WO2021039987A1 - Polarizing film laminate, optical display panel in which said polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly - Google Patents
Polarizing film laminate, optical display panel in which said polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly Download PDFInfo
- Publication number
- WO2021039987A1 WO2021039987A1 PCT/JP2020/032666 JP2020032666W WO2021039987A1 WO 2021039987 A1 WO2021039987 A1 WO 2021039987A1 JP 2020032666 W JP2020032666 W JP 2020032666W WO 2021039987 A1 WO2021039987 A1 WO 2021039987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing film
- coordinate point
- water content
- iodine concentration
- line segment
- Prior art date
Links
- 239000012790 adhesive layer Substances 0.000 title claims description 49
- 230000003287 optical effect Effects 0.000 title claims description 48
- 239000011630 iodine Substances 0.000 claims abstract description 206
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 206
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 204
- 230000001681 protective effect Effects 0.000 claims abstract description 167
- 239000010408 film Substances 0.000 claims description 871
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 194
- 239000010410 layer Substances 0.000 claims description 130
- 239000000853 adhesive Substances 0.000 claims description 120
- 230000001070 adhesive effect Effects 0.000 claims description 120
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 116
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 116
- 238000002834 transmittance Methods 0.000 claims description 101
- 229920005989 resin Polymers 0.000 claims description 64
- 239000011347 resin Substances 0.000 claims description 64
- 239000012788 optical film Substances 0.000 claims description 39
- 229910052725 zinc Inorganic materials 0.000 claims description 21
- 239000011701 zinc Substances 0.000 claims description 21
- 230000000007 visual effect Effects 0.000 claims description 20
- 229910052724 xenon Inorganic materials 0.000 claims description 20
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 20
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 150000004291 polyenes Chemical class 0.000 abstract description 30
- 230000015572 biosynthetic process Effects 0.000 abstract description 25
- 230000031700 light absorption Effects 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 3
- 239000012528 membrane Substances 0.000 abstract 2
- 238000011282 treatment Methods 0.000 description 97
- 239000006096 absorbing agent Substances 0.000 description 69
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 57
- 150000001875 compounds Chemical class 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 41
- 238000001035 drying Methods 0.000 description 37
- 238000004043 dyeing Methods 0.000 description 37
- 239000007864 aqueous solution Substances 0.000 description 36
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 35
- 238000000034 method Methods 0.000 description 34
- 239000000243 solution Substances 0.000 description 29
- 239000000463 material Substances 0.000 description 28
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 25
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 22
- 239000004327 boric acid Substances 0.000 description 22
- -1 4-ethoxyphenyl Chemical group 0.000 description 20
- 229920002284 Cellulose triacetate Polymers 0.000 description 20
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 20
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 20
- 238000007654 immersion Methods 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 19
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 17
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000000178 monomer Substances 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 12
- 239000012965 benzophenone Substances 0.000 description 12
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 150000003926 acrylamides Chemical class 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 10
- 239000000654 additive Substances 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 10
- 238000004132 cross linking Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 210000002858 crystal cell Anatomy 0.000 description 9
- 238000005470 impregnation Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 8
- GCPDCGCMGILXLN-UHFFFAOYSA-N 5-butoxy-2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenol Chemical compound OC1=CC(OCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 GCPDCGCMGILXLN-UHFFFAOYSA-N 0.000 description 8
- 239000012964 benzotriazole Substances 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 229920000058 polyacrylate Polymers 0.000 description 8
- 206010042674 Swelling Diseases 0.000 description 7
- 238000011088 calibration curve Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 125000003700 epoxy group Chemical group 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000008961 swelling Effects 0.000 description 7
- 150000003751 zinc Chemical class 0.000 description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 6
- 150000002596 lactones Chemical group 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 6
- 238000010526 radical polymerization reaction Methods 0.000 description 6
- 238000007127 saponification reaction Methods 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 6
- 229960001763 zinc sulfate Drugs 0.000 description 6
- 229910000368 zinc sulfate Inorganic materials 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 150000001925 cycloalkenes Chemical class 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 5
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- CBKGNZGFDXQOEV-UHFFFAOYSA-N (4-chlorophenyl)-(2-hydroxy-4-methoxyphenyl)methanone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=C(Cl)C=C1 CBKGNZGFDXQOEV-UHFFFAOYSA-N 0.000 description 4
- SOENQQITRJSLSD-UHFFFAOYSA-N (6,6-dihydroxy-4-methoxycyclohexa-2,4-dien-1-yl)-(4-methoxyphenyl)methanone Chemical compound C1=CC(OC)=CC(O)(O)C1C(=O)C1=CC=C(OC)C=C1 SOENQQITRJSLSD-UHFFFAOYSA-N 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 4
- ASVSBPGJUQTHBG-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-dodecoxyphenol Chemical compound CCCCCCCCCCCCOc1ccc(c(O)c1)-c1nc(nc(n1)-c1ccccc1)-c1ccccc1 ASVSBPGJUQTHBG-UHFFFAOYSA-N 0.000 description 4
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical compound OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 4
- UUINYPIVWRZHAG-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-methoxyphenol Chemical compound OC1=CC(OC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 UUINYPIVWRZHAG-UHFFFAOYSA-N 0.000 description 4
- PEGDEHIBGLAJNA-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-octoxyphenol Chemical compound CCCCCCCCOc1ccc(c(O)c1)-c1nc(nc(n1)-c1ccccc1)-c1ccccc1 PEGDEHIBGLAJNA-UHFFFAOYSA-N 0.000 description 4
- DSBLSFKNWFKZON-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-propoxyphenol Chemical compound CCCOc1ccc(c(O)c1)-c1nc(nc(n1)-c1ccccc1)-c1ccccc1 DSBLSFKNWFKZON-UHFFFAOYSA-N 0.000 description 4
- VCYCUECVHJJFIQ-UHFFFAOYSA-N 2-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 VCYCUECVHJJFIQ-UHFFFAOYSA-N 0.000 description 4
- HCBXHNOQTKFQQW-UHFFFAOYSA-N 5-(2-butoxyethoxy)-2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenol Chemical compound CCCCOCCOc1ccc(c(O)c1)-c1nc(nc(n1)-c1ccccc1)-c1ccccc1 HCBXHNOQTKFQQW-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 4
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229960001860 salicylate Drugs 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 238000010538 cationic polymerization reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 3
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- RHNJVKIVSXGYBD-UHFFFAOYSA-N 10-prop-2-enoyloxydecyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCCOC(=O)C=C RHNJVKIVSXGYBD-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- BBBLHSHFZWKLPP-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-phenylmethoxyphenol Chemical compound Oc1cc(OCc2ccccc2)ccc1-c1nc(nc(n1)-c1ccccc1)-c1ccccc1 BBBLHSHFZWKLPP-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- KANZWHBYRHQMKZ-UHFFFAOYSA-N 2-ethenylpyrazine Chemical compound C=CC1=CN=CC=N1 KANZWHBYRHQMKZ-UHFFFAOYSA-N 0.000 description 2
- WVQHODUGKTXKQF-UHFFFAOYSA-N 2-ethyl-2-methylhexane-1,1-diol Chemical compound CCCCC(C)(CC)C(O)O WVQHODUGKTXKQF-UHFFFAOYSA-N 0.000 description 2
- LZFNKJKBRGFWDU-UHFFFAOYSA-N 3,6-dioxabicyclo[6.3.1]dodeca-1(12),8,10-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=CC1=C2 LZFNKJKBRGFWDU-UHFFFAOYSA-N 0.000 description 2
- WPSWDCBWMRJJED-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;oxirane Chemical compound C1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 WPSWDCBWMRJJED-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 229940081735 acetylcellulose Drugs 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003522 acrylic cement Substances 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N alpha-ketodiacetal Natural products O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- UUORTJUPDJJXST-UHFFFAOYSA-N n-(2-hydroxyethyl)prop-2-enamide Chemical compound OCCNC(=O)C=C UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- DCRYNQTXGUTACA-UHFFFAOYSA-N 1-ethenylpiperazine Chemical compound C=CN1CCNCC1 DCRYNQTXGUTACA-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- BFYSJBXFEVRVII-UHFFFAOYSA-N 1-prop-1-enylpyrrolidin-2-one Chemical compound CC=CN1CCCC1=O BFYSJBXFEVRVII-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- PGMMQIGGQSIEGH-UHFFFAOYSA-N 2-ethenyl-1,3-oxazole Chemical compound C=CC1=NC=CO1 PGMMQIGGQSIEGH-UHFFFAOYSA-N 0.000 description 1
- MZNSQRLUUXWLSB-UHFFFAOYSA-N 2-ethenyl-1h-pyrrole Chemical compound C=CC1=CC=CN1 MZNSQRLUUXWLSB-UHFFFAOYSA-N 0.000 description 1
- ZDHWTWWXCXEGIC-UHFFFAOYSA-N 2-ethenylpyrimidine Chemical compound C=CC1=NC=CC=N1 ZDHWTWWXCXEGIC-UHFFFAOYSA-N 0.000 description 1
- RASDUGQQSMMINZ-UHFFFAOYSA-N 2-methyl-1-piperidin-1-ylprop-2-en-1-one Chemical compound CC(=C)C(=O)N1CCCCC1 RASDUGQQSMMINZ-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- GCQUOBKUEHYBMC-UHFFFAOYSA-N 3-(diethylamino)-7,8-dihydro-6h-cyclopenta[2,3]thieno[2,4-b][1,3]oxazin-1-one Chemical compound O=C1OC(N(CC)CC)=NC2=C1C(CCC1)=C1S2 GCQUOBKUEHYBMC-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- CFZDMXAOSDDDRT-UHFFFAOYSA-N 4-ethenylmorpholine Chemical compound C=CN1CCOCC1 CFZDMXAOSDDDRT-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JSZCJJRQCFZXCI-UHFFFAOYSA-N 6-prop-2-enoyloxyhexanoic acid Chemical compound OC(=O)CCCCCOC(=O)C=C JSZCJJRQCFZXCI-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 101100493712 Caenorhabditis elegans bath-42 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001448862 Croton Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- XVAMCHGMPYWHNL-UHFFFAOYSA-N bemotrizinol Chemical compound OC1=CC(OCC(CC)CCCC)=CC=C1C1=NC(C=2C=CC(OC)=CC=2)=NC(C=2C(=CC(OCC(CC)CCCC)=CC=2)O)=N1 XVAMCHGMPYWHNL-UHFFFAOYSA-N 0.000 description 1
- 229960004101 bemotrizinol Drugs 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- LSWADWIFYOAQRZ-UHFFFAOYSA-N n-(ethoxymethyl)prop-2-enamide Chemical compound CCOCNC(=O)C=C LSWADWIFYOAQRZ-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
Definitions
- the present invention relates to a polarizing film laminate, an optical display panel in which the polarizing film laminate is used, a polarizing film laminate with a transparent adhesive layer, and a polarizing film assembly.
- optical display panels such as liquid crystal panels and organic EL panels have been used not only for electronic devices such as smartphones and personal computers, and for electrical appliances such as IoT home appliances, but also for powered vehicles such as automobiles, trains, and airplanes.
- electrical appliances such as IoT home appliances
- powered vehicles such as automobiles, trains, and airplanes.
- various possibilities have been found. For example, it is conceivable to mount an optical display panel on the windshield, dashboard, exterior, and various other vehicle body parts of an automobile to provide various information to the driver and to transmit various information to the outside.
- polarizing film laminate polarizing plate
- polarizing film laminate due to a usage environment such as high temperature or high humidity or by irradiation with sunlight.
- the performance of the polarizing film (polarizer) is deteriorated, and in the worst case, it may become unusable.
- Patent Document 1 discloses an example of a polarizing element having improved durability in a high temperature or high humidity environment, a polarizing plate using this polarizing element, and a liquid crystal display device using the polarizing plate.
- red loss polarization loss of long-wavelength light
- zinc is added.
- Patent Document 2 relates to a polarizing plate used in an in-vehicle image display device having improved durability in a high temperature or high humidity environment, and here, the water content of the polarizing plate and the protective film.
- Patent Document 2 describes it. It has been proposed to use a transparent protective film having a saturated water absorption within a predetermined range as a transparent protective film to be bonded to a polarizing element, and to reduce the water content of the polarizing plate.
- Patent Document 3 also relates to a polarizing plate having improved durability under high temperature or high humidity, and here, attention is paid to the moisture content of the polarizing plate and the moisture permeability of the protective film.
- the inside of the polarizing plate becomes a high temperature and high humidity state, and as a result, the amount of change in the light transmittance, the degree of polarization, the hue of the image, etc. becomes large, and the reliability of the polarizing plate becomes low. Therefore, it has been proposed to attach a protective film having low moisture permeability in a state where the water content of the polarizer is reduced as much as possible.
- Patent Document 4 relates to a polarizing plate having improved durability under high temperature or high humidity or low temperature, and here, the polarizer can be deteriorated by ultraviolet rays or infrared rays, and It has been described that the visibility of a liquid crystal display (LCD) may deteriorate due to use at high temperature or under high temperature and high humidity.
- an ultraviolet absorber or an ultraviolet absorber is applied to the protective film of the polarizing film. It has been proposed to include an infrared absorber to prevent fluctuations in transmittance.
- Japanese Unexamined Patent Publication No. 2003-29042 Japanese Unexamined Patent Publication No. 2014-102353 JP-A-2002-90546 Japanese Unexamined Patent Publication No. 2006-184883
- problems that occur in a high temperature or high humidity environment include “polyene formation” and “color loss”. , And “heated reddish” are known.
- polyenization is a phenomenon in which the single transmittance of a polarizing film laminate is lowered by being placed in a high temperature or high humidity environment, and "color loss” and “heating reddening” are the same.
- the polarizing film laminate is cross-nicoled and the orthogonal transmittance at a wavelength of 410 nm and a wavelength of 700 nm is measured by being placed in a high temperature or high humidity environment, the orthogonal transmittance is lowered.
- Color loss is a phenomenon in which the transmittance on the long wavelength side of about 700 nm and the short wavelength side of about 410 nm increases to cause color loss in black display, while “heat red discoloration” is particularly long of about 700 nm. It is known as a phenomenon in which the transmittance on the wavelength side increases and the polarizing film turns red.
- Patent Document 1 mainly focuses on the problem of "color loss”
- Patent Document 2 mainly focuses on the problem of "polyenization”
- Patent Document 3 mainly focuses on the problem of "heating reddening”.
- the solutions proposed in each document are considered to be effective at least for solving individual problems.
- the inventions described in each patent document have not always been sufficient to comprehensively solve these problems.
- the fact that "polyenization”, “color loss”, and “heated reddening” are all interrelated through iodine and moisture, as well as through the temperature and humidity that affect moisture. Based on this, as a result of repeated diligent research, the applicant of the present application has found that these problems can be comprehensively solved by adjusting the iodine concentration of the polarizing film and the water content of the polarizing film laminate. ..
- the polarizing film film laminate has a polarizing film made of a polyvinyl alcohol-based resin and at least the surface of the polarizing film on the visible side directly or via another optical film.
- a polarizing film laminate provided with a bonded optically transparent polarizing film protective film, wherein the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the polarizing film laminate.
- the iodine concentration was 6.0 wt.
- the polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less. According to the polarizing film film laminate of this aspect, the problems of "polyene formation", “color loss”, and “heat reddening" can be comprehensively solved.
- the film thickness of the polarizing film may be 4 to 30 ⁇ m.
- the polarizing film made of a polyvinyl alcohol-based resin is optically bonded to at least the visible surface of the polarizing film directly or via another optical film.
- a polarizing film laminate provided with a transparent polarizing film protective film the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the water content (g / g /) of the polarizing film laminate. In the xy orthogonal coordinate system in which m 2 ) was taken, the iodine concentration was 4.5 wt.
- the 7th line segment connecting the 7th coordinate point of% and the water content of 3.4 g / m 2 and the 8th line segment connecting the 6th coordinate point and the 7th coordinate point In the area surrounded by the 7th line segment connecting the 7th coordinate point of% and the water content of 3.4 g / m 2 and the 8th line segment connecting the 6th coordinate point and the 7th coordinate point.
- the polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
- the sixth coordinate point has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m 2 , which is the eighth coordinate point, and the seventh coordinate point is the iodine concentration of 4.0 wt. It may be the ninth coordinate point of% and the water content of 3.7 g / m 2. Further, the sixth coordinate point has an iodine concentration of 3.7 wt. It is the tenth coordinate point of% and the water content of 2.6 g / m 2 , and the seventh coordinate point may be the fourth coordinate point.
- the film thickness of the polarizing film may be 11 to 30 ⁇ m.
- the polarizing film made of a polyvinyl alcohol-based resin is optically bonded to at least the visible surface of the polarizing film directly or via another optical film.
- a polarizing film laminate provided with a transparent polarizing film protective film the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the water content (g / g /) of the polarizing film laminate. In the xy orthogonal coordinate system in which m 2 ) was taken, the iodine concentration was 6.0 wt.
- the polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
- the film thickness of the polarizing film may be 4 to 11 ⁇ m.
- the polarizing film protective film preferably has a light transmittance of 35% or less at a wavelength of 390 nm, and the polarizing film protective film has a wavelength of 400 nm.
- the light transmittance is preferably 70% or less.
- the polarizing film film laminate of the above aspect it is preferable that the polarizing film contains zinc.
- a sample composed of the polarizing film laminate and the glass plate laminated on both sides of the polarizing film laminate with an adhesive is provided at a black panel temperature of 89 ° C. and 30 ° C. % R. H.
- the single transmittance after irradiating xenon light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 is -0.5 or more as compared with the single transmittance before irradiation. Is preferable. Thereby, the problem of polyene formation can be effectively solved.
- the amount of change in the orthogonal transmittance at a wavelength of 410 nm is less than 1% and at a wavelength of 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%. As a result, the problem of color loss can be effectively solved.
- the amount of change in the orthogonal transmittance at a wavelength of 410 nm is 1% or more, and the wavelength is 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%. Thereby, the problem of heating redness can be effectively solved.
- the optical display panel according to one aspect of the present invention is bonded to the optical display cell directly or via another optical film on one surface of the optical display cell.
- the optical display cell comprising the polarizing film laminate according to any one of the above and an optically transparent cover plate arranged along the polarizing film laminate on the side opposite to the optical display cell.
- An optical display panel attached to the vehicle body of a powered vehicle is characterized in that the polarizing film laminate and the transparent cover plate are adhered to each other by a transparent adhesive layer that fills the space between them without any gaps. To do.
- the transparent cover plate may have the function of a capacitive touch sensor.
- an ITO layer which is a component of the capacitive touch sensor may be provided between the transparent cover plate and the polarizing film laminate.
- the polarizing film laminate with a transparent adhesive layer is optically bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film on at least the visible side.
- a polarizing film laminate provided with a transparent polarizing film protective film and a transparent adhesive layer laminated on the visual side of the polarizing film laminate are provided, and the iodine concentration (wt) of the polarizing film is provided on the x-axis.
- the iodine concentration was 6.0 wt.
- the transparent adhesive layer and the polarizing film protective film having the iodine concentration and the amount of water contained, at least the transparent adhesive layer is a light absorbing layer having a light absorbing ability, and the transparent adhesive layer and the polarizing film It is characterized in that the light transmittance of the laminated body of the protective film at a wavelength of 380 nm is 5% or less.
- the polarizing film laminate with a transparent adhesive layer is bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film opposite to the visible side.
- a polarizing film laminate provided with an optically transparent polarizing film protective film and a transparent adhesive layer laminated on the visual side of the polarizing film laminate are provided, and iodine of the polarizing film is provided on the x-axis.
- concentration (wt.%) Is the water content (g / m 2 ) of the polarizing film laminate on the y-axis
- the iodine concentration is 6.0 wt.
- the transparent adhesive layer having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance of the transparent adhesive layer at a wavelength of 380 nm is 5% or less.
- the polarizing film assembly is an optically transparent polarized light bonded to a polarizing film made of a polyvinyl alcohol-based resin directly to at least the surface of the polarizing film on the visible side or via another optical film.
- a polarizing film laminate provided with a film protective film, a transparent adhesive layer laminated on the visual side of the polarizing film laminate, and an optically transparent cover plate laminated on the visual side of the transparent adhesive layer.
- the x-axis is the iodine concentration (wt.%) Of the polarizing film and the y-axis is the water content (g / m 2) of the polarizing film laminate. Concentration 6.0 wt.
- the transparent cover plate is a light absorbing layer having a light absorbing ability, and the said. It is characterized in that the light transmittance of the polarizing film protective film, the transparent adhesive layer, and the laminated body of the transparent cover plate at a wavelength of 380 nm is 5% or less.
- the polarizing film assembly according to another aspect of the present invention is optically bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film opposite to the visible side.
- a polarizing film laminate provided with a transparent polarizing film protective film, a transparent adhesive layer laminated on the visible side of the polarizing film laminate, and an optically transparent laminate laminated on the visual side of the transparent adhesive layer.
- An xy orthogonal coordinate system provided with a cover plate, with the iodine concentration (wt.%) Of the polarizing film on the x-axis and the water content (g / m 2) of the polarizing film laminate on the y-axis.
- the iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And a first line segment connecting a second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and an iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt.
- the transparent adhesive layer and the transparent cover plate having the iodine concentration and the amount of water contained at least the transparent cover plate is a light absorption layer having a light absorbing ability, and the transparent adhesive layer and the transparent cover plate. It is characterized in that the light transmittance of the laminated body of the cover plate at a wavelength of 380 nm is 5% or less.
- the present invention relates to an optical display panel, for example, an optical display panel attached to the vehicle body of an automobile, a train, an airplane, or other powered traveling vehicle, and a polarizing film laminate used for the optical display panel. set to target.
- an optical display panel for example, an optical display panel attached to the vehicle body of an automobile, a train, an airplane, or other powered traveling vehicle
- a polarizing film laminate used for the optical display panel. set to target.
- “attached to the vehicle body” does not necessarily mean that the optical display panel or the polarizing film laminate is fixed to the vehicle body, but also, for example, the optical display panel or the polarizing film laminate used in a smartphone or the like. It also includes the case where they are freely mounted or brought into a powered vehicle like a body.
- mounted on the vehicle body includes all situations in which an optical display panel or polarizing film laminate is used with a powered vehicle and may be exposed to high temperature or high humidity environments.
- FIG. 1 is a schematic view showing an example of the layer structure of the optical display panel 1.
- the optical display panel 1 is at least opposite to the optical display cell 10, the polarizing film laminate 12 laminated on one surface 10a side (visual side) of the optical display cell 10, and the optical display cell 10.
- the optical display cell 10 and the polarizing film laminate 12 are adhered to each other without any voids by using a transparent adhesive layer made of a transparent adhesive (PSA) 11.
- PSA transparent adhesive
- a transparent adhesive layer made of a transparent adhesive (OCA) 13 laminated on the visual side of the polarizing film laminate 12 is used so that there are no voids.
- Another polarizing film laminate 17 is arranged on the other surface 10b side of the optical display cell 10 via a transparent adhesive (PSA) 16.
- PSA transparent adhesive
- the term "adhesive” includes adhesive (pressure sensitive adhesive).
- the optical display cell 10 and the polarizing film laminate 12 may be directly bonded by the transparent adhesive 11, but if necessary, other optical films such as a retardation film and a viewing angle compensation film (not shown). ) May be adhered.
- Optical display cell 10 examples include a liquid crystal cell and an organic EL cell.
- the organic EL cell a cell in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitting body (organic electroluminescence light emitting body) or the like is preferably used.
- the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or a laminate of these.
- Various layer configurations can be adopted, such as a laminate of electron injection layers composed of a light emitting layer and a perylene derivative, or a laminate of hole injection layers, light emitting layers, and electron injection layers.
- the liquid crystal cell includes a reflective liquid crystal cell that uses external light, a transmissive liquid crystal cell that uses light from a light source such as a backlight 18, and a semi-transmissive semi-reflection that uses both external light and light from a light source. Any type liquid crystal cell may be used.
- the polarizing film laminate 17 is also arranged on the side opposite to the visible side of the optical display cell (liquid crystal cell) 10, and further.
- a light source 18 such as a backlight is arranged.
- the polarizing film laminate 17 on the light source side and the liquid crystal cell 10 are adhered by an appropriate layer of a transparent adhesive 16.
- any type such as VA mode, IPS mode, TN mode, STN mode and bend orientation ( ⁇ type) can be used.
- cover plate 14 examples include a transparent plate (window layer), a touch panel, and the like.
- a transparent plate a transparent plate having appropriate mechanical strength and thickness is used.
- a transparent resin plate such as an acrylic resin or a polycarbonate resin, a glass plate, or the like is used.
- the surface of the cover plate 14 may be subjected to a low reflection treatment by, for example, a low reflection film (not shown).
- various touch panels such as a resistive film method, a capacitance method, an optical method, an ultrasonic method, and a glass plate or a transparent resin plate having a touch sensor function are used.
- the cover plate 14 may contain an ultraviolet absorber to form a light absorbing layer having a light absorbing ability, in other words, the transmittance of the cover plate 14 to ultraviolet rays may be set to a desired value.
- the cover plate 14 is formed of a transparent resin plate such as an acrylic resin or a polycarbonate resin, or a glass plate, and at the time of its production, for example, benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, or triazine-based. Examples include UV absorbers.
- benzotriazole-based ultraviolet absorber examples include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned.
- benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy.
- Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned.
- Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like.
- Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-).
- the transmittance of ultraviolet rays in the polarizing film assembly 19 including the polarizing film laminate 12 can be set to a desired value, and more effectively, "polyene formation", “color loss”, and “heated red”. You can comprehensively solve the problem of "oddness".
- the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less.
- the lower limit is, for example, 0.1% or more and 1% or more.
- the transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less.
- the lower limit is, for example, 10% or more, 20% or more, and 25% or more.
- the transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less.
- the lower limit is, for example, 50% or more, 60% or more, 65% or more.
- the transmittance at a wavelength of 420 nm is preferably 90% or less.
- the lower limit is, for example, 80% or more and 85% or more.
- phthalocyanine-based light absorbers In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers.
- An infrared absorber such as a light absorber may be mixed.
- a front transparent plate made of glass or a transparent resin plate is provided on the visual side of the touch panel. Further, in this case, an ITO layer (not shown) which is a component of the capacitive touch sensor is provided on the transparent adhesive 13 that joins the cover plate 14 and the polarizing film laminate 12.
- Transparent Adhesive As the transparent adhesives 11, 13 and 16, for example, various adhesives as disclosed in Japanese Patent No. 6071459 can be appropriately used.
- a (meth) acrylic adhesive can be used, or a curable adhesive that does not contain (meth) acrylic acid can be used.
- an isoprene-based UV curable adhesive is preferably used.
- the isoprene-based UV curable adhesive may contain an isoprene derivative in addition to isoprene as a monomer component.
- the adhesive may contain a monomer component other than the isoprene-based monomer.
- a (meth) acrylic acid derivative such as a (meth) acrylic acid ester may be contained as a monomer component. In order to suppress the decrease in transmittance due to polyene formation of polyvinyl alcohol, it is effective to reduce the content of the acid component in the transparent adhesives 11, 13 and 16.
- the transparent adhesives 11, 13, 16, for example, the transparent adhesive 13 (transparent adhesive layer) laminated on the visual side of the polarizing film laminate 12 contains an ultraviolet absorber to absorb light having a light absorbing ability. It may be a layer, in other words, the transmittance of the transparent adhesive to ultraviolet rays may be set to a desired value.
- a transparent adhesive is formed of a (meth) acrylic pressure-sensitive adhesive, and at the time of its production, examples thereof include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, and triazine-based UV absorbers.
- benzotriazole-based ultraviolet absorber examples include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned.
- benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy.
- Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned.
- Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like.
- Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-).
- the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less.
- the lower limit is, for example, 0.1% or more and 1% or more.
- the transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less.
- the lower limit is, for example, 10% or more, 20% or more, and 25% or more.
- the transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less.
- the lower limit is, for example, 50% or more, 60% or more, 65% or more.
- the transmittance at a wavelength of 420 nm is preferably 90% or less.
- the lower limit is, for example, 80% or more and 85% or more.
- phthalocyanine-based light absorbers In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers.
- An infrared absorber such as a light absorber may be mixed.
- the polarizing film laminate 12 includes at least a polarizing film 120 and a polarizing film protective film 121 bonded to at least the visible side of the polarizing film 120.
- the polarizing film laminate 12 may further include a polarizing film protective film 122 on the side opposite to the visible side of the polarizing film 120.
- the polarizing film protective film 121 may function as the light absorbing layer.
- the present invention is to comprehensively solve the problems caused by the usage environment such as high temperature or high humidity and by the irradiation of sunlight, particularly the problems of "polyenation", “color loss”, and “heating reddening".
- the polarizing film 120 is made of a polyvinyl alcohol (PVA) -based resin film containing iodine.
- PVA polyvinyl alcohol
- the material of the PVA-based film applied to the polarizing film PVA or a derivative thereof is used.
- the PVA derivative include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, and those modified with acrylamide and the like. Be done.
- PVA a PVA having a degree of polymerization of about 1000 to 10000 and a degree of saponification of about 80 to 100 mol% is generally used. PVA-based films made of these materials tend to contain moisture.
- the PVA-based film may contain additives such as plasticizers.
- the plasticizer include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, polyethylene glycol and the like.
- the amount of the plasticizer used is not particularly limited, but is preferably 20% by weight or less in the PVA-based film.
- a polarizing film having a thickness of 6 ⁇ m or more for example, a dyeing treatment in which the PVA-based film is dyed with iodine and a stretching treatment in which the PVA-based film is stretched in at least one direction are performed.
- a method is adopted in which the PVA-based film is subjected to a series of treatments including swelling, dyeing, cross-linking, stretching, washing with water and drying treatment.
- the swelling treatment is performed, for example, by immersing a PVA-based film in a swelling bath (water bath).
- a swelling bath water bath
- stains on the surface of the PVA-based film and blocking inhibitor are cleaned, and the PVA-based film is swollen to prevent non-uniformity such as uneven dyeing.
- Glycerin, potassium iodide and the like may be appropriately added to the swelling bath.
- the temperature of the swelling bath is, for example, about 20 to 60 ° C.
- the immersion time in the swelling bath is, for example, about 0.1 to 10 minutes.
- the dyeing treatment is performed, for example, by immersing a PVA-based film in an iodine solution.
- the iodine solution is usually an aqueous iodine solution and contains iodine and potassium iodide as a solubilizing agent.
- the iodine concentration is, for example, about 0.01 to 1% by weight, preferably 0.02 to 0.5% by weight.
- the potassium iodide concentration is, for example, about 0.01 to 10% by weight, preferably 0.02 to 8% by weight.
- the temperature of the iodine solution is, for example, about 20 to 50 ° C, preferably 25 to 40 ° C.
- the immersion time is, for example, about 10 to 300 seconds, preferably in the range of 20 to 240 seconds.
- conditions such as the concentration of the iodine solution, the immersion temperature of the PVA film in the iodine solution, and the immersion time are adjusted so that the iodine content and the potassium content in the PVA film are within the above ranges. Will be done.
- the cross-linking treatment is performed, for example, by immersing an iodine-dyed PVA-based film in a treatment bath containing a cross-linking agent.
- a cross-linking agent Any suitable cross-linking agent is adopted as the cross-linking agent.
- Specific examples of the cross-linking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination.
- Water is generally used as the solvent used for the solution of the cross-linking bath, but an appropriate amount of an organic solvent compatible with water may be added.
- the cross-linking agent is used, for example, in a ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the solvent.
- the solution of the cross-linking bath further contains an auxiliary agent such as iodide.
- concentration of the auxiliary agent is preferably 0.05 to 15% by weight, more preferably 0.5 to 8% by weight.
- the temperature of the cross-linking bath is, for example, about 20 to 70 ° C, preferably 40 to 60 ° C.
- the immersion time in the cross-linking bath is, for example, about 1 second to 15 minutes, preferably 5 seconds to 10 minutes.
- the stretching treatment is a treatment in which the PVA-based film is stretched in at least one direction.
- the PVA-based film is uniaxially stretched in the transport direction (longitudinal direction).
- the stretching method is not particularly limited, and either a wet stretching method or a dry stretching method can be adopted.
- the wet stretching method is adopted, the PVA-based film is stretched to a predetermined magnification in the treatment bath.
- a solution in which compounds necessary for various treatments are added to a solvent such as water or an organic solvent (for example, ethanol) is preferably used.
- the dry stretching method include an inter-roll stretching method, a heating roll stretching method, and a compression stretching method.
- the stretching treatment may be performed at any stage. Specifically, it may be performed at the same time as swelling, staining, and cross-linking, and may be performed before or after each of these treatments. Further, the stretching may be performed in multiple stages.
- the cumulative draw ratio of the PVA-based film is, for example, 5 times or more, preferably about 5 to 7 times.
- the PVA-based film (stretched film) subjected to each of the above treatments is subjected to a water washing treatment and a drying treatment according to a conventional method.
- the water washing treatment is performed, for example, by immersing a PVA-based film in a water washing bath.
- the water washing bath may be pure water or an aqueous solution of iodide (for example, potassium iodide, sodium iodide, etc.).
- the concentration of the aqueous iodide solution is preferably 0.1 to 10% by weight.
- Auxiliary agents such as zinc sulfate and zinc chloride may be added to the aqueous iodide solution.
- the washing temperature is, for example, in the range of 5 to 50 ° C, preferably 10 to 45 ° C, and more preferably 15 to 40 ° C.
- the immersion time is, for example, about 10 to 300 seconds, preferably 20 to 240 seconds.
- the water washing treatment may be carried out only once, or may be carried out a plurality of times as needed. When the water washing treatment is performed a plurality of times, the type and concentration of the additive contained in the water washing bath used for each treatment are appropriately adjusted.
- the PVA-based film is dried by any suitable method (for example, natural drying, blast drying, heat drying).
- a polarizing film having a film thickness of less than 6 ⁇ m can be produced, for example, by the production method disclosed in Japanese Patent No. 4751481.
- This production method includes a laminate preparation process for forming a PVA-based resin layer on a thermoplastic base material, a stretching treatment for stretching the PVA-based resin layer integrally with the thermoplastic resin base material, and a bicolor substance on the PVA resin layer. Includes dyeing treatment to be adsorbed. If necessary, insolubilization treatment, cross-linking treatment, drying treatment, cleaning treatment and the like of the PVA-based resin layer can also be applied.
- the stretching treatment can be carried out before or after the dyeing treatment, and either stretching method of air stretching or stretching in water such as an aqueous boric acid solution can be adopted. Further, the stretching may be a one-step stretching or a multi-step stretching of two or more steps.
- a polarizing film is produced by stretching a PVA-based resin layer formed on a resin base material integrally with the resin base material.
- an amorphous ester-based thermoplastic resin base material having a glass transition temperature of 75 ° C. and a thickness of 200 ⁇ m for example, isophthalic acid copolymerized polyethylene terephthalate obtained by copolymerizing 6 mol% of isophthalic acid (hereinafter, “acrystalline PET””. 6 and a PVA aqueous solution having a concentration of 4 to 5% by weight in which a PVA powder having a degree of polymerization of 1000 or more and a degree of saponification of 99% or more is dissolved in water are prepared.
- a PVA aqueous solution is applied to the amorphous PET base material 6 at a temperature of 50 to 60 ° C.
- a PVA layer 2 having a glass transition temperature of 80 ° C. and a thickness of 7 ⁇ m is formed on the PET substrate 6.
- the laminated body 7 including the PVA layer having a thickness of 7 ⁇ m is produced.
- the surface of the amorphous PET base material 6 is corona-treated by the surface modification treatment apparatus 23 to improve the adhesion between the amorphous PET base material 6 and the PVA layer 2 formed on the amorphous PET base material 6. Can be done.
- the laminate 7 containing the PVA layer is finally produced as a polarizing film having a thickness of 3 ⁇ m through the following treatments including a two-stage stretching treatment of auxiliary stretching in the air and stretching in boric acid in water.
- the laminated body 7 containing the 7 ⁇ m-thick PVA layer 2 is stretched integrally with the PET base material 6, and the “stretched laminated body 8” containing the 5 ⁇ m-thick PVA layer 2 is formed.
- the laminate 7 including the PVA layer 2 having a thickness of 7 ⁇ m is stretched in the oven 33 set to a stretching temperature environment of 130 ° C. It is stretched uniaxially at the free end so that the stretching ratio becomes 1.8 times through the means 31, and the stretched laminate 8 is produced.
- the roll 8'of the stretched laminate 8 can be manufactured by the winding device 32 installed in the oven 30.
- the dyeing treatment (C) produces a colored laminate 9 in which iodine, which is a dichroic substance, is adsorbed on the 5 ⁇ m-thick PVA layer 2 in which PVA molecules are oriented.
- the stretched laminate 8 unwound from the feeding device 43 equipped with the roll 8'attached to the dyeing device 40 is iodine at a liquid temperature of 30 ° C.
- the stretched laminate 8 is immersed in a dyeing solution 41 containing potassium iodide for an arbitrary time so that the single transmittance of the PVA layer constituting the finally produced polarizing film is 40 to 44%.
- a colored laminate 9 in which iodine is adsorbed on the oriented PVA layer 2 is produced.
- the dyeing solution 41 uses water as a solvent and has an iodine concentration of 0.30% by weight in order to prevent the PVA layer 2 contained in the stretched laminate 8 from being dissolved. Further, the staining solution 41 has a potassium iodide concentration of 2.1% by weight for dissolving iodine in water. The ratio of iodine to potassium iodide concentrations is 1: 7. More specifically, a 5 ⁇ m-thick PVA layer in which PVA molecules are oriented by immersing the stretched laminate 8 in a staining solution 41 having an iodine concentration of 0.30% by weight and a potassium iodide concentration of 2.1% by weight for 60 seconds. A colored laminate 9 in which iodine is adsorbed on 2 is produced.
- the optical film laminate 60 including the polarizing film is preferably sent to the cleaning treatment (G) as it is.
- the purpose of the cleaning treatment (G) is to wash away unnecessary residues adhering to the surface of the polarizing film with the cleaning liquid 81 of the cleaning apparatus 80.
- the cleaning treatment (G) can be omitted, and the optical film laminate 60 including the removed polarizing film can be directly sent to the drying treatment (H).
- the washed optical film laminate 60 is sent to a drying process (H), where it is dried.
- the dried optical film laminate 60 is wound as a continuous web optical film laminate 60 by a winding device 91 attached to the drying apparatus 90, and a roll of the optical film laminate 60 including a polarizing film is rolled. Will be generated.
- the drying treatment (H) any suitable method, for example, natural drying, blast drying, or heat drying can be adopted.
- drying can be performed with warm air at 60 ° C. for 240 seconds.
- the polarizing film preferably contains zinc. Since the polarizing film contains zinc, the decrease in transmittance and the deterioration of hue of the polarizing film laminate after the heating test tend to be suppressed.
- the zinc content in the polarizing film is preferably 0.002 to 2% by weight, more preferably 0.01 to 1% by weight.
- the polarizing film also preferably contains sulfate ions. Since the polarizing film contains sulfate ions, a decrease in the transmittance of the polarizing film laminate after the heating test tends to be suppressed.
- the content of sulfate ions in the polarizing film is preferably 0.02 to 0.45% by weight, more preferably 0.05 to 0.35% by weight, and 0.1 to 0.1 to 0.35% by weight. 0.25% by weight is more preferable.
- the content of sulfate ions in the polarizing film is calculated from the sulfur atom content.
- zinc impregnation treatment is performed in the polarizing film manufacturing process.
- sulfate ions it is preferable that sulfate ion treatment is performed in the polarizing film manufacturing process.
- the zinc impregnation treatment is performed, for example, by immersing a PVA-based film in a zinc salt solution.
- a zinc salt solution an inorganic salt compound in an aqueous solution such as zinc halide such as zinc chloride and zinc iodide, zinc sulfate and zinc acetate is suitable.
- various zinc complex compounds may be used for the zinc impregnation treatment.
- the zinc salt solution it is preferable to use an aqueous solution containing potassium ions and iodine ions with potassium iodide or the like because it is easy to impregnate the zinc ions.
- the potassium iodide concentration in the zinc salt solution is preferably about 0.5 to 10% by weight, more preferably 1 to 8% by weight.
- Sulfate ion treatment is performed, for example, by immersing a PVA-based film in an aqueous solution containing a metal sulfate.
- the metal sulfate is preferably one in which the sulfate ion and the metal ion are easily separated in the treatment liquid, and the metal sulfate is easily introduced into the PVA-based film in the ion state.
- the types of metals that form metal sulfates include alkali metals such as sodium and potassium; alkaline earth metals such as magnesium and calcium; transitions such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese, and iron. Metal is mentioned.
- the zinc impregnation treatment and the sulfate ion treatment may be performed at any stage. That is, the zinc impregnation treatment and the sulfate ion treatment may be performed before the dyeing treatment or after the dyeing treatment. The zinc impregnation treatment and the sulfate ion treatment may be performed at the same time. It is preferable that the zinc impregnation treatment and the sulfate ion treatment are simultaneously performed by immersing the PVA-based film in a treatment bath containing zinc sulfate using zinc sulfate as the zinc salt and the metal sulfate.
- the zinc salt and the metal sulfate can be allowed to coexist in the dyeing solution, and the zinc impregnation treatment and / or the sulfate ion treatment can be performed at the same time as the dyeing treatment.
- the zinc impregnation treatment and the sulfate ion treatment may be performed at the same time as the stretching.
- Polarizing film protective film 2-2-1 Polarizing film protective film located on the side opposite to the viewing side In the polarizing film laminate 12 of FIG. 1, as a material constituting the polarizing film protective film 122 located on the side opposite to the viewing side of the polarizing film 120, for example, , A thermoplastic resin having excellent transparency, mechanical strength, and thermal stability.
- thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins.
- the polarizing film protective film 122 may also have the function of a retardation film.
- the thickness of the polarizing film protective film 122 is appropriately adjusted in order to adjust the water content of the polarizing film laminate. From the viewpoint of workability such as strength and handleability, thin layer property, etc., about 1 to 500 ⁇ m is preferable, 2 to 300 ⁇ m is more preferable, and 5 to 200 ⁇ m is further preferable.
- the polarizing film protective film 122 may contain one or more kinds of arbitrary additives. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, color retardants, flame retardants, nucleating agents, antistatic agents, pigments, colorants and the like.
- the polarizing film protective film 121 located on the viewing side of the polarizing film 120 is configured as a light absorbing layer having a light absorbing ability.
- the transmittance for ultraviolet rays is set to a desired value.
- the polarizing film protective film 121 can be configured as a light absorbing layer having a light absorbing ability by containing an ultraviolet absorber, but it is sufficient if the transmittance for ultraviolet rays can be set to a desired value. It is not always necessary to use an ultraviolet absorber.
- an ultraviolet absorbing filter may be used instead of the ultraviolet absorber to obtain a desired transmittance.
- the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less.
- the lower limit is, for example, 0.1% or more and 1% or more.
- the transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less.
- the lower limit is, for example, 10% or more, 20% or more, and 25% or more.
- the transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less.
- the lower limit is, for example, 50% or more, 60% or more, 65% or more.
- the transmittance at a wavelength of 420 nm is preferably 90% or less.
- the lower limit is, for example, 80% or more and 85% or more.
- phthalocyanine-based light absorbers In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers.
- An infrared absorber such as a light absorber may be mixed.
- the polarizing film protective film 121 for example, the configurations shown in FIGS. 3A to 3C can be adopted. Any of the polarizing film protective films 121A to C shown in FIGS. 3A to 3C can be used as the polarizing film protective film 121 shown in FIG.
- the polarizing film 120 and the polarizing film protective film 122 shown in FIG. 1 are also shown in these figures.
- the polarizing film protective film 121A shown in FIG. 3A includes a polarizing film protective film layer 121A-1 and a coating layer 121A-2.
- the polarizing film protective film 121A having a light absorbing ability is obtained, for example, by containing a light absorbing agent in the polarizing film protective film layer 121A-1 and / or by containing a light absorbing agent in the coating layer 121A-2. Can be formed.
- thermoplastic resin having excellent transparency, mechanical strength, and thermal stability.
- thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins.
- the polarizing film protective film may have the function of a retardation film.
- the thickness of the polarizing film protective film layer 121A-1 is appropriately adjusted in order to adjust the water content of the polarizing film laminate 12. It is 20 to 60 ⁇ m, preferably 30 to 50 ⁇ m from the viewpoint of workability such as strength and handleability, and thin layer property.
- One or more kinds of arbitrary additives may be contained in the polarizing film protective film layer 121A-1. Examples of the additive include antioxidants, lubricants, plasticizers, mold release agents, colorants, flame retardants, nucleating agents, antistatic agents, pigments, colorants and the like.
- Examples of the light absorber contained in the polarizing film protective film layer 121A-1 include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, and triazine-based ultraviolet absorbers.
- Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole).
- -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned.
- benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy.
- benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned.
- salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like.
- Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2
- the coating layer 121A-2 include a hard coat layer, an anti-glare layer, an anti-blocking layer, an antireflection layer, a conductive layer and the like.
- the production method of the present invention is particularly useful when forming a hard coat layer.
- Materials constituting the coating layer include resin materials (monomers, oligomers, prepolymers and / or polymers).
