (Field Effect Transistor). A semiconductor material such as Si, GaN or SiC is used for the transistor.
電子部品30aは、例えばディスクリート部品または集積回路である。電子部品30aがディスクリート受動部品の場合、電極32aは電子部品30aの下面に加え電子部品30aの側面および上面の5面に設けられていてもよい。電子部品30aにおける電極32aの間隔は電子部品30aの小型化のため狭い。
The electronic component 30a is, for example, a discrete component or an integrated circuit. When the electronic component 30a is a discrete passive component, the electrodes 32a may be provided on five surfaces of the side surface and the upper surface of the electronic component 30a in addition to the lower surface of the electronic component 30a. The distance between the electrodes 32a in the electronic component 30a is narrow due to the miniaturization of the electronic component 30a.
電子部品30bは、例えばパワー半導体素子であリ、ベアチップまたはベアチップが封止実装されたパッケージである。ベアチップが実装されたパッケージは、WLP(Wafer Level Package)またはSIP(Single Inline Package)等のパッケージである。電子部品30bがパワー半導体素子の場合、電極32bは例えばソース電極とドレイン電極、またはエミッタ電極とコレクタ電極である。電極32b間には高電圧が加わる。このため絶縁破壊を抑制するため電極32bの間隔は広い。このため、電極32bの間隔は電極32aの間隔より広い。
The electronic component 30b is, for example, a power semiconductor element, which is a package in which a bare chip or a bare chip is sealed and mounted. The package on which the bare chip is mounted is a package such as WLP (Wafer Level Package) or SIP (Single Inline Package). When the electronic component 30b is a power semiconductor element, the electrodes 32b are, for example, a source electrode and a drain electrode, or an emitter electrode and a collector electrode. A high voltage is applied between the electrodes 32b. Therefore, the distance between the electrodes 32b is wide in order to suppress dielectric breakdown. Therefore, the distance between the electrodes 32b is wider than the distance between the electrodes 32a.
[実施例1の製造方法]
図2(a)から図3(c)は、実施例1に係る部品モジュールの製造方法を示す断面図である。 [Manufacturing method of Example 1]
2 (a) to 3 (c) are cross-sectional views showing a method of manufacturing a component module according to the first embodiment.
図2(a)から図3(c)は、実施例1に係る部品モジュールの製造方法を示す断面図である。 [Manufacturing method of Example 1]
2 (a) to 3 (c) are cross-sectional views showing a method of manufacturing a component module according to the first embodiment.
図2(a)に示すように、放熱板20の金属層22はパターニングされており、複数の導電体パターンに分割されている。金属層22のパターニングは例えばエッチングにより行う。
As shown in FIG. 2A, the metal layer 22 of the heat radiating plate 20 is patterned and divided into a plurality of conductor patterns. The patterning of the metal layer 22 is performed by, for example, etching.
図2(b)に示すように、領域50の放熱板20上に接着剤12を塗布する。接着剤12は、絶縁層10下に塗布してもよい。領域52の放熱板20上には接着剤12を塗布しない。接着剤12の塗布には、例えばスピンコート法、スプレコート法、インクジェット法またはスクリーン印刷法を用いる。
As shown in FIG. 2B, the adhesive 12 is applied on the heat radiating plate 20 of the region 50. The adhesive 12 may be applied under the insulating layer 10. The adhesive 12 is not applied on the heat radiating plate 20 of the region 52. For the application of the adhesive 12, for example, a spin coating method, a spray coating method, an inkjet method or a screen printing method is used.
図2(c)に示すように、接着剤12上に絶縁層10を配置する。熱処理することにより、接着剤12を硬化させ絶縁層10と放熱板20とを接着させる。熱処理温度は例えば150℃から300℃である。
As shown in FIG. 2C, the insulating layer 10 is arranged on the adhesive 12. By heat treatment, the adhesive 12 is cured and the insulating layer 10 and the heat radiating plate 20 are adhered to each other. The heat treatment temperature is, for example, 150 ° C to 300 ° C.
