WO2021153284A1 - Speaker system - Google Patents
Speaker system Download PDFInfo
- Publication number
- WO2021153284A1 WO2021153284A1 PCT/JP2021/001350 JP2021001350W WO2021153284A1 WO 2021153284 A1 WO2021153284 A1 WO 2021153284A1 JP 2021001350 W JP2021001350 W JP 2021001350W WO 2021153284 A1 WO2021153284 A1 WO 2021153284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voice coil
- bobbin
- speaker
- cap
- electric signal
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims description 14
- 239000003990 capacitor Substances 0.000 description 21
- 230000005291 magnetic effect Effects 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/22—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
- H04R1/24—Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/12—Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
- H04R3/14—Cross-over networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/12—Non-planar diaphragms or cones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/04—Construction, mounting, or centering of coil
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
Definitions
- the present invention relates to a speaker system, for example, a speaker system used for a tweeter.
- a double voice coil speaker equipped with two voice coils.
- a small-diameter voice coil produces sound in a relatively high frequency band
- a large-diameter voice coil produces sound in a relatively low frequency band, thereby producing sound in a wide frequency band.
- Patent Document 1 describes a speaker including a large-diameter voice coil unit mounted on the outer edge of the main vibrating portion and a small-diameter voice coil unit mounted on the inner edge of the main vibrating portion.
- the speaker system of the present embodiment includes an annular vibrating body, a first bobbin having a tubular shape and physically connected to the vibrating body, a first voice coil wound around the first bobbin, and the above-mentioned.
- a second bobbin having a tubular shape with an opening portion larger than that of the first bobbin and physically connected to the vibrating body, a second voice coil wound around the second bobbin, the first voice coil, and the above. It is electrically connected to the second voice coil, and the first voice coil and the second voice coil are provided with an output unit that outputs electric signals having different frequency characteristics.
- the speaker system that makes two voice coils bear a desired frequency band and makes the sound pressure uniform. Further, according to the present embodiment, it is possible to provide a speaker system in which the frequency bands of the two voice coils are aligned and the amplitude amounts are aligned at the same time.
- FIG. It is sectional drawing of the speaker which concerns on Embodiment 1.
- FIG. It is a top view of the speaker which concerns on Embodiment 1.
- FIG. It is a circuit diagram which shows an example of the electric circuit of the speaker system which concerns on Embodiment 1.
- FIG. It is a graph which shows an example of the frequency band of a speaker system. It is a graph which shows an example of a sound pressure and a frequency characteristic in a conventional double voice coil speaker. It is a graph which shows an example of a sound pressure and a frequency characteristic in the speaker system of Embodiment 1.
- FIG. It is sectional drawing of the modification of the speaker which concerns on Embodiment 1.
- FIG. It is sectional drawing of the modification of the speaker which concerns on Embodiment 1.
- FIG. It is sectional drawing of the modification of the speaker which concerns on Embodiment 1.
- FIG. It is sectional drawing of the modification of the speaker which concerns on Embodiment 1.
- FIG. It is sectional drawing of the modification of
- FIG. 5 is a cross-sectional view showing an example of a speaker in which the cap 108 is physically connected to the main diaphragm 121. It is sectional drawing which shows an example of the vibration transmission of the speaker of Embodiment 2. It is a schematic diagram for demonstrating the pressure fluctuation in the speaker which does not have a partition body. It is a schematic diagram for demonstrating the pressure fluctuation in the speaker system of Embodiment 2.
- FIG. 1 is a cross-sectional view of the speaker according to the first embodiment.
- the speaker 100 includes a vibrating body 101, a first bobbin 102, a first voice coil 103, a second bobbin 104, a second voice coil 105, a magnet 106, a plate 107, and a cap 108.
- a yoke 109, a frame 110, and a partition 111 are provided.
- FIG. 2 is a top view of the speaker according to the first embodiment.
- the vibrating body 101 includes a main diaphragm 121 and an outer support portion 122.
- the vibrating body 101 has an annular shape.
- the vibrating body 101 may have an arbitrary cross-sectional shape, but may have a curved shape protruding toward the front side of the speaker as shown in FIG. Further, the vibrating body 101 is preferably formed of synthetic resin, paper, cloth or the like.
- the first bobbin 102 has a tubular shape.
- the first bobbin 102 is physically connected to the vibrating body 101.
- the first voice coil 103 is a coil that is wound around the first bobbin 102 and vibrates the first bobbin 102.
- the second bobbin 104 has a tubular shape and has a larger opening than the first bobbin 102.
- the second bobbin 104 has a larger diameter than the first bobbin 102.
- the second bobbin 104 is connected to the vibrating body 101.
- the second voice coil 105 is a coil that is wound around the second bobbin 104 and vibrates the second bobbin 104.
- the vibrating body 101 vibrates due to the vibration of the first voice coil 103 and the second voice coil 105. Then, the vibration of the vibrating body 101 can vibrate the air and emit sound waves.
- the second voice coil 105 is located outside the first voice coil 103.
- the size of the second voice coil 105 is larger than that of the first voice coil 103.
- the size means any of the inner diameter, the outer diameter, the length in the circumferential direction, the area seen from the upper surface, and the volume.
- the second voice coil 105 and the first voice coil 103 may be any material as long as they can form an electromagnet. Therefore, the second voice coil 105 and the first voice coil 103 include one or more turns of the conductor.
- the position where the second bobbin 104 is physically connected to the main diaphragm 121 is outside the position where the first bobbin 102 is physically connected to the main diaphragm 121.
- the second bobbin 104 is physically connected to the outer edge of the main diaphragm 121
- the first bobbin 102 is physically connected to the inner edge of the main diaphragm 121.
- the outer edge of the main diaphragm 121 is a boundary portion between the main diaphragm 121 and the outer support portion 122.
- the inner edge of the main diaphragm 121 is the open end of the vibrating body 101.
- the magnet 106 is, for example, a permanent magnet.
- the plate 107 is an annular flat plate connected to the magnet 106.
- the plate 107 is made of a ferromagnetic material.
- the cap 108 is physically connected to the first bobbin 102 and covers the top of the first bobbin 102.
- the height of the top of the cap 108 (in the Z-axis direction) is lower than the height of the top of the main diaphragm 121 of the vibrating body 101.
- the magnetic circuit constitutes a first magnetic gap on the inner circumference and a second magnetic gap on the outer circumference, and the first voice coil 103 is in the first gap and the second voice coil 105 is in the second gap. Arranged to receive magnetic flux.
- the yoke 109 is connected to the magnet 106 and forms a magnetic circuit together with the magnet 106 and the plate 107.
- the magnetic circuit supplies magnetic energy to the two magnetic gaps in which the second voice coil 105 and the first voice coil 103 are arranged.
- the yoke 109 is made of a ferromagnetic material.
- the frame 110 is a member that fits with the outer circumference of the yoke 109 on the side surface and fixes the outer support portion 122 of the vibrating body 101 on the upper surface.
- the partition body 111 is a structure that partitions the space formed by the second bobbin 104, the first bobbin 102, the main diaphragm 121, and the yoke 109 and the space formed by the first bobbin 102, the cap 108, and the yoke 109. be.
- the partition body 111 is a structure that is connected to the first bobbin 102 and the yoke 109 and has flexibility that can be deformed in response to the vibration of the first bobbin 102.
- the partition 111 is an adhesive.
- FIG. 3 is a circuit diagram showing an example of an electric circuit of the speaker system according to the first embodiment.
- the speaker system 300 includes a speaker 100 and an output unit 301.
- the output unit 301 includes a capacitor C302, a capacitor C303, an input terminal 311 and an input terminal 312, an output terminal 321 and an output terminal 322, an output terminal 331, and an output terminal 332.
- the output unit 301 may be configured to include a filter F302 and a filter F303 (not shown) instead of the capacitor C302 and the capacitor C303. Further, the output unit 301 may be separate from the speaker 100.
- the input terminal 311 and the input terminal 312 are terminals for inputting an electric signal.
- the input terminal 311 and the input terminal 312 are connected to the output terminal of the audio device.
- the output terminal 321 and the output terminal 322 are terminals connected to the second voice coil 105. Further, the output terminal 331 and the output terminal 332 are terminals connected to the first voice coil 103. Therefore, the output unit 301 is connected to the speaker 100 by four signal lines.
- One end of the capacitor C302 is connected to the input terminal 311 and the other end is connected to the output terminal 321. Further, one end of the capacitor C303 is connected to the input terminal 311 and the other end is connected to the output terminal 331.
- the input terminal 312 is connected to the output terminal 322 and the output terminal 332.
- the electric signal input to the output unit 301 has a frequency characteristic determined by the capacitance of the capacitor C302 and the DC resistance value of the second voice coil 105, or a cutoff frequency corresponding to the frequency characteristic of the filter F302. After being attenuated, it is output to the second voice coil 105. Then, the electric signal input to the output unit 301 is attenuated at a frequency characteristic determined by the capacitance of the capacitor C303 and the DC resistance value of the first voice coil 103, or a cutoff frequency corresponding to the characteristic of the filter F302, and then. It is output to the first voice coil 103.
- the output unit 301 may output the voltage of the electric signal output to the second voice coil 105 and the voltage output to the first voice coil 103 as different voltages by the filter F302 and the filter F303, and may output the cutoff frequency and the voltage.
- the output voltages may both have different frequency characteristics and output voltages.
- the second voice coil 105, the first voice coil 103, and the woofer (not shown) share different frequency bands from each other.
- FIG. 4 is a graph showing an example of the frequency band of the speaker system.
- the horizontal axis represents the frequency.
- the vertical axis indicates the sound pressure level (SPL: Sound Pressure Level).
- the frequency characteristic 401 indicates the frequency band of the woofer. Further, the frequency characteristic 402 indicates the frequency band of the outer second voice coil. The frequency characteristic 403 indicates the frequency band of the inner first voice coil.
- the first voice coil 103 and the second voice coil 105 share different frequency bands from each other.
- the output unit 301 outputs electric signals having different frequency characteristics to the first voice coil 103 and the second voice coil 105.
- the capacitance of the capacitor C302 and the capacitance of the capacitor C303 are independent of each other and can be different, the electricity output from the output unit 301 to the first voice coil 103 and the second voice coil 105.
- the signals have different frequency characteristics.
- the capacity of the capacitor C302 is larger than the capacity of the capacitor C303.
- the DC resistance of the second voice coil 105 and the DC resistance of the first voice coil 103 are generally substantially the same. Therefore, the cutoff frequency of the filter composed of the capacitor C 302 and the second voice coil 105 is lower than the cutoff frequency of the filter composed of the capacitor C 303 and the first voice coil 103. That is, an electric signal attenuated at a lower cutoff frequency is input to the second voice coil 105 arranged on the outer side. An electric signal attenuated at a higher cutoff frequency is input to the first voice coil 103 arranged further inside.
- FIG. 5 is a graph showing an example of sound pressure and frequency characteristics in a conventional double voice coil speaker.
- the horizontal axis represents the frequency.
- the vertical axis indicates the sound pressure level.
- the frequency characteristic 501 of FIG. 5 shows the outer peripheral characteristic (frequency characteristic of sound pressure generated by the second voice coil 105) when an electric signal is input without passing through the filter F303.