- the resin material comprises a thermosetting or photocurable curable compound.
- a hard coat layer or an anti-glare layer can be formed by using a coating layer material containing a curable compound.
- the curable compound may be any of a monomer, an oligomer and a prepolymer.
- a polyfunctional monomer or oligomer can be used as the curable compound, for example, a monomer or oligomer having two or more (meth) acryloyl groups, a urethane (meth) acrylate or a urethane (meth) acrylate oligomer, an epoxy-based monomer or Examples thereof include oligomers, silicone-based monomers and oligomers.
- the thickness of the coating layer 121A-2 is 10 ⁇ m or less, preferably 8 ⁇ m or less, and more preferably 6 ⁇ m or less in terms of thinness and the like. The lower limit is, for example, 1 ⁇ m or more, 2 ⁇ m or more, and 4 ⁇ m or more.
- Examples of the light absorber contained in the coating layer 121A-2 include benzotriazole-based, benzophenone-based, salicylic acid phenyl ester-based, and triazine-based ultraviolet absorbers.
- Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole).
- -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned.
- benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy.
- benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned.
- salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like.
- Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2
- the total thickness of the light absorbing layer composed of the polarizing film protective film layer 121A-1 and / or the coating layer 121A-2 that is, the polarizing film protection having a light absorbing ability
- the total thickness of the film layer 121A-1 and / or the coating layer 121A-2 having a light absorbing ability is 25 to 65 ⁇ m, preferably 35 to 55 ⁇ m from the viewpoint of obtaining sufficient light absorbing ability and thinning property.
- it is more preferably 40 to 50 ⁇ m.
- Polarizing film protective film 121B The polarizing film protective film 121B shown in FIG. 3 (b) includes a plurality of polarizing film protective film layers 121B-1 and 121B-3, and these polarizing film protective film layers 121B-1 and 121B-. Includes an adhesive layer 121B-2 to which 3 is bonded.
- the polarizing film protective film 121B having a light absorbing ability can be formed, for example, by including a light absorbing agent in either or both of the polarizing film protective film layers 121B-1 and 121B-3.
- the same material as the optical film protective film layer 121A-1 can be used.
- the same light absorber contained in the polarizing film protective film layers 121B-1 and 121B-3 the same light absorber contained in the polarizing film protective film layer 121A-1 can be used. These light absorbers can be contained in the same manner as the polarizing film protective film layer 121A-1.
- the total thickness of the light absorbing layer composed of the polarizing film protective film layers 121B-1 and 121B-3, that is, the polarizing film protective film layer 121B-1 having a light absorbing ability is 25 to 105 ⁇ m, preferably 60 to 100 ⁇ m, and more preferably 70 to 90 ⁇ m from the viewpoint of obtaining sufficient light absorption capacity and thin layer property.
- an ultraviolet curable adhesive or a dope curable adhesive which will be described later, can be used.
- Polarizing film protective film 121C The polarizing film protective film 121C shown in FIG. 3 (c) includes only the polarizing film protective film layer 121C having a light absorbing ability.
- the same material as that of the optical film protective film layer 121A-1 can be used.
- the same light absorber contained in the polarizing film protective film layer 121C the same light absorber contained in the polarizing film protective film layer 121A-1 can be used. These light absorbers can be contained in the same manner as the polarizing film protective film layer 121A-1.
- the thickness of the polarizing film protective film layer 121C is 25 to 105 ⁇ m, preferably 60 to 100 ⁇ m, more preferably 70 to 90 ⁇ m from the viewpoint of obtaining sufficient light absorption ability and thin layer property.
- the polarizing film protective film layer 121C can also be regarded as a combination of the plurality of polarizing film protective films 121B-1 and 121B-3 shown in FIG. 3B.
- any of the cover plate 14, the transparent adhesive 13, and the polarizing film protective film 121 may be used, or a combination thereof may be used to form a light absorption layer.
- the desired transmittance may be appropriately adjusted for the entire device as in the case of a general device.
- the other optical film The polarizing film and the polarizing film protective films 121 and 122 may be directly bonded or laminated with another optical film.
- the other optical film is not particularly limited, but for example, a retardation film, a viewing angle compensation film, or the like can be used.
- the retardation film as another optical film may have a function as a protective film.
- the polarizing film protective films 121 and 122 may have the function of a retardation film, but in this case, the retardation film as another optical film may be omitted.
- the retardation film can be provided as another optical film. In this case, substantially two or more retardation films will be included.
- Adhesive The adhesive used to bond the adhesive layer 121B-2 shown in FIG. 3B, the polarizing film 120 and the polarizing film protective films 121 and 122, or other optical films such as a retardation film and them.
- a radical polymerization curable (ultraviolet curable) adhesive, a cationic polymerization curable adhesive, or an aqueous (dope type) adhesive can be used.
- the radical polymerization curable adhesive contains a radical polymerizable compound as a curable compound.
- the radically polymerizable compound may be a compound that is cured by active energy rays or a compound that is cured by heat. Examples of the active energy ray include an electron beam, ultraviolet rays, visible light and the like.
- the radically polymerizable compound examples include compounds having a radically polymerizable functional group having a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group.
- a polyfunctional radically polymerizable compound is preferably used. Only one type of radically polymerizable compound may be used alone, or two or more types may be used in combination. Further, the polyfunctional radical polymerizable compound and the monofunctional radical polymerizable compound may be used in combination.
- the polymerizable compound it is preferable to use a compound having a high logP value (octanol / water partition coefficient), and as the radical polymerizable compound, it is preferable to select a compound having a high logP value.
- the logP value is an index showing the lipophilicity of a substance, and means a logarithmic value of the partition coefficient of octanol / water.
- a high logP value means that it is lipophilic, that is, it has a low water absorption rate.
- the logP value can be measured (the flask dipping method described in JIS-Z-7260), and is calculated based on the structure of each compound which is a constituent component (curable component, etc.) of the curable adhesive. It can also be calculated (ChemDraw Ultra manufactured by Cambridge Soft).
- the logP value of the radically polymerizable compound is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more. Within such a range, deterioration of the polarizing element due to moisture can be prevented, and a polarizing film having excellent durability under high temperature and high humidity can be obtained.
- polyfunctional radical polymerizable compound examples include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di ().
- a polyfunctional radical polymerizable compound having a high logP value is preferable.
- the content ratio of the polyfunctional radical polymerizable is preferably 20 to 97% by weight, preferably 50 to 95% by weight, based on the total amount of the radically polymerizable compound.
- weight% is more preferable, 75 to 92% by weight is further preferable, and 80 to 92% by weight is particularly preferable. Within such a range, a polarizing film having excellent durability under high temperature and high humidity can be obtained.
- Examples of the monofunctional radically polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group.
- the (meth) acrylamide derivative By using the (meth) acrylamide derivative, a pressure-sensitive adhesive layer having excellent adhesiveness can be formed with high productivity.
- Specific examples of the (meth) acrylamide derivative include N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N.
- N-N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N- N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth) acrylamide derivatives such as mercaptomethyl (meth) acrylamide and mercaptoethyl (meth) acrylamide can be mentioned.
- heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocycle for example, N-acrylloylmorpholine, N-acrylloylpiperidin, N-methacryloylpiperidin, N-acrylloylpyridine and the like. May be used. Among these, an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable, and N-hydroxyethyl (meth) acrylamide is more preferable.
- a (meth) acrylic acid derivative having a (meth) acryloyloxy group a (meth) acrylic acid derivative having a (meth) acryloyloxy group; (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, croton.
- Carboxyl group-containing monomers such as acid and isocrotonic acid; lactam-based vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole , Vinyl imidazole, vinyl oxazole, vinyl morpholin, and other vinyl-based monomers having a nitrogen-containing heterocycle may be used.
- the content ratio of the monofunctional radical polymerizable is preferably 3 to 80% by weight based on the total amount of the radical polymerizable compound, and 5 to 50% by weight. By weight% is more preferred, 8 to 25% by weight is even more preferred, and 8 to 20% by weight is particularly preferred. Within such a range, a polarizing film having excellent durability under high temperature and high humidity can be obtained.
- the radical polymerization curable adhesive may further contain other additives.
- the adhesive may further contain, for example, a photopolymerization initiator, a photoacid generator, a silane coupling agent, and the like.
- the adhesive may further contain a thermal polymerization initiator, a silane coupling agent, and the like.
- examples of other additives include polymerization inhibitors, polymerization initiators, leveling agents, wettability improvers, surfactants, plasticizers, ultraviolet absorbers, inorganic fillers, pigments, dyes and the like. ..
- the cationically polymerizable curable adhesive contains a cationically polymerizable compound as a curable compound.
- the cationically polymerizable compound include compounds having an epoxy group and / or an oxetanyl group.
- the compound having an epoxy group a compound having at least two epoxy groups in the molecule is preferably used.
- the compound having an epoxy group include a compound having at least two epoxy groups and at least one aromatic ring (aromatic epoxy compound), and at least two epoxy groups in the molecule, of which at least.
- One is a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
- the cationic polymerization curable adhesive preferably contains a photocationic polymerization initiator.
- the photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group or an oxetanyl group.
- the cationic polymerization curable adhesive may further contain the above-mentioned additive.
- water-based adhesive examples include aqueous solutions of water-based adhesives such as isocyanate-based adhesives, PVA-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and water-based polyesters (for example, solid content concentration of 0.5 to 60% by weight). ) Is preferably used.
- the adhesive may be applied to any of the polarizing film 120, the polarizing film protective films 121 and 122, and other optical films, or both of them.
- a method in which the polarizing film is immersed in an aqueous adhesive solution and then laminated with the polarizing film protective films 121 and 122 by a roll laminator or the like is preferable.
- the thickness of the adhesive layer is not particularly limited, but is, for example, about 30 nm to 1000 nm after drying.
- this laminate is subjected to a drying treatment.
- the purpose is to reduce the amount of water that improves the initial optical characteristics of the polarizing film laminated body.
- heat drying is common.
- the drying conditions are preferably in the range of 50 to 95 ° C and more preferably in the range of 60 to 85 ° C.
- the drying conditions of the laminate are not particularly limited, but considering the efficiency and practicality of the treatment, the drying temperature is preferably 50 ° C. or higher, and 95 from the viewpoint of making the optical characteristics of the polarizing film laminate uniform. °C or less is preferable.
- the drying temperature can be raised stepwise within the above temperature range.
- the laminate can be dried continuously with the bonding treatment of the polarizing film, the polarizing film protective film, and other optical films. Further, after the laminate of the polarizing film, the polarizing film protective film, and other optical films is once wound in a roll state, drying may be performed as another treatment.
- the water content of the polarizing film laminate can be adjusted within the desired range without adopting harsh drying conditions. Can be done.
- Adhesive The adhesive described in "1-3. Transparent Adhesive" described above can be used in the same manner.
- ⁇ Polyene> In a high temperature and high humidity environment, the single transmittance of the polarizing film laminate decreases. Further, even when light is irradiated in the ultraviolet region or the visible light region, the single transmittance of the polarizing film laminate is similarly lowered. This decrease is presumed to be due to polyene formation of PVA.
- PVA is polyene-ized by the iodine (I 2 ) generated in a high-temperature and high-humidity environment or in a light irradiation environment in the ultraviolet region or visible light region, and heating or light energy. It is thought to occur when the dehydration reaction is promoted.
- I 2 generated when the PVA-polyiodine complex existing in the polarizing film is broken by heating or light energy and the OH group in PVA form a charge transfer complex (HO ... I 2 ), and then the OI group is formed. It is thought that it will become polyene via.
- ⁇ Color loss> It is iodine staining, and the stretched PVA-based film (polarizer), iodine I 3 - and I 5 - in the form of a polyiodine ion, to form a oriented PVA complexes (PVA polyiodine complex ).
- the PVA has a cross-linking point formed by a cross-linking agent such as boric acid, whereby the orientation is maintained.
- a cross-linking agent such as boric acid
- the visible light absorption based on the PVA polyiodine complex is reduced, and the transmittance on the long wavelength side of about 700 nm and the short wavelength side of about 410 nm is increased.
- color loss occurs in a black display.
- I 3 - has a broad absorption peak near 470 nm
- I 5 - has a broad absorption peak near 600 nm. That is, the PVA-I 3 - complex is responsible for absorption on the short wavelength side (blue side), and the PVA-I 5 - complex is responsible for absorption on the long wavelength side (red side).
- the PVA-I 5 - complexes weakly to the heat or light energy, the polarizing film and a high temperature, when placed under light irradiation environment in the ultraviolet region or visible region PVA and I 5 - is complexation with collapse, I 5 - would decompose. Therefore, in a polarizing film placed at a high temperature or in a light irradiation environment in an ultraviolet region or a visible light region, the PVA-I 5 - complex responsible for absorption on the long wavelength side is reduced, that is, the length is about 700 nm. The transmittance on the wavelength side increases, and the polarizing film turns red.
- ⁇ Film thickness of polarizing film The film thickness ( ⁇ m) of the polarizing film is measured using a spectroscopic film thickness meter MCPD-1000 (manufactured by Otsuka Electronics Co., Ltd.). The thickness of the polarizing film protective film is also measured using this.
- the polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film.
- the solvent for example, dichloromethane is used when the polarizing film protective film is a triacetyl cellulose resin, cyclohexane is used when the polarizing film protective film is a cycloolefin resin, and methyl ethyl ketone is used when the polarizing film protective film is an acrylic resin. , Can be used respectively. If the resin of the polarizing film protective film provided on one surface of the polarizing film and the resin of the polarizing film protective film provided on the other surface are different, the respective resins are used as the above-mentioned solvent. Dissolve in sequence using.
- the iodine concentration (wt.%) Of the polarizing film can be changed, for example, by adjusting the concentration of the iodine aqueous solution for immersing the PVA-based film or the PVA layer and the immersion time during the production of the polarizing film.
- the iodine concentration of the polarizing film is measured by the following method.
- the polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film in the same manner as when measuring the film thickness of the polarizing film.
- the iodine concentration of the polarizing film is quantified by using the calibration curve method of fluorescent X-ray analysis.
- a fluorescent X-ray analyzer ZSX-PRIMUS IV manufactured by Rigaku Co., Ltd.
- the value directly obtained by the fluorescent X-ray analyzer is not the concentration of each element, but the fluorescent X-ray intensity (kcps) of the wavelength peculiar to each element. Therefore, in order to determine the iodine concentration contained in the polarizing film, it is necessary to convert the fluorescent X-ray intensity into a concentration using a calibration curve.
- the iodine concentration of the polarizing film in the present specification and the like means the iodine concentration (wt%) based on the weight of the polarizing film.
- Iodine concentration (wt%) ⁇ potassium iodide amount (g) / (potassium iodide amount (g) + PVA amount (g)) ⁇ x (127/166) (Molecular weight of iodine: 127 Molecular weight of potassium: 39)
- the fluorescent X-ray intensity (kcps) corresponding to iodine is measured on the produced PVA film using a fluorescent X-ray analyzer ZSX-PRIMUS IV (manufactured by Rigaku Co., Ltd.).
- the fluorescent X-ray intensity (kcps) is the peak value of the fluorescent X-ray spectrum.
- the film thickness of the produced PVA film is measured using a spectroscopic film thickness meter MCPD-1000 (manufactured by Otsuka Electronics Co., Ltd.).
- the fluorescent X-ray intensity is divided by the thickness of the PVA film ( ⁇ m) to obtain the fluorescent X-ray intensity per unit thickness of the film (kcps / ⁇ m).
- Table 1 shows the iodine concentration of each sample and the fluorescent X-ray intensity per unit thickness.
- the fluorescent X-ray intensity obtained in the sample measurement is divided by the thickness to obtain the fluorescent X-ray intensity (kcps / ⁇ m) per unit thickness.
- the iodine concentration is obtained by substituting the fluorescent X-ray intensity per unit thickness of each sample into Equation 2.
- the water content (g / m 2 ) of the polarizing film laminate can be determined mainly by adjusting the film thickness of the polarizing film, the material and thickness of the polarizing film protective film bonded to the polarizing film, and the like. It can also be adjusted by a cross-linking treatment (boric acid content, etc.) at the time of manufacturing the polarizing film.
- the water content of the polarizing film laminate is measured by the following method. First, the polarizing film laminates obtained in Examples and Comparative Examples are cut into a square of 0.1 m ⁇ 0.1 m. The cut sample is placed in a constant temperature and humidity chamber and left for 48 hours in an environment with a temperature of 23 ° C.
- the sample is taken out in the same environment as in the constant temperature and humidity chamber, that is, in a clean room set to a temperature of 23 ° C. and a relative humidity of 55%, and the weight is measured within 5 minutes after taking out.
- the sample weight at this time is defined as the initial weight W1 (g). If it is within about 15 minutes after taking out, even if the temperature in the clean room fluctuates by about 2 ° C to 3 ° C, or even if the relative humidity in the clean room fluctuates by about ⁇ 10%, the initial weight Has no substantial effect on.
- the taken-out sample is put into a dryer and dried at 120 ° C. for 2 hours.
- the sample dried in a clean room set to the above-mentioned temperature of 23 ° C. and relative humidity of about 55% is taken out, and the weight is measured within 10 minutes after taking out.
- the sample weight at this time is the weight W2 (g) after drying.
- the reason why it is set within 10 minutes instead of within 5 minutes is in consideration of the cooling time.
- the weight after drying is not substantially affected.
- the equilibrium water content M (g / m 2 ) of the polarizing film laminate is calculated from the following formula.
- (Equation) M (W1-W2) / (0.1 ⁇ 0.1)
- the "moisture content of the polarizing film laminate" as used in the present invention means the equilibrium moisture content calculated by the above method.
- the polarizing film protection located on the visual side of the polarizing film according to the JIS-Z-8701 color display method for each of the wavelengths of 380 ⁇ m, 390 ⁇ m, 400 ⁇ m, and 420 ⁇ m
- the transmittance of the film was measured.
- U-4100 manufactured by Hitachi, Ltd. was used.
- Example 1 (Creation of polarizing film)
- a long amorphous isophthalic copolymerized polyethylene terephthalate film (isophthalic acid group modification degree 5 mol%, thickness: 100 ⁇ m) was used.
- (Degree of polymerization ethylene isophthalate unit / (ethylene terephthalate unit + ethylene isophthalate unit))
- One surface of the resin base material is subjected to corona treatment (treatment condition: 55 W ⁇ min / m2), and the corona treated surface is subjected to corona treatment.
- An aqueous solution containing potassium iodide so as to be 13 parts by weight was applied at room temperature. Then, it was dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared. The obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C.
- the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
- a dyeing bath having a liquid temperature of 30 ° C. an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water
- a polarizing film protective film is not provided on the surface of the obtained polarizing film opposite to the resin substrate (one surface of the polarizing film, in other words, the surface opposite to the visible side of the polarizing film).
- the other surface of the polarizing film in other words, the surface on the visual side of the polarizing film
- triacetyl cellulose containing a light absorber as a polarizing film protective film having a light absorbing ability.
- An ultraviolet curable type polarizing film protective film composed of a film (manufactured by Konica Minolta, trade name "KC4UY", thickness 40 ⁇ m) and a hard coat layer (thickness 5 ⁇ m) containing a light absorber arranged on the visible side thereof. They were joined via an adhesive. Specifically, the curable adhesive was coated so that the total thickness was 1.0 ⁇ m, and the adhesive was joined using a roll machine. Then, UV light is irradiated from the other surface side to cure the adhesive to obtain a polarizing film laminate containing a polarizing film and a polarizing film protective film having a light absorbing ability on the other surface of the polarizing film. It was.
- the above-mentioned triacetyl cellulose film contains a predetermined amount of a light absorber (ultraviolet absorber).
- the hard coat layer is a light absorber Tinosorb S (manufactured by BASF) so that the triacetyl cellulose film and the entire hard coat layer have the transmittances shown in Tables 2 and 3 described later. Was contained.
- the details of the UV curable adhesive are as follows. An adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloyl morpholine (ACMO), and 3 parts by weight of the photoinitiator "IRGACURE 819" (manufactured by BASF).
- the adhesive layer was applied onto a polarizing film so that the thickness of the adhesive layer after curing was 1.0 ⁇ m, and was irradiated with ultraviolet rays as active energy rays to cure the adhesive.
- ultraviolet irradiation gallium-filled metal halide lamp, irradiation device: Fusion UV Systems, Light HAMMER10 manufactured by Inc., valve: V valve, peak illuminance: 1600 mW / cm 2 , cumulative irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm). ), And the illuminance of ultraviolet rays was measured using a Solar-Check system manufactured by Solartell.
- the polarizing film protective film located on the visual side of the polarizing film that is, the polarizing film protective film composed of the triacetyl cellulose film and the hard coat layer is peeled off from the polarizing film laminate to increase the transmittance of the polarizing film protective film. It was measured.
- Example 2 In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration. Further, when producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 13 ⁇ m, manufactured by Nippon Zeon Co., Ltd.) was applied as a polarizing film protective film on one surface of the polarizing film, and an ultraviolet curable adhesive was applied. It was joined through. Since this cycloolefin-based film is provided on one surface of the polarizing film, it does not affect the value of the light absorption capacity. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 1.
- Example 1 In producing the polarizing film laminate of Example 1, one surface of the polarizing film has the same configuration as the above-mentioned one surface of Example 1, while the other surface of the polarizing film has a lactone ring structure.
- a transparent protective film manufactured by Nitto Denko Co., Ltd.
- a transparent protective film having a thickness of 20 ⁇ m made of a modified acrylic polymer was applied through an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 ⁇ m. It was joined.
- the water content of the polarizing film laminate was changed. Others are the same as in Example 1.
- Example 2 In producing the polarizing film laminate of Example 2, one surface of the polarizing film has the same configuration as the above one surface of Example 2, while the other surface of the polarizing film has a cycloolefin film (Japan). Zeon Co., Ltd., Zeonoa film, 25 ⁇ m) was bonded via an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 ⁇ m. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 2.
- Example 3 In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration. Further, in producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 17 ⁇ m, manufactured by Nippon Zeon Co., Ltd.) was used as a polarizing film protective film on one surface of the polarizing film. In the same manner, the curable adhesives were bonded via an ultraviolet curable adhesive so that the total thickness of the curable adhesive was 1.0 ⁇ m. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. Furthermore, the water content of the polarizing film laminate was changed. Others are the same as in Example 1.
- Example 3 (Creation of polarizing film) A PVA film having an average degree of polymerization of 2700 and a thickness of 30 ⁇ m was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) was immersed in an aqueous solution (liquid temperature 30 ° C.) for 1 minute to stretch the film three times in the transport direction (based on unstretched film) while dyeing.
- aqueous solution liquid temperature 30 ° C.
- a dope-curable curable adhesive more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5 mol%, acetoacetylation degree 5 mol%).
- An aqueous solution containing methylol melamine at a weight ratio of 3: 1 was used.
- a transparent protective film manufactured by Nitto Denko KK
- Nitto Denko KK with a thickness of 20 ⁇ m made of a modified acrylic polymer having a lactone ring structure was bonded to one surface of a polarizing film under a temperature condition of 30 ° C. ..
- the dope-curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine.
- the polarizing film protective film used in Example 1 that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof.
- the polarizing film protective film composed of the hard coat layer containing the light absorber arranged in the above was bonded not with the ultraviolet curable adhesive but with the same dope curable curable adhesive in the same manner as one surface. .. Then, it is heated and dried in an oven at 70 ° C.
- a polarizing film laminate having a polarizing film protective film was obtained. (Measurement of iodine concentration) By using dichloromethane and methyl ethyl ketone as solvents, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
- Example 5 In producing the polarizing film laminate of Example 3, one of the above surfaces has the same configuration as that of Example 3, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability.
- KC2UA acetyl cellulose film
- a hard coat layer manufactured by Nitto Denko Co., Ltd., thickness 9 ⁇ m
- the hard coat layer was formed by the following method. First, a hard coat layer forming material is prepared. This is a resin solution in which an ultraviolet curable resin monomer or oligomer containing urethane acrylate as a main component is dissolved in butyl acetate (manufactured by DIC Corporation, trade name "Unidic 17-806". Solid content concentration 80% by weight).
- the hard coat layer forming material thus produced was coated on a transparent protective film so that the thickness of the hard coat after curing was 9 ⁇ m to form a coating film. Then, it was dried at 90 ° C. for 1 minute, and then irradiated with ultraviolet rays having an integrated light intensity of 300 mJ / cm2 with a high-pressure mercury lamp to cure the coating film. Others are the same as in Example 3.
- Example 4 (Creation of polarizing film) A PVA film having an average degree of polymerization of 2700 and a thickness of 45 ⁇ m was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) was immersed in an aqueous solution (liquid temperature 30 ° C.) for 1 minute to stretch the film three times in the transport direction (based on unstretched film) while dyeing.
- aqueous solution liquid temperature 30 ° C.
- the stretched film is immersed in an aqueous solution (bath) of boric acid (4% by weight), potassium iodide (5% by weight) and zinc sulfate (3.5% by weight) for 30 seconds in the transport direction.
- Bath aqueous solution
- boric acid 4% by weight
- potassium iodide 5% by weight
- zinc sulfate 3.5% by weight
- Example 5 In producing the polarizing film laminate of Example 4, one of the above surfaces has the same configuration as that of Example 4, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability.
- Acetylcellulose film (manufactured by Fujifilm, trade name "TJ40ULF", thickness 40 ⁇ m), triacetylcellulose film containing a light absorber placed on the visible side (manufactured by Konica Minolta, trade name "KC4UY”, thickness 40 ⁇ m),
- a polarizing film protective film composed of a hard coat layer manufactured by Nitto Denko Co., Ltd., thickness 9 ⁇ m
- the polarizing film protective film located on the visual side of the polarizing film that is, the polarizing film protective film composed of a triacetyl cellulose film, another triacetyl cellulose film, and a hard coat layer is peeled off. , The transmittance of the polarizing film protective film was measured.
- a polarizing film protective film having a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 ⁇ m) formed with no function is dope-cured by the same method as in Example 3 so that the total thickness of the curable adhesive is 1.0 ⁇ m. They were joined via an adhesive. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 4.
- Example 8 In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 4.
- Example 6 In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 4.
- Example 7 (Creation of polarizing film)
- a PVA film having a thickness of 75 ⁇ m was stretched and conveyed to obtain a polarizing film having a thickness of 28 ⁇ m.
- the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time.
- the other surface of one surface of the polarizing film has the same configuration as the one surface and the other surface of the polarizing film of Example 4, respectively.
- the water content of the polarizing film laminate was changed. Others are the same as in Example 4.
- Example 8 In producing the polarizing film laminate of Example 7, the water content of the polarizing film laminate was changed. Further, in Example 7, similarly to Example 4, when the film was stretched 6 times in the transport direction (based on the unstretched film), it was immersed in an aqueous solution (bath) of zinc sulfate (3.5% by weight). .. Other conditions are the same as in Example 7.
- a polarizing film protective film composed of a hard coat layer having no light absorbing ability arranged on the visible side is doped and cured by the same method as in Example 3 so that the total thickness of the curing adhesive is 1.0 ⁇ m. They were joined via an agent. In addition, the water content of the polarizing film laminate was changed. Other conditions are the same as in Example 7.
- Example 9 In the preparation of the polarizing film of Example 4, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration. Others are the same as in Example 4.
- Example 10 In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. Further, in producing the polarizing film laminate of Example 3, as a transparent protective film made of a modified acrylic polymer having a lactone ring structure to be bonded to one surface of the polarizing film, instead of the transparent protective film having a thickness of 20 ⁇ m, A transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 ⁇ m was used. Furthermore, the water content of the polarizing film laminate was changed. Others are the same as in Example 3.
- a triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., trade name "TJ40ULF", thickness 40 ⁇ m) containing a light absorber as a polarizing film protective film having a light absorbing ability on the other surface of the polarizing film absorbs light.
- a polarizing film protective film having a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 ⁇ m) formed with no function is dope-cured by the same method as in Example 3 so that the total thickness of the curable adhesive is 1.0 ⁇ m. They were joined via an adhesive. In addition, the water content of the polarizing film laminate was changed. Others are the same as in Example 9.
- Example 11 In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. Further, in producing the polarizing film laminate of Example 3, a dope-curable curable adhesive was used as an adhesive, and more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98). An aqueous solution containing .5 mol%, acetoacetylation degree 5 mol%) and methylol melamine in a weight ratio of 3: 1 was used.
- a dope-curable curable adhesive was used as an adhesive, and more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98).
- a transparent protective film having a thickness of 25 ⁇ m made of triacetyl cellulose was bonded to one surface of the polarizing film.
- the dope-curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine.
- the polarizing film protective film used in Example 1 that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof.
- the polarizing film protective film composed of the hard coat layer containing the light absorber arranged in the above was bonded not with the ultraviolet curable adhesive but with the same dope curable curable adhesive in the same manner as one surface. .. Then, it is heated and dried in an oven at 70 ° C. for 5 minutes to have a polarizing film and a polarizing film protective film having no light absorbing ability on one surface of the polarizing film and having light absorbing ability on the other surface.
- a polarizing film laminate having a polarizing film protective film was obtained.
- a dope-curable curable adhesive In producing the polarizing film laminate of Example 11, as an adhesive, a dope-curable curable adhesive, more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5). An aqueous solution containing methylol melamine and methylol melamine at a weight ratio of 3: 1 was used. Using this adhesive, a transparent protective film having a thickness of 25 ⁇ m made of triacetyl cellulose was bonded to one surface of the polarizing film. Specifically, the dope-curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine.
- the polarizing film protective film used in Comparative Example 5 that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof.
- a polarizing film protective film composed of a hard coat layer containing no light absorber was bonded to one surface using the same dope-curable curable adhesive in the same manner as one surface, instead of the ultraviolet-curable adhesive. ..
- Example 12 In the preparation of the polarizing film of Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration. Others are the same as in Example 11.
- Comparative Example 13 In the preparation of the polarizing film of Comparative Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration. Others are the same as in Comparative Example 11.
- CS98210US manufactured by Nitto Denko
- a thickness of 200 ⁇ m was used on one surface of the polarizing film laminate, and used for the polarizing film laminate (manufactured by Nitto Denko) of CRT1794YCU on the other surface of the polarizing film laminate.
- An acrylic adhesive (thickness 20 ⁇ m) was used.
- the acrylic pressure-sensitive adhesive used on the other side was prepared by placing 99 parts by weight of butyl acrylate (the same applies hereinafter) and 4-hydroxybutyl acrylate in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer.
- a xenon light irradiation test was performed on each sample using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .: NX75).
- (Xenon light irradiation test) Black panel temperature 89 ° C., 30% R. H.
- the sample is irradiated with xenon light for 200 hours at an irradiance of 100 W / m 2 integrated in a wavelength range of 300 to 400 nm.
- the light source used was a xenon lamp (manufactured by Suga Test Instruments Co., Ltd.) with a daylight filter (manufactured by Suga Test Instruments Co., Ltd.) attached. After 200 hours of irradiation, color loss and heat redness were evaluated, and after 200 hours of irradiation, polyene formation was also evaluated.
- the single transmittance after irradiation with xenon light for 200 hours is the same as or larger than the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation is not a problem.
- the single transmittance was measured for the above sample using a spectrophotometer (product name "DOT-3" manufactured by Murakami Color Technology Research Institute Co., Ltd.).
- the simple substance transmittance can be obtained according to JlS Z 8701.
- -Change amount ⁇ Hs 410 is 1% or more-Change amount ⁇ Hs 700 is 5% or more
- the change amount of the orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is less than 1% and the wavelength is 700 nm.
- the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that there was no problem of color loss.
- those satisfying the following conditions were evaluated as "heated redness" of the sample.
- -Change amount ⁇ Hs 410 is less than 1% -Change amount ⁇ Hs 700 is 5% or more
- the amount of change in orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is 1% or more and a wavelength of 700 nm.
- the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that the problem of heating redness did not exist.
- FIG. 6 is a plot of the results of Examples and Comparative Examples centered on the Examples in the xy orthogonal coordinate system. Furthermore, when the results of the Examples and the Comparative Examples overlap, " The results of "Examples” are shown, and conversely, FIG. 7 is a plot of the results of Examples and Comparative Examples centered on Comparative Examples, and more specifically, the results of Examples and Comparative Examples. When are duplicated, the result of "comparative example” is shown.
- the x-axis (horizontal axis) indicates the iodine concentration (wt.%) Of the polarizing film
- the y-axis vertical axis indicates the water content (g / m 2 ) of the polarizing film laminate.
- Example 7 a coordinate point of 0.7 g / m 2 (hereinafter referred to as the first coordinate point) and the periphery of the plot showing the result of Example 7 in which the iodine concentration is (most) small but the water content is large, that is, the iodine concentration.
- the coordinate point that can be connected to each of the third coordinate point and the fifth coordinate point without including the comparative example that is, the iodine concentration is 5.7 wt.
- these partition lines " ⁇ ", “ ⁇ ", “ ⁇ 1", and “ ⁇ 2" are all polarizing films having a film thickness of about 4 to 30 ⁇ m, regardless of the film thickness of the polarizing film. It is to be applied with respect to.
- the iodine concentration and the water content of the polarizing film laminate are, for example, the region surrounded by a to e, and further details.
- the iodine concentration is 6.0 wt. %
- the first coordinate point (“a” in the figure) having a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt.
- the iodine concentration and the water content of the polarizing film laminate are surrounded by f, b, c, and g, and more specifically. , Iodine concentration 4.5 wt.
- the sixth coordinate point "f” has an iodine concentration of 4.0 wt. %
- the water content is 2.4 g / m 2 , which is the 8th coordinate point (“f-1” in the figure)
- the 7th coordinate point “g” is the iodine concentration of 4.0 wt.
- the sixth coordinate point “f” has an iodine concentration of 3.7 wt. % And the water content is 2.6 g / m 2 , which is the 10th coordinate point (“h” in the figure), and the 7th coordinate point “g” is also the 4th coordinate point “d”, which is a preferable result. Is considered to be obtained.
- Optical display panel 10 Optical display cell 11
- Transparent adhesive 12 Polarizing film laminate 13
- Transparent adhesive 14 Transparent cover plate 120
- Polarizing film 121 Polarizing film protective film with light absorption capacity 122
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Polarising Elements (AREA)
Abstract
Provided are, inter alia, a polarizing film laminate in which the effect of solar irradiation is suppressed, whereby the problems of polyene formation, color loss, and heat-induced reddening can be comprehensively overcome. In an orthogonal coordinate system having the iodine concentration (wt%) of a polarizing membrane along the x-axis and the moisture content (g/m2) of the polarizing film laminate along the y-axis, the iodine concentration and moisture content are contained within the region surrounded by a first line segment connecting a first coordinate point (x: 6.0, y: 0.7) and a second coordinate point (x: 1.8, y: 4.2), a second line segment connecting the second coordinate point and a third coordinate point (x: 1.8, y: 5.1), a third line segment connecting the third coordinate point and a fourth coordinate point (x: 5.7, y: 2.6), a fourth line segment connecting the fourth coordinate point and a fifth coordinate point (x: 7.0, y: 0.7), and a fifth line segment connecting the first coordinate point and the fifth coordinate point. In the present invention, a polarizing-membrane protective film is a light-absorbing layer having a light-absorption function, the film transmitting no more than 5% of light having a wavelength of 380 nm.
Description
本発明は、偏光フィルム積層体、該偏光フィルム積層体が使用される光学表示パネル、透明接着層付きの偏光フィルム積層体、及び偏光フィルム組立体に関する。
The present invention relates to a polarizing film laminate, an optical display panel in which the polarizing film laminate is used, a polarizing film laminate with a transparent adhesive layer, and a polarizing film assembly.
近年、液晶パネルや有機ELパネル等の光学的表示パネルは、スマートフォン、パーソナルコンピュータ等の電子機器、IoT家電等の電化製品への使用に加え、自動車、電車、飛行機等の動力走行車両への使用についても、様々な可能性が見出されている。例えば、自動車のフロントガラス、ダッシュボード、外装、その他様々な車体部分に、光学表示パネルを搭載し、ドライバーに種々の情報を提供し、また、外部に種々の情報を発信することが考えられる。
In recent years, optical display panels such as liquid crystal panels and organic EL panels have been used not only for electronic devices such as smartphones and personal computers, and for electrical appliances such as IoT home appliances, but also for powered vehicles such as automobiles, trains, and airplanes. As for, various possibilities have been found. For example, it is conceivable to mount an optical display panel on the windshield, dashboard, exterior, and various other vehicle body parts of an automobile to provide various information to the driver and to transmit various information to the outside.
このような状況に伴い、例えば、動力走行車両内等の過酷な環境下での耐久性の更なる向上が求められるようになっている。例えば、高温ないし高湿といった使用環境によって、又は、太陽光の照射によって、光学表示パネル、特に、光学表示パネルに使用される偏光フィルム積層体(偏光板)、更には、偏光フィルム積層体に使用される偏光膜(偏光子)の性能が劣化し、最悪の場合、使用不可能となってしまうこともある。
Along with such a situation, for example, further improvement of durability in a harsh environment such as in a powered vehicle is required. For example, it is used for an optical display panel, particularly a polarizing film laminate (polarizing plate) used for an optical display panel, and further for a polarizing film laminate due to a usage environment such as high temperature or high humidity or by irradiation with sunlight. The performance of the polarizing film (polarizer) is deteriorated, and in the worst case, it may become unusable.
特許文献1に、高温ないし高湿環境下での耐久性を高めた偏光子や、この偏光子を用いた偏光板、更に、偏光板を用いた液晶表示装置の一例が開示されている。耐久性として、ここでは、高温条件下に放置した際に発生する直交ニコルでの赤抜け(長波長光の偏光抜け)が問題視されており、この問題を解決するために、亜鉛を含有させ、この亜鉛含有量をヨウ素含有量との関係で所定の範囲に調整することが提案されている。
Patent Document 1 discloses an example of a polarizing element having improved durability in a high temperature or high humidity environment, a polarizing plate using this polarizing element, and a liquid crystal display device using the polarizing plate. In terms of durability, red loss (polarization loss of long-wavelength light) in orthogonal Nicol that occurs when left under high temperature conditions is regarded as a problem, and in order to solve this problem, zinc is added. , It has been proposed to adjust this zinc content to a predetermined range in relation to the iodine content.
同様に、特許文献2は、高温ないし高湿環境下での耐久性を高めた車載用の画像表示装置に用いられる偏光板に関するものであって、ここでは、偏光板の水分量や保護フィルムの飽和吸水量に着目している。車載用の偏光板には、高温耐久性が求められるところ、高温環境下では、ポリエン化によって偏光板の透過率が著しく低下することがあり、この問題を解決するために、特許文献2では、偏光子と貼り合わせられる透明保護フィルムとして飽和吸水量が所定範囲のものを用い、且つ 、偏光板の水分量を小さくすることが提案されている。
Similarly, Patent Document 2 relates to a polarizing plate used in an in-vehicle image display device having improved durability in a high temperature or high humidity environment, and here, the water content of the polarizing plate and the protective film. We are focusing on saturated water absorption. Polarized light for automobiles is required to have high temperature durability, but in a high temperature environment, the transmittance of the polarizing plate may be significantly lowered due to polyene formation. In order to solve this problem, Patent Document 2 describes it. It has been proposed to use a transparent protective film having a saturated water absorption within a predetermined range as a transparent protective film to be bonded to a polarizing element, and to reduce the water content of the polarizing plate.
特許文献3も、高温ないし高湿下での耐久性を高めた偏光板に関するものであって、ここでは、偏光板の水分率や保護フィルムの透湿度に着目している。高温環境下等では、偏光板の内部が高温高湿状態となり、この結果、光線透過率、偏光度、画像の色相などの変化量が大きくなって、偏光板としての信頼性が低いものとなってしまうことから、偏光子の水分率を極力低下させた状態で、透湿性の低い保護フィルムを貼り合わせることが提案されている。
Patent Document 3 also relates to a polarizing plate having improved durability under high temperature or high humidity, and here, attention is paid to the moisture content of the polarizing plate and the moisture permeability of the protective film. In a high temperature environment or the like, the inside of the polarizing plate becomes a high temperature and high humidity state, and as a result, the amount of change in the light transmittance, the degree of polarization, the hue of the image, etc. becomes large, and the reliability of the polarizing plate becomes low. Therefore, it has been proposed to attach a protective film having low moisture permeability in a state where the water content of the polarizer is reduced as much as possible.
特許文献4も同様に、高温ないし高湿下、又は、低温下での耐久性を高めた偏光板に関するものであって、ここには、紫外線や赤外線によって偏光子が劣化し得ること、また、高温時や高温高湿下での使用によって液晶表示装置(LCD)の視認性が劣化し得ることが記載されており、これらの問題を解決するために、偏光膜の保護フィルムに紫外線吸収剤や赤外線吸収剤を含有させて透過率の変動を防止することが提案されている。
Similarly, Patent Document 4 relates to a polarizing plate having improved durability under high temperature or high humidity or low temperature, and here, the polarizer can be deteriorated by ultraviolet rays or infrared rays, and It has been described that the visibility of a liquid crystal display (LCD) may deteriorate due to use at high temperature or under high temperature and high humidity. To solve these problems, an ultraviolet absorber or an ultraviolet absorber is applied to the protective film of the polarizing film. It has been proposed to include an infrared absorber to prevent fluctuations in transmittance.
光学表示パネル、取り分け、光学表示パネルに使用される偏光フィルム積層体や、偏光フィルム積層体に使用される偏光膜について、高温ないし高湿環境下で生じる問題として、「ポリエン化」、「色抜け」、及び「加熱赤変」が知られている。
Regarding the polarizing film laminate used for the optical display panel, especially the optical display panel, and the polarizing film used for the polarizing film laminate, problems that occur in a high temperature or high humidity environment include "polyene formation" and "color loss". , And "heated reddish" are known.
一般に、「ポリエン化」とは、高温ないし高湿環境下におかれることによって、偏光フィルム積層体の単体透過率が低下する現象、また、「色抜け」及び「加熱赤変」とは、同様に高温ないし高湿環境下におかれることによって、偏光フィルム積層体をクロスニコル配置して波長410nmおよび波長700nmの直交透過率を測定したときに、直交透過率が低下する現象であって、「色抜け」は特に、約700nmの長波長側及び約410nmの短波長側の透過率が上昇して黒色表示での色抜けが起きる現象、一方、「加熱赤変」は特に、約700nmの長波長側の透過率が上昇して偏光膜が赤く変色してしまう現象として知られている。
In general, "polyenization" is a phenomenon in which the single transmittance of a polarizing film laminate is lowered by being placed in a high temperature or high humidity environment, and "color loss" and "heating reddening" are the same. When the polarizing film laminate is cross-nicoled and the orthogonal transmittance at a wavelength of 410 nm and a wavelength of 700 nm is measured by being placed in a high temperature or high humidity environment, the orthogonal transmittance is lowered. "Color loss" is a phenomenon in which the transmittance on the long wavelength side of about 700 nm and the short wavelength side of about 410 nm increases to cause color loss in black display, while "heat red discoloration" is particularly long of about 700 nm. It is known as a phenomenon in which the transmittance on the wavelength side increases and the polarizing film turns red.
特許文献1は、主として、「色抜け」の問題に着目したもの、特許文献2は、主として、「ポリエン化」の問題に着目したもの、特許文献3は、主として、「加熱赤変」の問題に着目したものであって、各文献で提案されている解決手段は、少なくとも、個々の問題を解決するために有効なものと考えられる。しかしながら、各特許文献に記載された発明は、これらの問題を包括的に解決するのには必ずしも十分なものではなかった。「ポリエン化」、「色抜け」、及び「加熱赤変」は、いずれも、ヨウ素と水分を通じて、更には、水分に影響を与える温度と湿度を通じて、相互に関連するものであるとの事実に基づき、鋭意研究を重ねた結果、本願出願人は、偏光膜のヨウ素濃度と、偏光フィルム積層体の水分量とを調整することによって、これらの問題を包括的に解決できるとの知見を得た。
Patent Document 1 mainly focuses on the problem of "color loss", Patent Document 2 mainly focuses on the problem of "polyenization", and Patent Document 3 mainly focuses on the problem of "heating reddening". The solutions proposed in each document are considered to be effective at least for solving individual problems. However, the inventions described in each patent document have not always been sufficient to comprehensively solve these problems. The fact that "polyenization", "color loss", and "heated reddening" are all interrelated through iodine and moisture, as well as through the temperature and humidity that affect moisture. Based on this, as a result of repeated diligent research, the applicant of the present application has found that these problems can be comprehensively solved by adjusting the iodine concentration of the polarizing film and the water content of the polarizing film laminate. ..
更に鋭意研究を重ねた結果、本願出願人は、太陽光、より正確には、太陽光に含まれる紫外線、可視光線、赤外線が、「ポリエン化」、「色抜け」、及び「加熱赤変」を促進させてしまうこと、取り分け、「ポリエン化」を促進させてしまうことを発見し、偏光膜のヨウ素濃度と偏光フィルム積層体の水分量を調整することに加えて、太陽光による影響を抑制することによって、より効果的に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決できるとの知見を得た。
As a result of further diligent research, the applicant of the present application has found that sunlight, more accurately, ultraviolet rays, visible rays, and infrared rays contained in sunlight are "polyenized", "color loss", and "heated reddening". In addition to adjusting the iodine concentration of the polarizing film and the water content of the polarizing film laminate, it also suppresses the influence of sunlight by discovering that it promotes, especially, "polyene formation". By doing so, it was found that the problems of "polyene formation", "color loss", and "heated reddish color" can be solved more effectively.