図2(d)に示すように、絶縁層10および接着剤12を貫通する貫通孔16を形成する。貫通孔16は、例えばレーザ光を照射することにより形成する。これにより、金属層22の上面が貫通孔16から露出する。
As shown in FIG. 2D, a through hole 16 penetrating the insulating layer 10 and the adhesive 12 is formed. The through hole 16 is formed by, for example, irradiating a laser beam. As a result, the upper surface of the metal layer 22 is exposed from the through hole 16.
図3(a)に示すように、絶縁層10の下面および貫通孔16の内面に金属層14を形成する。金属層14の形成は例えば以下の方法により行う。絶縁層10の上面および貫通孔16の内面にシード層を形成する。シード層は、例えばスパッタリング法または無電解めっき法を用いて形成する。シード層を電極としてシード層上にめっき層を例えば電解めっき法を用い形成する。めっき法を用いて形成した金属層14を金属層22と直接接触させることで、信頼性が向上する。
As shown in FIG. 3A, a metal layer 14 is formed on the lower surface of the insulating layer 10 and the inner surface of the through hole 16. The metal layer 14 is formed by, for example, the following method. A seed layer is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 16. The seed layer is formed, for example, by using a sputtering method or an electroless plating method. A plating layer is formed on the seed layer using the seed layer as an electrode, for example, by using an electrolytic plating method. The reliability is improved by bringing the metal layer 14 formed by the plating method into direct contact with the metal layer 22.
図3(b)に示すように、金属層14を例えばフォトリソグラフィ法およびエッチング法を用いパターニングする。これにより、金属層14からなる複数の導電体パターンが形成される。
As shown in FIG. 3B, the metal layer 14 is patterned by using, for example, a photolithography method and an etching method. As a result, a plurality of conductor patterns composed of the metal layer 14 are formed.
図3(c)に示すように、領域50における絶縁層10上に金属層14を覆う樹脂層18を、領域52における放熱板20上に金属層22を覆う樹脂層28を形成する。樹脂層18および28に開口19および29を例えばフォトリソグラフィ法およびエッチング法を用い形成する。
As shown in FIG. 3C, a resin layer 18 covering the metal layer 14 is formed on the insulating layer 10 in the region 50, and a resin layer 28 covering the metal layer 22 is formed on the heat radiating plate 20 in the region 52. The openings 19 and 29 are formed in the resin layers 18 and 28 by using, for example, a photolithography method and an etching method.
その後、開口19および29内にそれぞれ接合層34および36を形成し、接合層34および36を電子部品30aおよび30bの電極32aおよび32bに接合させる。これにより、図1の部品モジュールが完成する。
After that, the bonding layers 34 and 36 are formed in the openings 19 and 29, respectively, and the bonding layers 34 and 36 are bonded to the electrodes 32a and 32b of the electronic components 30a and 30b, respectively. As a result, the component module of FIG. 1 is completed.