- the frequency characteristic 502 shows an inner peripheral characteristic (frequency characteristic of sound pressure generated by the first voice coil 103) when an electric signal is input without passing through the filter F302.
- the frequency characteristic 511 indicates the outer peripheral characteristic when an electric signal that has passed through the filter F303 is input.
- the frequency characteristic 512 indicates an inner peripheral characteristic when an electric signal that has passed through the filter F302 is input.
- FIG. 6 is a graph showing an example of sound pressure and frequency characteristics in the speaker system of the first embodiment.
- the horizontal axis represents the frequency.
- the vertical axis indicates the sound pressure level.
- the frequency characteristic 601 of FIG. 6 shows the frequency characteristic of the sound pressure generated by the outer voice coil when an electric signal is input without passing through the filter F303.
- the frequency characteristic 602 shows the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal is input without passing through the filter F302.
- the frequency characteristic 611 shows the frequency characteristic of the sound pressure generated by the outer voice coil when the electric signal passing through the filter F303 is input.
- the frequency characteristic 612 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal passing through the filter F302 is input.
- the frequency characteristic 512 of the sound pressure generated by the inner voice coil is the frequency characteristic 511 of the sound pressure generated by the outer voice coil.
- the frequency characteristic 612 of the sound pressure generated by the inner voice coil and the frequency characteristic 611 of the sound pressure generated by the outer voice coil are used. , The frequency characteristic that there is no step in the sound pressure is formed.
- the conventional double voice coil speaker had a circuit configuration that outputs a common electric signal to the outer voice coil and the inner voice coil.
- the first voice coil 103 and the second voice coil 105 were both connected to the common capacitor C302. Therefore, in order to vibrate the outer voice coil at a lower frequency than the inner voice coil, it was necessary to make the DC resistance of the outer voice coil larger than the DC resistance of the inner voice coil.
- the DC resistance of the outer voice coil is made larger than the DC resistance of the inner voice coil, the efficiency of acoustic conversion is inversely proportional to the DC resistance of the voice coil when the magnetic energy supplied to each voice coil is the same.
- a driving force smaller than that of the inner bobbin is applied to the outer bobbin. Since the outer voice coil has a larger effective mass than the inner voice coil, the outer sound pressure is small and the inner sound pressure is large.
- the outer voice coil is made smaller than the DC resistance of the inner voice coil in the conventional double voice coil speaker, a common capacitor is used and the capacitance of the capacitor is the same, so the outer voice coil has a higher frequency. A low frequency electrical signal will be input to the inner voice coil. As a result, an electric signal having a frequency unsuitable for each speaker is input.
- the conventional double voice coil speaker has a circuit configuration that outputs an electric signal through a common capacitor to the outer voice coil and the inner voice coil. Therefore, as described above, the sound pressures are made uniform. And the input of an electric signal in a desired frequency band could not be achieved at the same time.
- the sound pressure is not limited by the frequency characteristics.
- the DC resistance of the outer voice coil and the inner voice coil can be set to align.
- the DC resistance of the outer voice coil can be set to be smaller than the DC resistance of the inner voice coil.
- Table 1 shows the magnitude relationship between the design values of the conventional double voice coil speaker described above and the design values of the outer voice coil (outer VC) and the inner voice coil (inner VC) in the speaker system of the first embodiment.
- FIG. 1 describes an example in which a cap 108 covering the top of the first bobbin 102 is provided, the cap 108 may not be provided.
- FIG. 7 is a cross-sectional view of a modified example of the speaker according to the first embodiment.
- the first bobbin 102 of the speaker 100 has nothing to cover the opening at the top.
- FIG. 1 an example in which the height of the cap 108 covering the top of the first bobbin 102 is lower than that of the main diaphragm 121 of the vibrating body 101 is described, but the cap 108 covering the top of the first bobbin 102 is described. The height may be higher than that of the main diaphragm 121 of the vibrating body 101.
- FIG. 8 is a cross-sectional view of a modified example of the speaker according to the first embodiment. In FIG. 8, the top of the cap 108 is higher than the top of the main diaphragm 121.
- FIG. 3 describes an example in which the output unit 301 is connected to the speaker 100 by four signal lines, the output unit 301 may be connected to the speaker 100 by three signal lines. good.
- FIG. 9 is a circuit diagram showing a modified example of the electric circuit of the speaker system according to the first embodiment.
- the input terminal 312 is connected from the output unit 301 by a wiring common to the speaker 100.
- the common wiring is branched in the speaker 100 and connected to the output terminal 322 and the output terminal 332.
- the DC resistance of the outer voice coil is set to be smaller than the DC resistance of the inner voice coil is described, but the DC resistance of the outer voice coil is set to the inner voice coil. It may be equal to the DC resistance of.
- FIG. 10 shows the frequency characteristics of the speaker system of the first embodiment when the DC resistance of the outer voice coil is equal to the DC resistance of the inner voice coil.
- FIG. 10 is a graph showing an example of sound pressure and frequency characteristics in a modified example of the speaker system of the first embodiment.
- the horizontal axis represents the frequency.
- the vertical axis indicates the sound pressure level.
- the frequency characteristic 1001 in FIG. 10 shows the frequency characteristic of the sound pressure generated by the outer voice coil when an electric signal is input without passing through the filter F303.
- the frequency characteristic 1002 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when an electric signal is input without passing through the filter F302.
- the frequency characteristic 1011 indicates the frequency characteristic of the sound pressure generated by the outer voice coil when the electric signal passing through the filter F303 is input.
- the frequency characteristic 1012 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal passing through the filter F302 is input.
- the frequency characteristic 512 of the sound pressure generated by the inner voice coil is the frequency characteristic 511 of the sound pressure generated by the outer voice coil.
- the frequency characteristic 1012 of the sound pressure generated by the inner voice coil and the frequency characteristic 1011 of the sound pressure generated by the outer voice coil are used.
- the sound pressure has a frequency characteristic with a small step.
- the cutoff frequency of the electric signal input to the first voice coil 103 is set to the second voice coil 105.
- the difference in sound pressure between the first voice coil 103 (inner voice coil) and the second voice coil 105 (outer voice coil) can be reduced.
- the cutoff frequency of the electric signal input to the second voice coil 105 is set to be higher than the cutoff frequency of the electric signal input to the first voice coil 103. Can be lowered.
- Table 2 shows the relationship between the design values of the conventional double voice coil speaker described above and the design values of the outer voice coil (outer VC) and the inner voice coil (inner VC) in the modified example of the first embodiment.
- the speaker system of the first embodiment in the double voice coil speaker in which two voice coils are connected to one vibrating body, two voice signals are input to the two voice coils to obtain two voice signals. It is possible to make the voice coil bear a desired frequency band and to make the total sound pressure of the speaker system uniform.
- the two voice coils bear different frequency bands
- the two voice coils may be made to bear the same frequency band.
- the inner edge and the outer edge of the annular vibrating body 101 can be vibrated equally, and the vibrating body 101 can be made to make a piston motion.
- the DC resistance value of each voice coil is set so as to correct the difference in the amount of amplitude due to the difference in the effective mass of the two voice coils, the stiffness of the support portion, and the magnetic energy supplied. Then, in order to align the phases in a wide frequency band with the DC resistance of the two voice coils set, the capacitance of each capacitor can be set so as to align the cutoff frequencies (by the filter) of the two voice coils.
- FIG. 11 is a cross-sectional view showing an example of the speaker according to the second embodiment.
- FIG. 11 shows half of the cross section of the double voice coil speaker. Therefore, in FIG. 11, the overall image of the cross-sectional view is line-symmetrical along the axis of symmetry indicated by the alternate long and short dash line. Further, the actual double voice coil speaker has a tubular three-dimensional shape centered on the axis of symmetry shown by the alternate long and short dash line in FIG.
- the first bobbin 102 around which the first voice coil 103 is wound is connected to the inner peripheral side of the ring-shaped main diaphragm 121. Further, a second bobbin 104 around which the second voice coil 105 is wound is connected to the outer peripheral side of the ring-shaped main diaphragm 121.
- the outer circumference of the ring-shaped main diaphragm 121 is fixed to the frame 110 by the outer support portion 122.
- a cap 108 is connected to one end of the tubular first bobbin 102, and a first voice coil 103 is connected to the other end of the first bobbin 102.
- a main diaphragm 121 is connected between the first voice coil 103 and one end of the first bobbin 102.
- the back of the outer peripheral side of the main diaphragm 121 is connected to one end of the tubular second bobbin 104, and the second voice coil 105 is connected to the other end of the second bobbin 104.
- the inner wall of the first bobbin 102 and the yoke 109 are connected by a flexible partition 111 (for example, a silicon adhesive), and the back space of the cap 108 becomes airtight.
- a flexible partition 111 for example, a silicon adhesive
- Electric signals are input to the first voice coil 103 and the second voice coil 105, respectively.
- the first voice coil 103 wound around the first bobbin 102 and the second voice coil 105 wound around the second bobbin 104 have different magnetic fluxes in terms of diameter, mass, and magnetic gap. Therefore, even if the same electric signal is input to the first voice coil 103 and the second voice coil 105, the Lorentz force generated is different between the first voice coil 103 and the second voice coil 105.
- FIG. 12 is a schematic cross-sectional view showing an example of vibration transmission of the double voice coil speaker.
- the cap 108 Since the diameter of the cap 108 is smaller than the outer circumference of the main diaphragm 121, the cap 108 tends to vibrate in a higher frequency range than the second voice coil 105 (the outer circumference of the main diaphragm 121). That is, the cap 108 reproduces a frequency band higher than that of the main diaphragm 121. Further, since the area of the cap 108 is smaller than that of the main diaphragm 121, the shape is such that high frequencies can be easily reproduced.
- the vibration caused by the second voice coil 105 becomes unnecessary vibration, and the vibration of the cap 108 becomes noise.
- the two types of noise will be described below as the first noise source and the second noise source, respectively.
- the first noise source is the vibration of the second voice coil 105 in the same band. Specifically, the first noise source is in a band in which the inner peripheral characteristics and the outer peripheral characteristics of the main diaphragm 121 overlap.
- the vibration based on the first voice coil 103 of the cap 108 is mixed with the sound (disturbance) of the same band of the second voice coil 105, and the original vibration of the cap 108 cannot be performed.
- the second noise source is the vibration of the second voice coil 105 in a band lower than the cap 108 reproduction band.
- the second noise source is vibration having a frequency lower than the vibration band of the cap 108 of the second voice coil 105. Since the vibration has a large amplitude in the frequency band lower than the cap 108 reproduction band, the vibration in the cap 108 reproduction band is modulated by the Doppler effect, and the original vibration cannot be performed. This becomes noticeable when inputting all bands, for example, when playing music.
- the outer circumference of the cap 108 is the first bobbin 102 around which the first voice coil 103 is wound. It is desirable that it is connected to one end (the end of the tubular portion) and is joined so as to pass only through the first bobbin 102.
- a material that causes distortion at least equal to or less than that of the bobbin in the vibration axis direction of the first bobbin 102 may be further interposed.