本発明は、偏光膜のヨウ素濃度と、偏光フィルム積層体の水分量の調整を図ることに加えて、太陽光照射による影響を抑制することにより、「ポリエン化」、「色抜け」、及び「加熱赤変」といった、これら3つの問題を包括的に解決することを目的とする。
In the present invention, in addition to adjusting the iodine concentration of the polarizing film and the water content of the polarizing film laminate, by suppressing the influence of sunlight irradiation, "polyene formation", "color loss", and "color loss", and " The purpose is to comprehensively solve these three problems, such as "heating reddening".
上記の課題を解決するため、本発明の一態様による偏光膜フィルム積層体は、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下であることを特徴として有する。
この態様の偏光膜フィルム積層体によれば、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決することができる。 In order to solve the above problems, the polarizing film film laminate according to one aspect of the present invention has a polarizing film made of a polyvinyl alcohol-based resin and at least the surface of the polarizing film on the visible side directly or via another optical film. A polarizing film laminate provided with a bonded optically transparent polarizing film protective film, wherein the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the polarizing film laminate. In the xy orthogonal coordinate system in which the water content (g / m 2 ) was taken, the iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And a first line segment connecting a second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and an iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. The polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
According to the polarizing film film laminate of this aspect, the problems of "polyene formation", "color loss", and "heat reddening" can be comprehensively solved.
この態様の偏光膜フィルム積層体によれば、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決することができる。 In order to solve the above problems, the polarizing film film laminate according to one aspect of the present invention has a polarizing film made of a polyvinyl alcohol-based resin and at least the surface of the polarizing film on the visible side directly or via another optical film. A polarizing film laminate provided with a bonded optically transparent polarizing film protective film, wherein the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the polarizing film laminate. In the xy orthogonal coordinate system in which the water content (g / m 2 ) was taken, the iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And a first line segment connecting a second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and an iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. The polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
According to the polarizing film film laminate of this aspect, the problems of "polyene formation", "color loss", and "heat reddening" can be comprehensively solved.
上記態様の偏光膜フィルム積層体において、前記偏光膜の膜厚が4~30μmであってもよい。
In the polarizing film film laminate of the above aspect, the film thickness of the polarizing film may be 4 to 30 μm.
また、本発明の別の態様による偏光膜フィルム積層体において、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度4.5wt.%及び水分量1.9g/m2の第6座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第6の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、 前記第3座標点と、ヨウ素濃度4.5wt.%及び水分量3.4g/m2の第7座標点とを結ぶ第7の線分、及び前記第6座標点と前記第7座標点とを結ぶ第8の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下であることを特徴として有する。
Further, in the polarizing film film laminate according to another aspect of the present invention, the polarizing film made of a polyvinyl alcohol-based resin is optically bonded to at least the visible surface of the polarizing film directly or via another optical film. A polarizing film laminate provided with a transparent polarizing film protective film, the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the water content (g / g /) of the polarizing film laminate. In the xy orthogonal coordinate system in which m 2 ) was taken, the iodine concentration was 4.5 wt. The sixth coordinate point of% and water content of 1.9 g / m 2 and the iodine concentration of 1.8 wt. % And a sixth line segment connecting the second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 4.5 wt. In the area surrounded by the 7th line segment connecting the 7th coordinate point of% and the water content of 3.4 g / m 2 and the 8th line segment connecting the 6th coordinate point and the 7th coordinate point. The polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
上記態様の偏光膜フィルム積層体において、前記第6座標点が、ヨウ素濃度4.0wt.%及び水分量2.4g/m2の第8座標点であり、前記第7座標点が、ヨウ素濃度4.0wt.%及び水分量3.7g/m2の第9座標点であってもよい。
また、前記第6座標点が、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点であり、前記第7座標点が、前記第4座標点であってもよい。 In the polarizing film film laminate of the above aspect, the sixth coordinate point has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m 2 , which is the eighth coordinate point, and the seventh coordinate point is the iodine concentration of 4.0 wt. It may be the ninth coordinate point of% and the water content of 3.7 g / m 2.
Further, the sixth coordinate point has an iodine concentration of 3.7 wt. It is the tenth coordinate point of% and the water content of 2.6 g / m 2 , and the seventh coordinate point may be the fourth coordinate point.
また、前記第6座標点が、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点であり、前記第7座標点が、前記第4座標点であってもよい。 In the polarizing film film laminate of the above aspect, the sixth coordinate point has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m 2 , which is the eighth coordinate point, and the seventh coordinate point is the iodine concentration of 4.0 wt. It may be the ninth coordinate point of% and the water content of 3.7 g / m 2.
Further, the sixth coordinate point has an iodine concentration of 3.7 wt. It is the tenth coordinate point of% and the water content of 2.6 g / m 2 , and the seventh coordinate point may be the fourth coordinate point.
上記態様の偏光膜フィルム積層体において、偏光膜の膜厚が11~30μmであってもよい。
In the polarizing film film laminate of the above aspect, the film thickness of the polarizing film may be 11 to 30 μm.
また、本発明の別の態様による偏光膜フィルム積層体において、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点とを結ぶ第9の線分、前記第10座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第10の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第11の線分、及び 前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下であることを特徴として有する。
Further, in the polarizing film film laminate according to another aspect of the present invention, the polarizing film made of a polyvinyl alcohol-based resin is optically bonded to at least the visible surface of the polarizing film directly or via another optical film. A polarizing film laminate provided with a transparent polarizing film protective film, the x-axis is the iodine concentration (wt.%) Of the polarizing film, and the y-axis is the water content (g / g /) of the polarizing film laminate. In the xy orthogonal coordinate system in which m 2 ) was taken, the iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 3.7 wt. % And the ninth line segment connecting the tenth coordinate point having a water content of 2.6 g / m 2 , the tenth coordinate point and the iodine concentration of 5.7 wt. The tenth line segment connecting the fourth coordinate point of% and the water content of 2.6 g / m 2 , the fourth coordinate point, and the iodine concentration of 7.0 wt. In the area surrounded by the eleventh line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. The polarizing film protective film having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance at a wavelength of 380 nm is 5% or less.
上記態様の偏光膜フィルム積層体において、偏光膜の膜厚が4~11μmであってもよい。
In the polarizing film film laminate of the above aspect, the film thickness of the polarizing film may be 4 to 11 μm.
更に、上記態様の偏光膜フィルム積層体において、前記偏光膜保護フィルムは、波長390nmでの光の透過率が35%以下であるのが好ましく、また、前記偏光膜保護フィルムは、波長400nmでの光の透過率が70%以下であるのが好ましい。
Further, in the polarizing film film laminate of the above aspect, the polarizing film protective film preferably has a light transmittance of 35% or less at a wavelength of 390 nm, and the polarizing film protective film has a wavelength of 400 nm. The light transmittance is preferably 70% or less.
また、上記態様の偏光膜フィルム積層体において、前記偏光膜が亜鉛を含有するのが好ましい。
Further, in the polarizing film film laminate of the above aspect, it is preferable that the polarizing film contains zinc.
更に、上記態様の偏光膜フィルム積層体において、偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料を、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の単体透過率が、照射前の単体透過率と比べて-0.5以上であるのが好ましい。
これにより、ポリエン化の問題を効果的に解決することができる。 Further, in the polarizing film film laminate of the above aspect, a sample composed of the polarizing film laminate and the glass plate laminated on both sides of the polarizing film laminate with an adhesive is provided at a black panel temperature of 89 ° C. and 30 ° C. % R. H. The single transmittance after irradiating xenon light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 is -0.5 or more as compared with the single transmittance before irradiation. Is preferable.
Thereby, the problem of polyene formation can be effectively solved.
これにより、ポリエン化の問題を効果的に解決することができる。 Further, in the polarizing film film laminate of the above aspect, a sample composed of the polarizing film laminate and the glass plate laminated on both sides of the polarizing film laminate with an adhesive is provided at a black panel temperature of 89 ° C. and 30 ° C. % R. H. The single transmittance after irradiating xenon light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 is -0.5 or more as compared with the single transmittance before irradiation. Is preferable.
Thereby, the problem of polyene formation can be effectively solved.
上記態様の偏光膜フィルム積層体において、偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料における、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の、波長410nmでの直交透過率の変化量が1%未満、且つ、波長700nmでの直交透過率の変化量が5%未満であるのが好ましい。
これにより、色抜けの問題を効果的に解決することができる。 In the polarizing film film laminate of the above aspect, a black panel temperature of 89 ° C., 30% R in a sample comprising a polarizing film laminate and a glass plate laminated on both sides of the polarizing film laminate with an adhesive. .. H. After irradiating xenone light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 , the amount of change in the orthogonal transmittance at a wavelength of 410 nm is less than 1% and at a wavelength of 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%.
As a result, the problem of color loss can be effectively solved.
これにより、色抜けの問題を効果的に解決することができる。 In the polarizing film film laminate of the above aspect, a black panel temperature of 89 ° C., 30% R in a sample comprising a polarizing film laminate and a glass plate laminated on both sides of the polarizing film laminate with an adhesive. .. H. After irradiating xenone light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 , the amount of change in the orthogonal transmittance at a wavelength of 410 nm is less than 1% and at a wavelength of 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%.
As a result, the problem of color loss can be effectively solved.
上記態様の偏光膜フィルム積層体において、偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料における、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の、波長410nmでの直交透過率の変化量が1%以上、且つ、波長700nmでの直交透過率の変化量が5%未満であるのが好ましい。
これにより、加熱赤変の問題を効果的に解決することができる。 In the polarizing film film laminate of the above aspect, a black panel temperature of 89 ° C., 30% R in a sample comprising a polarizing film laminate and a glass plate laminated on both sides of the polarizing film laminate with an adhesive. .. H. After irradiating xenone light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 , the amount of change in the orthogonal transmittance at a wavelength of 410 nm is 1% or more, and the wavelength is 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%.
Thereby, the problem of heating redness can be effectively solved.
これにより、加熱赤変の問題を効果的に解決することができる。 In the polarizing film film laminate of the above aspect, a black panel temperature of 89 ° C., 30% R in a sample comprising a polarizing film laminate and a glass plate laminated on both sides of the polarizing film laminate with an adhesive. .. H. After irradiating xenone light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m 2 , the amount of change in the orthogonal transmittance at a wavelength of 410 nm is 1% or more, and the wavelength is 700 nm. It is preferable that the amount of change in the orthogonal transmittance of is less than 5%.
Thereby, the problem of heating redness can be effectively solved.
更に、上記の課題を解決するため、本発明の一の態様による光学表示パネルは、光学的表示セルと、前記光学的表示セルの一方の面に直接又は他の光学フィルムを介して接合された上記いずれかに記載の偏光フィルム積層体と、前記光学的表示セルとは反対側において前記偏光フィルム積層体に沿って配置される光学的に透明なカバー板と、を備え、前記光学的表示セルと、前記偏光フィルム積層体と、前記透明カバー板とは、それらの間を空隙がない状態に充填する透明接着層により接着されている、動力走行車両の車体に取り付けられる光学表示パネルを特徴とする。
Further, in order to solve the above problems, the optical display panel according to one aspect of the present invention is bonded to the optical display cell directly or via another optical film on one surface of the optical display cell. The optical display cell comprising the polarizing film laminate according to any one of the above and an optically transparent cover plate arranged along the polarizing film laminate on the side opposite to the optical display cell. An optical display panel attached to the vehicle body of a powered vehicle is characterized in that the polarizing film laminate and the transparent cover plate are adhered to each other by a transparent adhesive layer that fills the space between them without any gaps. To do.
上記態様の光学表示パネルにおいて、前記透明なカバー板が、容量型タッチセンサーの機能を有するものであってもよい。
In the optical display panel of the above aspect, the transparent cover plate may have the function of a capacitive touch sensor.
また、上記態様の光学表示パネルにおいて、前記透明なカバー板と前記偏光フィルム積層体との間に容量型タッチセンサーの構成要素となるITO層が設けられていてもよい。
Further, in the optical display panel of the above aspect, an ITO layer which is a component of the capacitive touch sensor may be provided between the transparent cover plate and the polarizing film laminate.
本発明の一態様による透明接着層付きの偏光フィルム積層体は、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、前記偏光フィルム積層体よりも視認側に積層された透明接着層と、を備え、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記透明接着層及び前記偏光膜保護フィルムのうち、少なくとも前記透明接着層は、光吸収能を有する光吸収層であり、前記透明接着層及び前記偏光膜保護フィルムの積層体の波長380nmでの光の透過率が5%以下であることを特徴として有する。
The polarizing film laminate with a transparent adhesive layer according to one aspect of the present invention is optically bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film on at least the visible side. A polarizing film laminate provided with a transparent polarizing film protective film and a transparent adhesive layer laminated on the visual side of the polarizing film laminate are provided, and the iodine concentration (wt) of the polarizing film is provided on the x-axis. In an xy orthogonal coordinate system in which the water content (g / m 2 ) of the polarizing film laminate was taken on the y-axis, the iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And a first line segment connecting a second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and an iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Of the transparent adhesive layer and the polarizing film protective film having the iodine concentration and the amount of water contained, at least the transparent adhesive layer is a light absorbing layer having a light absorbing ability, and the transparent adhesive layer and the polarizing film It is characterized in that the light transmittance of the laminated body of the protective film at a wavelength of 380 nm is 5% or less.
本発明の別の態様による透明接着層付きの偏光フィルム積層体は、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の視認側と反対側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、前記偏光フィルム積層体よりも視認側に積層された透明接着層と、を備え、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記透明接着層は、光吸収能を有する光吸収層であり、前記透明接着層の波長380nmでの光の透過率が5%以下であることを特徴として有する。
The polarizing film laminate with a transparent adhesive layer according to another aspect of the present invention is bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film opposite to the visible side. A polarizing film laminate provided with an optically transparent polarizing film protective film and a transparent adhesive layer laminated on the visual side of the polarizing film laminate are provided, and iodine of the polarizing film is provided on the x-axis. In an xy orthogonal coordinate system in which the concentration (wt.%) Is the water content (g / m 2 ) of the polarizing film laminate on the y-axis, the iodine concentration is 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. The transparent adhesive layer having an iodine concentration and a water content contained therein is a light absorbing layer having a light absorbing ability, and is characterized in that the light transmittance of the transparent adhesive layer at a wavelength of 380 nm is 5% or less. Have as.
本発明の一態様による偏光フィルム組立体は、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、前記偏光フィルム積層体よりも視認側に積層された透明接着層と、前記透明接着層よりも視認側に積層された光学的に透明なカバー板を備え、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記偏光膜保護フィルム、前記透明接着層及び前記透明なカバー板のうち、少なくとも前記透明なカバー板は、光吸収能を有する光吸収層であり、前記偏光膜保護フィルム、前記透明接着層及び前記透明なカバー板の積層体の波長380nmでの光の透過率が5%以下であることを特徴として有する。
The polarizing film assembly according to one aspect of the present invention is an optically transparent polarized light bonded to a polarizing film made of a polyvinyl alcohol-based resin directly to at least the surface of the polarizing film on the visible side or via another optical film. A polarizing film laminate provided with a film protective film, a transparent adhesive layer laminated on the visual side of the polarizing film laminate, and an optically transparent cover plate laminated on the visual side of the transparent adhesive layer. In the xy orthogonal coordinate system, the x-axis is the iodine concentration (wt.%) Of the polarizing film and the y-axis is the water content (g / m 2) of the polarizing film laminate. Concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Of the polarizing film protective film, the transparent adhesive layer, and the transparent cover plate having the iodine concentration and the amount of water contained, at least the transparent cover plate is a light absorbing layer having a light absorbing ability, and the said. It is characterized in that the light transmittance of the polarizing film protective film, the transparent adhesive layer, and the laminated body of the transparent cover plate at a wavelength of 380 nm is 5% or less.
本発明の別の態様による偏光フィルム組立体は、ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の視認側と反対側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、前記偏光フィルム積層体よりも視認側に積層された透明接着層と、前記透明接着層よりも視認側に積層された光学的に透明なカバー板を備え、x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、前記透明接着層及び前記透明なカバー板のうち、少なくとも前記透明なカバー板は、光吸収能を有する光吸収層であり、前記透明接着層及び前記透明なカバー板の積層体の波長380nmでの光の透過率が5%以下であることを特徴として有する。
The polarizing film assembly according to another aspect of the present invention is optically bonded to a polarizing film made of a polyvinyl alcohol-based resin directly or via another optical film on the surface of the polarizing film opposite to the visible side. A polarizing film laminate provided with a transparent polarizing film protective film, a transparent adhesive layer laminated on the visible side of the polarizing film laminate, and an optically transparent laminate laminated on the visual side of the transparent adhesive layer. An xy orthogonal coordinate system provided with a cover plate, with the iodine concentration (wt.%) Of the polarizing film on the x-axis and the water content (g / m 2) of the polarizing film laminate on the y-axis. The iodine concentration was 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. % And a first line segment connecting a second coordinate point having a water content of 4.2 g / m 2 , the second coordinate point and an iodine concentration of 1.8 wt. % And a second line segment connecting a third coordinate point having a water content of 5.1 g / m 2 , the third coordinate point and an iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point having a water content of 2.6 g / m 2 , the fourth coordinate point and the iodine concentration of 7.0 wt. In the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m 2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Of the transparent adhesive layer and the transparent cover plate having the iodine concentration and the amount of water contained, at least the transparent cover plate is a light absorption layer having a light absorbing ability, and the transparent adhesive layer and the transparent cover plate. It is characterized in that the light transmittance of the laminated body of the cover plate at a wavelength of 380 nm is 5% or less.
本発明によれば、偏光膜のヨウ素濃度と、偏光フィルム積層体の水分量の調整を図ることに加えて太陽光照射による影響を抑制することにより、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決することができる。
According to the present invention, in addition to adjusting the iodine concentration of the polarizing film and the water content of the polarizing film laminate, by suppressing the influence of sunlight irradiation, "polyene formation", "color loss", and The problem of "heating reddening" can be solved comprehensively.
以下、添付図面を参照しつつ、本発明の好適な一つの実施形態について説明する。説明の便宜のため好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。
Hereinafter, one preferred embodiment of the present invention will be described with reference to the accompanying drawings. Only suitable embodiments are shown for convenience of explanation, but of course, this is not intended to limit the invention.
本発明は、光学表示パネル、例えば、自動車、電車、飛行機、その他、動力によって走行する動力走行車両の車体に取り付けられる光学表示パネル、及び、該光学的表示パネルに使用される偏光フィルム積層体を対象とする。ここで、「車体に取り付けられる」とは、必ずしも、光学表示パネルや偏光フィルム積層体が車体に固定されている場合だけでなく、例えば、スマートフォン等に使用されている光学表示パネルや偏光フィルム積層体のように、それらが動力走行車両に自由に搭載、持ち込み等される場合も含まれる。更に言えば、「車体に取り付けられる」とは、光学表示パネルや偏光フィルム積層体が、動力走行車両とともに使用され、高温ないしは高湿環境下に晒される可能性のある全ての状況を含む。
The present invention relates to an optical display panel, for example, an optical display panel attached to the vehicle body of an automobile, a train, an airplane, or other powered traveling vehicle, and a polarizing film laminate used for the optical display panel. set to target. Here, "attached to the vehicle body" does not necessarily mean that the optical display panel or the polarizing film laminate is fixed to the vehicle body, but also, for example, the optical display panel or the polarizing film laminate used in a smartphone or the like. It also includes the case where they are freely mounted or brought into a powered vehicle like a body. Furthermore, "mounted on the vehicle body" includes all situations in which an optical display panel or polarizing film laminate is used with a powered vehicle and may be exposed to high temperature or high humidity environments.
1.光学表示パネル
図1に、光学的表示パネル1の層構成の一例を模式図で示す。光学的表示パネル1は、少なくとも、光学的表示セル10と、光学的表示セル10の一方の面10a側(視認側)に積層された偏光フィルム積層体12と、光学的表示セル10とは反対側、即ち、視認側において偏光フィルム積層体12に沿って配置された光学的に透明なカバー板14を含む。光学的表示セル10と偏光フィルム積層体12の間は、透明接着剤(PSA)11から成る透明接着層を用いて、空隙がない状態に接着されている。同様に、カバー板14と偏光フィルム積層体12の間は、偏光フィルム積層体12よりも視認側に積層された透明接着剤(OCA)13から成る透明接着層を用いて、空隙がない状態に接着されて、カバー板14、透明接着剤13、及び偏光フィルム積層体12を含む、偏光フィルム組立体19を構成している。光学的表示セル10の他方の面10b側には、透明接着剤(PSA)16を介して他の偏光フィルム積層体17が配置されている。なお、本明細書において、特に断りがない場合、「接着」の語は、粘着(感圧接着)を含む。光学的表示セル10と偏光フィルム積層体12は、透明接着剤11によって直接接着されてもよいが、必要に応じて、位相差フィルム、視野角補償フィルム等の他の光学フィルム(図示されていない)を介して接着されてもよい。 1. 1. Optical display panel FIG. 1 is a schematic view showing an example of the layer structure of theoptical display panel 1. The optical display panel 1 is at least opposite to the optical display cell 10, the polarizing film laminate 12 laminated on one surface 10a side (visual side) of the optical display cell 10, and the optical display cell 10. Includes an optically transparent cover plate 14 arranged along the polarizing film laminate 12 on the side, that is, on the visual side. The optical display cell 10 and the polarizing film laminate 12 are adhered to each other without any voids by using a transparent adhesive layer made of a transparent adhesive (PSA) 11. Similarly, between the cover plate 14 and the polarizing film laminate 12, a transparent adhesive layer made of a transparent adhesive (OCA) 13 laminated on the visual side of the polarizing film laminate 12 is used so that there are no voids. Adhered to form a polarizing film assembly 19, including a cover plate 14, a transparent adhesive 13, and a polarizing film laminate 12. Another polarizing film laminate 17 is arranged on the other surface 10b side of the optical display cell 10 via a transparent adhesive (PSA) 16. In the present specification, unless otherwise specified, the term "adhesive" includes adhesive (pressure sensitive adhesive). The optical display cell 10 and the polarizing film laminate 12 may be directly bonded by the transparent adhesive 11, but if necessary, other optical films such as a retardation film and a viewing angle compensation film (not shown). ) May be adhered.
図1に、光学的表示パネル1の層構成の一例を模式図で示す。光学的表示パネル1は、少なくとも、光学的表示セル10と、光学的表示セル10の一方の面10a側(視認側)に積層された偏光フィルム積層体12と、光学的表示セル10とは反対側、即ち、視認側において偏光フィルム積層体12に沿って配置された光学的に透明なカバー板14を含む。光学的表示セル10と偏光フィルム積層体12の間は、透明接着剤(PSA)11から成る透明接着層を用いて、空隙がない状態に接着されている。同様に、カバー板14と偏光フィルム積層体12の間は、偏光フィルム積層体12よりも視認側に積層された透明接着剤(OCA)13から成る透明接着層を用いて、空隙がない状態に接着されて、カバー板14、透明接着剤13、及び偏光フィルム積層体12を含む、偏光フィルム組立体19を構成している。光学的表示セル10の他方の面10b側には、透明接着剤(PSA)16を介して他の偏光フィルム積層体17が配置されている。なお、本明細書において、特に断りがない場合、「接着」の語は、粘着(感圧接着)を含む。光学的表示セル10と偏光フィルム積層体12は、透明接着剤11によって直接接着されてもよいが、必要に応じて、位相差フィルム、視野角補償フィルム等の他の光学フィルム(図示されていない)を介して接着されてもよい。 1. 1. Optical display panel FIG. 1 is a schematic view showing an example of the layer structure of the
1-1.光学的表示セル
光学的表示セル10の例として、液晶セルや有機ELセルを挙げることができる。
有機ELセルとしては、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成したもの等が好適に用いられる。有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、これらの発光層とペリレン誘導体等からなる電子注入層の積層体、あるいは正孔注入層、発光層、および電子注入層の積層体等、種々層構成が採用され得る。 1-1. Optical display cell Examples of theoptical display cell 10 include a liquid crystal cell and an organic EL cell.
As the organic EL cell, a cell in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitting body (organic electroluminescence light emitting body) or the like is preferably used. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or a laminate of these. Various layer configurations can be adopted, such as a laminate of electron injection layers composed of a light emitting layer and a perylene derivative, or a laminate of hole injection layers, light emitting layers, and electron injection layers.
光学的表示セル10の例として、液晶セルや有機ELセルを挙げることができる。
有機ELセルとしては、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成したもの等が好適に用いられる。有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、これらの発光層とペリレン誘導体等からなる電子注入層の積層体、あるいは正孔注入層、発光層、および電子注入層の積層体等、種々層構成が採用され得る。 1-1. Optical display cell Examples of the
As the organic EL cell, a cell in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitting body (organic electroluminescence light emitting body) or the like is preferably used. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or a laminate of these. Various layer configurations can be adopted, such as a laminate of electron injection layers composed of a light emitting layer and a perylene derivative, or a laminate of hole injection layers, light emitting layers, and electron injection layers.
液晶セルとしては、外光を利用する反射型液晶セル、バックライト18等の光源からの光を利用する透過型液晶セル、外部からの光と光源からの光の両者を利用する半透過半反射型液晶セルのいずれを用いてもよい。液晶セルが光源からの光を利用するものである場合、図1に示すように、光学的表示セル(液晶セル)10の視認側と反対側にも偏光フィルム積層体17が配置され、更に、例えば、バックライトのような光源18が配置される。光源側の偏光フィルム積層体17と液晶セル10とは、適宜の透明接着剤16の層により接着されている。液晶セルの駆動方式としては、例えばVAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の任意なタイプのものを用いうる。
The liquid crystal cell includes a reflective liquid crystal cell that uses external light, a transmissive liquid crystal cell that uses light from a light source such as a backlight 18, and a semi-transmissive semi-reflection that uses both external light and light from a light source. Any type liquid crystal cell may be used. When the liquid crystal cell utilizes the light from the light source, as shown in FIG. 1, the polarizing film laminate 17 is also arranged on the side opposite to the visible side of the optical display cell (liquid crystal cell) 10, and further. For example, a light source 18 such as a backlight is arranged. The polarizing film laminate 17 on the light source side and the liquid crystal cell 10 are adhered by an appropriate layer of a transparent adhesive 16. As the driving method of the liquid crystal cell, for example, any type such as VA mode, IPS mode, TN mode, STN mode and bend orientation (π type) can be used.
1-2.カバー板
カバー板14の例として、透明板(ウインドウ層)やタッチパネル等を挙げることができる。透明板としては、適宜の機械強度および厚みを有する透明板が用いられる。このような透明板としては、例えばアクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等が用いられる。カバー板14の表面には、例えば、低反射フィルム(図示されていない)によって低反射処理が施されていてもよい。タッチパネルとしては、抵抗膜方式、静電容量方式、光学方式、超音波方式等の各種タッチパネルや、タッチセンサー機能を備えるガラス板や透明樹脂板等が用いられる。 1-2. Cover plate Examples of the cover plate 14 include a transparent plate (window layer), a touch panel, and the like. As the transparent plate, a transparent plate having appropriate mechanical strength and thickness is used. As such a transparent plate, for example, a transparent resin plate such as an acrylic resin or a polycarbonate resin, a glass plate, or the like is used. The surface of the cover plate 14 may be subjected to a low reflection treatment by, for example, a low reflection film (not shown). As the touch panel, various touch panels such as a resistive film method, a capacitance method, an optical method, an ultrasonic method, and a glass plate or a transparent resin plate having a touch sensor function are used.
カバー板14の例として、透明板(ウインドウ層)やタッチパネル等を挙げることができる。透明板としては、適宜の機械強度および厚みを有する透明板が用いられる。このような透明板としては、例えばアクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等が用いられる。カバー板14の表面には、例えば、低反射フィルム(図示されていない)によって低反射処理が施されていてもよい。タッチパネルとしては、抵抗膜方式、静電容量方式、光学方式、超音波方式等の各種タッチパネルや、タッチセンサー機能を備えるガラス板や透明樹脂板等が用いられる。 1-2. Cover plate Examples of the cover plate 14 include a transparent plate (window layer), a touch panel, and the like. As the transparent plate, a transparent plate having appropriate mechanical strength and thickness is used. As such a transparent plate, for example, a transparent resin plate such as an acrylic resin or a polycarbonate resin, a glass plate, or the like is used. The surface of the cover plate 14 may be subjected to a low reflection treatment by, for example, a low reflection film (not shown). As the touch panel, various touch panels such as a resistive film method, a capacitance method, an optical method, an ultrasonic method, and a glass plate or a transparent resin plate having a touch sensor function are used.
カバー板14に紫外線吸収剤を含有させて、光吸収能を有する光吸収層としてもよい、言い換えれば、カバー板14の紫外線に対する透過率を所望の値に設置してもよい。例えば、カバー板14を、アクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等で形成し、その作製時に、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等の紫外線吸収剤を透明樹脂中に混合させることによって、カバー板14を光吸収層として使用することができる。光吸収層を設けることにより、偏光フィルム積層体12を含む偏光フィルム組立体19における紫外線の透過率を所望の値として、より効果的に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決できる。光吸収層としてカバー板14だけを用いる場合、例えば、波長380nmでの透過率は、5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。下限は例えば0.1%以上、1%以上である。波長390nmでの透過率は、35%以下が好ましく、30%以下がより好ましく、28%以下がさらに好ましい。下限は例えば、10%以上、20%以上、25%以上である。波長400nmでの透過率は、70%以下が好ましく、68%以下がより好ましい。下限は例えば、50%以上、60%以上、65%以上である。波長420nmでの透過率は、90%以下が好ましい。下限は例えば80%以上、85%以上である。これらの透過率は、初期の状態におけるカバー板14の透過率を示している。尚、紫外線吸収剤に加えて、フタロシアニン系光吸収剤、ナフタロシアニン系光吸収剤、ポリメチン系光吸収剤、ジフェニルメタン系光吸収剤、トリフェニルメタン系光吸収剤、キノン系光吸収剤、アゾ系光吸収剤等の赤外線吸収剤を混合してもよい。
The cover plate 14 may contain an ultraviolet absorber to form a light absorbing layer having a light absorbing ability, in other words, the transmittance of the cover plate 14 to ultraviolet rays may be set to a desired value. For example, the cover plate 14 is formed of a transparent resin plate such as an acrylic resin or a polycarbonate resin, or a glass plate, and at the time of its production, for example, benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, or triazine-based. Examples include UV absorbers. Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned. Examples of the benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy. Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned. Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like. Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3,5 The cover plate 14 is illuminated by mixing an ultraviolet absorber such as -triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyethoxyphenyl) -1,3,5-triazine in the transparent resin. It can be used as an absorbent layer. By providing the light absorption layer, the transmittance of ultraviolet rays in the polarizing film assembly 19 including the polarizing film laminate 12 can be set to a desired value, and more effectively, "polyene formation", "color loss", and "heated red". You can comprehensively solve the problem of "oddness". When only the cover plate 14 is used as the light absorption layer, for example, the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less. The lower limit is, for example, 0.1% or more and 1% or more. The transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less. The lower limit is, for example, 10% or more, 20% or more, and 25% or more. The transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less. The lower limit is, for example, 50% or more, 60% or more, 65% or more. The transmittance at a wavelength of 420 nm is preferably 90% or less. The lower limit is, for example, 80% or more and 85% or more. These transmittances indicate the transmittance of the cover plate 14 in the initial state. In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers. An infrared absorber such as a light absorber may be mixed.
カバー板14として静電容量方式のタッチパネルが用いられる場合、タッチパネルよりもさらに視認側に、ガラスや透明樹脂板からなる前面透明板が設けられることが好ましい。また、この場合には、カバー板14と偏光フィルム積層体12との間を接合する透明接着剤13に、容量型タッチセンサーの構成要素となるITO層(図示されていない)を設ける。
When a capacitance type touch panel is used as the cover plate 14, it is preferable that a front transparent plate made of glass or a transparent resin plate is provided on the visual side of the touch panel. Further, in this case, an ITO layer (not shown) which is a component of the capacitive touch sensor is provided on the transparent adhesive 13 that joins the cover plate 14 and the polarizing film laminate 12.
1-3.透明接着剤
透明接着剤11、13、16としては、例えば、特許6071459号に開示されているような、様々な接着剤を適宜用いることができる。例えば、(メタ)アクリル系の粘着剤を用いることもできるし、(メタ)アクリル酸を含有しない硬化型接着剤を用いることもできる。後者の例としては、例えばイソプレン系のUV硬化性接着剤が好適に用いられる。イソプレン系のUV硬化性接着剤は、モノマー成分としてイソプレンの他、イソプレン誘導体を含有してもよい。接着剤中には、イソプレン系モノマー以外のモノマー成分が含まれていてもよい。モノマー成分として、(メタ)アクリル酸エステル等の(メタ)アクリル酸誘導体が含まれていてもよい。尚、ポリビニルアルコールのポリエン化による透過率の低下を抑制するためには、透明接着剤11、13、16中の酸成分の含有量を小さくすることが有効である。 1-3. Transparent Adhesive As the transparent adhesives 11, 13 and 16, for example, various adhesives as disclosed in Japanese Patent No. 6071459 can be appropriately used. For example, a (meth) acrylic adhesive can be used, or a curable adhesive that does not contain (meth) acrylic acid can be used. As an example of the latter, for example, an isoprene-based UV curable adhesive is preferably used. The isoprene-based UV curable adhesive may contain an isoprene derivative in addition to isoprene as a monomer component. The adhesive may contain a monomer component other than the isoprene-based monomer. A (meth) acrylic acid derivative such as a (meth) acrylic acid ester may be contained as a monomer component. In order to suppress the decrease in transmittance due to polyene formation of polyvinyl alcohol, it is effective to reduce the content of the acid component in the transparent adhesives 11, 13 and 16.
透明接着剤11、13、16としては、例えば、特許6071459号に開示されているような、様々な接着剤を適宜用いることができる。例えば、(メタ)アクリル系の粘着剤を用いることもできるし、(メタ)アクリル酸を含有しない硬化型接着剤を用いることもできる。後者の例としては、例えばイソプレン系のUV硬化性接着剤が好適に用いられる。イソプレン系のUV硬化性接着剤は、モノマー成分としてイソプレンの他、イソプレン誘導体を含有してもよい。接着剤中には、イソプレン系モノマー以外のモノマー成分が含まれていてもよい。モノマー成分として、(メタ)アクリル酸エステル等の(メタ)アクリル酸誘導体が含まれていてもよい。尚、ポリビニルアルコールのポリエン化による透過率の低下を抑制するためには、透明接着剤11、13、16中の酸成分の含有量を小さくすることが有効である。 1-3. Transparent Adhesive As the
透明接着剤11、13、16、例えば、偏光フィルム積層体12よりも視認側に積層された透明接着剤13(透明接着層)に、紫外線吸収剤を含有させて、光吸収能を有する光吸収層としてもよい、言い換えれば、透明接着剤の紫外線に対する透過率を所望の値に設置してもよい。例えば、透明接着剤を、(メタ)アクリル系の粘着剤で形成し、その作製時に、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等の紫外線吸収剤を透明樹脂中に混合させることによって、透明接着剤を光吸収層として使用することができる。このような光吸収層を設けることにより、透明接着層付きの偏光フィルム積層体12、又は、偏光フィルム積層体12を含む偏光フィルム組立体19における紫外線の透過率を所望の値として、より効果的に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決できる。光吸収層として透明接着剤13だけを用いる場合、例えば、波長380nmでの透過率は、5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。下限は例えば0.1%以上、1%以上である。波長390nmでの透過率は、35%以下が好ましく、30%以下がより好ましく、28%以下がさらに好ましい。下限は例えば、10%以上、20%以上、25%以上である。波長400nmでの透過率は、70%以下が好ましく、68%以下がより好ましい。下限は例えば、50%以上、60%以上、65%以上である。波長420nmでの透過率は、90%以下が好ましい。下限は例えば80%以上、85%以上である。これらの透過率は、初期の状態における透明接着剤の透過率を示している。尚、紫外線吸収剤に加えて、フタロシアニン系光吸収剤、ナフタロシアニン系光吸収剤、ポリメチン系光吸収剤、ジフェニルメタン系光吸収剤、トリフェニルメタン系光吸収剤、キノン系光吸収剤、アゾ系光吸収剤等の赤外線吸収剤を混合してもよい。
The transparent adhesives 11, 13, 16, for example, the transparent adhesive 13 (transparent adhesive layer) laminated on the visual side of the polarizing film laminate 12 contains an ultraviolet absorber to absorb light having a light absorbing ability. It may be a layer, in other words, the transmittance of the transparent adhesive to ultraviolet rays may be set to a desired value. For example, a transparent adhesive is formed of a (meth) acrylic pressure-sensitive adhesive, and at the time of its production, examples thereof include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, and triazine-based UV absorbers. Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned. Examples of the benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy. Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned. Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like. Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3,5 -Light the transparent adhesive by mixing an ultraviolet absorber such as triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyethoxyphenyl) -1,3,5-triazine in the transparent resin. It can be used as an absorbent layer. By providing such a light absorbing layer, it is more effective to set the transmittance of ultraviolet rays in the polarizing film laminate 12 with the transparent adhesive layer or the polarizing film assembly 19 including the polarizing film laminate 12 as a desired value. In addition, the problems of "polyene formation", "color loss", and "heating reddening" can be comprehensively solved. When only the transparent adhesive 13 is used as the light absorption layer, for example, the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less. The lower limit is, for example, 0.1% or more and 1% or more. The transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less. The lower limit is, for example, 10% or more, 20% or more, and 25% or more. The transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less. The lower limit is, for example, 50% or more, 60% or more, 65% or more. The transmittance at a wavelength of 420 nm is preferably 90% or less. The lower limit is, for example, 80% or more and 85% or more. These transmittances indicate the transmittance of the transparent adhesive in the initial state. In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers. An infrared absorber such as a light absorber may be mixed.
2.偏光フィルム積層体
偏光フィルム積層体12は、少なくとも、偏光膜120と、偏光膜120の少なくとも視認側に接合された偏光膜保護フィルム121を含む。偏光フィルム積層体12は、更に、偏光膜120の視認側とは反対側に偏光膜保護フィルム122を含んでもよい。カバー板14及び/又は透明接着剤13等を光吸収層とすることに加えて、又は、それに代えて、偏光膜保護フィルム121を光吸収層として機能させてもよい。光吸収層を設けることにより、偏光フィルム積層体12それ自体の紫外線の透過率を所望の値として、より効果的に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決できる。特に図示していないが、偏光膜120と偏光膜保護フィルム121、122との間に他の光学フィルムを設けてもよい。 2. 2. Polarizing film laminate Thepolarizing film laminate 12 includes at least a polarizing film 120 and a polarizing film protective film 121 bonded to at least the visible side of the polarizing film 120. The polarizing film laminate 12 may further include a polarizing film protective film 122 on the side opposite to the visible side of the polarizing film 120. In addition to or instead of using the cover plate 14 and / or the transparent adhesive 13 as the light absorbing layer, the polarizing film protective film 121 may function as the light absorbing layer. By providing the light absorption layer, the problem of "polyene formation", "color loss", and "heat red discoloration" can be more effectively set by setting the ultraviolet transmittance of the polarizing film laminate 12 itself to a desired value. It can be solved comprehensively. Although not particularly shown, another optical film may be provided between the polarizing film 120 and the polarizing film protective films 121 and 122.
偏光フィルム積層体12は、少なくとも、偏光膜120と、偏光膜120の少なくとも視認側に接合された偏光膜保護フィルム121を含む。偏光フィルム積層体12は、更に、偏光膜120の視認側とは反対側に偏光膜保護フィルム122を含んでもよい。カバー板14及び/又は透明接着剤13等を光吸収層とすることに加えて、又は、それに代えて、偏光膜保護フィルム121を光吸収層として機能させてもよい。光吸収層を設けることにより、偏光フィルム積層体12それ自体の紫外線の透過率を所望の値として、より効果的に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決できる。特に図示していないが、偏光膜120と偏光膜保護フィルム121、122との間に他の光学フィルムを設けてもよい。 2. 2. Polarizing film laminate The
本発明は、高温ないし高湿といった使用環境によって、及び、太陽光の照射によって生じる問題、特に、「ポリエン化」、「色抜け」、及び「加熱赤変」の問題を包括的に解決するため、特に、偏光膜120のヨウ素濃度(wt.%)と、偏光フィルム積層体12の水分量(g/m2)に着目している。これらの値は、例えば、偏光膜の製造時や偏光フィルム積層体の製造時に調整することができる。
The present invention is to comprehensively solve the problems caused by the usage environment such as high temperature or high humidity and by the irradiation of sunlight, particularly the problems of "polyenation", "color loss", and "heating reddening". In particular, attention is paid to the iodine concentration (wt.%) Of the polarizing film 120 and the water content (g / m 2) of the polarizing film laminate 12. These values can be adjusted, for example, during the production of the polarizing film or the production of the polarizing film laminate.
2-1.偏光膜
偏光膜120は、ヨウ素を含有するポリビニルアルコール(PVA)系の樹脂フィルムから成る。偏光膜に適用されるPVA系フィルムの材料としては、PVAまたはその誘導体が用いられる。PVAの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等が挙げられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。PVAは、重合度が1000~10000程度、ケン化度が80~100モル%程度のものが一般に用いられる。これらの材料でできたPVA系フィルムは、水分を含有し易い傾向を有する。 2-1. Polarizing film Thepolarizing film 120 is made of a polyvinyl alcohol (PVA) -based resin film containing iodine. As the material of the PVA-based film applied to the polarizing film, PVA or a derivative thereof is used. Examples of the PVA derivative include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, and those modified with acrylamide and the like. Be done. As PVA, a PVA having a degree of polymerization of about 1000 to 10000 and a degree of saponification of about 80 to 100 mol% is generally used. PVA-based films made of these materials tend to contain moisture.
偏光膜120は、ヨウ素を含有するポリビニルアルコール(PVA)系の樹脂フィルムから成る。偏光膜に適用されるPVA系フィルムの材料としては、PVAまたはその誘導体が用いられる。PVAの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等が挙げられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。PVAは、重合度が1000~10000程度、ケン化度が80~100モル%程度のものが一般に用いられる。これらの材料でできたPVA系フィルムは、水分を含有し易い傾向を有する。 2-1. Polarizing film The
PVA系フィルムは、可塑剤等の添加剤を含有してもよい。可塑剤としては、ポリオールおよびその縮合物等が挙げられ、例えば、グリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等が挙げられる。可塑剤の使用量は、特に制限されないがPVA系フィルム中20重量%以下が好適である。
The PVA-based film may contain additives such as plasticizers. Examples of the plasticizer include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, polyethylene glycol and the like. The amount of the plasticizer used is not particularly limited, but is preferably 20% by weight or less in the PVA-based film.
2-1-1.偏光膜の製造
膜厚6μm以上の偏光膜の製造にあたっては、例えば、上記PVA系フィルムがヨウ素により染色される染色処理、およびPVA系フィルムが少なくとも一方向に延伸される延伸処理が施される。一般には、上記PVA系フィルムを、膨潤、染色、架橋、延伸、水洗および乾燥処理を含む一連の処理に供する方式が採用される。 2-1-1. Production of Polarizing Film In the production of a polarizing film having a thickness of 6 μm or more, for example, a dyeing treatment in which the PVA-based film is dyed with iodine and a stretching treatment in which the PVA-based film is stretched in at least one direction are performed. Generally, a method is adopted in which the PVA-based film is subjected to a series of treatments including swelling, dyeing, cross-linking, stretching, washing with water and drying treatment.
膜厚6μm以上の偏光膜の製造にあたっては、例えば、上記PVA系フィルムがヨウ素により染色される染色処理、およびPVA系フィルムが少なくとも一方向に延伸される延伸処理が施される。一般には、上記PVA系フィルムを、膨潤、染色、架橋、延伸、水洗および乾燥処理を含む一連の処理に供する方式が採用される。 2-1-1. Production of Polarizing Film In the production of a polarizing film having a thickness of 6 μm or more, for example, a dyeing treatment in which the PVA-based film is dyed with iodine and a stretching treatment in which the PVA-based film is stretched in at least one direction are performed. Generally, a method is adopted in which the PVA-based film is subjected to a series of treatments including swelling, dyeing, cross-linking, stretching, washing with water and drying treatment.
膨潤処理は、例えば、PVA系フィルムを、膨潤浴(水浴)中に浸漬することより行われる。この処理により、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄すると共に、PVA系フィルムを膨潤させることで、染色ムラ等の不均一性を防止できる。膨潤浴には、グリセリンやヨウ化カリウム等が適宜に添加されていてもよい。膨潤浴の温度は、例えば20~60℃程度であり、膨潤浴への浸漬時間は、例えば0.1~10分間程度である。
The swelling treatment is performed, for example, by immersing a PVA-based film in a swelling bath (water bath). By this treatment, stains on the surface of the PVA-based film and blocking inhibitor are cleaned, and the PVA-based film is swollen to prevent non-uniformity such as uneven dyeing. Glycerin, potassium iodide and the like may be appropriately added to the swelling bath. The temperature of the swelling bath is, for example, about 20 to 60 ° C., and the immersion time in the swelling bath is, for example, about 0.1 to 10 minutes.