[比較例1]
図4は、比較例1に係る部品モジュールの断面図である。図4に示すように、比較例1では領域50においても放熱板20上に樹脂層28が設けられている。領域50において、放熱板20上に絶縁層10が実装されている。絶縁層10の下面に金属層38が設けられている。金属層38は樹脂層28の開口29に設けられた接合層37を介し金属層22と電気的に接続されている。その他の構成は実施例1と同じであり説明を省略する。 [Comparative Example 1]
FIG. 4 is a cross-sectional view of the component module according to Comparative Example 1. As shown in FIG. 4, in Comparative Example 1, theresin layer 28 is provided on the heat radiating plate 20 also in the region 50. In the region 50, the insulating layer 10 is mounted on the heat radiating plate 20. A metal layer 38 is provided on the lower surface of the insulating layer 10. The metal layer 38 is electrically connected to the metal layer 22 via a bonding layer 37 provided in the opening 29 of the resin layer 28. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
図4は、比較例1に係る部品モジュールの断面図である。図4に示すように、比較例1では領域50においても放熱板20上に樹脂層28が設けられている。領域50において、放熱板20上に絶縁層10が実装されている。絶縁層10の下面に金属層38が設けられている。金属層38は樹脂層28の開口29に設けられた接合層37を介し金属層22と電気的に接続されている。その他の構成は実施例1と同じであり説明を省略する。 [Comparative Example 1]
FIG. 4 is a cross-sectional view of the component module according to Comparative Example 1. As shown in FIG. 4, in Comparative Example 1, the
DBCまたはDBA等の放熱板20では、放熱性等の向上のため金属層22が厚い。このため金属層22の間隔D2が広く、例えば100μm以上である。電子部品30aの電極32a間隔が間隔D2より狭いと、金属層22上に電子部品30aを直接実装できない。そこで、ガラスエポキシ基板またはFPC(Flexible Printed Circuits)基板等の絶縁層10上に電子部品30aを実装する。
In the heat radiating plate 20 such as DBC or DBA, the metal layer 22 is thick in order to improve heat dissipation and the like. Therefore, the distance D2 between the metal layers 22 is wide, for example, 100 μm or more. If the distance between the electrodes 32a of the electronic component 30a is narrower than the distance D2, the electronic component 30a cannot be directly mounted on the metal layer 22. Therefore, the electronic component 30a is mounted on the insulating layer 10 such as a glass epoxy board or an FPC (Flexible Printed Circuits) board.
絶縁層10下に形成された金属層38と放熱板20の金属層22とを半田または銀ペースト等の接合層37を用い接合させる。例えば、金属層22と38とを、半田等を用いて接合させる場合、金属層22および38と半田とは異なる金属であることが多いため、半田を焼成することにより、金属層22および38と半田との互いの粒子が入り込むことで接合層37に空洞等が形成される。これにより、接合層37にクラックが発生しやすくなり、接続信頼性が低下してしまう。
The metal layer 38 formed under the insulating layer 10 and the metal layer 22 of the heat radiating plate 20 are joined by using a joining layer 37 such as solder or silver paste. For example, when the metal layers 22 and 38 are joined by using solder or the like, the metal layers 22 and 38 and the solder are often different metals. Therefore, by firing the solder, the metal layers 22 and 38 and the metal layers 22 and 38 can be joined. Cavities and the like are formed in the bonding layer 37 by the particles entering each other with the solder. As a result, cracks are likely to occur in the joint layer 37, and the connection reliability is lowered.
また、絶縁層10の上下に接合層37と34を設けた構造を製造しようとすると、接合層37と34の1層ずつリフローを行うことが一般的である。1層目の接合層37を用い金属層22と38とを接合するための1回目のリフローを行なった後に、2層目の接合層34を用い金属層14と電子部品30aとを接合するための2回目のリフローを行う。2回目のリフローのとき、接合層37が溶融し、金属層22と38との位置がずれる可能性がある。また、接合層37が流出する可能性がある。
Further, when trying to manufacture a structure in which the bonding layers 37 and 34 are provided above and below the insulating layer 10, it is common to reflow one layer of the bonding layers 37 and 34 one by one. To join the metal layer 14 and the electronic component 30a using the second bonding layer 34 after performing the first reflow for joining the metal layers 22 and 38 using the first bonding layer 37. Perform the second reflow of. At the time of the second reflow, the bonding layer 37 may melt and the positions of the metal layers 22 and 38 may shift. In addition, the bonding layer 37 may flow out.
接合層37と34に1回のリフローを行う場合、上の接合層34の半田が溶融した後、接合層37の半田が溶融する。このため、電子部品30aが金属層14から位置ずれした後に、接合層37の半田が溶融する。よって、電子部品30aと金属層14が位置ずれしてしまう。
When reflowing once to the bonding layers 37 and 34, the solder of the upper bonding layer 34 melts, and then the solder of the bonding layer 37 melts. Therefore, after the electronic component 30a is displaced from the metal layer 14, the solder of the bonding layer 37 is melted. Therefore, the electronic component 30a and the metal layer 14 are misaligned.