- FIG. 13 is a cross-sectional view showing an example of a speaker in which the cap 108 is connected to the main diaphragm 121.
- the vibration on the outer peripheral side of the main diaphragm 121 driven by the second voice coil 105 is also transmitted to the inner circumference of the diaphragm, and the vibration on the inner peripheral side of the main diaphragm 121 driven by the first voice coil 103. Interfere with.
- the cap 108 Since the cap 108 is connected to one end (the tip of the tubular portion) of the first bobbin 102, the influence of vibration caused by the second voice coil 105, which is unnecessary vibration for the first bobbin 102, can be reduced.
- FIG. 14 is a cross-sectional view showing an example of vibration transmission of the speaker of the second embodiment.
- the flexible partition 111 (silicon adhesive, etc.) is airtight, the space behind the main diaphragm 121 and the space behind the cap 108 are blocked from communicating with each other. As a result, even if pressure fluctuation occurs in the space behind the ring-shaped main diaphragm 121 due to the vibration of the ring-shaped main diaphragm 121, it is not transmitted to the space behind the cap 108, and the vibration of the main diaphragm 121 The cap 108 can be vibrated without being affected by.
- FIG. 15 is a schematic diagram for explaining pressure fluctuation in a speaker without a partition.
- the pressure fluctuation of the space 1502 (second space) behind the main diaphragm 121 is transmitted to the cap 108 back space 1501 (first space), and the influence of the vibration of the main diaphragm 121 by the second voice coil 105 is capped.
- 108 receives and oscillates. Since the area of the main diaphragm 121 is larger than the area of the cap 108, the cap 108 is subjected to a pressure having an amplitude larger than the amplitude of the main diaphragm 121 due to Pascal's principle, which has a great influence.
- FIG. 16 is a schematic diagram for explaining the pressure fluctuation in the speaker system of the second embodiment. Since the pressure fluctuation of the space 1602 (second space) behind the main diaphragm 121 is not transmitted to the cap 108 back space 1601 (first space), the vibration of the cap 108 is not affected by the vibration of the main diaphragm 121.
- the first space formed by the cap and the yoke and the second space formed by the main diaphragm 121 and the yoke are provided with a partition body. Since the pressure fluctuation in the two spaces is not transmitted to the first space, the vibration of the cap is not affected by the vibration of the main diaphragm 121.
- the present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.
- the annular shape is not limited to an annulus, but also includes an angular ring composed of polygons.
- the cylindrical shape is not limited to a cylinder, and may be a square cylinder having a polygonal opening shape.
- the voice coil is wound around the bobbin in the above embodiment, the voice coil may be directly connected to the vibrating body without passing through the bobbin.
- the cap is connected to the first voice coil and covers the top of the first voice coil.
- the present invention can be suitably used in the technical field of speakers.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
A speaker system (100) is provided with: an annular oscillator (101); a first bobbin (102) which has a cylindrical shape and which is physically connected to the oscillator (101); a first voice coil (103) which is wound around the first bobbin (102); a second bobbin (104) which has a cylindrical shape having a larger opening than the first bobbin (102) and which is physically connected to the oscillator (101); a second voice coil (105) which is wound around the second bobbin (104); and an output unit which is electrically connected to the first voice coil (103) and to the second voice coil (105) and which outputs to the first voice coil (103) and to the second voice coil (105) electric signals having different frequency characteristics from each other.
Description
本発明はスピーカシステムに関し,例えば,ツイーターに用いられるスピーカシステムに関する。
The present invention relates to a speaker system, for example, a speaker system used for a tweeter.
広い周波数帯域の音を出すことが可能なスピーカとして,2つのボイスコイルを備えた,ダブルボイスコイルスピーカがある。ダブルボイスコイルスピーカは,小径のボイスコイルが比較的高い周波数帯の音,大径のボイスコイルが比較的低い周波数帯の音を発生させることにより,広い周波数帯域の音を出す。
As a speaker capable of producing sound in a wide frequency band, there is a double voice coil speaker equipped with two voice coils. In a double voice coil speaker, a small-diameter voice coil produces sound in a relatively high frequency band, and a large-diameter voice coil produces sound in a relatively low frequency band, thereby producing sound in a wide frequency band.
特許文献1には,主振動部の外縁に装着された大径ボイスコイルユニットと,主振動部の内縁に装着された小径ボイスコイルユニットとを備えたスピーカが記載されている。
Patent Document 1 describes a speaker including a large-diameter voice coil unit mounted on the outer edge of the main vibrating portion and a small-diameter voice coil unit mounted on the inner edge of the main vibrating portion.
しかしながら,従来のダブルボイスコイルスピーカでは,2つのボイスコイルに所望の周波数帯域を担わせることと,音圧を揃えることを両立させることができないという問題があった。また,従来のダブルボイスコイルスピーカでは,ピストンモーションさせたい場合,2つのボイスコイルの周波数帯域を揃えることと,振幅量を揃えることとを両立させることができないという問題もあった。
However, in the conventional double voice coil speaker, there is a problem that it is not possible to make the two voice coils bear the desired frequency band and to make the sound pressure uniform. Further, in the conventional double voice coil speaker, when piston motion is desired, there is a problem that it is not possible to make the frequency bands of the two voice coils uniform and the amplitude amount to be the same.
本実施形態のスピーカシステムは,環状の振動体と,筒形状を有し,前記振動体に物理的に接続する第1ボビンと,前記第1ボビンに巻回された第1ボイスコイルと,前記第1ボビンより開口部分が大きい筒形状を有し,前記振動体に物理的に接続する第2ボビンと,前記第2ボビンに巻回された第2ボイスコイルと,前記第1ボイスコイル及び前記第2ボイスコイルに電気的に接続し,前記第1ボイスコイル及び前記第2ボイスコイルに,周波数特性が互いに異なる電気信号を出力する出力部と,を備えるようにした。
The speaker system of the present embodiment includes an annular vibrating body, a first bobbin having a tubular shape and physically connected to the vibrating body, a first voice coil wound around the first bobbin, and the above-mentioned. A second bobbin having a tubular shape with an opening portion larger than that of the first bobbin and physically connected to the vibrating body, a second voice coil wound around the second bobbin, the first voice coil, and the above. It is electrically connected to the second voice coil, and the first voice coil and the second voice coil are provided with an output unit that outputs electric signals having different frequency characteristics.
本実施形態によれば,2つのボイスコイルに所望の周波数帯域を担わせることと,音圧を揃えることを両立させるスピーカシステムを提供することができる。また,本実施形態によれば,2つのボイスコイルの周波数帯域を揃えることと,振幅量を揃えることとを両立させるスピーカシステムを提供することができる。
According to this embodiment, it is possible to provide a speaker system that makes two voice coils bear a desired frequency band and makes the sound pressure uniform. Further, according to the present embodiment, it is possible to provide a speaker system in which the frequency bands of the two voice coils are aligned and the amplitude amounts are aligned at the same time.
説明の明確化のため,以下の記載及び図面は,適宜,省略,及び簡略化がなされている。また,各図面において,同一の要素には同一の符号が付されており,必要に応じて重複説明は省略されている。
For clarification of explanation, the following description and drawings have been omitted or simplified as appropriate. Further, in each drawing, the same elements are given the same reference numerals, and duplicate explanations are omitted as necessary.
実施の形態1
以下,図面を参照して本発明の実施の形態について説明する。図1は,実施の形態1にかかるスピーカの断面図である。図1においてスピーカ100は,振動体101と,第1ボビン102と,第1ボイスコイル103と,第2ボビン104と,第2ボイスコイル105と,磁石106と,プレート107と,キャップ108と,ヨーク109と,フレーム110と,仕切体111と,を備える。また,図2は,実施の形態1にかかるスピーカの上面図である。Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the speaker according to the first embodiment. In FIG. 1, thespeaker 100 includes a vibrating body 101, a first bobbin 102, a first voice coil 103, a second bobbin 104, a second voice coil 105, a magnet 106, a plate 107, and a cap 108. A yoke 109, a frame 110, and a partition 111 are provided. Further, FIG. 2 is a top view of the speaker according to the first embodiment.
以下,図面を参照して本発明の実施の形態について説明する。図1は,実施の形態1にかかるスピーカの断面図である。図1においてスピーカ100は,振動体101と,第1ボビン102と,第1ボイスコイル103と,第2ボビン104と,第2ボイスコイル105と,磁石106と,プレート107と,キャップ108と,ヨーク109と,フレーム110と,仕切体111と,を備える。また,図2は,実施の形態1にかかるスピーカの上面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the speaker according to the first embodiment. In FIG. 1, the
振動体101は,主振動板121と,外側支持部122とを備える。振動体101は,環状の形状を有する。振動体101は,断面形状は任意の形状を取り得るが,図1に示すように当該スピーカの前方側に突出する湾曲形状を有してもよい。また,振動体101は合成樹脂,紙あるいは布等で形成されることが好適である。
The vibrating body 101 includes a main diaphragm 121 and an outer support portion 122. The vibrating body 101 has an annular shape. The vibrating body 101 may have an arbitrary cross-sectional shape, but may have a curved shape protruding toward the front side of the speaker as shown in FIG. Further, the vibrating body 101 is preferably formed of synthetic resin, paper, cloth or the like.
第1ボビン102は,筒形状を有する。そして第1ボビン102は振動体101に物理的に接続している。
The first bobbin 102 has a tubular shape. The first bobbin 102 is physically connected to the vibrating body 101.
第1ボイスコイル103は,第1ボビン102に巻回され,第1ボビン102を振動させるコイルである。
The first voice coil 103 is a coil that is wound around the first bobbin 102 and vibrates the first bobbin 102.
第2ボビン104は,筒形状を有し、第1ボビン102よりも開口部が大きい。例えば第1ボビン102および第2ボビン104が円筒状である場合、第2ボビン104は第1ボビン102よりも直径が大きい。そして第2ボビン104は振動体101に接続している。
The second bobbin 104 has a tubular shape and has a larger opening than the first bobbin 102. For example, when the first bobbin 102 and the second bobbin 104 are cylindrical, the second bobbin 104 has a larger diameter than the first bobbin 102. The second bobbin 104 is connected to the vibrating body 101.
第2ボイスコイル105は,第2ボビン104に巻回され,第2ボビン104を振動させるコイルである。
The second voice coil 105 is a coil that is wound around the second bobbin 104 and vibrates the second bobbin 104.
第1ボイスコイル103及び第2ボイスコイル105の振動により振動体101が振動する。そしてこの振動体101の振動により,空気を振動させ,音波を放つことができる。
The vibrating body 101 vibrates due to the vibration of the first voice coil 103 and the second voice coil 105. Then, the vibration of the vibrating body 101 can vibrate the air and emit sound waves.
第2ボイスコイル105は,第1ボイスコイル103の外側に位置する。また,第2ボイスコイル105は,第1ボイスコイル103よりサイズが大きい。ここでサイズとは,内径,外径,周方向の長さ,上面から見た面積,体積のいずれかを意味する。
The second voice coil 105 is located outside the first voice coil 103. The size of the second voice coil 105 is larger than that of the first voice coil 103. Here, the size means any of the inner diameter, the outer diameter, the length in the circumferential direction, the area seen from the upper surface, and the volume.
