[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021142623A1 - 摄像模组及电子装置 - Google Patents

摄像模组及电子装置 Download PDF

Info

Publication number
WO2021142623A1
WO2021142623A1 PCT/CN2020/072039 CN2020072039W WO2021142623A1 WO 2021142623 A1 WO2021142623 A1 WO 2021142623A1 CN 2020072039 W CN2020072039 W CN 2020072039W WO 2021142623 A1 WO2021142623 A1 WO 2021142623A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
lens unit
optical axis
reflecting
lens
Prior art date
Application number
PCT/CN2020/072039
Other languages
English (en)
French (fr)
Inventor
朱丽冰
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2020/072039 priority Critical patent/WO2021142623A1/zh
Publication of WO2021142623A1 publication Critical patent/WO2021142623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to the field of optical technology, in particular to a camera module and an electronic device.
  • the conventional dual-camera structure currently on the market requires two lenses and two image sensors. Each lens cooperates with an image sensor to form a camera module, and each camera module works independently. For the above-mentioned dual-camera structure, the cost of the independent camera modules is relatively high.
  • a camera module and an electronic device are provided.
  • a camera module includes:
  • the first lens unit includes at least one lens
  • the second lens unit includes at least one lens
  • the movable reflecting unit is arranged on the optical axis of the first lens unit and the second lens unit, and can move in a predetermined direction;
  • the first reflecting unit is arranged on a side of the first lens unit away from the movable reflecting unit, and the first reflecting unit is used to reflect the first incident light to the first lens unit;
  • the second reflecting unit is arranged on a side of the second lens unit away from the movable reflecting unit, and the second reflecting unit is used to reflect the second incident light to the second lens unit;
  • the image sensor is arranged opposite to the moving reflection unit, and the moving reflection unit can be switched between a first position and a second position when moving in a predetermined direction, and when the moving reflection unit is located in the first position Position, the sports reflecting unit can reflect the light emitted from the first lens unit to the image sensor, and when the sports reflecting unit is in the second position, the sports reflecting unit can The light emitted from the second lens unit is reflected to the image sensor.
  • An electronic device includes a housing and the above-mentioned camera module, and the camera module is arranged on the housing.
  • FIG. 1 is a schematic diagram of a camera module in an embodiment of the application
  • FIG. 2 is a schematic diagram of the camera module in FIG. 1 being switched to another light path state
  • FIG. 3 is a schematic diagram of a camera module in another embodiment of the application.
  • FIG. 4 is a schematic diagram of a camera module with a three-camera structure in an embodiment of the application
  • FIG. 5 is a schematic diagram of a camera module with a four-camera structure in an embodiment of the application
  • FIG. 6 is a schematic diagram of an electronic device in an embodiment of the application.
  • FIG. 7 is a schematic diagram of an electronic device in an embodiment of the application.
  • Camera module 100 first optical axis 101, second optical axis 102, third optical axis 103, fourth optical axis 104, first normal 105, first lens unit 111, first reflecting unit 112, second lens Unit 121, second reflection unit 122, third lens unit 131, third reflection unit 132, fourth lens unit 141, fourth reflection unit 142, sports reflection unit 150, movement reflection surface 151, rotation axis 152, first The reflective surface 1511, the second reflective surface 1512, the image sensor 160, the housing 170, the cavity 171, the light through hole 172, the motion sensor 180, the electronic device 200, and the housing 210.
  • the conventional dual-camera structure currently on the market requires two lenses and two image sensors. Each lens cooperates with an image sensor to form a camera module, and each camera module works independently.
  • the cost of the independent camera modules is relatively high.
  • the embodiments of the present application provide a camera module to solve the current problem of high cost of dual-camera camera modules.
  • the camera module 100 includes a first lens unit 111, a second lens unit 121, a first reflection unit 112, a second reflection unit 122, a sports reflection unit 150, and an image Sensor 160.
  • the first lens unit 111 includes three lenses. The optical axes of the three lenses are all on the same straight line. The straight line and its extension are the optical axis of the first lens unit 111. The optical axis of the first lens unit 111 is called the first lens unit 111. ⁇ 101 ⁇ An optical axis 101.
  • the second lens unit 121 also includes three lenses, and the optical axes of the three lenses are also on the same straight line. The straight line and its extension are the optical axes of the second lens unit 121.
  • the optical axis of the second lens unit 121 is referred to as the second optical axis 102.
  • the first optical axis 101 and the second optical axis 102 are on the same straight line, and the movable reflecting unit 150 is disposed between the first lens unit 111 and the second lens unit 121, and is located at the first optical axis 101 and the second optical axis 102 superior.
  • the first reflecting unit 112 is disposed on the side of the first lens unit 111 away from the movable reflecting unit 150. The first reflecting unit 112 is used to reflect the first incident light to the first lens unit 111, and the first incident light is reflected by the first After the unit 112 is reflected, it will pass through the first lens unit 111 and then reach the sports reflection unit 150.
  • the second reflecting unit 122 is disposed on the side of the second lens unit 121 away from the moving reflecting unit 150, and the second reflecting unit 122 is used to reflect the second incident light to the second lens unit 121, and the second incident light is reflected by the second After being reflected by the unit 122, it will pass through the second lens unit 121 and then reach the sports reflecting unit 150.
  • the moving reflection unit 150 can move in a predetermined direction to reflect the light emitted from the first lens unit 111 or the second lens unit 121 to the image sensor 160.
  • first lens unit 111 and the second lens unit 121 in some embodiments include at least one lens, for example, one lens, two lenses, four lenses, or more lenses, and are not limited to the above embodiments. There are three lenses presented in the example, and the number of lenses and the lens structure of the first lens unit 111 and the second lens unit 121 may be the same or different.
  • the first reflecting unit 112 is an isosceles right-angle prism
  • the inclined surface of the prism is the reflecting surface of the first reflecting unit 112
  • the reflecting surface is 45 with the first optical axis 101. °Included angle
  • the second reflecting unit 122 is an isosceles right-angle prism
  • the inclined surface of the prism is the reflecting surface of the second reflecting unit 122
  • the reflecting surface forms an angle of 45° with the second optical axis 102.
  • a metal plating layer may be provided to make the slopes of the first reflection unit 112 and the second reflection unit 122 become reflection surfaces.
  • the first reflection unit 112 and the second reflection unit 122 may also have a plate shape or other shapes.
  • the image sensor 160 is disposed opposite to the moving reflective unit 150, and the center normal of the photosensitive surface of the image sensor 160 may be referred to as the first normal 105.
  • the photosensitive surface of the image sensor 160 faces the moving reflective unit 150, and the first normal 105 passes through the moving reflective unit 150.
  • the first normal 105 is in the same plane as the first optical axis 101 and the second optical axis 102.
  • the first normal 105 is perpendicular to the first optical axis 101 and the second optical axis 102. For the relationship between the three, please refer to FIGS. 1 and 2.
  • the image sensor 160 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the sports reflecting unit 150 is an isosceles right-angle prism.
  • the inclined surface of the isosceles right-angle prism is provided with a metal coating to form the sports reflecting surface 151 of the sports reflecting unit 150.
  • the sports reflecting unit 150 has a rotating shaft 152.
  • the reflection unit 150 can rotate around a rotation axis 152, and the rotation axis 152 is perpendicular to the first optical axis 101, the second optical axis 102 and the first normal 105.
  • the moving reflection surface 151 is parallel to the rotation axis 152. When the moving reflection unit 150 rotates around the rotation axis 152, the movement reflection surface 151 will synchronously rotate around the rotation axis 152.
  • the sports reflecting unit 150 rotates around the rotation axis 152
  • the sports reflecting unit 150 can rotate around the rotation axis 152 to be in the first position and Switch between the second positions.
  • the moving reflective unit 150 when the moving reflective unit 150 is located at the first position, the moving reflective surface 151 will face the first lens unit 111 and the image sensor 160, that is, the first lens unit 111 and the image sensor 160 are located on the moving reflective surface 151 at this time.
  • the first optical axis 101 and the first normal 105 both form an angle of 45° with the moving reflection surface 151, so that the moving reflection unit 150 can reflect the light emitted from the first lens unit 111 to the image sensor 160 . Referring to FIG.
  • the moving reflective surface 151 will face the second lens unit 121 and the image sensor 160, which is the second lens unit at this time 121 and the image sensor 160 are located on the same side of the moving reflection surface 151, and both the second optical axis 102 and the first normal 105 form an angle of 45° with the moving reflection surface 151, so that the moving reflection unit 150 can separate from the second lens
  • the light emitted by the unit 121 is reflected to the image sensor 160.
  • the reflective surface of the sports reflective unit 150 faces the lens unit, it does not mean that the optical axis of the lens unit has a vertical relationship with the reflective surface. In fact, it should be an inclined relationship, because the reflective surface needs The light from the lens unit is reflected to the image sensor 160.
  • the metal coating provided on the slope of the right-angle prism includes a surface close to the right-angle prism and a surface far away from the right-angle prism.
  • the surface close to the right-angle prism serves as the moving reflection surface 151, which is called the moving reflection surface.
  • the moving reflection surface 151 faces a certain side, it can be understood that the surface of the metal plating layer close to the right-angle prism faces this side, and the other surface away from the right-angle prism faces away from the side.