染色処理は、例えば、PVA系フィルムをヨウ素溶液に浸漬することにより行われる。ヨウ素溶液は、通常、ヨウ素水溶液であり、ヨウ素および溶解助剤としてヨウ化カリウムを含有する。ヨウ素濃度は例えば0.01~1重量%程度であり、0.02~0.5重量%であることが好ましい。ヨウ化カリウム濃度は例えば0.01~10重量%程度であり、0.02~8重量%であることが好ましい。
The dyeing treatment is performed, for example, by immersing a PVA-based film in an iodine solution. The iodine solution is usually an aqueous iodine solution and contains iodine and potassium iodide as a solubilizing agent. The iodine concentration is, for example, about 0.01 to 1% by weight, preferably 0.02 to 0.5% by weight. The potassium iodide concentration is, for example, about 0.01 to 10% by weight, preferably 0.02 to 8% by weight.
染色処理において、ヨウ素溶液の温度は、例えば20~50℃程度、好ましくは25~40℃である。浸漬時間は例えば10~300秒間程度、好ましくは20~240秒間の範囲である。ヨウ素染色処理にあたっては、PVA系フィルム中のヨウ素含有量およびカリウム含有量が前記範囲になるように、ヨウ素溶液の濃度、PVA系フィルムのヨウ素溶液への浸漬温度、および浸漬時間等の条件が調整される。
In the dyeing process, the temperature of the iodine solution is, for example, about 20 to 50 ° C, preferably 25 to 40 ° C. The immersion time is, for example, about 10 to 300 seconds, preferably in the range of 20 to 240 seconds. In the iodine dyeing treatment, conditions such as the concentration of the iodine solution, the immersion temperature of the PVA film in the iodine solution, and the immersion time are adjusted so that the iodine content and the potassium content in the PVA film are within the above ranges. Will be done.
架橋処理は、例えば、ヨウ素染色されたPVA系フィルムを、架橋剤を含む処理浴中に浸漬することによって行われる。架橋剤としては任意の適切な架橋剤が採用される。架橋剤の具体例としては、ホウ酸、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等が挙げられる。これらは、単独で、または組み合わせて使用される。架橋浴の溶液に用いられる溶媒としては、水が一般的であるが、水と相溶性を有する有機溶媒が適量添加されていてもよい。架橋剤は、溶媒100重量部に対して、例えば、1~10重量部の割合で用いられる。架橋浴の溶液は、ヨウ化物等の助剤をさらに含有することが望ましい。助剤の濃度は好ましくは0.05~15重量%、さらに好ましくは0.5~8重量%である。架橋浴の温度は、例えば、20~70℃程度、好ましく40~60℃である。架橋浴への浸漬時間は、例えば、1秒間~15分間程度、好ましくは5秒間~10分間である。
The cross-linking treatment is performed, for example, by immersing an iodine-dyed PVA-based film in a treatment bath containing a cross-linking agent. Any suitable cross-linking agent is adopted as the cross-linking agent. Specific examples of the cross-linking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination. Water is generally used as the solvent used for the solution of the cross-linking bath, but an appropriate amount of an organic solvent compatible with water may be added. The cross-linking agent is used, for example, in a ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the solvent. It is desirable that the solution of the cross-linking bath further contains an auxiliary agent such as iodide. The concentration of the auxiliary agent is preferably 0.05 to 15% by weight, more preferably 0.5 to 8% by weight. The temperature of the cross-linking bath is, for example, about 20 to 70 ° C, preferably 40 to 60 ° C. The immersion time in the cross-linking bath is, for example, about 1 second to 15 minutes, preferably 5 seconds to 10 minutes.
延伸処理は、PVA系フィルムが、少なくとも一方向に延伸される処理である。一般には、PVA系フィルムが、搬送方向(長手方向)に1軸延伸される。延伸方法は特に制限されず、湿潤延伸法と乾式延伸法のいずれも採用できる。湿式延伸法が採用される場合、PVA系フィルムは、処理浴中で所定の倍率に延伸される。延伸浴の溶液としては、水または有機溶媒(例えばエタノール)などの溶媒中に、各種の処理に必要な化合物等が添加された溶液が好適に用いられる。乾式延伸法としては、たとえば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等が挙げられる。偏光膜の製造において、延伸処理はいずれの段階で行われてもよい。具体的には、膨潤、染色、架橋と同時に行われてもよく、これら各処理の前後いずれに行われてもよい。また、延伸は、多段で行われてもよい。PVA系フィルムの累積延伸倍率は、例えば、5倍以上であり、好ましくは5~7倍程度である。
The stretching treatment is a treatment in which the PVA-based film is stretched in at least one direction. Generally, the PVA-based film is uniaxially stretched in the transport direction (longitudinal direction). The stretching method is not particularly limited, and either a wet stretching method or a dry stretching method can be adopted. When the wet stretching method is adopted, the PVA-based film is stretched to a predetermined magnification in the treatment bath. As the solution of the stretching bath, a solution in which compounds necessary for various treatments are added to a solvent such as water or an organic solvent (for example, ethanol) is preferably used. Examples of the dry stretching method include an inter-roll stretching method, a heating roll stretching method, and a compression stretching method. In the production of the polarizing film, the stretching treatment may be performed at any stage. Specifically, it may be performed at the same time as swelling, staining, and cross-linking, and may be performed before or after each of these treatments. Further, the stretching may be performed in multiple stages. The cumulative draw ratio of the PVA-based film is, for example, 5 times or more, preferably about 5 to 7 times.
上記の各処理が施されたPVA系フィルム(延伸フィルム)は、常法に従って、水洗浄処理、乾燥処理に供される。
The PVA-based film (stretched film) subjected to each of the above treatments is subjected to a water washing treatment and a drying treatment according to a conventional method.
水洗処理は、例えば、PVA系フィルムを水洗浴中に浸漬することにより行われる。水洗浴は、純水であってもよく、ヨウ化物(例えば、ヨウ化カリウム、ヨウ化ナトリウム等)の水溶液であってもよい。ヨウ化物水溶液の濃度は、好ましくは0.1~10重量%である。ヨウ化物水溶液には硫酸亜鉛、塩化亜鉛などの助剤が添加されていてもよい。
The water washing treatment is performed, for example, by immersing a PVA-based film in a water washing bath. The water washing bath may be pure water or an aqueous solution of iodide (for example, potassium iodide, sodium iodide, etc.). The concentration of the aqueous iodide solution is preferably 0.1 to 10% by weight. Auxiliary agents such as zinc sulfate and zinc chloride may be added to the aqueous iodide solution.
水洗温度は、例えば、5~50℃、好ましくは10~45℃、さらに好ましくは15~40℃の範囲である。浸漬時間は、例えば10~300秒程度、好ましくは20~240秒である。水洗処理は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。水洗処理が複数回実施される場合、各処理に用いられる水洗浴に含まれる添加剤の種類や濃度は適宜に調整される。
The washing temperature is, for example, in the range of 5 to 50 ° C, preferably 10 to 45 ° C, and more preferably 15 to 40 ° C. The immersion time is, for example, about 10 to 300 seconds, preferably 20 to 240 seconds. The water washing treatment may be carried out only once, or may be carried out a plurality of times as needed. When the water washing treatment is performed a plurality of times, the type and concentration of the additive contained in the water washing bath used for each treatment are appropriately adjusted.
PVA系フィルムの乾燥処理は、任意の適切な方法(例えば、自然乾燥、送風乾燥、加熱乾燥)より行われる。
The PVA-based film is dried by any suitable method (for example, natural drying, blast drying, heat drying).
2-1-2.偏光膜の製造
膜厚6μm未満の偏光膜は、例えば、特許第4751481号公報に開示された製造方法によって製造することができる。この製造方法は、熱可塑性基材上へPVA系樹脂層を形成する積層体作製処理、PVA系樹脂層を熱可塑性樹脂基材と一体に延伸する延伸処理、PVA樹脂層に二色性物質を吸着させる染色処理等を含む。必要に応じてPVA系樹脂層の不溶化処理および架橋処理、乾燥処理、洗浄処理などを適用することもできる。延伸処理は、染色処理の先に実施することもできるし、後に実施することもでき、また空中延伸およびホウ酸水溶液などの水中での延伸のいずれの延伸方式をも採用することができる。さらに延伸は、一段階の延伸であっても、2段階以上の多段階の延伸であってもよい。 2-1-2. Production of Polarizing Film A polarizing film having a film thickness of less than 6 μm can be produced, for example, by the production method disclosed in Japanese Patent No. 4751481. This production method includes a laminate preparation process for forming a PVA-based resin layer on a thermoplastic base material, a stretching treatment for stretching the PVA-based resin layer integrally with the thermoplastic resin base material, and a bicolor substance on the PVA resin layer. Includes dyeing treatment to be adsorbed. If necessary, insolubilization treatment, cross-linking treatment, drying treatment, cleaning treatment and the like of the PVA-based resin layer can also be applied. The stretching treatment can be carried out before or after the dyeing treatment, and either stretching method of air stretching or stretching in water such as an aqueous boric acid solution can be adopted. Further, the stretching may be a one-step stretching or a multi-step stretching of two or more steps.
膜厚6μm未満の偏光膜は、例えば、特許第4751481号公報に開示された製造方法によって製造することができる。この製造方法は、熱可塑性基材上へPVA系樹脂層を形成する積層体作製処理、PVA系樹脂層を熱可塑性樹脂基材と一体に延伸する延伸処理、PVA樹脂層に二色性物質を吸着させる染色処理等を含む。必要に応じてPVA系樹脂層の不溶化処理および架橋処理、乾燥処理、洗浄処理などを適用することもできる。延伸処理は、染色処理の先に実施することもできるし、後に実施することもでき、また空中延伸およびホウ酸水溶液などの水中での延伸のいずれの延伸方式をも採用することができる。さらに延伸は、一段階の延伸であっても、2段階以上の多段階の延伸であってもよい。 2-1-2. Production of Polarizing Film A polarizing film having a film thickness of less than 6 μm can be produced, for example, by the production method disclosed in Japanese Patent No. 4751481. This production method includes a laminate preparation process for forming a PVA-based resin layer on a thermoplastic base material, a stretching treatment for stretching the PVA-based resin layer integrally with the thermoplastic resin base material, and a bicolor substance on the PVA resin layer. Includes dyeing treatment to be adsorbed. If necessary, insolubilization treatment, cross-linking treatment, drying treatment, cleaning treatment and the like of the PVA-based resin layer can also be applied. The stretching treatment can be carried out before or after the dyeing treatment, and either stretching method of air stretching or stretching in water such as an aqueous boric acid solution can be adopted. Further, the stretching may be a one-step stretching or a multi-step stretching of two or more steps.
図2を参照して、偏光膜の製造方法の一例を説明する。ここでは、樹脂基材に製膜されたPVA系樹脂層を前記樹脂基材と一体に延伸することによって偏光膜が作製されている。
An example of a method for manufacturing a polarizing film will be described with reference to FIG. Here, a polarizing film is produced by stretching a PVA-based resin layer formed on a resin base material integrally with the resin base material.
[積層体作製処理(A)]
まず、ガラス転移温度が75℃の200μm厚を有する非晶性エステル系熱可塑性樹脂基材、例えば、イソフタル酸を6mol%共重合させたイソフタル酸共重合ポリエチレンテレフタレート(以下、「非晶性PET」という)6と、重合度1000以上、ケン化度99%以上のPVA粉末を水に溶解した4~5重量%濃度のPVA水溶液とを準備する。次に、塗工手段21と乾燥手段22および表面改質処理装置23を備えた積層体作製装置20において、この非晶性PET基材6にPVA水溶液を塗布し、50~60℃の温度で乾燥させ、PET基材6にガラス転移温度が80℃の7μm厚を有するPVA層2を製膜する。これにより、7μm厚のPVA層を含む積層体7が作製される。この際、表面改質処理装置23で非晶性PET基材6の表面をコロナ処理することにより、非晶性PET基材6とこれに製膜されるPVA層2の密着性を向上させることができる。 [Laminate body preparation process (A)]
First, an amorphous ester-based thermoplastic resin base material having a glass transition temperature of 75 ° C. and a thickness of 200 μm, for example, isophthalic acid copolymerized polyethylene terephthalate obtained by copolymerizing 6 mol% of isophthalic acid (hereinafter, “acrystalline PET””. 6 and a PVA aqueous solution having a concentration of 4 to 5% by weight in which a PVA powder having a degree of polymerization of 1000 or more and a degree of saponification of 99% or more is dissolved in water are prepared. Next, in thelaminate manufacturing apparatus 20 provided with the coating means 21, the drying means 22, and the surface modification treatment apparatus 23, a PVA aqueous solution is applied to the amorphous PET base material 6 at a temperature of 50 to 60 ° C. After drying, a PVA layer 2 having a glass transition temperature of 80 ° C. and a thickness of 7 μm is formed on the PET substrate 6. As a result, the laminated body 7 including the PVA layer having a thickness of 7 μm is produced. At this time, the surface of the amorphous PET base material 6 is corona-treated by the surface modification treatment apparatus 23 to improve the adhesion between the amorphous PET base material 6 and the PVA layer 2 formed on the amorphous PET base material 6. Can be done.
まず、ガラス転移温度が75℃の200μm厚を有する非晶性エステル系熱可塑性樹脂基材、例えば、イソフタル酸を6mol%共重合させたイソフタル酸共重合ポリエチレンテレフタレート(以下、「非晶性PET」という)6と、重合度1000以上、ケン化度99%以上のPVA粉末を水に溶解した4~5重量%濃度のPVA水溶液とを準備する。次に、塗工手段21と乾燥手段22および表面改質処理装置23を備えた積層体作製装置20において、この非晶性PET基材6にPVA水溶液を塗布し、50~60℃の温度で乾燥させ、PET基材6にガラス転移温度が80℃の7μm厚を有するPVA層2を製膜する。これにより、7μm厚のPVA層を含む積層体7が作製される。この際、表面改質処理装置23で非晶性PET基材6の表面をコロナ処理することにより、非晶性PET基材6とこれに製膜されるPVA層2の密着性を向上させることができる。 [Laminate body preparation process (A)]
First, an amorphous ester-based thermoplastic resin base material having a glass transition temperature of 75 ° C. and a thickness of 200 μm, for example, isophthalic acid copolymerized polyethylene terephthalate obtained by copolymerizing 6 mol% of isophthalic acid (hereinafter, “acrystalline PET””. 6 and a PVA aqueous solution having a concentration of 4 to 5% by weight in which a PVA powder having a degree of polymerization of 1000 or more and a degree of saponification of 99% or more is dissolved in water are prepared. Next, in the
次いで、PVA層を含む積層体7を、空中補助延伸およびホウ酸水中延伸の2段延伸処理を含む以下の処理を経て、最終的に3μm厚の偏光膜として作製する。
Next, the laminate 7 containing the PVA layer is finally produced as a polarizing film having a thickness of 3 μm through the following treatments including a two-stage stretching treatment of auxiliary stretching in the air and stretching in boric acid in water.
[空中補助延伸処理(B)]
第1段の空中補助延伸処理(B)では、7μm厚のPVA層2を含む積層体7をPET基材6と一体に延伸し、5μm厚のPVA層2を含む「延伸積層体8」を生成する。具体的には、オーブン33内に延伸手段31が配備された空中補助延伸処理装置30において、7μm厚のPVA層2を含む積層体7を130℃の延伸温度環境に設定されたオーブン33の延伸手段31にかけ、延伸倍率が1.8倍になるように自由端一軸に延伸し、延伸積層体8を生成する。この段階でオーブン30に併設させた巻取装置32によって延伸積層体8のロール8’を製造することができる。 [Aerial auxiliary stretching treatment (B)]
In the first-stage aerial auxiliary stretching treatment (B), thelaminated body 7 containing the 7 μm-thick PVA layer 2 is stretched integrally with the PET base material 6, and the “stretched laminated body 8” containing the 5 μm-thick PVA layer 2 is formed. Generate. Specifically, in the aerial auxiliary stretching treatment device 30 in which the stretching means 31 is provided in the oven 33, the laminate 7 including the PVA layer 2 having a thickness of 7 μm is stretched in the oven 33 set to a stretching temperature environment of 130 ° C. It is stretched uniaxially at the free end so that the stretching ratio becomes 1.8 times through the means 31, and the stretched laminate 8 is produced. At this stage, the roll 8'of the stretched laminate 8 can be manufactured by the winding device 32 installed in the oven 30.
第1段の空中補助延伸処理(B)では、7μm厚のPVA層2を含む積層体7をPET基材6と一体に延伸し、5μm厚のPVA層2を含む「延伸積層体8」を生成する。具体的には、オーブン33内に延伸手段31が配備された空中補助延伸処理装置30において、7μm厚のPVA層2を含む積層体7を130℃の延伸温度環境に設定されたオーブン33の延伸手段31にかけ、延伸倍率が1.8倍になるように自由端一軸に延伸し、延伸積層体8を生成する。この段階でオーブン30に併設させた巻取装置32によって延伸積層体8のロール8’を製造することができる。 [Aerial auxiliary stretching treatment (B)]
In the first-stage aerial auxiliary stretching treatment (B), the
[染色処理(C)]
次に、染色処理(C)によって、PVA分子が配向された5μm厚のPVA層2に二色性物質のヨウ素を吸着させた着色積層体9を生成する。具体的には、染色液41の染色浴42を備えた染色装置40において、染色装置40に併設されたロール8’を装着した繰出装置43から繰り出される延伸積層体8を液温30℃のヨウ素およびヨウ化カリウムを含む染色液41に、最終的に生成される偏光膜を構成するPVA層の単体透過率が40~44%になるように任意の時間、浸漬することによって、延伸積層体8の配向されたPVA層2にヨウ素を吸着させた着色積層体9を生成する。 [Dyeing process (C)]
Next, the dyeing treatment (C) produces a colored laminate 9 in which iodine, which is a dichroic substance, is adsorbed on the 5 μm-thick PVA layer 2 in which PVA molecules are oriented. Specifically, in the dyeing apparatus 40 provided with the dyeing bath 42 of the dyeing solution 41, the stretched laminate 8 unwound from the feeding device 43 equipped with the roll 8'attached to the dyeing device 40 is iodine at a liquid temperature of 30 ° C. The stretched laminate 8 is immersed in a dyeing solution 41 containing potassium iodide for an arbitrary time so that the single transmittance of the PVA layer constituting the finally produced polarizing film is 40 to 44%. A colored laminate 9 in which iodine is adsorbed on the oriented PVA layer 2 is produced.
次に、染色処理(C)によって、PVA分子が配向された5μm厚のPVA層2に二色性物質のヨウ素を吸着させた着色積層体9を生成する。具体的には、染色液41の染色浴42を備えた染色装置40において、染色装置40に併設されたロール8’を装着した繰出装置43から繰り出される延伸積層体8を液温30℃のヨウ素およびヨウ化カリウムを含む染色液41に、最終的に生成される偏光膜を構成するPVA層の単体透過率が40~44%になるように任意の時間、浸漬することによって、延伸積層体8の配向されたPVA層2にヨウ素を吸着させた着色積層体9を生成する。 [Dyeing process (C)]
Next, the dyeing treatment (C) produces a colored laminate 9 in which iodine, which is a dichroic substance, is adsorbed on the 5 μm-
本処理において、染色液41は、延伸積層体8に含まれるPVA層2を溶解させないようにするため、水を溶媒として、ヨウ素濃度を0.30重量%とする。また、染色液41は、ヨウ素を水に溶解させるためのヨウ化カリウム濃度を2.1重量%とする。ヨウ素とヨウ化カリウムの濃度の比は1対7である。より詳細には、ヨウ素濃度0.30重量%、ヨウ化カリウム濃度2.1重量%の染色液41に延伸積層体8を60秒間浸漬することによって、PVA分子が配向された5μm厚のPVA層2にヨウ素を吸着させた着色積層体9を生成する。
In this treatment, the dyeing solution 41 uses water as a solvent and has an iodine concentration of 0.30% by weight in order to prevent the PVA layer 2 contained in the stretched laminate 8 from being dissolved. Further, the staining solution 41 has a potassium iodide concentration of 2.1% by weight for dissolving iodine in water. The ratio of iodine to potassium iodide concentrations is 1: 7. More specifically, a 5 μm-thick PVA layer in which PVA molecules are oriented by immersing the stretched laminate 8 in a staining solution 41 having an iodine concentration of 0.30% by weight and a potassium iodide concentration of 2.1% by weight for 60 seconds. A colored laminate 9 in which iodine is adsorbed on 2 is produced.
[ホウ酸水中延伸処理(D)]
第2段のホウ酸水中延伸処理によって、ヨウ素を配向させたPVA層2を含む着色積層体9をさらに延伸し、3μm厚の偏光膜を構成するヨウ素を配向させたPVA層を含む光学フィルム積層体60を生成する。具体的には、ホウ酸水溶液51のホウ酸浴52と延伸手段53を備えたホウ酸水中延伸処理装置50において、染色装置40から連続的に繰り出された着色積層体9をホウ酸とヨウ化カリウムを含む液温65℃の延伸温度環境に設定されたホウ酸水溶液51に浸漬し、次にホウ酸水中処理装置50に配備された延伸手段53にかけ、延伸倍率が3.3倍になるように自由端一軸に延伸することによって、3μm厚のPVA層を含む光学フィルム積層体60を生成する。 [Boric acid water stretching treatment (D)]
The colored laminate 9 containing the iodine-orientedPVA layer 2 is further stretched by the second-stage boric acid water stretching treatment, and the optical film laminate containing the iodine-oriented PVA layer constituting the polarizing film having a thickness of 3 μm is further stretched. Generate body 60. Specifically, in the boric acid water stretching treatment device 50 provided with the boric acid bath 52 of the boric acid aqueous solution 51 and the stretching means 53, the colored laminate 9 continuously unwound from the dyeing device 40 is boric acid and iodide. It is immersed in a boric acid aqueous solution 51 containing potassium and set in a stretching temperature environment at a liquid temperature of 65 ° C., and then applied to a stretching means 53 provided in a boric acid aqueous treatment apparatus 50 so that the stretching ratio becomes 3.3 times. By stretching uniaxially at the free end, an optical film laminate 60 containing a PVA layer having a thickness of 3 μm is produced.
第2段のホウ酸水中延伸処理によって、ヨウ素を配向させたPVA層2を含む着色積層体9をさらに延伸し、3μm厚の偏光膜を構成するヨウ素を配向させたPVA層を含む光学フィルム積層体60を生成する。具体的には、ホウ酸水溶液51のホウ酸浴52と延伸手段53を備えたホウ酸水中延伸処理装置50において、染色装置40から連続的に繰り出された着色積層体9をホウ酸とヨウ化カリウムを含む液温65℃の延伸温度環境に設定されたホウ酸水溶液51に浸漬し、次にホウ酸水中処理装置50に配備された延伸手段53にかけ、延伸倍率が3.3倍になるように自由端一軸に延伸することによって、3μm厚のPVA層を含む光学フィルム積層体60を生成する。 [Boric acid water stretching treatment (D)]
The colored laminate 9 containing the iodine-oriented
[洗浄処理(G)]
次いで、偏光膜を含む光学フィルム積層体60を、好ましくは、そのまま、洗浄処理(G)に送る。洗浄処理(G)は、洗浄装置80の洗浄液81によって偏光膜の表面に付着した不要残存物を洗い流すことを目的とする。但し、洗浄処理(G)を省き、取り出された偏光膜を含む光学フィルム積層体60を直接乾燥処理(H)に送り込むこともできる。 [Washing process (G)]
Next, theoptical film laminate 60 including the polarizing film is preferably sent to the cleaning treatment (G) as it is. The purpose of the cleaning treatment (G) is to wash away unnecessary residues adhering to the surface of the polarizing film with the cleaning liquid 81 of the cleaning apparatus 80. However, the cleaning treatment (G) can be omitted, and the optical film laminate 60 including the removed polarizing film can be directly sent to the drying treatment (H).
次いで、偏光膜を含む光学フィルム積層体60を、好ましくは、そのまま、洗浄処理(G)に送る。洗浄処理(G)は、洗浄装置80の洗浄液81によって偏光膜の表面に付着した不要残存物を洗い流すことを目的とする。但し、洗浄処理(G)を省き、取り出された偏光膜を含む光学フィルム積層体60を直接乾燥処理(H)に送り込むこともできる。 [Washing process (G)]
Next, the
[乾燥処理(H)]
洗浄された光学フィルム積層体60は、乾燥処理(H)に送られ、ここで乾燥される。次いで、乾燥された光学フィルム積層体60は、乾燥装置90に併設された巻取装置91によって、連続ウェブの光学フィルム積層体60として巻き取られ、偏光膜を含む光学フィルム積層体60のロールが生成される。乾燥処理(H)として、任意の適切な方法、例えば、自然乾燥、送風乾燥、加熱乾燥を採用することができる。例えば、オーブンの乾燥装置90において、60℃の温風で、240秒間、乾燥を行うことができる。 [Drying process (H)]
The washedoptical film laminate 60 is sent to a drying process (H), where it is dried. Next, the dried optical film laminate 60 is wound as a continuous web optical film laminate 60 by a winding device 91 attached to the drying apparatus 90, and a roll of the optical film laminate 60 including a polarizing film is rolled. Will be generated. As the drying treatment (H), any suitable method, for example, natural drying, blast drying, or heat drying can be adopted. For example, in the oven drying device 90, drying can be performed with warm air at 60 ° C. for 240 seconds.
洗浄された光学フィルム積層体60は、乾燥処理(H)に送られ、ここで乾燥される。次いで、乾燥された光学フィルム積層体60は、乾燥装置90に併設された巻取装置91によって、連続ウェブの光学フィルム積層体60として巻き取られ、偏光膜を含む光学フィルム積層体60のロールが生成される。乾燥処理(H)として、任意の適切な方法、例えば、自然乾燥、送風乾燥、加熱乾燥を採用することができる。例えば、オーブンの乾燥装置90において、60℃の温風で、240秒間、乾燥を行うことができる。 [Drying process (H)]
The washed
2-1-3.その他
偏光膜は、亜鉛を含有することが好ましい。偏光膜が亜鉛を含有することで、加熱試験後の偏光フィルム積層体の透過率の低下および色相劣化が抑制される傾向がある。偏光膜が亜鉛を含有する場合、偏光膜中の亜鉛の含有量は、0.002~2重量%が好ましく、0.01~1重量%がより好ましい。 2-1-3. Others The polarizing film preferably contains zinc. Since the polarizing film contains zinc, the decrease in transmittance and the deterioration of hue of the polarizing film laminate after the heating test tend to be suppressed. When the polarizing film contains zinc, the zinc content in the polarizing film is preferably 0.002 to 2% by weight, more preferably 0.01 to 1% by weight.
偏光膜は、亜鉛を含有することが好ましい。偏光膜が亜鉛を含有することで、加熱試験後の偏光フィルム積層体の透過率の低下および色相劣化が抑制される傾向がある。偏光膜が亜鉛を含有する場合、偏光膜中の亜鉛の含有量は、0.002~2重量%が好ましく、0.01~1重量%がより好ましい。 2-1-3. Others The polarizing film preferably contains zinc. Since the polarizing film contains zinc, the decrease in transmittance and the deterioration of hue of the polarizing film laminate after the heating test tend to be suppressed. When the polarizing film contains zinc, the zinc content in the polarizing film is preferably 0.002 to 2% by weight, more preferably 0.01 to 1% by weight.
偏光膜は、また、硫酸イオンを含有することが好ましい。偏光膜が硫酸イオンを含有することで、加熱試験後の偏光フィルム積層体の透過率の低下が抑制される傾向がある。偏光膜が硫酸イオンを含有する場合、偏光膜中の硫酸イオンの含有量は、0.02~0.45重量%が好ましく、0.05~0.35重量%がより好ましく、0.1~0.25重量%がさらに好ましい。なお、偏光膜中の硫酸イオンの含有量は、硫黄原子含有量から算出される。
The polarizing film also preferably contains sulfate ions. Since the polarizing film contains sulfate ions, a decrease in the transmittance of the polarizing film laminate after the heating test tends to be suppressed. When the polarizing film contains sulfate ions, the content of sulfate ions in the polarizing film is preferably 0.02 to 0.45% by weight, more preferably 0.05 to 0.35% by weight, and 0.1 to 0.1 to 0.35% by weight. 0.25% by weight is more preferable. The content of sulfate ions in the polarizing film is calculated from the sulfur atom content.
偏光膜中に亜鉛を含有させるためには、偏光膜の製造工程において、亜鉛含浸処理が行われることが好ましい。また、偏光膜中に硫酸イオンを含有させるためには、偏光膜の製造工程において、硫酸イオン処理が行われることが好ましい。
In order to contain zinc in the polarizing film, it is preferable that zinc impregnation treatment is performed in the polarizing film manufacturing process. Further, in order to contain sulfate ions in the polarizing film, it is preferable that sulfate ion treatment is performed in the polarizing film manufacturing process.
亜鉛含浸処理は、例えば、PVA系フィルムを、亜鉛塩溶液に浸漬することより行われる。亜鉛塩としては、塩化亜鉛、ヨウ化亜鉛などのハロゲン化亜鉛、硫酸亜鉛、酢酸亜鉛等の水溶液の無機塩化合物が好適である。また、亜鉛含浸処理には、各種亜鉛錯体化合物が用いられてもよい。また、亜鉛塩溶液は、ヨウ化カリウム等によりカリウムイオンおよびヨウ素イオンを含有させた水溶液を用いるのが亜鉛イオンを含浸させやすく好ましい。亜鉛塩溶液中のヨウ化カリウム濃度は0.5~10重量%程度、さらには1~8重量%とするのが好ましい。
The zinc impregnation treatment is performed, for example, by immersing a PVA-based film in a zinc salt solution. As the zinc salt, an inorganic salt compound in an aqueous solution such as zinc halide such as zinc chloride and zinc iodide, zinc sulfate and zinc acetate is suitable. Further, various zinc complex compounds may be used for the zinc impregnation treatment. Further, as the zinc salt solution, it is preferable to use an aqueous solution containing potassium ions and iodine ions with potassium iodide or the like because it is easy to impregnate the zinc ions. The potassium iodide concentration in the zinc salt solution is preferably about 0.5 to 10% by weight, more preferably 1 to 8% by weight.
硫酸イオン処理は、例えば、硫酸金属塩を含む水溶液に、PVA系フィルムを浸漬することにより行われる。硫酸金属塩としては、処理液中で、硫酸イオンと金属イオンとに分離し易く、PVA系フィルム中に、当該硫酸金属塩がイオンの状態で導入されやすいものが好ましい。例えば、硫酸金属塩を形成する金属の種類としては、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等のアルカリ土類金属;コバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、鉄等の遷移金属が挙げられる。
Sulfate ion treatment is performed, for example, by immersing a PVA-based film in an aqueous solution containing a metal sulfate. The metal sulfate is preferably one in which the sulfate ion and the metal ion are easily separated in the treatment liquid, and the metal sulfate is easily introduced into the PVA-based film in the ion state. For example, the types of metals that form metal sulfates include alkali metals such as sodium and potassium; alkaline earth metals such as magnesium and calcium; transitions such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese, and iron. Metal is mentioned.
偏光膜の製造において、上記の亜鉛含浸処理および硫酸イオン処理はいずれの段階で行われてもよい。すなわち、亜鉛含浸処理および硫酸イオン処理は、染色処理の前に行われてもよく、染色処理の後に行われてもよい。亜鉛含浸処理と硫酸イオン処理とが同時に行われてもよい。前記亜鉛塩および前記硫酸金属塩として硫酸亜鉛を用い、硫酸亜鉛を含有する処理浴に、PVA系フィルムを浸漬することにより、亜鉛含浸処理と硫酸イオン処理とが同時に行われることが好ましい。また、染色溶液中に前記亜鉛塩や前記硫酸金属塩を共存させておいて、亜鉛含浸処理および/または硫酸イオン処理を、染色処理と同時に行うこともできる。亜鉛含浸処理および硫酸イオン処理は、延伸と同時に行われてもよい。
In the production of the polarizing film, the zinc impregnation treatment and the sulfate ion treatment may be performed at any stage. That is, the zinc impregnation treatment and the sulfate ion treatment may be performed before the dyeing treatment or after the dyeing treatment. The zinc impregnation treatment and the sulfate ion treatment may be performed at the same time. It is preferable that the zinc impregnation treatment and the sulfate ion treatment are simultaneously performed by immersing the PVA-based film in a treatment bath containing zinc sulfate using zinc sulfate as the zinc salt and the metal sulfate. Further, the zinc salt and the metal sulfate can be allowed to coexist in the dyeing solution, and the zinc impregnation treatment and / or the sulfate ion treatment can be performed at the same time as the dyeing treatment. The zinc impregnation treatment and the sulfate ion treatment may be performed at the same time as the stretching.
2-2.偏光膜保護フィルム
2-2-1.視認側とは反対側に位置する偏光膜保護フィルム
図1の偏光フィルム積層体12において、偏光膜120よりも視認側とは反対側に位置する偏光膜保護フィルム122を構成する材料としては、例えば、透明性、機械強度、および熱安定性に優れる熱可塑性樹脂が挙げられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、PVA系樹脂、およびこれらの混合物が挙げられる。
偏光膜保護フィルム122は、位相差フィルムの機能を兼ね備えるものであってもよい。 2-2. Polarizing film protective film 2-2-1. Polarizing film protective film located on the side opposite to the viewing side In thepolarizing film laminate 12 of FIG. 1, as a material constituting the polarizing film protective film 122 located on the side opposite to the viewing side of the polarizing film 120, for example, , A thermoplastic resin having excellent transparency, mechanical strength, and thermal stability. Specific examples of such thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins. , (Meta) acrylic resin, cyclic polyolefin resin (norbornen resin), polyarylate resin, polystyrene resin, PVA resin, and mixtures thereof.
The polarizing filmprotective film 122 may also have the function of a retardation film.
2-2-1.視認側とは反対側に位置する偏光膜保護フィルム
図1の偏光フィルム積層体12において、偏光膜120よりも視認側とは反対側に位置する偏光膜保護フィルム122を構成する材料としては、例えば、透明性、機械強度、および熱安定性に優れる熱可塑性樹脂が挙げられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、PVA系樹脂、およびこれらの混合物が挙げられる。
偏光膜保護フィルム122は、位相差フィルムの機能を兼ね備えるものであってもよい。 2-2. Polarizing film protective film 2-2-1. Polarizing film protective film located on the side opposite to the viewing side In the
The polarizing film
偏光膜保護フィルム122の厚みは、偏光フィルム積層体の水分量を調整するために適宜に調整される。強度や取扱性等の作業性、薄層性などの点からは1~500μm程度が好ましく、2~300μmがより好ましく、5~200μmがさらに好ましい。
偏光膜保護フィルム122中には任意の添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。 The thickness of the polarizing filmprotective film 122 is appropriately adjusted in order to adjust the water content of the polarizing film laminate. From the viewpoint of workability such as strength and handleability, thin layer property, etc., about 1 to 500 μm is preferable, 2 to 300 μm is more preferable, and 5 to 200 μm is further preferable.
The polarizing filmprotective film 122 may contain one or more kinds of arbitrary additives. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, color retardants, flame retardants, nucleating agents, antistatic agents, pigments, colorants and the like.
偏光膜保護フィルム122中には任意の添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。 The thickness of the polarizing film
The polarizing film
2-2-2.視認側に位置する偏光膜保護フィルム
図1の偏光フィルム積層体12において、偏光膜120よりも視認側に位置する偏光膜保護フィルム121は、光吸収能を有する光吸収層として構成されている、言い換えれば、紫外線に対する透過率が所望の値に設置されている。例えば、紫外線吸収剤を含有させることによって、偏光膜保護フィルム121を、光吸収能を有する光吸収層として構成することができるが、紫外線に対する透過率を所望の値に設置することができれば足り、必ずしも、紫外線吸収剤を用いる必要はない。例えば、紫外線吸収剤に代えて、紫外線吸収フィルタを用いて、所望の透過率とすることもできる。光吸収層として偏光膜保護フィルム121だけを用いる場合、例えば、波長380nmでの透過率は、5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。下限は例えば0.1%以上、1%以上である。波長390nmでの透過率は、35%以下が好ましく、30%以下がより好ましく、28%以下がさらに好ましい。下限は例えば、10%以上、20%以上、25%以上である。波長400nmでの透過率は、70%以下が好ましく、68%以下がより好ましい。下限は例えば、50%以上、60%以上、65%以上である。波長420nmでの透過率は、90%以下が好ましい。下限は例えば80%以上、85%以上である。尚、紫外線吸収剤に加えて、フタロシアニン系光吸収剤、ナフタロシアニン系光吸収剤、ポリメチン系光吸収剤、ジフェニルメタン系光吸収剤、トリフェニルメタン系光吸収剤、キノン系光吸収剤、アゾ系光吸収剤等の赤外線吸収剤を混合してもよい。 2-2-2. Polarizing film protective film located on the viewing side In thepolarizing film laminate 12 of FIG. 1, the polarizing film protective film 121 located on the viewing side of the polarizing film 120 is configured as a light absorbing layer having a light absorbing ability. In other words, the transmittance for ultraviolet rays is set to a desired value. For example, the polarizing film protective film 121 can be configured as a light absorbing layer having a light absorbing ability by containing an ultraviolet absorber, but it is sufficient if the transmittance for ultraviolet rays can be set to a desired value. It is not always necessary to use an ultraviolet absorber. For example, an ultraviolet absorbing filter may be used instead of the ultraviolet absorber to obtain a desired transmittance. When only the polarizing film protective film 121 is used as the light absorption layer, for example, the transmittance at a wavelength of 380 nm is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less. The lower limit is, for example, 0.1% or more and 1% or more. The transmittance at a wavelength of 390 nm is preferably 35% or less, more preferably 30% or less, still more preferably 28% or less. The lower limit is, for example, 10% or more, 20% or more, and 25% or more. The transmittance at a wavelength of 400 nm is preferably 70% or less, more preferably 68% or less. The lower limit is, for example, 50% or more, 60% or more, 65% or more. The transmittance at a wavelength of 420 nm is preferably 90% or less. The lower limit is, for example, 80% or more and 85% or more. In addition to ultraviolet absorbers, phthalocyanine-based light absorbers, naphthalocyanine-based light absorbers, polymethine-based light absorbers, diphenylmethane-based light absorbers, triphenylmethane-based light absorbers, quinone-based light absorbers, and azo-based light absorbers. An infrared absorber such as a light absorber may be mixed.
図1の偏光フィルム積層体12において、偏光膜120よりも視認側に位置する偏光膜保護フィルム121は、光吸収能を有する光吸収層として構成されている、言い換えれば、紫外線に対する透過率が所望の値に設置されている。例えば、紫外線吸収剤を含有させることによって、偏光膜保護フィルム121を、光吸収能を有する光吸収層として構成することができるが、紫外線に対する透過率を所望の値に設置することができれば足り、必ずしも、紫外線吸収剤を用いる必要はない。例えば、紫外線吸収剤に代えて、紫外線吸収フィルタを用いて、所望の透過率とすることもできる。光吸収層として偏光膜保護フィルム121だけを用いる場合、例えば、波長380nmでの透過率は、5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。下限は例えば0.1%以上、1%以上である。波長390nmでの透過率は、35%以下が好ましく、30%以下がより好ましく、28%以下がさらに好ましい。下限は例えば、10%以上、20%以上、25%以上である。波長400nmでの透過率は、70%以下が好ましく、68%以下がより好ましい。下限は例えば、50%以上、60%以上、65%以上である。波長420nmでの透過率は、90%以下が好ましい。下限は例えば80%以上、85%以上である。尚、紫外線吸収剤に加えて、フタロシアニン系光吸収剤、ナフタロシアニン系光吸収剤、ポリメチン系光吸収剤、ジフェニルメタン系光吸収剤、トリフェニルメタン系光吸収剤、キノン系光吸収剤、アゾ系光吸収剤等の赤外線吸収剤を混合してもよい。 2-2-2. Polarizing film protective film located on the viewing side In the
偏光膜保護フィルム121として、例えば、図3の(a)乃至(c)に示した構成を採用することができる。図3の(a)乃至(c)に示した偏光膜保護フィルム121A乃至Cはいずれも、図1に示した偏光膜保護フィルム121として利用することができる。尚、便宜上、これらの図には、偏光膜保護フィルム121A乃至Cに加え、図1に示した偏光膜120と偏光膜保護フィルム122も示されている。
As the polarizing film protective film 121, for example, the configurations shown in FIGS. 3A to 3C can be adopted. Any of the polarizing film protective films 121A to C shown in FIGS. 3A to 3C can be used as the polarizing film protective film 121 shown in FIG. For convenience, in addition to the polarizing film protective films 121A to C, the polarizing film 120 and the polarizing film protective film 122 shown in FIG. 1 are also shown in these figures.
(A) 偏光膜保護フィルム121A
図3の(a)に示した偏光膜保護フィルム121Aは、偏光膜保護フィルム層121A-1とコーティング層121A-2を含む。光吸収能を有する偏光膜保護フィルム121Aは、例えば、偏光膜保護フィルム層121A-1に光吸収剤を含有させることによって、及び/又は、コーティング層121A-2に光吸収剤を含有させることによって形成することができる。 (A) Polarizing filmprotective film 121A
The polarizing filmprotective film 121A shown in FIG. 3A includes a polarizing film protective film layer 121A-1 and a coating layer 121A-2. The polarizing film protective film 121A having a light absorbing ability is obtained, for example, by containing a light absorbing agent in the polarizing film protective film layer 121A-1 and / or by containing a light absorbing agent in the coating layer 121A-2. Can be formed.
図3の(a)に示した偏光膜保護フィルム121Aは、偏光膜保護フィルム層121A-1とコーティング層121A-2を含む。光吸収能を有する偏光膜保護フィルム121Aは、例えば、偏光膜保護フィルム層121A-1に光吸収剤を含有させることによって、及び/又は、コーティング層121A-2に光吸収剤を含有させることによって形成することができる。 (A) Polarizing film
The polarizing film
偏光膜保護フィルム層121A-1を構成する材料としては、例えば、透明性、機械強度、および熱安定性に優れる熱可塑性樹脂が挙げられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、PVA系樹脂、およびこれらの混合物が挙げられる。偏光膜保護フィルムは、位相差フィルムの機能を兼ね備えるものであってもよい。
偏光膜保護フィルム層121A-1の厚みは、偏光フィルム積層体12の水分量を調整するために適宜に調整される。強度や取扱性等の作業性、薄層性などの点から20~60μm、好ましくは30~50μmである。
偏光膜保護フィルム層121A-1中には任意の添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。
偏光膜保護フィルム層121A-1に含有させる光吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等を用いることがでる。これらの光吸収剤は、偏光膜保護フィルム中に混合させることによって含有させることができる。 Examples of the material constituting the polarizing filmprotective film layer 121A-1 include a thermoplastic resin having excellent transparency, mechanical strength, and thermal stability. Specific examples of such thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins. , (Meta) acrylic resin, cyclic polyolefin resin (norbornen resin), polyarylate resin, polystyrene resin, PVA resin, and mixtures thereof. The polarizing film protective film may have the function of a retardation film.
The thickness of the polarizing filmprotective film layer 121A-1 is appropriately adjusted in order to adjust the water content of the polarizing film laminate 12. It is 20 to 60 μm, preferably 30 to 50 μm from the viewpoint of workability such as strength and handleability, and thin layer property.
One or more kinds of arbitrary additives may be contained in the polarizing filmprotective film layer 121A-1. Examples of the additive include antioxidants, lubricants, plasticizers, mold release agents, colorants, flame retardants, nucleating agents, antistatic agents, pigments, colorants and the like.
Examples of the light absorber contained in the polarizing filmprotective film layer 121A-1 include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, and triazine-based ultraviolet absorbers. Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned. Examples of the benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy. Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned. Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like. Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3,5 -Triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyethoxyphenyl) -1,3,5-triazine and the like can be used. These light absorbers can be contained by mixing in a polarizing film protective film.