また,第2ボイスコイル105及び第1ボイスコイル103は電磁石を構成可能な材質であればいずれであってもよい。したがって,第2ボイスコイル105及び第1ボイスコイル103は1巻き以上の導電体を含む。
Further, the second voice coil 105 and the first voice coil 103 may be any material as long as they can form an electromagnet. Therefore, the second voice coil 105 and the first voice coil 103 include one or more turns of the conductor.
第2ボビン104が主振動板121に物理的に接続される位置は,第1ボビン102が主振動板121に物理的に接続される位置より外側である。例えば,第2ボビン104が主振動板121の外縁に物理的に接続し,第1ボビン102が主振動板121の内縁に物理的に接続する。ここで主振動板121の外縁は,主振動板121と外側支持部122との境界部分である。また主振動板121の内縁は振動体101の開口端である。
The position where the second bobbin 104 is physically connected to the main diaphragm 121 is outside the position where the first bobbin 102 is physically connected to the main diaphragm 121. For example, the second bobbin 104 is physically connected to the outer edge of the main diaphragm 121, and the first bobbin 102 is physically connected to the inner edge of the main diaphragm 121. Here, the outer edge of the main diaphragm 121 is a boundary portion between the main diaphragm 121 and the outer support portion 122. The inner edge of the main diaphragm 121 is the open end of the vibrating body 101.
磁石106は,例えば永久磁石である。
The magnet 106 is, for example, a permanent magnet.
プレート107は,磁石106に接続される環状の平板である。例えば,プレート107は,強磁性体材料で形成される。
The plate 107 is an annular flat plate connected to the magnet 106. For example, the plate 107 is made of a ferromagnetic material.
キャップ108は,第1ボビン102に物理的に接続され、第1ボビン102の頂部を覆う。図1の例では,キャップ108の頂部の高さ(Z軸方向)は,振動体101の主振動板121の頂部よりも低い。
The cap 108 is physically connected to the first bobbin 102 and covers the top of the first bobbin 102. In the example of FIG. 1, the height of the top of the cap 108 (in the Z-axis direction) is lower than the height of the top of the main diaphragm 121 of the vibrating body 101.
磁気回路は内周に第1の磁気ギャップと外周に第2の磁気ギャップを構成し,第1のギャップには第1ボイスコイル103が,第2のギャップには第2ボイスコイル105が,それぞれ磁束を受けるように配置される。
The magnetic circuit constitutes a first magnetic gap on the inner circumference and a second magnetic gap on the outer circumference, and the first voice coil 103 is in the first gap and the second voice coil 105 is in the second gap. Arranged to receive magnetic flux.
ヨーク109は,磁石106に接続され、磁石106、プレート107とともに磁気回路を形成する。磁気回路は、第2ボイスコイル105,第1ボイスコイル103が配置される2つの磁気ギャップに磁気エネルギーを供給する。例えば,ヨーク109は,強磁性体材料で形成される。
The yoke 109 is connected to the magnet 106 and forms a magnetic circuit together with the magnet 106 and the plate 107. The magnetic circuit supplies magnetic energy to the two magnetic gaps in which the second voice coil 105 and the first voice coil 103 are arranged. For example, the yoke 109 is made of a ferromagnetic material.
フレーム110は,側面でヨーク109の外周と嵌合し,上面で振動体101の外側支持部122を固定する部材である。
The frame 110 is a member that fits with the outer circumference of the yoke 109 on the side surface and fixes the outer support portion 122 of the vibrating body 101 on the upper surface.
仕切体111は,第2ボビン104,第1ボビン102,主振動板121及びヨーク109で形成された空間と,第1ボビン102,キャップ108及びヨーク109で形成された空間とを仕切る構造体である。仕切体111は,第1ボビン102及びヨーク109に接続し,且つ第1ボビン102の振動に応じて変形可能な可撓性を有する構造体である。例えば,仕切体111は接着剤である。
The partition body 111 is a structure that partitions the space formed by the second bobbin 104, the first bobbin 102, the main diaphragm 121, and the yoke 109 and the space formed by the first bobbin 102, the cap 108, and the yoke 109. be. The partition body 111 is a structure that is connected to the first bobbin 102 and the yoke 109 and has flexibility that can be deformed in response to the vibration of the first bobbin 102. For example, the partition 111 is an adhesive.
次に電気回路部分について説明する。図3は,実施の形態1にかかるスピーカシステムの電気回路の一例を示す回路図である。図3において,スピーカシステム300は,スピーカ100と,出力部301とを備える。
Next, the electric circuit part will be explained. FIG. 3 is a circuit diagram showing an example of an electric circuit of the speaker system according to the first embodiment. In FIG. 3, the speaker system 300 includes a speaker 100 and an output unit 301.
出力部301は,コンデンサC302と,コンデンサC303と,入力端子311と,入力端子312と,出力端子321と,出力端子322と,出力端子331と,出力端子332とを備える。出力部301は,コンデンサC302およびコンデンサC303の代わりに、図示しないフィルタF302およびフィルタF303を備える構成であってもよい。また,出力部301は,スピーカ100と別体であってもよい。
The output unit 301 includes a capacitor C302, a capacitor C303, an input terminal 311 and an input terminal 312, an output terminal 321 and an output terminal 322, an output terminal 331, and an output terminal 332. The output unit 301 may be configured to include a filter F302 and a filter F303 (not shown) instead of the capacitor C302 and the capacitor C303. Further, the output unit 301 may be separate from the speaker 100.
入力端子311及び入力端子312は,電気信号を入力する端子である。例えば,入力端子311及び入力端子312は,オーディオ機器の出力端子と接続される。
The input terminal 311 and the input terminal 312 are terminals for inputting an electric signal. For example, the input terminal 311 and the input terminal 312 are connected to the output terminal of the audio device.
出力端子321及び出力端子322は,第2ボイスコイル105と接続する端子である。また,出力端子331及び出力端子332は,第1ボイスコイル103と接続する端子である。したがって,出力部301は,スピーカ100と4本の信号線で接続されている。
The output terminal 321 and the output terminal 322 are terminals connected to the second voice coil 105. Further, the output terminal 331 and the output terminal 332 are terminals connected to the first voice coil 103. Therefore, the output unit 301 is connected to the speaker 100 by four signal lines.
コンデンサC302は,一端が入力端子311に接続され,他端が出力端子321に接続されている。また,コンデンサC303は,一端が入力端子311に接続され,他端が出力端子331に接続されている。
入力端子312は,出力端子322及び出力端子332に接続されている。 One end of the capacitor C302 is connected to theinput terminal 311 and the other end is connected to the output terminal 321. Further, one end of the capacitor C303 is connected to the input terminal 311 and the other end is connected to the output terminal 331.
Theinput terminal 312 is connected to the output terminal 322 and the output terminal 332.
入力端子312は,出力端子322及び出力端子332に接続されている。 One end of the capacitor C302 is connected to the
The
以上の構成により,出力部301に入力された電気信号は,コンデンサC302の容量と第2ボイスコイル105が有する直流抵抗値によって定まる周波数特性、または、フィルタF302の周波数特性に対応するカットオフ周波数で減衰された後,第2ボイスコイル105に出力される。そして,出力部301に入力された電気信号は,コンデンサC303の容量と第1ボイスコイル103が有する直流抵抗値によって定まる周波数特性、またはフィルタF302の特性に対応するカットオフ周波数で減衰された後,第1ボイスコイル103に出力される。出力部301は、フィルタF302およびフィルタF303により、第2ボイスコイル105に出力する電気信号の電圧と第1ボイスコイル103に出力する電圧とを相異なる電圧として出力してもよく、カットオフ周波数および出力電圧を共に相異なる周波数特性および出力電圧としてもよい。
With the above configuration, the electric signal input to the output unit 301 has a frequency characteristic determined by the capacitance of the capacitor C302 and the DC resistance value of the second voice coil 105, or a cutoff frequency corresponding to the frequency characteristic of the filter F302. After being attenuated, it is output to the second voice coil 105. Then, the electric signal input to the output unit 301 is attenuated at a frequency characteristic determined by the capacitance of the capacitor C303 and the DC resistance value of the first voice coil 103, or a cutoff frequency corresponding to the characteristic of the filter F302, and then. It is output to the first voice coil 103. The output unit 301 may output the voltage of the electric signal output to the second voice coil 105 and the voltage output to the first voice coil 103 as different voltages by the filter F302 and the filter F303, and may output the cutoff frequency and the voltage. The output voltages may both have different frequency characteristics and output voltages.
そして,これらの第2ボイスコイル105,第1ボイスコイル103及び(図示しない)ウーファーは,互いに異なる周波数帯域を分担する。
The second voice coil 105, the first voice coil 103, and the woofer (not shown) share different frequency bands from each other.
図4は,スピーカシステムの周波数帯域の一例を示すグラフである。図4において,横軸は周波数を示す。また縦軸は音圧レベル(SPL: Sound Pressure Level)を示す。
FIG. 4 is a graph showing an example of the frequency band of the speaker system. In FIG. 4, the horizontal axis represents the frequency. The vertical axis indicates the sound pressure level (SPL: Sound Pressure Level).
図4において,周波数特性401は,ウーファーの周波数帯域を示す。また,周波数特性402は,外側の第2ボイスコイルの周波数帯域を示す。そして,周波数特性403は,内側の第1ボイスコイルの周波数帯域を示す。
In FIG. 4, the frequency characteristic 401 indicates the frequency band of the woofer. Further, the frequency characteristic 402 indicates the frequency band of the outer second voice coil. The frequency characteristic 403 indicates the frequency band of the inner first voice coil.
図4に示すように,第1ボイスコイル103及び第2ボイスコイル105は,互いに異なる周波数帯域を分担する。実施の形態1のスピーカシステムでは,出力部301は,第1ボイスコイル103及び第2ボイスコイル105に,周波数特性が互いに異なる電気信号を出力する。
As shown in FIG. 4, the first voice coil 103 and the second voice coil 105 share different frequency bands from each other. In the speaker system of the first embodiment, the output unit 301 outputs electric signals having different frequency characteristics to the first voice coil 103 and the second voice coil 105.
具体的には,コンデンサC302の容量とコンデンサC303の容量は互いに独立しており,異なる容量とすることができるので,出力部301から第1ボイスコイル103及び第2ボイスコイル105に出力される電気信号は,周波数特性が互いに異なる。
Specifically, since the capacitance of the capacitor C302 and the capacitance of the capacitor C303 are independent of each other and can be different, the electricity output from the output unit 301 to the first voice coil 103 and the second voice coil 105. The signals have different frequency characteristics.