  • the moving reflective unit 150 When the moving reflective unit 150 is located at the first position or the second position, the light from the first lens unit 111 or the second lens unit 121 first passes through one side surface of the moving reflective unit 150 to enter it, and then on the moving reflective surface 151 Internal reflection occurs at the prism and is emitted to the image sensor 160 from the other side of the right-angle prism.
  • the moving reflection unit 150 located at the first position and the second position reflects light to the image sensor 160 by external reflection at the inclined surface. At this time, the surface of the metal coating away from the right-angle prism serves as the moving reflection surface. 151.
  • the moving reflective unit 150 is located at the first position to reflect the light from the first lens unit 111 to the image sensor 160. At this time, the light from the second lens unit 121 can also reach the moving reflective surface 151.
  • the moving reflective surface 151 in this embodiment is formed by metal plating, that is, both sides of the moving reflective surface 151 can reflect light, so the light from the second lens unit 121 will be externally reflected at the moving reflective surface 151 It is reflected in a direction away from the image sensor 160, so that the light from the second lens unit 121 cannot reach the image sensor 160 in this state.
  • the movable reflection unit 150 is rotated 90° counterclockwise around the rotation axis 152 to achieve the state shown in FIG. 2, and the movable reflection unit 150 is at the second position.
  • the light from the second lens unit 121 can be reflected by the moving reflective surface 151 to the image sensor 160, and the light from the first lens unit 111 will be reflected by the moving reflective surface 151 in a direction away from the image sensor 160. Therefore, the light from the first lens unit 111 cannot reach the image sensor 160 in this state.
  • the movable reflecting unit 150 can be switched between the first position and the second position, and the light from the first lens unit 111 or the second lens unit 121 can be selected for imaging on the image sensor 160.
  • the focal length of the first lens unit 111 is greater than the focal length of the second lens unit 121, so that the first lens unit 111 and the second lens unit 121 have different magnifications and different imaging effects.
  • the motion reflection unit 150 is controlled so that the light passing through the telephoto lens unit is selected to arrive when shooting a distant view.
  • the image sensor 160 selects the light passing through the wide-angle lens unit to reach the image sensor 160 when shooting close-up shots, so as to realize the switching of imaging effects of the camera module 100 in different shooting environments.
  • the light from the first lens unit 111 or the second lens unit 121 can be switched to the image sensor 160 by adjusting the rotation angle of the sports reflection unit 150, that is, the light from the first lens unit 111 or the second lens unit 121 can be switched to the image sensor 160 selectively.
  • the light from the second lens unit 121 is reflected to the image sensor 160, so that the two lens units (the first lens unit 111 and the second lens unit 121) share one image sensor 160, so that the camera module 100 is in a dual-camera structure.
  • an image sensor 160 can be omitted, thereby effectively reducing production costs.
  • the camera module 100 since light from different lens units overlaps in the optical paths between the moving reflective unit 150 and the image sensor 160, the effect of reducing the size of the module can be achieved.
  • the first lens unit 111 is disposed on the reflection light path of the first reflection unit 112
  • the second lens unit 121 is disposed on the reflection light path of the second reflection unit 122
  • the camera module 100 has a periscope type.
  • the dual-camera structure is beneficial to further reduce the size of the camera module 100.
  • the first optical axis 101 and the second optical axis 102 do not have to be arranged on the same straight line.
  • the first optical axis 101 and the second optical axis 102 may have an inclined angle on a plane, for example, the first optical axis 101 and the second optical axis 102 may be 60°, 70°, 80°, The included angle distribution of 90°, 100°, 110°, and 120° may be other angles, which are not listed here.
  • the camera module 100 can drive the sports reflection unit 150 by setting a rotating electric machine and a rotating gearbox.
  • the rotating gearbox is equipped with gears of different sizes, and the rotating shaft of the rotating electric machine meshes with the gears in the rotating gearbox.
  • the sports reflection unit 150 is also provided with gears, and the gears in the rotating gearbox mesh with the gears in the sports reflection unit 150, and the rotation speed of the sports reflection unit 150 can be controlled by setting the ratio of the size of the gears.
  • the rotation of the moving reflective unit 150 can also be driven by magnetic force.
  • a coil is provided in the camera module 100, a magnet is fixed on the moving reflective unit 150, and a limiter is set to limit the moving reflective unit.
  • the maximum rotation angle of 150 makes the sports reflective unit 150 correspond to the first lens unit 111 and the second lens unit 121 at the two maximum rotation angles respectively (as shown in Fig. 1 and Fig. 2), and the coil current is controlled to act on the magnet , In turn, the moving reflection surface 151 is rotated by the maximum rotation angle to correspond to the first lens unit 111 or the second lens unit 121.
  • the moving reflective unit 150 can also be arranged in translation in the camera module 100.
  • the first optical axis 101 and the second optical axis 102 are on the same straight line
  • the movable reflecting unit 150 is disposed in translation between the first lens unit 111 and the second lens unit 121, and moves
  • the translation direction of the reflective unit 150 is parallel to the first optical axis 101 and the second optical axis 102, and the translation direction is also perpendicular to the first normal 105.
  • the sports reflection unit 150 is an isosceles right-angle prism.
  • the side surfaces corresponding to the two right-angle sides of the isosceles right-angle prism are provided with a metal coating to form a reflective surface.
  • the metal coating can be made of materials with excellent reflectivity such as silver, aluminum, and titanium.
  • the moving reflection surface 151 includes a first reflection surface 1511 and a second reflection surface 1512.
  • the two side surfaces of the isosceles right-angle prism form the first reflection surface 1511 and the second reflection surface 1512, respectively.
  • the first reflecting surface 1511 faces the first lens unit 111
  • the second reflecting surface 1512 faces the second reflecting unit 122
  • the first optical axis 101 and the first normal 105 are respectively sandwiched by 45° with the first reflecting surface 1511.
  • the second optical axis 102 and the first normal 105 respectively form an included angle of 45° with the second reflecting surface 1512, and the above-mentioned included angle relationship will not change during the translation process of the movable reflecting unit 150.
  • the second reflecting surface 1512 is moved above the image sensor 160.
  • the second lens unit 121 and the image sensor 160 are both located on the same side of the second reflective surface 1512, so that the light from the second lens unit 121 can be reflected by the second reflective surface 1512 to the image sensor 160.
  • the first reflective surface 1511 will deviate from above the image sensor 160 after moving, so the light from the first lens unit 111 will not reach the image sensor 160 after being reflected by the first reflective surface 1511.
  • the moving reflecting unit 150 when it is necessary to switch the light from the first reflecting unit 112 and the first lens unit 111, by controlling the moving reflecting unit 150 to move toward the second lens unit 121, the first reflecting surface 1511 is moved above the image sensor 160 At this time, the first lens unit 111 and the image sensor 160 are both located on the same side of the first reflective surface 1511, so that the light from the first lens unit 111 can be reflected by the first reflective surface 1511 to the image sensor 160.
  • a telescopic motor is provided in the camera module 100, and the telescopic motor is connected to the movable reflecting unit 150.
  • the telescopic motor is used to drive the movable reflecting unit 150 to move.
  • the telescopic motor can be selected by controlling the telescopic distance of the telescopic motor. The light reaching the image sensor 160 achieves a switching effect.
  • the camera module 100 may also be provided with a translational track and a magnet, the movable reflection unit 150 is slidably arranged on the translational track, and the movable reflection unit 150 is provided with a coil, and the current of the coil is adjusted to A magnetic field is generated, and the moving reflection unit 150 is driven by the magnet to move on the translation track.
  • the movable reflection unit 150 adopting the rotating and translational design can increase the design diversity of the camera module 100, and facilitate the camera module 100 to adapt to more diverse installation environments.
  • the camera module 100 can also have a three-camera, four-camera, five-camera or even six-camera structure by adding a reflection unit and a lens unit.
  • the camera module 100 includes a third lens unit 131 and a third reflection unit 132, the third lens unit 131 includes at least one lens, the light of the lens in the third lens unit 131
  • the axis is on the same straight line, and the straight line and its extension are the optical axis of the third lens unit 131, and the optical axis of the third lens unit 131 is also referred to as the third optical axis 103.
  • the third optical axis 103 is in the same plane as the first optical axis 101 and the second optical axis 102, and the third optical axis 103 passes through the movable reflecting unit 150, the first optical axis 101, the second optical axis 102, and the third optical axis Any two of 103 form an angle of 120° with each other, and the third reflection unit 132 is disposed on a side of the third lens unit 131 away from the sports reflection unit 150.
  • the third reflection unit 132 is used for reflecting the third incident light to the third lens unit 131 and the moving reflection unit 150.
  • the third reflecting unit 132 has a reflecting surface which forms an angle of 45° with the third optical axis 103, and the reflecting surface of the third reflecting unit 132 is used to reflect the third incident light incident thereon.
  • the first normal 105 of the image sensor 160 is parallel to the rotation axis 152 of the moving reflection unit 150, and both are perpendicular to the plane where the first optical axis 101, the second optical axis 102, and the third optical axis 103 are located.
  • the type reflection unit 150 is located above the image sensor 160, that is, the photosensitive surface of the image sensor 160 faces the movement type reflection unit 150, and the first normal 105 passes through the movement type reflection unit 150, and the rotation axis 152 of the movement type reflection unit 150 is parallel to The first normal 105.