偏光膜保護フィルム層121A-1の厚みは、偏光フィルム積層体12の水分量を調整するために適宜に調整される。強度や取扱性等の作業性、薄層性などの点から20~60μm、好ましくは30~50μmである。
偏光膜保護フィルム層121A-1中には任意の添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。
偏光膜保護フィルム層121A-1に含有させる光吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等を用いることがでる。これらの光吸収剤は、偏光膜保護フィルム中に混合させることによって含有させることができる。 Examples of the material constituting the polarizing film
The thickness of the polarizing film
One or more kinds of arbitrary additives may be contained in the polarizing film
Examples of the light absorber contained in the polarizing film
コーティング層121A-2の具体例としては、ハードコート層、アンチグレア層、アンチブロッキング層、反射防止層、導電層等が挙げられる。なかでも、本願発明の製造方法は、ハードコート層を形成する場合に特に有用である。コーティング層を構成する材料としては、樹脂材料(モノマー、オリゴマー、プレポリマーおよび/またはポリマー)を含む。1つの実施形態においては、樹脂材料として、熱硬化型または光硬化型の硬化性化合物を含む。硬化性化合物を含むコーティング層の材料を用いれば、ハードコート層またはアンチグレア層を形成することができる。硬化性化合物は、モノマー、オリゴマーおよびプレポリマーのいずれであってもよい。硬化性化合物としては多官能モノマーまたはオリゴマーが用いられ得、例えば、2個以上の(メタ)アクリロイル基を有するモノマーまたはオリゴマー、ウレタン(メタ)アクリレートまたはウレタン(メタ)アクリレートのオリゴマー、エポキシ系モノマーまたはオリゴマー、シリコーン系モノマーまたはオリゴマー等が挙げられる。
コーティング層121A-2の厚みは、薄層性などの点から10μm以下、好ましくは8μm以下、より好ましくは6μm以下である。下限は、例えば1μm以上、2μm以上、4μm以上である。
コーティング層121A-2に含有させる光吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等を用いることができる。これらの光吸収剤は、コーティング層を形成する樹脂に混合することによって含有させることができる。 Specific examples of thecoating layer 121A-2 include a hard coat layer, an anti-glare layer, an anti-blocking layer, an antireflection layer, a conductive layer and the like. Among them, the production method of the present invention is particularly useful when forming a hard coat layer. Materials constituting the coating layer include resin materials (monomers, oligomers, prepolymers and / or polymers). In one embodiment, the resin material comprises a thermosetting or photocurable curable compound. A hard coat layer or an anti-glare layer can be formed by using a coating layer material containing a curable compound. The curable compound may be any of a monomer, an oligomer and a prepolymer. A polyfunctional monomer or oligomer can be used as the curable compound, for example, a monomer or oligomer having two or more (meth) acryloyl groups, a urethane (meth) acrylate or a urethane (meth) acrylate oligomer, an epoxy-based monomer or Examples thereof include oligomers, silicone-based monomers and oligomers.
The thickness of thecoating layer 121A-2 is 10 μm or less, preferably 8 μm or less, and more preferably 6 μm or less in terms of thinness and the like. The lower limit is, for example, 1 μm or more, 2 μm or more, and 4 μm or more.
Examples of the light absorber contained in thecoating layer 121A-2 include benzotriazole-based, benzophenone-based, salicylic acid phenyl ester-based, and triazine-based ultraviolet absorbers. Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2H-benzotriazole-2-yl) -p-cresol, and 2- (2H-benzotriazole). -2-yl) -4,6-di-tert-pentylphenol, 2- (2'-hydroxy-5'methacryloxyethylphenyl) -2H-benzotriazole and the like can be mentioned. Examples of the benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, and 2,2-dihydroxy-4-methoxy. Benzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be mentioned. Examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like. Examples of the triazine-based ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-). 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3,5 -Triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyethoxyphenyl) -1,3,5-triazine and the like can be used. These light absorbers can be contained by mixing with the resin forming the coating layer.
コーティング層121A-2の厚みは、薄層性などの点から10μm以下、好ましくは8μm以下、より好ましくは6μm以下である。下限は、例えば1μm以上、2μm以上、4μm以上である。
コーティング層121A-2に含有させる光吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、トリアジン系の紫外線吸収剤が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリチル酸フェニルエステル系紫外線吸収剤としては、例えば、p-t-ブチルフェニルサリチル酸エステル等が挙げられる。トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等を用いることができる。これらの光吸収剤は、コーティング層を形成する樹脂に混合することによって含有させることができる。 Specific examples of the
The thickness of the
Examples of the light absorber contained in the
上記の透過率を達成するため、偏光膜保護フィルム層121A-1、及び/又は、コーティング層121A-2によって構成される、光吸収層としての総厚み、即ち、光吸収能を有する偏光膜保護フィルム層121A-1、及び/又は、光吸収能を有するコーティング層121A-2の厚みの総計は、十分な光吸収能を得る且つ薄層性などの点から25~65μm、好ましくは35~55μm以下、より好ましくは40~50μmである。
In order to achieve the above transmittance, the total thickness of the light absorbing layer composed of the polarizing film protective film layer 121A-1 and / or the coating layer 121A-2, that is, the polarizing film protection having a light absorbing ability The total thickness of the film layer 121A-1 and / or the coating layer 121A-2 having a light absorbing ability is 25 to 65 μm, preferably 35 to 55 μm from the viewpoint of obtaining sufficient light absorbing ability and thinning property. Hereinafter, it is more preferably 40 to 50 μm.
(B) 偏光膜保護フィルム121B
図3の(b)に示した偏光膜保護フィルム121Bは、複数の、ここでは2つの偏光膜保護フィルム層121B-1、121B-3と、これらの偏光膜保護フィルム層121B-1、121B-3を貼り合わせる接着剤層121B-2を含む。光吸収能を有する偏光膜保護フィルム121Bは、例えば、偏光膜保護フィルム層121B-1、121B-3のいずれか一方、又は、双方に光吸収剤を含有させることによって形成することができる。 (B) Polarizing filmprotective film 121B
The polarizing filmprotective film 121B shown in FIG. 3 (b) includes a plurality of polarizing film protective film layers 121B-1 and 121B-3, and these polarizing film protective film layers 121B-1 and 121B-. Includes an adhesive layer 121B-2 to which 3 is bonded. The polarizing film protective film 121B having a light absorbing ability can be formed, for example, by including a light absorbing agent in either or both of the polarizing film protective film layers 121B-1 and 121B-3.
図3の(b)に示した偏光膜保護フィルム121Bは、複数の、ここでは2つの偏光膜保護フィルム層121B-1、121B-3と、これらの偏光膜保護フィルム層121B-1、121B-3を貼り合わせる接着剤層121B-2を含む。光吸収能を有する偏光膜保護フィルム121Bは、例えば、偏光膜保護フィルム層121B-1、121B-3のいずれか一方、又は、双方に光吸収剤を含有させることによって形成することができる。 (B) Polarizing film
The polarizing film
偏光膜保護フィルム層121B-1、121B-3を構成する材料としては、光膜保護フィルム層121A-1と同じものを用いることができる。
また、偏光膜保護フィルム層121B-1、121B-3に含有させる光吸収剤としては、偏光膜保護フィルム層121A-1に含有させる光吸収剤と同じものを用いることができる。これらの光吸収剤は、偏光膜保護フィルム層121A-1と同じ方法で含有させることができる。 As the material constituting the polarizing film protective film layers 121B-1 and 121B-3, the same material as the optical filmprotective film layer 121A-1 can be used.
Further, as the light absorber contained in the polarizing film protective film layers 121B-1 and 121B-3, the same light absorber contained in the polarizing filmprotective film layer 121A-1 can be used. These light absorbers can be contained in the same manner as the polarizing film protective film layer 121A-1.
また、偏光膜保護フィルム層121B-1、121B-3に含有させる光吸収剤としては、偏光膜保護フィルム層121A-1に含有させる光吸収剤と同じものを用いることができる。これらの光吸収剤は、偏光膜保護フィルム層121A-1と同じ方法で含有させることができる。 As the material constituting the polarizing film protective film layers 121B-1 and 121B-3, the same material as the optical film
Further, as the light absorber contained in the polarizing film protective film layers 121B-1 and 121B-3, the same light absorber contained in the polarizing film
上記の透過率を達成するため、偏光膜保護フィルム層121B-1、121B-3によって構成される、光吸収層としての総厚み、即ち、光吸収能を有する偏光膜保護フィルム層121B-1、121B-3の厚みの総計は、十分な光吸収能を得る且つ薄層性などの点から25~105μm、好ましくは60~100μm、より好ましくは70~90μmである。
In order to achieve the above transmittance, the total thickness of the light absorbing layer composed of the polarizing film protective film layers 121B-1 and 121B-3, that is, the polarizing film protective film layer 121B-1 having a light absorbing ability, The total thickness of 121B-3 is 25 to 105 μm, preferably 60 to 100 μm, and more preferably 70 to 90 μm from the viewpoint of obtaining sufficient light absorption capacity and thin layer property.
接着剤層121B-2としては、後述する、例えば、紫外線硬化型接着剤、又は、ドープ硬化型接着剤を使用することができる。
As the adhesive layer 121B-2, for example, an ultraviolet curable adhesive or a dope curable adhesive, which will be described later, can be used.
(C) 偏光膜保護フィルム121C
図3の(c)に示した偏光膜保護フィルム121Cは、光吸収能を有する偏光膜保護フィルム層121Cのみを含む。 (C) Polarizing filmprotective film 121C
The polarizing filmprotective film 121C shown in FIG. 3 (c) includes only the polarizing film protective film layer 121C having a light absorbing ability.
図3の(c)に示した偏光膜保護フィルム121Cは、光吸収能を有する偏光膜保護フィルム層121Cのみを含む。 (C) Polarizing film
The polarizing film
偏光膜保護フィルム層121Cを構成する材料としては、光膜保護フィルム層121A-1と同じものを用いることができる。
また、偏光膜保護フィルム層121Cに含有させる光吸収剤としては、偏光膜保護フィルム層121A-1に含有させる光吸収剤と同じものを用いることができる。これらの光吸収剤は、偏光膜保護フィルム層121A-1と同じ方法で含有させることができる。 As the material constituting the polarizing filmprotective film layer 121C, the same material as that of the optical film protective film layer 121A-1 can be used.
Further, as the light absorber contained in the polarizing filmprotective film layer 121C, the same light absorber contained in the polarizing film protective film layer 121A-1 can be used. These light absorbers can be contained in the same manner as the polarizing film protective film layer 121A-1.
また、偏光膜保護フィルム層121Cに含有させる光吸収剤としては、偏光膜保護フィルム層121A-1に含有させる光吸収剤と同じものを用いることができる。これらの光吸収剤は、偏光膜保護フィルム層121A-1と同じ方法で含有させることができる。 As the material constituting the polarizing film
Further, as the light absorber contained in the polarizing film
偏光膜保護フィルム層121Cの厚み、即ち、光吸収層としての厚みは、十分な光吸収能を得る且つ薄層性などの点から25~105μm、好ましくは60~100μm、より好ましくは70~90μmである。尚、偏光膜保護フィルム層121Cは、図3の(b)に示した複数の偏光膜保護フィルム121B-1、121B-3を1つにまとめたものとして捉えることもできる。
The thickness of the polarizing film protective film layer 121C, that is, the thickness as a light absorption layer is 25 to 105 μm, preferably 60 to 100 μm, more preferably 70 to 90 μm from the viewpoint of obtaining sufficient light absorption ability and thin layer property. Is. The polarizing film protective film layer 121C can also be regarded as a combination of the plurality of polarizing film protective films 121B-1 and 121B-3 shown in FIG. 3B.
2-2-3.その他
カバー板14、透明接着剤13等、及び、偏光膜保護フィルム121のいずれを利用して、又は、それらを組み合わせて、光吸収層を形成してもよい。複数の層を組み合わせて光吸収層を形成する場合には、一般の装置と同様に、所望の透過率を装置全体として適当に調整すればよい。 2-2-3. In addition, any of the cover plate 14, thetransparent adhesive 13, and the polarizing film protective film 121 may be used, or a combination thereof may be used to form a light absorption layer. When a plurality of layers are combined to form a light absorption layer, the desired transmittance may be appropriately adjusted for the entire device as in the case of a general device.
カバー板14、透明接着剤13等、及び、偏光膜保護フィルム121のいずれを利用して、又は、それらを組み合わせて、光吸収層を形成してもよい。複数の層を組み合わせて光吸収層を形成する場合には、一般の装置と同様に、所望の透過率を装置全体として適当に調整すればよい。 2-2-3. In addition, any of the cover plate 14, the
2-3.他の光学フィルム
偏光膜と偏光膜保護フィルム121、122は、直接接合されてもよいが、他の光学フィルムと積層されてもよい。他の光学フィルムについて特に限定はされないが、例えば、位相差フィルム、視野角補償フィルム等を用いることができる。他の光学フィルムとしての位相差フィルムは、保護フィルムとしての機能を有するものであってもよい。 2-3. The other optical film The polarizing film and the polarizing film protective films 121 and 122 may be directly bonded or laminated with another optical film. The other optical film is not particularly limited, but for example, a retardation film, a viewing angle compensation film, or the like can be used. The retardation film as another optical film may have a function as a protective film.
偏光膜と偏光膜保護フィルム121、122は、直接接合されてもよいが、他の光学フィルムと積層されてもよい。他の光学フィルムについて特に限定はされないが、例えば、位相差フィルム、視野角補償フィルム等を用いることができる。他の光学フィルムとしての位相差フィルムは、保護フィルムとしての機能を有するものであってもよい。 2-3. The other optical film The polarizing film and the polarizing film
上に説明したように、偏光膜保護フィルム121、122は、位相差フィルムの機能を兼ね備えるものであってもよいが、この場合、他の光学フィルムとしての位相差フィルムを省略することもできる。一方、偏光膜保護フィルムが、位相差フィルムの機能を兼ね備える場合であっても、他の光学フィルムとして位相差フィルムを設けることもできる。この場合、実質的に2つ又は3つ以上の位相差フィルムが含まれることになる。
As described above, the polarizing film protective films 121 and 122 may have the function of a retardation film, but in this case, the retardation film as another optical film may be omitted. On the other hand, even when the polarizing film protective film also has the function of the retardation film, the retardation film can be provided as another optical film. In this case, substantially two or more retardation films will be included.
2-4.接着剤
図3の(b)に示した接着剤層121B-2、偏光膜120と偏光膜保護フィルム121、122との接合に用いる接着剤、或いは、位相差フィルム等の他の光学フィルムとそれらとの接合に用いる接着剤としては、例えば、ラジカル重合硬化型(紫外線硬化型)接着剤やカチオン重合硬化型接着剤、水性(ドープ型)接着剤を使用することができる。 2-4. Adhesive The adhesive used to bond theadhesive layer 121B-2 shown in FIG. 3B, the polarizing film 120 and the polarizing film protective films 121 and 122, or other optical films such as a retardation film and them. As the adhesive used for bonding with, for example, a radical polymerization curable (ultraviolet curable) adhesive, a cationic polymerization curable adhesive, or an aqueous (dope type) adhesive can be used.
図3の(b)に示した接着剤層121B-2、偏光膜120と偏光膜保護フィルム121、122との接合に用いる接着剤、或いは、位相差フィルム等の他の光学フィルムとそれらとの接合に用いる接着剤としては、例えば、ラジカル重合硬化型(紫外線硬化型)接着剤やカチオン重合硬化型接着剤、水性(ドープ型)接着剤を使用することができる。 2-4. Adhesive The adhesive used to bond the
(ラジカル重合硬化型接着剤)
前記ラジカル重合硬化型接着剤は、硬化性化合物としてのラジカル重合性化合物を含む。ラジカル重合性化合物は、活性エネルギー線により硬化する化合物であってもよく、熱により硬化する化合物であってもよい。活性エネルギー線としては、例えば、電子線、紫外線、可視光線等が挙げられる。 (Radical polymerization curing type adhesive)
The radical polymerization curable adhesive contains a radical polymerizable compound as a curable compound. The radically polymerizable compound may be a compound that is cured by active energy rays or a compound that is cured by heat. Examples of the active energy ray include an electron beam, ultraviolet rays, visible light and the like.
前記ラジカル重合硬化型接着剤は、硬化性化合物としてのラジカル重合性化合物を含む。ラジカル重合性化合物は、活性エネルギー線により硬化する化合物であってもよく、熱により硬化する化合物であってもよい。活性エネルギー線としては、例えば、電子線、紫外線、可視光線等が挙げられる。 (Radical polymerization curing type adhesive)
The radical polymerization curable adhesive contains a radical polymerizable compound as a curable compound. The radically polymerizable compound may be a compound that is cured by active energy rays or a compound that is cured by heat. Examples of the active energy ray include an electron beam, ultraviolet rays, visible light and the like.
前記ラジカル重合性化合物としては、例えば、(メタ)アクリロイル基、ビニル基等の炭素-炭素2重結合を有するラジカル重合性官能基を有する化合物が挙げられる。ラジカル重合性化合物としては、多官能ラジカル重合性化合物が好ましく用いられる。ラジカル重合性化合物は、1種だけを単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、多官能ラジカル重合性化合物と単官能ラジカル重合性化合物を併用してもよい。
Examples of the radically polymerizable compound include compounds having a radically polymerizable functional group having a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group. As the radically polymerizable compound, a polyfunctional radically polymerizable compound is preferably used. Only one type of radically polymerizable compound may be used alone, or two or more types may be used in combination. Further, the polyfunctional radical polymerizable compound and the monofunctional radical polymerizable compound may be used in combination.
前記重合性化合物として、logP値(オクタノール/水分配係数)が高い化合物を用いることが好ましく、ラジカル重合性化合物としても、logP値が高い化合物を選択することが好ましい。ここで、logP値とは、物質の親油性を表す指標であり、オクタノール/水の分配係数の対数値を意味する。logP値が高いということは、親油性であることを意味し、すなわち、吸水率が低いことを意味する。logP値は測定することも可能(JIS-Z-7260記載のフラスコ浸とう法)であるし、硬化型接着剤の構成成分(硬化性成分等)である各化合物の構造をもとに計算によって算出(ケンブリッジソフト社製のChemDraw Ultra)することもできる。
As the polymerizable compound, it is preferable to use a compound having a high logP value (octanol / water partition coefficient), and as the radical polymerizable compound, it is preferable to select a compound having a high logP value. Here, the logP value is an index showing the lipophilicity of a substance, and means a logarithmic value of the partition coefficient of octanol / water. A high logP value means that it is lipophilic, that is, it has a low water absorption rate. The logP value can be measured (the flask dipping method described in JIS-Z-7260), and is calculated based on the structure of each compound which is a constituent component (curable component, etc.) of the curable adhesive. It can also be calculated (ChemDraw Ultra manufactured by Cambridge Soft).
ラジカル重合性化合物のlogP値は、2以上が好ましく、3以上がより好ましく、4以上が特に好ましい。このような範囲であれば、偏光子の水分による劣化を防止することができ、高温高湿下での耐久性に優れる偏光フィルムを得ることができる。
The logP value of the radically polymerizable compound is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more. Within such a range, deterioration of the polarizing element due to moisture can be prevented, and a polarizing film having excellent durability under high temperature and high humidity can be obtained.
前記多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリレートと多価アルコールとのエステル化物;9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン;エポキシ(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート等が挙げられる。
Examples of the polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (). Meta) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) acrylate, bisphenol A Propropylene oxide adduct Di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, cyclic trimethyl propanformal (meth) Acrylate, dioxane glycol di (meth) acrylate, trimethylpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) ) Acrylate, esterified product of (meth) acrylate such as EO-modified diglycerin tetra (meth) acrylate and polyhydric alcohol; 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene; epoxy Examples thereof include (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate and the like.
前記多官能ラジカル重合性化合物の中でも、logP値の高い多官能ラジカル重合性化合物が好ましい。このような化合物としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリート(logP=3.05)、イソボルニル(メタ)アクリレート(logP=3.27)等の脂環(メタ)アクリレート;1,9-ノナンジオールジ(メタ)アクリレート(logP=3.68)、1,10-デカンジオールジアクリレート(logP=4.10)等の長鎖脂肪族(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物(logP=3.35)、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート(logP=3.92)等の多分岐(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート(logP=5.46)、ビスフェノールAエチレンオキサイド4モル付加物ジ(メタ)アクリレート(logP=5.15)、ビスフェノールAプロピレンオキサイド2モル付加物ジ(メタ)アクリレート(logP=6.10)、ビスフェノールAプロピレンオキサイド4モル付加物ジ(メタ)アクリレート(logP=6.43)、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン(logP=7.48)、p-フェニルフェノール(メタ)アクリレート(logP=3.98)等の芳香環を含有する(メタ)アクリレート等が挙げられる。
Among the polyfunctional radical polymerizable compounds, a polyfunctional radical polymerizable compound having a high logP value is preferable. Examples of such compounds include alicyclic (meth) acrylates such as tricyclodecanedimethanol di (meth) acrylate (logP = 3.05) and isobornyl (meth) acrylate (logP = 3.27); Long-chain aliphatic (meth) acrylates such as 9-nonanediol di (meth) acrylate (logP = 3.68), 1,10-decanediol diacrylate (logP = 4.10); neopentyl glycol hydroxypivalate ( Multi-branched (meth) acrylates such as meta) acrylic acid adduct (logP = 3.35), 2-ethyl-2-butylpropanediol di (meth) acrylate (logP = 3.92); bisphenol A di (meth) Acrylate (logP = 5.46), Di (meth) acrylate with 4 mol of bisphenol A ethylene oxide (logP = 5.15), Di (meth) acrylate with 2 mol of bisphenol Apropylene oxide (logP = 6.10) , Bisphenol Apropylene oxide 4 mol Additive Di (meth) acrylate (logP = 6.43), 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene (logP = 7.48) , (Meta) acrylate containing an aromatic ring such as p-phenylphenol (meth) acrylate (logP = 3.98) and the like.
多官能ラジカル重合性化合物と単官能ラジカル重合性化合物とを併用する場合、多官能ラジカル重合性の含有割合は、ラジカル重合性化合物の全量に対して、20~97重量%が好ましく、50~95重量%がより好ましく、75~92重量%がさらに好ましく、80~92重量%が特に好ましい。このような範囲であれば、高温高湿下での耐久性に優れる偏光フィルムを得ることができる。
When the polyfunctional radical polymerizable compound and the monofunctional radical polymerizable compound are used in combination, the content ratio of the polyfunctional radical polymerizable is preferably 20 to 97% by weight, preferably 50 to 95% by weight, based on the total amount of the radically polymerizable compound. By weight% is more preferable, 75 to 92% by weight is further preferable, and 80 to 92% by weight is particularly preferable. Within such a range, a polarizing film having excellent durability under high temperature and high humidity can be obtained.
前記単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体を用いれば、接着性に優れる粘着剤層を高い生産性で形成することができる。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド等のN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド等のN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド等のN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体等が挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体として、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等を用いてもよい。これらの中でも、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、N-ヒドロキシエチル(メタ)アクリルアミドがより好ましい。
Examples of the monofunctional radically polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group. By using the (meth) acrylamide derivative, a pressure-sensitive adhesive layer having excellent adhesiveness can be formed with high productivity. Specific examples of the (meth) acrylamide derivative include N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N. -N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N- N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth) acrylamide derivatives such as mercaptomethyl (meth) acrylamide and mercaptoethyl (meth) acrylamide can be mentioned. .. Further, as a heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocycle, for example, N-acrylloylmorpholine, N-acrylloylpiperidin, N-methacryloylpiperidin, N-acrylloylpyridine and the like. May be used. Among these, an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable, and N-hydroxyethyl (meth) acrylamide is more preferable.
また、前記単官能ラジカル重合性化合物として、(メタ)アクリロイルオキシ基を有する(メタ)アクリル酸誘導体;(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸等のカルボキシル基含有モノマー;N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等を用いてもよい。
Further, as the monofunctional radical polymerizable compound, a (meth) acrylic acid derivative having a (meth) acryloyloxy group; (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, croton. Carboxyl group-containing monomers such as acid and isocrotonic acid; lactam-based vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole , Vinyl imidazole, vinyl oxazole, vinyl morpholin, and other vinyl-based monomers having a nitrogen-containing heterocycle may be used.
多官能ラジカル重合性化合物と単官能ラジカル重合性化合物とを併用する場合、単官能ラジカル重合性の含有割合は、ラジカル重合性化合物の全量に対して、3~80重量%が好ましく、5~50重量%がより好ましく、8~25重量%がさらに好ましく、8~20重量%が特に好ましい。このような範囲であれば、高温高湿下での耐久性に優れる偏光フィルムを得ることができる。
When the polyfunctional radical polymerizable compound and the monofunctional radical polymerizable compound are used in combination, the content ratio of the monofunctional radical polymerizable is preferably 3 to 80% by weight based on the total amount of the radical polymerizable compound, and 5 to 50% by weight. By weight% is more preferred, 8 to 25% by weight is even more preferred, and 8 to 20% by weight is particularly preferred. Within such a range, a polarizing film having excellent durability under high temperature and high humidity can be obtained.
前記ラジカル重合硬化型接着剤は、その他の添加剤をさらに含み得る。ラジカル重合硬化型接着剤が活性エネルギー線により硬化する硬化性化合物を含む場合、該接着剤は、例えば、光重合開始剤、光酸発生剤、シランカップリング剤等をさらに含み得る。また、ラジカル重合硬化型接着剤が熱により硬化する硬化性化合物を含む場合、該接着剤は、熱重合開始剤、シランカップリング剤等をさらに含み得る。また、その他の添加剤としては、例えば、重合禁止剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、無機充填剤、顔料、染料等が挙げられる。
The radical polymerization curable adhesive may further contain other additives. When the radical polymerization curable adhesive contains a curable compound that is cured by active energy rays, the adhesive may further contain, for example, a photopolymerization initiator, a photoacid generator, a silane coupling agent, and the like. When the radical polymerization curable adhesive contains a curable compound that is cured by heat, the adhesive may further contain a thermal polymerization initiator, a silane coupling agent, and the like. In addition, examples of other additives include polymerization inhibitors, polymerization initiators, leveling agents, wettability improvers, surfactants, plasticizers, ultraviolet absorbers, inorganic fillers, pigments, dyes and the like. ..
(カチオン重合硬化型接着剤)
前記カチオン重合硬化型接着剤は、硬化性化合物としてのカチオン重合性化合物を含む。カチオン重合性化合物としては、例えば、エポキシ基及び/又はオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有する化合物が好ましく用いられる。エポキシ基を有する化合物としては、例えば、少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が挙げられる。 (Cynic polymerization curable adhesive)
The cationically polymerizable curable adhesive contains a cationically polymerizable compound as a curable compound. Examples of the cationically polymerizable compound include compounds having an epoxy group and / or an oxetanyl group. As the compound having an epoxy group, a compound having at least two epoxy groups in the molecule is preferably used. Examples of the compound having an epoxy group include a compound having at least two epoxy groups and at least one aromatic ring (aromatic epoxy compound), and at least two epoxy groups in the molecule, of which at least. One is a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
前記カチオン重合硬化型接着剤は、硬化性化合物としてのカチオン重合性化合物を含む。カチオン重合性化合物としては、例えば、エポキシ基及び/又はオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有する化合物が好ましく用いられる。エポキシ基を有する化合物としては、例えば、少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が挙げられる。 (Cynic polymerization curable adhesive)
The cationically polymerizable curable adhesive contains a cationically polymerizable compound as a curable compound. Examples of the cationically polymerizable compound include compounds having an epoxy group and / or an oxetanyl group. As the compound having an epoxy group, a compound having at least two epoxy groups in the molecule is preferably used. Examples of the compound having an epoxy group include a compound having at least two epoxy groups and at least one aromatic ring (aromatic epoxy compound), and at least two epoxy groups in the molecule, of which at least. One is a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
前記カチオン重合硬化型接着剤は、光カチオン重合開始剤を含むことが好ましい。光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。また、カチオン重合硬化型接着剤は、前記添加剤をさらに含み得る。
The cationic polymerization curable adhesive preferably contains a photocationic polymerization initiator. The photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group or an oxetanyl group. In addition, the cationic polymerization curable adhesive may further contain the above-mentioned additive.
(水性接着剤)
前記水性接着剤としては、例えば、イソシアネート系接着剤、PVA系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等の水性接着剤の水溶液(例えば固形分濃度0.5~60重量%)が好適に用いられる。 (Aqueous adhesive)
Examples of the water-based adhesive include aqueous solutions of water-based adhesives such as isocyanate-based adhesives, PVA-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and water-based polyesters (for example, solid content concentration of 0.5 to 60% by weight). ) Is preferably used.
前記水性接着剤としては、例えば、イソシアネート系接着剤、PVA系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等の水性接着剤の水溶液(例えば固形分濃度0.5~60重量%)が好適に用いられる。 (Aqueous adhesive)
Examples of the water-based adhesive include aqueous solutions of water-based adhesives such as isocyanate-based adhesives, PVA-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and water-based polyesters (for example, solid content concentration of 0.5 to 60% by weight). ) Is preferably used.
接着剤の塗布は、偏光膜120、偏光膜保護フィルム121、122、他の光学フィルムのいずれに行ってもよく、それらのいずれかの両者に行ってもよい。一般には、偏光膜を接着剤水溶液中に浸漬した後、ロールラミネーター等により偏光膜保護フィルム121、122と積層する方法が好適である。接着層の厚みは、特に制限されないが、例えば、乾燥後の厚みで30nm~1000nm程度である。
The adhesive may be applied to any of the polarizing film 120, the polarizing film protective films 121 and 122, and other optical films, or both of them. Generally, a method in which the polarizing film is immersed in an aqueous adhesive solution and then laminated with the polarizing film protective films 121 and 122 by a roll laminator or the like is preferable. The thickness of the adhesive layer is not particularly limited, but is, for example, about 30 nm to 1000 nm after drying.
偏光膜と偏光膜保護フィルム、及びその他の光学フィルムとが接着剤を介して積層された後、この積層体は、乾燥処理に供される。この積層体の乾燥工程では、接着剤を乾燥固化させるとの目的に加えて、偏光フィルム積層体の初期光学特性を向上させる水分量を低下させる目的で行われる。乾燥方法としては、加熱乾燥が一般的である。乾燥条件として好ましくは50~95℃の範囲、60~85℃の範囲がより好ましい。
After the polarizing film, the polarizing film protective film, and other optical films are laminated via an adhesive, this laminate is subjected to a drying treatment. In this step of drying the laminated body, in addition to the purpose of drying and solidifying the adhesive, the purpose is to reduce the amount of water that improves the initial optical characteristics of the polarizing film laminated body. As a drying method, heat drying is common. The drying conditions are preferably in the range of 50 to 95 ° C and more preferably in the range of 60 to 85 ° C.
上記積層体の乾燥条件は、特に限定されないが、処理の効率や実用性を考慮すると、乾燥温度は50℃以上であることが好ましく、偏光フィルム積層体の光学特性を均一とする観点からは95℃以下が好ましい。乾燥温度は上記温度範囲内で段階的に昇温して実施することもできる。
The drying conditions of the laminate are not particularly limited, but considering the efficiency and practicality of the treatment, the drying temperature is preferably 50 ° C. or higher, and 95 from the viewpoint of making the optical characteristics of the polarizing film laminate uniform. ℃ or less is preferable. The drying temperature can be raised stepwise within the above temperature range.
積層体の乾燥は、偏光膜と偏光膜保護フィルム、及びその他の光学フィルムとの接合処理と連続して行うことができる。また、偏光膜と偏光膜保護フィルム、及びその他の光学フィルムとの積層体を一旦ロール状態に巻回した後、別の処理として、乾燥が行われてもよい。
The laminate can be dried continuously with the bonding treatment of the polarizing film, the polarizing film protective film, and other optical films. Further, after the laminate of the polarizing film, the polarizing film protective film, and other optical films is once wound in a roll state, drying may be performed as another treatment.
一般に、偏光フィルム積層体の水分量を小さくするためには、高温・長時間の乾燥条件が必要となる。高温・長時間の乾燥は、偏光フィルム積層体の水分量低下の観点からは好ましいが、その反面、偏光フィルム積層体の光学特性等の低下につながる場合がある。飽和吸水量が小さい偏光膜保護フィルムや、透湿度の高い偏光膜保護フィルムが用いられることにより、過酷な乾燥条件を採用せずとも偏光フィルム積層体の水分量を前記所望の範囲に調整することができる。
Generally, in order to reduce the water content of the polarizing film laminate, high temperature and long-term drying conditions are required. Drying at a high temperature for a long time is preferable from the viewpoint of reducing the water content of the polarizing film laminate, but on the other hand, it may lead to deterioration of the optical characteristics of the polarizing film laminate. By using a polarizing film protective film having a small saturated water absorption and a polarizing film protective film having a high moisture permeability, the water content of the polarizing film laminate can be adjusted within the desired range without adopting harsh drying conditions. Can be done.
2-5.粘着剤
上述した「1-3.透明接着剤」に記載した粘着剤を同様に用いることができる。 2-5. Adhesive The adhesive described in "1-3. Transparent Adhesive" described above can be used in the same manner.
上述した「1-3.透明接着剤」に記載した粘着剤を同様に用いることができる。 2-5. Adhesive The adhesive described in "1-3. Transparent Adhesive" described above can be used in the same manner.
3.信頼性評価項目
偏光フィルム積層体に生じ得る複数の現象、即ち、ポリエン化、色抜け、及び加熱赤変を評価する。各現象が生ずるメカニズムは必ずしも明らかではないが、おおよそ、以下のようなものであると推測される。 3. 3. Reliability evaluation items Multiple phenomena that can occur in the polarizing film laminate, that is, polyene formation, color loss, and heating red discoloration, are evaluated. The mechanism by which each phenomenon occurs is not always clear, but it is presumed to be roughly as follows.
偏光フィルム積層体に生じ得る複数の現象、即ち、ポリエン化、色抜け、及び加熱赤変を評価する。各現象が生ずるメカニズムは必ずしも明らかではないが、おおよそ、以下のようなものであると推測される。 3. 3. Reliability evaluation items Multiple phenomena that can occur in the polarizing film laminate, that is, polyene formation, color loss, and heating red discoloration, are evaluated. The mechanism by which each phenomenon occurs is not always clear, but it is presumed to be roughly as follows.
<ポリエン化>
高温高湿環境下では偏光フィルム積層体の単体透過率が低下する。また、紫外線領域や可視光領域での光照射でも同様に偏光フィルム積層体の単体透過率が低下する。この低下はPVAのポリエン化が原因と推測される。ポリエンとは、-(CH=CH)n-を指し、加熱や光エネルギーにより偏光膜中に形成されうる。ポリエンは偏光膜の透過率を著しく低下させる。また、高温高湿環境下や紫外線領域及び可視光領域での光照射環境下ではPVA-ポリヨウ素錯体が破壊されてI-及びI2が生成されやすい。
PVAのポリエン化は、以下の化学式1に示すように、高温高湿環境下や、紫外線領域や可視光領域での光照射環境下において生成されたヨウ素(I2)と加熱や光エネルギーにより、脱水反応が促進されることで起こると考えられている。
(化学式1)
偏光膜中に存在するPVA-ポリヨウ素錯体が加熱や光エネルギーにより壊れることにより発生するI2とPVA中のOH基が電荷移動錯体(HO・・・I2)を形成し、その後OI基を経由しポリエン化すると考えられる。 <Polyene>
In a high temperature and high humidity environment, the single transmittance of the polarizing film laminate decreases. Further, even when light is irradiated in the ultraviolet region or the visible light region, the single transmittance of the polarizing film laminate is similarly lowered. This decrease is presumed to be due to polyene formation of PVA. The polyene refers to − (CH = CH) n − and can be formed in the polarizing film by heating or light energy. Polyenes significantly reduce the transmittance of the polarizing film. Further, in the light irradiation environment of high temperature and high humidity environment or the ultraviolet region and the visible light region is destroyed PVA- polyiodine complex I - and I 2 are likely to be generated.
As shown in Chemical Formula 1 below, PVA is polyene-ized by the iodine (I 2 ) generated in a high-temperature and high-humidity environment or in a light irradiation environment in the ultraviolet region or visible light region, and heating or light energy. It is thought to occur when the dehydration reaction is promoted.
(Chemical formula 1)
I 2 generated when the PVA-polyiodine complex existing in the polarizing film is broken by heating or light energy and the OH group in PVA form a charge transfer complex (HO ... I 2 ), and then the OI group is formed. It is thought that it will become polyene via.
高温高湿環境下では偏光フィルム積層体の単体透過率が低下する。また、紫外線領域や可視光領域での光照射でも同様に偏光フィルム積層体の単体透過率が低下する。この低下はPVAのポリエン化が原因と推測される。ポリエンとは、-(CH=CH)n-を指し、加熱や光エネルギーにより偏光膜中に形成されうる。ポリエンは偏光膜の透過率を著しく低下させる。また、高温高湿環境下や紫外線領域及び可視光領域での光照射環境下ではPVA-ポリヨウ素錯体が破壊されてI-及びI2が生成されやすい。
PVAのポリエン化は、以下の化学式1に示すように、高温高湿環境下や、紫外線領域や可視光領域での光照射環境下において生成されたヨウ素(I2)と加熱や光エネルギーにより、脱水反応が促進されることで起こると考えられている。
(化学式1)
偏光膜中に存在するPVA-ポリヨウ素錯体が加熱や光エネルギーにより壊れることにより発生するI2とPVA中のOH基が電荷移動錯体(HO・・・I2)を形成し、その後OI基を経由しポリエン化すると考えられる。 <Polyene>
In a high temperature and high humidity environment, the single transmittance of the polarizing film laminate decreases. Further, even when light is irradiated in the ultraviolet region or the visible light region, the single transmittance of the polarizing film laminate is similarly lowered. This decrease is presumed to be due to polyene formation of PVA. The polyene refers to − (CH = CH) n − and can be formed in the polarizing film by heating or light energy. Polyenes significantly reduce the transmittance of the polarizing film. Further, in the light irradiation environment of high temperature and high humidity environment or the ultraviolet region and the visible light region is destroyed PVA- polyiodine complex I - and I 2 are likely to be generated.
As shown in Chemical Formula 1 below, PVA is polyene-ized by the iodine (I 2 ) generated in a high-temperature and high-humidity environment or in a light irradiation environment in the ultraviolet region or visible light region, and heating or light energy. It is thought to occur when the dehydration reaction is promoted.
(Chemical formula 1)
I 2 generated when the PVA-polyiodine complex existing in the polarizing film is broken by heating or light energy and the OH group in PVA form a charge transfer complex (HO ... I 2 ), and then the OI group is formed. It is thought that it will become polyene via.
<色抜け>
ヨウ素染色され、かつ、延伸されたPVA系フィルム(偏光膜)において、ヨウ素はI3 -とI5 -のポリヨウ素イオンの形態で、配向したPVAと錯体を形成している(PVAポリヨウ素錯体)。このとき、PVAはホウ酸等の架橋剤により架橋点が形成され、これにより配向性を維持している。
しかしながら、偏光膜が高温高湿下や、紫外線領域や可視光領域での光照射環境下におかれると、ホウ酸架橋の加水分解が起こり、PVAの配向性が低下し、PVAポリヨウ素錯体の崩壊が生じる。これにより、PVAポリヨウ素錯体にもとづく可視光吸収が低下し、約700nmの長波長側及び約410nmの短波長側の透過率が上昇する。こうして、高温高湿下や、紫外線領域や可視光領域での光照射環境下におかれた偏光膜では、黒色表示での色抜けが起きる。 <Color loss>
It is iodine staining, and the stretched PVA-based film (polarizer), iodine I 3 - and I 5 - in the form of a polyiodine ion, to form a oriented PVA complexes (PVA polyiodine complex ). At this time, the PVA has a cross-linking point formed by a cross-linking agent such as boric acid, whereby the orientation is maintained.
However, when the polarizing film is placed in a high temperature and high humidity environment or in a light irradiation environment in an ultraviolet region or a visible light region, hydrolysis of boric acid crosslinks occurs, the orientation of PVA decreases, and the PVA polyiodine complex Collapse occurs. As a result, the visible light absorption based on the PVA polyiodine complex is reduced, and the transmittance on the long wavelength side of about 700 nm and the short wavelength side of about 410 nm is increased. In this way, in a polarizing film placed in a high temperature and high humidity environment or in a light irradiation environment in an ultraviolet region or a visible light region, color loss occurs in a black display.
ヨウ素染色され、かつ、延伸されたPVA系フィルム(偏光膜)において、ヨウ素はI3 -とI5 -のポリヨウ素イオンの形態で、配向したPVAと錯体を形成している(PVAポリヨウ素錯体)。このとき、PVAはホウ酸等の架橋剤により架橋点が形成され、これにより配向性を維持している。
しかしながら、偏光膜が高温高湿下や、紫外線領域や可視光領域での光照射環境下におかれると、ホウ酸架橋の加水分解が起こり、PVAの配向性が低下し、PVAポリヨウ素錯体の崩壊が生じる。これにより、PVAポリヨウ素錯体にもとづく可視光吸収が低下し、約700nmの長波長側及び約410nmの短波長側の透過率が上昇する。こうして、高温高湿下や、紫外線領域や可視光領域での光照射環境下におかれた偏光膜では、黒色表示での色抜けが起きる。 <Color loss>
It is iodine staining, and the stretched PVA-based film (polarizer), iodine I 3 - and I 5 - in the form of a polyiodine ion, to form a oriented PVA complexes (PVA polyiodine complex ). At this time, the PVA has a cross-linking point formed by a cross-linking agent such as boric acid, whereby the orientation is maintained.
However, when the polarizing film is placed in a high temperature and high humidity environment or in a light irradiation environment in an ultraviolet region or a visible light region, hydrolysis of boric acid crosslinks occurs, the orientation of PVA decreases, and the PVA polyiodine complex Collapse occurs. As a result, the visible light absorption based on the PVA polyiodine complex is reduced, and the transmittance on the long wavelength side of about 700 nm and the short wavelength side of about 410 nm is increased. In this way, in a polarizing film placed in a high temperature and high humidity environment or in a light irradiation environment in an ultraviolet region or a visible light region, color loss occurs in a black display.
<加熱赤変>
ヨウ素染色され、かつ、延伸されたPVA系フィルム(偏光膜)において、ヨウ素はI3 -とI5 -のポリヨウ素イオンの形態でPVAと錯体を形成している(PVAポリヨウ素錯体)。I3 -は、470nm付近にブロードな吸収ピークをもち、I5 -は、600nm付近にブロードな吸収ピークをもつ。つまり、PVA-I3 -錯体は、短波長側(青色側)の吸収を担い、PVA-I5 -錯体は、長波長側(赤色側)の吸収を担っている。
しかしながら、このPVA-I5 -錯体は加熱や光エネルギーに弱く、偏光膜が高温下や、紫外線領域や可視光領域での光照射環境下におかれるとPVAとI5 -との錯体形成が崩れ、I5 -は分解してしまう。
したがって、高温下や、紫外線領域や可視光領域での光照射環境下におかれた偏光膜において、長波長側の吸収を担うPVA-I5 -錯体が減少するため、すなわち、約700nmの長波長側の透過率が上昇し、偏光膜が赤く変色してしまう。 <Heating redness>
Is iodine staining, and the stretched PVA-based film (polarizer), iodine I 3 - and I 5 - polyiodide in the form of iodine ions to form a PVA complexes (PVA polyiodine complex) of. I 3 - has a broad absorption peak near 470 nm, and I 5 - has a broad absorption peak near 600 nm. That is, the PVA-I 3 - complex is responsible for absorption on the short wavelength side (blue side), and the PVA-I 5 - complex is responsible for absorption on the long wavelength side (red side).
However, the PVA-I 5 - complexes weakly to the heat or light energy, the polarizing film and a high temperature, when placed under light irradiation environment in the ultraviolet region or visible region PVA and I 5 - is complexation with collapse, I 5 - would decompose.
Therefore, in a polarizing film placed at a high temperature or in a light irradiation environment in an ultraviolet region or a visible light region, the PVA-I 5 - complex responsible for absorption on the long wavelength side is reduced, that is, the length is about 700 nm. The transmittance on the wavelength side increases, and the polarizing film turns red.
ヨウ素染色され、かつ、延伸されたPVA系フィルム(偏光膜)において、ヨウ素はI3 -とI5 -のポリヨウ素イオンの形態でPVAと錯体を形成している(PVAポリヨウ素錯体)。I3 -は、470nm付近にブロードな吸収ピークをもち、I5 -は、600nm付近にブロードな吸収ピークをもつ。つまり、PVA-I3 -錯体は、短波長側(青色側)の吸収を担い、PVA-I5 -錯体は、長波長側(赤色側)の吸収を担っている。
しかしながら、このPVA-I5 -錯体は加熱や光エネルギーに弱く、偏光膜が高温下や、紫外線領域や可視光領域での光照射環境下におかれるとPVAとI5 -との錯体形成が崩れ、I5 -は分解してしまう。
したがって、高温下や、紫外線領域や可視光領域での光照射環境下におかれた偏光膜において、長波長側の吸収を担うPVA-I5 -錯体が減少するため、すなわち、約700nmの長波長側の透過率が上昇し、偏光膜が赤く変色してしまう。 <Heating redness>
Is iodine staining, and the stretched PVA-based film (polarizer), iodine I 3 - and I 5 - polyiodide in the form of iodine ions to form a PVA complexes (PVA polyiodine complex) of. I 3 - has a broad absorption peak near 470 nm, and I 5 - has a broad absorption peak near 600 nm. That is, the PVA-I 3 - complex is responsible for absorption on the short wavelength side (blue side), and the PVA-I 5 - complex is responsible for absorption on the long wavelength side (red side).
However, the PVA-I 5 - complexes weakly to the heat or light energy, the polarizing film and a high temperature, when placed under light irradiation environment in the ultraviolet region or visible region PVA and I 5 - is complexation with collapse, I 5 - would decompose.
Therefore, in a polarizing film placed at a high temperature or in a light irradiation environment in an ultraviolet region or a visible light region, the PVA-I 5 - complex responsible for absorption on the long wavelength side is reduced, that is, the length is about 700 nm. The transmittance on the wavelength side increases, and the polarizing film turns red.