半田には高融点半田と低融点半田がある。そこで、接合層34に高融点半田を、接合層37に低融点半田を使用すれば、2回目のリフローのときに、接合層37の半田が溶融することに起因する金属層22と38との位置すれおよび半田の流出が抑制できる。また、リフローを1回としたときに電子部品30aと金属層14との位置ずれが抑制できる。しかし、高融点半田は価格が高い。また、異なる半田を使用することは製造工程の増加となる。よって、製造コストが高くなる。
There are two types of solder: high melting point solder and low melting point solder. Therefore, if high melting point solder is used for the bonding layer 34 and low melting point solder is used for the bonding layer 37, the metal layers 22 and 38 due to the melting of the solder of the bonding layer 37 during the second reflow will be formed. Positional slippage and solder outflow can be suppressed. Further, when the reflow is performed once, the misalignment between the electronic component 30a and the metal layer 14 can be suppressed. However, high melting point solder is expensive. Also, using different solders increases the manufacturing process. Therefore, the manufacturing cost is high.
さらに、絶縁層10上の金属層14の間隔D1は電極32aの間隔程度に狭くできる。このように、金属層14を用い再配線することで、放熱板20上に電子部品30aを実装する。
Further, the distance D1 between the metal layers 14 on the insulating layer 10 can be narrowed to about the distance between the electrodes 32a. By rewiring using the metal layer 14 in this way, the electronic component 30a is mounted on the heat radiating plate 20.
電子部品30bがパワー半導体素子のように発熱する場合、電子部品30bを絶縁層10上に実装すると電子部品30bからの放熱性が低い。また、絶縁破壊を抑制するため電極32b間隔が広い。そこで、電子部品30bの電極32b間隔が金属層22の間隔D2以上の場合、電子部品30bを放熱板20に直接実装する。これにより、電子部品30bからの放熱性を向上できる。
When the electronic component 30b generates heat like a power semiconductor element, if the electronic component 30b is mounted on the insulating layer 10, the heat dissipation from the electronic component 30b is low. Further, the distance between the electrodes 32b is wide in order to suppress dielectric breakdown. Therefore, when the distance between the electrodes 32b of the electronic component 30b is equal to or greater than the distance D2 between the metal layers 22, the electronic component 30b is directly mounted on the heat radiating plate 20. Thereby, the heat dissipation from the electronic component 30b can be improved.
しかし、比較例1では、絶縁層10に2層の金属層14および38を設けるため、部品モジュールが大型化する。また、金属層38を設けるため製造コストが高くなる。
However, in Comparative Example 1, since the insulating layer 10 is provided with two metal layers 14 and 38, the component module becomes large. Further, since the metal layer 38 is provided, the manufacturing cost becomes high.