例えば,コンデンサC302の容量はコンデンサC303の容量より大きい。また、第2ボイスコイル105の直流抵抗と第1ボイスコイル103の直流抵抗は一般的に概ね同等である。したがって,コンデンサC302と第2ボイスコイル105により構成されるフィルタのカットオフ周波数は,コンデンサC303と第1ボイスコイル103により構成されるフィルタのカットオフ周波数より低い。すなわち,より外側に配置される第2ボイスコイル105には,より低いカットオフ周波数で減衰された電気信号が入力される。より内側に配置される第1ボイスコイル103には,より高いカットオフ周波数で減衰された電気信号が入力される。
For example, the capacity of the capacitor C302 is larger than the capacity of the capacitor C303. Further, the DC resistance of the second voice coil 105 and the DC resistance of the first voice coil 103 are generally substantially the same. Therefore, the cutoff frequency of the filter composed of the capacitor C 302 and the second voice coil 105 is lower than the cutoff frequency of the filter composed of the capacitor C 303 and the first voice coil 103. That is, an electric signal attenuated at a lower cutoff frequency is input to the second voice coil 105 arranged on the outer side. An electric signal attenuated at a higher cutoff frequency is input to the first voice coil 103 arranged further inside.
このように,内側の第1ボイスコイル103と外側の第2ボイスコイル105に,周波数特性が互いに異なる電気信号を出力される効果について,従来のダブルボイスコイルスピーカと比較して説明する。
As described above, the effect of outputting electric signals having different frequency characteristics to the inner first voice coil 103 and the outer second voice coil 105 will be described in comparison with the conventional double voice coil speaker.
図5は,従来のダブルボイスコイルスピーカにおける,音圧と周波数特性の一例を示すグラフである。図5において,横軸は周波数を示す。また縦軸は音圧レベルを示す。
図5の周波数特性501は,フィルタF303を通過させずに電気信号が入力された場合の外周特性(第2ボイスコイル105に起因して発生する音圧の周波数特性)を示す。周波数特性502は,フィルタF302を通過させずに電気信号が入力された場合の内周特性(第1ボイスコイル103に起因して発生する音圧の周波数特性)を示す。周波数特性511は,フィルタF303を通過した電気信号が入力された場合の外周特性を示す。周波数特性512は,フィルタF302を通過した電気信号が入力された場合の内周特性を示す。 FIG. 5 is a graph showing an example of sound pressure and frequency characteristics in a conventional double voice coil speaker. In FIG. 5, the horizontal axis represents the frequency. The vertical axis indicates the sound pressure level.
Thefrequency characteristic 501 of FIG. 5 shows the outer peripheral characteristic (frequency characteristic of sound pressure generated by the second voice coil 105) when an electric signal is input without passing through the filter F303. The frequency characteristic 502 shows an inner peripheral characteristic (frequency characteristic of sound pressure generated by the first voice coil 103) when an electric signal is input without passing through the filter F302. The frequency characteristic 511 indicates the outer peripheral characteristic when an electric signal that has passed through the filter F303 is input. The frequency characteristic 512 indicates an inner peripheral characteristic when an electric signal that has passed through the filter F302 is input.
図5の周波数特性501は,フィルタF303を通過させずに電気信号が入力された場合の外周特性(第2ボイスコイル105に起因して発生する音圧の周波数特性)を示す。周波数特性502は,フィルタF302を通過させずに電気信号が入力された場合の内周特性(第1ボイスコイル103に起因して発生する音圧の周波数特性)を示す。周波数特性511は,フィルタF303を通過した電気信号が入力された場合の外周特性を示す。周波数特性512は,フィルタF302を通過した電気信号が入力された場合の内周特性を示す。 FIG. 5 is a graph showing an example of sound pressure and frequency characteristics in a conventional double voice coil speaker. In FIG. 5, the horizontal axis represents the frequency. The vertical axis indicates the sound pressure level.
The
図6は,実施の形態1のスピーカシステムにおける,音圧と周波数特性の一例を示すグラフである。図6において,横軸は周波数を示す。また縦軸は音圧レベルを示す。
FIG. 6 is a graph showing an example of sound pressure and frequency characteristics in the speaker system of the first embodiment. In FIG. 6, the horizontal axis represents the frequency. The vertical axis indicates the sound pressure level.
図6の周波数特性601は,フィルタF303を通過させずに電気信号が入力された場合の外側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性602は,フィルタF302を通過させずに電気信号が入力された場合の内側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性611は,フィルタF303を通過した電気信号が入力された場合の外側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性612は,フィルタF302を通過した電気信号が入力された場合の内側のボイスコイルに起因して発生する音圧の周波数特性を示す。
The frequency characteristic 601 of FIG. 6 shows the frequency characteristic of the sound pressure generated by the outer voice coil when an electric signal is input without passing through the filter F303. The frequency characteristic 602 shows the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal is input without passing through the filter F302. The frequency characteristic 611 shows the frequency characteristic of the sound pressure generated by the outer voice coil when the electric signal passing through the filter F303 is input. The frequency characteristic 612 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal passing through the filter F302 is input.
図5と図6を比較すると,従来のダブルボイスコイルスピーカでは,内側のボイスコイルに起因して発生する音圧の周波数特性512が外側のボイスコイルに起因して発生する音圧の周波数特性511より音圧が高くなっているが,実施の形態1では,内側のボイスコイルに起因して発生する音圧の周波数特性612と外側のボイスコイルに起因して発生する音圧の周波数特性611で,音圧に段差がない周波数特性が形成されている。
Comparing FIGS. 5 and 6, in the conventional double voice coil speaker, the frequency characteristic 512 of the sound pressure generated by the inner voice coil is the frequency characteristic 511 of the sound pressure generated by the outer voice coil. Although the sound pressure is higher, in the first embodiment, the frequency characteristic 612 of the sound pressure generated by the inner voice coil and the frequency characteristic 611 of the sound pressure generated by the outer voice coil are used. , The frequency characteristic that there is no step in the sound pressure is formed.
具体的に説明すると,従来のダブルボイスコイルスピーカでは共通する電気信号を外側のボイスコイルと内側のボイスコイルに出力する回路構成であった。言い換えると、共通するコンデンサC302に第1ボイスコイル103と第2ボイスコイル105が共に接続されていた。したがって,外側のボイスコイルを内側のボイスコイルより低い周波数で振動させるには,外側のボイスコイルの直流抵抗を内側のボイスコイル側の直流抵抗より大きくする必要があった。しかしながら,外側のボイスコイルの直流抵抗を内側のボイスコイルの直流抵抗より大きくすると,各ボイスコイルに供給される磁気エネルギーが同じ場合には、音響変換の能率はボイスコイルの直流抵抗に反比例するので、外側のボビンには内側のボビンより小さい駆動力が加えられる。そして,外側のボイスコイルは内側のボイスコイルより有効質量が大きいので,外側の音圧が小さく,内側の音圧が大きいことになってしまう。
Specifically, the conventional double voice coil speaker had a circuit configuration that outputs a common electric signal to the outer voice coil and the inner voice coil. In other words, the first voice coil 103 and the second voice coil 105 were both connected to the common capacitor C302. Therefore, in order to vibrate the outer voice coil at a lower frequency than the inner voice coil, it was necessary to make the DC resistance of the outer voice coil larger than the DC resistance of the inner voice coil. However, if the DC resistance of the outer voice coil is made larger than the DC resistance of the inner voice coil, the efficiency of acoustic conversion is inversely proportional to the DC resistance of the voice coil when the magnetic energy supplied to each voice coil is the same. , A driving force smaller than that of the inner bobbin is applied to the outer bobbin. Since the outer voice coil has a larger effective mass than the inner voice coil, the outer sound pressure is small and the inner sound pressure is large.
仮に従来のダブルボイスコイルスピーカで外側のボイスコイルの直流抵抗を内側のボイスコイル側の直流抵抗より小さくすると,共通するコンデンサを用い,コンデンサの容量が同じことから,外側のボイスコイルに高い周波数,内側のボイスコイルに低い周波数の電気信号が入力されることになる。この結果,各スピーカに向いていない周波数の電気信号が入力されることになってしまう。
If the DC resistance of the outer voice coil is made smaller than the DC resistance of the inner voice coil in the conventional double voice coil speaker, a common capacitor is used and the capacitance of the capacitor is the same, so the outer voice coil has a higher frequency. A low frequency electrical signal will be input to the inner voice coil. As a result, an electric signal having a frequency unsuitable for each speaker is input.
このように,従来のダブルボイスコイルスピーカは,共通するコンデンサを介した電気信号を外側のボイスコイルと内側のボイスコイルに出力する回路構成であったので,上述したように,音圧を揃えることと所望の周波数帯域の電気信号を入力させることを両立させることができなかった。
In this way, the conventional double voice coil speaker has a circuit configuration that outputs an electric signal through a common capacitor to the outer voice coil and the inner voice coil. Therefore, as described above, the sound pressures are made uniform. And the input of an electric signal in a desired frequency band could not be achieved at the same time.
一方,実施の形態1のスピーカシステムでは,ダブルボイスコイルスピーカの外側のボイスコイルと内側のボイスコイルに入力される電気信号の周波数特性が異なるので,周波数特性の制約を受けずに,音圧を揃えるために外側のボイスコイルと内側のボイスコイルの直流抵抗を設定できる。具体的には,実施の形態1のスピーカシステムでは,外側のボイスコイルの直流抵抗を内側のボイスコイルの直流抵抗より小さく設定できる。この結果,実施の形態1のスピーカシステムでは,音圧を揃えることと所望の周波数帯域の信号を入力させることを両立させることができる。
On the other hand, in the speaker system of the first embodiment, since the frequency characteristics of the electric signals input to the outer voice coil and the inner voice coil of the double voice coil speaker are different, the sound pressure is not limited by the frequency characteristics. The DC resistance of the outer voice coil and the inner voice coil can be set to align. Specifically, in the speaker system of the first embodiment, the DC resistance of the outer voice coil can be set to be smaller than the DC resistance of the inner voice coil. As a result, in the speaker system of the first embodiment, it is possible to make the sound pressure uniform and to input a signal in a desired frequency band at the same time.
上述した従来のダブルボイスコイルスピーカと,実施の形態1のスピーカシステムにおける外側のボイスコイル(外側VC)と内側のボイスコイル(内側VC)の設計値の大小関係を表1に示す。
Table 1 shows the magnitude relationship between the design values of the conventional double voice coil speaker described above and the design values of the outer voice coil (outer VC) and the inner voice coil (inner VC) in the speaker system of the first embodiment.
なお,図1では,第1ボビン102の頂部を覆うキャップ108を備える例について説明しているが,キャップ108を備えなくても良い。図7は,実施の形態1にかかるスピーカの変形例の断面図である。図7において,スピーカ100の第1ボビン102は,頂部の開口を覆うものがない。
Although FIG. 1 describes an example in which a cap 108 covering the top of the first bobbin 102 is provided, the cap 108 may not be provided. FIG. 7 is a cross-sectional view of a modified example of the speaker according to the first embodiment. In FIG. 7, the first bobbin 102 of the speaker 100 has nothing to cover the opening at the top.
また,図1では,第1ボビン102の頂部を覆うキャップ108の高さが,振動体101の主振動板121より低い例について説明しているが,第1ボビン102の頂部を覆うキャップ108の高さが,振動体101の主振動板121より高くしてもよい。図8は,実施の形態1にかかるスピーカの変形例の断面図である。図8において,キャップ108の頂部は,主振動板121の頂部よりも高い。
Further, in FIG. 1, an example in which the height of the cap 108 covering the top of the first bobbin 102 is lower than that of the main diaphragm 121 of the vibrating body 101 is described, but the cap 108 covering the top of the first bobbin 102 is described. The height may be higher than that of the main diaphragm 121 of the vibrating body 101. FIG. 8 is a cross-sectional view of a modified example of the speaker according to the first embodiment. In FIG. 8, the top of the cap 108 is higher than the top of the main diaphragm 121.