4.実施例及び比較例
以下に、実施例を比較例とともに説明するが、勿論、本発明はこれらの実施例に記載されたものに限定されるものではない。
実施例及び比較例として、「偏光膜の膜厚(μm)」、及び/又は、「偏光膜のヨウ素濃度(wt.%)」、及び/又は、「偏光フィルム積層体の水分量(g/m2)」、短波長(380μm等)の光に対する「透過率」が異なる、種々の偏光フィルム積層体のサンプルを準備した。 4. Examples and Comparative Examples Examples will be described below together with Comparative Examples, but of course, the present invention is not limited to those described in these Examples.
As examples and comparative examples, "film thickness of polarizing film (μm)" and / or "iodine concentration of polarizing film (wt.%)" And / or "moisture content of polarizing film laminate (g /)". m 2) "," transmittance "with respect to light having a short wavelength (380 .mu.m etc.) are different, were prepared samples of various polarizing film laminate.
以下に、実施例を比較例とともに説明するが、勿論、本発明はこれらの実施例に記載されたものに限定されるものではない。
実施例及び比較例として、「偏光膜の膜厚(μm)」、及び/又は、「偏光膜のヨウ素濃度(wt.%)」、及び/又は、「偏光フィルム積層体の水分量(g/m2)」、短波長(380μm等)の光に対する「透過率」が異なる、種々の偏光フィルム積層体のサンプルを準備した。 4. Examples and Comparative Examples Examples will be described below together with Comparative Examples, but of course, the present invention is not limited to those described in these Examples.
As examples and comparative examples, "film thickness of polarizing film (μm)" and / or "iodine concentration of polarizing film (wt.%)" And / or "moisture content of polarizing film laminate (g /)". m 2) "," transmittance "with respect to light having a short wavelength (380 .mu.m etc.) are different, were prepared samples of various polarizing film laminate.
<偏光膜の膜厚>
偏光膜の膜厚(μm)は、分光膜厚計MCPD-1000(大塚電子(株)製)を用いて測定する。偏光膜保護フィルムの厚みも、これを用いて測定する。サンプルに含まれる偏光膜は、サンプルを溶剤に浸漬し、偏光膜保護フィルムを溶解させることによって取り出すことができる。溶剤には、例えば、偏光膜保護フィルムがトリアセチルセルロース樹脂の場合は、ジクロロメタンを、偏光膜保護フィルムがシクロオレフィン樹脂の場合は、シクロヘキサンを、偏光膜保護フィルムがアクリル樹脂の場合は、メチルエチルケトンを、それぞれ使用することができる。尚、偏光膜の一方の面に設けられている偏光膜保護フィルムの樹脂と、他方の面に設けられている偏光膜保護フィルムの樹脂が、相違する場合には、それぞれの樹脂を上述した溶剤を用いて順次に溶解させる。 <Film thickness of polarizing film>
The film thickness (μm) of the polarizing film is measured using a spectroscopic film thickness meter MCPD-1000 (manufactured by Otsuka Electronics Co., Ltd.). The thickness of the polarizing film protective film is also measured using this. The polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film. As the solvent, for example, dichloromethane is used when the polarizing film protective film is a triacetyl cellulose resin, cyclohexane is used when the polarizing film protective film is a cycloolefin resin, and methyl ethyl ketone is used when the polarizing film protective film is an acrylic resin. , Can be used respectively. If the resin of the polarizing film protective film provided on one surface of the polarizing film and the resin of the polarizing film protective film provided on the other surface are different, the respective resins are used as the above-mentioned solvent. Dissolve in sequence using.
偏光膜の膜厚(μm)は、分光膜厚計MCPD-1000(大塚電子(株)製)を用いて測定する。偏光膜保護フィルムの厚みも、これを用いて測定する。サンプルに含まれる偏光膜は、サンプルを溶剤に浸漬し、偏光膜保護フィルムを溶解させることによって取り出すことができる。溶剤には、例えば、偏光膜保護フィルムがトリアセチルセルロース樹脂の場合は、ジクロロメタンを、偏光膜保護フィルムがシクロオレフィン樹脂の場合は、シクロヘキサンを、偏光膜保護フィルムがアクリル樹脂の場合は、メチルエチルケトンを、それぞれ使用することができる。尚、偏光膜の一方の面に設けられている偏光膜保護フィルムの樹脂と、他方の面に設けられている偏光膜保護フィルムの樹脂が、相違する場合には、それぞれの樹脂を上述した溶剤を用いて順次に溶解させる。 <Film thickness of polarizing film>
The film thickness (μm) of the polarizing film is measured using a spectroscopic film thickness meter MCPD-1000 (manufactured by Otsuka Electronics Co., Ltd.). The thickness of the polarizing film protective film is also measured using this. The polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film. As the solvent, for example, dichloromethane is used when the polarizing film protective film is a triacetyl cellulose resin, cyclohexane is used when the polarizing film protective film is a cycloolefin resin, and methyl ethyl ketone is used when the polarizing film protective film is an acrylic resin. , Can be used respectively. If the resin of the polarizing film protective film provided on one surface of the polarizing film and the resin of the polarizing film protective film provided on the other surface are different, the respective resins are used as the above-mentioned solvent. Dissolve in sequence using.
<偏光膜のヨウ素濃度>
偏光膜のヨウ素濃度(wt.%)は、偏光膜の製造時に、例えば、PVA系フィルムやPVA層を浸漬するヨウ素水溶液の濃度や浸漬時間を調整することによって変更することができる。
偏光膜のヨウ素濃度は以下の方法で測定する。尚、サンプルに含まれる偏光膜は、偏光膜の膜厚を測定するときと同様に、サンプルを溶剤に浸漬し、偏光膜保護フィルムを溶解させることによって取り出すことができる。
(蛍光X線測定)
偏光膜のヨウ素濃度を測定するに際し、先ず、蛍光X線分析の検量線法を用いてヨウ素濃度を定量する。装置は蛍光X線分析装置ZSX-PRIMUS IV((株)リガク製)を用いる。
蛍光X線分析装置によって直接得られる値は、各元素の濃度ではなく、各元素に固有の波長の蛍光X線強度(kcps)である。したがって、偏光膜に含まれるヨウ素濃度を求めるには、検量線を用いて蛍光X線強度を濃度に変換する必要がある。本明細書等における偏光膜のヨウ素濃度とは、偏光膜の重量を基準としたヨウ素濃度(wt%)を意味する。 <Iodine concentration of polarizing film>
The iodine concentration (wt.%) Of the polarizing film can be changed, for example, by adjusting the concentration of the iodine aqueous solution for immersing the PVA-based film or the PVA layer and the immersion time during the production of the polarizing film.
The iodine concentration of the polarizing film is measured by the following method. The polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film in the same manner as when measuring the film thickness of the polarizing film.
(Fluorescent X-ray measurement)
When measuring the iodine concentration of the polarizing film, first, the iodine concentration is quantified by using the calibration curve method of fluorescent X-ray analysis. A fluorescent X-ray analyzer ZSX-PRIMUS IV (manufactured by Rigaku Co., Ltd.) is used as the apparatus.
The value directly obtained by the fluorescent X-ray analyzer is not the concentration of each element, but the fluorescent X-ray intensity (kcps) of the wavelength peculiar to each element. Therefore, in order to determine the iodine concentration contained in the polarizing film, it is necessary to convert the fluorescent X-ray intensity into a concentration using a calibration curve. The iodine concentration of the polarizing film in the present specification and the like means the iodine concentration (wt%) based on the weight of the polarizing film.
偏光膜のヨウ素濃度(wt.%)は、偏光膜の製造時に、例えば、PVA系フィルムやPVA層を浸漬するヨウ素水溶液の濃度や浸漬時間を調整することによって変更することができる。
偏光膜のヨウ素濃度は以下の方法で測定する。尚、サンプルに含まれる偏光膜は、偏光膜の膜厚を測定するときと同様に、サンプルを溶剤に浸漬し、偏光膜保護フィルムを溶解させることによって取り出すことができる。
(蛍光X線測定)
偏光膜のヨウ素濃度を測定するに際し、先ず、蛍光X線分析の検量線法を用いてヨウ素濃度を定量する。装置は蛍光X線分析装置ZSX-PRIMUS IV((株)リガク製)を用いる。
蛍光X線分析装置によって直接得られる値は、各元素の濃度ではなく、各元素に固有の波長の蛍光X線強度(kcps)である。したがって、偏光膜に含まれるヨウ素濃度を求めるには、検量線を用いて蛍光X線強度を濃度に変換する必要がある。本明細書等における偏光膜のヨウ素濃度とは、偏光膜の重量を基準としたヨウ素濃度(wt%)を意味する。 <Iodine concentration of polarizing film>
The iodine concentration (wt.%) Of the polarizing film can be changed, for example, by adjusting the concentration of the iodine aqueous solution for immersing the PVA-based film or the PVA layer and the immersion time during the production of the polarizing film.
The iodine concentration of the polarizing film is measured by the following method. The polarizing film contained in the sample can be taken out by immersing the sample in a solvent and dissolving the polarizing film protective film in the same manner as when measuring the film thickness of the polarizing film.
(Fluorescent X-ray measurement)
When measuring the iodine concentration of the polarizing film, first, the iodine concentration is quantified by using the calibration curve method of fluorescent X-ray analysis. A fluorescent X-ray analyzer ZSX-PRIMUS IV (manufactured by Rigaku Co., Ltd.) is used as the apparatus.
The value directly obtained by the fluorescent X-ray analyzer is not the concentration of each element, but the fluorescent X-ray intensity (kcps) of the wavelength peculiar to each element. Therefore, in order to determine the iodine concentration contained in the polarizing film, it is necessary to convert the fluorescent X-ray intensity into a concentration using a calibration curve. The iodine concentration of the polarizing film in the present specification and the like means the iodine concentration (wt%) based on the weight of the polarizing film.
(検量線の作成)
検量線は以下の手順で作成する。
1.既知の量のヨウ化カリウムをPVA水溶液に溶解させて、既知の濃度のヨウ素を含むPVA水溶液を7種作製した。このPVA水溶液をポリエチレンテレフタレートに塗布乾燥後剥離し、既知の濃度のヨウ素を含むPVAフィルムの試料1~7を作製する。
なお、PVAフィルムのヨウ素濃度(wt%)は以下の数式1で算出される。
[数式1] ヨウ素濃度(wt%)={ヨウ化カリウム量(g)/(ヨウ化カリウム量(g)+PVA量(g))}×(127/166)
(ヨウ素の分子量:127 カリウムの分子量:39) (Creation of calibration curve)
Create a calibration curve according to the following procedure.
1. 1. A known amount of potassium iodide was dissolved in a PVA aqueous solution to prepare 7 kinds of PVA aqueous solutions containing iodine having a known concentration. This PVA aqueous solution is applied to polyethylene terephthalate, dried, and then peeled off to preparesamples 1 to 7 of PVA films containing iodine having a known concentration.
The iodine concentration (wt%) of the PVA film is calculated by the followingformula 1.
[Formula 1] Iodine concentration (wt%) = {potassium iodide amount (g) / (potassium iodide amount (g) + PVA amount (g))} x (127/166)
(Molecular weight of iodine: 127 Molecular weight of potassium: 39)
検量線は以下の手順で作成する。
1.既知の量のヨウ化カリウムをPVA水溶液に溶解させて、既知の濃度のヨウ素を含むPVA水溶液を7種作製した。このPVA水溶液をポリエチレンテレフタレートに塗布乾燥後剥離し、既知の濃度のヨウ素を含むPVAフィルムの試料1~7を作製する。
なお、PVAフィルムのヨウ素濃度(wt%)は以下の数式1で算出される。
[数式1] ヨウ素濃度(wt%)={ヨウ化カリウム量(g)/(ヨウ化カリウム量(g)+PVA量(g))}×(127/166)
(ヨウ素の分子量:127 カリウムの分子量:39) (Creation of calibration curve)
Create a calibration curve according to the following procedure.
1. 1. A known amount of potassium iodide was dissolved in a PVA aqueous solution to prepare 7 kinds of PVA aqueous solutions containing iodine having a known concentration. This PVA aqueous solution is applied to polyethylene terephthalate, dried, and then peeled off to prepare
The iodine concentration (wt%) of the PVA film is calculated by the following
[Formula 1] Iodine concentration (wt%) = {potassium iodide amount (g) / (potassium iodide amount (g) + PVA amount (g))} x (127/166)
(Molecular weight of iodine: 127 Molecular weight of potassium: 39)
2.作製したPVAフィルムに対して、蛍光X線分析装置ZSX-PRIMUS IV((株)リガク製)を用いて、ヨウ素に対応する蛍光X線強度(kcps)を測定する。なお、蛍光X線強度(kcps)は蛍光X線スペクトルのピーク値とする。また、作製したPVAフィルムの膜厚を分光膜厚計MCPD-1000(大塚電子(株)製)を用いて測定する。
2. The fluorescent X-ray intensity (kcps) corresponding to iodine is measured on the produced PVA film using a fluorescent X-ray analyzer ZSX-PRIMUS IV (manufactured by Rigaku Co., Ltd.). The fluorescent X-ray intensity (kcps) is the peak value of the fluorescent X-ray spectrum. Further, the film thickness of the produced PVA film is measured using a spectroscopic film thickness meter MCPD-1000 (manufactured by Otsuka Electronics Co., Ltd.).
3.蛍光X線強度をPVAフィルムの厚み(μm)で除し、フィルムの単位厚み当たりの蛍光X線強度(kcps/μm)とする。各試料のヨウ素濃度と単位厚み当たりの蛍光X線強度を表1に示す。
3. The fluorescent X-ray intensity is divided by the thickness of the PVA film (μm) to obtain the fluorescent X-ray intensity per unit thickness of the film (kcps / μm). Table 1 shows the iodine concentration of each sample and the fluorescent X-ray intensity per unit thickness.
4.表1に示された結果を元に、PVAフィルムの単位厚み当たりの蛍光X線強度(kcps/μm)を横軸に、PVAフィルムに含まれるヨウ素濃度(wt%)を縦軸にして、検量線を作成する。作成した検量線を図4に示す。検量線からPVAフィルムの単位厚み当たりの蛍光X線強度からヨウ素濃度を求める数式を数式2のとおり定める。なお、図4におけるR2は相関係数である。
[数式2]
(ヨウ素濃度)(wt%)=14.474×(PVAフィルムの単位厚み当たりの蛍光X線強度)(kcps/μm) 4. Based on the results shown in Table 1, calibration is performed with the fluorescent X-ray intensity (kcps / μm) per unit thickness of the PVA film on the horizontal axis and the iodine concentration (wt%) contained in the PVA film on the vertical axis. Create a line. The prepared calibration curve is shown in FIG.Formula 2 is used to determine the iodine concentration from the fluorescent X-ray intensity per unit thickness of the PVA film from the calibration curve. R2 in FIG. 4 is a correlation coefficient.
[Formula 2]
(Iodine concentration) (wt%) = 14.474 × (fluorescent X-ray intensity per unit thickness of PVA film) (kcps / μm)
[数式2]
(ヨウ素濃度)(wt%)=14.474×(PVAフィルムの単位厚み当たりの蛍光X線強度)(kcps/μm) 4. Based on the results shown in Table 1, calibration is performed with the fluorescent X-ray intensity (kcps / μm) per unit thickness of the PVA film on the horizontal axis and the iodine concentration (wt%) contained in the PVA film on the vertical axis. Create a line. The prepared calibration curve is shown in FIG.
[Formula 2]
(Iodine concentration) (wt%) = 14.474 × (fluorescent X-ray intensity per unit thickness of PVA film) (kcps / μm)
(ヨウ素濃度の算出)
サンプル測定で得られた蛍光X線強度を厚みで除して、単位厚み当たりの蛍光X線強度(kcps/μm)を求める。各サンプルの単位厚み当たりの蛍光X線強度を数式2に代入してヨウ素濃度を求める。 (Calculation of iodine concentration)
The fluorescent X-ray intensity obtained in the sample measurement is divided by the thickness to obtain the fluorescent X-ray intensity (kcps / μm) per unit thickness. The iodine concentration is obtained by substituting the fluorescent X-ray intensity per unit thickness of each sample intoEquation 2.
サンプル測定で得られた蛍光X線強度を厚みで除して、単位厚み当たりの蛍光X線強度(kcps/μm)を求める。各サンプルの単位厚み当たりの蛍光X線強度を数式2に代入してヨウ素濃度を求める。 (Calculation of iodine concentration)
The fluorescent X-ray intensity obtained in the sample measurement is divided by the thickness to obtain the fluorescent X-ray intensity (kcps / μm) per unit thickness. The iodine concentration is obtained by substituting the fluorescent X-ray intensity per unit thickness of each sample into
<偏光フィルム積層体の水分量>
偏光フィルム積層体の水分量(g/m2)は、主に、偏光膜の膜厚や、偏光膜に接合させる偏光膜保護フィルムの材質、厚み等を調整することにより決定され得る。また、偏光膜の製造時における架橋処理(ホウ酸含有量等)等によっても調整することができる。
偏光フィルム積層体の水分量は以下の方法で測定する。
先ず、実施例および比較例で得られた偏光フィルム積層体を、0.1m×0.1mの正方形にカットする。
カットしたサンプルを恒温恒湿器内に投入し、温度23℃、相対湿度55%の環境下で48時間放置する。その後、恒温恒湿器内と同じ環境、即ち、温度23℃、相対湿度55%に設定したクリーンルームにてサンプルを取り出し、取り出し後5分以内に重量を測定する。このときのサンプル重量を初期重量W1(g)とする。尚、取り出し後、おおよそ15分以内であれば、たとえクリーンルーム内の温度が、2℃~3℃程度変動しても、また、クリーンルーム内の相対湿度が±10%程度変動しても、初期重量に実質的な影響を与えることはない。
次に、取り出したサンプルを乾燥器内に投入し、120℃で2時間乾燥させる。その後、上述した温度23℃、相対湿度約55%に設定したクリーンルームにて乾燥させたサンプルを取り出し、取り出し後10分以内に重量を測定する。このときのサンプル重量を乾燥後重量W2(g)とする。上と異なり、5分以内ではなく10分以内としたのは、冷却時間を考慮したものである。尚、上と同様に、取り出し後、おおよそ15分以内であれば、乾燥後重量に実質的な影響を与えることはない。
こうして得られたサンプルの初期重量W1と乾燥後重量W2より、偏光フィルム積層体の平衡水分量M(g/m2)を下式より算出する。
(式) M=(W1-W2)/(0.1×0.1)
本発明でいうところの「偏光フィルム積層体の水分量」は、上記の方法で算出された平衡水分量を意味する。 <Moisture content of polarizing film laminate>
The water content (g / m 2 ) of the polarizing film laminate can be determined mainly by adjusting the film thickness of the polarizing film, the material and thickness of the polarizing film protective film bonded to the polarizing film, and the like. It can also be adjusted by a cross-linking treatment (boric acid content, etc.) at the time of manufacturing the polarizing film.
The water content of the polarizing film laminate is measured by the following method.
First, the polarizing film laminates obtained in Examples and Comparative Examples are cut into a square of 0.1 m × 0.1 m.
The cut sample is placed in a constant temperature and humidity chamber and left for 48 hours in an environment with a temperature of 23 ° C. and a relative humidity of 55%. Then, the sample is taken out in the same environment as in the constant temperature and humidity chamber, that is, in a clean room set to a temperature of 23 ° C. and a relative humidity of 55%, and the weight is measured within 5 minutes after taking out. The sample weight at this time is defined as the initial weight W1 (g). If it is within about 15 minutes after taking out, even if the temperature in the clean room fluctuates by about 2 ° C to 3 ° C, or even if the relative humidity in the clean room fluctuates by about ± 10%, the initial weight Has no substantial effect on.
Next, the taken-out sample is put into a dryer and dried at 120 ° C. for 2 hours. Then, the sample dried in a clean room set to the above-mentioned temperature of 23 ° C. and relative humidity of about 55% is taken out, and the weight is measured within 10 minutes after taking out. The sample weight at this time is the weight W2 (g) after drying. Unlike the above, the reason why it is set within 10 minutes instead of within 5 minutes is in consideration of the cooling time. As in the above, if it is within about 15 minutes after taking out, the weight after drying is not substantially affected.
From the initial weight W1 of the sample thus obtained and the weight W2 after drying, the equilibrium water content M (g / m 2 ) of the polarizing film laminate is calculated from the following formula.
(Equation) M = (W1-W2) / (0.1 × 0.1)
The "moisture content of the polarizing film laminate" as used in the present invention means the equilibrium moisture content calculated by the above method.
偏光フィルム積層体の水分量(g/m2)は、主に、偏光膜の膜厚や、偏光膜に接合させる偏光膜保護フィルムの材質、厚み等を調整することにより決定され得る。また、偏光膜の製造時における架橋処理(ホウ酸含有量等)等によっても調整することができる。
偏光フィルム積層体の水分量は以下の方法で測定する。
先ず、実施例および比較例で得られた偏光フィルム積層体を、0.1m×0.1mの正方形にカットする。
カットしたサンプルを恒温恒湿器内に投入し、温度23℃、相対湿度55%の環境下で48時間放置する。その後、恒温恒湿器内と同じ環境、即ち、温度23℃、相対湿度55%に設定したクリーンルームにてサンプルを取り出し、取り出し後5分以内に重量を測定する。このときのサンプル重量を初期重量W1(g)とする。尚、取り出し後、おおよそ15分以内であれば、たとえクリーンルーム内の温度が、2℃~3℃程度変動しても、また、クリーンルーム内の相対湿度が±10%程度変動しても、初期重量に実質的な影響を与えることはない。
次に、取り出したサンプルを乾燥器内に投入し、120℃で2時間乾燥させる。その後、上述した温度23℃、相対湿度約55%に設定したクリーンルームにて乾燥させたサンプルを取り出し、取り出し後10分以内に重量を測定する。このときのサンプル重量を乾燥後重量W2(g)とする。上と異なり、5分以内ではなく10分以内としたのは、冷却時間を考慮したものである。尚、上と同様に、取り出し後、おおよそ15分以内であれば、乾燥後重量に実質的な影響を与えることはない。
こうして得られたサンプルの初期重量W1と乾燥後重量W2より、偏光フィルム積層体の平衡水分量M(g/m2)を下式より算出する。
(式) M=(W1-W2)/(0.1×0.1)
本発明でいうところの「偏光フィルム積層体の水分量」は、上記の方法で算出された平衡水分量を意味する。 <Moisture content of polarizing film laminate>
The water content (g / m 2 ) of the polarizing film laminate can be determined mainly by adjusting the film thickness of the polarizing film, the material and thickness of the polarizing film protective film bonded to the polarizing film, and the like. It can also be adjusted by a cross-linking treatment (boric acid content, etc.) at the time of manufacturing the polarizing film.
The water content of the polarizing film laminate is measured by the following method.
First, the polarizing film laminates obtained in Examples and Comparative Examples are cut into a square of 0.1 m × 0.1 m.
The cut sample is placed in a constant temperature and humidity chamber and left for 48 hours in an environment with a temperature of 23 ° C. and a relative humidity of 55%. Then, the sample is taken out in the same environment as in the constant temperature and humidity chamber, that is, in a clean room set to a temperature of 23 ° C. and a relative humidity of 55%, and the weight is measured within 5 minutes after taking out. The sample weight at this time is defined as the initial weight W1 (g). If it is within about 15 minutes after taking out, even if the temperature in the clean room fluctuates by about 2 ° C to 3 ° C, or even if the relative humidity in the clean room fluctuates by about ± 10%, the initial weight Has no substantial effect on.
Next, the taken-out sample is put into a dryer and dried at 120 ° C. for 2 hours. Then, the sample dried in a clean room set to the above-mentioned temperature of 23 ° C. and relative humidity of about 55% is taken out, and the weight is measured within 10 minutes after taking out. The sample weight at this time is the weight W2 (g) after drying. Unlike the above, the reason why it is set within 10 minutes instead of within 5 minutes is in consideration of the cooling time. As in the above, if it is within about 15 minutes after taking out, the weight after drying is not substantially affected.
From the initial weight W1 of the sample thus obtained and the weight W2 after drying, the equilibrium water content M (g / m 2 ) of the polarizing film laminate is calculated from the following formula.
(Equation) M = (W1-W2) / (0.1 × 0.1)
The "moisture content of the polarizing film laminate" as used in the present invention means the equilibrium moisture content calculated by the above method.
<光吸収能>
短波長の光による影響を抑制する効果を評価するため、波長380μm、390μm、400μm、420μmのそれぞれにつき、JIS-Z-8701色の表示方法に従って、偏光膜よりも視認側に位置する偏光膜保護フィルムの透過率を測定した。測定には、日立製作所社製のU-4100を用いた。 <Light absorption capacity>
In order to evaluate the effect of suppressing the influence of short-wavelength light, the polarizing film protection located on the visual side of the polarizing film according to the JIS-Z-8701 color display method for each of the wavelengths of 380 μm, 390 μm, 400 μm, and 420 μm The transmittance of the film was measured. For the measurement, U-4100 manufactured by Hitachi, Ltd. was used.
短波長の光による影響を抑制する効果を評価するため、波長380μm、390μm、400μm、420μmのそれぞれにつき、JIS-Z-8701色の表示方法に従って、偏光膜よりも視認側に位置する偏光膜保護フィルムの透過率を測定した。測定には、日立製作所社製のU-4100を用いた。 <Light absorption capacity>
In order to evaluate the effect of suppressing the influence of short-wavelength light, the polarizing film protection located on the visual side of the polarizing film according to the JIS-Z-8701 color display method for each of the wavelengths of 380 μm, 390 μm, 400 μm, and 420 μm The transmittance of the film was measured. For the measurement, U-4100 manufactured by Hitachi, Ltd. was used.
[実施例1]
(偏光膜の作成)
樹脂基材として、長尺状の非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(イソフタル酸基変性度 5mol%、厚み:100μm)を用いた。(変性度= エチレンイソフタレートユニット/(エチレンテレフタレートユニット+エチレンイソフタレートユニット))樹脂基材の一方の面に、コロナ処理(処理条件:55W・min/m2)を施し、このコロナ処理面に、PVA(重合度4200、ケン化度99.2モル%)90重量部およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)10重量部で配合したPVAと、PVAに対して13重量部となるようにヨウ化カリウムを配合した水溶液を常温にて塗布した。その後、60℃で乾燥して、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、指定の透過率となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度3.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥(乾燥処理)しながら、表面温度が75℃に保たれたSUS製の金属ロールに2秒以上接触させた(熱ロール乾燥処理)。
このようにして、樹脂基材上に厚み5.4μmの偏光膜を得た。 [Example 1]
(Creation of polarizing film)
As the resin base material, a long amorphous isophthalic copolymerized polyethylene terephthalate film (isophthalic acidgroup modification degree 5 mol%, thickness: 100 μm) was used. (Degree of polymerization = ethylene isophthalate unit / (ethylene terephthalate unit + ethylene isophthalate unit)) One surface of the resin base material is subjected to corona treatment (treatment condition: 55 W · min / m2), and the corona treated surface is subjected to corona treatment. PVA blended with 90 parts by weight of PVA (degree of polymerization 4200, degree of saponification 99.2 mol%) and 10 parts by weight of acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") and PVA. An aqueous solution containing potassium iodide so as to be 13 parts by weight was applied at room temperature. Then, it was dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm, and a laminate was prepared.
The obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) so as to have a specified transmittance. It was immersed for 60 seconds while adjusting the concentration (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 3.0% by weight) at a liquid temperature of 70 ° C., the total draw ratio is 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so as to double (stretching in water).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying (drying treatment) in an oven kept at 90 ° C., the metal roll made of SUS whose surface temperature was kept at 75 ° C. was brought into contact with the metal roll for 2 seconds or more (heat roll drying treatment).
In this way, a polarizing film having a thickness of 5.4 μm was obtained on the resin substrate.
(偏光膜の作成)
樹脂基材として、長尺状の非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(イソフタル酸基変性度 5mol%、厚み:100μm)を用いた。(変性度= エチレンイソフタレートユニット/(エチレンテレフタレートユニット+エチレンイソフタレートユニット))樹脂基材の一方の面に、コロナ処理(処理条件:55W・min/m2)を施し、このコロナ処理面に、PVA(重合度4200、ケン化度99.2モル%)90重量部およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)10重量部で配合したPVAと、PVAに対して13重量部となるようにヨウ化カリウムを配合した水溶液を常温にて塗布した。その後、60℃で乾燥して、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、指定の透過率となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度3.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥(乾燥処理)しながら、表面温度が75℃に保たれたSUS製の金属ロールに2秒以上接触させた(熱ロール乾燥処理)。
このようにして、樹脂基材上に厚み5.4μmの偏光膜を得た。 [Example 1]
(Creation of polarizing film)
As the resin base material, a long amorphous isophthalic copolymerized polyethylene terephthalate film (isophthalic acid
The obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) so as to have a specified transmittance. It was immersed for 60 seconds while adjusting the concentration (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 3.0% by weight) at a liquid temperature of 70 ° C., the total draw ratio is 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so as to double (stretching in water).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying (drying treatment) in an oven kept at 90 ° C., the metal roll made of SUS whose surface temperature was kept at 75 ° C. was brought into contact with the metal roll for 2 seconds or more (heat roll drying treatment).
In this way, a polarizing film having a thickness of 5.4 μm was obtained on the resin substrate.
(偏光フィルム積層体の作成)
得られた偏光膜の樹脂基材とは反対側の面(偏光膜の一方の面、言い換えれば、偏光膜の視認側とは反対側の面)には、偏光膜保護フィルムを設けず、一方、樹脂基材を剥離した面(偏光膜の他方の面、言い換えれば、偏光膜の視認側の面)には、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)と、その視認側に配した光吸収剤を含有するハードコート層(厚み5μm)とから成る偏光膜保護フィルムを、後述する紫外線硬化型接着剤を介して接合させた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。その後、UV光線を他方の面の側から照射して接着剤を硬化させて、偏光膜と、偏光膜の上記他方の面に光吸収能を有する偏光膜保護フィルムを含む偏光フィルム積層体を得た。
上述したトリアセチルセルロースフィルムは、所定量の光吸収剤(紫外線吸収剤)を含有している。一方、ハードコート層には、トリアセチルセルロースフィルムとハードコート層の全体で後述する表2及び表3の吸収能に記載の透過率となるよう、光吸収剤であるTinosorb S(BASF社製)を含有させた。
紫外線硬化型接着剤の詳細は以下の通りである。N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、接着剤を調製した。硬化後の接着剤層の厚みが1.0μmとなるように偏光膜上に塗布し、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm2、積算照射量1000/mJ/cm2(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。 (Creation of polarizing film laminate)
A polarizing film protective film is not provided on the surface of the obtained polarizing film opposite to the resin substrate (one surface of the polarizing film, in other words, the surface opposite to the visible side of the polarizing film). On the surface from which the resin base material has been peeled off (the other surface of the polarizing film, in other words, the surface on the visual side of the polarizing film), triacetyl cellulose containing a light absorber as a polarizing film protective film having a light absorbing ability. An ultraviolet curable type polarizing film protective film composed of a film (manufactured by Konica Minolta, trade name "KC4UY",thickness 40 μm) and a hard coat layer (thickness 5 μm) containing a light absorber arranged on the visible side thereof. They were joined via an adhesive. Specifically, the curable adhesive was coated so that the total thickness was 1.0 μm, and the adhesive was joined using a roll machine. Then, UV light is irradiated from the other surface side to cure the adhesive to obtain a polarizing film laminate containing a polarizing film and a polarizing film protective film having a light absorbing ability on the other surface of the polarizing film. It was.
The above-mentioned triacetyl cellulose film contains a predetermined amount of a light absorber (ultraviolet absorber). On the other hand, the hard coat layer is a light absorber Tinosorb S (manufactured by BASF) so that the triacetyl cellulose film and the entire hard coat layer have the transmittances shown in Tables 2 and 3 described later. Was contained.
The details of the UV curable adhesive are as follows. An adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloyl morpholine (ACMO), and 3 parts by weight of the photoinitiator "IRGACURE 819" (manufactured by BASF). The adhesive layer was applied onto a polarizing film so that the thickness of the adhesive layer after curing was 1.0 μm, and was irradiated with ultraviolet rays as active energy rays to cure the adhesive. For ultraviolet irradiation, gallium-filled metal halide lamp, irradiation device: Fusion UV Systems, Light HAMMER10 manufactured by Inc., valve: V valve, peak illuminance: 1600 mW / cm 2 , cumulative irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm). ), And the illuminance of ultraviolet rays was measured using a Solar-Check system manufactured by Solartell.
得られた偏光膜の樹脂基材とは反対側の面(偏光膜の一方の面、言い換えれば、偏光膜の視認側とは反対側の面)には、偏光膜保護フィルムを設けず、一方、樹脂基材を剥離した面(偏光膜の他方の面、言い換えれば、偏光膜の視認側の面)には、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)と、その視認側に配した光吸収剤を含有するハードコート層(厚み5μm)とから成る偏光膜保護フィルムを、後述する紫外線硬化型接着剤を介して接合させた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。その後、UV光線を他方の面の側から照射して接着剤を硬化させて、偏光膜と、偏光膜の上記他方の面に光吸収能を有する偏光膜保護フィルムを含む偏光フィルム積層体を得た。
上述したトリアセチルセルロースフィルムは、所定量の光吸収剤(紫外線吸収剤)を含有している。一方、ハードコート層には、トリアセチルセルロースフィルムとハードコート層の全体で後述する表2及び表3の吸収能に記載の透過率となるよう、光吸収剤であるTinosorb S(BASF社製)を含有させた。
紫外線硬化型接着剤の詳細は以下の通りである。N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、接着剤を調製した。硬化後の接着剤層の厚みが1.0μmとなるように偏光膜上に塗布し、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm2、積算照射量1000/mJ/cm2(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。 (Creation of polarizing film laminate)
A polarizing film protective film is not provided on the surface of the obtained polarizing film opposite to the resin substrate (one surface of the polarizing film, in other words, the surface opposite to the visible side of the polarizing film). On the surface from which the resin base material has been peeled off (the other surface of the polarizing film, in other words, the surface on the visual side of the polarizing film), triacetyl cellulose containing a light absorber as a polarizing film protective film having a light absorbing ability. An ultraviolet curable type polarizing film protective film composed of a film (manufactured by Konica Minolta, trade name "KC4UY",
The above-mentioned triacetyl cellulose film contains a predetermined amount of a light absorber (ultraviolet absorber). On the other hand, the hard coat layer is a light absorber Tinosorb S (manufactured by BASF) so that the triacetyl cellulose film and the entire hard coat layer have the transmittances shown in Tables 2 and 3 described later. Was contained.
The details of the UV curable adhesive are as follows. An adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloyl morpholine (ACMO), and 3 parts by weight of the photoinitiator "IRGACURE 819" (manufactured by BASF). The adhesive layer was applied onto a polarizing film so that the thickness of the adhesive layer after curing was 1.0 μm, and was irradiated with ultraviolet rays as active energy rays to cure the adhesive. For ultraviolet irradiation, gallium-filled metal halide lamp, irradiation device: Fusion UV Systems, Light HAMMER10 manufactured by Inc., valve: V valve, peak illuminance: 1600 mW / cm 2 , cumulative irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm). ), And the illuminance of ultraviolet rays was measured using a Solar-Check system manufactured by Solartell.
(ヨウ素濃度の測定)
シクロヘキサンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 (Measurement of iodine concentration)
By using cyclohexane as a solvent, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
シクロヘキサンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 (Measurement of iodine concentration)
By using cyclohexane as a solvent, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
(透過率の測定)
偏光フィルム積層体から、偏光膜よりも視認側に位置する偏光膜保護フィルム、即ち、トリアセチルセルロースフィルムとハードコート層とから成る偏光膜保護フィルムを引き剥がして、偏光膜保護フィルムの透過率を測定した。 (Measurement of transmittance)
The polarizing film protective film located on the visual side of the polarizing film, that is, the polarizing film protective film composed of the triacetyl cellulose film and the hard coat layer is peeled off from the polarizing film laminate to increase the transmittance of the polarizing film protective film. It was measured.
偏光フィルム積層体から、偏光膜よりも視認側に位置する偏光膜保護フィルム、即ち、トリアセチルセルロースフィルムとハードコート層とから成る偏光膜保護フィルムを引き剥がして、偏光膜保護フィルムの透過率を測定した。 (Measurement of transmittance)
The polarizing film protective film located on the visual side of the polarizing film, that is, the polarizing film protective film composed of the triacetyl cellulose film and the hard coat layer is peeled off from the polarizing film laminate to increase the transmittance of the polarizing film protective film. It was measured.
[実施例2]
実施例1の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、偏光膜保護フィルムとして、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、13μm)を、紫外線硬化型接着剤を介して接合させた。このシクロオレフィン系フィルムは、偏光膜の一方の面に設けられていることから、光吸収能の値に影響を与えない。一方、偏光膜の他方の面は、実施例1の上記他方の面と同じ構成とした。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Example 2]
In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Further, when producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 13 μm, manufactured by Nippon Zeon Co., Ltd.) was applied as a polarizing film protective film on one surface of the polarizing film, and an ultraviolet curable adhesive was applied. It was joined through. Since this cycloolefin-based film is provided on one surface of the polarizing film, it does not affect the value of the light absorption capacity. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
実施例1の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、偏光膜保護フィルムとして、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、13μm)を、紫外線硬化型接着剤を介して接合させた。このシクロオレフィン系フィルムは、偏光膜の一方の面に設けられていることから、光吸収能の値に影響を与えない。一方、偏光膜の他方の面は、実施例1の上記他方の面と同じ構成とした。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Example 2]
In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Further, when producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 13 μm, manufactured by Nippon Zeon Co., Ltd.) was applied as a polarizing film protective film on one surface of the polarizing film, and an ultraviolet curable adhesive was applied. It was joined through. Since this cycloolefin-based film is provided on one surface of the polarizing film, it does not affect the value of the light absorption capacity. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
[比較例1]
実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面には、実施例1の上記一方の面と同じ構成とし、一方、偏光膜の他方の面には、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み20μmの透明保護フィルム(日東電工社製)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Comparative Example 1]
In producing the polarizing film laminate of Example 1, one surface of the polarizing film has the same configuration as the above-mentioned one surface of Example 1, while the other surface of the polarizing film has a lactone ring structure. A transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 20 μm made of a modified acrylic polymer was applied through an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 μm. It was joined. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面には、実施例1の上記一方の面と同じ構成とし、一方、偏光膜の他方の面には、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み20μmの透明保護フィルム(日東電工社製)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Comparative Example 1]
In producing the polarizing film laminate of Example 1, one surface of the polarizing film has the same configuration as the above-mentioned one surface of Example 1, while the other surface of the polarizing film has a lactone ring structure. A transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 20 μm made of a modified acrylic polymer was applied through an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 μm. It was joined. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
[比較例2]
実施例2の偏光フィルム積層体の作成に際し、偏光膜の一方の面は、実施例2の上記一方の面と同じ構成とし、一方、偏光膜の他方の面には、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、25μm)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例2と同様である。 [Comparative Example 2]
In producing the polarizing film laminate of Example 2, one surface of the polarizing film has the same configuration as the above one surface of Example 2, while the other surface of the polarizing film has a cycloolefin film (Japan). Zeon Co., Ltd., Zeonoa film, 25 μm) was bonded via an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 μm. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 2.
実施例2の偏光フィルム積層体の作成に際し、偏光膜の一方の面は、実施例2の上記一方の面と同じ構成とし、一方、偏光膜の他方の面には、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、25μm)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例2と同様である。 [Comparative Example 2]
In producing the polarizing film laminate of Example 2, one surface of the polarizing film has the same configuration as the above one surface of Example 2, while the other surface of the polarizing film has a cycloolefin film (Japan). Zeon Co., Ltd., Zeonoa film, 25 μm) was bonded via an ultraviolet curable adhesive in the same manner as in Example 1 so that the total thickness of the curable adhesive was 1.0 μm. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 2.
[比較例3]
実施例1の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面には、偏光膜保護フィルムとして、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、17μm)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。一方、偏光膜の他方の面は、実施例1の上記他方の面と同じ構成とした。更に、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Comparative Example 3]
In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Further, in producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 17 μm, manufactured by Nippon Zeon Co., Ltd.) was used as a polarizing film protective film on one surface of the polarizing film. In the same manner, the curable adhesives were bonded via an ultraviolet curable adhesive so that the total thickness of the curable adhesive was 1.0 μm. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. Furthermore, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
実施例1の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例1の偏光フィルム積層体の作成に際し、偏光膜の一方の面には、偏光膜保護フィルムとして、シクロオレフィン系フィルム(日本ゼオン社製、ゼオノアフィルム、17μm)を、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。一方、偏光膜の他方の面は、実施例1の上記他方の面と同じ構成とした。更に、偏光フィルム積層体の水分量を変更した。
その他については、実施例1と同様である。 [Comparative Example 3]
In the preparation of the polarizing film of Example 1, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Further, in producing the polarizing film laminate of Example 1, a cycloolefin-based film (Zeonoa film, 17 μm, manufactured by Nippon Zeon Co., Ltd.) was used as a polarizing film protective film on one surface of the polarizing film. In the same manner, the curable adhesives were bonded via an ultraviolet curable adhesive so that the total thickness of the curable adhesive was 1.0 μm. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the first embodiment. Furthermore, the water content of the polarizing film laminate was changed.
Others are the same as in Example 1.
[比較例4]
比較例3の偏光フィルム積層体の作成に際し、偏光膜の一方の面は、比較例3の上記一方の面と同じ構成とした。一方、偏光膜の他方の面には、何らの偏光膜保護フィルムも設けなかった。また、偏光フィルム積層体の水分量を変更した。
その他については、比較例3と同様である。 [Comparative Example 4]
In producing the polarizing film laminate of Comparative Example 3, one surface of the polarizing film had the same configuration as the above-mentioned one surface of Comparative Example 3. On the other hand, no polarizing film protective film was provided on the other surface of the polarizing film. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Comparative Example 3.
比較例3の偏光フィルム積層体の作成に際し、偏光膜の一方の面は、比較例3の上記一方の面と同じ構成とした。一方、偏光膜の他方の面には、何らの偏光膜保護フィルムも設けなかった。また、偏光フィルム積層体の水分量を変更した。
その他については、比較例3と同様である。 [Comparative Example 4]
In producing the polarizing film laminate of Comparative Example 3, one surface of the polarizing film had the same configuration as the above-mentioned one surface of Comparative Example 3. On the other hand, no polarizing film protective film was provided on the other surface of the polarizing film. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Comparative Example 3.
[実施例3]
(偏光膜の作成)
平均重合度2700、厚み30μmのPVAフィルムを、周速比の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてPVAフィルムを膨潤させつつ、搬送方向に1.2倍に延伸した後、ヨウ化カリウム(0.03重量%)およびヨウ素(0.3重量%)の水溶液(液温30℃)に1分間浸漬することで、染色しながら搬送方向に3倍(未延伸フィルム基準)に延伸した。次に、この延伸フィルムを、ホウ酸(4重量%)、ヨウ化カリウム(5重量%)の水溶液(浴液)中に30秒間浸漬しながら、搬送方向に6倍(未延伸フィルム基準)に延伸した。延伸後に、40℃のオーブンにて3分間乾燥を行い、12.0μmの偏光膜を得た。 [Example 3]
(Creation of polarizing film)
A PVA film having an average degree of polymerization of 2700 and a thickness of 30 μm was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) Was immersed in an aqueous solution (liquid temperature 30 ° C.) for 1 minute to stretch the film three times in the transport direction (based on unstretched film) while dyeing. Next, while immersing this stretched film in an aqueous solution (bath) of boric acid (4% by weight) and potassium iodide (5% by weight) for 30 seconds, the stretched film was increased 6 times in the transport direction (based on unstretched film). It was stretched. After stretching, it was dried in an oven at 40 ° C. for 3 minutes to obtain a 12.0 μm polarizing film.
(偏光膜の作成)
平均重合度2700、厚み30μmのPVAフィルムを、周速比の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてPVAフィルムを膨潤させつつ、搬送方向に1.2倍に延伸した後、ヨウ化カリウム(0.03重量%)およびヨウ素(0.3重量%)の水溶液(液温30℃)に1分間浸漬することで、染色しながら搬送方向に3倍(未延伸フィルム基準)に延伸した。次に、この延伸フィルムを、ホウ酸(4重量%)、ヨウ化カリウム(5重量%)の水溶液(浴液)中に30秒間浸漬しながら、搬送方向に6倍(未延伸フィルム基準)に延伸した。延伸後に、40℃のオーブンにて3分間乾燥を行い、12.0μmの偏光膜を得た。 [Example 3]
(Creation of polarizing film)
A PVA film having an average degree of polymerization of 2700 and a thickness of 30 μm was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) Was immersed in an aqueous solution (
(偏光フィルム積層体の作成)
接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、30℃の温度条件下で、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み20μmの透明保護フィルム(日東電工社製)を接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、実施例1で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有するハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。その後、オーブン内で70℃で5分間加熱乾燥させて、偏光膜と、偏光膜の一方の面に光吸収能を有しない偏光膜保護フィルムを有し且つその他方の面に光吸収能を有する偏光膜保護フィルムを有する偏光フィルム積層体を得た。
(ヨウ素濃度の測定)
ジクロロメタン及びメチルエチルケトンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 (Creation of polarizing film laminate)
As the adhesive, a dope-curable curable adhesive, more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5 mol%,acetoacetylation degree 5 mol%). An aqueous solution containing methylol melamine at a weight ratio of 3: 1 was used. Using this adhesive, a transparent protective film (manufactured by Nitto Denko KK) with a thickness of 20 μm made of a modified acrylic polymer having a lactone ring structure was bonded to one surface of a polarizing film under a temperature condition of 30 ° C. .. Specifically, the dope-curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. On the other hand, on the other surface of the polarizing film, as a polarizing film protective film having a light absorbing ability, the polarizing film protective film used in Example 1, that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof. The polarizing film protective film composed of the hard coat layer containing the light absorber arranged in the above was bonded not with the ultraviolet curable adhesive but with the same dope curable curable adhesive in the same manner as one surface. .. Then, it is heated and dried in an oven at 70 ° C. for 5 minutes to have a polarizing film and a polarizing film protective film having no light absorbing ability on one surface of the polarizing film and having light absorbing ability on the other surface. A polarizing film laminate having a polarizing film protective film was obtained.
