WO2021143559A1 - 空调器的控制方法及空调器 - Google Patents
空调器的控制方法及空调器 Download PDFInfo
- Publication number
- WO2021143559A1 WO2021143559A1 PCT/CN2021/070142 CN2021070142W WO2021143559A1 WO 2021143559 A1 WO2021143559 A1 WO 2021143559A1 CN 2021070142 W CN2021070142 W CN 2021070142W WO 2021143559 A1 WO2021143559 A1 WO 2021143559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preset
- swing
- air conditioner
- rotation speed
- fan
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
- F24F13/142—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using pivoting blades with intersecting axles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
- F24F13/15—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/30—Velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/20—Heat-exchange fluid temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to the technical field of air conditioning, in particular to a control method of an air conditioner and an air conditioner.
- An object of the present invention is to provide a control method of an air conditioner that improves the user's blowing experience in a cooling state.
- a further object of the present invention is to provide a control method of an air conditioner whose blowing method is closer to natural wind.
- a further object of the present invention is to provide an air conditioner that improves the user's blowing experience.
- the present invention provides a control method of an air conditioner, including:
- the air conditioner is in the cooling state, and the air conditioner's air supply mode is adjusted based on whether the air conditioner's indoor unit is located in the surrounding environment, whether there are users and the indoor unit's fan speed, or based on whether the air conditioner receives a natural wind control command, and the air supply mode is Including natural wind mode;
- the frequency of the compressor of the air conditioner and the rotation speed of the fan are adjusted based on the coil temperature of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold, where the first preset temperature threshold is greater than the second preset temperature threshold.
- a swing blade assembly is provided at the air outlet of the indoor unit, and the swing blade assembly includes a plurality of horizontal swing blades for adjusting the wind out of the upper and lower directions and a plurality of vertical swing blades for adjusting the wind out of the left and right directions;
- the steps of adjusting the air supply mode of the air conditioner based on whether there is the rotation speed of the user and the fan of the indoor unit based on the surrounding environment where the indoor unit is located or whether the air conditioner receives a natural wind control command include: detecting the surrounding environment where the indoor unit is located When there is a user and the fan speed is greater than the preset speed threshold or when the air conditioner receives a natural wind control command, the air conditioner is controlled to supply air in the natural wind mode. In the natural wind mode, the fan speed is adjusted randomly and intermittently, and there is more free swing One horizontal swing leaf, and multiple vertical swing leaves freely swing.
- the step of randomly intermittently adjusting the rotation speed of the fan includes:
- each rotation speed adjustment period defines a corresponding preset rotation speed change direction, preset rotation speed change value, and preset maintenance time
- the speed of the fan is controlled to adjust the preset speed change value according to the preset speed change direction of a speed adjustment period and maintain the preset maintenance time, and then proceed to the next speed adjustment period.
- the preset rotation speed change direction includes speed increase and deceleration
- the multiple consecutive rotation speed adjustment periods generated in a random manner satisfy: the maximum increase value of the rotation speed of the fan is less than or equal to the preset increase speed threshold, and the maximum deceleration value of the rotation speed of the fan is less than or equal to the preset deceleration threshold.
- the step of freely swinging a plurality of swing leaves includes: randomly generating swing parameters of the plurality of swing leaves, and the swing parameters of the plurality of swing leaves include one of a swing direction, a swing angle, and a swing speed. Multiple types, and control multiple oscillating blades based on the swing parameters of multiple oscillating blades;
- the step of freely swinging the plurality of vertical swing leaves includes: randomly generating the swing parameters of the plurality of vertical swing leaves, the swing parameters of the plurality of vertical swing leaves include one or more of the swing direction, the swing angle, and the swing speed, and The multiple vertical swing leaves are controlled based on the swing parameters of the multiple vertical swing leaves.
- the value range of the maximum swing angle of the multiple oscillating blades in the up and down direction is 20°-160°;
- the range of the maximum swing angle of multiple vertical swing leaves in the left and right directions is 0°-180°;
- a plurality of bending structures are sequentially formed on each oscillating blade along the left and right directions, and a plurality of protrusions are formed on the upper surface of each oscillating blade;
- a plurality of bending structures are sequentially formed on each vertical swing leaf along the up and down direction.
- the steps of detecting whether there are users in the surrounding environment where the indoor unit is located and detecting whether the rotation speed of the fan is greater than a preset rotation speed threshold includes:
- the step of detecting whether there is a user in the surrounding environment where the indoor unit is located includes:
- the steps of adjusting the frequency of the compressor of the air conditioner and the rotation speed of the fan based on the coil temperature of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold include:
- the compressor When the coil temperature is less than the first preset temperature threshold and greater than the second preset temperature threshold, the compressor is controlled to run at the second preset frequency, and the fan runs at the second preset speed, where the second preset frequency is less than the first preset frequency.
- a preset frequency, the second preset speed is less than the first preset speed;
- the compressor When the coil temperature is less than or equal to the second preset temperature threshold, the compressor is controlled to run at a third preset frequency, and the fan runs at a third preset speed, where the third preset frequency is less than the second preset frequency, and the third preset frequency
- the rotation speed is set to be less than the second preset rotation speed.
- the present invention also provides an air conditioner, including:
- the detection device is configured to detect whether there is a user in the surrounding environment where the indoor unit is located and to detect the speed of the fan;
- a receiving device for receiving natural wind control instructions for receiving natural wind control instructions
- the control device includes a memory and a processor, and a control program is stored in the memory.
- a control program is executed by the processor, it is used to implement the aforementioned control method.
- the control method of the air conditioner of the present invention proposes that when the air conditioner is in a cooling state, the speed of the air conditioner is adjusted based on whether there is a user and the fan speed of the indoor unit in the surrounding environment where the indoor unit is located, or whether the air conditioner receives a natural wind control command.
- the air supply mode makes the air supply mode of the air conditioner in the cooling state correlate with the user, wind speed, and control commands, so that the air conditioner can be controlled more accurately; at the same time, the air conditioner control method of the present invention is also based on the coil of the indoor unit
- the temperature, the first preset temperature threshold, and the second preset temperature threshold are used to adjust the frequency of the compressor and the rotation speed of the fan of the indoor unit, so that the control of the entire air conditioner is more accurate.
- control method of the air conditioner of the present invention proposes to control the air conditioner to control the air conditioner when it is detected that there is a user in the surrounding environment where the indoor unit is located and the rotation speed of the fan is greater than a preset rotation speed threshold or when the air conditioner receives a natural wind control command.
- Air supply in natural wind mode can make users feel more comfortable natural wind and improve the user’s blowing experience; at the same time, in natural wind mode, the fan speed is adjusted intermittently at random, swinging multiple horizontal swing leaves freely, and multiple vertical swings freely. The swing leaf can make the blowing method closer to the natural wind and improve the user's blowing experience.
- Fig. 1 is a perspective schematic view of an air conditioner according to an embodiment of the present invention.
- Fig. 2 is a perspective schematic view of the air conditioner shown in Fig. 1 when the air outlet is opened.
- Fig. 3 is a partially enlarged schematic perspective view of some parts of the air conditioner shown in Fig. 1.
- Fig. 4 is a schematic diagram of the control device and related components of the air conditioner shown in Fig. 1.
- Fig. 5 is a schematic flowchart of the control method of the air conditioner shown in Fig. 1.
- Fig. 6 is a detailed flowchart of the control method of the air conditioner shown in Fig. 1.
- FIG. 1 is a perspective schematic view of an air conditioner 100 according to an embodiment of the present invention.
- FIG. 2 is a perspective schematic view of the air outlet 113 of the air conditioner 100 shown in FIG. 1 when the air outlet 113 is opened.
- Fig. 4 is a schematic diagram of the control device 200 and related components of the air conditioner 100 shown in Fig. 1.
- the air conditioner 100 in the embodiment of the present invention is a split type air conditioner 100, and includes a cabinet-type indoor unit and an outdoor unit.
- the indoor unit generally includes a housing 110, a fan 120, a motor 121, an air duct assembly and a control device 200.
- the fan 120 is arranged in the housing 110 and is used to send air to the indoor space.
- An air outlet 113 is provided on the front panel 111 on the front side of the housing 110, and an air inlet (not shown in the figure) is provided on the rear side of the housing 110.
- a movable guide plate 112 is provided at the air outlet 113, and the air outlet 113 is exposed by moving the guide plate 112 into the inner side of the front panel 111, and the air outlet 113 is closed by moving the guide plate 112 out of the inner side of the front panel 111.
- the fan 120 is located behind the air outlet 113 and is a cross flow fan extending vertically along the axis.
- the motor 121 is arranged on the top of the fan 120.
- the air duct assembly is arranged between the fan 120 and the front panel 111, and has an air duct frame 130, which defines a front and rear open air guiding chamber.
- a panel card slot 131 is provided on the air duct skeleton 130 for fixing the air duct assembly and the front panel 111.
- the control device 200 includes a memory 201 and a processor 202.
- the memory 201 stores a control program 210. When the control program 210 is executed by the processor 202, it is used to implement the control method of the air conditioner 100 according to the embodiment of the present invention.
- the air conditioner 100 of the embodiment of the present invention adopts a compression refrigeration cycle system, and a compressor 170, a fan (not shown in the figure), a heat exchanger (not shown in the figure), etc.
- FIG. 5 is a schematic flowchart of the control method of the air conditioner 100 shown in FIG. 1.
- the control method of the air conditioner 100 according to the embodiment of the present invention includes the steps:
- the air conditioner 100 is in the cooling state, and the air conditioner 100 is adjusted based on whether the indoor unit of the air conditioner 100 is located in the surrounding environment, whether the user and the fan 120 of the indoor unit rotate speed or whether the air conditioner 100 receives a natural wind control command.
- Wind mode where the air supply mode includes natural wind mode;
- S504 Adjust the frequency of the compressor 170 of the air conditioner 100 and the rotation speed of the fan 120 based on the coil temperature of the heat exchanger 220 of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold, where the first preset temperature The threshold is greater than the second preset temperature threshold.
- the control method of the air conditioner 100 of the present invention proposes that when the air conditioner 100 is in the cooling state, whether the indoor unit of the air conditioner 100 is located in the surrounding environment is based on whether there is a user and the fan 120 of the indoor unit rotate speed or whether the air conditioner 100 receives
- the natural wind control command adjusts the air supply mode of the air conditioner 100, so that the air supply mode of the air conditioner 100 in the cooling state is associated with the user, the speed of the fan 120, and the control command, so that the control of the air conditioner 100 is more accurate; at the same time, the present invention
- the control method of the air conditioner 100 is also based on the coil temperature of the heat exchanger 220 of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold to control the frequency of the compressor 170 and the rotation speed of the fan 120 of the indoor unit.
- the adjustment makes the control of the entire air conditioner 100 more precise and refined.
- the air blowing mode of the air conditioner 100 at least defines the rotation speed of the fan 120.
- a swing leaf assembly 140 is also provided at the air outlet 113, and the swing leaf assembly 140 includes a plurality of horizontal swing leaves 160 and a plurality of vertical swing leaves 150.
- a plurality of oscillating blades 160 extend horizontally and are used to adjust the air discharge in the up and down direction.
- a plurality of vertical swing blades 150 are vertically extended and used for adjusting the left and right direction of wind.
- Step S502 includes: when it is detected that there is a user in the surrounding environment where the indoor unit is located and the rotation speed of the fan 120 is greater than a preset rotation speed threshold or when the air conditioner 100 receives a natural wind control instruction, controlling the air conditioner 100 to supply air in a natural wind mode
- the rotation speed of the fan 120 is randomly adjusted intermittently to freely swing a plurality of horizontal pendulum blades 160 and freely swing a plurality of vertical pendulum blades 150.
- the air conditioner 100 is cooled by strong wind, the air conditioner 100 will blow directly on the human body, especially when the user is facing the air conditioner 100, the cold wind will blow directly on the human body parts, especially the human face, causing the user to overcool feel.
- the control method of the air conditioner 100 of the present invention proposes that when the air conditioner 100 is in a cooling state, the air conditioner 100 is set to detect the presence of a user in the surrounding environment where the indoor unit of the air conditioner 100 is located and the rotation speed of the fan 120 of the indoor unit When the speed is greater than the preset speed threshold or when the air conditioner 100 receives a natural wind control command, the air conditioner 100 is controlled to supply air in the natural wind mode, so that the air conditioner 100 automatically and forcibly turns on the natural air supply mode when certain conditions are met, so as to avoid The overcooling sensation caused by the direct blowing of cold wind on the human body parts improves the user’s blowing experience; at the same time, the natural wind mode of the control method of the air conditioner 100 in the embodiment of the present invention is achieved by controlling the fan 120, the horizontal oscillating blade 160, and the vertical oscillating blade 160.
- the leaf 150 performs different controls to achieve it, which can make the blowing method closer to natural wind and improve the user's blowing experience; the air conditioner 100 realizes intelligent control as a whole, which not only saves energy, but also meets user needs and improves user comfort experience .
- the horizontal swing blade 160 is composed of a swing blade body 161, a connecting rod 162, a long shaft and a short shaft.
- the long rotating shaft is embedded in the air duct frame 130 and can rotate up and down with the pulling of the connecting rod 162.
- the short rotating shaft is embedded in the connecting rod 162 and can rotate with the rotation of the connecting rod 162.
- the protrusions 163 are preferably 2-4mm in height and are elliptical, with a short axis length of 2-4mm and a major axis length of 4-6mm, and their main function is to oppose each other. The wind disperses in different directions.
- the plurality of oscillating blades 160 can be pivoted synchronously to adjust the up and down direction of the wind.
- the plurality of vertical swing blades 150 can be pivoted synchronously to adjust the left and right direction of the wind.
- each oscillating blade 160 is sequentially formed with a plurality of bending structures in the left and right directions; each vertical blade 150 is sequentially formed with a plurality of bending structures in the up and down directions.
- each horizontal swing leaf 160 is wave-shaped in the left-right direction
- each vertical swing leaf 150 is wave-shaped in the up-down direction to disperse the wind.
- the range of the maximum swing angle of the plurality of swing blades 160 in the up and down direction is 20°-160°.
- the range of the maximum swing angle of the plurality of vertical swing blades 150 in the left-right direction is 0°-180°.
- the air conditioner 100 of the embodiment of the present invention improves the structure of the horizontal swing leaf 160 and the vertical swing leaf 150, the horizontal swing leaf 160 is arranged in a wave shape as a whole and has a plurality of protrusions 163, and the vertical swing leaf 150 is set at the same time.
- the whole body is wavy, and the rotation speed of the fan 120 is randomly and intermittently adjusted, and the horizontal swing blade 160 and the vertical swing blade 150 are respectively set to swing freely, which can make the blowing method closer to natural wind and improve the user's blowing experience.
- the step of randomly and intermittently adjusting the rotation speed of the fan 120 includes:
- each rotation speed adjustment period defines a corresponding preset rotation speed change direction, a preset rotation speed change value, and a preset maintenance time
- the rotation speed of the fan 120 is controlled to adjust the preset rotation speed change value according to the preset rotation speed change direction of a rotation speed adjustment period and maintain the preset maintenance time, and then perform the next rotation speed adjustment period.
- the control method of the air conditioner 100 of the present invention generates a plurality of continuous rotation speed adjustment cycles of the fan 120 in a random manner, which can realize the irregular increase and decrease of the rotation speed of the fan 120, form free air supply, and simulate the natural world to achieve sudden air supply. Effect.
- the air conditioner 100 further includes: a first random generating device (not shown in the figure), the first random generating device is configured to randomly generate a plurality of consecutive rotation speed adjustment periods of the fan 120, wherein each rotation speed adjustment period defines The corresponding preset speed change direction, preset speed change value and preset maintenance time.
- the random signal in the device 100 is used as a signal source to generate a random amount of the rotation speed adjustment period.
- the last few digits of the signal obtained by the rotation speed detection device can be processed to generate a random amount of the rotation speed adjustment period.
- the direction of the preset speed change includes speed increase and deceleration; the preset speed change value can be set as required, for example, 10r/min, 15r/min, 20r/min, 30r/min, and the preset maintenance time can be set as required.
- the rotation speed adjustment period a is limited to :Increase speed, preset speed change value is 10r/min, preset maintenance time is 30s; speed adjustment period b is limited to: deceleration, preset speed change value is 20r/min, preset maintenance time is 10s; speed adjustment The limits in cycle c include: speed increase, the preset speed change value is 20r/min, and the preset maintenance time is 1min; the speed adjustment cycle d limits: deceleration, the preset speed change value is 30r/min, and the preset maintenance time It is 1min; the speed adjustment period e is limited to: speed increase, the preset speed change value is 30r/min, and the preset maintenance time is 1min.
- the rotation speed of the fan 120 may be changed at a constant speed, or may be changed at a variable speed. It is assumed that the multiple consecutive rotation speed adjustment periods randomly generated by the first random generation device include a rotation speed adjustment period a, a rotation speed adjustment period a, and a rotation speed adjustment period b, which means that the rotation speed of the fan 120 first increases by 10r/min to 910r/min, and Keep running at 910r/min for 30s, then increase the speed by 10r/min to 920r/min, keep at 920r/min for 30s, then decelerate by 20r/min to 900r/min, and keep at 900r/min for 10s.
- the continuous rotation speed adjustment period randomly generated by the first random generating device includes a rotation speed adjustment period b, a rotation speed adjustment period c, and a rotation speed adjustment period e.
- the continuous rotation speed adjustment period randomly generated by the first random generating device includes a rotation speed adjustment period c, a rotation speed adjustment period a, and a rotation speed adjustment period e.
- the multiple consecutive rotation speed adjustment periods generated in a random manner satisfy: the maximum increase value of the rotation speed of the fan 120 is less than or equal to the preset speed increase threshold, and the maximum deceleration value of the rotation speed of the fan 120 is less than or equal to the preset deceleration Threshold.
- the preset speed increase threshold is used to define the maximum speed increase range of the rotation speed of the fan 120
- the preset deceleration threshold value is used to define the maximum speed reduction range of the rotation speed of the fan 120.
- the preset speed increase threshold and the preset deceleration threshold may be the same or different.
- the value range of the rotational speed of the fan 120 is the difference between the initial rotational speed and the preset deceleration threshold-the sum of the initial rotational speed and the preset acceleration threshold.
- the range of the speed of the fan 120 is 870 r/min-930 r/min.
- the first random generating device randomly generates multiple continuous rotation speed change periods, it also needs to take into account the preset speed increase threshold and the preset deceleration threshold value. In this way, for example, multiple continuous rotation speed adjustment periods can be used as rotation speed adjustment.
- the period c, the rotation speed adjustment period e, and the rotation speed adjustment period d are excluded, so that the rotation speed of the fan 120 does not change too much, but increases or decreases irregularly within a certain range, so that the user has a better blowing experience.
- the step of freely swinging the plurality of swing leaves 160 includes: randomly generating swing parameters of the plurality of swing leaves 160, and the swing parameters of the plurality of swing leaves 160 include swing direction, swing angle, and swing speed.
- One or more of the sway blades 160 are controlled based on the swing parameters of the sway blades 160.
- the air conditioner 100 further includes a second random generating device configured to generate the swing parameters of the plurality of yaw blades 160 in a random manner.
- the swing direction includes upward swing and downward swing, with swing angles such as 2°, 5°, 10°, 20°, 30°, and swing speeds such as 2°/min, 5°/min, 10°/min, 15°/min , 20°/min.
- the multiple oscillating blades 160 can refer to the steps of the aforementioned random intermittent fan 120 rotating speed, for example, including: randomly generating multiple consecutive swing adjustment periods of the oscillating blade 160, wherein each swing adjustment The corresponding preset swing direction, preset swing angle, and preset swing speed are defined in the period; the yaw blade 160 is controlled to swing according to one swing adjustment period, and then the next swing adjustment period is performed.
- swing adjustment period A is limited to: swing up, the preset swing angle is 2°, and the preset swing speed is 5°/min
- the swing adjustment period B is limited to: swing up, the preset swing angle is 10°, The preset swing speed is 5°/min
- the swing adjustment period C is limited to: downward swing, the preset swing angle is 20°, and the preset swing speed is 5°/min
- the swing adjustment period D includes: down Swing, the preset swing angle is 2°, the preset swing speed is 5°/min
- the swing adjustment period E is limited to: downward swing, the preset swing angle is 10°, and the preset swing speed is 10°/min.
- the continuous swing adjustment period randomly generated by the second random generating device includes the swing adjustment period A, the swing adjustment period A, and the swing adjustment period D
- the yaw blade 160 first swings upward by 2° at 5°/min until the swing angle is 62°, then swing up 2° at 5°/min to a swing angle of 64°, and then swing down 2° at 5°/min to a swing angle of 62°.
- the continuous swing adjustment period randomly generated by the second random generating device includes a swing adjustment period A, a swing adjustment period B, and a swing adjustment period E.
- the continuous swing adjustment period randomly generated by the second random generating device includes a swing adjustment period E, a swing adjustment period B, and a swing adjustment period D.
- the step of freely swinging the plurality of vertical swing leaves 150 includes: randomly generating swing parameters of the plurality of vertical swing leaves 150, and the swing parameters of the plurality of vertical swing leaves 150 include swing direction, swing angle, and swing speed.
- One or more of the vertical swing blades 150 are controlled based on the swing parameters of the plurality of vertical swing blades 150.
- the air conditioner 100 further includes a third random generating device configured to randomly generate the swing parameters of the plurality of vertical swing blades 150.
- the swing direction includes left and right swing, swing angles such as 2°, 5°, 10°, 20°, 30°, and swing speeds such as 2°/min, 5°/min, 10°/min, 15°/ min, 20°/min.
- freely swinging the multiple vertical swing blades 150 can refer to the steps of the aforementioned random intermittent fan 120 speed part, for example, including: randomly generating a plurality of consecutive swing adjustment periods of the vertical swing blade 150, wherein each swing adjustment The corresponding preset swing direction, preset swing angle, and preset swing speed are defined in the period; the vertical swing blade 150 is controlled to swing according to one swing adjustment period, and then the next swing adjustment period is performed.
- the swing adjustment period A' is limited to: swing to the left, the preset swing angle is 2°, and the preset swing speed is 2°/min;
- the swing adjustment period B' is limited to: swing to the left , The preset swing angle is 10°, the preset swing speed is 5°/min;
- the swing adjustment period C' is limited to: right swing, the preset swing angle is 20°, and the preset swing speed is 5°/min;
- the swing adjustment period D' is limited to: swing to the right, the preset swing angle is 2°, and the preset swing speed is 2°/min;
- the swing adjustment period E' is limited to: swing to the right, the preset swing angle is 10 °, the preset swing speed is 10°/min.
- the continuous swing adjustment period randomly generated by the third random generating device includes the swing adjustment period A', the swing adjustment period A', and the swing adjustment period D', it means that the vertical swing blade 150 first swings to the left by 2°/min. To the swing angle of 62°, then swing 2° to the left at 2°/min to a swing angle of 64°, and then swing 2° to the right at 2°/min to a swing angle of 62°.
- the continuous swing adjustment period randomly generated by the third random generating device includes a swing adjustment period A', a swing adjustment period B', and a swing adjustment period E'.
- the continuous swing adjustment period randomly generated by the third random generating device includes a swing adjustment period E', a swing adjustment period B', and a swing adjustment period D'.
- step S502 when the air conditioner 100 receives a natural wind control instruction, the air conditioner 100 is controlled to supply air in a natural wind mode.
- the indoor unit also includes a receiving device 190 for receiving natural wind control instructions.
- the remote controller corresponding to the air conditioner 100 is provided with a natural wind button for triggering a natural wind control instruction.
- the user triggers the natural wind control instruction by pressing or clicking the natural wind button, and the natural wind control triggered by the natural wind button is detected.
- the control terminal such as the remote controller sends the natural wind control instruction to the receiving device 190.
- the control device 200 controls the air conditioner 100 to supply air in a natural wind mode.
- step S502 when it is detected that there are users in the surrounding environment where the indoor unit of the air conditioner 100 is located and the rotation speed of the fan 120 of the indoor unit is greater than the preset rotation speed threshold, the air conditioner 100 is controlled to supply air in a natural wind mode .
- the indoor unit further includes a detection device 180 configured to detect whether there is a user in the surrounding environment where the indoor unit is located and to detect the rotation speed of the fan 120.
- the detection device 180 may include a human body detection device and a rotation speed detection device.
- the human body detection device may be an intelligent human body/face sensing device.
- step S502 the steps of detecting whether there are users in the surrounding environment where the indoor unit is located and detecting whether the rotation speed of the fan 120 is greater than a preset rotation speed threshold includes:
- the control method of the present invention first detects whether there is a user in the surrounding environment where the indoor unit is located, and only when there is a user in the surrounding environment where the indoor unit is located, the rotation speed of the fan 120 and the preset rotation speed threshold are determined to enable the entire control
- the logic is more streamlined.
- the determination of the size of the rotation speed and the preset rotation speed threshold may be determined by accurately obtaining the rotation speed of the fan 120 and the preset rotation speed threshold.
- the preset speed threshold is 800r/min. When the acquired speed of the fan 120 is 900r/min, it is considered that the speed is greater than the preset speed threshold. When the acquired speed of the fan 120 is 760r/min, it is considered that the speed is less than the preset speed.
- Speed threshold is 800r/min.
- the determination of the size of the rotation speed and the preset rotation speed threshold may also be roughly estimated by the wind speed gear position of the fan 120.
- the air conditioner 100 has three wind speed gear positions, a low wind gear, a medium wind gear, and a high wind gear.
- the rotation speed can be considered to be less than the preset rotation speed threshold, and when the wind speed gear is a high wind gear, it can be considered that the rotation speed is greater than the preset rotation speed threshold.
- the step of detecting whether there is a user in the surrounding environment where the indoor unit is located includes:
- the predetermined area is, for example, an area within an angular range of 160° based on the plane of the entire unit, and another example is an area that is greatly affected by the air supply mode of the indoor unit.
- the method before the step of detecting whether there is a user in the surrounding environment where the indoor unit is located, the method further includes:
- the air conditioner 100 entering the cooling state for the first time can include two situations, one is that the air conditioner 100 is powered on for the first time and enters the cooling state, and the other is that the air conditioner 100 is not powered on for the first time but enters the cooling state for the first time or is in the heating state for the first time. Or the air supply state is switched to the cooling state.
- the control method of the air conditioner 100 of the present invention detects whether there is a user in the surrounding environment where the indoor unit is located after the detected exhaust temperature enters a stable state.
- the preset temperature difference threshold may be, for example, 1°C, 2°C, and 3°C.
- step S504 the frequency of the compressor 170 of the air conditioner 100 and the rotation speed of the fan 120 of the indoor unit are adjusted based on the coil temperature of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold.
- the steps include:
- the compressor 170 When the coil temperature is less than the first preset temperature threshold and greater than the second preset temperature threshold, the compressor 170 is controlled to run at the second preset frequency, and the fan 120 runs at the second preset speed, where the second preset frequency is less than The first preset frequency, and the second preset speed is less than the first preset speed;
- the compressor 170 is controlled to run at the third preset frequency, and the fan 120 runs at the third preset speed, where the third preset frequency is less than the second preset frequency, and the first 3.
- the preset rotation speed is less than the second preset rotation speed.
- the coil temperature of the heat exchanger 220 of the indoor unit is lower than the first preset temperature threshold, the frequency of the compressor 170 is reduced, and the speed of the fan 120 is reduced. If the coil temperature of 220 is lower than the second preset temperature threshold, the compressor 170 is reduced in frequency again, and the fan 120 is reduced in speed again, which can avoid freezing protection when the coil temperature is too low.
- the first preset temperature threshold may be 12°C ⁇ 2°C, for example, 10°C, 12°C, or 14°C.
- the second preset temperature threshold may be 6°C ⁇ 1°C, for example, 5°C, 6°C, or 7°C.
- the first preset frequency is, for example, 65 Hz.
- the first preset rotation speed is, for example, 900 r/min.
- the second preset frequency is less than the first preset frequency, and may be, for example, 60 Hz.
- the second preset rotation speed is less than the first preset rotation speed, and may be, for example, 860 r/min.
- the third preset frequency is smaller than the second preset frequency, and may be, for example, 45 Hz.
- the third preset rotation speed is less than the second preset rotation speed, and may be, for example, 760 r/min.
- the magnitude of decrease of the third preset frequency relative to the second preset frequency is greater than the magnitude of decrease of the third preset rotational speed relative to the second preset rotational speed, achieving the effect of a higher rotational speed and a lower frequency.
- the first preset temperature threshold is 12°C
- the second preset temperature threshold is 6°C
- the first preset frequency is 65Hz
- the first preset speed is 900r/min
- the second preset frequency is 60Hz
- the second preset temperature is 60Hz.
- the rotation speed is 860r/min
- the third preset frequency is 45Hz
- the third preset rotation speed is 760r/min as an example.
- the compressor is controlled 170 runs at 65Hz and fan 120 runs at 900r/min; when the detected coil temperature of the heat exchanger 220 of the indoor unit is 8°C, control compressor 170 to run at 60Hz and fan 120 to run at 860r/min; when When the detected coil temperature of the heat exchanger 220 of the indoor unit is 5°C, the compressor 170 is controlled to operate at 45 Hz, and the fan 120 is operated at 760 r/min.
- the detection of the coil temperature of the heat exchanger 220 of the indoor unit is performed in real time, and the control of the compressor 170 and the fan 120 according to the coil temperature is also performed in real time.
- the control method of the air conditioner 100 of the present invention includes the following steps:
- the air conditioner 100 receives a natural wind control instruction.
- S606 Control the air conditioner 100 to supply air in a natural wind mode: randomly adjust the rotation speed of the fan 120 intermittently, freely swing a plurality of horizontal pendulum blades 160, and freely swing a plurality of vertical pendulum blades 150.
- S608 Determine whether the air conditioner 100 enters the cooling state for the first time.
- step S610 If the judgment result of step S608 is no, judge whether there is a user in the surrounding environment where the indoor unit is located.
- step S608 execute the following steps:
- S614 Determine whether the difference between two adjacent exhaust temperatures is less than or equal to a preset temperature difference threshold, where:
- step S614 If the judgment result of step S614 is yes, the air conditioner 100 continues to operate for, for example, 1 min, and then step S610 is executed;
- step S614 If the judgment result of step S614 is no, return to step S612 and continue to obtain the exhaust temperature of the compressor 170 until the judgment result of step S614 is yes.
- step S616 If the judgment result of step S610 is no, the air conditioner 100 operates according to the first program.
- the first program may be a program previously set by the user, or may be a program pre-stored in the air conditioner 100.
- the horizontal swing blade 160 and the vertical swing blade 150 swing according to a user-set pattern, the compressor 170 runs at a first preset frequency, and the fan 120 runs at a first preset speed.
- step S618 If the judgment result of step S610 is yes, judging whether the speed is greater than the preset speed threshold, including obtaining the speed of the fan 120 and determining whether the speed is greater than the preset speed threshold or obtaining the wind speed gear position of the fan 120 and judging the wind speed gear position Whether it is a high windshield;
- step S606 is executed.
- step S620 If the judgment result of step S618 is no, the air conditioner 100 operates according to the second program.
- the second program may be a program set by the user before, or a program pre-stored in the air conditioner 100, and the rotation speed of the fan 120 in the second program is lower than the rotation speed of the fan 120 in the first program, and the compressor in the second program
- the frequency of 170 is lower than the frequency of compressor 170 in the first procedure.
- the horizontal swing blade 160 and the vertical swing blade 150 swing according to a user-set mode
- the compressor 170 runs at a fourth preset frequency
- the fan 120 runs at a fourth preset speed
- the fourth preset frequency is less than the third preset Frequency
- the fourth preset speed is less than the third preset speed.
- the fourth preset frequency may be, for example, 35 Hz
- the fourth preset speed may be, for example, 600 r/min.
- step S606 After the air conditioner 100 performs step S606, the following steps are performed:
- S624 Determine whether the coil temperature is greater than or equal to the first preset temperature threshold
- step S626 If the judgment result of step S624 is yes, control the compressor 170 to run at the first preset frequency and the fan 120 to run at the first preset speed;
- step S628 If the judgment result of step S624 is no, judge whether the coil temperature is greater than the second preset temperature threshold;
- step S630 If the judgment result of step S628 is yes, the compressor 170 is controlled to run at the second preset frequency, and the fan 120 runs at the second preset speed, where the second preset frequency is less than the first preset frequency, and the second preset frequency The rotation speed is less than the first preset rotation speed;
- step S632 If the judgment result of step S628 is no, control the compressor 170 to run at the third preset frequency, and the fan 120 to run at the third preset speed, where the third preset frequency is less than the second preset frequency, and the third preset frequency The rotation speed is less than the second preset rotation speed.
- the control method of the air conditioner 100 proposes that when the air conditioner 100 is in the cooling state, whether there is a user and the rotation speed of the fan 120 of the indoor unit in the surrounding environment where the indoor unit of the air conditioner 100 is located or whether the air conditioner 100 is The natural wind control command is received to adjust the air supply mode of the air conditioner 100, so that the air supply mode of the air conditioner 100 in the cooling state is associated with the user and the speed of the fan 120 or with the control command, so that the control of the air conditioner 100 is more precise.
- the control method of the air conditioner 100 of the present invention is also based on the coil temperature of the indoor unit, the first preset temperature threshold, and the second preset temperature threshold to control the frequency of the compressor 170 and the rotation speed of the fan 120 of the indoor unit The adjustment makes the control of the entire air conditioner 100 more precise.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调器的控制方法, 包括: 空调器处于制冷状态, 基于空调器的室内机所处的周围环境是否存在用户和室内机的风机的转速或者基于空调器是否接收到自然风控制指令调节空调器的送风模式, 其中送风模式包括自然风模式; 基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈值调节空调器的压缩机的频率和风机的转速, 其中第一预设温度阈值大于第二预设温度阈值。本发明的空调器的控制方法可以使用户感受到更加舒适的自然风, 提高用户的吹风感受, 同时整个空调器的控制更为精准。本发明还提供一种空调器。
Description
本发明涉及空气调节技术领域,特别是涉及一种空调器的控制方法及空调器。
随着科技的发展,舒适性、高科技、智能化是家电市场目前发展的趋势,如何更直观、更舒适、更智能化的满足用户需求,是市场急需研究的课题。空调器的室内机在运行过程中,通常会出现制冷时出风口对人直吹,让用户产生过冷的感觉。
发明内容
本发明的一个目的是要提供一种提高制冷状态下用户吹风感受的空调器的控制方法。
本发明一个进一步的目的是要提供一种吹风方式更接近自然风的空调器的控制方法。
本发明又一个进一步的目的是要提供一种提高用户吹风感受的空调器。
特别地,本发明提供了一种空调器的控制方法,包括:
空调器处于制冷状态,基于空调器的室内机所处的周围环境是否存在用户和室内机的风机的转速或者基于空调器是否接收到自然风控制指令调节空调器的送风模式,其中送风模式包括自然风模式;
基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈值调节空调器的压缩机的频率和风机的转速,其中第一预设温度阈值大于第二预设温度阈值。
可选地,室内机的出风口处设置有摆叶组件,摆叶组件包括用于调节上下方向出风的多个横摆叶和用于调节左右方向出风的多个竖摆叶;
基于室内机所处的周围环境是否存在用户和室内机的风机的转速或者基于空调器是否接收到自然风控制指令调节空调器的送风模式的步骤包括:在检测到室内机所处的周围环境存在用户且风机的转速大于预设转速阈值时或者在空调器接收到自然风控制指令时,控制空调器以自然风模式送风,其中自然风模式中,随机间歇调整风机的转速,自由摆动多个横摆叶,自由 摆动多个竖摆叶。
可选地,随机间歇调整风机的转速的步骤包括:
以随机方式生成风机的多个连续的转速调节周期,其中每个转速调节周期内限定有相应的预设转速变化方向、预设转速变化值和预设维持时间;
控制风机的转速按照一个转速调节周期的预设转速变化方向调整预设转速变化值并保持预设维持时间,之后进行下一个转速调节周期。
可选地,预设转速变化方向包括增速和减速;
以随机方式生成的多个连续的转速调节周期满足:风机的转速的最大增速值小于等于预设增速阈值,风机的转速的最大减速值小于等于预设减速阈值。
可选地,自由摆动多个横摆叶的步骤包括:以随机方式生成多个横摆叶的摆动参数,多个横摆叶的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于多个横摆叶的摆动参数对多个横摆叶进行控制;
自由摆动多个竖摆叶的步骤包括:以随机方式生成多个竖摆叶的摆动参数,多个竖摆叶的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于多个竖摆叶的摆动参数对多个竖摆叶进行控制。
可选地,多个横摆叶在上下方向的最大摆动角度的取值范围是20°-160°;
多个竖摆叶在左右方向的最大摆动角度的取值范围是0°-180°;
每个横摆叶上沿左右方向依次形成有多个弯折结构,且每个横摆叶的上表面形成有多个凸起;
每个竖摆叶上沿上下方向依次形成有多个弯折结构。
可选地,检测室内机所处的周围环境是否存在用户以及检测风机的转速是否大于预设转速阈值的步骤包括:
检测室内机所处的周围环境是否存在用户;
若是,判断风机的转速与预设转速阈值的大小。
可选地,检测室内机所处的周围环境是否存在用户的步骤包括:
获取室内机前预定区域内的周围环境的图像;
判断图像中是否存在人脸图像;
若是,确定室内机所处的周围环境存在用户。
可选地,基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈 值调节空调器的压缩机的频率和风机的转速的步骤包括:
实时获取室内机的盘管温度;
判断盘管温度与第一预设温度阈值、第二预设温度阈值的大小;
当盘管温度大于等于第一预设温度阈值时,控制压缩机以第一预设频率运行,风机以第一预设转速运行;
当盘管温度小于第一预设温度阈值、大于第二预设温度阈值时,控制压缩机以第二预设频率运行,风机以第二预设转速运行,其中第二预设频率小于第一预设频率,第二预设转速小于第一预设转速;
当盘管温度小于等于第二预设温度阈值时,控制压缩机以第三预设频率运行,风机以第三预设转速运行,其中第三预设频率小于第二预设频率,第三预设转速小于第二预设转速。
本发明还提供了一种空调器,包括:
检测装置,配置成检测室内机所处的周围环境是否存在用户以及检测风机的转速;
接收装置,用于接收自然风控制指令;以及
控制装置,包括存储器和处理器,存储器内存储有控制程序,当控制程序被处理器执行时,用于实现前述的控制方法。
本发明的空调器的控制方法提出当空调器处于制冷状态时,基于室内机所处的周围环境是否存在用户和室内机的风机的转速或者基于空调器是否接收到自然风控制指令调节空调器的送风模式,使得空调器在制冷状态时的送风模式与用户、风速、控制指令相关联,使得空调器的控制更精准;同时,本发明的空调器的控制方法还基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈值来对压缩机的频率和室内机的风机的转速进行调节,使得整个空调器的控制更为精准。
进一步地,本发明的空调器的控制方法提出在检测到室内机所处的周围环境存在用户且风机的转速大于预设转速阈值时或者在空调器接收到自然风控制指令时,控制空调器以自然风模式送风,可以使用户感受到更加舒适的自然风,提高用户的吹风感受;同时,自然风模式中,随机间歇调整风机的转速,自由摆动多个横摆叶,自由摆动多个竖摆叶,可以使吹风方式更接近自然风,提高用户吹风感受。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将 会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器的立体示意图。
图2是图1所示的空调器出风口打开时的立体示意图。
图3是图1所示的空调器的部分部件的局部放大立体示意图。
图4是图1所示的空调器的控制装置及相关部件的示意图。
图5是图1所示的空调器的控制方法的流程示意图。
图6是图1所示的空调器的控制方法的详细流程示意图。
图1是根据本发明一个实施例的空调器100的立体示意图。图2是图1所示的空调器100的出风口113打开时的立体示意图。图4是图1所示的空调器100的控制装置200及相关部件的示意图。本发明实施例的空调器100为分体式空调器100,包括柜式室内机和室外机。室内机一般包括壳体110、风机120、电机121、风道组件和控制装置200。风机120设置在壳体110内,用于向室内空间送风。在壳体110前侧的前面板111上开设有出风口113,在壳体110的后侧设置有进风口(图中未示出)。在出风口113处设置有可移动的导板112,通过将导板112移入前面板111内侧来使出风口113显露,通过将导板112移出前面板111内侧来使出风口113封闭。风机120位于出风口113的后方,是沿轴线竖向延伸的贯流风机。电机121设置于风机120的顶部。风道组件设置在风机120与前面板111之间,具有风道骨架130,限定出前后敞开的导风腔室。在风道骨架130上设置有面板卡槽131,用于风道组件与前面板111固定。控制装置200包括存储器201和处理器202,存储器201内存储有控制程序210,当控制程序210被处理器202执行时,用于实现本发明实施例的空调器100的控制方法。本发明实施例的空调器100采用压缩制冷循环系统,在室外机内设置有压缩机170、风机(图中未示出)和换热器(图中未示出)等。在风机120的驱动下,室内空气经过进风口进入壳体110,与室内机的换热器220换热后降温(制冷时)或升温(制 热时)后,经出风口113吹向室内,实现制冷或制热。图5是图1所示的空调器100的控制方法的流程示意图,本发明实施例的空调器100的控制方法包括步骤:
S502:空调器100处于制冷状态,基于空调器100的室内机所处的周围环境是否存在用户和室内机的风机120的转速或者基于空调器100是否接收到自然风控制指令调节空调器100的送风模式,其中送风模式包括自然风模式;
S504:基于室内机的换热器220的盘管温度、第一预设温度阈值、第二预设温度阈值调节空调器100的压缩机170的频率和风机120的转速,其中第一预设温度阈值大于第二预设温度阈值。
本发明的空调器100的控制方法提出当空调器100处于制冷状态时,基于空调器100的室内机所处的周围环境是否存在用户和室内机的风机120的转速或者基于空调器100是否接收到自然风控制指令调节空调器100的送风模式,使得空调器100在制冷状态时的送风模式与用户、风机120转速、控制指令相关联,使得空调器100的控制更精准;同时,本发明的空调器100的控制方法还基于室内机的换热器220的盘管温度、第一预设温度阈值、第二预设温度阈值来对压缩机170的频率和室内机的风机120的转速进行调节,使得整个空调器100的控制更为精准,更精细化。空调器100的送风模式中至少限定有风机120的转速。
如图3所示,在出风口113处还设置有摆叶组件140,摆叶组件140包括多个横摆叶160和多个竖摆叶150。多个横摆叶160水平延伸设置,用于调节上下方向出风。多个竖摆叶150竖向延伸设置,用于调节左右方向出风。步骤S502包括:在检测到室内机所处的周围环境存在用户且风机120的转速大于预设转速阈值时或者在空调器100接收到自然风控制指令时,控制空调器100以自然风模式送风,其中自然风模式中,随机间歇调整风机120的转速,自由摆动多个横摆叶160,自由摆动多个竖摆叶150。通常在空调器100以强风送冷时会出现空调器100直吹人体的情况,特别是当用户正对着空调器100时,冷风会对人体部位尤其是人体面部直吹,让用户产生过冷感。本发明的空调器100的控制方法提出当空调器100处于制冷状态时,通过将空调器100设置成在检测到空调器100的室内机所处的周围环境存在用户且室内机的风机120的转速大于预设转速阈值时或者在空调器100接收到自然 风控制指令时,控制空调器100以自然风模式送风,使得空调器100在满足一定条件时自动、强制开启自然风送风模式,避免冷风对人体部位的直吹所产生的过冷感,提高用户的吹风感受;同时,本发明实施例的空调器100的控制方法的自然风模式是通过对风机120、横摆叶160、竖摆叶150分别进行不同的控制来实现,可以使吹风方式更接近自然风,提高用户吹风感受;空调器100整体实现了智能控制,不仅节省了能源,而且满足了用户需求,提高了用户舒适性体验。
继续参见图3,横摆叶160由摆叶本体161、连杆162、长转轴和短转轴组成。长转轴嵌入风道骨架130,可随连杆162的拉动来上下转动。短转轴嵌在连杆162内,可随连杆162的转动来转动。在摆叶本体161上还随机设定有多个凸起163,凸起163优选地高度2-4mm,成椭圆状,短轴长2-4mm,长轴长4-6mm,主要作用是对出风形成不同方向的分散。多个横摆叶160可同步枢转以调节出风的上下方向。多个竖摆叶150可同步枢转以调节出风的左右方向。在一些实施例中,每个横摆叶160沿左右方向依次形成有多个弯折结构;每个竖摆叶150沿上下方向依次形成有多个弯折结构。例如,每个横摆叶160沿左右方向呈波浪形,每个竖摆叶150沿上下方向呈波浪形,来对风形成分散。多个横摆叶160在上下方向的最大摆动角度的取值范围是20°-160°。多个竖摆叶150在左右方向的最大摆动角度的取值范围是0°-180°。本发明实施例的空调器100通过对横摆叶160和竖摆叶150的结构进行改进,将横摆叶160设置成整体呈波浪形且具有多个凸起163,同时将竖摆叶150设置成整体呈波浪形,并且对风机120的转速随机间歇调整,以及对横摆叶160、竖摆叶150分别设置成自由摆动可以使吹风方式更接近自然风,提高用户吹风感受。
在一些实施例中,随机间歇调整风机120的转速的步骤包括:
以随机方式生成风机120的多个连续的转速调节周期,其中每个转速调节周期内限定有相应的预设转速变化方向、预设转速变化值和预设维持时间;
控制风机120的转速按照一个转速调节周期的预设转速变化方向调整预设转速变化值并保持预设维持时间,之后进行下一个转速调节周期。
本发明的空调器100的控制方法通过以随机方式生成风机120的多个连续的转速调节周期,可以实现风机120的转速的无规律增减,形成自由送风, 模拟自然界达到突涌式送风的效果。空调器100还包括:第一随机生成装置(图中未示出),第一随机生成装置配置成以随机方式生成风机120的多个连续的转速调节周期,其中每个转速调节周期内限定有相应的预设转速变化方向、预设转速变化值和预设维持时间。可以根据随机函数生成多个连续的转速调节周期的随机量;也可以利用空调器100运行中产生的随机信号作为随机函数的生成种子,进而生成转速调节周期的随机量;还可以是直接使用空调器100中的随机信号作为信号源,进而生成转速调节周期的随机量。例如,可将转速检测装置获取的信号的最后几位数字进行处理后,生成转速调节周期的随机量。预设转速变化方向包括增速、减速;预设转速变化值可以依照需要设定,例如为10r/min、15r/min、20r/min、30r/min,预设维持时间可以依照需要设定,例如为10s、30s、1min、2min、5min。以空调器100内存储有5个的不同的转速调节周期a、b、c、d、e,随机生成3个转速调节周期,初始转速为900r/min为例,其中转速调节周期a中限定有:增速、预设转速变化值为10r/min、预设维持时间为30s;转速调节周期b中限定有:减速、预设转速变化值为20r/min、预设维持时间为10s;转速调节周期c中限定有:增速、预设转速变化值为20r/min、预设维持时间为1min;转速调节周期d中限定有:减速、预设转速变化值为30r/min、预设维持时间为1min;转速调节周期e中限定有:增速、预设转速变化值为30r/min、预设维持时间为1min。风机120的转速可以是匀速变化,也可以是变速变化。假定第一随机生成装置随机生成的多个连续的转速调节周期包括转速调节周期a、转速调节周期a、转速调节周期b,意味着风机120的转速先增速10r/min至910r/min,以910r/min保持运行30s,之后增速10r/min至920r/min,以920r/min保持30s,再减速20r/min至900r/min,以900r/min保持10s。又例如,第一随机生成装置随机生成的连续的转速调节周期包括转速调节周期b、转速调节周期c、转速调节周期e。再例如,第一随机生成装置随机生成的连续的转速调节周期包括转速调节周期c、转速调节周期a、转速调节周期e。在一些实施例中,以随机方式生成的多个连续的转速调节周期满足:风机120的转速的最大增速值小于等于预设增速阈值,风机120的转速的最大减速值小于等于预设减速阈值。预设增速阈值用于限定出风机120的转速的最大增速范围,预设减速阈值用于限定出风机120的转速的最大减速范围。预设增速阈值和预设减速阈值可以相同,也可以不同。换句话说,风机120的转速的 取值范围是初始转速与预设减速阈值的差-初始转速与预设增速阈值的和。依然以风机120的初始转速为900r/min为例,假设预设增速阈值和预设减速阈值均为30r/min,则风机120的转速的取值范围是870r/min-930r/min。此时,第一随机生成装置在随机生成多个连续的转速变化周期时,还需要将预设增速阈值和预设减速阈值考虑到,这样可以将例如多个连续的转速调节周期为转速调节周期c、转速调节周期e、转速调节周期d的情形排除在外,使得风机120的转速的变化不至于过大,而是在一定范围内无规律增减,使用户的吹风体验更好。
在一些实施例中,自由摆动多个横摆叶160的步骤包括:以随机方式生成多个横摆叶160的摆动参数,多个横摆叶160的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于多个横摆叶160的摆动参数对多个横摆叶160进行控制。
空调器100还包括:第二随机生成装置,第二随机生成装置配置成:以随机方式生成多个横摆叶160的摆动参数。摆动方向包括向上摆动和向下摆动,摆动角度例如2°、5°、10°、20°、30°,摆动速度例如2°/min、5°/min、10°/min、15°/min、20°/min。具体地,自由摆动多个横摆叶160可以参考前述的随机间歇风机120的转速部分的步骤,例如包括:以随机方式生成横摆叶160的多个连续的摆动调节周期,其中每个摆动调节周期内限定有相应的预设摆动方向、预设摆动角度和预设摆动速度;控制横摆叶160按照一个摆动调节周期进行摆动,之后进行下一个摆动调节周期。以空调器100内存储有5个的不同的横摆叶160摆动调节周期A、B、C、D、E,随机生成3个摆动调节周期,初始横摆叶160的摆动角度为60°为例,其中摆动调节周期A中限定有:向上摆动、预设摆动角度为2°、预设摆动速度为5°/min;摆动调节周期B中限定有:向上摆动、预设摆动角度为10°、预设摆动速度为5°/min;摆动调节周期C中限定有:向下摆动、预设摆动角度为20°、预设摆动速度为5°/min;摆动调节周期D中限定有:向下摆动、预设摆动角度为2°、预设摆动速度为5°/min;摆动调节周期E中限定有:向下摆动、预设摆动角度为10°、预设摆动速度为10°/min。假定第二随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期A、摆动调节周期A、摆动调节周期D,意味着横摆叶160先以5°/min向上摆动2°至摆动角度为62°,之后以5°/min向上摆动2°至摆动角度为64°,再以5° /min向下摆动2°至摆动角度为62°。又例如,第二随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期A、摆动调节周期B、摆动调节周期E。再例如,第二随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期E、摆动调节周期B、摆动调节周期D。
在一些实施例中,自由摆动多个竖摆叶150的步骤包括:以随机方式生成多个竖摆叶150的摆动参数,多个竖摆叶150的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于多个竖摆叶150的摆动参数对多个竖摆叶150进行控制。
空调器100还包括:第三随机生成装置,第三随机生成装置配置成:以随机方式生成多个竖摆叶150的摆动参数。摆动方向包括向左摆动和向右摆动,摆动角度例如2°、5°、10°、20°、30°,摆动速度例如2°/min、5°/min、10°/min、15°/min、20°/min。具体地,自由摆动多个竖摆叶150可以参考前述的随机间歇风机120的转速部分的步骤,例如包括:以随机方式生成竖摆叶150的多个连续的摆动调节周期,其中每个摆动调节周期内限定有相应的预设摆动方向、预设摆动角度和预设摆动速度;控制竖摆叶150按照一个摆动调节周期进行摆动,之后进行下一个摆动调节周期。以空调器100内存储有5个的不同的竖摆叶150摆动调节周期A’、B’、C’、D’、E’,随机生成3个摆动调节周期,初始竖摆叶150的摆动角度为60°为例,其中摆动调节周期A’中限定有:向左摆动、预设摆动角度为2°、预设摆动速度为2°/min;摆动调节周期B’中限定有:向左摆动、预设摆动角度为10°、预设摆动速度为5°/min;摆动调节周期C’中限定有:向右摆动、预设摆动角度为20°、预设摆动速度为5°/min;摆动调节周期D’中限定有:向右摆动、预设摆动角度为2°、预设摆动速度为2°/min;摆动调节周期E’中限定有:向右摆动、预设摆动角度为10°、预设摆动速度为10°/min。假定第三随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期A’、摆动调节周期A’、摆动调节周期D’,意味着竖摆叶150先以2°/min向左摆动2°至摆动角度为62°,之后以2°/min向左摆动2°至摆动角度为64°,再以2°/min向右摆动2°至摆动角度为62°。又例如,第三随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期A’、摆动调节周期B’、摆动调节周期E’。再例如,第三随机生成装置随机生成的连续的摆动调节周期包括摆动调节周期E’、摆动调节周期B’、摆动调节周期D’。
在一些实施例中,步骤S502中,空调器100接收到自然风控制指令时,控制空调器100以自然风模式送风。室内机还包括接收装置190,用于接收自然风控制指令。例如,空调器100对应的遥控器上设有用于触发自然风控制指令的自然风按键,用户通过按压或点击该自然风按键触发自然风控制指令,在检测到该自然风按键触发的自然风控制指令时,遥控器等控制端将该自然风控制指令发送至接收装置190,在接收装置190收到该自然风控制指令后,控制装置200控制空调器100以自然风模式送风。
在一些实施例中,步骤S502中,检测到空调器100的室内机所处的周围环境存在用户且室内机的风机120的转速大于预设转速阈值时,控制空调器100以自然风模式送风。室内机还包括检测装置180,配置成检测室内机所处的周围环境是否存在用户以及检测风机120的转速。检测装置180可以是包括人体检测装置和转速检测装置。人体检测装置可以是智能人体/人脸感应装置。
步骤S502中,检测室内机所处的周围环境是否存在用户以及检测风机120的转速是否大于预设转速阈值的步骤包括:
检测室内机所处的周围环境是否存在用户;
若是,判断风机120的转速与预设转速阈值的大小。
本发明的控制方法先检测室内机所处的周围环境是否存在用户,仅在当室内机所处的周围环境存在用户时,再判断风机120的转速与预设转速阈值的大小,可以使整个控制逻辑更精简。转速与预设转速阈值的大小判断可以是通过精准获取风机120的转速来与预设转速阈值来确定。例如,预设转速阈值为800r/min,当获取的风机120的转速为900r/min,则认为转速大于预设转速阈值,当获取的风机120的转速为760r/min,则认为转速小于预设转速阈值。转速与预设转速阈值的大小判断还可以是通过风机120所处的风速档位来粗略估算。通常,空调器100具有三个风速档位,低风档、中风档和高风档。当风速档位为中风档或低风档时,可以认为转速小于预设转速阈值,而在风速档位为高风档时,可以认为转速大于预设转速阈值。
在一些实施例中,检测室内机所处的周围环境是否存在用户的步骤包括:
获取室内机前预定区域内的周围环境的图像;
判断图像中是否存在人脸图像;
若是,确定室内机所处的周围环境存在用户。
预定区域例如是以整机平面为基准的160°角度范围内的区域,再例如是受室内机的送风模式影响较大的区域。
在一些实施例中,在检测室内机所处的周围环境是否存在用户的步骤之前还包括:
判断空调器100是否首次进入制冷状态;
若是,获取压缩机170的多个排气温度;
判断相邻的两个排气温度的差值是否小于等于预设温差阈值;
在确定差值小于等于预设温差阈值后,判断室内机所处的周围环境是否存在用户。
空调器100首次进入制冷状态可包括两种情形,一种是空调器100初次上电运行并进入制冷状态,一种是空调器100非初次上电运行但是首次进入制冷状态或者首次由制热状态或送风状态切换为制冷状态。本发明的空调器100的控制方法在检测到的排气温度进入稳定状态后,再检测室内机所处的周围环境是否存在用户,预设温差阈值例如可以为1℃、2℃、3℃。
在一些实施例中,步骤S504中,基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈值调节空调器100的压缩机170的频率和室内机的风机120的转速的步骤包括:
实时获取室内机的换热器220的盘管温度;
判断盘管温度与第一预设温度阈值、第二预设温度阈值的大小;
当盘管温度大于等于第一预设温度阈值时,控制压缩机170以第一预设频率运行,风机120以第一预设转速运行;
当盘管温度小于第一预设温度阈值、大于第二预设温度阈值时,控制压缩机170以第二预设频率运行,风机120以第二预设转速运行,其中第二预设频率小于第一预设频率,第二预设转速小于第一预设转速;
当盘管温度小于等于第二预设温度阈值时,控制压缩机170以第三预设频率运行,风机120以第三预设转速运行,其中第三预设频率小于第二预设频率,第三预设转速小于第二预设转速。
本发明的空调器100的控制方法通过在室内机的换热器220的盘管温度小于第一预设温度阈值,对压缩机170降频,对风机120降速,在室内机的换热器220的盘管温度小于第二预设温度阈值,对压缩机170再次降频,对 风机120再次降速,可以避免盘管温度过低出现冻结保护。第一预设温度阈值可以是12℃±2℃,例如为10℃、12℃、14℃。第二预设温度阈值可以是6℃±1℃,例如为5℃、6℃、7℃。第一预设频率例如为65Hz。第一预设转速例如为900r/min。第二预设频率小于第一预设频率,可以是例如为60Hz。第二预设转速小于第一预设转速,可以是例如为860r/min。第三预设频率小于第二预设频率,可以是例如为45Hz。第三预设转速小于第二预设转速,可以是例如为760r/min。特别地,第三预设频率相对于第二预设频率的降低幅度大于第三预设转速相对于第二预设转速的降低幅度,实现较高转速较低频率的效果。以第一预设温度阈值为12℃、第二预设温度阈值为6℃、第一预设频率为65Hz、第一预设转速为900r/min、第二预设频率为60Hz、第二预设转速为860r/min、第三预设频率为45Hz、第三预设转速为760r/min为例,当检测到的室内机的换热器220的盘管温度为14℃时,控制压缩机170以65Hz运行,风机120以900r/min运行;当检测到的室内机的换热器220的盘管温度为8℃时,控制压缩机170以60Hz运行,风机120以860r/min运行;当检测到的室内机的换热器220的盘管温度为5℃时,控制压缩机170以45Hz运行,风机120以760r/min运行。对室内机的换热器220的盘管温度的检测是实时进行的,依照盘管温度对压缩机170和风机120的控制也是实时进行的。
现参考图6,对本发明的空调器100的控制方法进行详述。本发明的空调器100的控制方法包括以下步骤:
S602:空调器100进入制冷状态。
S604:空调器100接收到自然风控制指令。
S606:控制空调器100以自然风模式送风:随机间歇调整风机120的转速,自由摆动多个横摆叶160,自由摆动多个竖摆叶150。
当空调器100未接收到自然风控制指令时,按照当前程序继续运行,并执行以下步骤:
S608:判断空调器100是否首次进入制冷状态。
S610:若步骤S608的判断结果为否,判断室内机所处的周围环境是否存在用户。
若步骤S608的判断结果为是,执行以下步骤:
S612:获取压缩机170的排气温度;
S614:判断相邻的两个排气温度的差值是否小于等于预设温差阈值,其中:
若步骤S614的判断结果为是,空调器100继续运行例如1min,之后执行步骤S610;
若步骤S614的判断结果为否,返回步骤S612,继续获取压缩机170的排气温度,直至步骤S614的判断结果为是。
S616:若步骤S610的判断结果为否,空调器100按照第一程序运行。其中,第一程序可以是之前用户设定的程序,也可以是空调器100内预存的程序。例如,横摆叶160、竖摆叶150依照用户设定的模式摆动,压缩机170以第一预设频率运行,风机120以第一预设转速运行。
S618:若步骤S610的判断结果为是,判断转速是否大于预设转速阈值,包括获取风机120的转速并判断转速是否大于预设转速阈值或者获取风机120所处的风速档位并判断风速档位是否是高风档;
若步骤S620的判断结果为是,执行步骤S606。
S620:若步骤S618的判断结果为否,空调器100按照第二程序运行。其中,第二程序可以是之前用户设定的程序,也可以是空调器100内预存的程序,且第二程序中风机120的转速小于第一程序中风机120的转速,第二程序中压缩机170的频率低于第一程序中压缩机170的频率。例如,横摆叶160、竖摆叶150依照用户设定的模式摆动,压缩机170以第四预设频率运行,风机120以第四预设转速运行,第四预设频率小于第三预设频率,第四预设转速小于第三预设转速。参照前文,第四预设频率可以是例如为35Hz,第四预设转速可以是例如为600r/min。
在空调器100执行步骤S606后,执行以下步骤:
S622:实时获取室内机的换热器220的盘管温度;
S624:判断盘管温度是否大于等于第一预设温度阈值;
S626:若步骤S624的判断结果为是,控制压缩机170以第一预设频率运行,风机120以第一预设转速运行;
S628:若步骤S624的判断结果为否,判断盘管温度是否大于第二预设温度阈值;
S630:若步骤S628的判断结果为是,控制压缩机170以第二预设频率运行,风机120以第二预设转速运行,其中第二预设频率小于第一预设频率, 第二预设转速小于第一预设转速;
S632:若步骤S628的判断结果为否,控制压缩机170以第三预设频率运行,风机120以第三预设转速运行,其中第三预设频率小于第二预设频率,第三预设转速小于第二预设转速。
本发明实施例的空调器100的控制方法提出当空调器100处于制冷状态时,基于空调器100的室内机所处的周围环境是否存在用户和室内机的风机120的转速或者基于空调器100是否接收到自然风控制指令调节空调器100的送风模式,使得空调器100在制冷状态时的送风模式与用户以及风机120转速相关联或者与控制指令相关联,使得空调器100的控制更精准;同时,本发明的空调器100的控制方法还基于室内机的盘管温度、第一预设温度阈值、第二预设温度阈值来对压缩机170的频率和室内机的风机120的转速进行调节,使得整个空调器100的控制更为精准。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种空调器的控制方法,包括:所述空调器处于制冷状态,基于所述空调器的室内机所处的周围环境是否存在用户和所述室内机的风机的转速或者基于所述空调器是否接收到自然风控制指令调节所述空调器的送风模式,其中所述送风模式包括自然风模式;基于所述室内机的盘管温度、第一预设温度阈值、第二预设温度阈值调节所述空调器的压缩机的频率和所述风机的转速,其中所述第一预设温度阈值大于所述第二预设温度阈值。
- 根据权利要求1所述的空调器的控制方法,其中,所述室内机的出风口处设置有摆叶组件,所述摆叶组件包括用于调节上下方向出风的多个横摆叶和用于调节左右方向出风的多个竖摆叶;所述基于所述室内机所处的周围环境是否存在用户和所述室内机的风机的转速或者基于所述空调器是否接收到自然风控制指令调节所述空调器的送风模式的步骤包括:在检测到所述室内机所处的周围环境存在用户且所述风机的转速大于预设转速阈值时或者在所述空调器接收到自然风控制指令时,控制所述空调器以所述自然风模式送风,其中所述自然风模式中,随机间歇调整所述风机的转速,自由摆动所述多个横摆叶,自由摆动所述多个竖摆叶。
- 根据权利要求2所述的空调器的控制方法,其中,所述随机间歇调整所述风机的转速的步骤包括:以随机方式生成所述风机的多个连续的转速调节周期,其中每个所述转速调节周期内限定有相应的预设转速变化方向、预设转速变化值和预设维持时间;控制所述风机的转速按照一个转速调节周期的所述预设转速变化方向调整所述预设转速变化值并保持所述预设维持时间,之后进行下一个转速调节周期。
- 根据权利要求3所述的空调器的控制方法,其中,所述预设转速变化方向包括增速和减速;以随机方式生成的所述多个连续的转速调节周期满足:所述风机的转速的最大增速值小于等于预设增速阈值,所述风机的转速的最大减速值小于等 于预设减速阈值。
- 根据权利要求2所述的空调器的控制方法,其中,所述自由摆动所述多个横摆叶的步骤包括:以随机方式生成所述多个横摆叶的摆动参数,所述多个横摆叶的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于所述多个横摆叶的摆动参数对所述多个横摆叶进行控制;所述自由摆动所述多个竖摆叶的步骤包括:以随机方式生成所述多个竖摆叶的摆动参数,所述多个竖摆叶的摆动参数包括摆动方向、摆动角度、摆动速度中的一种或多种,并基于所述多个竖摆叶的摆动参数对所述多个竖摆叶进行控制。
- 根据权利要求2所述的空调器的控制方法,其中,所述多个横摆叶在上下方向的最大摆动角度的取值范围是20°-160°;所述多个竖摆叶在左右方向的最大摆动角度的取值范围是0°-180°;每个所述横摆叶上沿左右方向依次形成有多个弯折结构,且每个所述横摆叶的上表面形成有多个凸起;每个所述竖摆叶上沿上下方向依次形成有多个弯折结构。
- 根据权利要求2所述的空调器的控制方法,其中,检测所述室内机所处的周围环境是否存在用户以及检测所述风机的转速是否大于所述预设转速阈值的步骤包括:检测所述室内机所处的周围环境是否存在用户;若是,判断所述风机的转速与所述预设转速阈值的大小。
- 根据权利要求7所述的空调器的控制方法,其中,所述检测所述室内机所处的周围环境是否存在用户的步骤包括:获取所述室内机前预定区域内的周围环境的图像;判断所述图像中是否存在人脸图像;若是,确定所述室内机所处的周围环境存在用户。
- 根据权利要求1所述的空调器的控制方法,其中,所述基于所述室内机的盘管温度、第一预设温度阈值、第二预设温度阈值调节所述空调器的压缩机的频率和所述风机的转速的步骤包括:实时获取所述室内机的盘管温度;判断所述盘管温度与所述第一预设温度阈值、所述第二预设温度阈值的 大小;当所述盘管温度大于等于所述第一预设温度阈值时,控制所述压缩机以第一预设频率运行,所述风机以第一预设转速运行;当所述盘管温度小于所述第一预设温度阈值、大于所述第二预设温度阈值时,控制所述压缩机以第二预设频率运行,所述风机以第二预设转速运行,其中所述第二预设频率小于所述第一预设频率,所述第二预设转速小于所述第一预设转速;当所述盘管温度小于等于所述第二预设温度阈值时,控制所述压缩机以第三预设频率运行,所述风机以第三预设转速运行,其中所述第三预设频率小于所述第二预设频率,所述第三预设转速小于所述第二预设转速。
- 一种空调器,包括:检测装置,配置成检测所述室内机所处的周围环境是否存在用户以及检测所述风机的转速;接收装置,用于接收自然风控制指令;以及控制装置,包括存储器和处理器,所述存储器内存储有控制程序,当所述控制程序被所述处理器执行时,用于实现根据权利要求1-9任一所述的控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010047685.0 | 2020-01-16 | ||
CN202010047685.0A CN111237992A (zh) | 2020-01-16 | 2020-01-16 | 空调器的控制方法及空调器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021143559A1 true WO2021143559A1 (zh) | 2021-07-22 |
Family
ID=70866909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/070142 WO2021143559A1 (zh) | 2020-01-16 | 2021-01-04 | 空调器的控制方法及空调器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111237992A (zh) |
WO (1) | WO2021143559A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111237992A (zh) * | 2020-01-16 | 2020-06-05 | 青岛海尔空调器有限总公司 | 空调器的控制方法及空调器 |
CN114738972A (zh) * | 2022-03-28 | 2022-07-12 | 青岛海尔空调器有限总公司 | 空调器的控制方法、装置及空调器 |
CN115875813B (zh) * | 2022-12-06 | 2024-07-19 | 珠海格力电器股份有限公司 | 送风控制方法、空调器及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106949541A (zh) * | 2017-03-30 | 2017-07-14 | 广东美的制冷设备有限公司 | 导风装置、导风控制方法和空调器 |
CN108278760A (zh) * | 2017-12-20 | 2018-07-13 | 青岛海尔空调器有限总公司 | 空调器的送风控制方法与计算机存储介质 |
CN108489035A (zh) * | 2018-03-09 | 2018-09-04 | 广东美的制冷设备有限公司 | 空调器控制方法、装置、空调器和可读存储介质 |
CN108826607A (zh) * | 2018-06-13 | 2018-11-16 | 芜湖美智空调设备有限公司 | 空调器控制方法、控制器及存储介质 |
CN108954703A (zh) * | 2018-06-13 | 2018-12-07 | 芜湖美智空调设备有限公司 | 空调器控制方法、控制器及存储介质 |
CN109405228A (zh) * | 2018-10-26 | 2019-03-01 | 美的集团武汉制冷设备有限公司 | 空调器及其控制方法、控制装置、可读存储介质 |
CN109751741A (zh) * | 2018-12-29 | 2019-05-14 | 广东美的暖通设备有限公司 | 用于风管式空调器的控制方法、装置及风管式空调器 |
CN111237992A (zh) * | 2020-01-16 | 2020-06-05 | 青岛海尔空调器有限总公司 | 空调器的控制方法及空调器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60165450A (ja) * | 1984-02-09 | 1985-08-28 | Matsushita Electric Ind Co Ltd | 空気調和機の暖房運転制御装置 |
CN105912041A (zh) * | 2015-10-15 | 2016-08-31 | 深圳和而泰智能控制股份有限公司 | 一种自然风模拟装置及方法 |
CN105588274B (zh) * | 2015-11-06 | 2018-09-25 | 青岛海信日立空调系统有限公司 | 一种自然风控制方法和装置 |
CN109210696B (zh) * | 2018-09-10 | 2020-11-03 | 青岛海尔空调器有限总公司 | 一种空调防冻结保护的控制方法 |
CN110285533B (zh) * | 2019-06-13 | 2021-05-25 | 青岛海尔空调器有限总公司 | 空调器的控制方法及空调器 |
-
2020
- 2020-01-16 CN CN202010047685.0A patent/CN111237992A/zh active Pending
-
2021
- 2021-01-04 WO PCT/CN2021/070142 patent/WO2021143559A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106949541A (zh) * | 2017-03-30 | 2017-07-14 | 广东美的制冷设备有限公司 | 导风装置、导风控制方法和空调器 |
CN108278760A (zh) * | 2017-12-20 | 2018-07-13 | 青岛海尔空调器有限总公司 | 空调器的送风控制方法与计算机存储介质 |
CN108489035A (zh) * | 2018-03-09 | 2018-09-04 | 广东美的制冷设备有限公司 | 空调器控制方法、装置、空调器和可读存储介质 |
CN108826607A (zh) * | 2018-06-13 | 2018-11-16 | 芜湖美智空调设备有限公司 | 空调器控制方法、控制器及存储介质 |
CN108954703A (zh) * | 2018-06-13 | 2018-12-07 | 芜湖美智空调设备有限公司 | 空调器控制方法、控制器及存储介质 |
CN109405228A (zh) * | 2018-10-26 | 2019-03-01 | 美的集团武汉制冷设备有限公司 | 空调器及其控制方法、控制装置、可读存储介质 |
CN109751741A (zh) * | 2018-12-29 | 2019-05-14 | 广东美的暖通设备有限公司 | 用于风管式空调器的控制方法、装置及风管式空调器 |
CN111237992A (zh) * | 2020-01-16 | 2020-06-05 | 青岛海尔空调器有限总公司 | 空调器的控制方法及空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN111237992A (zh) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021143559A1 (zh) | 空调器的控制方法及空调器 | |
CN107013978B (zh) | 空调室内机及其送风方法 | |
WO2019047859A1 (zh) | 壁挂式空调室内机及其控制方法 | |
CN107255307B (zh) | 空调 | |
CN110285533B (zh) | 空调器的控制方法及空调器 | |
WO2019024825A1 (zh) | 壁挂式空调室内机及其控制方法 | |
WO2019024824A1 (zh) | 壁挂式空调室内机及其控制方法 | |
WO2019024826A1 (zh) | 壁挂式空调室内机及其控制方法 | |
WO2019024820A1 (zh) | 壁挂式空调室内机及其控制方法 | |
WO2019144940A1 (zh) | 一种基于温冷感的空调器控制方法和空调器 | |
WO2019141018A1 (zh) | 空调器的控制方法与空调器 | |
CN106766007B (zh) | 一种空调器及提高空调器除霜过程舒适度的方法 | |
US10830484B2 (en) | Air-conditioning apparatus | |
CN113819529A (zh) | 一种空调柜机出风控制方法、装置及空调柜机 | |
CN110878981A (zh) | 空调器及其控制方法 | |
WO2021143562A1 (zh) | 空调器的控制方法及空调器 | |
CN110410961B (zh) | 空调器的控制方法及空调器 | |
WO2021023078A1 (zh) | 空调器的控制方法及空调器 | |
WO2021143563A1 (zh) | 空调器的控制方法及空调器 | |
CN114659255B (zh) | 一种空调器及其运行参数的控制方法 | |
CN111780230A (zh) | 一种空调器 | |
CN111237993A (zh) | 空调器的控制方法及空调器 | |
WO2024099213A1 (zh) | 空调及其控制方法 | |
JP2018179416A (ja) | 空気調和機 | |
WO2024114586A1 (zh) | 空调及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21741041 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21741041 Country of ref document: EP Kind code of ref document: A1 |