実施例1によれば、絶縁層10(樹脂絶縁層)を、接着剤12を介し放熱板20上に接着する。金属層14(第2金属層)を絶縁層10上に設け貫通孔16を介し金属層22(第1金属層)の一部に接続する。電子部品30a(第1電子部品)を金属層14上に実装する。これにより、金属層38を設けなくてもよくなる。よって、金属層を1層減らせるので、部品モジュールを小型化できる。また、部品モジュールのコスト削減が可能となる。さらに、半田等の接合層が接合層36の1層となる。このため、金属層22と38との位置ずれまたは電子部品30aと金属層14との位置ずれに起因した接続信頼性の低下を抑制できる。また、半田が溶融することに起因した短絡不良および半田の周辺への流出を抑制することができる。領域52では、電子部品30b(第2電子部品)を金属層22の他の一部上に絶縁層10を介さずに実装する。これにより、電子部品30bからの放熱性が向上する。
According to the first embodiment, the insulating layer 10 (resin insulating layer) is adhered to the heat radiating plate 20 via the adhesive 12. The metal layer 14 (second metal layer) is provided on the insulating layer 10 and is connected to a part of the metal layer 22 (first metal layer) through the through hole 16. The electronic component 30a (first electronic component) is mounted on the metal layer 14. As a result, it is not necessary to provide the metal layer 38. Therefore, since the number of metal layers can be reduced by one, the component module can be miniaturized. In addition, the cost of the component module can be reduced. Further, a bonding layer such as solder becomes one layer of the bonding layer 36. Therefore, it is possible to suppress a decrease in connection reliability due to a misalignment between the metal layers 22 and 38 or a misalignment between the electronic component 30a and the metal layer 14. In addition, it is possible to suppress short-circuit defects caused by melting of the solder and outflow of the solder to the periphery. In the region 52, the electronic component 30b (second electronic component) is mounted on the other part of the metal layer 22 without the intervention of the insulating layer 10. As a result, the heat dissipation from the electronic component 30b is improved.
金属層22の最小間隔D2が金属層14の最小間隔D1より大きい。これにより、金属層14を用いファインピッチに再配線できる。すなわち、電極32aの間隔が金属層22の最小間隔D2より狭い電子部品30aを金属層14上に実装できる。金属層14をファインピッチとするため、金属層14の最小間隔D1は金属層22の最小間隔D2の1/2以下が好ましく、1/5以下がより好ましい。金属層14の最小間隔D1を狭くするため、金属層14は金属層22より薄いことが好ましく、金属層14の厚さは金属層22の厚さの1/2以下がより好ましく、1/5以下がさらに好ましい。
The minimum spacing D2 of the metal layer 22 is larger than the minimum spacing D1 of the metal layer 14. As a result, the metal layer 14 can be rewired to a fine pitch. That is, the electronic component 30a in which the distance between the electrodes 32a is narrower than the minimum distance D2 of the metal layer 22 can be mounted on the metal layer 14. Since the metal layer 14 has a fine pitch, the minimum spacing D1 of the metal layer 14 is preferably 1/2 or less, more preferably 1/5 or less of the minimum spacing D2 of the metal layer 22. In order to narrow the minimum distance D1 of the metal layer 14, the metal layer 14 is preferably thinner than the metal layer 22, and the thickness of the metal layer 14 is more preferably 1/2 or less, and 1/5 of the thickness of the metal layer 22. The following is more preferable.
電子部品30aは金属層14に接合層34(第1接合層)により接合された電極32a(第1電極)を有する。電子部品30bは金属層22の他の一部上に接合層36(第2接合層)により接合された電極32b(第2電極)を有する。これにより、電極32aの間隔の狭い電子部品30aを最小間隔D1の狭い金属層14上に実装し、電極32bの間隔の広い電子部品30bを最小間隔D2の広い金属層22上に実装できる。
The electronic component 30a has an electrode 32a (first electrode) bonded to the metal layer 14 by a bonding layer 34 (first bonding layer). The electronic component 30b has an electrode 32b (second electrode) bonded by a bonding layer 36 (second bonding layer) on the other part of the metal layer 22. As a result, the electronic component 30a having a narrow space between the electrodes 32a can be mounted on the metal layer 14 having a narrow minimum space D1, and the electronic component 30b having a wide space between the electrodes 32b can be mounted on the metal layer 22 having a wide minimum space D2.
放熱板20は絶縁層10の熱伝導率より大きい熱伝導率を有する絶縁層24を備え、金属層22は絶縁層24上に設けられている。これにより、絶縁層24を含む金属層22を放熱板として用いることができる。このような放熱板20としてDBCまたはDBAを用いることができる。
The heat radiating plate 20 includes an insulating layer 24 having a thermal conductivity higher than that of the insulating layer 10, and the metal layer 22 is provided on the insulating layer 24. As a result, the metal layer 22 including the insulating layer 24 can be used as the heat radiating plate. DBC or DBA can be used as such a heat radiating plate 20.