(Measurement of iodine concentration)
By using dichloromethane and methyl ethyl ketone as solvents, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、30℃の温度条件下で、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み20μmの透明保護フィルム(日東電工社製)を接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、実施例1で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有するハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。その後、オーブン内で70℃で5分間加熱乾燥させて、偏光膜と、偏光膜の一方の面に光吸収能を有しない偏光膜保護フィルムを有し且つその他方の面に光吸収能を有する偏光膜保護フィルムを有する偏光フィルム積層体を得た。
(ヨウ素濃度の測定)
ジクロロメタン及びメチルエチルケトンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 (Creation of polarizing film laminate)
As the adhesive, a dope-curable curable adhesive, more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5 mol%,
(Measurement of iodine concentration)
By using dichloromethane and methyl ethyl ketone as solvents, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
(透過率の測定)
実施例1と同じ方法で透過率を測定した。 (Measurement of transmittance)
The transmittance was measured by the same method as in Example 1.
実施例1と同じ方法で透過率を測定した。 (Measurement of transmittance)
The transmittance was measured by the same method as in Example 1.
[比較例5]
実施例3の偏光フィルム積層体の作成に際し、上記一方の面は、実施例3と同じ構成とし、上記他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC2UA」、厚み25μm)と、その視認側に配した光吸収能を有しないハードコート層(日東電工社製、厚み9μm)とから成る偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。ハードコート層は、以下の方法で形成した。先ず、ハードコート層形成材料を準備する。これは、ウレタンアクリレートを主成分とする紫外線硬化型樹脂モノマー又はオリゴマーが酢酸ブチルに溶解された樹脂溶液(DIC(株)製、商品名「ユニディック17-806」。固形分濃度80重量%)に、その溶液中の固形分100重量部当たり、光重合開始剤(BASF(株)製、製品名「IRGACURE906」)を5重量部、レベリング剤(DIC(株)製、製品名「GRANDIC PC4100」)を0.01重量部添加し、上記溶液中の固形分濃度が36重量%となるように、上記配合液にシクロペンタノン(以下、「CPN」と記す)とプロピレングリコールモノメチルエーテル(以下、「PGM」と記す)を45:55の比率で加えることによって作製される。こうにして作製されたハードコート層形成材料を、硬化後のハードコートの厚みが9μmになるように、透透明保護フィルム上に塗工して塗膜を形成した。次いで、90℃で1分間乾燥し、その後、高圧水銀ランプにて積算光量300mJ/cm2の紫外線を照射し、上記塗膜を硬化処理した。
その他については、実施例3と同様である。 [Comparative Example 5]
In producing the polarizing film laminate of Example 3, one of the above surfaces has the same configuration as that of Example 3, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability. A polarizing film protective film composed of an acetyl cellulose film (manufactured by Konica Minolta, trade name "KC2UA", thickness 25 μm) and a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 μm) arranged on the visible side thereof that does not have light absorbing ability. Was joined via a dope-curable adhesive so that the total thickness of the curable adhesive was 1.0 μm in the same manner as in Example 3. In addition, the water content of the polarizing film laminate was changed. The hard coat layer was formed by the following method. First, a hard coat layer forming material is prepared. This is a resin solution in which an ultraviolet curable resin monomer or oligomer containing urethane acrylate as a main component is dissolved in butyl acetate (manufactured by DIC Corporation, trade name "Unidic 17-806".Solid content concentration 80% by weight). In addition, 5 parts by weight of a photopolymerization initiator (manufactured by BASF Co., Ltd., product name "IRGACURE906") and a leveling agent (manufactured by DIC Corporation, product name "GRANDIC PC4100") per 100 parts by weight of the solid content in the solution. ) Is added in an amount of 0.01 part by weight, and cyclopentanone (hereinafter referred to as “CPN”) and propylene glycol monomethyl ether (hereinafter referred to as “CPN”) are added to the above-mentioned compounding solution so that the solid content concentration in the solution becomes 36% by weight. It is made by adding (denoted as "PGM") in a ratio of 45:55. The hard coat layer forming material thus produced was coated on a transparent protective film so that the thickness of the hard coat after curing was 9 μm to form a coating film. Then, it was dried at 90 ° C. for 1 minute, and then irradiated with ultraviolet rays having an integrated light intensity of 300 mJ / cm2 with a high-pressure mercury lamp to cure the coating film.
Others are the same as in Example 3.
実施例3の偏光フィルム積層体の作成に際し、上記一方の面は、実施例3と同じ構成とし、上記他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC2UA」、厚み25μm)と、その視認側に配した光吸収能を有しないハードコート層(日東電工社製、厚み9μm)とから成る偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。ハードコート層は、以下の方法で形成した。先ず、ハードコート層形成材料を準備する。これは、ウレタンアクリレートを主成分とする紫外線硬化型樹脂モノマー又はオリゴマーが酢酸ブチルに溶解された樹脂溶液(DIC(株)製、商品名「ユニディック17-806」。固形分濃度80重量%)に、その溶液中の固形分100重量部当たり、光重合開始剤(BASF(株)製、製品名「IRGACURE906」)を5重量部、レベリング剤(DIC(株)製、製品名「GRANDIC PC4100」)を0.01重量部添加し、上記溶液中の固形分濃度が36重量%となるように、上記配合液にシクロペンタノン(以下、「CPN」と記す)とプロピレングリコールモノメチルエーテル(以下、「PGM」と記す)を45:55の比率で加えることによって作製される。こうにして作製されたハードコート層形成材料を、硬化後のハードコートの厚みが9μmになるように、透透明保護フィルム上に塗工して塗膜を形成した。次いで、90℃で1分間乾燥し、その後、高圧水銀ランプにて積算光量300mJ/cm2の紫外線を照射し、上記塗膜を硬化処理した。
その他については、実施例3と同様である。 [Comparative Example 5]
In producing the polarizing film laminate of Example 3, one of the above surfaces has the same configuration as that of Example 3, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability. A polarizing film protective film composed of an acetyl cellulose film (manufactured by Konica Minolta, trade name "KC2UA", thickness 25 μm) and a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 μm) arranged on the visible side thereof that does not have light absorbing ability. Was joined via a dope-curable adhesive so that the total thickness of the curable adhesive was 1.0 μm in the same manner as in Example 3. In addition, the water content of the polarizing film laminate was changed. The hard coat layer was formed by the following method. First, a hard coat layer forming material is prepared. This is a resin solution in which an ultraviolet curable resin monomer or oligomer containing urethane acrylate as a main component is dissolved in butyl acetate (manufactured by DIC Corporation, trade name "Unidic 17-806".
Others are the same as in Example 3.
[実施例4]
(偏光膜の作成)
平均重合度2700、厚み45μmのPVAフィルムを、周速比の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてPVAフィルムを膨潤させつつ、搬送方向に1.2倍に延伸した後、ヨウ化カリウム(0.03重量%)およびヨウ素(0.3重量%)の水溶液(液温30℃)に1分間浸漬することで、染色しながら搬送方向に3倍(未延伸フィルム基準)に延伸した。次に、この延伸フィルムを、ホウ酸(4重量%)、ヨウ化カリウム(5重量%)および硫酸亜鉛(3.5重量%)の水溶液(浴液)中に30秒間浸漬しながら、搬送方向に6倍(未延伸フィルム基準)に延伸した。延伸後に、40℃のオーブンにて3分間乾燥を行い、18.0μmの偏光膜を得た。
(偏光フィルム積層体の作成)
偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面は、実施例3の上記他方の面と同じ構成とした。
その他については、実施例3と同様である。 [Example 4]
(Creation of polarizing film)
A PVA film having an average degree of polymerization of 2700 and a thickness of 45 μm was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) Was immersed in an aqueous solution (liquid temperature 30 ° C.) for 1 minute to stretch the film three times in the transport direction (based on unstretched film) while dyeing. Next, the stretched film is immersed in an aqueous solution (bath) of boric acid (4% by weight), potassium iodide (5% by weight) and zinc sulfate (3.5% by weight) for 30 seconds in the transport direction. Was stretched 6 times (based on unstretched film). After stretching, it was dried in an oven at 40 ° C. for 3 minutes to obtain a polarizing film having a thickness of 18.0 μm.
(Creation of polarizing film laminate)
A transparent protective film (manufactured by Nitto Denko KK) with a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure is bonded to one surface of the polarizing film in the same manner as in Example 3 via a dope-curable adhesive. I let you. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the third embodiment.
Others are the same as in Example 3.
(偏光膜の作成)
平均重合度2700、厚み45μmのPVAフィルムを、周速比の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてPVAフィルムを膨潤させつつ、搬送方向に1.2倍に延伸した後、ヨウ化カリウム(0.03重量%)およびヨウ素(0.3重量%)の水溶液(液温30℃)に1分間浸漬することで、染色しながら搬送方向に3倍(未延伸フィルム基準)に延伸した。次に、この延伸フィルムを、ホウ酸(4重量%)、ヨウ化カリウム(5重量%)および硫酸亜鉛(3.5重量%)の水溶液(浴液)中に30秒間浸漬しながら、搬送方向に6倍(未延伸フィルム基準)に延伸した。延伸後に、40℃のオーブンにて3分間乾燥を行い、18.0μmの偏光膜を得た。
(偏光フィルム積層体の作成)
偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面は、実施例3の上記他方の面と同じ構成とした。
その他については、実施例3と同様である。 [Example 4]
(Creation of polarizing film)
A PVA film having an average degree of polymerization of 2700 and a thickness of 45 μm was stretched and conveyed while being dyed between rolls having different peripheral speed ratios. First, the PVA film was swelled by immersing it in a water bath at 30 ° C. for 1 minute, stretched 1.2 times in the transport direction, and then potassium iodide (0.03% by weight) and iodine (0.3% by weight). ) Was immersed in an aqueous solution (
(Creation of polarizing film laminate)
A transparent protective film (manufactured by Nitto Denko KK) with a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure is bonded to one surface of the polarizing film in the same manner as in Example 3 via a dope-curable adhesive. I let you. On the other hand, the other surface of the polarizing film has the same configuration as the other surface of the third embodiment.
Others are the same as in Example 3.
[実施例5]
実施例4の偏光フィルム積層体の作成に際し、上記一方の面は、実施例4と同じ構成とし、上記他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フイルム社製、商品名「TJ40ULF」、厚み40μm)、その視認側に配した光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)、その視認側に配した光吸収能を有しないハードコート層(日東電工社製、厚み9μm)からなる偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。トリアセチルセルロースフィルム(富士フイルム社製、商品名「TJ40ULF」、厚み40μm)と、トリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)とは、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。
(ヨウ素濃度の測定)
ジクロロメタン及びメチルエチルケトンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 [Example 5]
In producing the polarizing film laminate of Example 4, one of the above surfaces has the same configuration as that of Example 4, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability. Acetylcellulose film (manufactured by Fujifilm, trade name "TJ40ULF",thickness 40 μm), triacetylcellulose film containing a light absorber placed on the visible side (manufactured by Konica Minolta, trade name "KC4UY", thickness 40 μm), A polarizing film protective film composed of a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 μm) arranged on the visible side and having no light absorbing ability was used in the same manner as in Example 3, and the total thickness of the curable adhesive was 1.0 μm. It was joined via a dope-curable adhesive so that The triacetyl cellulose film (manufactured by Fujifilm, trade name "TJ40ULF", thickness 40 μm) and the triacetyl cellulose film (manufactured by Konica Minolta, trade name "KC4UY", thickness 40 μm) are used in the same manner as in Example 1. The curable adhesive was bonded via an ultraviolet curable adhesive so that the total thickness of the curable adhesive was 1.0 μm.
(Measurement of iodine concentration)
By using dichloromethane and methyl ethyl ketone as solvents, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
実施例4の偏光フィルム積層体の作成に際し、上記一方の面は、実施例4と同じ構成とし、上記他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フイルム社製、商品名「TJ40ULF」、厚み40μm)、その視認側に配した光吸収剤を含有するトリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)、その視認側に配した光吸収能を有しないハードコート層(日東電工社製、厚み9μm)からなる偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。トリアセチルセルロースフィルム(富士フイルム社製、商品名「TJ40ULF」、厚み40μm)と、トリアセチルセルロースフィルム(コニカミノルタ製、商品名「KC4UY」、厚み40μm)とは、実施例1と同じ方法で、硬化型接着剤の総厚みが1.0μmになるように紫外線硬化型接着剤を介して接合させた。
(ヨウ素濃度の測定)
ジクロロメタン及びメチルエチルケトンを溶剤として用いることにより、偏光フィルム積層体から偏光膜を取り出して偏光膜のヨウ素濃度を測定した。 [Example 5]
In producing the polarizing film laminate of Example 4, one of the above surfaces has the same configuration as that of Example 4, and the other surface contains a light absorber as a polarizing film protective film having a light absorbing ability. Acetylcellulose film (manufactured by Fujifilm, trade name "TJ40ULF",
(Measurement of iodine concentration)
By using dichloromethane and methyl ethyl ketone as solvents, the polarizing film was taken out from the polarizing film laminate, and the iodine concentration of the polarizing film was measured.
(透過率の測定)
偏光フィルム積層体から、偏光膜よりも視認側に位置する偏光膜保護フィルム、即ち、トリアセチルセルロースフィルムと、別のトリアセチルセルロースフィルムと、ハードコート層とから成る偏光膜保護フィルムを引き剥がして、偏光膜保護フィルムの透過率を測定した。 (Measurement of transmittance)
From the polarizing film laminate, the polarizing film protective film located on the visual side of the polarizing film, that is, the polarizing film protective film composed of a triacetyl cellulose film, another triacetyl cellulose film, and a hard coat layer is peeled off. , The transmittance of the polarizing film protective film was measured.
偏光フィルム積層体から、偏光膜よりも視認側に位置する偏光膜保護フィルム、即ち、トリアセチルセルロースフィルムと、別のトリアセチルセルロースフィルムと、ハードコート層とから成る偏光膜保護フィルムを引き剥がして、偏光膜保護フィルムの透過率を測定した。 (Measurement of transmittance)
From the polarizing film laminate, the polarizing film protective film located on the visual side of the polarizing film, that is, the polarizing film protective film composed of a triacetyl cellulose film, another triacetyl cellulose film, and a hard coat layer is peeled off. , The transmittance of the polarizing film protective film was measured.
[比較例6]
実施例4の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フィルム社製、商品名「TJ40ULF」、厚み40μm)に、光吸収能を有しないハードコート層(日東電工社製、厚み9μm)を形成した偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Comparative Example 6]
In producing the polarizing film laminate of Example 4, a transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure was applied to one surface of the polarizing film in the same manner as in Example 3. By the method, they were joined via a dope-curable adhesive. On the other hand, a triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., trade name "TJ40ULF",thickness 40 μm) containing a light absorber as a polarizing film protective film having a light absorbing ability on the other surface of the polarizing film absorbs light. A polarizing film protective film having a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 μm) formed with no function is dope-cured by the same method as in Example 3 so that the total thickness of the curable adhesive is 1.0 μm. They were joined via an adhesive. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
実施例4の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フィルム社製、商品名「TJ40ULF」、厚み40μm)に、光吸収能を有しないハードコート層(日東電工社製、厚み9μm)を形成した偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Comparative Example 6]
In producing the polarizing film laminate of Example 4, a transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure was applied to one surface of the polarizing film in the same manner as in Example 3. By the method, they were joined via a dope-curable adhesive. On the other hand, a triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., trade name "TJ40ULF",
Others are the same as in Example 4.
[比較例7]
比較例6の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、比較例6と同様である。 [Comparative Example 7]
In the preparation of the polarizing film laminate of Comparative Example 6, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Comparative Example 6.
比較例6の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、比較例6と同様である。 [Comparative Example 7]
In the preparation of the polarizing film laminate of Comparative Example 6, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Comparative Example 6.
[比較例8]
実施例4の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Comparative Example 8]
In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
実施例4の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Comparative Example 8]
In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
[実施例6]
実施例4の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Example 6]
In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
実施例4の偏光フィルム積層体の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Example 6]
In the preparation of the polarizing film laminate of Example 4, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
[実施例7]
(偏光膜の作成)
実施例3の偏光膜の作成に際し、延伸処理において、厚み75μmのPVAフィルムを延伸搬送して、28μmの偏光膜を得た。また、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
(偏光フィルム積層体の作成)
偏光膜の一方の面の他方の面に、それぞれ、実施例4の偏光膜の上記一方の面と上記他方の面と同じ構成を有する。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Example 7]
(Creation of polarizing film)
In the stretching treatment of the polarizing film of Example 3, a PVA film having a thickness of 75 μm was stretched and conveyed to obtain a polarizing film having a thickness of 28 μm. Further, in the dyeing treatment, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time.
(Creation of polarizing film laminate)
The other surface of one surface of the polarizing film has the same configuration as the one surface and the other surface of the polarizing film of Example 4, respectively. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
(偏光膜の作成)
実施例3の偏光膜の作成に際し、延伸処理において、厚み75μmのPVAフィルムを延伸搬送して、28μmの偏光膜を得た。また、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
(偏光フィルム積層体の作成)
偏光膜の一方の面の他方の面に、それぞれ、実施例4の偏光膜の上記一方の面と上記他方の面と同じ構成を有する。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例4と同様である。 [Example 7]
(Creation of polarizing film)
In the stretching treatment of the polarizing film of Example 3, a PVA film having a thickness of 75 μm was stretched and conveyed to obtain a polarizing film having a thickness of 28 μm. Further, in the dyeing treatment, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time.
(Creation of polarizing film laminate)
The other surface of one surface of the polarizing film has the same configuration as the one surface and the other surface of the polarizing film of Example 4, respectively. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 4.
[実施例8]
実施例7の偏光フィルム積層体の作成に際し、偏光フィルム積層体の水分量を変更した。また、実施例7では、実施例4と同様に、搬送方向に6倍(未延伸フィルム基準)に延伸する際に、硫酸亜鉛(3.5重量%)の水溶液(浴液)中に浸漬した。
その他の条件については、実施例7と同様である。 [Example 8]
In producing the polarizing film laminate of Example 7, the water content of the polarizing film laminate was changed. Further, in Example 7, similarly to Example 4, when the film was stretched 6 times in the transport direction (based on the unstretched film), it was immersed in an aqueous solution (bath) of zinc sulfate (3.5% by weight). ..
Other conditions are the same as in Example 7.
実施例7の偏光フィルム積層体の作成に際し、偏光フィルム積層体の水分量を変更した。また、実施例7では、実施例4と同様に、搬送方向に6倍(未延伸フィルム基準)に延伸する際に、硫酸亜鉛(3.5重量%)の水溶液(浴液)中に浸漬した。
その他の条件については、実施例7と同様である。 [Example 8]
In producing the polarizing film laminate of Example 7, the water content of the polarizing film laminate was changed. Further, in Example 7, similarly to Example 4, when the film was stretched 6 times in the transport direction (based on the unstretched film), it was immersed in an aqueous solution (bath) of zinc sulfate (3.5% by weight). ..
Other conditions are the same as in Example 7.
[比較例9]
(偏光膜の作成)
実施例7の偏光膜を用いた。
(偏光フィルム積層体の作成)
偏光膜の一方の面に、実施例4乃至8、及び、比較例8の偏光膜の上記一方の面と同じ構成を有する。一方、偏光膜の他方の面に、比較例5の偏光膜の上記他方の面と同じ構成、即ち、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収能を有しないハードコート層とから成る偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他の条件については、実施例7と同様である。 [Comparative Example 9]
(Creation of polarizing film)
The polarizing film of Example 7 was used.
(Creation of polarizing film laminate)
One surface of the polarizing film has the same configuration as the one surface of the polarizing films of Examples 4 to 8 and Comparative Example 8. On the other hand, on the other surface of the polarizing film, a triacetyl cellulose film containing a light absorber as a polarizing film protective film having the same configuration as the other surface of the polarizing film of Comparative Example 5, that is, having a light absorbing ability, A polarizing film protective film composed of a hard coat layer having no light absorbing ability arranged on the visible side is doped and cured by the same method as in Example 3 so that the total thickness of the curing adhesive is 1.0 μm. They were joined via an agent. In addition, the water content of the polarizing film laminate was changed.
Other conditions are the same as in Example 7.
(偏光膜の作成)
実施例7の偏光膜を用いた。
(偏光フィルム積層体の作成)
偏光膜の一方の面に、実施例4乃至8、及び、比較例8の偏光膜の上記一方の面と同じ構成を有する。一方、偏光膜の他方の面に、比較例5の偏光膜の上記他方の面と同じ構成、即ち、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収能を有しないハードコート層とから成る偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他の条件については、実施例7と同様である。 [Comparative Example 9]
(Creation of polarizing film)
The polarizing film of Example 7 was used.
(Creation of polarizing film laminate)
One surface of the polarizing film has the same configuration as the one surface of the polarizing films of Examples 4 to 8 and Comparative Example 8. On the other hand, on the other surface of the polarizing film, a triacetyl cellulose film containing a light absorber as a polarizing film protective film having the same configuration as the other surface of the polarizing film of Comparative Example 5, that is, having a light absorbing ability, A polarizing film protective film composed of a hard coat layer having no light absorbing ability arranged on the visible side is doped and cured by the same method as in Example 3 so that the total thickness of the curing adhesive is 1.0 μm. They were joined via an agent. In addition, the water content of the polarizing film laminate was changed.
Other conditions are the same as in Example 7.
[実施例9]
実施例4の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、実施例4と同様である。 [Example 9]
In the preparation of the polarizing film of Example 4, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Example 4.
実施例4の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、実施例4と同様である。 [Example 9]
In the preparation of the polarizing film of Example 4, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Example 4.
[実施例10]
実施例3の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例3の偏光フィルム積層体の作成に際し、偏光膜の一方の面に接合させる、ラクトン環構造を有する変性アクリル系ポリマーからなる透明保護フィルムとして、厚み20μmの透明保護フィルムに代えて、厚み30μmの透明保護フィルム(日東電工社製)を用いた。更に、偏光フィルム積層体の水分量を変更した。
その他については、実施例3と同様である。 [Example 10]
In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
Further, in producing the polarizing film laminate of Example 3, as a transparent protective film made of a modified acrylic polymer having a lactone ring structure to be bonded to one surface of the polarizing film, instead of the transparent protective film having a thickness of 20 μm, A transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm was used. Furthermore, the water content of the polarizing film laminate was changed.
Others are the same as in Example 3.
実施例3の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例3の偏光フィルム積層体の作成に際し、偏光膜の一方の面に接合させる、ラクトン環構造を有する変性アクリル系ポリマーからなる透明保護フィルムとして、厚み20μmの透明保護フィルムに代えて、厚み30μmの透明保護フィルム(日東電工社製)を用いた。更に、偏光フィルム積層体の水分量を変更した。
その他については、実施例3と同様である。 [Example 10]
In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
Further, in producing the polarizing film laminate of Example 3, as a transparent protective film made of a modified acrylic polymer having a lactone ring structure to be bonded to one surface of the polarizing film, instead of the transparent protective film having a thickness of 20 μm, A transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm was used. Furthermore, the water content of the polarizing film laminate was changed.
Others are the same as in Example 3.
[比較例10]
実施例9の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
実施例9の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フィルム社製、商品名「TJ40ULF」、厚み40μm)に、光吸収能を有しないハードコート層(日東電工社製、厚み9μm)を形成した偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例9と同様である。 [Comparative Example 10]
In the preparation of the polarizing film of Example 9, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
In producing the polarizing film laminate of Example 9, a transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure was applied to one surface of the polarizing film in the same manner as in Example 3. By the method, they were joined via a dope-curable adhesive. On the other hand, a triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., trade name "TJ40ULF",thickness 40 μm) containing a light absorber as a polarizing film protective film having a light absorbing ability on the other surface of the polarizing film absorbs light. A polarizing film protective film having a hard coat layer (manufactured by Nitto Denko Co., Ltd., thickness 9 μm) formed with no function is dope-cured by the same method as in Example 3 so that the total thickness of the curable adhesive is 1.0 μm. They were joined via an adhesive. In addition, the water content of the polarizing film laminate was changed.
Others are the same as in Example 9.
実施例9の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
実施例9の偏光フィルム積層体の作成に際し、偏光膜の一方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明保護フィルム(日東電工社製)を、実施例3と同じ方法で、ドープ硬化型接着剤を介して接合させた。一方、偏光膜の他方の面に、光吸収能を有する偏光膜保護フィルムとして、光吸収剤を含有するトリアセチルセルロースフィルム(富士フィルム社製、商品名「TJ40ULF」、厚み40μm)に、光吸収能を有しないハードコート層(日東電工社製、厚み9μm)を形成した偏光膜保護フィルムを、実施例3と同じ方法で、硬化型接着剤の総厚みが1.0μmになるようにドープ硬化型接着剤を介して接合させた。また、偏光フィルム積層体の水分量を変更した。
その他については、実施例9と同様である。 [Comparative Example 10]
In the preparation of the polarizing film of Example 9, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
In producing the polarizing film laminate of Example 9, a transparent protective film (manufactured by Nitto Denko Co., Ltd.) having a thickness of 30 μm made of a modified acrylic polymer having a lactone ring structure was applied to one surface of the polarizing film in the same manner as in Example 3. By the method, they were joined via a dope-curable adhesive. On the other hand, a triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., trade name "TJ40ULF",
Others are the same as in Example 9.
[実施例11]
実施例3の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例3の偏光フィルム積層体の作成に際し、接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、偏光膜の一方の面に、トリアセチルセルロースからなる厚み25μmの透明保護フィルムを接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、実施例1で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有するハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。その後、オーブン内で70℃で5分間加熱乾燥させて、偏光膜と、偏光膜の一方の面に光吸収能を有しない偏光膜保護フィルムを有し且つその他方の面に光吸収能を有する偏光膜保護フィルムを有する偏光フィルム積層体を得た。 [Example 11]
In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
Further, in producing the polarizing film laminate of Example 3, a dope-curable curable adhesive was used as an adhesive, and more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98). An aqueous solution containing .5 mol%,acetoacetylation degree 5 mol%) and methylol melamine in a weight ratio of 3: 1 was used. Using this adhesive, a transparent protective film having a thickness of 25 μm made of triacetyl cellulose was bonded to one surface of the polarizing film. Specifically, the dope-curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. On the other hand, on the other surface of the polarizing film, as a polarizing film protective film having a light absorbing ability, the polarizing film protective film used in Example 1, that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof. The polarizing film protective film composed of the hard coat layer containing the light absorber arranged in the above was bonded not with the ultraviolet curable adhesive but with the same dope curable curable adhesive in the same manner as one surface. .. Then, it is heated and dried in an oven at 70 ° C. for 5 minutes to have a polarizing film and a polarizing film protective film having no light absorbing ability on one surface of the polarizing film and having light absorbing ability on the other surface. A polarizing film laminate having a polarizing film protective film was obtained.
実施例3の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
また、実施例3の偏光フィルム積層体の作成に際し、接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、偏光膜の一方の面に、トリアセチルセルロースからなる厚み25μmの透明保護フィルムを接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、実施例1で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有するハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。その後、オーブン内で70℃で5分間加熱乾燥させて、偏光膜と、偏光膜の一方の面に光吸収能を有しない偏光膜保護フィルムを有し且つその他方の面に光吸収能を有する偏光膜保護フィルムを有する偏光フィルム積層体を得た。 [Example 11]
In the preparation of the polarizing film of Example 3, the iodine concentration was changed by adjusting the concentration of the iodine aqueous solution and the immersion time in the dyeing treatment.
Further, in producing the polarizing film laminate of Example 3, a dope-curable curable adhesive was used as an adhesive, and more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98). An aqueous solution containing .5 mol%,
[比較例11]
実施例11の偏光フィルム積層体の作成に際し、接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、偏光膜の一方の面に、トリアセチルセルロースからなる厚み25μmの透明保護フィルムを接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、比較例5で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有しないハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。 [Comparative Example 11]
In producing the polarizing film laminate of Example 11, as an adhesive, a dope-curable curable adhesive, more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5). An aqueous solution containing methylol melamine and methylol melamine at a weight ratio of 3: 1 was used. Using this adhesive, a transparent protective film having a thickness of 25 μm made of triacetyl cellulose was bonded to one surface of the polarizing film. Specifically, the dope-curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. On the other hand, on the other surface of the polarizing film, as a polarizing film protective film having a light absorbing ability, the polarizing film protective film used in Comparative Example 5, that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof. A polarizing film protective film composed of a hard coat layer containing no light absorber was bonded to one surface using the same dope-curable curable adhesive in the same manner as one surface, instead of the ultraviolet-curable adhesive. ..
実施例11の偏光フィルム積層体の作成に際し、接着剤として、ドープ硬化型硬化型接着剤、更に詳細には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、偏光膜の一方の面に、トリアセチルセルロースからなる厚み25μmの透明保護フィルムを接合させた。具体的には、ドープ硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して接合させた。一方、偏光膜の他方の面には、光吸収能を有する偏光膜保護フィルムとして、比較例5で用いた偏光膜保護フィルム、即ち、光吸収剤を含有するトリアセチルセルロースフィルムと、その視認側に配した光吸収剤を含有しないハードコート層とから成る偏光膜保護フィルムを、紫外線硬化型接着剤ではなく、一方の面と同じ方法で同じドープ硬化型硬化型接着剤を用いて接合させた。 [Comparative Example 11]
In producing the polarizing film laminate of Example 11, as an adhesive, a dope-curable curable adhesive, more specifically, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization 1200, saponification degree 98.5). An aqueous solution containing methylol melamine and methylol melamine at a weight ratio of 3: 1 was used. Using this adhesive, a transparent protective film having a thickness of 25 μm made of triacetyl cellulose was bonded to one surface of the polarizing film. Specifically, the dope-curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. On the other hand, on the other surface of the polarizing film, as a polarizing film protective film having a light absorbing ability, the polarizing film protective film used in Comparative Example 5, that is, a triacetyl cellulose film containing a light absorber, and a visible side thereof. A polarizing film protective film composed of a hard coat layer containing no light absorber was bonded to one surface using the same dope-curable curable adhesive in the same manner as one surface, instead of the ultraviolet-curable adhesive. ..
[比較例12]
実施例11の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、実施例11と同様である。 [Comparative Example 12]
In the preparation of the polarizing film of Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Example 11.
実施例11の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、実施例11と同様である。 [Comparative Example 12]
In the preparation of the polarizing film of Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Example 11.
[比較例13]
比較例11の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、比較例11と同様である。 [Comparative Example 13]
In the preparation of the polarizing film of Comparative Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Comparative Example 11.
比較例11の偏光膜の作成に際し、染色処理において、ヨウ素水溶液の濃度及び浸漬時間を調整して、ヨウ素濃度を変更した。
その他については、比較例11と同様である。 [Comparative Example 13]
In the preparation of the polarizing film of Comparative Example 11, the concentration of the iodine aqueous solution and the immersion time were adjusted in the dyeing treatment to change the iodine concentration.
Others are the same as in Comparative Example 11.
4-1.信頼性試験
実施例および比較例で得られた偏光フィルム積層体12を用い、図5に示すように、偏光フィルム積層体12の両面それぞれに透明接着剤11、13を介してガラス板(松浪硝子製スライドグラス、品番:S2000423、仕様:水縁磨 65×165mm、 厚み1.3mm)を積層したものをサンプルとした。 4-1. Reliability Test Using the polarizing film laminates 12 obtained in Examples and Comparative Examples, as shown in FIG. 5, glass plates (Matsunami Glass) were placed on both sides of the polarizing film laminates 12 via transparent adhesives 11 and 13, respectively. A sample was made by laminating a slide glass made of glass, product number: S2000423, specifications: water edge polishing 65 x 165 mm, thickness 1.3 mm).
実施例および比較例で得られた偏光フィルム積層体12を用い、図5に示すように、偏光フィルム積層体12の両面それぞれに透明接着剤11、13を介してガラス板(松浪硝子製スライドグラス、品番:S2000423、仕様:水縁磨 65×165mm、 厚み1.3mm)を積層したものをサンプルとした。 4-1. Reliability Test Using the polarizing film laminates 12 obtained in Examples and Comparative Examples, as shown in FIG. 5, glass plates (Matsunami Glass) were placed on both sides of the polarizing film laminates 12 via
粘着剤として、偏光フィルム積層体の一方の面には厚み200μmのCS98210US(日東電工社製)を用い、偏光フィルム積層体の他方の面にはCRT1794YCUの偏光フィルム積層体(日東電工製)に用いられるアクリル系粘着剤(厚み20μm)を用いた。他方の面に用いたアクリル系粘着剤は、冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル99重量部(以下同じ)、アクリル酸4-ヒドロキシブチル1.0部、及び2,2’-アゾビスイソブチロニトリル0.3部を酢酸エチルと共に加えて窒素ガス気流下、60°で4時間反応させた後、その反応液に酢酸エチルを加えて、重量平均分子量165万のアクリル系ポリマーを含有する溶液(固形分濃度30重量%)を得、このアクリル系ポリマー溶液の固形分100部あたり0.3部のジベンゾイルパーオキシド(日本油脂製(株):ナイパーBMT)と、0.1部のトリメチロールプロパンキシレンジイソシアネート(三井武田ケミカル(株)):タケネートD110N)と、0.2部のシランカップリング剤(緑研化学株式会社製:A-100、アセトアセチル基含有シランカップリング剤)を配合することによって得られたものである。
As an adhesive, CS98210US (manufactured by Nitto Denko) with a thickness of 200 μm was used on one surface of the polarizing film laminate, and used for the polarizing film laminate (manufactured by Nitto Denko) of CRT1794YCU on the other surface of the polarizing film laminate. An acrylic adhesive (thickness 20 μm) was used. The acrylic pressure-sensitive adhesive used on the other side was prepared by placing 99 parts by weight of butyl acrylate (the same applies hereinafter) and 4-hydroxybutyl acrylate in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer. 0 part and 0.3 part of 2,2'-azobisisobutyronitrile were added together with ethyl acetate and reacted at 60 ° for 4 hours under a nitrogen gas stream, and then ethyl acetate was added to the reaction solution. A solution containing an acrylic polymer having a weight average molecular weight of 1.65 million (solid content concentration: 30% by weight) was obtained, and 0.3 part of dibenzoyl peroxide (manufactured by Nippon Oil & Fat Co., Ltd.) per 100 parts of the solid content of this acrylic polymer solution was obtained. ): Niper BMT), 0.1 part of trimetyl propanthylene diisocyanate (Mitsui Takeda Chemical Co., Ltd .: Takenate D110N), and 0.2 part of silane coupling agent (manufactured by Ryokuken Kagaku Co., Ltd .: A-). It was obtained by blending 100, an acetoacetyl group-containing silane coupling agent).
キセノンウェザーメーター(スガ試験機株式会社製:NX75)を用いて、各サンプルにつき、キセノン光照射試験を行った。
(キセノン光照射試験)
ブラックパネル温度89℃、30%R.H.の雰囲気下で、当該サンプルにキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射する。光源はキセノンランプ(スガ試験機株式会社製)にデイライトフィルタ(スガ試験機株式会社製)を取り付けたものを用いた。200時間照射後に色抜け及び加熱赤変を評価し、同じく200時間照射後にポリエン化の評価を行った。 A xenon light irradiation test was performed on each sample using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .: NX75).
(Xenon light irradiation test)
Black panel temperature 89 ° C., 30% R. H. In this atmosphere, the sample is irradiated with xenon light for 200 hours at an irradiance of 100 W / m 2 integrated in a wavelength range of 300 to 400 nm. The light source used was a xenon lamp (manufactured by Suga Test Instruments Co., Ltd.) with a daylight filter (manufactured by Suga Test Instruments Co., Ltd.) attached. After 200 hours of irradiation, color loss and heat redness were evaluated, and after 200 hours of irradiation, polyene formation was also evaluated.
(キセノン光照射試験)
ブラックパネル温度89℃、30%R.H.の雰囲気下で、当該サンプルにキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射する。光源はキセノンランプ(スガ試験機株式会社製)にデイライトフィルタ(スガ試験機株式会社製)を取り付けたものを用いた。200時間照射後に色抜け及び加熱赤変を評価し、同じく200時間照射後にポリエン化の評価を行った。 A xenon light irradiation test was performed on each sample using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .: NX75).
(Xenon light irradiation test)
Black panel temperature 89 ° C., 30% R. H. In this atmosphere, the sample is irradiated with xenon light for 200 hours at an irradiance of 100 W / m 2 integrated in a wavelength range of 300 to 400 nm. The light source used was a xenon lamp (manufactured by Suga Test Instruments Co., Ltd.) with a daylight filter (manufactured by Suga Test Instruments Co., Ltd.) attached. After 200 hours of irradiation, color loss and heat redness were evaluated, and after 200 hours of irradiation, polyene formation was also evaluated.
4-2.評価基準
ポリエン化、加熱赤変、及び色抜けの評価基準を下記に示す。 4-2. Evaluation Criteria The evaluation criteria for polyene formation, heating redness, and color loss are shown below.
ポリエン化、加熱赤変、及び色抜けの評価基準を下記に示す。 4-2. Evaluation Criteria The evaluation criteria for polyene formation, heating redness, and color loss are shown below.
<ポリエン化>
キセノン光照射試験の前後で試料の単体透過率を測定し、単体透過率の変化量ΔTsを下式で求めた。
(式) ΔTs=Tsキセノン200-Ts0
ここで、Ts0はキセノン照射前における試料の単体透過率であり、Tsキセノン200はキセノン光照射試験後における単体透過率である。
200時間キセノン光を照射した後の単体透過率が、キセノン光照射前の単体透過率と比べて-0.5以上の場合には、ポリエン化の問題は許容範囲であり問題ないと評価した。200時間キセノン光を照射した後の単体透過率は、キセノン光照射前の単体透過率と比べて-0.2以上の場合には、ポリエン化の問題はより問題ないと評価した。さらに、200時間キセノン光を照射した後の単体透過率が、キセノン光照射前の単体透過率と同じか又はそれより大きい場合には、ポリエン化の問題はさらに問題ないと評価した。
単体透過率は、上記試料について、分光光度計(村上色彩技術研究所(株)製 製品名「DOT-3」)を用いて測定した。なお、単体透過率は、JlS Z 8701に準じて求めることができる。 <Polyene>
The single transmittance of the sample was measured before and after the xenon light irradiation test, and the amount of change ΔTs in the single transmittance was calculated by the following formula.
(Equation) ΔTs = Ts xenon 200-Ts 0
Here, Ts 0 is the simple substance transmittance of the sample before xenon irradiation, and Ts xenon 200 is the simple substance transmittance after the xenon light irradiation test.
When the single transmittance after irradiation with xenon light for 200 hours was −0.5 or more as compared with the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation was within an acceptable range and there was no problem. When the single transmittance after irradiation with xenon light for 200 hours was −0.2 or more as compared with the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation was not a problem. Furthermore, when the single transmittance after irradiation with xenon light for 200 hours is the same as or larger than the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation is not a problem.
The single transmittance was measured for the above sample using a spectrophotometer (product name "DOT-3" manufactured by Murakami Color Technology Research Institute Co., Ltd.). The simple substance transmittance can be obtained according to JlS Z 8701.
キセノン光照射試験の前後で試料の単体透過率を測定し、単体透過率の変化量ΔTsを下式で求めた。
(式) ΔTs=Tsキセノン200-Ts0
ここで、Ts0はキセノン照射前における試料の単体透過率であり、Tsキセノン200はキセノン光照射試験後における単体透過率である。
200時間キセノン光を照射した後の単体透過率が、キセノン光照射前の単体透過率と比べて-0.5以上の場合には、ポリエン化の問題は許容範囲であり問題ないと評価した。200時間キセノン光を照射した後の単体透過率は、キセノン光照射前の単体透過率と比べて-0.2以上の場合には、ポリエン化の問題はより問題ないと評価した。さらに、200時間キセノン光を照射した後の単体透過率が、キセノン光照射前の単体透過率と同じか又はそれより大きい場合には、ポリエン化の問題はさらに問題ないと評価した。
単体透過率は、上記試料について、分光光度計(村上色彩技術研究所(株)製 製品名「DOT-3」)を用いて測定した。なお、単体透過率は、JlS Z 8701に準じて求めることができる。 <Polyene>
The single transmittance of the sample was measured before and after the xenon light irradiation test, and the amount of change ΔTs in the single transmittance was calculated by the following formula.
(Equation) ΔTs = Ts xenon 200-Ts 0
Here, Ts 0 is the simple substance transmittance of the sample before xenon irradiation, and Ts xenon 200 is the simple substance transmittance after the xenon light irradiation test.
When the single transmittance after irradiation with xenon light for 200 hours was −0.5 or more as compared with the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation was within an acceptable range and there was no problem. When the single transmittance after irradiation with xenon light for 200 hours was −0.2 or more as compared with the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation was not a problem. Furthermore, when the single transmittance after irradiation with xenon light for 200 hours is the same as or larger than the single transmittance before irradiation with xenon light, it was evaluated that the problem of polyene formation is not a problem.
The single transmittance was measured for the above sample using a spectrophotometer (product name "DOT-3" manufactured by Murakami Color Technology Research Institute Co., Ltd.). The simple substance transmittance can be obtained according to JlS Z 8701.
<色抜け・加熱赤変>
キセノン光照射試験の前後で、試料をクロスニコルに配置して波長410nmおよび波長700nmの直交透過率(%)を上記分光光度計によりそれぞれ測定し、それぞれの変化量ΔHs410およびΔHs700を求めた。
以下の2つの条件を全て満たすものを、試料の「色抜け」と評価した。
・変化量ΔHs410が1%以上
・変化量ΔHs700が5%以上
言い換えると、200時間キセノン光を照射した後の、波長410nmでの直交透過率の変化量が1%未満、且つ、波長700nmでの直交透過率の変化量が5%未満である場合には、色抜けの問題は存在しないと評価した。
また、以下の条件を満たすものを、試料の「加熱赤変」と評価した。
・変化量ΔHs410が1%未満
・変化量ΔHs700が5%以上
言い換えると、200時間キセノン光を照射した後の、波長410nmでの直交透過率の変化量が1%以上、且つ、波長700nmでの直交透過率の変化量が5%未満である場合には、加熱赤変の問題は存在しないと評価した。 <Color loss / heating red discoloration>
Before and after the xenon light irradiation test, the sample was placed on the cross Nicol and the orthogonal transmittances (%) at wavelengths of 410 nm and 700 nm were measured by the spectrophotometer, respectively, and the respective changes, ΔHs 410 and ΔHs 700, were determined. ..
Those satisfying all of the following two conditions were evaluated as "color loss" of the sample.
-Change amount ΔHs 410 is 1% or more-Change amount ΔHs 700 is 5% or more In other words, the change amount of the orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is less than 1% and the wavelength is 700 nm. When the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that there was no problem of color loss.
In addition, those satisfying the following conditions were evaluated as "heated redness" of the sample.
-Change amount ΔHs 410 is less than 1% -Change amount ΔHs 700 is 5% or more In other words, the amount of change in orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is 1% or more and a wavelength of 700 nm. When the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that the problem of heating redness did not exist.
キセノン光照射試験の前後で、試料をクロスニコルに配置して波長410nmおよび波長700nmの直交透過率(%)を上記分光光度計によりそれぞれ測定し、それぞれの変化量ΔHs410およびΔHs700を求めた。
以下の2つの条件を全て満たすものを、試料の「色抜け」と評価した。
・変化量ΔHs410が1%以上
・変化量ΔHs700が5%以上
言い換えると、200時間キセノン光を照射した後の、波長410nmでの直交透過率の変化量が1%未満、且つ、波長700nmでの直交透過率の変化量が5%未満である場合には、色抜けの問題は存在しないと評価した。
また、以下の条件を満たすものを、試料の「加熱赤変」と評価した。
・変化量ΔHs410が1%未満
・変化量ΔHs700が5%以上
言い換えると、200時間キセノン光を照射した後の、波長410nmでの直交透過率の変化量が1%以上、且つ、波長700nmでの直交透過率の変化量が5%未満である場合には、加熱赤変の問題は存在しないと評価した。 <Color loss / heating red discoloration>
Before and after the xenon light irradiation test, the sample was placed on the cross Nicol and the orthogonal transmittances (%) at wavelengths of 410 nm and 700 nm were measured by the spectrophotometer, respectively, and the respective changes, ΔHs 410 and ΔHs 700, were determined. ..