  • the moving reflective unit 150 when rotating around the rotation axis 152, namely the first position, the second position and the third position. Location. Similar to the description of the dual-camera structure, when the moving reflective unit 150 is rotated to the first position, the moving reflective surface 151 will face the first lens unit 111 and the image sensor 160, and the first optical axis 101 and the first normal 105 are respectively It forms an angle of 45° with the moving reflective surface 151.
  • the light from the first lens unit 111 will be reflected by the moving reflective surface 151 to the image sensor 160; when the moving reflective unit 150 is rotated to the second position, the moving reflective surface is rotated 151 will face the second lens unit 121 and the image sensor 160, and the second optical axis 102 and the first normal 105 will respectively form an angle of 45° with the moving reflection surface 151.
  • the light from the second lens unit 121 will be moved.
  • the reflecting surface 151 is reflected to the image sensor 160; when the moving reflecting unit 150 is rotated to the third position, the moving reflecting surface 151 will face the third lens unit 131, and the third optical axis 103 and the first normal 105 will be respectively reflected by the moving
  • the surface 151 forms an angle of 45°.
  • the light from the third lens unit 131 will be reflected by the moving reflection surface 151 to the image sensor 160.
  • two of the first optical axis 101, the second optical axis 102, and the third optical axis 103 are on the same straight line, and the other one forms an angle of 90° with the straight line.
  • the first optical axis 101, the second optical axis 102, and the third optical axis 103 may also have other angle distributions, which are not limited to the above examples.
  • the positions of the first reflecting unit 112, the second reflecting unit 122, and the third reflecting unit 132 should change with the change of the first optical axis 101, the second optical axis 102, and the third optical axis 103, respectively.
  • the installation position of the reflection unit should meet the above-mentioned requirements.
  • the moving reflective surface 151 when the moving reflective unit 150 is located at the first position, the moving reflective surface 151 is parallel to the reflective surface of the first reflective unit 112; when the moving reflective unit 150 is located at the second position, the moving reflective surface 151 is parallel to the reflective surface of the first reflective unit 112; The reflecting surface 151 is parallel to the reflecting surface of the second reflecting unit 122; when the moving reflecting unit 150 is located at the third position, the moving reflecting surface 151 is parallel to the reflecting surface of the third reflecting unit 132.
  • the moving reflective surface 151 when the moving reflective unit 150 is located at any of the three positions, the moving reflective surface 151 may also be in a vertical relationship with the reflective surface of the corresponding reflective unit.
  • the image sensor 160 is relatively moving.
  • the setting position of the reflection unit 150 is opposite to that in the above-mentioned embodiment.
  • the lens structure and the number of lenses in the third lens unit 131 may be the same as or different from the first lens unit 111 or the second lens unit 121.
  • the focal length of the third lens unit 131 in some embodiments may be the same as the focal lengths of the first lens unit 111 and the second lens unit 121, or may be different.
  • the design of different focal lengths enables the camera module 100 to switch between imaging effects of three magnifications, so that the camera module 100 can be applied to more shooting environments.
  • the moving reflective unit 150 by rotating the moving reflective unit 150 to realize the switching between the first position, the second position and the third position of the camera module 100, three lens units (the first lens unit 111, the second lens unit 121 and the The third lens unit 131) has the effect of sharing one image sensor 160. Compared with the traditional design, the two image sensors 160 are omitted, which can effectively reduce the production cost.
  • the above structure can also effectively reduce the size of the camera module 100, which is beneficial to the miniaturization design of the camera module 100.
  • the camera module since the third lens unit 131 is disposed on the reflection light path of the third reflection unit 132, the camera module has a periscope three-camera structure, which is beneficial to further reduce the size of the camera module 100.
  • the camera module 100 further includes a fourth lens unit 141 and a fourth reflection unit 142, the fourth lens unit 141 includes at least one lens, the fourth lens unit 141
  • the optical axis of the lens in the lens is on the same straight line, and the straight line and its extension are the optical axis of the fourth lens unit 141, and the optical axis of the fourth lens unit 141 is also referred to as the fourth optical axis 104.
  • the fourth optical axis 104 is in the same plane as the first optical axis 101, the second optical axis 102, and the third optical axis 103, and the fourth optical axis 104 passes through the movable reflecting unit 150, and the fourth reflecting unit 142 is disposed on the fourth lens
  • the unit 141 is away from the side of the sports reflection unit 150.
  • the fourth reflecting unit 142 is an isosceles right-angle prism, and the fourth reflecting unit 142 is used to reflect the fourth incident light to the fourth lens unit 141.
  • the fourth reflection unit 142 is provided with a metal plating layer on the inclined surface for reflecting incident light, and the metal plating layer forms the reflection surface of the fourth reflection unit 142.
  • the reflection surface forms an angle of 45° with the fourth optical axis 104.
  • the reflecting surface of the four reflecting unit 142 is used to reflect the fourth incident light incident thereon to the fourth lens unit 141, and the light passing through the fourth lens unit 141 will then be emitted to the moving reflecting unit 150.
  • the side corresponding to the right-angle side of the fourth reflecting unit 142 faces the object space, and the side corresponding to the other right-angle side faces the fourth lens unit 141.
  • the fourth incident light first passes through the aforementioned One of the side surfaces enters the fourth reflecting unit 142, and then the incident light reaches the metal coating at the inclined surface and undergoes internal reflection, and finally exits from the other side to the fourth lens unit 141.
  • the first optical axis 101 and the second optical axis 102 are on the same straight line
  • the third optical axis 103 and the fourth optical axis 104 are on the same straight line
  • the two straight lines are perpendicular to each other.
  • the first normal 105 of the image sensor 160 and the rotation axis 152 of the moving reflection unit 150 are both perpendicular to the plane where the first optical axis 101, the second optical axis 102, the third optical axis 103, and the fourth optical axis 104 are located.
  • the moving reflection unit 150 is located above the image sensor 160, and the rotation axis 152 of the moving reflection unit 150 is parallel to the first normal 105.
  • the camera module 100 has four states. In addition to the three positions of the three-camera structure in the above-mentioned embodiment, it also includes a fourth position.
  • the moving reflection unit 150 rotates around the rotation axis
  • the moving reflective surface 151 faces the fourth lens unit 141 and the image sensor 160, and the fourth optical axis 104 and the first normal 105 respectively form an angle of 45° with the moving reflective surface 151.
  • the light from the fourth lens unit 141 will be reflected by the moving reflection surface 151 to the image sensor 160.
  • the moving reflection surface 151 is parallel or perpendicular to the reflection surface on the corresponding reflection unit.
  • the movable reflecting unit 150 By rotating the movable reflecting unit 150 to realize the switching of the camera module 100 between the first position, the second position, the third position and the fourth position, four lens units (the first lens unit 111, the second lens unit 111) are realized. 121.
  • the third lens unit 131 and the fourth lens unit 141) share the effect of one image sensor 160. Compared with the traditional design, three image sensors 160 are omitted, which can effectively reduce the production cost and effectively reduce the camera model.
  • the size of the group 100 facilitates the miniaturization of the camera module 100.
  • the fourth lens unit 141 is disposed on the reflection light path of the fourth reflection unit 142, the camera module has a periscope four-camera structure, which is beneficial to further reduce the size of the camera module 100.
  • the lens structure and the number of lenses in the fourth lens unit 141 may be the same as or different from the first lens unit 111, the second lens unit 121, or the third lens unit 131.
  • the focal length of the fourth lens unit 141 in some embodiments may be the same as or different from the focal length of the first lens unit 111, the second lens unit 121, or the third lens unit 131.
  • the design of different focal lengths enables the camera module 100 to switch between the imaging effects of four magnifications, so that the camera module 100 can be applied to more shooting environments.
  • the rotation axis 152 of the moving reflection unit 150 may also be perpendicular to the first normal 105 in some embodiments, and only the moving reflection surface 151 needs to be positioned at It can be switched to other states after rotating.
  • the moving reflection unit 150 can also switch states in a translational driving manner.
  • the sports reflective unit 150 has four reflective surfaces, and each reflective surface always corresponds to a lens unit (the first lens unit 111, the second lens unit 121, the third lens unit 131, or the fourth lens unit 141). That is, the reflective surface always forms an angle of 45° with the optical axis of the lens unit and the first normal 105 respectively.
  • the moving reflective unit 150 can translate along the directions of the first optical axis 101, the second optical axis 102, the third optical axis 103, and the fourth optical axis 104, thereby moving the corresponding reflective surface above the image sensor 160, so that The light from the corresponding lens unit is reflected to the image sensor 160, so that the light from other lens units cannot reach the image sensor 160 even after being reflected, thereby realizing switching between different states.
  • the structure and movement state of the moving reflection unit 150 can refer to the above-mentioned embodiment with a four-camera structure, and will not be repeated here.
  • some embodiments may also High-reflectivity coatings and high-reflectivity films are provided on the corresponding surface of the reflecting unit to form a high-reflectivity reflecting surface on the corresponding surface, and the specific materials used can be metals, alloys, compounds, etc. A material that forms a highly reflective surface.
  • high reflectance may refer to reflectance greater than 80%, and specifically may be 85%, 90%, 93%, 95%, 98%, or 99%.
  • the sports reflection unit 150, the first reflection unit 112, the second reflection unit 122, the third reflection unit 132, and the fourth reflection unit 142 can be in addition to isosceles right-angle prisms, but can also have other shapes.