電子部品30aはディスクリート受動部品であり、電子部品30bはパワー半導体素子である。これにより、電極32a間隔の狭いディスクリート受動部品を金属層14上に実装できる。また、発熱量がディスクリート受動部品より大きなパワー半導体素子を放熱板20上に直接実装できる。よって、放熱性能を向上できる。
The electronic component 30a is a discrete passive component, and the electronic component 30b is a power semiconductor element. As a result, discrete passive components having a narrow space between the electrodes 32a can be mounted on the metal layer 14. Further, a power semiconductor element having a larger calorific value than a discrete passive component can be directly mounted on the heat radiating plate 20. Therefore, the heat dissipation performance can be improved.
図5は、実施例1に係る部品モジュールの断面図である。
FIG. 5 is a cross-sectional view of the component module according to the first embodiment.
図5に示すように、金属層26下に接合層43を介しヒートシンク44が接合されている。電子部品30b上に接合層45を介し放熱板46が接合されている。放熱板46は、金属層46a、絶縁層46bおよび金属層46cを備えており、例えばDBCまたはDBAである。放熱板46上に接合層48を介しヒートシンク49が接合されている。ヒートシンク44および49は例えば銅またはアルミニウムを主材料とする金属またはアルミナ等の絶縁体である。接合層43および48は例えば熱伝導グリースである。
As shown in FIG. 5, the heat sink 44 is bonded under the metal layer 26 via the bonding layer 43. A heat radiating plate 46 is bonded onto the electronic component 30b via a bonding layer 45. The heat radiating plate 46 includes a metal layer 46a, an insulating layer 46b, and a metal layer 46c, and is, for example, a DBC or a DBA. A heat sink 49 is bonded onto the heat radiating plate 46 via a bonding layer 48. The heat sinks 44 and 49 are insulators such as metal or alumina whose main material is copper or aluminum. The bonding layers 43 and 48 are, for example, heat conductive greases.
放熱板20、46、絶縁層10、電子部品30aおよび30bを封止するように樹脂封止部54が設けられている。樹脂封止部54は、例えばエポキシ樹脂等の熱硬化性樹脂または熱可塑性樹脂を主材料とする。樹脂封止部54は、無機フィラー等を含んでもよい。樹脂封止部54の形成には例えばポッティング法、真空印刷法、トランスファモールド法、インジェクションモールド法またはコンプレッションモールド法を用いる。樹脂封止部54からリード50aおよび50bが延出する。リード50aの一端は接合層34を介し金属層14に接合されている。リード50bの一端は接合層36を介し金属層22に接合されている。
A resin sealing portion 54 is provided so as to seal the heat radiating plates 20, 46, the insulating layer 10, and the electronic components 30a and 30b. The resin sealing portion 54 is mainly made of a thermosetting resin such as an epoxy resin or a thermoplastic resin. The resin sealing portion 54 may contain an inorganic filler or the like. For the formation of the resin sealing portion 54, for example, a potting method, a vacuum printing method, a transfer molding method, an injection molding method or a compression molding method is used. Leads 50a and 50b extend from the resin sealing portion 54. One end of the lead 50a is joined to the metal layer 14 via the joining layer 34. One end of the lead 50b is joined to the metal layer 22 via the bonding layer 36.
電子部品30bにおいて発生した熱は主に放熱板20および46を介しヒートシンク44および49から空気中に放出される。外部回路はリード50aおよび50bを介し電子部品30aおよび30bに電気的に接続される。図5のように、実施例1の部品モジュールは樹脂封止部54に封止されていてもよい。また、放熱板20および46はヒートシンクに接続されていてもよい。
The heat generated in the electronic component 30b is mainly released from the heat sinks 44 and 49 into the air via the heat sinks 20 and 46. The external circuit is electrically connected to the electronic components 30a and 30b via the leads 50a and 50b. As shown in FIG. 5, the component module of the first embodiment may be sealed in the resin sealing portion 54. Further, the heat sinks 20 and 46 may be connected to the heat sink.