また,図3では,出力部301がスピーカ100と4本の信号線で接続されている例について説明しているが,出力部301がスピーカ100と3本の信号線で接続するようにしてもよい。図9は,実施の形態1にかかるスピーカシステムの電気回路の変形例を示す回路図である。
Further, although FIG. 3 describes an example in which the output unit 301 is connected to the speaker 100 by four signal lines, the output unit 301 may be connected to the speaker 100 by three signal lines. good. FIG. 9 is a circuit diagram showing a modified example of the electric circuit of the speaker system according to the first embodiment.
入力端子312は,出力部301からスピーカ100に共通する配線で接続されている。そして共通する配線は,スピーカ100内で分岐されて出力端子322及び出力端子332に接続されている。
The input terminal 312 is connected from the output unit 301 by a wiring common to the speaker 100. The common wiring is branched in the speaker 100 and connected to the output terminal 322 and the output terminal 332.
また,図5及び図6の例では,外側のボイスコイルの直流抵抗を内側のボイスコイルの直流抵抗より小さく設定した例について説明しているが,外側のボイスコイルの直流抵抗を内側のボイスコイルの直流抵抗と等しくしてもよい。
Further, in the examples of FIGS. 5 and 6, an example in which the DC resistance of the outer voice coil is set to be smaller than the DC resistance of the inner voice coil is described, but the DC resistance of the outer voice coil is set to the inner voice coil. It may be equal to the DC resistance of.
実施の形態1のスピーカシステムにおいて,外側のボイスコイルの直流抵抗を内側のボイスコイルの直流抵抗と等しくした場合の周波数特性について図10に示す。図10は,実施の形態1のスピーカシステムの変形例における,音圧と周波数特性の一例を示すグラフである。図10において,横軸は周波数を示す。また縦軸は音圧レベルを示す。
FIG. 10 shows the frequency characteristics of the speaker system of the first embodiment when the DC resistance of the outer voice coil is equal to the DC resistance of the inner voice coil. FIG. 10 is a graph showing an example of sound pressure and frequency characteristics in a modified example of the speaker system of the first embodiment. In FIG. 10, the horizontal axis represents the frequency. The vertical axis indicates the sound pressure level.
図10の周波数特性1001は,フィルタF303を通過させずに電気信号が入力された場合の外側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性1002は,フィルタF302を通過させずに電気信号が入力された場合の内側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性1011は,フィルタF303を通過した電気信号が入力された場合の外側のボイスコイルに起因して発生する音圧の周波数特性を示す。周波数特性1012は,フィルタF302を通過した電気信号が入力された場合の内側のボイスコイルに起因して発生する音圧の周波数特性を示す。
The frequency characteristic 1001 in FIG. 10 shows the frequency characteristic of the sound pressure generated by the outer voice coil when an electric signal is input without passing through the filter F303. The frequency characteristic 1002 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when an electric signal is input without passing through the filter F302. The frequency characteristic 1011 indicates the frequency characteristic of the sound pressure generated by the outer voice coil when the electric signal passing through the filter F303 is input. The frequency characteristic 1012 indicates the frequency characteristic of the sound pressure generated by the inner voice coil when the electric signal passing through the filter F302 is input.
図5と図10を比較すると,従来のダブルボイスコイルスピーカでは,内側のボイスコイルに起因して発生する音圧の周波数特性512が外側のボイスコイルに起因して発生する音圧の周波数特性511より音圧が高くなっているが,実施の形態1では,内側のボイスコイルに起因して発生する音圧の周波数特性1012と外側のボイスコイルに起因して発生する音圧の周波数特性1011で,音圧に段差が小さい周波数特性が形成されている。
Comparing FIGS. 5 and 10, in the conventional double voice coil speaker, the frequency characteristic 512 of the sound pressure generated by the inner voice coil is the frequency characteristic 511 of the sound pressure generated by the outer voice coil. Although the sound pressure is higher, in the first embodiment, the frequency characteristic 1012 of the sound pressure generated by the inner voice coil and the frequency characteristic 1011 of the sound pressure generated by the outer voice coil are used. , The sound pressure has a frequency characteristic with a small step.
第2ボイスコイル105の直流抵抗と,第1ボイスコイル103の直流抵抗を同じ抵抗値とした場合でも,第1ボイスコイル103に入力される電気信号のカットオフ周波数を,第2ボイスコイル105に入力される電気信号のカットオフ周波数より高くすることにより,第1ボイスコイル103(内側のボイスコイル)と第2ボイスコイル105(外側のボイスコイル)の音圧の差を小さくすることができる。
Even if the DC resistance of the second voice coil 105 and the DC resistance of the first voice coil 103 have the same resistance value, the cutoff frequency of the electric signal input to the first voice coil 103 is set to the second voice coil 105. By making it higher than the cutoff frequency of the input electric signal, the difference in sound pressure between the first voice coil 103 (inner voice coil) and the second voice coil 105 (outer voice coil) can be reduced.
例えば,コンデンサC302の容量をコンデンサC303の容量より大きくすることにより,第2ボイスコイル105に入力される電気信号のカットオフ周波数を,第1ボイスコイル103に入力される電気信号のカットオフ周波数より低くすることができる。
For example, by making the capacity of the capacitor C302 larger than the capacity of the capacitor C303, the cutoff frequency of the electric signal input to the second voice coil 105 is set to be higher than the cutoff frequency of the electric signal input to the first voice coil 103. Can be lowered.
上述した従来のダブルボイスコイルスピーカと,実施の形態1の変形例における外側のボイスコイル(外側VC)と内側のボイスコイル(内側VC)の設計値の大小関係を以下の表2に示す。
Table 2 below shows the relationship between the design values of the conventional double voice coil speaker described above and the design values of the outer voice coil (outer VC) and the inner voice coil (inner VC) in the modified example of the first embodiment.
このように実施の形態1のスピーカシステムによれば,1つの振動体に2つのボイスコイルが接続されるダブルボイスコイルスピーカにおいて,2つのボイスコイルに互いに異なる電気信号を入力することにより,2つのボイスコイルに所望の周波数帯域を担わせることと,スピーカシステムのトータル音圧を揃えることを両立させることができる。
As described above, according to the speaker system of the first embodiment, in the double voice coil speaker in which two voice coils are connected to one vibrating body, two voice signals are input to the two voice coils to obtain two voice signals. It is possible to make the voice coil bear a desired frequency band and to make the total sound pressure of the speaker system uniform.
上述の説明では,2つのボイスコイルに異なる周波数帯域を担う場合について説明しているが,2つのボイスコイルに同じ周波数帯域を担うようにさせてもよい。この場合,2つのボイスコイルが同じ周波数帯域で同じ位相で振動することにより、環状の振動体101の内縁と外縁を同等に振動させ、振動体101をピストンモーションさせることができる。
In the above explanation, the case where the two voice coils bear different frequency bands is described, but the two voice coils may be made to bear the same frequency band. In this case, by vibrating the two voice coils in the same frequency band and in the same phase, the inner edge and the outer edge of the annular vibrating body 101 can be vibrated equally, and the vibrating body 101 can be made to make a piston motion.
具体的には、2つのボイスコイルの有効質量、支持部のスティフネス、供給される磁気エネルギーの違いによる振幅量の差を補正するように各ボイスコイルの直流抵抗値を設定する。そして、設定された2つのボイスコイルの直流抵抗で、広い周波数帯域で位相を揃えるため、2つのボイスコイルの(フィルタによる)カットオフ周波数を揃えるように各コンデンサの容量を設定することができる。
Specifically, the DC resistance value of each voice coil is set so as to correct the difference in the amount of amplitude due to the difference in the effective mass of the two voice coils, the stiffness of the support portion, and the magnetic energy supplied. Then, in order to align the phases in a wide frequency band with the DC resistance of the two voice coils set, the capacitance of each capacitor can be set so as to align the cutoff frequencies (by the filter) of the two voice coils.
実施の形態2
実施の形態2では,第1ボビン102の頂部がキャップ108で覆われている場合の詳細について説明する。図11は,実施の形態2にかかるスピーカの一例を示す断面図である。図11では,ダブルボイスコイルスピーカの断面の半分を表したものである。したがって,図11において,断面図の全体像は,一点破線で示した対称軸で線対称となっている。また実際のダブルボイスコイルスピーカでは,図11の一点破線で示した対称軸を中心軸とした筒状の立体形状を有する。 Embodiment 2
In the second embodiment, the details when the top of thefirst bobbin 102 is covered with the cap 108 will be described. FIG. 11 is a cross-sectional view showing an example of the speaker according to the second embodiment. FIG. 11 shows half of the cross section of the double voice coil speaker. Therefore, in FIG. 11, the overall image of the cross-sectional view is line-symmetrical along the axis of symmetry indicated by the alternate long and short dash line. Further, the actual double voice coil speaker has a tubular three-dimensional shape centered on the axis of symmetry shown by the alternate long and short dash line in FIG.
実施の形態2では,第1ボビン102の頂部がキャップ108で覆われている場合の詳細について説明する。図11は,実施の形態2にかかるスピーカの一例を示す断面図である。図11では,ダブルボイスコイルスピーカの断面の半分を表したものである。したがって,図11において,断面図の全体像は,一点破線で示した対称軸で線対称となっている。また実際のダブルボイスコイルスピーカでは,図11の一点破線で示した対称軸を中心軸とした筒状の立体形状を有する。 Embodiment 2
In the second embodiment, the details when the top of the
図11に示すように,リング状の主振動板121の内周側に第1ボイスコイル103が巻回された第1ボビン102が接続されている。またリング状の主振動板121の外周側に第2ボイスコイル105が巻回された第2ボビン104が接続されている。
As shown in FIG. 11, the first bobbin 102 around which the first voice coil 103 is wound is connected to the inner peripheral side of the ring-shaped main diaphragm 121. Further, a second bobbin 104 around which the second voice coil 105 is wound is connected to the outer peripheral side of the ring-shaped main diaphragm 121.
リング状の主振動板121の外周は,外側支持部122によってフレーム110に固定されている。
The outer circumference of the ring-shaped main diaphragm 121 is fixed to the frame 110 by the outer support portion 122.
筒状の第1ボビン102の一端にキャップ108が接続され,第1ボビン102の他端には第1ボイスコイル103が接続されている。そして,第1ボイスコイル103と第1ボビン102の一端との間に主振動板121が接続されている。
A cap 108 is connected to one end of the tubular first bobbin 102, and a first voice coil 103 is connected to the other end of the first bobbin 102. A main diaphragm 121 is connected between the first voice coil 103 and one end of the first bobbin 102.
筒状の第2ボビン104の一端に主振動板121の外周側の裏が接続され,第2ボビン104の他端には第2ボイスコイル105が接続されている。
The back of the outer peripheral side of the main diaphragm 121 is connected to one end of the tubular second bobbin 104, and the second voice coil 105 is connected to the other end of the second bobbin 104.