  • the angle between the line and the line in the above embodiments should be 90° in the ideal state, but the angle in the actual product may be 87° or 92°. It should be understood that the error within the range of 10% should also belong to this application The scope of record.
  • the camera module 100 includes a housing 170, the housing 170 is provided with a cavity 171, each lens unit (such as the first lens unit 111 and the second lens unit 121, some embodiments also include The third lens unit 131 and the fourth lens unit 141), the reflection unit (such as the first reflection unit 112 and the second reflection unit 122, some embodiments also include the third reflection unit 132 and the fourth reflection unit 142), The moving reflective unit 150 and the image sensor 160 are both disposed in the cavity 171.
  • the image sensor 160 may be electrically connected to the flexible circuit board, and one end of the flexible circuit board extends out of the housing 170 as a part that is electrically connected to other components.
  • the main components of the camera module 100 will be integrated in the cavity 171, so as to facilitate the overall installation and disassembly.
  • the optical path can be calibrated when it is integrated in the cavity 171 in the early stage, and when the disassembly and installation are repeated in the later stage. No need to repeat the calibration.
  • the camera module 100 is provided with at least two light-passing holes 172, the image sensor 160 is disposed on the cavity wall on one side of the cavity 171, and the light-passing hole 172 of the camera module 100 is opened on the other side of the cavity 171.
  • On one side of the cavity wall please refer to the structure shown in FIGS. 1 to 3 for details.
  • the incident light enters the cavity 171 through the light-passing hole 172, and then enters the corresponding reflecting unit, and then is reflected to the reflecting surface of the reflecting unit. Lens unit.
  • the light-passing hole 172 corresponds to each reflecting unit in the module one-to-one.
  • the first reflecting unit 112 and the second reflecting unit 122 each correspond to a light-passing hole 172.
  • the light-passing hole 172 may also be opened on the cavity wall on the same side as the image sensor 160.
  • the housing 170 is provided with two light-passing holes 172, and the two light-passing holes 172 respectively correspond to the first reflecting unit 112 and the second reflecting unit 122.
  • the two light-passing holes 172 respectively correspond to the first reflecting unit 112 and the second reflecting unit 122.
  • the camera module 100 includes a motion sensor 180.
  • the motion sensor 180 is disposed on the housing 170, that is, on the wall of the cavity 171.
  • the motion sensor 180 is used to sense the motion state of the motion reflection unit 150, and The motion state is fed back to the control system, so as to precisely adjust the motion state of the sports reflection unit 150.
  • the motion sensor 180 is used to sense the rotation angle of the motion reflection unit 150 in real time. When the motion reflection unit 150 does not rotate to a preset angle, the control system can sense it through the motion sensor 180 to continue driving the motion reflection unit. 150 rotations.
  • the inner wall of the cavity 171 is provided with a light-absorbing structure, such as black paint or other materials that can effectively absorb visible light.
  • a light-absorbing structure such as black paint or other materials that can effectively absorb visible light.
  • black paint By setting the black paint to absorb the interference light reaching the cavity wall, the interference light is prevented from being reflected to the image sensor 160 through the cavity wall, so as to avoid the interference light from affecting the normal imaging.
  • the image sensor 160 is receiving light from the first lens unit 111
  • the light from the second lens unit 121 may be reflected by the moving reflective surface 151 to the cavity wall.
  • the light-absorbing structure on the cavity wall can effectively absorb the light from the first lens unit 111. Two light from the lens unit 121.
  • the image sensor 160 includes an infrared filter for filtering infrared light.
  • the infrared filter can prevent infrared light from being received by the photosensitive surface of the image sensor 160, thereby preventing the infrared light from interfering with normal imaging.
  • an embodiment of the present application also provides an electronic device 200.
  • the electronic device 200 includes, but is not limited to, a smart phone, a tablet computer, a notebook computer, a personal digital assistant, a game console, a PC, an electronic book reader, and a portable multimedia. Players (PMP), mobile medical devices, smart wearable devices, etc.
  • the electronic device 200 includes a housing 210 on which the camera module 100 is installed.
  • the camera module 100 is applied to a smart phone, specifically as a front camera module of the smart phone.
  • the camera module 100 in some of the embodiments has a dual camera structure.
  • the camera module 100 is used as a rear camera module of a smart phone.
  • the camera module 100 in some of the embodiments has a dual-camera structure, a three-camera structure, a four-camera structure, a five-camera structure, or a six-camera structure.
  • the cost of the camera module in the electronic device 200 can be effectively reduced, and the periscope structure of the camera module 100 is beneficial to reduce the thickness of the electronic device 200, and is beneficial to the realization of the ultra-thin electronic device 200 design.
  • the "electronic device” used in the embodiment of the present invention may include, but is not limited to, it is set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, wireless local area networks (WLAN), such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital television network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals s installation.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • handheld digital video broadcasting digital video Broadcasting handheld, DVB-H
  • AM-FM amplitude modulation-frequency modulation
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种摄像模组(100),包括:第一镜头单元(111);第二镜头单元(121);运动型反射单元(150),设于第一镜头单元(111)和第二镜头单元(121)的光轴上,且可沿预定方向运动;第一反射单元(112),设于第一镜头单元(111)远离运动型反射单元(150)的一侧,用于将入射光反射至第一镜头单元(111);第二反射单元(122),设于第二镜头单元(121)远离运动型反射单元(150)的一侧,用于将入射光反射至第二镜头单元(121);及图像传感器(160),与运动型反射单元(150)相对设置,运动型反射单元(150)在沿预定方向运动时可以在第一位置和第二位置之间切换,以将自第一镜头单元(111)或第二镜头单元(121)出射的光线反射至图像传感器(160)。

Description

摄像模组及电子装置 技术领域
本发明涉及光学技术领域,特别是涉及一种摄像模组及电子装置。
背景技术
目前市场上的常规双摄结构需要设置两个镜头和两个图像传感器,每个镜头与一个图像传感器配合以构成一个摄像模组,每个摄像模组独立工作。对于上述双摄结构而言,相互独立设置的摄像模组的成本较高。
发明内容
根据本申请的各种实施例,提供一种摄像模组及电子装置。
一种摄像模组,包括:
第一镜头单元,包括至少一片透镜;
第二镜头单元,包括至少一片透镜;
运动型反射单元,设置于所述第一镜头单元和所述第二镜头单元的光轴上,且可沿预定方向运动;
第一反射单元,设置于所述第一镜头单元远离所述运动型反射单元的一侧,所述第一反射单元用于将第一入射光线反射至所述第一镜头单元;
第二反射单元,设置于所述第二镜头单元远离所述运动型反射单元的一侧,所述第二反射单元用于将第二入射光线反射至所述第二镜头单元;以及
图像传感器,与所述运动型反射单元相对设置,所述运动型反射单元在沿预定方向运动时可以在第一位置和第二位置之间切换,当所述运动型反射单元位于所述第一位置时,所述运动型反射单元可将自所述第一镜头单元出射的光线反射至所述图像传感器,当所述运动型反射单元位于所述第二位置时,所述运动型反射单元可将自所述第二镜头单元出射的光线反射至所述图像传感器。
一种电子装置,包括壳体及上述的摄像模组,所述摄像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例中的摄像模组的示意图;
图2为图1中的摄像模组切换至另一光路状态下的示意图;
图3为本申请另一实施例中的摄像模组的示意图;
图4为本申请一实施例中具有三摄结构的摄像模组的示意图;
图5为本申请一实施例中具有四摄结构的摄像模组的示意图;
图6为本申请一实施例中的电子装置的示意图;
图7为本申请一实施例中的电子装置的示意图。
摄像模组100、第一光轴101、第二光轴102、第三光轴103、第四光轴104、第一法线105、第一镜头单元111、第一反射单元112、第二镜头单元121、第二反射单元122、第三镜头单元131、第三反射单元132、第四镜头单元141、第四反射单元142、运动型反射单元150、运动反射面151、旋转轴152、第一反射面1511、第二反射面1512、图像传感器160、外壳170、空腔171、通光孔172、运动传感器180、电子装置200、壳体210。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
目前市场上的常规双摄结构需要设置两个镜头和两个图像传感器,每个镜头与一个图像传感器配合以构成一个摄像模组,每个摄像模组独立工作。对于上述双摄结构而言,相互独立设置的摄像模组的成本较高。为此,本申请的实施例提供一种摄像模组以解决目前 双摄摄像模组成本较高的问题。
参考图1,在本申请的一个实施例中,摄像模组100包括第一镜头单元111、第二镜头单元121、第一反射单元112、第二反射单元122、运动型反射单元150及一个图像传感器160。第一镜头单元111包括三个透镜,三个透镜的光轴均处于同一直线上,该直线及其延长线即为第一镜头单元111的光轴,第一镜头单元111的光轴称为第一光轴101。同样地,在该实施例中,第二镜头单元121也包括三个透镜,三个透镜的光轴也处于同一直线上,该直线及其延长线即为第二镜头单元121的光轴,第二镜头单元121的光轴称为第二光轴102。第一光轴101与第二光轴102处于同一直线上,运动型反射单元150设置于第一镜头单元111与第二镜头单元121之间,且处于第一光轴101和第二光轴102上。第一反射单元112设置于第一镜头单元111远离运动型反射单元150的一侧,第一反射单元112用于将第一入射光线反射至第一镜头单元111,第一入射光线经第一反射单元112反射后将经过第一镜头单元111,随后到达运动型反射单元150。第二反射单元122设置于第二镜头单元121远离运动型反射单元150的一侧,第二反射单元122用于将第二入射光线反射至第二镜头单元121,第二入射光线经第二反射单元122反射后将经过第二镜头单元121,随后到达运动型反射单元150。而运动反射单元150能够沿预定方向运动,以将自第一镜头单元111或第二镜头单元121出射的光线反射至图像传感器160。
需要注意的是,一些实施例中的第一镜头单元111和第二镜头单元121分别包括至少一个透镜,例如可以是一个透镜、两个透镜、四个透镜或更多透镜,并不限于上述实施例所呈现的三片透镜,且第一镜头单元111与第二镜头单元121的透镜数量和透镜结构可以相同,也可以不同。
继续参考图1和图2,在该实施例中,第一反射单元112为等腰直角棱镜,该棱镜的斜面为第一反射单元112的反射面,该反射面与第一光轴101呈45°夹角。同样地,第二反射单元122为等腰直角棱镜,该棱镜的斜面为第二反射单元122的反射面,该反射面与第二光轴102呈45°夹角。具体地,可通过设置金属镀层以使第一反射单元112和第二反射单元122的斜面成为反射面。在一些实施例中,第一反射单元112和第二反射单元122的还可以呈板状或其他形状。
在该实施例中,图像传感器160与运动型反射单元150相对设置,图像传感器160的感光表面的中心法线可称为第一法线105。此时,图像传感器160的感光表面朝向运动型反射单元150,且第一法线105经过运动型反射单元150,第一法线105与第一光轴101和第二光轴102处于同一平面,且第一法线105垂直于第一光轴101和第二光轴102,三 者关系可参考图1和图2。图像传感器160可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。具体地,运动型反射单元150为等腰直角棱镜,该等腰直角棱镜的斜面设置有金属镀层以形成运动型反射单元150的运动反射面151,运动型反射单元150具有旋转轴152,运动型反射单元150能够绕旋转轴152转动,旋转轴152垂直于第一光轴101、第二光轴102及第一法线105。运动反射面151平行于旋转轴152,当运动型反射单元150绕旋转轴152旋转时,该运动反射面151将同步绕旋转轴152转动。
在该实施例中,运动型反射单元150绕旋转轴152旋转时将存在两个特殊位置,即第一位置和第二位置,运动型反射单元150能够绕旋转轴152转动以在第一位置和第二位置之间实现切换。参考图1,当运动型反射单元150位于第一位置时,运动反射面151将朝向第一镜头单元111和图像传感器160,即此时的第一镜头单元111和图像传感器160位于运动反射面151的同一侧,且第一光轴101和第一法线105均与运动反射面151形成45°夹角,从而运动型反射单元150可将自第一镜头单元111出射的光线反射至图像传感器160。参考图2,当运动型反射单元150绕旋转轴152逆时针旋转90°以位于第二位置时,运动反射面151将朝向第二镜头单元121和图像传感器160,即此时的第二镜头单元121和图像传感器160位于运动反射面151的同一侧,且第二光轴102和第一法线105均与运动反射面151形成45°夹角,从而运动型反射单元150可将自第二镜头单元121出射的光线反射至图像传感器160。应理解的是,当描述运动型反射单元150的反射面朝向镜头单元时,并不意味着该镜头单元的光轴与该反射面存在垂直关系,实际上应是倾斜关系,因为该反射面需要将来自该镜头单元的光线反射至图像传感器160。
需注意的是,在上述实施例中,设置在直角棱镜斜面处的金属镀层包括靠近直角棱镜的表面及远离直角棱镜的表面,其中靠近直角棱镜的表面作为运动反射面151,当称运动反射面151朝向某一侧时,可理解为金属镀层靠近直角棱镜的表面朝向该侧,而远离直角棱镜的另一表面则是背离该侧。当运动型反射单元150位于第一位置或第二位置时,来自第一镜头单元111或第二镜头单元121的光线首先经过运动型反射单元150的一个侧面以进入其中,随后在运动反射面151处发生内反射并从直角棱镜的另一个侧面射出至图像传感器160。在另一些实施例中,位于第一位置和第二位置的运动型反射单元150通过在斜面处发生外反射以将光线反射至图像传感器160,此时金属镀层远离直角棱镜的表面作为运动反射面151。
在图1的状态下,运动型反射单元150位于第一位置以将来自第一镜头单元111的光 线反射至图像传感器160,此时来自第二镜头单元121的光线同样能够到达运动反射面151,但由于该实施例中的运动反射面151由金属镀层形成,即运动反射面151的两侧均能对光线进行反射,因此来自第二镜头单元121的光线将在运动反射面151处发生外反射并被朝远离图像传感器160的方向反射,从而在该状态下来自第二镜头单元121的光线无法到达图像传感器160。
相反地,在图1的基础上将运动型反射单元150绕旋转轴152逆时针转动90°以达到图2所呈现的状态,此时运动型反射单元150位于第二位置。与上述情况相反,此时来自第二镜头单元121的光线能够被运动反射面151反射至图像传感器160,而来自第一镜头单元111的光线将被运动反射面151朝远离图像传感器160的方向反射,从而在该状态下来自第一镜头单元111的光线无法到达图像传感器160。通过上述结构设置可使运动型反射单元150在第一位置与第二位置之间切换,进而选择来自第一镜头单元111或第二镜头单元121的光线在图像传感器160上成像。
在该实施例中,第一镜头单元111的焦距大于第二镜头单元121的焦距,从而使得第一镜头单元111和第二镜头单元121拥有不同倍率及不同的成像效果。例如,当将第一镜头单元111设计成长焦镜头单元,而将第二镜头单元121设计成广角镜头单元时,通过控制运动型反射单元150,使得在拍摄远景时选择经过长焦镜头单元的光线到达图像传感器160,在拍摄近景时选择经过广角镜头单元的光线到达图像传感器160,从而实现在不同拍摄环境下摄像模组100的成像效果的切换。
以上,通过调节运动型反射单元150的转动角度便可将来自第一镜头单元111或来自第二镜头单元121的光线切换至图像传感器160,即,可选择性地将来自第一镜头单元111或来自第二镜头单元121的光线反射至图像传感器160,从而使两个镜头单元(第一镜头单元111和第二镜头单元121)共用一个图像传感器160,使摄像模组100在具有双摄结构的同时还能省去一个图像传感器160,以此有效降低生产成本。同时,由于来自不同的镜头单元的光线在运动型反射单元150与图像传感器160之间的光路存在重叠,因此可实现缩小模组尺寸的效果。另一方面,由于第一镜头单元111设置于第一反射单元112的反射光路上,且第二镜头单元121设置于第二反射单元122的反射光路上,从而使得摄像模组100具备潜望式双摄结构,有利于进一步减小摄像模组100的尺寸。
需要注意的是,对于通过转动运动型反射单元150以实现切换光线的摄像模组100而言,第一光轴101与第二光轴102并非必须要设置于同一直线上。在一些实施例中,第一光轴101与第二光轴102可以在一个平面上呈一倾斜夹角,例如第一光轴101与第二光轴 102呈60°、70°、80°、90°、100°、110°、120°夹角分布,或者也可以为其他角度,此处不一一列举。
在上述实施例中,摄像模组100可通过设置旋转电机及旋转变速箱以驱动运动型反射单元150,旋转变速箱中设置有大小不同的齿轮,旋转电机的转轴与旋转变速箱中的齿轮啮合,运动型反射单元150也设置有齿轮,且旋转变速箱中的齿轮与运动型反射单元150中的齿轮啮合,通过设置齿轮的大小比例可控制运动型反射单元150的转速。除了电机驱动外,运动型反射单元150的转动也可受磁力驱动,例如在摄像模组100中设置线圈,在运动型反射单元150上固定磁石,在通过设置限位件以限定运动型反射单元150的最大转动角度,使运动型反射单元150于两个最大转动角度处分别对应第一镜头单元111和第二镜头单元121(如图1和图2的状态),通过控制线圈电流以作用磁石,进而使运动反射面151转动最大转动角度以对应第一镜头单元111或第二镜头单元121。
运动型反射单元150除了可以转动设置于摄像模组100中,也可以平移设置于摄像模组100中。
参考图3,在一些实施例中,第一光轴101与第二光轴102处于同一直线上,运动型反射单元150平移设置于第一镜头单元111与第二镜头单元121之间,且运动型反射单元150的平移方向平行于第一光轴101和第二光轴102,同时平移方向也垂直于第一法线105。运动型反射单元150为等腰直角棱镜,等腰直角棱镜中两个直角边所对应的侧面设置有金属镀层以形成反射面,金属镀层可采用银、铝、钛等具有优良反射率的材料,且上述金属镀层应具有高于90%的反射率。此时运动反射面151包括第一反射面1511和第二反射面1512,该等腰直角棱镜的上述两个侧面分别形成第一反射面1511和第二反射面1512。相对而言,第一反射面1511朝向第一镜头单元111,第二反射面1512朝向第二反射单元122,第一光轴101和第一法线105分别与第一反射面1511呈45°夹角,第二光轴102与第一法线105分别与第二反射面1512呈45°夹角,且在运动型反射单元150平移过程中,上述夹角关系不会发生改变。
当需要切换来自第二反射单元122和第二镜头单元121的光线时,通过控制运动型反射单元150朝第一镜头单元111移动,使第二反射面1512移动至图像传感器160的上方,此时第二镜头单元121和图像传感器160均位于第二反射面1512的同一侧,从而使来自第二镜头单元121的光线能够被第二反射面1512反射至图像传感器160。相应地,此时第一反射面1511在移动后将偏离图像传感器160的上方,从而来自第一镜头单元111的光线在经第一反射面1511反射后将无法到达图像传感器160。同样地,当需要切换来自 第一反射单元112和第一镜头单元111的光线时,通过控制运动型反射单元150朝第二镜头单元121移动,使第一反射面1511移动至图像传感器160的上方,此时第一镜头单元111和图像传感器160均位于第一反射面1511的同一侧,从而使来自第一镜头单元111的光线能够被第一反射面1511反射至图像传感器160。
具体地,在一些实施例中,摄像模组100中设置有伸缩电机,伸缩电机连接运动型反射单元150,伸缩电机用于驱动运动型反射单元150移动,通过控制伸缩电机的伸缩距离便可选择到达图像传感器160的光线,实现切换效果。当然,在一些实施例中,摄像模组100中也可设置平移轨道及磁石,运动型反射单元150滑动设置于平移轨道上,同时运动型反射单元150上设置有线圈,通过调节线圈的电流以产生磁场,进而配合磁石驱动运动型反射单元150在平移轨道上移动。
采用转动式和平移式设计的运动型反射单元150能够增加摄像模组100的设计多样性,利于摄像模组100适应更多样的安装环境。
除了双摄结构外,还可通过增加反射单元及镜头单元以使摄像模组100具有三摄、四摄、五摄甚至六摄结构。
参考图1和图4,在一些实施例中,摄像模组100包括第三镜头单元131和第三反射单元132,第三镜头单元131包括至少一片透镜,第三镜头单元131中的透镜的光轴处于同一直线上,该直线及其延长线即为第三镜头单元131的光轴,第三镜头单元131的光轴也称为第三光轴103。第三光轴103与第一光轴101和第二光轴102处于同一平面,且第三光轴103经过运动型反射单元150,第一光轴101、第二光轴102及第三光轴103中任意两者之间互成120°夹角,第三反射单元132设置于第三镜头单元131远离运动型反射单元150的一侧。第三反射单元132用于将第三入射光线反射至第三镜头单元131和运动型反射单元150。具体地,第三反射单元132具有一个反射面,该反射面与第三光轴103呈45°夹角,第三反射单元132的该反射面用于将入射至其上的第三入射光线反射至第三镜头单元131。
图像传感器160的第一法线105与运动型反射单元150的旋转轴152平行,且两者均垂直于第一光轴101、第二光轴102及第三光轴103所处的平面,运动型反射单元150位于图像传感器160的上方,即图像传感器160的感光表面朝向运动型反射单元150,同时第一法线105经过运动型反射单元150,且运动型反射单元150的旋转轴152平行于第一法线105。
继续参考图4,对于上述实施例中拥有三个镜头单元的结构而言,运动型反射单元150 在绕旋转轴152转动时将存在三个特殊位置,即第一位置、第二位置和第三位置。与双摄结构的描述相似,当转动运动型反射单元150至第一位置时,运动反射面151将朝向第一镜头单元111和图像传感器160,且第一光轴101和第一法线105分别与运动反射面151呈45°夹角,此时来自第一镜头单元111的光线将被运动反射面151反射至图像传感器160;当转动运动型反射单元150至第二位置时,转动运动反射面151将朝向第二镜头单元121和图像传感器160,且第二光轴102和第一法线105分别与运动反射面151呈45°夹角,此时来自第二镜头单元121的光线将被运动反射面151反射至图像传感器160;当转动运动型反射单元150至第三位置时,运动反射面151将朝向第三镜头单元131,且第三光轴103和第一法线105分别与运动反射面151呈45°夹角,此时来自第三镜头单元131的光线将被运动反射面151反射至图像传感器160。
在另一些实施例中,第一光轴101、第二光轴102以及第三光轴103中的两者处于同一直线,另一者与该直线呈90°夹角。当然,第一光轴101、第二光轴102以及第三光轴103之间也可以呈其他夹角分布,并不限于上述举例。但需要注意的是,第一反射单元112、第二反射单元122及第三反射单元132的设置位置应分别随着第一光轴101、第二光轴102及第三光轴103的改变而改变,使第一光轴101始终经过第一反射单元112的反射面、第二光轴102始终经过第二反射单元122的反射面、第三光轴103始终经过第三反射单元132的反射面,进而保证第一反射单元112能够将第一入射光线反射至第一镜头单元111,保证第二反射单元122能够将第二入射光线反射至第二镜头单元121,同时也保证第三反射单元132能够将第三入射光线反射至第三镜头单元131。无论是对应上述的双摄或下文即将提及的四摄结构,反射单元的设置位置均应满足上述要求。
特别地,在其中一些实施例中,当运动型反射单元150位于第一位置时,运动反射面151与第一反射单元112的反射面平行;当运动型反射单元150位于第二位置时,运动反射面151与第二反射单元122的反射面平行;当运动型反射单元150位于第三位置时,运动反射面151与第三反射单元132的反射面平行。当然,在另一些实施例中,当运动型反射单元150位于三个位置中的任一个时,运动反射面151也可与相应反射单元的反射面呈垂直关系,此时图像传感器160相对运动型反射单元150的设置位置与上述实施例中的相反。
第三镜头单元131中的透镜结构及透镜数量可以与第一镜头单元111或者第二镜头单元121相同,或者不同。一些实施例中的第三镜头单元131的焦距可以与第一镜头单元111以及第二镜头单元121的焦距相同,或者也可以不同。不同焦距的设计可使摄像模组 100能够在三种倍率的成像效果之间切换,使摄像模组100能够应用于更多的拍摄环境。
以上,通过转动运动型反射单元150以实现摄像模组100在第一位置、第二位置及第三位置之间的切换,实现三个镜头单元(第一镜头单元111、第二镜头单元121和第三镜头单元131)共用一个图像传感器160的效果,相较传统设计省去了两个图像传感器160,从而可有效降低生产成本,同时因为运动型反射单元150与图像传感器160之间存在光路重叠的原因,因此上述结构还能有效减小摄像模组100的尺寸,有利于摄像模组100的小型化设计。同时,由于第三镜头单元131设置于第三反射单元132的反射光路上,从而使得摄像模具备潜望式三摄结构,有利于进一步缩小摄像模组100的尺寸。
参考图1和图5,更进一步地,在一些实施例中,摄像模组100还包括第四镜头单元141和第四反射单元142,第四镜头单元141包括至少一片透镜,第四镜头单元141中的透镜的光轴处于同一直线上,该直线及其延长线即为第四镜头单元141的光轴,第四镜头单元141的光轴也称为第四光轴104。第四光轴104与第一光轴101、第二光轴102及第三光轴103处于同一平面,且第四光轴104经过运动型反射单元150,第四反射单元142设置于第四镜头单元141远离运动型反射单元150的一侧。第四反射单元142为等腰直角棱镜,第四反射单元142用于将第四入射光线反射至第四镜头单元141。具体地,第四反射单元142于斜面上设置有用于反射入射光的金属镀层,该金属镀层形成第四反射单元142的反射面,该反射面与第四光轴104呈45°夹角,第四反射单元142的该反射面用于将入射至其上的第四入射光线反射至第四镜头单元141,经过第四镜头单元141的光线随后将出射至运动型反射单元150。具体地,在该实施例中,第四反射单元142中一直角边对应的侧面朝向物空间,而另一直角边对应的侧面朝向第四镜头单元141,此时第四入射光线首先经过上述的其中一个侧面进入第四反射单元142,随后入射光线到达斜面处的金属镀层并发生内反射,最终从另一个侧面出射至第四镜头单元141。
在该实施例中,第一光轴101与第二光轴102处于同一直线,第三光轴103与第四光轴104处于同一直线,两条直线相互垂直。
图像传感器160的第一法线105及运动型反射单元150的旋转轴152均垂直于第一光轴101、第二光轴102、第三光轴103及第四光轴104所处的平面,运动型反射单元150位于图像传感器160的上方,且运动型反射单元150的旋转轴152平行于第一法线105。对于具有四个镜头单元的结构而言,摄像模组100具有四种状态,除了包括上述实施例中三摄结构的三种位置外,还包括第四位置,当运动型反射单元150绕旋转轴152转动至第四位置时,运动反射面151朝向第四镜头单元141和图像传感器160,且第四光轴104和 第一法线105分别与运动反射面151呈45°夹角,此时来自第四镜头单元141的光线将被运动反射面151反射至图像传感器160。与上述三摄结构的实施例相似,一些实施例中的运动型反射单元150旋转至相应的特殊位置时,运动反射面151与相应反射单元上的反射面平行或垂直。
通过转动运动型反射单元150以实现摄像模组100在第一位置、第二位置、第三位置及第四位置之间的切换,实现四个镜头单元(第一镜头单元111、第二镜头单元121、第三镜头单元131及第四镜头单元141)共用一个图像传感器160的效果,相较传统设计省去了三个图像传感器160,从而可有效降低生产成本,同时还能有效减小摄像模组100的尺寸,有利于摄像模组100的小型化设计。同时,由于第四镜头单元141设置于第四反射单元142的反射光路上,从而使得摄像模具备潜望式四摄结构,有利于进一步缩小摄像模组100的尺寸。
第四镜头单元141中的透镜结构及透镜数量可以与第一镜头单元111、第二镜头单元121或者第三镜头单元131相同,或者不同。一些实施例中的第四镜头单元141的焦距可以与第一镜头单元111、第二镜头单元121或者第三镜头单元131的焦距相同,或者也可以不同。不同焦距的设计可使摄像模组100能够在四种倍率的成像效果之间切换,使摄像模组100能够应用于更多的拍摄环境。
对于上述具有三摄结构或四摄结构的摄像模组100而言,运动型反射单元150的旋转轴152在一些实施例中也可以垂直于第一法线105,只需使运动反射面151在转动后能够切换至其他状态即可。
在一些实施例中,对于具有四摄结构的摄像模组100而言,运动型反射单元150也可以以平移驱动的方式切换状态。此时,运动型反射单元150具有四个反射面,每个反射面始终分别对应一个镜头单元(第一镜头单元111、第二镜头单元121、第三镜头单元131或第四镜头单元141),即该反射面始终与该镜头单元的光轴及第一法线105分别呈45°夹角。运动型反射单元150能够沿第一光轴101、第二光轴102、第三光轴103及第四光轴104的方向平移,从而将相应的反射面移动至图像传感器160的上方,使来自对应的镜头单元的光线被反射至图像传感器160,而使来自其他镜头单元的光线即使被反射后也无法到达图像传感器160,从而实现不同状态的切换。
同样地,对于具有三摄结构的摄像模组100而言,运动型反射单元150的结构及运动状态可参考上述具有四射结构的实施例,此处不加以赘述。
在以上各实施例中,除了在运动型反射单元150、第一反射单元112、第二反射单元 122、第三反射单元132、第四反射单元142上设置金属镀层外,一些实施例中也可通过在反射单元的相应表面上设置高反射率涂层、高反射率薄膜等手段以在相应表面上形成高反射率的反射面,且具体所采用的材料可以是金属、合金、化合物等适用于形成高反射表面的材料。另外,高反射率可以指大于80%的反射率,具体可以是85%、90%、93%、95%、98%或99%。
另外,一些实施例中的运动型反射单元150、第一反射单元112、第二反射单元122、第三反射单元132、第四反射单元142除了可以是等腰直角棱镜外,也能是其他形状的三棱镜,或者也可以是平面反射镜。
需要注意的是,对于上述各实施例中的线与线之间的夹角、线与面之间的夹角、多条线处于同一平面的描述,在实际生产过程中不可避免会出现细微偏差,例如,两个光轴之间在理想状态应呈90°夹角,但实际产品中的夹角可能是87°或92°,应理解的是,10%范围内的误差也应属于本申请的记载范围。
重新参考图1,在一些实施例中,摄像模组100包括外壳170,外壳170开设有空腔171,各镜头单元(如第一镜头单元111及第二镜头单元121,一些实施例中还包括了第三镜头单元131和第四镜头单元141)、反射单元(如第一反射单元112及第二反射单元122,一些实施例中还包括了第三反射单元132和第四反射单元142)、运动型反射单元150及图像传感器160均设置于空腔171。一些实施例中,图像传感器160可与柔性电路板电性连接,且柔性电路板伸的一端出外壳170以作为与其他元件电性连接的部分。此时,摄像模组100的主要部件将集成于空腔171中,从而便于整体安装及拆卸,同时可以在前期集成于空腔171时即对其中的光路进行校准,在后期重复拆卸和安装时无需再进行重复校准。
在一些实施例中,摄像模组100开设有至少两个通光孔172,图像传感器160设置于空腔171一侧的腔壁,而摄像模组100的通光孔172开设于空腔171另一侧的腔壁上,具体可参考图1至图3所示的结构,入射光线通过通光孔172进入空腔171,进而入射到相应的反射单元中,随后经反射单元的反射面反射至镜头单元。通光孔172与模组中各反射单元一一对应,如第一反射单元112和第二反射单元122均对应有一个通光孔172。当然,在另一些实施例中,通光孔172也可开设在与图像传感器160同一侧的腔壁上。
在一些实施例中,对于双摄结构而言,外壳170开设有两个通光孔172,两个通光孔172分别对应第一反射单元112和第二反射单元122。对应第一反射单元112的通光孔172的轴线与第一反射单元112的反射面呈45°夹角,对应第二反射单元122的通光孔172 的轴线与第二反射单元122的反射面呈45°夹角。
在一些实施例中,摄像模组100包括运动传感器180,运动传感器180设置于外壳170,即设置于空腔171的腔壁上,运动传感器180用于感应运动型反射单元150的运动状态,并将运动状态反馈至控制系统,进而起到精确调节运动型反射单元150的运动状态的作用。例如,运动传感器180用于实时感应运动型反射单元150的转动角度,当运动型反射单元150未转动至预设角度时,控制系统可通过运动传感器180感应得知,从而继续驱动运动型反射单元150转动。
在一些实施例中,为避免非预期的光线进入图像传感器160,空腔171的内壁设置有吸光结构,例如黑色涂料或其他能够有效吸收可见光波段的材料。通过设置黑色涂料以吸收到达腔壁处的干扰光,防止干扰光经腔壁反射至图像传感器160,从而避免干扰光对正常成像造成影响。例如,当图像传感器160正在接收来自第一镜头单元111的光线时,第二镜头单元121的光线可能被运动反射面151反射至腔壁,此时,腔壁上的吸光结构能够有效吸收来自第二镜头单元121的光线。
在一些实施例中,图像传感器160包括用于滤除红外光的红外滤光片,红外滤光片能够防止红外光到被图像传感器160的感光表面接收,从而防止红外光对正常成像造成干扰。
参考图6,本申请的实施例还提供了一种电子装置200,电子装置200包括但不限于智能手机、平板电脑、笔记本电脑、个人数字助理、游戏机、PC、电子书籍阅读器、便携多媒体播放器(PMP)、移动医疗装置、智能可穿戴设备等。电子装置200包括壳体210,摄像模组100安装于壳体210上。
在一些实施例中,摄像模组100应用于智能手机,具体作为智能手机的前置摄像模组。具体地,其中一些实施例中的摄像模组100具有双摄结构。
参考图7,在另一些实施例中,摄像模组100作为智能手机的后置摄像模组。具体地,其中一些实施例中的摄像模组100具有双摄结构、三摄结构、四摄结构、五摄结构或六摄结构。通过采用上述摄像模组100,电子装置200中的摄像模组成本可得到有效降低,且摄像模组100的潜望式结构有利于减少电子装置200的厚度,有利于电子装置200实现超薄化设计。
在以上各实施例的描述中,平行、垂直、共线、处于同一平面等描述是指理想状态下各结构的关系,但实际生产制备过程中不可避免会存在少许偏差,难以严格地以平行、垂直等关系设置,但这类存在少许偏差的结构也应属于是本申请所能保护的范围。
本发明实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可 以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种摄像模组,包括:
    第一镜头单元,包括至少一片透镜;
    第二镜头单元,包括至少一片透镜;
    运动型反射单元,设置于所述第一镜头单元和所述第二镜头单元的光轴上,且可沿预定方向运动;
    第一反射单元,设置于所述第一镜头单元远离所述运动型反射单元的一侧,所述第一反射单元用于将第一入射光线反射至所述第一镜头单元;
    第二反射单元,设置于所述第二镜头单元远离所述运动型反射单元的一侧,所述第二反射单元用于将第二入射光线反射至所述第二镜头单元;以及
    图像传感器,与所述运动型反射单元相对设置,所述运动型反射单元在沿预定方向运动时可以在第一位置和第二位置之间切换,当所述运动型反射单元位于所述第一位置时,所述运动型反射单元可将自所述第一镜头单元出射的光线反射至所述图像传感器,当所述运动型反射单元位于所述第二位置时,所述运动型反射单元可将自所述第二镜头单元出射的光线反射至所述图像传感器。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述第一镜头单元的焦距与所述第二镜头单元的焦距不同。
  3. 根据权利要求1所述的摄像模组,其特征在于,所述第一镜头单元的光轴、所述第二镜头单元的光轴以及所述图像传感器的感光表面的中心法线处于同一平面,所述运动型反射单元设置于所述第一镜头单元与所述第二镜头单元之间,且所述运动型反射单元具有旋转轴,所述旋转轴垂直于所述平面,所述运动型反射单元通过绕所述旋转轴转动可在所述第一位置和所述第二位置之间切换。
  4. 根据权利要求1所述的摄像模组,其特征在于,所述运动型反射单元具有旋转轴,所述旋转轴垂直于所述第一镜头单元的光轴和所述第二镜头单元的光轴,且所述旋转轴与所述图像传感器的感光表面的法线平行,所述运动型反射单元通过绕所述旋转轴转动可在所述第一位置和所述第二位置之间切换。
  5. 根据权利要求1所述的摄像模组,其特征在于,所述第一镜头单元的光轴与所述第二镜头单元的光轴处于同一平面,且所述第一镜头单元的光轴与所述第二镜头单元的光轴之间的夹角为0、60°、70°、80°、90°中的任意一个。
  6. 根据权利要求1所述的摄像模组,其特征在于,所述运动型反射单元包括运动反 射面,当所述运动型反射单元位于所述第一位置时,所述第一镜头单元和所述图像传感器均位于所述运动反射面的同一侧,且所述第一镜头单元的光轴和所述图像传感器的感光表面的中心法线均与所述运动反射面形成45°夹角;当所述运动型反射单元位于所述第二位置时,所述第二镜头单元和所述图像传感器均位于所述运动反射面的同一侧,且所述第二镜头单元的光轴和所述图像传感器的感光表面的中心法线均与所述运动反射面形成45°夹角。
  7. 根据权利要求6所述的摄像模组,其特征在于,所述运动反射面由金属镀层或合金镀层形成。
  8. 根据权利要求1所述的摄像模组,其特征在于,所述运动型反射单元、所述第一反射单元和所述第二反射单元中的任意一个为三棱镜或平面反射镜。
  9. 根据权利要求1所述的摄像模组,其特征在于,所述摄像模组还包括第三反射单元和第三镜头单元,所述第三镜头单元包括至少一片透镜,所述第三镜头单元的光轴经过所述运动型反射单元,且所述第三镜头单元的光轴与所述第一镜头单元及所述第二镜头单元的光轴处于同一平面,所述第三反射单元设置于所述第三镜头单元远离所述运动型反射单元的一侧,所述第三反射单元用于将第三入射光线反射至所述第三镜头单元,所述运动型反射单元具有旋转轴,所述旋转轴垂直于所述平面且与所述图像传感器的感光表面的法线平行,所述运动型反射单元通过绕所述旋转轴转动可在所述第一位置、所述第二位置及第三位置之间切换,当所述运动型反射单元位于所述第三位置时,所述运动型反射单元可将自所述第三镜头单元出射的光线反射至所述图像传感器。
  10. 根据权利要求9所述的摄像模组,其特征在于,所述第一镜头单元的光轴、所述第二镜头单元的光轴以及所述第三镜头单元的光轴两两之间的夹角为60°。
  11. 根据权利要求9所述的摄像模组,其特征在于,包括第四反射单元和第四镜头单元,所述第四镜头单元包括至少一片透镜,所述第四镜头单元的光轴处于所述平面内,且所述第四镜头单元的光轴经过所述运动型反射单元,所述第四反射单元设置于所述运动型反射单元远离所述第三反射单元的一侧,所述第四反射单元用于将第四入射光线反射至所述第四镜头单元,所述运动型反射单元能够绕所述旋转轴转动以切换至第四位置,当所述运动型反射单元位于所述第四位置时,所述运动型反射单元可将自所述第四镜头单元出射的光线反射至所述图像传感器。
  12. 根据权利要求11所述的摄像模组,其特征在于,所述第一镜头单元的光轴与所述第二镜头单元的光轴处于同一直线,所述第三镜头单元的光轴与所述第四镜头单元的光 轴处于同一直线,且所述第一镜头单元的光轴与所述第三镜头单元的光轴的夹角为90°。
  13. 根据权利要求11所述的摄像模组,其特征在于,所述第一镜头单元、所述第二镜头单元、所述第三镜头单元以及所述第四镜头单元的焦距互不相同。
  14. 根据权利要求1所述的摄像模组,其特征在于,所述第一镜头单元的光轴与所述第二镜头单元的光轴处于同一直线,所述运动型反射单元能够沿所述直线移动以在所述第一位置和所述第二位置之间切换,所述运动型反射单元包括第一反射面和第二反射面,所述第一反射面朝向所述第一镜头单元,所述第二反射面朝向所述第二镜头单元;当所述运动型反射单元移动至所述第一位置时,所述第一镜头单元和所述图像传感器位于所述第一反射面的同一侧;当所述运动型反射单元移动至所述第二位置时,所述第二镜头单元和所述图像传感器位于所述第二反射面的同一侧。
  15. 根据权利要求14所述的摄像模组,其特征在于,当所述运动型反射单元位于所述第一位置时,所述第一镜头单元的光轴和所述图像传感器的感光表面的中心法线均与所述第一反射面形成45°夹角;当所述运动型反射单元位于所述第二位置时,所述第二镜头单元的光轴和所述图像传感器的感光表面的中心法线均与所述第二反射面形成45°夹角。
  16. 根据权利要求1至15任意一项所述的摄像模组,其特征在于,包括外壳,所述外壳开设有空腔,所述第一反射单元、所述第二反射单元、所述第一镜头单元、所述第二镜头单元、所述运动型反射单元及所述图像传感器均设置于所述空腔。
  17. 根据权利要求16所述的摄像模组,其特征在于,包括运动传感器,所述运动传感器设置于所述外壳,所述运动传感器用于感应所述运动型反射单元的运动状态。
  18. 根据权利要求17所述的摄像模组,其特征在于,所述空腔的腔壁设置有吸光结构。
  19. 根据权利要求17所述的摄像模组,其特征在于,所述外壳开设有两个通光孔,两个所述通光孔分别对应所述第一反射单元及所述第二反射单元。
  20. 一种电子装置,包括壳体及权利要求1至19任意一项所述的摄像模组,所述摄像模组设置于所述壳体。
PCT/CN2020/072039 2020-01-14 2020-01-14 摄像模组及电子装置 WO2021142623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072039 WO2021142623A1 (zh) 2020-01-14 2020-01-14 摄像模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072039 WO2021142623A1 (zh) 2020-01-14 2020-01-14 摄像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021142623A1 true WO2021142623A1 (zh) 2021-07-22

Family

ID=76863357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072039 WO2021142623A1 (zh) 2020-01-14 2020-01-14 摄像模组及电子装置

Country Status (1)

Country Link
WO (1) WO2021142623A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820331A (zh) * 2021-09-06 2021-12-21 深圳格兰达智能装备股份有限公司 一种三维缺陷检测装置
CN115933286A (zh) * 2021-09-29 2023-04-07 华为技术有限公司 摄像模组以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025312A (ja) * 2005-07-19 2007-02-01 Nec Saitama Ltd 撮像モジュール及び携帯端末
CN102981350A (zh) * 2012-10-11 2013-03-20 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
CN202870447U (zh) * 2012-10-11 2013-04-10 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
KR101255945B1 (ko) * 2011-09-16 2013-04-23 엘지이노텍 주식회사 카메라 모듈
CN104142556A (zh) * 2013-05-07 2014-11-12 深圳富泰宏精密工业有限公司 双向镜头模组、相机模组及使用该相机模组的电子装置
CN110266933A (zh) * 2019-07-23 2019-09-20 华勤通讯技术有限公司 一种摄像头模组及终端
CN110460760A (zh) * 2019-08-29 2019-11-15 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025312A (ja) * 2005-07-19 2007-02-01 Nec Saitama Ltd 撮像モジュール及び携帯端末
KR101255945B1 (ko) * 2011-09-16 2013-04-23 엘지이노텍 주식회사 카메라 모듈
CN102981350A (zh) * 2012-10-11 2013-03-20 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
CN202870447U (zh) * 2012-10-11 2013-04-10 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
CN104142556A (zh) * 2013-05-07 2014-11-12 深圳富泰宏精密工业有限公司 双向镜头模组、相机模组及使用该相机模组的电子装置
CN110266933A (zh) * 2019-07-23 2019-09-20 华勤通讯技术有限公司 一种摄像头模组及终端
CN110460760A (zh) * 2019-08-29 2019-11-15 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820331A (zh) * 2021-09-06 2021-12-21 深圳格兰达智能装备股份有限公司 一种三维缺陷检测装置
CN115933286A (zh) * 2021-09-29 2023-04-07 华为技术有限公司 摄像模组以及电子设备

Similar Documents

Publication Publication Date Title
CN111131683A (zh) 摄像模组及电子装置
US7643749B2 (en) Camera module
CN110879454A (zh) 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
JP2008521284A (ja) カメラ位置を選択可能なモバイル機器
WO2020093820A1 (zh) 成像模组、摄像头组件及电子装置
WO2020093819A1 (zh) 成像模组、摄像头组件及电子装置
WO2021142623A1 (zh) 摄像模组及电子装置
WO2022247867A1 (zh) 摄像模组和电子设备
US20210124145A1 (en) Camera Module, Camera Assembly, and Electronic Device
US20230333353A1 (en) Camera Module and Electronic Device
CN211509141U (zh) 摄像模组及电子装置
CN111308643A (zh) 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
CN214707821U (zh) 潜望式摄像头模组、摄像头组件及电子装置
WO2021136215A1 (zh) 一种摄像方法、摄像模组和电子设备
WO2022135170A1 (zh) 摄像头模组、潜望式摄像头模组及电子装置
CN211149032U (zh) 摄像头模组
US11064098B2 (en) Camera module, camera assembly and electronic device
WO2020093821A1 (zh) 成像模组、摄像头组件及电子装置
KR20030089359A (ko) 줌 기능을 갖는 촬상소자 모듈
WO2021213215A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的驱动方法
WO2021185005A1 (zh) 混合变焦镜头和电子装置
WO2020093822A1 (zh) 电子装置及其控制方法
WO2020019838A1 (zh) 成像模组、摄像头组件和电子装置
CN113329142A (zh) 防抖组件、摄像模组及电子装置
CN112887563B (zh) 镜头装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914176

Country of ref document: EP

Kind code of ref document: A1