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. Is possible.
10、24、46b 絶縁層
12 接着剤
14、22、26、46a、46c、48 金属層
16 貫通孔
18、28 樹脂層
19、29 開口
20、46 放熱板
30a、30b 電子部品
32a、32b 電極
34、36、37、43、45,48 接合層
44、49 ヒートシンク
50a、50b リード
54 樹脂封止部
10, 24,46b Insulation layer 12 Adhesive 14, 22, 26, 46a, 46c, 48 Metal layer 16 Through hole 18, 28 Resin layer 19, 29 Opening 20, 46 Heat sink 30a, 30b Electronic components 32a, 32b Electrode 34 , 36, 37, 43, 45, 48 Bonding layer 44, 49 Heat sink 50a, 50b Lead 54 Resin sealing part
12 接着剤
14、22、26、46a、46c、48 金属層
16 貫通孔
18、28 樹脂層
19、29 開口
20、46 放熱板
30a、30b 電子部品
32a、32b 電極
34、36、37、43、45,48 接合層
44、49 ヒートシンク
50a、50b リード
54 樹脂封止部
10, 24,
Claims (7)
- 上面に第1金属層を有する放熱板と、
接着剤を介し前記放熱板上に接着された樹脂絶縁層と、
前記樹脂絶縁層上に設けられ、前記接着剤および前記樹脂絶縁層を貫通する貫通孔を介し前記第1金属層の一部に接続された第2金属層と、
前記第2金属層上に実装された第1電子部品と、
前記第1金属層の他の一部上に前記樹脂絶縁層を介さずに実装された第2電子部品と、
を備える部品モジュール。 A heat radiating plate having a first metal layer on the upper surface,
With the resin insulating layer adhered on the heat radiating plate via an adhesive,
A second metal layer provided on the resin insulating layer and connected to a part of the first metal layer through a through hole penetrating the adhesive and the resin insulating layer.
The first electronic component mounted on the second metal layer and
A second electronic component mounted on the other part of the first metal layer without the resin insulating layer.
Parts module with. - 前記第1金属層の最小間隔は前記第2金属層の最小間隔より大きい請求項1に記載の部品モジュール。 The component module according to claim 1, wherein the minimum spacing of the first metal layer is larger than the minimum spacing of the second metal layer.
- 前記第1電子部品は前記第2金属層に第1接合層により接合された第1電極を有し、
前記第2電子部品は前記第1金属層の他の一部上に第2接合層により接合された第2電極を有する請求項1または2に記載の部品モジュール。 The first electronic component has a first electrode bonded to the second metal layer by a first bonding layer.
The component module according to claim 1 or 2, wherein the second electronic component has a second electrode bonded by a second bonding layer on another part of the first metal layer. - 前記放熱板は絶縁層を備え、
前記第1金属層は前記絶縁層上に設けられている請求項1から3のいずれか一項に記載の部品モジュール。 The heat radiating plate has an insulating layer and
The component module according to any one of claims 1 to 3, wherein the first metal layer is provided on the insulating layer. - 前記第1電子部品はディスクリート受動部品であり、前記第2電子部品はパワー半導体素子である請求項1から4のいずれか一項に記載の部品モジュール。 The component module according to any one of claims 1 to 4, wherein the first electronic component is a discrete passive component, and the second electronic component is a power semiconductor element.
- 前記放熱板は、DBCまたはDBAである請求項1から5のいずれか一項に記載の部品モジュール。 The component module according to any one of claims 1 to 5, wherein the heat radiating plate is a DBC or a DBA.