第1ボビン102の内壁と,ヨーク109との間は,可撓性を有する仕切体111(例えばシリコン接着剤など)によって接続され,キャップ108の裏空間が気密になる。
The inner wall of the first bobbin 102 and the yoke 109 are connected by a flexible partition 111 (for example, a silicon adhesive), and the back space of the cap 108 becomes airtight.
次に動作について説明する。
第1ボイスコイル103と,第2ボイスコイル105には,それぞれ電気信号が入力される。ここで,第1ボビン102に巻回された第1ボイスコイル103と第2ボビン104に巻回された第2ボイスコイル105は,それぞれ径・質量・磁気ギャップで受ける磁束が異なる。したがって,同一の電気信号を第1ボイスコイル103及び第2ボイスコイル105に入力しても,発生するローレンツ力は第1ボイスコイル103と第2ボイスコイル105で異なっている。 Next, the operation will be described.
Electric signals are input to thefirst voice coil 103 and the second voice coil 105, respectively. Here, the first voice coil 103 wound around the first bobbin 102 and the second voice coil 105 wound around the second bobbin 104 have different magnetic fluxes in terms of diameter, mass, and magnetic gap. Therefore, even if the same electric signal is input to the first voice coil 103 and the second voice coil 105, the Lorentz force generated is different between the first voice coil 103 and the second voice coil 105.
第1ボイスコイル103と,第2ボイスコイル105には,それぞれ電気信号が入力される。ここで,第1ボビン102に巻回された第1ボイスコイル103と第2ボビン104に巻回された第2ボイスコイル105は,それぞれ径・質量・磁気ギャップで受ける磁束が異なる。したがって,同一の電気信号を第1ボイスコイル103及び第2ボイスコイル105に入力しても,発生するローレンツ力は第1ボイスコイル103と第2ボイスコイル105で異なっている。 Next, the operation will be described.
Electric signals are input to the
図12に示すように,主振動板121には,第1ボイスコイル103の駆動力が第1ボビン102に伝達されて主振動板121の内周に伝達される力と,第2ボイスコイル105の駆動力が第2ボビン104に伝達されて主振動板121の外周に伝達される力(1201)とが重畳されて振動する(1202)。つまり,振動板には異なる2つの力が入力される。図12は,ダブルボイスコイルスピーカの振動伝達の一例を示す模式的な断面図である。
As shown in FIG. 12, in the main diaphragm 121, the driving force of the first voice coil 103 is transmitted to the first bobbin 102 and transmitted to the inner circumference of the main diaphragm 121, and the second voice coil 105. The driving force of the above is transmitted to the second bobbin 104, and the force (1201) transmitted to the outer periphery of the main diaphragm 121 is superimposed and vibrates (1202). That is, two different forces are input to the diaphragm. FIG. 12 is a schematic cross-sectional view showing an example of vibration transmission of the double voice coil speaker.
このキャップ108での振動の詳細を以下に説明する。
キャップ108の直径は主振動板121外周より小さいため,キャップ108は第2ボイスコイル105(主振動板121外周)よりも高い周波数域で振動しやすい。つまり,キャップ108は主振動板121よりも高い周波数帯域を再生する。また,面積もキャップ108の方が主振動板121よりも小さいので高い周波数を再生しやすい形状である。 The details of the vibration in thecap 108 will be described below.
Since the diameter of thecap 108 is smaller than the outer circumference of the main diaphragm 121, the cap 108 tends to vibrate in a higher frequency range than the second voice coil 105 (the outer circumference of the main diaphragm 121). That is, the cap 108 reproduces a frequency band higher than that of the main diaphragm 121. Further, since the area of the cap 108 is smaller than that of the main diaphragm 121, the shape is such that high frequencies can be easily reproduced.
キャップ108の直径は主振動板121外周より小さいため,キャップ108は第2ボイスコイル105(主振動板121外周)よりも高い周波数域で振動しやすい。つまり,キャップ108は主振動板121よりも高い周波数帯域を再生する。また,面積もキャップ108の方が主振動板121よりも小さいので高い周波数を再生しやすい形状である。 The details of the vibration in the
Since the diameter of the
第1ボイスコイル103の駆動力で振動するキャップ108に対して,第2ボイスコイル105に起因する振動は不要な振動となり,キャップ108の振動においては,ノイズとなる。そのノイズの種類は主に2つ分類ができる。ここで、2つのノイズの種類を第1のノイズ源、第2のノイズ源として、それぞれ以下に説明する。
With respect to the cap 108 that vibrates by the driving force of the first voice coil 103, the vibration caused by the second voice coil 105 becomes unnecessary vibration, and the vibration of the cap 108 becomes noise. There are two main types of noise. Here, the two types of noise will be described below as the first noise source and the second noise source, respectively.
第1のノイズ源は第2ボイスコイル105の同じ帯域の振動である。具体的には,第1のノイズ源は,主振動板121の内周特性と外周特性の重なり合う帯域のものである。キャップ108の第1ボイスコイル103に基づく振動に、第2ボイスコイル105の同じ帯域の音(外乱)が混ざって、本来のキャップ108の振動ができなくなる。
The first noise source is the vibration of the second voice coil 105 in the same band. Specifically, the first noise source is in a band in which the inner peripheral characteristics and the outer peripheral characteristics of the main diaphragm 121 overlap. The vibration based on the first voice coil 103 of the cap 108 is mixed with the sound (disturbance) of the same band of the second voice coil 105, and the original vibration of the cap 108 cannot be performed.
第2のノイズ源は,第2ボイスコイル105の,キャップ108再生帯域よりも低い帯域の振動である。具体的には,第2のノイズ源は,第2ボイスコイル105のキャップ108の振動帯域よりも低い周波数の振動である。このキャップ108再生帯域よりも低い周波数帯域の振幅が大きい振動であるため,キャップ108再生帯域の振動がドップラー効果によって変調されて本来の振動ができなくなる。これは,全帯域入力時,たとえば,音楽再生時に顕著になる。
The second noise source is the vibration of the second voice coil 105 in a band lower than the cap 108 reproduction band. Specifically, the second noise source is vibration having a frequency lower than the vibration band of the cap 108 of the second voice coil 105. Since the vibration has a large amplitude in the frequency band lower than the cap 108 reproduction band, the vibration in the cap 108 reproduction band is modulated by the Doppler effect, and the original vibration cannot be performed. This becomes noticeable when inputting all bands, for example, when playing music.
これらのノイズ源からのキャップ108への振動伝達を抑制し,キャップ108をノイズに影響されることなく振動させるため,キャップ108外周は,第1ボイスコイル103が巻回された第1ボビン102の一端(筒状部の端)に接続され,第1ボビン102だけを介するように接合することが望ましい。ここで,第1ボビン102の振動軸方向において少なくともボビンと同等以下程度の歪みが生じる材料をさらに介してもよい。
In order to suppress vibration transmission from these noise sources to the cap 108 and vibrate the cap 108 without being affected by noise, the outer circumference of the cap 108 is the first bobbin 102 around which the first voice coil 103 is wound. It is desirable that it is connected to one end (the end of the tubular portion) and is joined so as to pass only through the first bobbin 102. Here, a material that causes distortion at least equal to or less than that of the bobbin in the vibration axis direction of the first bobbin 102 may be further interposed.
ここで、仮に,キャップ108を主振動板121に接続すると,第2ボイスコイル105の、キャップ108の振動帯域と同じ帯域の音や、キャップ108の振動帯域よりも低い帯域の音による主振動板121のたわみにより、キャップ108の振動がさらに影響されてしまう。図13は,キャップ108を主振動板121に接続したスピーカの一例を示す断面図である。
Here, if the cap 108 is connected to the main diaphragm 121, the main diaphragm due to the sound of the second voice coil 105 in the same band as the vibration band of the cap 108 or the sound in the band lower than the vibration band of the cap 108. The deflection of 121 further affects the vibration of the cap 108. FIG. 13 is a cross-sectional view showing an example of a speaker in which the cap 108 is connected to the main diaphragm 121.
第2ボイスコイル105を駆動力とする主振動板121の外周側の振動は,振動板内周にも伝達し,第1ボイスコイル103を駆動力とする主振動板121の内周側の振動に干渉する。
The vibration on the outer peripheral side of the main diaphragm 121 driven by the second voice coil 105 is also transmitted to the inner circumference of the diaphragm, and the vibration on the inner peripheral side of the main diaphragm 121 driven by the first voice coil 103. Interfere with.
キャップ108は第1ボビン102の一端(筒状部の先端)に接続されているため,第1ボビン102にとっては不要な振動である第2ボイスコイル105に起因する振動の影響を小さくできる。
Since the cap 108 is connected to one end (the tip of the tubular portion) of the first bobbin 102, the influence of vibration caused by the second voice coil 105, which is unnecessary vibration for the first bobbin 102, can be reduced.
さらに,第1ボビン102は,ヨーク109の天面と可撓性を有する仕切体111(シリコン接着剤など)で接続されているため,図14に示すように,第2ボイスコイル105に起因する振動(1401)のキャップ108への伝達を抑制できる。図14は,実施の形態2のスピーカの振動伝達の一例を示す断面図である。
Further, since the first bobbin 102 is connected to the top surface of the yoke 109 by a flexible partition 111 (such as a silicon adhesive), it is caused by the second voice coil 105 as shown in FIG. The transmission of vibration (1401) to the cap 108 can be suppressed. FIG. 14 is a cross-sectional view showing an example of vibration transmission of the speaker of the second embodiment.
可撓性を有する仕切体111(シリコン接着剤など)は気密なため,主振動板121の裏側の空間と,キャップ108の裏側の空間の連通を遮断する。これによって,リング状の主振動板121の振動によってリング状の主振動板121の裏側の空間に圧力変動が起こっても,キャップ108裏側の空間に伝達されず,また、主振動板121の振動に影響されずにキャップ108を振動させることができる。
Since the flexible partition 111 (silicon adhesive, etc.) is airtight, the space behind the main diaphragm 121 and the space behind the cap 108 are blocked from communicating with each other. As a result, even if pressure fluctuation occurs in the space behind the ring-shaped main diaphragm 121 due to the vibration of the ring-shaped main diaphragm 121, it is not transmitted to the space behind the cap 108, and the vibration of the main diaphragm 121 The cap 108 can be vibrated without being affected by.
この圧力変動の影響について図15及び図16を用いて説明する。
図15は,仕切体を備えないスピーカにおける圧力変動を説明するための模式図である。図15において,主振動板121裏の空間1502(第2空間)の圧力変動がキャップ108裏空間1501(第1空間)に伝わり,第2ボイスコイル105による主振動板121の振動の影響をキャップ108が受けて,振幅してしまう。そして,主振動板121の面積の方がキャップ108の面積よりも大きいため,パスカルの原理からキャップ108は主振動板121の振幅よりも大きな振幅になる圧力を受けることになり,影響が大きい。 The influence of this pressure fluctuation will be described with reference to FIGS. 15 and 16.
FIG. 15 is a schematic diagram for explaining pressure fluctuation in a speaker without a partition. In FIG. 15, the pressure fluctuation of the space 1502 (second space) behind themain diaphragm 121 is transmitted to the cap 108 back space 1501 (first space), and the influence of the vibration of the main diaphragm 121 by the second voice coil 105 is capped. 108 receives and oscillates. Since the area of the main diaphragm 121 is larger than the area of the cap 108, the cap 108 is subjected to a pressure having an amplitude larger than the amplitude of the main diaphragm 121 due to Pascal's principle, which has a great influence.
図15は,仕切体を備えないスピーカにおける圧力変動を説明するための模式図である。図15において,主振動板121裏の空間1502(第2空間)の圧力変動がキャップ108裏空間1501(第1空間)に伝わり,第2ボイスコイル105による主振動板121の振動の影響をキャップ108が受けて,振幅してしまう。そして,主振動板121の面積の方がキャップ108の面積よりも大きいため,パスカルの原理からキャップ108は主振動板121の振幅よりも大きな振幅になる圧力を受けることになり,影響が大きい。 The influence of this pressure fluctuation will be described with reference to FIGS. 15 and 16.
FIG. 15 is a schematic diagram for explaining pressure fluctuation in a speaker without a partition. In FIG. 15, the pressure fluctuation of the space 1502 (second space) behind the
図16は,実施の形態2のスピーカシステムにおける圧力変動を説明するための模式図である。主振動板121裏の空間1602(第2空間)の圧力変動をキャップ108裏空間1601(第1空間)に伝えないので,キャップ108の振動は,主振動板121の振動の影響を受けない。
FIG. 16 is a schematic diagram for explaining the pressure fluctuation in the speaker system of the second embodiment. Since the pressure fluctuation of the space 1602 (second space) behind the main diaphragm 121 is not transmitted to the cap 108 back space 1601 (first space), the vibration of the cap 108 is not affected by the vibration of the main diaphragm 121.
このように実施の形態2のスピーカシステムによれば,キャップとヨークにより形成される第1空間と,主振動板121とヨークにより形成される第2空間とを仕切る仕切体を備えることにより,第2空間の圧力変動を第1空間に伝わらないので,キャップの振動は,主振動板121の振動の影響を受けない。
As described above, according to the speaker system of the second embodiment, the first space formed by the cap and the yoke and the second space formed by the main diaphragm 121 and the yoke are provided with a partition body. Since the pressure fluctuation in the two spaces is not transmitted to the first space, the vibration of the cap is not affected by the vibration of the main diaphragm 121.
なお,本発明は上記実施の形態に限られたものではなく,趣旨を逸脱しない範囲で適宜変更することが可能である。例えば,環状形状は,円環に限定されず,多角形からなる角環も含む。また,筒形状も円筒に限定されず,開口形状が多角形である角筒であってもよい。
The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, the annular shape is not limited to an annulus, but also includes an angular ring composed of polygons. Further, the cylindrical shape is not limited to a cylinder, and may be a square cylinder having a polygonal opening shape.
なお、上記実施の形態ではボイスコイルはボビンに巻回されているが、ボビンを介さずにボイスコイルが直接振動体と接続してもよい。これに伴って、キャップは第1のボイスコイルに接続され第1のボイスコイルの頂部を覆う。
Although the voice coil is wound around the bobbin in the above embodiment, the voice coil may be directly connected to the vibrating body without passing through the bobbin. Along with this, the cap is connected to the first voice coil and covers the top of the first voice coil.
この出願は,2020年1月29日に出願された日本出願特願2020-012923を基礎とする優先権を主張し,その開示の全てをここに取り込む。
This application claims priority based on Japanese application Japanese Patent Application No. 2020-012923 filed on January 29, 2020, and incorporates all of its disclosures herein.
本発明は,スピーカの技術分野において好適に利用することができる。
The present invention can be suitably used in the technical field of speakers.
100 スピーカ
101 振動体
102 第1ボビン
103 第1ボイスコイル
104 第2ボビン
105 第2ボイスコイル
106 磁石
107 プレート
108 キャップ
109 ヨーク
110 フレーム
111 仕切体
121 主振動板
122 外側支持部
300 スピーカシステム
301 出力部
311,312 入力端子
321,322,331,332 出力端子
C302,C303 コンデンサ 100Speaker 101 Vibrating body 102 1st bobbin 103 1st voice coil 104 2nd bobbin 105 2nd voice coil 106 Magnet 107 Plate 108 Cap 109 York 110 Frame 111 Partition 121 Main diaphragm 122 Outer support 300 Speaker system 301 Output 311, 312 Input terminals 321, 322, 331, 332 Output terminals C302, C303 Condenser
101 振動体
102 第1ボビン
103 第1ボイスコイル
104 第2ボビン
105 第2ボイスコイル
106 磁石
107 プレート
108 キャップ
109 ヨーク
110 フレーム
111 仕切体
121 主振動板
122 外側支持部
300 スピーカシステム
301 出力部
311,312 入力端子
321,322,331,332 出力端子
C302,C303 コンデンサ 100
Claims (4)
- 環状の振動体と,
筒形状を有し,前記振動体に物理的に接続する第1ボビンと,
前記第1ボビンに巻回された第1ボイスコイルと,
前記第1ボビンより開口部分が大きい筒形状を有し,前記振動体に物理的に接続する第2ボビンと,
前記第2ボビンに巻回された第2ボイスコイルと,
前記第1ボイスコイル及び前記第2ボイスコイルに電気的に接続し,前記第1ボイスコイル及び前記第2ボイスコイルに,周波数特性が互いに異なる電気信号を出力する出力部と,を備えるスピーカシステム。 An annular vibrating body and
The first bobbin, which has a tubular shape and is physically connected to the vibrating body,
The first voice coil wound around the first bobbin and
A second bobbin having a tubular shape with a larger opening than the first bobbin and physically connected to the vibrating body,
The second voice coil wound around the second bobbin and
A speaker system including an output unit that is electrically connected to the first voice coil and the second voice coil and outputs electric signals having different frequency characteristics to the first voice coil and the second voice coil. - 前記出力部は,入力された電気信号を相異なるカットオフ周波数で低周波領域を抑圧して,前記第1ボイスコイル及び前記第2ボイスコイルに出力し,
前記第1ボイスコイルに出力される電気信号のカットオフ周波数は,前記第2ボイスコイルに出力される電気信号のカットオフ周波数より高い,請求項1に記載のスピーカシステム。 The output unit suppresses the low frequency region with different cutoff frequencies and outputs the input electric signal to the first voice coil and the second voice coil.
The speaker system according to claim 1, wherein the cutoff frequency of the electric signal output to the first voice coil is higher than the cutoff frequency of the electric signal output to the second voice coil. - 前記出力部は,入力された電気信号を相異なる電圧で前記第1ボイスコイル及び前記第2ボイスコイルに出力し,
前記第2ボイスコイルに出力される電気信号の電圧は,前記第1ボイスコイルに出力される電気信号の電圧より高い,請求項1または2に記載のスピーカシステム。 The output unit outputs the input electric signal to the first voice coil and the second voice coil at different voltages.
The speaker system according to claim 1 or 2, wherein the voltage of the electric signal output to the second voice coil is higher than the voltage of the electric signal output to the first voice coil. - 前記第1ボビンの開口を覆うキャップと,
前記第1ボビン,前記第1ボイスコイル,前記第2ボビン及び前記第2ボイスコイルを収容する空間を形成するヨークと,
前記キャップと前記ヨークにより形成される第1空間と,前記振動体と前記ヨークにより形成される第2空間とを仕切る仕切体と,を備える請求項1~3のいずれかに記載のスピーカシステム。 A cap covering the opening of the first bobbin and
A yoke forming a space for accommodating the first bobbin, the first voice coil, the second bobbin, and the second voice coil.
The speaker system according to any one of claims 1 to 3, further comprising a first space formed by the cap and the yoke, and a partition body that partitions the vibrating body and the second space formed by the yoke.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-012923 | 2020-01-29 | ||
JP2020012923A JP2021118526A (en) | 2020-01-29 | 2020-01-29 | Speaker system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021153284A1 true WO2021153284A1 (en) | 2021-08-05 |
Family
ID=77078368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/001350 WO2021153284A1 (en) | 2020-01-29 | 2021-01-15 | Speaker system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021118526A (en) |
WO (1) | WO2021153284A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132095A (en) * | 1980-03-19 | 1981-10-16 | Matsushita Electric Ind Co Ltd | Speaker |
JPS57121393A (en) * | 1981-01-20 | 1982-07-28 | Mitsubishi Electric Corp | Double voice coil speaker system |
JPH0918992A (en) * | 1995-06-28 | 1997-01-17 | Sharp Corp | Speaker unit |
JP2014053684A (en) * | 2012-09-05 | 2014-03-20 | Jvc Kenwood Corp | Sound reproduction device, adjustment method and program |
WO2015029303A1 (en) * | 2013-08-30 | 2015-03-05 | ソニー株式会社 | Speaker device |
-
2020
- 2020-01-29 JP JP2020012923A patent/JP2021118526A/en active Pending
-
2021
- 2021-01-15 WO PCT/JP2021/001350 patent/WO2021153284A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132095A (en) * | 1980-03-19 | 1981-10-16 | Matsushita Electric Ind Co Ltd | Speaker |
JPS57121393A (en) * | 1981-01-20 | 1982-07-28 | Mitsubishi Electric Corp | Double voice coil speaker system |
JPH0918992A (en) * | 1995-06-28 | 1997-01-17 | Sharp Corp | Speaker unit |
JP2014053684A (en) * | 2012-09-05 | 2014-03-20 | Jvc Kenwood Corp | Sound reproduction device, adjustment method and program |
WO2015029303A1 (en) * | 2013-08-30 | 2015-03-05 | ソニー株式会社 | Speaker device |
Also Published As
Publication number | Publication date |
---|---|
JP2021118526A (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6751883B2 (en) | Speaker devices, vehicles and AV equipment | |
WO2024000693A1 (en) | Coaxial loudspeaker | |
EP3718311B1 (en) | Loudspeaker arrangement | |
WO2021153284A1 (en) | Speaker system | |
JP2022160797A (en) | Electroacoustic transducer and unit for electroacoustic transducer | |
JP6353079B2 (en) | Speaker device | |
JP2008187598A (en) | Speaker equipment and display device | |
WO2023090124A1 (en) | Speaker device | |
JPS6231879B2 (en) | ||
WO2017104124A1 (en) | Electroacoustic transducer | |
JPH1141685A (en) | Speaker | |
JPH067711B2 (en) | Speaker | |
GB2261135A (en) | A loudspeaker | |
JP5825522B2 (en) | Speaker device | |
JP2014003470A (en) | Speaker device | |
TWI857443B (en) | Speaker | |
KR102543007B1 (en) | 2-way receiver with flat tweeter diaphragm | |
WO2017104125A1 (en) | Electroacoustic transducer | |
WO2021192705A1 (en) | Headphone | |
JP2023148965A (en) | Speaker device and acoustic system | |
JP2006013587A (en) | Speaker device | |
JPH1141696A (en) | Speaker | |
JP2022149103A (en) | Acoustic/signal converter | |
JP2000041292A (en) | Speaker system | |
JPH11215585A (en) | Loudspeaker system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21747294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21747294 Country of ref document: EP Kind code of ref document: A1 |