Those satisfying all of the following two conditions were evaluated as "color loss" of the sample.
-Change amount ΔHs 410 is 1% or more-Change amount ΔHs 700 is 5% or more In other words, the change amount of the orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is less than 1% and the wavelength is 700 nm. When the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that there was no problem of color loss.
In addition, those satisfying the following conditions were evaluated as "heated redness" of the sample.
-Change amount ΔHs 410 is less than 1% -Change amount ΔHs 700 is 5% or more In other words, the amount of change in orthogonal transmittance at a wavelength of 410 nm after irradiation with xenone light for 200 hours is 1% or more and a wavelength of 700 nm. When the amount of change in the orthogonal transmittance in was less than 5%, it was evaluated that the problem of heating redness did not exist.
各実施例及び比較例における評価結果を以下の表2、表3に示す。
The evaluation results in each example and comparative example are shown in Tables 2 and 3 below.
5.評価結果のまとめ
図6は、実施例及び比較例の結果をx-y直交座標系に実施例を中心にプロットしたもの、更に言えば、実施例と比較例の結果が重複する場合には「実施例」の結果を示したもの、これとは逆に、図7は、同様に実施例及び比較例の結果を比較例を中心にプロットしたもの、更に言えば、実施例と比較例の結果が重複する場合には「比較例」の結果を示したものである。x-軸(横軸)は、偏光膜のヨウ素濃度(wt.%)を、y-軸(縦軸)は、偏光フィルム積層体の水分量(g/m2)を、それぞれ示す。 5. Summary of Evaluation Results FIG. 6 is a plot of the results of Examples and Comparative Examples centered on the Examples in the xy orthogonal coordinate system. Furthermore, when the results of the Examples and the Comparative Examples overlap, " The results of "Examples" are shown, and conversely, FIG. 7 is a plot of the results of Examples and Comparative Examples centered on Comparative Examples, and more specifically, the results of Examples and Comparative Examples. When are duplicated, the result of "comparative example" is shown. The x-axis (horizontal axis) indicates the iodine concentration (wt.%) Of the polarizing film, and the y-axis (vertical axis) indicates the water content (g / m 2 ) of the polarizing film laminate.
図6は、実施例及び比較例の結果をx-y直交座標系に実施例を中心にプロットしたもの、更に言えば、実施例と比較例の結果が重複する場合には「実施例」の結果を示したもの、これとは逆に、図7は、同様に実施例及び比較例の結果を比較例を中心にプロットしたもの、更に言えば、実施例と比較例の結果が重複する場合には「比較例」の結果を示したものである。x-軸(横軸)は、偏光膜のヨウ素濃度(wt.%)を、y-軸(縦軸)は、偏光フィルム積層体の水分量(g/m2)を、それぞれ示す。 5. Summary of Evaluation Results FIG. 6 is a plot of the results of Examples and Comparative Examples centered on the Examples in the xy orthogonal coordinate system. Furthermore, when the results of the Examples and the Comparative Examples overlap, " The results of "Examples" are shown, and conversely, FIG. 7 is a plot of the results of Examples and Comparative Examples centered on Comparative Examples, and more specifically, the results of Examples and Comparative Examples. When are duplicated, the result of "comparative example" is shown. The x-axis (horizontal axis) indicates the iodine concentration (wt.%) Of the polarizing film, and the y-axis (vertical axis) indicates the water content (g / m 2 ) of the polarizing film laminate.
(1) プロットの結果及び技術常識から、概して、ヨウ素濃度が小さく且つ水分量が小さすぎる場合には、高温状態で発生する加熱赤変の問題が生じ易く、一方、ヨウ素濃度が大きく且つ水分量が大きすぎる場合には、ポリエン化及び色抜けの問題が生じやすいということができる。また、ヨウ素濃度が小さく且つ水分量が大きすぎる場合には、高温高湿状態で発生する色抜けの問題が生じやすく、この場合、ヨウ素濃度が増すにつれて、ポリエン化の問題が生じ易いということができる。特に、色抜けとポリエン化の間には、それらの間の移行領域(比較例1)も見受けられた。尚、図6に、加熱赤変の結果は特に示していないが、ヨウ素濃度が小さく且つ水分量が小さすぎる場合に、この現象が生ずることは技術常識から明らかであるということができる。
一方で、ヨウ素濃度と水分量の双方が大きすぎることも小さすぎることもなく、両者のバランスが取れた状態にあるとき、従って、ヨウ素濃度及び水分量がそのようなバランスをとることができる所定の領域内に収まる場合には、加熱赤変、ポリエン化、及び色抜けの全てを包括的に解決できることが見て取れる。例えば、実施例の結果は全て、小水分量は小さいがヨウ素濃度は大きい実施例2結果を示すプロットの周辺、即ち、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の座標点(以下、第1座標点)と、ヨウ素濃度は(最も)小さいが水分量は大きい実施例7の結果を示すプロットの周辺、即ち、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の座標点(以下、第2座標点)とを通る仕切り線「α」、即ち、y=(239.4-35x)/42の上側であって、且つ、水分量は(最も)大きいがヨウ素濃度は(最も)小さい実施例6の結果を示すプロットの周辺、即ち、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の座標点(以下、第3座標点)と、ヨウ素濃度は(最も)大きいが水分量は(最も)小さい実施例1の結果を示すプロットの周辺、即ち、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の座標点(以下、第5座標点)とを通る仕切り線「β」、即ち、y=(344.4-44x)/52の下側に位置付けられている。よって、少なくとも、これらの仕切り線「α」、「β」によって仕切られる領域を、加熱赤変、ポリエン化、及び色抜けの全てを包括的に解決するために必要な要件を示す線として捉えることができる。更に、比較例の結果をも考慮すれば、比較例を含むことなく、第3座標点と第5座標点のそれぞれと繋ぐことができる座標点、即ち、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の座標点(以下、第4座標点)を考慮することもできる。即ち、実施例の結果は全て、第3座標点と第4座標点とを通る仕切り線「γ1」、即ち、y=(243.9-25x)/39の下側であって、且つ、第4座標点と第5座標点とを通る仕切り線「γ2」、即ち、y=(142.1-19x)/13の下側に位置付けられている。尚、これらの仕切り線「α」、「β」、「γ1」、及び「γ2」は、偏光膜の膜厚に関わらず、更に言えば、4~30μm程度の膜厚を有する全ての偏光膜に関して適用されるものとなっている。 (1) From the results of plotting and common general knowledge, in general, when the iodine concentration is low and the water content is too small, the problem of heating redness that occurs in a high temperature state is likely to occur, while the iodine concentration is high and the water content is high. If is too large, it can be said that problems of polyenization and color loss are likely to occur. Further, when the iodine concentration is low and the water content is too large, the problem of color loss that occurs in a high temperature and high humidity state is likely to occur, and in this case, the problem of polyene formation is likely to occur as the iodine concentration increases. it can. In particular, a transition region (Comparative Example 1) between them was also found between the color loss and the polyene formation. Although the result of heating redness is not particularly shown in FIG. 6, it can be said that it is clear from common general knowledge that this phenomenon occurs when the iodine concentration is low and the water content is too small.
On the other hand, when both the iodine concentration and the water content are neither too large nor too small and the two are in a balanced state, therefore, the iodine concentration and the water content can be such a balance. If it fits within the area of, it can be seen that heating redness, polyene formation, and color loss can all be comprehensively resolved. For example, all the results of the examples have a small amount of water but a large iodine concentration around the plot showing the results of Example 2, that is, the iodine concentration of 6.0 wt. % And a coordinate point of 0.7 g / m 2 (hereinafter referred to as the first coordinate point) and the periphery of the plot showing the result of Example 7 in which the iodine concentration is (most) small but the water content is large, that is, the iodine concentration. 1.8 wt. % And the partition line "α" passing through the coordinate point of 4.2 g / m 2 (hereinafter referred to as the second coordinate point), that is, above y = (239.4-35x) / 42 and Around the plot showing the results of Example 6, where the water content is (most) high but the iodine concentration is (lowest), that is, the iodine concentration is 1.8 wt. % And a coordinate point of 5.1 g / m 2 (hereinafter referred to as the third coordinate point) and the periphery of the plot showing the results of Example 1 in which the iodine concentration is (most) high but the water content is (lowest). , Iodine concentration 7.0 wt. % And the partition line "β" passing through the coordinate point of 0.7 g / m 2 (hereinafter referred to as the fifth coordinate point), that is, located below y = (344.4-44x) / 52. There is. Therefore, at least, the region partitioned by these partition lines "α" and "β" should be regarded as a line showing the requirements necessary to comprehensively solve all of heating redness, polyene formation, and color loss. Can be done. Further, considering the result of the comparative example, the coordinate point that can be connected to each of the third coordinate point and the fifth coordinate point without including the comparative example, that is, the iodine concentration is 5.7 wt. A coordinate point of% and a water content of 2.6 g / m 2 (hereinafter referred to as a fourth coordinate point) can also be considered. That is, all the results of the examples are below the partition line "γ1" passing between the third coordinate point and the fourth coordinate point, that is, y = (243.9-25x) / 39, and the first It is positioned below the partition line "γ2" that passes between the 4th coordinate point and the 5th coordinate point, that is, y = (142.1-19x) / 13. In addition, these partition lines "α", "β", "γ1", and "γ2" are all polarizing films having a film thickness of about 4 to 30 μm, regardless of the film thickness of the polarizing film. It is to be applied with respect to.
一方で、ヨウ素濃度と水分量の双方が大きすぎることも小さすぎることもなく、両者のバランスが取れた状態にあるとき、従って、ヨウ素濃度及び水分量がそのようなバランスをとることができる所定の領域内に収まる場合には、加熱赤変、ポリエン化、及び色抜けの全てを包括的に解決できることが見て取れる。例えば、実施例の結果は全て、小水分量は小さいがヨウ素濃度は大きい実施例2結果を示すプロットの周辺、即ち、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の座標点(以下、第1座標点)と、ヨウ素濃度は(最も)小さいが水分量は大きい実施例7の結果を示すプロットの周辺、即ち、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の座標点(以下、第2座標点)とを通る仕切り線「α」、即ち、y=(239.4-35x)/42の上側であって、且つ、水分量は(最も)大きいがヨウ素濃度は(最も)小さい実施例6の結果を示すプロットの周辺、即ち、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の座標点(以下、第3座標点)と、ヨウ素濃度は(最も)大きいが水分量は(最も)小さい実施例1の結果を示すプロットの周辺、即ち、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の座標点(以下、第5座標点)とを通る仕切り線「β」、即ち、y=(344.4-44x)/52の下側に位置付けられている。よって、少なくとも、これらの仕切り線「α」、「β」によって仕切られる領域を、加熱赤変、ポリエン化、及び色抜けの全てを包括的に解決するために必要な要件を示す線として捉えることができる。更に、比較例の結果をも考慮すれば、比較例を含むことなく、第3座標点と第5座標点のそれぞれと繋ぐことができる座標点、即ち、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の座標点(以下、第4座標点)を考慮することもできる。即ち、実施例の結果は全て、第3座標点と第4座標点とを通る仕切り線「γ1」、即ち、y=(243.9-25x)/39の下側であって、且つ、第4座標点と第5座標点とを通る仕切り線「γ2」、即ち、y=(142.1-19x)/13の下側に位置付けられている。尚、これらの仕切り線「α」、「β」、「γ1」、及び「γ2」は、偏光膜の膜厚に関わらず、更に言えば、4~30μm程度の膜厚を有する全ての偏光膜に関して適用されるものとなっている。 (1) From the results of plotting and common general knowledge, in general, when the iodine concentration is low and the water content is too small, the problem of heating redness that occurs in a high temperature state is likely to occur, while the iodine concentration is high and the water content is high. If is too large, it can be said that problems of polyenization and color loss are likely to occur. Further, when the iodine concentration is low and the water content is too large, the problem of color loss that occurs in a high temperature and high humidity state is likely to occur, and in this case, the problem of polyene formation is likely to occur as the iodine concentration increases. it can. In particular, a transition region (Comparative Example 1) between them was also found between the color loss and the polyene formation. Although the result of heating redness is not particularly shown in FIG. 6, it can be said that it is clear from common general knowledge that this phenomenon occurs when the iodine concentration is low and the water content is too small.
On the other hand, when both the iodine concentration and the water content are neither too large nor too small and the two are in a balanced state, therefore, the iodine concentration and the water content can be such a balance. If it fits within the area of, it can be seen that heating redness, polyene formation, and color loss can all be comprehensively resolved. For example, all the results of the examples have a small amount of water but a large iodine concentration around the plot showing the results of Example 2, that is, the iodine concentration of 6.0 wt. % And a coordinate point of 0.7 g / m 2 (hereinafter referred to as the first coordinate point) and the periphery of the plot showing the result of Example 7 in which the iodine concentration is (most) small but the water content is large, that is, the iodine concentration. 1.8 wt. % And the partition line "α" passing through the coordinate point of 4.2 g / m 2 (hereinafter referred to as the second coordinate point), that is, above y = (239.4-35x) / 42 and Around the plot showing the results of Example 6, where the water content is (most) high but the iodine concentration is (lowest), that is, the iodine concentration is 1.8 wt. % And a coordinate point of 5.1 g / m 2 (hereinafter referred to as the third coordinate point) and the periphery of the plot showing the results of Example 1 in which the iodine concentration is (most) high but the water content is (lowest). , Iodine concentration 7.0 wt. % And the partition line "β" passing through the coordinate point of 0.7 g / m 2 (hereinafter referred to as the fifth coordinate point), that is, located below y = (344.4-44x) / 52. There is. Therefore, at least, the region partitioned by these partition lines "α" and "β" should be regarded as a line showing the requirements necessary to comprehensively solve all of heating redness, polyene formation, and color loss. Can be done. Further, considering the result of the comparative example, the coordinate point that can be connected to each of the third coordinate point and the fifth coordinate point without including the comparative example, that is, the iodine concentration is 5.7 wt. A coordinate point of% and a water content of 2.6 g / m 2 (hereinafter referred to as a fourth coordinate point) can also be considered. That is, all the results of the examples are below the partition line "γ1" passing between the third coordinate point and the fourth coordinate point, that is, y = (243.9-25x) / 39, and the first It is positioned below the partition line "γ2" that passes between the 4th coordinate point and the 5th coordinate point, that is, y = (142.1-19x) / 13. In addition, these partition lines "α", "β", "γ1", and "γ2" are all polarizing films having a film thickness of about 4 to 30 μm, regardless of the film thickness of the polarizing film. It is to be applied with respect to.
(2)これらのことから、特に、4~30μm程度の膜厚を有する全ての偏光膜について、ヨウ素濃度と、偏光フィルム積層体の水分量が、例えば、a乃至eにより囲まれる領域、更に詳細には、ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点(図中の「a」)と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点(図中の「b」)とを結ぶ第1の線分、第2座標点「b」と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点(図中の「c」)とを結ぶ第2の線分、第3座標点「c」と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4の座標点(図中の「d」)とを結ぶ第3の線分、第4座標点「d」と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点(図中の「e」)とを結ぶ第4の線分、及び第1座標点「a」と第5座標点「e」とを結ぶ第5の線分により囲まれる領域内に含まれる場合には、「ポリエン化」、「色抜け」、及び「加熱赤変」の全てを包括的に解決できることが分かる。
(2) From these facts, in particular, for all the polarizing films having a film thickness of about 4 to 30 μm, the iodine concentration and the water content of the polarizing film laminate are, for example, the region surrounded by a to e, and further details. The iodine concentration is 6.0 wt. % And the first coordinate point (“a” in the figure) having a water content of 0.7 g / m 2 and an iodine concentration of 1.8 wt. The first line segment connecting the second coordinate point (“b” in the figure) of% and the water content of 4.2 g / m 2, the second coordinate point “b”, and the iodine concentration of 1.8 wt. The second line segment connecting the third coordinate point (“c” in the figure) of% and the water content of 5.1 g / m 2, the third coordinate point “c”, and the iodine concentration of 5.7 wt. The third line segment connecting the fourth coordinate point (“d” in the figure) of% and the water content of 2.6 g / m 2, the fourth coordinate point “d”, and the iodine concentration of 7.0 wt. % And the fourth line segment connecting the fifth coordinate point (“e” in the figure) of 0.7 g / m 2 and the first coordinate point “a” and the fifth coordinate point “e”. When it is included in the region surrounded by the fifth line segment to be connected, it can be seen that all of "polyenization", "color loss", and "heating red discoloration" can be comprehensively solved.
(3)同様に、特に、11~30μm程度の膜厚を有する偏光膜について、ヨウ素濃度と、偏光フィルム積層体の水分量が、f、b、c、gにより囲まれる領域、更に詳細には、ヨウ素濃度4.5wt.%及び水分量1.9g/m2の第6座標点(図中の「f」)と第2座標点「b」とを結ぶ第6の線分、第2座標点「b」と第3座標点「c」とを結ぶ第2の線分、第3座標点「c」とヨウ素濃度4.5wt.%及び水分量3.4g/m2の第7座標点(図中の「g」)とを結ぶ第7の線分、及び第6座標点「f」と第7座標点「g」とを結ぶ第8の線分により囲まれる領域内に含まれる場合に、「ポリエン化」、「色抜け」、及び「加熱赤変」の全てを包括的に解決できることが分かる。
特に、第6座標点「f」が、ヨウ素濃度4.0wt.%及び水分量2.4g/m2の第8座標点(図中の「f-1」)であり、第7座標点「g」が、ヨウ素濃度4.0wt.%及び水分量3.7g/m2の第9座標点(図中の「g-1」)である場合に、好ましい結果が得られるものと考えられる。また、第6座標点「f」が、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点(図中の「h」)であり、第7座標点「g」が、第4座標点「d」である場合にも、好ましい結果が得られるものと考えられる。 (3) Similarly, particularly for a polarizing film having a film thickness of about 11 to 30 μm, the iodine concentration and the water content of the polarizing film laminate are surrounded by f, b, c, and g, and more specifically. , Iodine concentration 4.5 wt. The sixth line segment connecting the sixth coordinate point (“f” in the figure) and the second coordinate point “b” with% and water content of 1.9 g / m 2, the second coordinate point “b” and the third. The second line segment connecting the coordinate point "c", the third coordinate point "c" and the iodine concentration 4.5 wt. % And the 7th line segment connecting the 7th coordinate point (“g” in the figure) of 3.4 g / m 2 and the 6th coordinate point “f” and the 7th coordinate point “g”. It can be seen that all of "polyenization", "color loss", and "heating red discoloration" can be comprehensively solved when they are included in the region surrounded by the eighth line segment connecting them.
In particular, the sixth coordinate point "f" has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m 2 , which is the 8th coordinate point (“f-1” in the figure), and the 7th coordinate point “g” is the iodine concentration of 4.0 wt. It is considered that a preferable result can be obtained when it is the ninth coordinate point (“g-1” in the figure) of% and the water content of 3.7 g / m 2. The sixth coordinate point "f" has an iodine concentration of 3.7 wt. % And the water content is 2.6 g / m 2 , which is the 10th coordinate point (“h” in the figure), and the 7th coordinate point “g” is also the 4th coordinate point “d”, which is a preferable result. Is considered to be obtained.
特に、第6座標点「f」が、ヨウ素濃度4.0wt.%及び水分量2.4g/m2の第8座標点(図中の「f-1」)であり、第7座標点「g」が、ヨウ素濃度4.0wt.%及び水分量3.7g/m2の第9座標点(図中の「g-1」)である場合に、好ましい結果が得られるものと考えられる。また、第6座標点「f」が、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点(図中の「h」)であり、第7座標点「g」が、第4座標点「d」である場合にも、好ましい結果が得られるものと考えられる。 (3) Similarly, particularly for a polarizing film having a film thickness of about 11 to 30 μm, the iodine concentration and the water content of the polarizing film laminate are surrounded by f, b, c, and g, and more specifically. , Iodine concentration 4.5 wt. The sixth line segment connecting the sixth coordinate point (“f” in the figure) and the second coordinate point “b” with% and water content of 1.9 g / m 2, the second coordinate point “b” and the third. The second line segment connecting the coordinate point "c", the third coordinate point "c" and the iodine concentration 4.5 wt. % And the 7th line segment connecting the 7th coordinate point (“g” in the figure) of 3.4 g / m 2 and the 6th coordinate point “f” and the 7th coordinate point “g”. It can be seen that all of "polyenization", "color loss", and "heating red discoloration" can be comprehensively solved when they are included in the region surrounded by the eighth line segment connecting them.
In particular, the sixth coordinate point "f" has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m 2 , which is the 8th coordinate point (“f-1” in the figure), and the 7th coordinate point “g” is the iodine concentration of 4.0 wt. It is considered that a preferable result can be obtained when it is the ninth coordinate point (“g-1” in the figure) of% and the water content of 3.7 g / m 2. The sixth coordinate point "f" has an iodine concentration of 3.7 wt. % And the water content is 2.6 g / m 2 , which is the 10th coordinate point (“h” in the figure), and the 7th coordinate point “g” is also the 4th coordinate point “d”, which is a preferable result. Is considered to be obtained.
(4)更に、特に、4~11μm程度の膜厚を有する偏光膜について、ヨウ素濃度と、偏光フィルム積層体の水分量が、a、h、d、eにより囲まれる領域、更に詳細には、第1座標点「a」と第10座標点「h」とを結ぶ第9の線分、第10座標点「h」と第4座標点「d」とを結ぶ第11の線分、及び第1座標点「a」と第5座標点「e」とを結ぶ第5の線分により囲まれる領域内に含まれる場合に、「ポリエン化」、「色抜け」、及び「加熱赤変」の全てを包括的に解決できることが分かる。
(4) Further, particularly for a polarizing film having a film thickness of about 4 to 11 μm, a region in which the iodine concentration and the water content of the polarizing film laminate are surrounded by a, h, d, and e, more specifically, A ninth line segment connecting the first coordinate point "a" and the tenth coordinate point "h", an eleventh line segment connecting the tenth coordinate point "h" and the fourth coordinate point "d", and a first line segment. When it is included in the area surrounded by the fifth line segment connecting the 1st coordinate point "a" and the 5th coordinate point "e", "polyenization", "color loss", and "heating reddening" It turns out that everything can be solved comprehensively.
更に、図6と図7の比較等から明らかなように、光吸収能を有する光吸収層を設けることによって、取り分け、ポリエン化が効果的に防止されていることが分かる。
Further, as is clear from the comparison between FIGS. 6 and 7, it can be seen that the polyene formation is effectively prevented by providing the light absorption layer having a light absorption ability.
なお、上記実施例では、偏光膜保護フィルムに光吸収剤を入れた例を示した。しかし、透明接着剤(OCA)13(透明接着層)に光吸収剤(紫外線吸収剤)を含有させて、上記信頼性試験を行った場合でも同様の結果が得られる。また、カバー板14(透明なカバー板)に光吸収剤(紫外線吸収剤)を含有させて、上記信頼性試験を行った場合でも同様の結果が得られる。なお、その場合、透明接着剤13より視認側には、ガラス板(松浪硝子製スライドグラス、品番:S2000423、仕様:水縁磨 65×165mm、 厚み1.3mm)ではなく、カバー板14を用いて信頼性試験を行う。
In the above embodiment, an example in which a light absorber was added to the polarizing film protective film was shown. However, the same result can be obtained even when the transparent adhesive (OCA) 13 (transparent adhesive layer) contains a light absorber (ultraviolet absorber) and the above reliability test is performed. Further, the same result can be obtained even when the cover plate 14 (transparent cover plate) contains a light absorber (ultraviolet absorber) and the above reliability test is performed. In that case, use the cover plate 14 instead of the glass plate (Matsunami glass slide glass, product number: S2000423, specifications: water edge polishing 65 x 165 mm, thickness 1.3 mm) on the visible side of the transparent adhesive 13. Perform a reliability test.
1 光学的表示パネル
10 光学的表示セル
11 透明接着剤
12 偏光フィルム積層体
13 透明接着剤
14 透明なカバー板
120 偏光膜
121 光吸収能を有する偏光膜保護フィルム
122 偏光膜保護フィルム 1Optical display panel 10 Optical display cell 11 Transparent adhesive 12 Polarizing film laminate 13 Transparent adhesive 14 Transparent cover plate 120 Polarizing film 121 Polarizing film protective film with light absorption capacity 122 Polarizing film protective film
10 光学的表示セル
11 透明接着剤
12 偏光フィルム積層体
13 透明接着剤
14 透明なカバー板
120 偏光膜
121 光吸収能を有する偏光膜保護フィルム
122 偏光膜保護フィルム 1
Claims (21)
- ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分
により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下である、ことを特徴とする偏光フィルム積層体。 A polarizing film laminate comprising a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to at least the viewing side surface of the polarizing film or via another optical film. hand,
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. Included in the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Has an iodine concentration and water content
The polarizing film protective film is a light absorbing layer having a light absorbing ability, and is a polarizing film laminate characterized by having a light transmittance of 5% or less at a wavelength of 380 nm. - 前記偏光膜の膜厚が4~30μmである、請求項1に記載の偏光フィルム積層体。 The polarizing film laminate according to claim 1, wherein the polarizing film has a film thickness of 4 to 30 μm.
- ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度4.5wt.%及び水分量1.9g/m2の第6座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第6の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度4.5wt.%及び水分量3.4g/m2の第7座標点とを結ぶ第7の線分、及び
前記第6座標点と前記第7座標点とを結ぶ第8の線分
により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下である、ことを特徴とする偏光フィルム積層体。 A polarizing film laminate comprising a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to at least the viewing side surface of the polarizing film or via another optical film. hand,
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 4.5 wt. % And the sixth coordinate point of 1.9 g / m2 of water content and the iodine concentration of 1.8 wt. % And a sixth line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 4.5 wt. Included in the area surrounded by the 7th line segment connecting the 7th coordinate point of% and the water content of 3.4 g / m2 and the 8th line segment connecting the 6th coordinate point and the 7th coordinate point. Has an iodine concentration and water content
The polarizing film protective film is a light absorbing layer having a light absorbing ability, and is a polarizing film laminate characterized by having a light transmittance of 5% or less at a wavelength of 380 nm. - 前記第6座標点が、ヨウ素濃度4.0wt.%及び水分量2.4g/m2の第8座標点であり、前記第7座標点が、ヨウ素濃度4.0wt.%及び水分量3.7g/m2の第9座標点である、請求項3に記載の偏光フィルム積層体。 The sixth coordinate point has an iodine concentration of 4.0 wt. % And the water content is 2.4 g / m2, which is the eighth coordinate point, and the seventh coordinate point is the iodine concentration of 4.0 wt. The polarizing film laminate according to claim 3, which is a ninth coordinate point having a% and a water content of 3.7 g / m2.
- 前記第6座標点が、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点であり、前記第7座標点が、前記第4座標点である、請求項3に記載の偏光フィルム積層体。 The sixth coordinate point has an iodine concentration of 3.7 wt. The polarizing film laminate according to claim 3, wherein the 10th coordinate point has a% and a water content of 2.6 g / m2, and the 7th coordinate point is the 4th coordinate point.
- 前記偏光膜の膜厚が11~30μmである、請求項3又は4に記載の偏光フィルム積層体。 The polarizing film laminate according to claim 3 or 4, wherein the polarizing film has a film thickness of 11 to 30 μm.
- ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体であって、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度3.7wt.%及び水分量2.6g/m2の第10座標点とを結ぶ第9の線分、
前記第10座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第10の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第11の線分、
及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分
により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記偏光膜保護フィルムは、光吸収能を有する光吸収層であり、波長380nmでの光の透過率が5%以下である、ことを特徴とする偏光フィルム積層体。 A polarizing film laminate comprising a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to at least the viewing side surface of the polarizing film or via another optical film. hand,
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 3.7 wt. % And the ninth line segment connecting the tenth coordinate point with a water content of 2.6 g / m2,
The tenth coordinate point and the iodine concentration of 5.7 wt. % And the tenth line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. % And the eleventh line segment connecting the fifth coordinate point with a water content of 0.7 g / m2,
as well as
It has an iodine concentration and a water content contained in a region surrounded by a fifth line segment connecting the first coordinate point and the fifth coordinate point.
The polarizing film protective film is a light absorbing layer having a light absorbing ability, and is a polarizing film laminate characterized by having a light transmittance of 5% or less at a wavelength of 380 nm. - 前記偏光膜の膜厚が4~11μmである、請求項7に記載の偏光フィルム積層体。 The polarizing film laminate according to claim 7, wherein the polarizing film has a film thickness of 4 to 11 μm.
- 前記偏光膜保護フィルムは、波長390nmでの光の透過率が35%以下である、請求項1乃至8のいずれかに記載の偏光フィルム積層体。 The polarizing film laminate according to any one of claims 1 to 8, wherein the polarizing film protective film has a light transmittance of 35% or less at a wavelength of 390 nm.
- )
前記偏光膜保護フィルムは、波長400nmでの光の透過率が70%以下である、請求項1乃至9のいずれかに記載の偏光フィルム積層体。 )
The polarizing film laminate according to any one of claims 1 to 9, wherein the polarizing film protective film has a light transmittance of 70% or less at a wavelength of 400 nm. - 前記偏光膜が亜鉛を含有する、請求項1乃至10のいずれかに記載の偏光フィルム積層体。 The polarizing film laminate according to any one of claims 1 to 10, wherein the polarizing film contains zinc.
- 請求項1乃至11のいずれかに記載の偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料を、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の単体透過率が、照射前の単体透過率と比べて-0.5以上である、請求項1乃至11のいずれかに記載の偏光フィルム積層体。 A sample composed of the polarizing film laminate according to any one of claims 1 to 11 and a glass plate laminated on both sides of the polarizing film laminate with an adhesive, a black panel temperature of 89 ° C. and 30%. R. H. The single transmittance after irradiating xenone light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m2 is -0.5 or more as compared with the single transmittance before irradiation. The polarizing film laminate according to any one of claims 1 to 11.
- 請求項1乃至12のいずれかに記載の偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料における、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の、波長410nmでの直交透過率の変化量が1%未満、且つ、波長700nmでの直交透過率の変化量が5%未満である、請求項1乃至12のいずれかに記載の偏光フィルム積層体。 A black panel temperature of 89 ° C., 30% in a sample comprising the polarizing film laminate according to any one of claims 1 to 12 and a glass plate laminated on both sides of the polarizing film laminate with an adhesive. R. H. After irradiating xenon light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m2, the amount of change in the orthogonal transmittance at a wavelength of 410 nm is less than 1% and at a wavelength of 700 nm. The polarizing film laminate according to any one of claims 1 to 12, wherein the amount of change in the orthogonal transmittance is less than 5%.
- 請求項1乃至13のいずれかに記載の偏光フィルム積層体と、該偏光フィルム積層体の両面に粘着剤を介して積層されたガラス板と、から成る試料における、ブラックパネル温度89℃、30%R.H.の雰囲気下でキセノン光を300~400nmの波長域で積算した放射照度100W/m2で200時間照射した後の、波長410nmでの直交透過率の変化量が1%以上、且つ、波長700nmでの直交透過率の変化量が5%未満である、請求項1乃至13のいずれかに記載の偏光フィルム積層体。 A sample comprising the polarizing film laminate according to any one of claims 1 to 13 and a glass plate laminated on both sides of the polarizing film laminate via an adhesive, at a black panel temperature of 89 ° C. and 30%. R. H. After irradiating xenon light in the wavelength range of 300 to 400 nm for 200 hours with an irradiance of 100 W / m2, the amount of change in the orthogonal transmittance at a wavelength of 410 nm is 1% or more, and the wavelength is 700 nm. The polarizing film laminate according to any one of claims 1 to 13, wherein the amount of change in the orthogonal transmittance is less than 5%.
- 光学的表示セルと、
前記光学的表示セルの一方の面に直接又は他の光学フィルムを介して接合された請求項1乃至14のいずれかに記載の偏光フィルム積層体と、
前記光学的表示セルとは反対側において前記偏光フィルム積層体に沿って配置される光学的に透明なカバー板と、
を備え、
前記光学的表示セルと、前記偏光フィルム積層体と、前記透明カバー板とは、それらの間を空隙がない状態に充填する透明接着層により接着されている、
ことを特徴とする、光学表示パネル。 Optical display cell and
The polarizing film laminate according to any one of claims 1 to 14, which is bonded directly to one surface of the optical display cell or via another optical film.
An optically transparent cover plate arranged along the polarizing film laminate on the side opposite to the optical display cell,
With
The optical display cell, the polarizing film laminate, and the transparent cover plate are adhered to each other by a transparent adhesive layer that fills the space between them without any voids.
An optical display panel that features this. - 前記透明なカバー板が、容量型タッチセンサーの機能を有する、請求項15に記載の光学表示パネル。 The optical display panel according to claim 15, wherein the transparent cover plate has a function of a capacitive touch sensor.
- 前記透明なカバー板と前記偏光フィルム積層体との間に容量型タッチセンサーの構成要素となるITO層が設けられている、請求項16に記載の光学表示パネル。 The optical display panel according to claim 16, wherein an ITO layer as a component of a capacitive touch sensor is provided between the transparent cover plate and the polarizing film laminate.
- ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、
前記偏光フィルム積層体よりも視認側に積層された透明接着層と、を備え、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分
により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記透明接着層及び前記偏光膜保護フィルムのうち、少なくとも前記透明接着層は、光吸収能を有する光吸収層であり、
前記透明接着層及び前記偏光膜保護フィルムの積層体の波長380nmでの光の透過率が5%以下である、ことを特徴とする透明接着層付きの偏光フィルム積層体。 A polarizing film laminate provided with a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to at least the viewing side surface of the polarizing film or via another optical film.
A transparent adhesive layer laminated on the visual side of the polarizing film laminate is provided.
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. Included in the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Has an iodine concentration and water content
Of the transparent adhesive layer and the polarizing film protective film, at least the transparent adhesive layer is a light absorbing layer having a light absorbing ability.
A polarizing film laminate with a transparent adhesive layer, characterized in that the light transmittance of the transparent adhesive layer and the laminate of the polarizing film protective film at a wavelength of 380 nm is 5% or less. - ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の視認側と反対側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、
前記偏光フィルム積層体よりも視認側に積層された透明接着層と、を備え、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記透明接着層は、光吸収能を有する光吸収層であり、
前記透明接着層の波長380nmでの光の透過率が5%以下である、ことを特徴とする透明接着層付きの偏光フィルム積層体。 A polarizing film laminate comprising a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to the surface of the polarizing film on the side opposite to the visible side or via another optical film. When,
A transparent adhesive layer laminated on the visual side of the polarizing film laminate is provided.
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. Included in the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Has an iodine concentration and water content
The transparent adhesive layer is a light absorbing layer having a light absorbing ability.
A polarizing film laminate with a transparent adhesive layer, characterized in that the light transmittance of the transparent adhesive layer at a wavelength of 380 nm is 5% or less. - ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の少なくとも視認側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、
前記偏光フィルム積層体よりも視認側に積層された透明接着層と、
前記透明接着層よりも視認側に積層された光学的に透明なカバー板と、を備え、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分
により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記偏光膜保護フィルム、前記透明接着層及び前記透明なカバー板のうち、少なくとも前記透明なカバー板は、光吸収能を有する光吸収層であり、
前記偏光膜保護フィルム、前記透明接着層及び前記透明なカバー板の積層体の波長380nmでの光の透過率が5%以下である、ことを特徴とする偏光フィルム組立体。 A polarizing film laminate provided with a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to at least the viewing side surface of the polarizing film or via another optical film.
A transparent adhesive layer laminated on the visual side of the polarizing film laminate,
An optically transparent cover plate laminated on the visual side of the transparent adhesive layer is provided.
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. Included in the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Has an iodine concentration and water content
Of the polarizing film protective film, the transparent adhesive layer, and the transparent cover plate, at least the transparent cover plate is a light absorbing layer having a light absorbing ability.
A polarizing film assembly characterized in that the light transmittance of the polarizing film protective film, the transparent adhesive layer, and the laminated body of the transparent cover plate at a wavelength of 380 nm is 5% or less. - ポリビニルアルコール系樹脂から成る偏光膜と、前記偏光膜の視認側と反対側の面に直接又は他の光学フィルムを介して接合された光学的に透明な偏光膜保護フィルムを備えた偏光フィルム積層体と、
前記偏光フィルム積層体よりも視認側に積層された透明接着層と、
前記透明接着層よりも視認側に積層された光学的に透明なカバー板と、を備え、
x-軸に前記偏光膜のヨウ素濃度(wt.%)を、y-軸に前記偏光フィルム積層体の水分量(g/m2)をそれぞれとったx-y直交座標系において、
ヨウ素濃度6.0wt.%及び水分量0.7g/m2の第1座標点と、ヨウ素濃度1.8wt.%及び水分量4.2g/m2の第2座標点とを結ぶ第1の線分、
前記第2座標点と、ヨウ素濃度1.8wt.%及び水分量5.1g/m2の第3座標点とを結ぶ第2の線分、
前記第3座標点と、ヨウ素濃度5.7wt.%及び水分量2.6g/m2の第4座標点とを結ぶ第3の線分、
前記第4座標点と、ヨウ素濃度7.0wt.%及び水分量0.7g/m2の第5座標点とを結ぶ第4の線分、及び
前記第1座標点と前記第5座標点とを結ぶ第5の線分により囲まれる領域内に含まれるヨウ素濃度及び水分量を有し、
前記透明接着層及び前記透明なカバー板のうち、少なくとも前記透明なカバー板は、光吸収能を有する光吸収層であり、
前記透明接着層及び前記透明なカバー板の積層体の波長380nmでの光の透過率が5%以下である、ことを特徴とする偏光フィルム組立体。 A polarizing film laminate comprising a polarizing film made of a polyvinyl alcohol-based resin and an optically transparent polarizing film protective film bonded directly to the surface of the polarizing film on the side opposite to the visible side or via another optical film. When,
A transparent adhesive layer laminated on the visual side of the polarizing film laminate,
An optically transparent cover plate laminated on the visual side of the transparent adhesive layer is provided.
In an xy Cartesian coordinate system in which the iodine concentration (wt.%) Of the polarizing film is on the x-axis and the water content (g / m2) of the polarizing film laminate is on the y-axis.
Iodine concentration 6.0 wt. % And the first coordinate point with a water content of 0.7 g / m2 and an iodine concentration of 1.8 wt. % And the first line segment connecting the second coordinate point with a water content of 4.2 g / m2,
The second coordinate point and the iodine concentration of 1.8 wt. % And a second line segment connecting the third coordinate point with a water content of 5.1 g / m2,
The third coordinate point and the iodine concentration of 5.7 wt. % And a third line segment connecting the fourth coordinate point with a water content of 2.6 g / m2,
The fourth coordinate point and the iodine concentration of 7.0 wt. Included in the area surrounded by the fourth line segment connecting the fifth coordinate point of% and the water content of 0.7 g / m2 and the fifth line segment connecting the first coordinate point and the fifth coordinate point. Has an iodine concentration and water content
Of the transparent adhesive layer and the transparent cover plate, at least the transparent cover plate is a light absorbing layer having a light absorbing ability.
A polarizing film assembly characterized in that the light transmittance of the transparent adhesive layer and the laminated body of the transparent cover plate at a wavelength of 380 nm is 5% or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227007841A KR20220054320A (en) | 2019-08-28 | 2020-08-28 | A polarizing film laminate, an optical display panel in which the polarizing film laminate is used, a polarizing film laminate with a transparent adhesive layer, and a polarizing film assembly |
CN202080060899.XA CN114303080A (en) | 2019-08-28 | 2020-08-28 | Polarizing film laminate, optical display panel using same, polarizing film laminate with transparent adhesive layer, and polarizing film assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-155864 | 2019-08-28 | ||
JP2019155864 | 2019-08-28 | ||
JP2020140953A JP2021039339A (en) | 2019-08-28 | 2020-08-24 | Polarizing film laminate, optical display panel in which polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly |
JP2020-140953 | 2020-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039987A1 true WO2021039987A1 (en) | 2021-03-04 |
Family
ID=74684255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032666 WO2021039987A1 (en) | 2019-08-28 | 2020-08-28 | Polarizing film laminate, optical display panel in which said polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20220054320A (en) |
CN (1) | CN114303080A (en) |
WO (1) | WO2021039987A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240023418A1 (en) * | 2021-05-27 | 2024-01-18 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display module |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003029042A (en) * | 2001-07-19 | 2003-01-29 | Nitto Denko Corp | Polarizer, polarizing plate and liquid crystal display device |
JP2010243858A (en) * | 2009-04-07 | 2010-10-28 | Nitto Denko Corp | Polarizing plate, liquid crystal panel, and liquid crystal display device |
JP2014102353A (en) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | Polarizing plate and image display device, and manufacturing method of those |
JP2014108541A (en) * | 2012-11-30 | 2014-06-12 | Fujifilm Corp | Transfer film and transparent laminate, method for manufacturing the same, electrostatic capacitive input device and image display device |
JP2015036734A (en) * | 2013-08-12 | 2015-02-23 | 富士フイルム株式会社 | Liquid crystal display device |
JP2015052765A (en) * | 2013-09-09 | 2015-03-19 | 日東電工株式会社 | Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device |
JP2016157081A (en) * | 2015-02-26 | 2016-09-01 | 日東電工株式会社 | Polarizing film with retardation layer, and image display device |
JP2019053291A (en) * | 2016-07-29 | 2019-04-04 | 住友化学株式会社 | Optical laminate |
JP2019056932A (en) * | 2018-12-20 | 2019-04-11 | 日東電工株式会社 | Laminated optical film, manufacturing method for the same and image display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002090546A (en) | 2000-07-10 | 2002-03-27 | Nitto Denko Corp | Polarizing plate and method for manufacturing the same |
JP2006184883A (en) | 2004-12-03 | 2006-07-13 | Konica Minolta Opto Inc | Polarizing plate protection film, and polarizing plate and liquid crystal display using same |
KR101400358B1 (en) * | 2012-05-23 | 2014-05-27 | 주식회사 케이오씨솔루션 | Method of producing polythiol compound for optical material and polymerizable composition for optical material comprising the polythiol compound |
JP6857451B2 (en) * | 2016-04-20 | 2021-04-14 | 日東電工株式会社 | Active energy ray-curable adhesive composition, laminated polarizing film and its manufacturing method, laminated optical film and image display device |
JP7236217B2 (en) * | 2018-02-08 | 2023-03-09 | 日東電工株式会社 | Polarizing plate with adhesive |
-
2020
- 2020-08-28 WO PCT/JP2020/032666 patent/WO2021039987A1/en active Application Filing
- 2020-08-28 KR KR1020227007841A patent/KR20220054320A/en unknown
- 2020-08-28 CN CN202080060899.XA patent/CN114303080A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003029042A (en) * | 2001-07-19 | 2003-01-29 | Nitto Denko Corp | Polarizer, polarizing plate and liquid crystal display device |
JP2010243858A (en) * | 2009-04-07 | 2010-10-28 | Nitto Denko Corp | Polarizing plate, liquid crystal panel, and liquid crystal display device |
JP2014102353A (en) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | Polarizing plate and image display device, and manufacturing method of those |
JP2014108541A (en) * | 2012-11-30 | 2014-06-12 | Fujifilm Corp | Transfer film and transparent laminate, method for manufacturing the same, electrostatic capacitive input device and image display device |
JP2015036734A (en) * | 2013-08-12 | 2015-02-23 | 富士フイルム株式会社 | Liquid crystal display device |
JP2015052765A (en) * | 2013-09-09 | 2015-03-19 | 日東電工株式会社 | Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device |
JP2016157081A (en) * | 2015-02-26 | 2016-09-01 | 日東電工株式会社 | Polarizing film with retardation layer, and image display device |
JP2019053291A (en) * | 2016-07-29 | 2019-04-04 | 住友化学株式会社 | Optical laminate |
JP2019056932A (en) * | 2018-12-20 | 2019-04-11 | 日東電工株式会社 | Laminated optical film, manufacturing method for the same and image display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240023418A1 (en) * | 2021-05-27 | 2024-01-18 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display module |
Also Published As
Publication number | Publication date |
---|---|
KR20220054320A (en) | 2022-05-02 |
CN114303080A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6852101B2 (en) | A reinforced polarizing optical film laminate for a powered vehicle and an optical display panel in which the reinforced polarizing optical film laminate is used. | |
JPWO2020100869A1 (en) | Image display device | |
JPWO2020100887A1 (en) | A polarizing film, a polarizing film, a laminated polarizing film, an image display panel, an image display device, and a method for manufacturing the polarizing film. | |
JPWO2020100845A1 (en) | Polarizing film, laminated polarizing film, image display panel, and image display device | |
WO2021039987A1 (en) | Polarizing film laminate, optical display panel in which said polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly | |
JP2021039339A (en) | Polarizing film laminate, optical display panel in which polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly | |
JP7430745B2 (en) | Polarizing plate and its manufacturing method | |
WO2021225117A1 (en) | Image display panel and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20859259 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227007841 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20859259 Country of ref document: EP Kind code of ref document: A1 |