- 上面に第1金属層を有する放熱板上に接着剤を介し樹脂絶縁層を接着する工程と、
前記樹脂絶縁層および前記接着剤を貫通する貫通孔を介し前記第1金属層の一部に接続する第2金属層を前記樹脂絶縁層上に形成する工程と、
前記第2金属層上に第1電子部品を実装する工程と、
前記第1金属層の他の一部上に前記樹脂絶縁層を介さず第2電子部品を実装する工程と、
を含む部品モジュールの製造方法。
A process of adhering a resin insulating layer on a heat radiating plate having a first metal layer on the upper surface via an adhesive, and
A step of forming a second metal layer on the resin insulating layer, which is connected to a part of the first metal layer through the resin insulating layer and a through hole penetrating the adhesive.
The process of mounting the first electronic component on the second metal layer and
A step of mounting the second electronic component on the other part of the first metal layer without passing through the resin insulating layer, and
Manufacturing method of parts module including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005554 WO2021161449A1 (en) | 2020-02-13 | 2020-02-13 | Component module and production method for same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005554 WO2021161449A1 (en) | 2020-02-13 | 2020-02-13 | Component module and production method for same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161449A1 true WO2021161449A1 (en) | 2021-08-19 |
Family
ID=77291463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005554 WO2021161449A1 (en) | 2020-02-13 | 2020-02-13 | Component module and production method for same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021161449A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004006905A (en) * | 2003-06-02 | 2004-01-08 | Mitsubishi Electric Corp | Semiconductor power module |
JP2012227323A (en) * | 2011-04-19 | 2012-11-15 | Hitachi Cable Ltd | Flexible wiring board and module using the same |
-
2020
- 2020-02-13 WO PCT/JP2020/005554 patent/WO2021161449A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004006905A (en) * | 2003-06-02 | 2004-01-08 | Mitsubishi Electric Corp | Semiconductor power module |
JP2012227323A (en) * | 2011-04-19 | 2012-11-15 | Hitachi Cable Ltd | Flexible wiring board and module using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI613774B (en) | Power overlay structure and method of making same | |
US6373131B1 (en) | TBGA semiconductor package | |
US7816784B2 (en) | Power quad flat no-lead semiconductor die packages with isolated heat sink for high-voltage, high-power applications, systems using the same, and methods of making the same | |
KR100723454B1 (en) | Power module package with high thermal dissipation capability and method for manufacturing the same | |
TW201501248A (en) | Power overlay structure and method of making same | |
US20090243079A1 (en) | Semiconductor device package | |
US10312194B2 (en) | Stacked electronics package and method of manufacturing thereof | |
KR0182776B1 (en) | Power hybrid integrated circuit apparatus | |
US10700035B2 (en) | Stacked electronics package and method of manufacturing thereof | |
US10770444B2 (en) | Electronics package having a multi-thickness conductor layer and method of manufacturing thereof | |
US11903132B2 (en) | Power electronic assembly having a laminate inlay and method of producing the power electronic assembly | |
US20050224934A1 (en) | Circuit device | |
WO2021161449A1 (en) | Component module and production method for same | |
CN113826196A (en) | Double-side cooled electronic device | |
JP2020155640A (en) | Module and manufacturing method thereof | |
WO2021181468A1 (en) | Semiconductor module | |
US20230207420A1 (en) | Integrated circuit having an improved thermal integrated circuit having an improved thermal performance | |
WO2021161498A1 (en) | Component module | |
US20240341026A1 (en) | Silicon carbide thermal bridge integrated on a low thermal conductivity substrate and processes implementing the same | |
US20240222256A1 (en) | Electronic apparatus | |
WO2020202972A1 (en) | Module and method for manufacturing same | |
US11069643B2 (en) | Semiconductor device manufacturing method | |
WO2021181649A1 (en) | Semiconductor module and method for manufacturing same | |
WO2021117191A1 (en) | Component module and production method for same | |
WO2021192172A1 (en) | Power module and production method for same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20918226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |