WO2021039828A1 - シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法 - Google Patents
シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法 Download PDFInfo
- Publication number
- WO2021039828A1 WO2021039828A1 PCT/JP2020/032136 JP2020032136W WO2021039828A1 WO 2021039828 A1 WO2021039828 A1 WO 2021039828A1 JP 2020032136 W JP2020032136 W JP 2020032136W WO 2021039828 A1 WO2021039828 A1 WO 2021039828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft magnetic
- magnetic powder
- silicon oxide
- based soft
- coated
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 141
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 136
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000002002 slurry Substances 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000012046 mixed solvent Substances 0.000 claims abstract description 29
- 239000010703 silicon Substances 0.000 claims abstract description 29
- 238000000576 coating method Methods 0.000 claims abstract description 26
- -1 silicon alkoxide Chemical class 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims description 59
- 239000011247 coating layer Substances 0.000 claims description 31
- 230000001186 cumulative effect Effects 0.000 claims description 28
- 238000006460 hydrolysis reaction Methods 0.000 claims description 24
- 238000009826 distribution Methods 0.000 claims description 20
- 230000007062 hydrolysis Effects 0.000 claims description 20
- 238000000691 measurement method Methods 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 7
- 239000007771 core particle Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 2
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 149
- 239000000843 powder Substances 0.000 description 61
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 29
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 20
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 238000003756 stirring Methods 0.000 description 14
- 150000004703 alkoxides Chemical class 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000000428 dust Substances 0.000 description 9
- 150000004819 silanols Chemical class 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 238000011978 dissolution method Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000002186 photoelectron spectrum Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910008458 Si—Cr Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 229940035429 isobutyl alcohol Drugs 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000011085 pressure filtration Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 2
- UCSBCWBHZLSFGC-UHFFFAOYSA-N tributoxysilane Chemical compound CCCCO[SiH](OCCCC)OCCCC UCSBCWBHZLSFGC-UHFFFAOYSA-N 0.000 description 2
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 2
- OZWKZRFXJPGDFM-UHFFFAOYSA-N tripropoxysilane Chemical compound CCCO[SiH](OCCC)OCCC OZWKZRFXJPGDFM-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 241000892865 Heros Species 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GKMQWTVAAMITHR-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O.CCC(C)O GKMQWTVAAMITHR-UHFFFAOYSA-N 0.000 description 1
- FBSCWAJILZTGOJ-UHFFFAOYSA-N butan-2-ol;2-methylpropan-2-ol Chemical compound CCC(C)O.CC(C)(C)O FBSCWAJILZTGOJ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
- B22F2302/256—Silicium oxide (SiO2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to a silicon oxide-coated Fe-based soft magnetic powder having good insulating properties, which is suitable for producing dust cores of electrical and electronic parts such as inductors, choke coils, transformers, reactors and motors, and a method for producing the same.
- powder magnetic cores using Fe-based soft magnetic powders such as iron powder, alloy powder containing iron, and intermetallic compound powder are known.
- the powder magnetic core using the Fe-based soft magnetic powder containing iron has a lower electrical resistivity than the powder magnetic core using ferrite, the surface of the Fe-based soft magnetic powder is insulating. It is manufactured by applying compression molding and heat treatment after coating the film.
- silicon oxide coatings are known as highly insulating coatings.
- the Fe-based soft magnetic powder coated with silicon oxide by a wet method for example, in Patent Document 1, after dissolving Si alkoxide in water, the hydrolysis product of Si alkoxide contained in the solution is mainly iron.
- a method for forming a silica coating of a soft magnetic powder for a powder magnetic core, which coats the surface of the soft magnetic powder as a component, and a method for producing a powder magnetic core using the soft magnetic powder are disclosed.
- TEOS, isopropanol (IPA) as an organic solvent, alkali, and water are contained on the surface of a soft magnetic powder containing Fe as a main component, and the concentrations of TEOS and water are adjusted to predetermined values.
- a silica film is formed by the hydrolyzed solution.
- Patent Document 2 discloses a soft magnetic powder for powder magnetic cores in which a silica-based insulating film containing a silicone resin and Si alkoxide is coated on the surface of an Fe-based soft magnetic powder having a particle size of about 50 ⁇ m, and a method for producing the same. ing.
- a silicone resin is dissolved in IPA as a solvent, TEOS is added as Si alkoxide to the solution, and the mixture is stirred and mixed, and then an acid catalyst and water are added to the solution to add a silica sol-gel coating solution. Is getting.
- TEOS is hydrolyzed in IPA in advance, and the produced fine particles of the hydrolysis product of TEOS are Fe-based soft magnetic powder. Since a silicon-based oxide film is formed by adhering to the surface of the above, the obtained silicon-based oxide film has many defects, and it is difficult to obtain a high volume resistivity when molded as a green compact. there were.
- the applicant has applied to a soft magnetic powder coated with a highly insulating silicon oxide capable of obtaining a high volume resistivity when molded as a green compact and a method for producing the same, according to Japanese Patent Application No. 2019-025026.
- a soft magnetic powder containing 20% by mass or more of iron is dispersed in a mixed solvent in which water and an organic solvent are mixed in advance, silicon oxide is added to the slurry, and then a hydrolysis catalyst for silicon oxide is used.
- a hydrolysis reaction of silicon alkide is caused on the surface of the soft magnetic powder, and a silicon oxide coating having few defects is obtained.
- the soft magnetic powder mainly as a laser diffraction particle size distribution measurement is cumulative 50% particle size D 50 based on volume obtained of 1.0 ⁇ m or 5.0 ⁇ m or less under the law fine
- the powder magnetic core formed from the soft magnetic powder of such a size is used for an application such as an inductor.
- a cumulative 50% particle size D 50 based on the volume obtained by the laser diffraction type particle size distribution measurement method usually used for dust cores for applications such as motor coils and reactors. It was found that there is room for further improvement of the invention when the production method of the present invention is applied to an Fe-based soft magnetic powder having a particle size of more than 5 ⁇ m and 200 ⁇ m or less.
- the present invention is excellent in insulating properties by preferably coating the surface of an Fe-based soft magnetic powder having a relatively large particle size of D 50 of more than 5 ⁇ m and more than 200 ⁇ m or less with a silicon oxide. It is an object of the present invention to provide a silicon oxide-coated Fe-based soft magnetic powder and a method for producing the same.
- the cumulative 50% particle size D 50 based on the volume obtained by the distribution measurement method is more than 5 ⁇ m and 200 ⁇ m or less, and the volume resistivity of the green compact obtained by rolling down at 12.73 MPa using the double ring electrode method is 1.
- a silicon oxide-coated Fe-based soft magnetic powder having a size of .0 ⁇ 10 4 ⁇ ⁇ cm or more is provided.
- R The mole fraction of Si with respect to the total mole fraction of the elements other than oxygen when measured by X-ray photoelectron spectroscopy (XPS) for elements other than oxygen in the silicon oxide-coated Fe-based soft magnetic powder. Percentage.
- the cumulative 50% particle size D 50 based on the volume obtained by the laser diffraction type particle size distribution measurement method of the silicon oxide-coated Fe-based soft magnetic powder according to the above items (1) and (2) is 20 ⁇ m or more and 200 ⁇ m or less. Is preferable.
- a method for producing a silicon oxide-coated Fe-based soft magnetic powder in which the surface of the Fe-based soft magnetic powder is coated with a silicon oxide having an average film thickness of 1 nm or more and 80 nm or less, and the solubility parameter of Hansen at 25 ° C.
- the step of solid-liquid separating the slurry in which the magnetic powder is dispersed to obtain an Fe-based soft magnetic powder coated with silicon oxide, and the step of drying the Fe-based soft magnetic powder coated with the silicon oxide are included.
- a method for producing a silicon oxide-coated Fe-based soft magnetic powder is provided.
- the cumulative 50% particle size D 50 based on the volume of the above item (4) is preferably 20 ⁇ m or more and 200 ⁇ m or less.
- the temperature of the slurry when carrying out the addition step of the above item (4) is preferably 10 ° C. or higher and 70 ° C. or lower.
- the temperature of the slurry when carrying out the addition step of the above item (4) is more preferably 20 ° C. or higher and 70 ° C. or lower.
- the silicon oxide-coated Fe-based soft magnetic powder obtained by the production method according to (4) above is a volume-based cumulative 50% particles obtained by a laser diffraction particle size distribution measurement method after coating silicon oxide.
- the diameter D 50 is preferably more than 5 ⁇ m and 200 ⁇ m or less.
- the silicon oxide-coated Fe-based soft magnetic powder obtained by the production method of the above item (4) has a cumulative volume of 50 obtained by a laser diffraction type particle size distribution measurement method after coating silicon oxide. It is more preferable that the% particle size D 50 is 20 ⁇ m or more and 200 ⁇ m or less.
- Fe-based soft magnetic powder In the present invention, an Fe-based soft magnetic powder containing 20% by mass or more of iron is used as a starting material.
- the Fe-based soft magnetic powder may be pure iron powder, or may contain at least one selected from the group consisting of Si, Cr, Al, Ni, Mo, Co, P, and B as other constituent elements. Good. Specific examples of the Fe-based soft magnetic powder include iron powder, Fe—Si alloy, Fe—Si—Cr alloy, Fe—Al—Si alloy (sendust), and Fe—Ni alloy (mass of Ni) having a permalloy composition. Ratio: 30 to 80% by mass) and the like.
- the Fe-based soft magnetic powder includes iron powder, Fe—Si alloy powder, Fe—Si—Cr alloy powder, and Fe.
- -Al—Si alloy powder is preferable (in these alloys, the proportion of iron is preferably 85 to 98% by mass, more preferably 90 to 98% by mass).
- Fe-based soft magnetic powder the soft magnetic powder included in the above definition is simply referred to as "Fe-based soft magnetic powder".
- the magnetic properties of the Fe-based soft magnetic powder are not particularly specified, but powders having a low coercive force (Hc) and a high saturation magnetization ( ⁇ s) are preferable.
- Hc coercive force
- ⁇ s high saturation magnetization
- the Fe-based soft magnetic powder having a volume-based cumulative 50% particle size D 50 obtained by a laser diffraction particle size distribution measurement method of more than 5 ⁇ m and 200 ⁇ m or less is used.
- the cumulative 50% particle size D 50 of the Fe-based soft magnetic powder is preferably 6 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and further preferably 40 ⁇ m or more and 160 ⁇ m or less.
- an insulating silicon oxide is coated on the surface of the particles constituting the Fe-based soft magnetic powder by a wet coating method using silicon alkoxide.
- the coating method using a silicon alkoxide is a method generally called a sol-gel method, and is superior in mass productivity as compared with a dry method.
- silanol derivatives When the silicon alkoxide is hydrolyzed, some or all of the alkoxy groups are replaced with hydroxyl groups (OH groups) to form silanol derivatives.
- the surface of the Fe-based soft magnetic powder is coated with this silanol derivative, but the silanol derivative that coats the surface takes a polysiloxane structure by condensing or polymerizing when heated, and further heats the polysiloxane structure. Then, it becomes silica (SiO 2).
- the silanol derivative coating to the silica coating in which a part of the alkoxy group which is an organic substance remains is collectively referred to as a silicon oxide coating.
- silicon alkoxide silicon alkidine having 2 to 5 carbon atoms, for example, triethoxysilane, tetraethoxysilane, tripropoxysilane, tetrapropoxysilane, tributoxysilane, tetrabutoxysilane, pentiltriethoxysilane, etc. is used as the alkoxyl group.
- TEOS tetraethoxysilane
- TPOS tetrapropoxysilane
- the average film thickness of the silicon oxide coating layer is 1 nm or more and 80 nm or less, and more preferably 5 nm or more and 65 nm or less. If the film thickness is less than 1 nm, many defects are present in the coating layer, and it may be difficult to secure the insulating property. On the other hand, when the film thickness exceeds 80 nm, the insulating property is improved, but the powder density of the Fe-based soft magnetic powder may decrease and the magnetic characteristics may deteriorate.
- the average film thickness of the silicon oxide coating layer is measured by the dissolution method, and the details of the measurement method will be described later.
- the average film thickness can be obtained by observing the cross section of the silicon oxide coating layer with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). In that case, a TEM photograph or SEM photograph of the cross section can be taken, and the average film thickness can be obtained from the average value of 50 measurement points of arbitrary particles.
- the coverage ratio R of the silicon oxide-coated Fe-based soft magnetic powder as defined below is 0.8 or more.
- R The mole fraction of Si with respect to the total mole fraction of the elements other than oxygen when measured by X-ray photoelectron spectroscopy (XPS) for elements other than oxygen in the silicon oxide-coated Fe-based soft magnetic powder. Percentage.
- the silicon oxide-coated Fe-based soft magnetic powder of the present invention is preferably coated with silicon oxide, and since there are few places where the Fe-based soft magnetic powder, which is the core particle, is exposed, the coverage R is as described above. So expensive. From the viewpoint of achieving excellent insulating properties by a suitable silicon oxide coating, the coverage R is more preferably 0.85 or more, further preferably 0.9 or more, and 0.95 or more. Is particularly preferable.
- the upper limit of the coverage R is 1.
- the cumulative 50% particle size D 50 based on the volume obtained by the laser diffraction type particle size distribution measurement method of the silicon oxide-coated Fe-based soft magnetic powder is more than 5 ⁇ m and 200 ⁇ m or less. If the particle size is 5 ⁇ m or less, the magnetic characteristics (permeability) of the dust core will be low, and if it is 200 ⁇ m or more, the magnetic loss will be large due to the influence of the eddy current generated inside the particles, which is not preferable.
- the cumulative 50% particle size D 50 of the silicon oxide-coated Fe-based soft magnetic powder is preferably 6 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and further preferably 40 ⁇ m or more and 160 ⁇ m or less. is there.
- the powder density of the silicon oxide-coated Fe-based soft magnetic powder is not particularly specified, but is preferably 4.0 g / cm 3 or more. More preferably, it is 5.0 g / cm 3 or more.
- the dust density affects the magnetic permeability of the dust core. If the dust density is low, the magnetic permeability of the dust core will be low, and as a result, the size of the dust core will be large in order to obtain a predetermined magnetic permeability. Not preferable from the viewpoint.
- the dust core produced from the silicon oxide-coated Fe-based soft magnetic powder of the present invention is suitable for applications of electrical and electronic parts such as inductors, choke coils, transformers, reactors and motors.
- the powder density should be high, but the upper limit of the powder density substantially obtained from the composition of the Fe-based soft magnetic powder is about 7 g / cm 3.
- the Fe-based soft magnetic powder is prepared in advance by stirring by a known mechanical means prior to coating the surface of the Fe-based soft magnetic powder with silicon oxide by the sol-gel method. It is to provide a dispersion step of dispersing in a mixed solvent of water and an organic solvent.
- An extremely thin oxide of Fe which is the main component of the Fe-based soft magnetic powder, is present on the surface of the Fe-based soft magnetic powder, but due to the interaction between the Fe oxide and the water molecules contained in the mixed solvent. It is considered that a concentrated layer of water is formed on the surface of the Fe-based soft magnetic powder, and the Fe oxide causes a hydration reaction. Since the surface of the hydrated Fe oxide is a kind of solid acid and behaves like a weak acid as a blended acid, silicon alkoxide was added to the slurry containing the Fe-based soft magnetic powder in the mixed solvent in the next step. At that time, the reactivity between the silanol derivative, which is a hydrolysis product of silicon alkoxide, and the surface of the Fe-based soft magnetic powder is improved.
- an alcohol having a Hansen solubility parameter value (hereinafter, simply referred to as SP value) at 25 ° C. of 11.3 or less is preferable.
- An alcohol having an SP value of more than 11.3 is not preferable because it has a high affinity between the solvent and water and the reactivity of water in the mixed solvent is lowered.
- the lower limit of the SP value is not particularly specified, but as the SP value becomes smaller, the solubility of water in alcohol decreases. Therefore, it is practically set to 9.0 or more, preferably 10.3 or more.
- the solubility parameter value (SP value) of Hansen at 25 ° C is the Hansen solubility parameter application (Hansen Solubility Parameters in Practice (HSPiP) Ver.5.1.05, developer: Dr. Hansen, Prof. Abbott, Dr. Yamamoto). Can be calculated by
- the SP values of monovalent aliphatic alcohols are illustrated below.
- the content of water in the mixed solvent is preferably 5% by mass or more and 50% by mass or less. More preferably, it is 5% by mass or more and 20% by mass or less. If the water content is less than 5% by mass, the above-mentioned action of hydrating the Fe oxide is insufficient. If the water content exceeds 50% by mass, the hydrolysis rate of the silicon alkoxide becomes high, and a uniform silicon oxide coating layer cannot be obtained, which is not preferable.
- the specific amount of the Fe-based soft magnetic powder to the mixed solvent is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the Fe-based soft magnetic powder. More preferably, it is 5 to 20 parts by mass.
- the temperature of the dispersion step (the temperature of the mixed solvent for dispersing the Fe-based soft magnetic powder and the temperature of the mixed solution (slurry) after dispersion) is not particularly specified, but is 10 ° C. or higher and 70 ° C. or lower. It is preferable to do so. If the temperature is less than 10 ° C., the rate of hydration reaction of Fe oxide may be slowed down. When the temperature exceeds 70 ° C., the hydrolysis reaction rate of the added silicon alkoxide increases in the next step of adding the alkoxide, and the uniformity of the silicon oxide coating layer (particles of Fe-based soft magnetic powder which is the core). However, there are few exposed parts that are not covered with silicon oxide) may worsen.
- the temperature of the dispersion step is more preferably 20 ° C. or higher and 70 ° C. or lower.
- the time for holding the slurry in the dispersion step while stirring is not particularly specified, but the holding time is set to 1 min or more and 30 min or less so that the hydration reaction of Fe oxide occurs uniformly. Select the conditions as appropriate.
- Alkoxide addition step A slurry in which Fe-based soft magnetic powder is dispersed in a mixed solvent obtained by the above dispersion step is added with silicon alkoxide while stirring by a known mechanical means, and then the slurry is held in that state for a certain period of time. ..
- silicon alkoxide silicon alkides having 2 to 5 carbon atoms, such as triethoxysilane, tetraethoxysilane, tripropoxysilane, tetrapropoxysilane, tributoxysilane, tetrabutoxysilane, and pentiltriethoxysilane, etc. Can be used, but tetraethoxysilane (TEOS) or tetrapropoxysilane (TPOS) is preferable.
- TEOS tetraethoxysilane
- TPOS tetrapropoxysilane
- alkoxide addition step and the hydrolysis catalyst addition step described later may be exchanged, or these two steps may be performed at the same time.
- the amount added should be 1 nm or more and 80 nm in terms of the average film thickness of the silicon oxide coating layer.
- the amount of silicon alkoxide added is specifically determined by the following method.
- the mass of the Fe-based soft magnetic powder contained in the slurry is Gp (g)
- the BET specific surface area of the Fe-based soft magnetic powder before coating is S (m 2 / g)
- the target thickness of the silicon oxide coating layer is set.
- the number of moles of Si contained in the silicon oxide coating layer is obtained as a value obtained by dividing Gc by the molecular weight of SiO 2 of 60.08.
- a number of moles of silicon alkoxide corresponding to the above target film thickness t (nm) is added to a slurry in which Fe-based soft magnetic powder is dispersed in a mixed solvent.
- the temperature of the slurry when carrying out the alkoxide addition step is not particularly specified, but it is preferably 10 ° C. or higher and 70 ° C. or lower. If the temperature is less than 10 ° C., the reaction rate between the surface of the Fe-based soft magnetic powder and the silanol derivative may slow down. Further, when the temperature exceeds 70 ° C., the hydrolysis reaction rate of the added silicon alkoxide may increase, and the uniformity of the silicon oxide coating layer may deteriorate. From these viewpoints, the temperature of the slurry is more preferably 20 ° C. or higher and 70 ° C. or lower.
- the time of the alkoxide addition step (the time for adding the silicon alkoxide and reacting the produced silanol derivative with the surface of the Fe-based soft magnetic powder) is not particularly specified, but the surface of the Fe-based soft magnetic powder is not specified. Conditions are appropriately selected so that the time is 10 min or less so that the reaction with the silanol derivative occurs uniformly.
- a known mechanical slurry is obtained by forming a reaction layer of a silanol derivative on the surface of an Fe-based soft magnetic powder in the above-mentioned alkoxide addition step, and then dispersing the Fe-based soft magnetic powder in a mixed solvent.
- the silicon alkoxide hydrolysis catalyst is added with stirring by means. As described above, the order of addition of the alkoxide and the addition of the hydrolysis catalyst may be reversed or may be performed at the same time.
- the addition of the hydrolysis catalyst promotes the hydrolysis reaction of the silicon alkoxide and increases the film formation rate of the silicon oxide coating layer.
- the method is the same as the film forming method by the usual sol-gel method.
- an alkaline catalyst As the hydrolysis catalyst, it is preferable to use an alkaline catalyst as the hydrolysis catalyst.
- Fe which is a component of the soft magnetic powder, may be dissolved.
- the alkali catalyst it is preferable to use aqueous ammonia because impurities are unlikely to remain in the silicon oxide coating layer and it is easily available.
- the slurry temperature when the hydrolysis catalyst addition step is carried out is not particularly specified, and may be the same as the slurry temperature when the alkoxide addition step is carried out.
- the time of the hydrolysis catalyst addition step (the time for adding the hydrolysis catalyst and forming the silicon oxide coating layer on the surface of the Fe-based soft magnetic powder) is not particularly specified. Since a long reaction time is economically disadvantageous, conditions are appropriately selected so that the reaction time is 5 min or more and 120 min or less.
- the silicon oxide-coated Fe-based soft magnetic powder is recovered from the slurry containing the silicon oxide-coated Fe-based soft magnetic powder obtained in the series of steps up to the above by using a known solid-liquid separation means.
- a known solid-liquid separation means such as filtration, centrifugation, and decantation can be used.
- a flocculant may be added to perform solid-liquid separation.
- the recovered silicon oxide-coated Fe-based soft magnetic powder is preferably dried in an air atmosphere at a temperature of 80 ° C. or higher. When dried at 80 ° C. or higher, the water content of the silicon oxide-coated Fe-based soft magnetic powder can be reduced to 0.25% by mass or less.
- the drying temperature is preferably 85 ° C. or higher, more preferably 90 ° C. or higher. Further, the drying temperature is preferably 400 ° C. or lower, more preferably 150 ° C. or lower so that the silicon oxide coating layer is not peeled off. If you want to suppress the oxidation of the soft magnetic powder, dry it in an inert gas atmosphere or a vacuum atmosphere.
- the Si content in the silicon oxide-coated Fe-based soft magnetic powder was measured by the gravimetric method (dissolution method). Hydrochloric acid and perchloric acid are added to the sample to decompose it by heating, and the sample is heated until white smoke of perchloric acid is generated. Continue to heat to dry. After allowing to cool, water and hydrochloric acid are added and heated to dissolve soluble salts. The insoluble residue is filtered using a filter paper, and the residue is transferred to a crucible together with the filter paper, dried and incinerated. Weigh the crucible after allowing it to cool. Add a small amount of sulfuric acid and hydrofluoric acid, heat to dry, and then ignite. Weigh the crucible after allowing it to cool. The Si content is obtained by subtracting the second weighing value from the first weighing value and calculating the weight difference as the weight of SiO 2.
- the average film thickness t (nm) of the silicon oxide coating layer is expressed by the following formula.
- the average film thickness of the silicon oxide coating layer calculated with the value of d as 2.65 g / cm 3 is in good agreement with the TEM observation result.
- BET specific surface area measurement For the BET specific surface area, a BET specific surface area measuring device (Macsorb manufactured by Mountech Co., Ltd.) is used, and nitrogen gas is flowed through the measuring device at 105 ° C. for 20 minutes in order to remove deposits on the powder surface. After degassing, the measurement was performed by the BET 1-point method while flowing a mixed gas of nitrogen and helium (N 2 : 30% by volume, He: 70% by volume).
- volume resistivity of silicon oxide-coated Fe-based soft magnetic powder is measured by the powder resistivity measurement unit (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and the high resistivity meter Hiresta UP (MCP) manufactured by Mitsubishi Chemical Analytech Co., Ltd. -HT450) or Mitsubishi Chemical Analytech Co., Ltd. low resistivity meter Loresta (MCP-T610), Mitsubishi Chemical Analytech Co., Ltd. powder resistivity measurement system (High Resta) or Mitsubishi Chemical Analytech Co., Ltd.
- powder resistivity measurement It was determined by vertically pressurizing 4.0 g of powder at 12.73 MPa (4 kN) using a system (Loresta) and measuring in a state where a voltage was applied. For Comparative Examples 1 and 2 (low resistance) described later, Examples 1 to 3 (high resistance) described later by the four-probe electrode method using a Loresta and a powder resistivity measurement system (Loresta). The volume resistivity was measured by the double ring electrode method using a high-restor UP and a powder resistivity measurement system (high-restor).
- the volume resistivity at 12.73 MPa (4 kN) is preferably 1.0 ⁇ 10 4 ⁇ ⁇ cm or more. More preferably, it is 1.0 ⁇ 10 6 ⁇ ⁇ cm or more, and particularly preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or more. The upper limit is 1.0 ⁇ 10 12 ⁇ ⁇ cm.
- the particle size distribution of the Fe-based soft magnetic powder before the coating treatment and after the silicon oxide coating treatment was measured by a laser diffraction type particle size distribution measuring device (Heros particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC).
- the focal length of the measuring lens is 200 mm.
- the diameter (D 90 ) and the cumulative 99% particle size (D 99 ) were determined, and the cumulative 50% particle size (D 50 ) was taken as the average particle size.
- the mole fraction of each element when determining the coverage R is determined by the specific sensitivity correction on the analysis software from the integral value ratio of the peaks corresponding to the predetermined orbits of each element in the photoelectron spectrum obtained by narrow scan. Calculated.
- the sample powder was sputter-etched with Ar ions, and then the photoelectron spectrum on the outermost surface of the particles was measured.
- Example 1 120 g of isobutyl alcohol (IBA: Hansen's SP value at 25 ° C. is 11.3) and 21 g of pure water were put into a 300 mL reaction vessel at room temperature and mixed at 850 rpm using a stirring blade to prepare a mixed solvent.
- Pure Fe powder as Fe-based soft magnetic powder in the mixed solvent (O 2 : 0.096 mass%, Si: 0.000 mass%, BET specific surface area: 0.096 m 2 / g, D 50 : 101.7 ⁇ m, Volume resistivity: 1.1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm) 75 g was added to obtain a slurry in which pure Fe powder was dispersed.
- TEOS tetraethoxysilane
- the slurry was filtered off using a pressure filtration device to obtain a cake of magnetic powder.
- the cake of the magnetic powder was dried at 100 ° C. for 10 hours in the air and then crushed using a sieve of 500 ⁇ m mesh to obtain a silicon oxide-coated pure Fe powder.
- the elements contained in the silicon oxide-coated pure Fe powder are Fe, O, Si, and C (C is derived from TEOS), but when measured by a wide scan, the peak of Fe (binding energy) (In the range of 700 to 750 eV) and C peak (with binding energy in the range of 270 to 300 eV) were observed but very small, and Si peak (with binding energy in the range of 90 to 120 eV) and O peak. (The binding energy is in the range of 520 to 540 eV) was observed. Further, since no other peaks were observed in the measurement by the wide scan, it is considered that the silicon oxide-coated pure Fe powder (particle surface) contains substantially no impurities.
- Si is a 2p3 / 2 orbital (binding energy is in the range of 105 to 110 eV)
- Fe is a 2p3 / 2 orbital (binding energy is in the range of 710 to 720 eV)
- C is a 1s orbital (binding energy is in the range of 710 to 720 eV).
- a scan was performed for a range of 285 to 290 eV) and peaks were observed.
- the mole fraction of each element was calculated.
- the mole fraction was calculated from the integrated value ratio of the peaks of each element after correcting the specific sensitivity on the analysis software.
- the mole fraction of Fe is 0.2 mol%
- the mole fraction of C is 1.0 mol%
- the mole fraction of Si is The rate was 98.8 mol%. From these results, the coverage R of the obtained silicon oxide-coated pure Fe powder was 0.988.
- the particle size distribution, BET specific surface area, and volume resistivity of the green compact were measured for the obtained silicon oxide-coated pure Fe powder.
- Table 1 shows the production conditions of the silicon oxide-coated pure Fe powder
- Table 2 shows the physical property values (including the coverage ratio R) of the obtained silicon oxide-coated pure Fe powder and the pure Fe powder before the silicon oxide coating. Shown.
- Example 2 As Example 2, a silicon oxide-coated pure Fe powder was obtained in the same procedure as in Example 1 except that TEOS added to the slurry was changed to 3.60 g of TPOS. In Example 3, a silicon oxide-coated pure Fe powder was obtained in the same procedure as in Example 1 except that the TEOS added to the slurry was changed to 3.60 g of TPOS and the aging time was changed to 150 min.
- Table 1 shows the production conditions of the silicon oxide-coated pure Fe powder of Examples 2 and 3
- Table 2 shows the physical property values of the obtained silicon oxide-coated pure Fe powder measured in the same manner as in Example 1. Shown.
- Comparative Examples 1 and 2 As Comparative Examples 1 and 2, Examples 1 and 2 respectively were used, except that the alcohol added to the mixed solvent was changed from IBA to 120 g at the time of charging IPA (Hansen's SP value at 25 ° C. was 11.5) and 5 g for cleaning, respectively.
- a silicon oxide-coated pure Fe powder was obtained in the same procedure as in 2.
- Table 1 shows the production conditions of the silicon oxide-coated pure Fe powder of Comparative Examples 1 and 2
- Table 2 shows the physical property values of the obtained silicon oxide-coated pure Fe powder measured in the same manner as in Example 1. Shown.
- the powder is high when molded as a green compact. It can be seen that a silicon oxide-coated Fe-based soft magnetic powder from which a green compact having a volume resistance can be obtained can be obtained.
- Example 4 120 g of isobutyl alcohol (IBA: Hansen's SP value at 25 ° C. is 11.3) and 21 g of pure water were put into a 300 mL reaction vessel at room temperature and mixed at 850 rpm using a stirring blade to prepare a mixed solvent.
- Pure Fe powder (O 2 : (0.9) mass%, Si: 0.00 mass%, BET specific surface area different from that used in Example 1 and the like above as Fe-based soft magnetic powder in the mixed solvent. : 0.669 m 2 / g, D 50 : 6.28 ⁇ m, volumetric resistance: 5.2 ⁇ ⁇ cm) 75 g was added to obtain a slurry in which pure Fe powder was dispersed.
- TEOS tetraethoxysilane
- the slurry was filtered off using a pressure filtration device to obtain a cake of magnetic powder.
- the cake of the magnetic powder was dried at 100 ° C. for 10 hours in the air and then crushed using a sieve of (500) ⁇ m mesh to obtain a silicon oxide-coated pure Fe powder.
- Table 3 shows the production conditions of the powder, and Table 4 also shows the physical property values of the powder measured in the same manner as in Example 1.
- Example 5 a silicon oxide-coated pure Fe powder was obtained in the same procedure as in Example 4 except that the TEOS added to the slurry was changed to TPOS (4.30) g.
- Table 3 shows the production conditions of the powder, and Table 4 also shows the physical property values of the powder measured in the same manner as in Example 1.
- Comparative Example 3 As Comparative Example 3, a silicon oxide-coated pure Fe powder was obtained in the same procedure as in Example 4 except that the alcohol added to the mixed solvent was changed from IBA to IPA (120 g at the time of preparation, 5 g for cleaning). Table 3 shows the production conditions of the powder, and Table 4 also shows the physical property values of the powder measured in the same manner as in Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
【課題】圧粉体に成型した際に高い体積抵抗率を有する圧粉体が得ることが可能なシリコン酸化物被覆Fe系軟磁性粉末およびその製造方法を提供する。 【解決手段】5質量%以上50質量%以下の水を含む、水とハンセンの溶解度パラメータ値(SP値)が11.3以下のアルコールの混合溶媒中に、Fe系軟磁性粉末を分散させてスラリーを得た後、そのスラリーにシリコンアルコキシドおよび当該シリコンアルコキシドの加水分解触媒を添加してシリコン酸化物被覆を行うことにより、高絶縁性のシリコン酸化物被覆Fe系軟磁性粉末が得られる。
Description
本発明は、インダクタ、チョークコイル、トランス、リアクトルやモーターなどの電気電子部品の圧粉磁心の製造に適した、良好な絶縁性を有するシリコン酸化物被覆Fe系軟磁性粉末およびその製造方法に関する。
従来、インダクタ、チョークコイル、トランス、リアクトルやモーターなどの磁心として、鉄粉や鉄を含有する合金粉末、金属間化合物粉末などのFe系軟磁性粉末を用いた圧粉磁心が知られている。しかし、それらの鉄を含有するFe系軟磁性粉末を用いた圧粉磁心は、フェライトを用いた圧粉磁心と比較して電気抵抗率が低いため、Fe系軟磁性粉末の表面に絶縁性の皮膜を被覆した後に圧縮成形、熱処理を施して製造される。
絶縁性の被覆としては従来種々のものが提案されているが、高絶縁性の被覆としてシリコンの酸化物被覆が知られている。湿式法によりシリコン酸化物を被覆したFe系軟磁性粉末としては、例えば特許文献1には、Siアルコキシドを水に溶解した後、当該溶液に含まれるSiアルコキシドの加水分解生成物を、鉄を主成分とする軟磁性粉末の表面に被覆する、圧粉磁心用軟磁性粉末のシリカ被覆形成方法、および、その軟磁性粉末を用いた圧粉磁心の製造方法が開示されている。当該シリカ被覆形成方法においては、Feを主成分とする軟磁性粉末の表面に、TEOS、有機溶剤としてのイソプロパノール(IPA)、アルカリ、及び水を含み、TEOSと水の濃度を所定の値に調整した加水分解溶液によってシリカ皮膜を形成している。当該TEOSの加水分解生成物を被覆した鉄を主成分とする軟磁性粉末を圧縮成形中、もしくは圧縮成形後に熱処理を行うことにより、TEOSの加水分解生成物は高絶縁性のシリカ被膜に変化する。
また特許文献2には、粒径50μm程度のFe系軟磁性粉末の表面に、シリコーンレジンとSiアルコキシドを含むシリカ系絶縁皮膜を被覆した圧粉磁心用途の軟磁性粉末およびその製造方法が開示されている。当該製造方法においては、シリコーンレジンを溶媒であるIPAに溶解した後、当該溶液にSiアルコキシドとしてTEOSを添加して撹拌混合し、さらにその溶液に酸触媒と水を添加してシリカゾル‐ゲルコーティング液を得ている。
しかし、特許文献1および特許文献2に開示されているシリコン系酸化物の被覆方法の場合、あらかじめIPA中でTEOSを加水分解し、生成したTEOSの加水分解生成物の微粒子をFe系軟磁性粉末の表面に付着させることによりシリコン系酸化物皮膜を形成するため、得られるシリコン系酸化物皮膜は欠陥の多いものであり、圧粉体として成形した際に高い体積抵抗率を得ることが困難であった。
これに対して本出願人は、圧粉体として成形した際に高い体積抵抗率を得ることのできる高絶縁性のシリコン酸化物を被覆した軟磁性粉末およびその製造方法を、特願2019-025026号として出願している。当該製造方法は、あらかじめ水と有機溶媒を混合した混合溶媒中に鉄を20質量%以上含有する軟磁性粉末を分散させ、当該スラリーにシリコンアルキシドを添加した後、シリコンアルキシドの加水分解触媒を添加することにより、軟磁性粉末表面でシリコンアルキシドの加水分解反応を生起せしめ、欠陥の少ないシリコン酸化物被覆を得るというものである。
上記の特願2019-025026号に記載の発明は、軟磁性粉末として主としてレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が1.0μm以上5.0μm以下の微細な軟磁性粉末を対象とするもので、このようなサイズの軟磁性粉末から形成される圧粉磁心は、例えばインダクタといった用途に用いられる。本発明者等が鋭意検討を行ったところ、モーターのコイルやリアクトルなどの用途の圧粉磁心に通常使用されているレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下のFe系軟磁性粉末に当該発明の製造方法を適用した場合には、当該発明をさらに改良する余地があることが判明した。
本発明は、上記の問題点に鑑み、比較的大粒径のD50が5μm超え200μm以下程度のFe系軟磁性粉末の表面に、シリコン酸化物を好適に被覆することにより、絶縁性に優れたシリコン酸化物被覆Fe系軟磁性粉末およびその製造方法を提供することを目的とする。
上記目的を達成するために、本発明では、
(1)Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、二重リング電極法を用い、12.73MPaで圧下して得られる圧粉体の体積抵抗率が1.0×104Ω・cm以上である、シリコン酸化物被覆Fe系軟磁性粉末が提供される。
(1)Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、二重リング電極法を用い、12.73MPaで圧下して得られる圧粉体の体積抵抗率が1.0×104Ω・cm以上である、シリコン酸化物被覆Fe系軟磁性粉末が提供される。
また、本発明では、
(2)Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、下記で定義される被覆率Rが0.8以上である、シリコン酸化物被覆Fe系軟磁性粉末が提供される。
R:前記シリコン酸化物被覆Fe系軟磁性粉末の酸素以外の元素についてX線光電子分光分析法(XPS)測定したときの、酸素以外の元素のモル分率の合計に対する、Siのモル分率の割合。
(2)Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、下記で定義される被覆率Rが0.8以上である、シリコン酸化物被覆Fe系軟磁性粉末が提供される。
R:前記シリコン酸化物被覆Fe系軟磁性粉末の酸素以外の元素についてX線光電子分光分析法(XPS)測定したときの、酸素以外の元素のモル分率の合計に対する、Siのモル分率の割合。
(3)前記(1)項および(2)項のシリコン酸化物被覆Fe系軟磁性粉末のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50は、20μm以上200μm以下であることが好ましい。
本発明ではさらに、
(4)Fe系軟磁性粉末の表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物を被覆したシリコン酸化物被覆Fe系軟磁性粉末の製造方法であって、25℃におけるハンセンの溶解度パラメータ値(SP値)が11.3以下のアルコールと水を混合し、水を5質量%以上50質量%以下含む混合溶媒を準備する工程と、前記の混合溶媒にレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下のFe系軟磁性粉末を添加し、Fe系軟磁性粉末の分散したスラリーを得る分散工程と、前記のFe系軟磁性粉末を分散したスラリーに、シリコンアルコキシドおよびシリコンアルコキシドの加水分解触媒を添加し、シリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを得る添加工程と、前記のシリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを固液分離し、シリコン酸化物を被覆したFe系軟磁性粉末を得る工程と、前記のシリコン酸化物を被覆したFe系軟磁性粉末を乾燥する工程と、を含む、シリコン酸化物被覆Fe系軟磁性粉末の製造方法が提供される。
(4)Fe系軟磁性粉末の表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物を被覆したシリコン酸化物被覆Fe系軟磁性粉末の製造方法であって、25℃におけるハンセンの溶解度パラメータ値(SP値)が11.3以下のアルコールと水を混合し、水を5質量%以上50質量%以下含む混合溶媒を準備する工程と、前記の混合溶媒にレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下のFe系軟磁性粉末を添加し、Fe系軟磁性粉末の分散したスラリーを得る分散工程と、前記のFe系軟磁性粉末を分散したスラリーに、シリコンアルコキシドおよびシリコンアルコキシドの加水分解触媒を添加し、シリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを得る添加工程と、前記のシリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを固液分離し、シリコン酸化物を被覆したFe系軟磁性粉末を得る工程と、前記のシリコン酸化物を被覆したFe系軟磁性粉末を乾燥する工程と、を含む、シリコン酸化物被覆Fe系軟磁性粉末の製造方法が提供される。
(5)前記の(4)項の体積基準の累積50%粒子径D50は、20μm以上200μm以下であることが好ましい。
(6)前記の(4)項の添加工程を実施する際のスラリーの温度は、10℃以上70℃以下であることが好ましい。
(7)前記の(4)項の添加工程を実施する際のスラリーの温度は、20℃以上70℃以下であることがさらに好ましい。
(8)前記の(4)項の製造方法により得られるシリコン酸化物被覆Fe系軟磁性粉末は、シリコン酸化物を被覆後のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50は、5μm超え200μm以下であることが好ましい。
(9)また、前記の(4)項の製造方法により得られるシリコン酸化物被覆Fe系軟磁性粉末は、シリコン酸化物を被覆後のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が20μm以上200μm以下であることがより好ましい。
本発明の製造方法を用いることにより、絶縁性に優れたシリコン酸化物被覆Fe系軟磁性粉末を製造することが可能になった。
[Fe系軟磁性粉末]
本発明においては、出発物質として鉄を20質量%以上含有するFe系軟磁性粉末を用いる。当該Fe系軟磁性粉末は、純鉄粉であってもよいし、他の構成元素として、Si,Cr,Al,Ni,Mo,Co,P,Bからなる群より選ばれる少なくとも一種を含んでもよい。Fe系軟磁性粉末としては、具体的には、鉄粉、Fe-Si合金、Fe-Si-Cr合金、Fe-Al-Si合金(センダスト)、パーマロイ組成であるFe-Ni合金(Niの質量割合:30~80質量%)等が挙げられる。また、必要に応じてこれらにMo、Coが少量(10質量%以下)添加される場合がある。Moを添加した合金は結晶構造がアモルファスになることから、特にアモルファス粉と呼ばれることがある。本発明のシリコン酸化物被覆Fe系軟磁性粉末の製造方法を好適に適用し得る観点から、Fe系軟磁性粉末としては、鉄粉、Fe-Si合金粉、Fe-Si-Cr合金粉、Fe-Al-Si合金粉が好ましい(これらの合金において、鉄の割合は好ましくは85~98質量%であり、より好ましくは90~98質量%である)。
本発明においては、出発物質として鉄を20質量%以上含有するFe系軟磁性粉末を用いる。当該Fe系軟磁性粉末は、純鉄粉であってもよいし、他の構成元素として、Si,Cr,Al,Ni,Mo,Co,P,Bからなる群より選ばれる少なくとも一種を含んでもよい。Fe系軟磁性粉末としては、具体的には、鉄粉、Fe-Si合金、Fe-Si-Cr合金、Fe-Al-Si合金(センダスト)、パーマロイ組成であるFe-Ni合金(Niの質量割合:30~80質量%)等が挙げられる。また、必要に応じてこれらにMo、Coが少量(10質量%以下)添加される場合がある。Moを添加した合金は結晶構造がアモルファスになることから、特にアモルファス粉と呼ばれることがある。本発明のシリコン酸化物被覆Fe系軟磁性粉末の製造方法を好適に適用し得る観点から、Fe系軟磁性粉末としては、鉄粉、Fe-Si合金粉、Fe-Si-Cr合金粉、Fe-Al-Si合金粉が好ましい(これらの合金において、鉄の割合は好ましくは85~98質量%であり、より好ましくは90~98質量%である)。
以下、本明細書においては、特に断らない限り、上記の定義に含まれる軟磁性粉末を単に「Fe系軟磁性粉末」と呼ぶ。本発明においては前記のFe系軟磁性粉末の磁気特性については特に規定しないが、保磁力(Hc)が低く、飽和磁化(σs)が高い粉末が好ましい。Hcは低いほどよく3.98kA/m(約50(Oe))以下が好ましい。Hcが3.98kA/mを超えると磁場を反転させる際のエネルギーロスが大きくなり、磁心には適当ではない場合がある。
また、σsは高い方が良く、100Am2/kg(100emu/g)以上が好ましい。飽和磁化が100Am2/kg未満では、磁性粉が多量に必要になり、必然的に磁心のサイズが大きくなってしまうので、磁心の小型化を指向する場合は好ましくない。
本発明においては、前記のFe系軟磁性粉末としてレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下のものを用いる。Fe系軟磁性粉末の累積50%粒子径D50は好ましくは6μm以上200μm以下であり、より好ましくは20μm以上200μm以下であり、更に好ましくは40μm以上160μm以下である。
[シリコン酸化物被覆層]
本発明においては、シリコンアルコキシドを用いた湿式の被覆法により、前記のFe系軟磁性粉末を構成する粒子の表面に絶縁性のシリコン酸化物を被覆する。シリコンアルコキシドを用いた被覆法は、一般にゾル-ゲル法と呼ばれる手法であり、乾式法と比較して大量生産性に優れたものである。
本発明においては、シリコンアルコキシドを用いた湿式の被覆法により、前記のFe系軟磁性粉末を構成する粒子の表面に絶縁性のシリコン酸化物を被覆する。シリコンアルコキシドを用いた被覆法は、一般にゾル-ゲル法と呼ばれる手法であり、乾式法と比較して大量生産性に優れたものである。
シリコンアルコキシドを加水分解すると、アルコキシ基の一部または全てが水酸基(OH基)と置換し、シラノール誘導体となる。本発明においては、このシラノール誘導体により前記のFe系軟磁性粉末表面を被覆するが、表面を被覆するシラノール誘導体は、加熱すると縮合または重合することによりポリシロキサン構造を取り、ポリシロキサン構造をさらに加熱するとシリカ(SiO2)になる。本発明においては、有機物であるアルコキシ基の一部が残存するシラノール誘導体被覆からシリカ被覆までを総称してシリコン酸化物被覆と呼ぶ。
シリコンアルコキシドとしては、アルコキシル基として炭素数2~5のシリコンアルキシド、例えばトリエトキシシラン、テトラエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン、テトラブトキシシラン、ペンチルトリエトキシシラン等を使用することができるが、均一なシリコン酸化物層を形成し高抵抗な被覆層が得られる観点から、テトラエトキシシラン(TEOS)またはテトラプロポキシシラン(TPOS)が好ましく、中でもTPOSの使用が好ましい。
[膜厚]
本発明においては、シリコン酸化物被覆層の平均膜厚は、1nm以上80nm以下であり、5nm以上65nm以下であることがより好ましい。膜厚が1nm未満では、被覆層中に欠陥が多く存在し、絶縁性を確保することが困難な場合がある。一方、膜厚が80nmを超えると絶縁性は向上するが、Fe系軟磁性粉末の圧粉密度が低下して磁気特性が悪化する場合がある。シリコン酸化物被覆層の平均膜厚は溶解法により測定するが、測定法の詳細は後述する。また、溶解法によって測定が難しい場合は、シリコン酸化物被覆層の断面を透過電子顕微鏡(TEM)観察もしくは走査電子顕微鏡(SEM)観察することにより平均膜厚を求めることができる。その場合断面のTEM写真またはSEM写真を撮影し、任意粒子の測定点50箇所の平均値によって平均膜厚を求めることができる。なお、収束イオンビーム(FIB)加工装置を用いてシリコン酸化物被覆Fe系軟磁性粉末を切断し、透過電子顕微鏡(TEM)観察により測定したシリコン酸化物被覆層の平均膜厚は、シリコン酸化物被覆層の密度をd=2.65(g/cm3)として後述する溶解法により求めた膜厚と精度良く一致することが確認されている。
本発明においては、シリコン酸化物被覆層の平均膜厚は、1nm以上80nm以下であり、5nm以上65nm以下であることがより好ましい。膜厚が1nm未満では、被覆層中に欠陥が多く存在し、絶縁性を確保することが困難な場合がある。一方、膜厚が80nmを超えると絶縁性は向上するが、Fe系軟磁性粉末の圧粉密度が低下して磁気特性が悪化する場合がある。シリコン酸化物被覆層の平均膜厚は溶解法により測定するが、測定法の詳細は後述する。また、溶解法によって測定が難しい場合は、シリコン酸化物被覆層の断面を透過電子顕微鏡(TEM)観察もしくは走査電子顕微鏡(SEM)観察することにより平均膜厚を求めることができる。その場合断面のTEM写真またはSEM写真を撮影し、任意粒子の測定点50箇所の平均値によって平均膜厚を求めることができる。なお、収束イオンビーム(FIB)加工装置を用いてシリコン酸化物被覆Fe系軟磁性粉末を切断し、透過電子顕微鏡(TEM)観察により測定したシリコン酸化物被覆層の平均膜厚は、シリコン酸化物被覆層の密度をd=2.65(g/cm3)として後述する溶解法により求めた膜厚と精度良く一致することが確認されている。
[被覆率R]
本発明においては、シリコン酸化物被覆Fe系軟磁性粉末の、下記で定義される被覆率Rが0.8以上であることが好ましい。
R:前記シリコン酸化物被覆Fe系軟磁性粉末の酸素以外の元素についてX線光電子分光分析法(XPS)測定したときの、酸素以外の元素のモル分率の合計に対する、Siのモル分率の割合。
本発明のシリコン酸化物被覆Fe系軟磁性粉末は、シリコン酸化物被覆が好適になされており、コア粒子であるFe系軟磁性粉末が露出している箇所が少ないので、被覆率Rが上記のように高い。好適なシリコン酸化物被覆により優れた絶縁性を達成する観点から、被覆率Rは0.85以上であることがより好ましく、0.9以上であることが更に好ましく、0.95以上であることが特に好ましい。なお、被覆率Rの上限は1である。
本発明においては、シリコン酸化物被覆Fe系軟磁性粉末の、下記で定義される被覆率Rが0.8以上であることが好ましい。
R:前記シリコン酸化物被覆Fe系軟磁性粉末の酸素以外の元素についてX線光電子分光分析法(XPS)測定したときの、酸素以外の元素のモル分率の合計に対する、Siのモル分率の割合。
本発明のシリコン酸化物被覆Fe系軟磁性粉末は、シリコン酸化物被覆が好適になされており、コア粒子であるFe系軟磁性粉末が露出している箇所が少ないので、被覆率Rが上記のように高い。好適なシリコン酸化物被覆により優れた絶縁性を達成する観点から、被覆率Rは0.85以上であることがより好ましく、0.9以上であることが更に好ましく、0.95以上であることが特に好ましい。なお、被覆率Rの上限は1である。
[体積基準累積50%粒子径]
本発明の場合、シリコン酸化物被覆Fe系軟磁性粉末のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下である。5μm以下のサイズの粒径では圧粉磁芯の磁気特性(透磁率)が低くなってしまうので、また200μm以上では粒子内部に発生する渦電流の影響で磁気損失が大きくなるのでそれぞれ好ましくない。同様な観点から、シリコン酸化物被覆Fe系軟磁性粉末の累積50%粒子径D50は好ましくは6μm以上200μm以下であり、より好ましくは20μm以上200μm以下であり、更に好ましくは40μm以上160μm以下である。
本発明の場合、シリコン酸化物被覆Fe系軟磁性粉末のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下である。5μm以下のサイズの粒径では圧粉磁芯の磁気特性(透磁率)が低くなってしまうので、また200μm以上では粒子内部に発生する渦電流の影響で磁気損失が大きくなるのでそれぞれ好ましくない。同様な観点から、シリコン酸化物被覆Fe系軟磁性粉末の累積50%粒子径D50は好ましくは6μm以上200μm以下であり、より好ましくは20μm以上200μm以下であり、更に好ましくは40μm以上160μm以下である。
[圧粉密度]
本発明の場合、シリコン酸化物被覆Fe系軟磁性粉末の圧粉密度は特に規定するものではないが、4.0g/cm3以上であることが好ましい。更に好ましくは5.0g/cm3以上である。圧粉密度は圧粉磁心の透磁率に影響する。圧粉密度が低ければ圧粉磁心の透磁率が低いものになってしまい、結果的に所定の透磁率を得るために圧粉磁心のサイズが大きいものになるので、圧粉磁心の小型化の観点からは好ましくない。
本発明の場合、シリコン酸化物被覆Fe系軟磁性粉末の圧粉密度は特に規定するものではないが、4.0g/cm3以上であることが好ましい。更に好ましくは5.0g/cm3以上である。圧粉密度は圧粉磁心の透磁率に影響する。圧粉密度が低ければ圧粉磁心の透磁率が低いものになってしまい、結果的に所定の透磁率を得るために圧粉磁心のサイズが大きいものになるので、圧粉磁心の小型化の観点からは好ましくない。
[用途]
本発明のシリコン酸化物被覆Fe系軟磁性粉末から製造した圧粉磁心は、インダクタ、チョークコイル、トランス、リアクトルやモーターなどの電気電子部品の用途に好適である。
本発明のシリコン酸化物被覆Fe系軟磁性粉末から製造した圧粉磁心は、インダクタ、チョークコイル、トランス、リアクトルやモーターなどの電気電子部品の用途に好適である。
圧粉密度は高い方がよいが、Fe系軟磁性粉末の組成から、実質的に得られる圧粉密度の上限は7g/cm3程度である。
[混合溶媒および分散工程]
本発明の製造方法の特徴の一つは、ゾル-ゲル法によるFe系軟磁性粉末表面へのシリコン酸化物被覆に先立ち、公知の機械的手段により撹拌することにより、あらかじめFe系軟磁性粉末を水と有機溶媒の混合溶媒中に分散させる分散工程を設けることである。
本発明の製造方法の特徴の一つは、ゾル-ゲル法によるFe系軟磁性粉末表面へのシリコン酸化物被覆に先立ち、公知の機械的手段により撹拌することにより、あらかじめFe系軟磁性粉末を水と有機溶媒の混合溶媒中に分散させる分散工程を設けることである。
Fe系軟磁性粉末の表面には当該Fe系軟磁性粉末の主成分であるFeの極めて薄い酸化物が存在するが、そのFeの酸化物と混合溶媒中に含まれる水分子との相互作用により、Fe系軟磁性粉末の表面に水の濃縮層が形成され、Fe酸化物が水和反応を起こすと考えられる。水和したFe酸化物表面は一種の固体酸であり、ブレンシュテッド酸として弱酸と類似の挙動を示すため、次工程において混合溶媒中にFe系軟磁性粉末を含むスラリーにシリコンアルコキシドを添加した際に、シリコンアルコキシドの加水分解生成物であるシラノール誘導体とFe系軟磁性粉末表面との反応性が向上する。
混合溶媒に用いる有機溶媒としては、25℃におけるハンセンの溶解度パラメータ値(以下、単にSP値と表記する。)が11.3以下のアルコールが好ましい。SP値が11.3より大きいアルコールは、当該溶媒と水との親和性が高く、混合溶媒中の水の反応性が低下するので、好ましくない。本発明においてSP値の下限は特に規定しないが、SP値が小さくなると水のアルコールへの溶解度が減少するので、実用的には9.0以上とし、好ましくは10.3以上とする。なお、25℃におけるハンセンの溶解度パラメータ値(SP値)は、ハンセン溶解度パラメータアプリケーション(Hansen Solubility Parameters in Practice (HSPiP) Ver.5.1.05、開発者:Dr. Hansen、Prof. Abbott、Dr. Yamamoto)により算出することができる。
以下に1価の脂肪族アルコールのSP値を例示するが、本発明の混合溶媒の場合、1-ブタノール、2-ブタノール(secブタノール)、2-メチル-1-プロパノール(イソブタノール)、2-メチル-2-プロパノール(t-ブタノール)、1-ペンタノール、2-ペンタノール、イソペンタノール、t-ペンタノール等の使用が好ましい。
メタノール(SP値:14.4、以下同じ。)、エタノール(13.0)、2-プロパノール(イソプロピルアルコール、IPA)(11.5)、1-ブタノール(11.3)、2―ブタノール(10.8)、2-メチル-1-プロパノール(11.1)、2-メチル-2-プロパノール(10.6)、1-ペンタノール(10.7)、2-ペンタノール(10.5)、イソペンタノール(10.4)、t-ペンタノール(10.3)。
混合溶媒中の水の含有量は、5質量%以上50質量%以下であることが好ましい。より好ましくは5質量%以上20質量%以下である。水の含有量が5質量%未満では、前述したFe酸化物を水和する作用が不足する。水の含有量が50質量%を超えると、シリコンアルコキシドの加水分解速度が速くなり、均一なシリコン酸化物被覆層が得られなくなるので、それぞれ好ましくない。
Fe系軟磁性粉末の混合溶媒に対する比液量は、Fe系軟磁性粉末の100質量部に対して、水が5~50質量部になる量とすることが好ましい。より好ましくは5~20質量部である。
本発明においては、分散工程の温度(Fe系軟磁性粉末を分散させる混合溶媒及び分散させた後の混合液(スラリー)の温度)は特に規定するものではないが、10℃以上70℃以下とすることが好ましい。温度が10℃未満では、Fe酸化物の水和反応の速度が遅くなる場合がある。また、温度が70℃を超えると、次工程のアルコキシド添加工程において、添加したシリコンアルコキシドの加水分解反応速度が増大し、シリコン酸化物被覆層の均一性(コアであるFe系軟磁性粉末の粒子の、シリコン酸化物で被覆されずに露出している部分が少ないこと)が悪化する場合がある。これらの観点から、分散工程の温度は20℃以上70℃以下であることがより好ましい。本発明においては、分散工程のスラリーを撹拌しながら保持する時間も特に規定するものではないが、Fe酸化物の水和反応が均一に起こるように、保持時間が1min以上30min以下になるように条件を適宜選択する。
[アルコキシド添加工程]
前記の分散工程により得られた混合溶媒中にFe系軟磁性粉末を分散させたスラリーを、公知の機械的手段により撹拌しながら、シリコンアルコキシドを添加した後、その状態でスラリーを一定時間保持する。シリコンアルコキシドとしては、前述のように、炭素数2~5のシリコンアルキシド、例えばトリエトキシシラン、テトラエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン、テトラブトキシシラン、ペンチルトリエトキシシラン等を使用することができるが、テトラエトキシシラン(TEOS)またはテトラプロポキシシラン(TPOS)が好ましい。
前記の分散工程により得られた混合溶媒中にFe系軟磁性粉末を分散させたスラリーを、公知の機械的手段により撹拌しながら、シリコンアルコキシドを添加した後、その状態でスラリーを一定時間保持する。シリコンアルコキシドとしては、前述のように、炭素数2~5のシリコンアルキシド、例えばトリエトキシシラン、テトラエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン、テトラブトキシシラン、ペンチルトリエトキシシラン等を使用することができるが、テトラエトキシシラン(TEOS)またはテトラプロポキシシラン(TPOS)が好ましい。
なお、本アルコキシド添加工程と後述する加水分解触媒添加工程の順番を入れ替えてもよく、またそれらの二つの工程を同時に行っても良い。
本工程で添加したシリコンアルコキシドは、ほぼ全量シリコン酸化物被覆層の形成に用いられるので、その添加量はシリコン酸化物被覆層の平均膜厚に換算して1nm以上80nmになる量とする。シリコンアルコキシドの添加量は、具体的には以下の方法により決定する。
スラリー中に含まれるFe系軟磁性粉末の質量をGp(g)、当該Fe系軟磁性粉末の被覆前のBET比表面積をS(m2/g)、シリコン酸化物被覆層の目標膜厚をt(nm)とすると、シリコン酸化物被覆層の全体積はV=Gp×S×t(10-5m3)であり、シリコン酸化物被覆層の密度をd=2.65(g/cm3=106g/m3)とすると、シリコン酸化物被覆層の質量はGc=0.1V×d(g)となる。したがって、シリコン酸化物被覆層に含まれるSiのモル数はGcをSiO2の分子量60.08で割った値として求められる。本発明の製造方法においては、上記の目標膜厚t(nm)に対応するモル数のシリコンアルコキシドを、混合溶媒中にFe系軟磁性粉末を分散させたスラリー中に添加する。
本発明においては、アルコキシド添加工程を実施する際のスラリーの温度は特に規定するものではないが、10℃以上70℃以下とすることが好ましい。温度が10℃未満では、Fe系軟磁性粉末表面とシラノール誘導体との反応の速度が遅くなる場合がある。また、温度が70℃を超えると、添加したシリコンアルコキシドの加水分解反応速度が増大し、シリコン酸化物被覆層の均一性が悪化する場合がある。これらの観点から、スラリーの温度は20℃以上70℃以下であることがより好ましい。本発明においては、アルコキシド添加工程の時間(シリコンアルコキシドを添加し、生成したシラノール誘導体とFe系軟磁性粉末表面とを反応させる時間)も特に規定するものではないが、Fe系軟磁性粉末表面とシラノール誘導体との反応が均一に起こるように、時間が10min以下になるように条件を適宜選択する。
[加水分解触媒添加工程]
本発明の製造方法においては、前記のアルコキシド添加工程においてFe系軟磁性粉末表面にシラノール誘導体の反応層を形成した後、混合溶媒中にFe系軟磁性粉末を分散させたスラリーを公知の機械的手段により撹拌しながら、シリコンアルコキシドの加水分解触媒を添加する。なお、アルコキシドの添加と加水分解触媒の添加の順番を反対としてもよいし、同時にしてもよいことは、上述のとおりである。
本発明の製造方法においては、前記のアルコキシド添加工程においてFe系軟磁性粉末表面にシラノール誘導体の反応層を形成した後、混合溶媒中にFe系軟磁性粉末を分散させたスラリーを公知の機械的手段により撹拌しながら、シリコンアルコキシドの加水分解触媒を添加する。なお、アルコキシドの添加と加水分解触媒の添加の順番を反対としてもよいし、同時にしてもよいことは、上述のとおりである。
本工程においては、加水分解触媒の添加により、シリコンアルコキシドの加水分解反応が促進され、シリコン酸化物被覆層の成膜速度が増大する。なお、本工程以降は、通常のゾル-ゲル法による成膜法と同一の手法になる。
加水分解触媒としてはアルカリ触媒を用いるのが好ましい。酸触媒を用いると、軟磁性粉末の構成成分であるFeが溶解する場合がある。アルカリ触媒としては、シリコン酸化物被覆層中に不純物が残存し難いことと入手の容易さから、アンモニア水を用いることが好ましい。
本発明においては、加水分解触媒添加工程を実施する際のスラリー温度は特に規定するものではなく、アルコキシド添加工程を実施する際のスラリーの温度と同一で構わない。また、本発明においては、加水分解触媒添加工程の時間(加水分解触媒を添加し、Fe系軟磁性粉末表面へのシリコン酸化物被覆層の成膜を行う時間)も特に規定するものではないが、長時間の反応時間は経済的に不利になるので、反応時間が5min以上120min以下になるように条件を適宜選択する。
[固液分離および乾燥]
前記までの一連の工程で得られたシリコン酸化物被覆Fe系軟磁性粉末を含むスラリーから、公知の固液分離手段を用いてシリコン酸化物被覆Fe系軟磁性粉末を回収する。固液分離手段としては、濾過、遠心分離、デカンテーション等の公知の固液分離手段を用いることができる。固液分離時には、凝集剤を添加し固液分離しても構わない。
前記までの一連の工程で得られたシリコン酸化物被覆Fe系軟磁性粉末を含むスラリーから、公知の固液分離手段を用いてシリコン酸化物被覆Fe系軟磁性粉末を回収する。固液分離手段としては、濾過、遠心分離、デカンテーション等の公知の固液分離手段を用いることができる。固液分離時には、凝集剤を添加し固液分離しても構わない。
回収したシリコン酸化物被覆Fe系軟磁性粉末は、好ましくは大気雰囲気、80℃以上の温度で乾燥する。80℃以上で乾燥を行うと、シリコン酸化物被覆Fe系軟磁性粉末の水分含有量を0.25質量%以下に低減することができる。乾燥温度としては85℃以上が好ましく、90℃以上がより好ましい。また、シリコン酸化物被覆層が剥がれないように、乾燥温度は400℃以下であることが好ましく、150℃以下がより好ましい。軟磁性粉末の酸化を抑制したい場合は、不活性ガス雰囲気や真空雰囲気中で乾燥する。
[Si含有量の測定]
シリコン酸化物被覆Fe系軟磁性粉末におけるSiの含有量の測定は重量法(溶解法)によって行った。試料に塩酸と過塩素酸を加えて加熱分解し、過塩素酸の白煙が発生するまで加熱する。引き続き加熱して乾固させる。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させる。不溶解残渣をろ紙を用いてろ過し、残渣をろ紙ごとるつぼに移し、乾燥、灰化させる。放冷後にるつぼごと秤量する。少量の硫酸とフッ化水素酸を加え、加熱して乾固させた後、強熱する。放冷後にるつぼごと秤量する。1回目の秤量値から2回目の秤量値を差し引き、重量差をSiO2の重量として計算してSi含有量を求める。
シリコン酸化物被覆Fe系軟磁性粉末におけるSiの含有量の測定は重量法(溶解法)によって行った。試料に塩酸と過塩素酸を加えて加熱分解し、過塩素酸の白煙が発生するまで加熱する。引き続き加熱して乾固させる。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させる。不溶解残渣をろ紙を用いてろ過し、残渣をろ紙ごとるつぼに移し、乾燥、灰化させる。放冷後にるつぼごと秤量する。少量の硫酸とフッ化水素酸を加え、加熱して乾固させた後、強熱する。放冷後にるつぼごと秤量する。1回目の秤量値から2回目の秤量値を差し引き、重量差をSiO2の重量として計算してSi含有量を求める。
[シリコン酸化物被覆層の平均膜厚の算出]
上記の方法(溶解法)で測定したシリコン酸化物被覆Fe系軟磁性粉末のSi含有量をA(質量%)とすると、シリコン酸化物被覆層の質量割合B(質量%)は、Siの原子量とSiO2の分子量から、以下の式により算出される。
B=A×SiO2の分子量/Siの原子量=A×60.08/28.09
上記の方法(溶解法)で測定したシリコン酸化物被覆Fe系軟磁性粉末のSi含有量をA(質量%)とすると、シリコン酸化物被覆層の質量割合B(質量%)は、Siの原子量とSiO2の分子量から、以下の式により算出される。
B=A×SiO2の分子量/Siの原子量=A×60.08/28.09
さらに、前述のS(m2/g)およびd(g/cm3)を用いると、シリコン酸化物被覆層の平均膜厚t(nm)は以下の式で表される。なお、下式の10は換算係数である。
t(nm)=10×B/(d×S)
t(nm)=10×B/(d×S)
前述のように、dの値を2.65g/cm3として算出したシリコン酸化物被覆層の平均膜厚は、TEM観察結果とよく一致する。
[BET比表面積測定]
BET比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、粉体表面の付着物等を除去するために、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N2:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
BET比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、粉体表面の付着物等を除去するために、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N2:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
[体積抵抗率の測定]
シリコン酸化物被覆Fe系軟磁性粉末の体積抵抗率の測定は、三菱化学アナリテック株式会社製粉体抵抗測定ユニット(MCP-PD51)、三菱化学アナリテック株式会社製高抵抗抵抗率計ハイレスタUP(MCP-HT450)又は三菱化学アナリテック株式会社製低抵抗抵抗率計ロレスタ(MCP-T610)、三菱化学アナリテック株式会社製粉体抵抗率測定システム(ハイレスタ)又は三菱化学アナリテック株式会社製粉体抵抗率測定システム(ロレスタ)を用い、粉末4.0gを12.73MPa(4kN)で垂直に加圧し、電圧を印加した状態で測定することにより求めた。なお後述する比較例1及び2(抵抗の低いもの)についてはロレスタ及び粉体抵抗率測定システム(ロレスタ)を用いて四探針電極方法により、後述する実施例1~3(抵抗の高いもの)についてはハイレスタUP及び粉体抵抗率測定システム(ハイレスタ)を用いて二重リング電極方法により、体積抵抗率を測定した。
シリコン酸化物被覆Fe系軟磁性粉末の体積抵抗率の測定は、三菱化学アナリテック株式会社製粉体抵抗測定ユニット(MCP-PD51)、三菱化学アナリテック株式会社製高抵抗抵抗率計ハイレスタUP(MCP-HT450)又は三菱化学アナリテック株式会社製低抵抗抵抗率計ロレスタ(MCP-T610)、三菱化学アナリテック株式会社製粉体抵抗率測定システム(ハイレスタ)又は三菱化学アナリテック株式会社製粉体抵抗率測定システム(ロレスタ)を用い、粉末4.0gを12.73MPa(4kN)で垂直に加圧し、電圧を印加した状態で測定することにより求めた。なお後述する比較例1及び2(抵抗の低いもの)についてはロレスタ及び粉体抵抗率測定システム(ロレスタ)を用いて四探針電極方法により、後述する実施例1~3(抵抗の高いもの)についてはハイレスタUP及び粉体抵抗率測定システム(ハイレスタ)を用いて二重リング電極方法により、体積抵抗率を測定した。
12.73MPa(4kN)時の体積抵抗率は、1.0×104Ω・cm以上が好ましい。更に好ましくは1.0×106Ω・cm以上であり、特に好ましくは1.0×107Ω・cm以上である。上限値は1.0×1012Ω・cmである。
[レーザー回折式粒度分布測定]
被覆処理前およびシリコン酸化物被覆処理後のFe系軟磁性粉末の粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。なお、測定レンズの焦点距離は200mmである。同装置により体積基準の累積10%粒子径(D10)、累積25%粒子径(D25)、累積50%粒子径(D50)、累積75%粒子径(D75)、累積90%粒子径(D90)、累積99%粒子径(D99)を求め、累積50%粒子径(D50)を平均粒子径とした。
被覆処理前およびシリコン酸化物被覆処理後のFe系軟磁性粉末の粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。なお、測定レンズの焦点距離は200mmである。同装置により体積基準の累積10%粒子径(D10)、累積25%粒子径(D25)、累積50%粒子径(D50)、累積75%粒子径(D75)、累積90%粒子径(D90)、累積99%粒子径(D99)を求め、累積50%粒子径(D50)を平均粒子径とした。
[XPS測定]
XPS測定にはアルバック・ファイ社製PHI5800 ESCA SYSTEMを用いた。分析エリアはφ800μmとし、X線源:Al管球、X線源の出力:150W、積算回数:20回、分析角度:45°、試料室の真空度:10-8Pa以下とした。測定では初めワイドスキャン(結合エネルギーが0~1000eVの範囲)で光電子スペクトルを得て、次に、ワイドスキャンで検出された各元素(酸素を除く)の所定の軌道に対応するナロースキャンでの測定を行った。バックグラウンド処理はshirley法を用いた。被覆率Rを求める際の各元素のモル分率は、ナロースキャンで得られた光電子スペクトルにおける各元素の所定軌道に対応するピークの積分値比から、解析ソフト上で比感度補正をしたうえで算出した。なお、試料粉末に対してArイオンによるスパッタエッチングを行ってから、粒子の最表面における光電子スペクトルの測定をおこなった。
XPS測定にはアルバック・ファイ社製PHI5800 ESCA SYSTEMを用いた。分析エリアはφ800μmとし、X線源:Al管球、X線源の出力:150W、積算回数:20回、分析角度:45°、試料室の真空度:10-8Pa以下とした。測定では初めワイドスキャン(結合エネルギーが0~1000eVの範囲)で光電子スペクトルを得て、次に、ワイドスキャンで検出された各元素(酸素を除く)の所定の軌道に対応するナロースキャンでの測定を行った。バックグラウンド処理はshirley法を用いた。被覆率Rを求める際の各元素のモル分率は、ナロースキャンで得られた光電子スペクトルにおける各元素の所定軌道に対応するピークの積分値比から、解析ソフト上で比感度補正をしたうえで算出した。なお、試料粉末に対してArイオンによるスパッタエッチングを行ってから、粒子の最表面における光電子スペクトルの測定をおこなった。
[実施例1]
300mLの反応容器に、室温でイソブチルアルコール(IBA:25℃におけるハンセンのSP値は11.3)120gと純水21gとを投入し、撹拌羽を用い、850rpm混合して混合溶媒を作成した後に、当該混合溶媒にFe系軟磁性粉末として純Fe粉末(O2:0.096質量%、Si:0.00質量%、BET比表面積:0.096m2/g、D50:101.7μm、体積抵抗率:1.1×10-2Ω・cm)75gを添加して、純Fe粉末の分散したスラリーを得た。その後、反応容器の上部空間に窒素ガスを流して窒素パージし、酸素濃度計により当該空間の酸素濃度がゼロであることを確認した。当該スラリーを850rpmの撹拌速度で撹拌しながら、室温から40℃まで15minかけて昇温させた。この間、分散工程における当該スラリーの保持時間は15minである。
300mLの反応容器に、室温でイソブチルアルコール(IBA:25℃におけるハンセンのSP値は11.3)120gと純水21gとを投入し、撹拌羽を用い、850rpm混合して混合溶媒を作成した後に、当該混合溶媒にFe系軟磁性粉末として純Fe粉末(O2:0.096質量%、Si:0.00質量%、BET比表面積:0.096m2/g、D50:101.7μm、体積抵抗率:1.1×10-2Ω・cm)75gを添加して、純Fe粉末の分散したスラリーを得た。その後、反応容器の上部空間に窒素ガスを流して窒素パージし、酸素濃度計により当該空間の酸素濃度がゼロであることを確認した。当該スラリーを850rpmの撹拌速度で撹拌しながら、室温から40℃まで15minかけて昇温させた。この間、分散工程における当該スラリーの保持時間は15minである。
前記の混合溶媒中に純Fe粉が分散した撹拌下のスラリーに、少量ビーカーに分取したテトラエトキシシラン(TEOS:和光純薬工業社特級試薬)2.80gを一気に添加した。少量ビーカーの器壁に付着したTEOSは、IBA5gを用いて洗い落とし、反応容器中に加えた。TEOS添加後、撹拌を5min継続し、TEOSの加水分解生成物とFe系軟磁性粉末表面との反応を行わせた。
引き続き、前記のTEOSを添加後5min保持したスラリーに、28質量%アンモニア水12.9gを45minかけて添加した。アンモニア水の添加終了後、撹拌を行いながらスラリーを90min保持して反応生成物の熟成を行い、純Fe粉末の表面にシリコン酸化物被覆層を形成させた。
その後、加圧濾過装置を用いてスラリーを濾別し、磁性粉末のケーキを得た。当該磁性粉末のケーキを100℃、大気中で10h乾燥した後、500μmメッシュの篩を用いて解砕し、シリコン酸化物被覆純Fe粉末を得た。
なお、得られたシリコン酸化物被覆純Fe粉末についてXPS測定を行ったところ、SiとOのピークが観察されたので、シリコン酸化物が被覆されていることが確認できた。以下の実施例についても同様である。より具体的には、シリコン酸化物被覆純Fe粉末について想定される含有元素はFe、O、Si、C(CはTEOS由来)であるが、ワイドスキャンで測定したところ、Feのピーク(結合エネルギーが700~750eVの範囲内)及びCのピーク(結合エネルギーが270~300eVの範囲内)は観察されたが非常に小さく、またSiのピーク(結合エネルギーが90~120eVの範囲)及びOのピーク(結合エネルギーが520~540eVの範囲)が観察された。また、ワイドスキャンでの測定において、その他のピークは観察されなかったことから、シリコン酸化物被覆純Fe粉末(の粒子表面)は実質的に不純物を含有していないと考えられる。
次に、Si、Fe及びCについて、ナロースキャンを実施した。得られた光電子スペクトルのうち、Siは2p3/2軌道(結合エネルギーは105~110eVの範囲)、Feは2p3/2軌道(結合エネルギーは710~720eVの範囲)、Cは1s軌道(結合エネルギーは285~290eVの範囲)についてスキャンを実施し、ピークを観察した。
観察結果から、各元素のモル分率を求めた。モル分率は各元素のピークの積分値比から、解析ソフト上で比感度補正をしたうえで算出した。その結果、Fe、C及びSiのモル分率の合計を100モル%としたとき、Feのモル分率は0.2モル%、Cのモル分率は1.0モル%、Siのモル分率は98.8モル%であった。これらの結果から、得られたシリコン酸化物被覆純Fe粉末の被覆率Rは、0.988だった。
得られたシリコン酸化物被覆純Fe粉末につき、粒度分布、BET比表面積および圧粉体の体積抵抗率の測定を行った。シリコン酸化物被覆純Fe粉末の製造条件を表1に、得られたシリコン酸化物被覆純Fe粉末及びシリコン酸化物被覆前の純Fe粉末の物性値(被覆率Rを含む)を表2にそれぞれ示す。
[実施例2および3]
実施例2として、前記のスラリーに添加するTEOSをTPOS3.60gに変えた以外は実施例1と同じ手順でシリコン酸化物被覆純Fe粉末を得た。実施例3では、前記のスラリーに添加するTEOSをTPOS3.60gに変え、熟成時間を150minに変えた以外は実施例1と同じ手順でシリコン酸化物被覆純Fe粉末を得た。実施例2および3のシリコン酸化物被覆純Fe粉末の製造条件を表1に、得られたシリコン酸化物被覆純Fe粉末の、実施例1と同様に測定した物性値を表2にそれぞれ併せて示す。
実施例2として、前記のスラリーに添加するTEOSをTPOS3.60gに変えた以外は実施例1と同じ手順でシリコン酸化物被覆純Fe粉末を得た。実施例3では、前記のスラリーに添加するTEOSをTPOS3.60gに変え、熟成時間を150minに変えた以外は実施例1と同じ手順でシリコン酸化物被覆純Fe粉末を得た。実施例2および3のシリコン酸化物被覆純Fe粉末の製造条件を表1に、得られたシリコン酸化物被覆純Fe粉末の、実施例1と同様に測定した物性値を表2にそれぞれ併せて示す。
[比較例1および2]
比較例1および2として、混合溶媒に添加するアルコールをIBAからIPA(25℃におけるハンセンのSP値は11.5)仕込み時120g、洗浄用5gに変えた以外は、それぞれ実施例1および実施例2と同じ手順でシリコン酸化物被覆純Fe粉末を得た。比較例1および2のシリコン酸化物被覆純Fe粉末の製造条件を表1に、得られたシリコン酸化物被覆純Fe粉末の、実施例1と同様に測定した物性値を表2にそれぞれ併せて示す。
比較例1および2として、混合溶媒に添加するアルコールをIBAからIPA(25℃におけるハンセンのSP値は11.5)仕込み時120g、洗浄用5gに変えた以外は、それぞれ実施例1および実施例2と同じ手順でシリコン酸化物被覆純Fe粉末を得た。比較例1および2のシリコン酸化物被覆純Fe粉末の製造条件を表1に、得られたシリコン酸化物被覆純Fe粉末の、実施例1と同様に測定した物性値を表2にそれぞれ併せて示す。
以上の実施例および比較例から、25℃におけるハンセンのSP値が11.3以下のアルコールを含む混合溶媒を用い、本発明で規定する分散工程を設けることにより、圧粉体として成形した時に高体積抵抗率の圧粉体が得られるシリコン酸化物被覆Fe系軟磁性粉末が得られることが判る。
[実施例4]
300mLの反応容器に、室温でイソブチルアルコール(IBA:25℃におけるハンセンのSP値は11.3)120gと純水21gとを投入し、撹拌羽を用い、850rpm混合して混合溶媒を作成した後に、当該混合溶媒にFe系軟磁性粉末として、上記実施例1等で使用したのとは異なる純Fe粉末(O2:(0.9)質量%、Si:0.00質量%、BET比表面積:0.669m2/g、D50:6.28μm、体積抵抗率:5.2Ω・cm)75gを添加して、純Fe粉末の分散したスラリーを得た。その後、反応容器の上部空間に窒素ガスを流して窒素パージし、酸素濃度計により当該空間の酸素濃度がゼロであることを確認した。当該スラリーを850rpmの撹拌速度で撹拌しながら、室温から40℃まで15minかけて昇温させた。この間、分散工程における当該スラリーの保持時間は15minである。
300mLの反応容器に、室温でイソブチルアルコール(IBA:25℃におけるハンセンのSP値は11.3)120gと純水21gとを投入し、撹拌羽を用い、850rpm混合して混合溶媒を作成した後に、当該混合溶媒にFe系軟磁性粉末として、上記実施例1等で使用したのとは異なる純Fe粉末(O2:(0.9)質量%、Si:0.00質量%、BET比表面積:0.669m2/g、D50:6.28μm、体積抵抗率:5.2Ω・cm)75gを添加して、純Fe粉末の分散したスラリーを得た。その後、反応容器の上部空間に窒素ガスを流して窒素パージし、酸素濃度計により当該空間の酸素濃度がゼロであることを確認した。当該スラリーを850rpmの撹拌速度で撹拌しながら、室温から40℃まで15minかけて昇温させた。この間、分散工程における当該スラリーの保持時間は15minである。
前記の混合溶媒中に純Fe粉が分散した撹拌下のスラリーに、少量ビーカーに分取したテトラエトキシシラン(TEOS:和光純薬工業社特級試薬)3.40gを一気に添加した。少量ビーカーの器壁に付着したTEOSは、IBA5gを用いて洗い落とし、反応容器中に加えた。TEOS添加後、撹拌を5min継続し、TEOSの加水分解生成物とFe系軟磁性粉末表面との反応を行わせた。
引き続き、前記のTEOSを添加後5min保持したスラリーに、28質量%アンモニア水12.9gを45minかけて添加した。アンモニア水の添加終了後、撹拌を行いながらスラリーを90min保持して反応生成物の熟成を行い、純Fe粉末の表面にシリコン酸化物被覆層を形成させた。
その後、加圧濾過装置を用いてスラリーを濾別し、磁性粉末のケーキを得た。当該磁性粉のケーキを100℃、大気中で10h乾燥した後、(500)μmメッシュの篩を用いて解砕し、シリコン酸化物被覆純Fe粉末を得た。当該粉末の製造条件を表3に、当該粉末の、実施例1と同様に測定した物性値を表4にそれぞれ併せて示す。
[実施例5]
実施例5として、前記のスラリーに添加するTEOSをTPOS(4.30)gに変えた以外は実施例4と同じ手順でシリコン酸化物被覆純Fe粉末を得た。当該粉末の製造条件を表3に、当該粉末の、実施例1と同様に測定した物性値を表4にそれぞれ併せて示す。
実施例5として、前記のスラリーに添加するTEOSをTPOS(4.30)gに変えた以外は実施例4と同じ手順でシリコン酸化物被覆純Fe粉末を得た。当該粉末の製造条件を表3に、当該粉末の、実施例1と同様に測定した物性値を表4にそれぞれ併せて示す。
[比較例3]
比較例3として、混合溶媒に添加するアルコールをIBAからIPA(仕込み時120g、洗浄用5g)に変えた以外は、実施例4と同じ手順でシリコン酸化物被覆純Fe粉末を得た。当該粉末の製造条件を表3に、当該粉末の、実施例1と同様に測定した物性値を表4にそれぞれ併せて示す。
比較例3として、混合溶媒に添加するアルコールをIBAからIPA(仕込み時120g、洗浄用5g)に変えた以外は、実施例4と同じ手順でシリコン酸化物被覆純Fe粉末を得た。当該粉末の製造条件を表3に、当該粉末の、実施例1と同様に測定した物性値を表4にそれぞれ併せて示す。
Claims (9)
- Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、二重リング電極法を用い、12.73MPaで圧下して得られる圧粉体の体積抵抗率が1.0×104Ω・cm以上である、シリコン酸化物被覆Fe系軟磁性粉末。
- Fe系軟磁性粉末をコア粒子として、その表面に平均膜厚が1nm以上80nm以下であるシリコン酸化物被覆層を備えるシリコン酸化物被覆Fe系軟磁性粉末であって、レーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下であり、下記で定義される被覆率Rが0.8以上である、シリコン酸化物被覆Fe系軟磁性粉末。
R:前記シリコン酸化物被覆Fe系軟磁性粉末の酸素以外の元素についてX線光電子分光分析法(XPS)測定したときの、酸素以外の元素のモル分率の合計に対する、Siのモル分率の割合。 - 前記の体積基準の累積50%粒子径D50が20μm以上200μm以下である、請求項1または2に記載のシリコン酸化物被覆Fe系軟磁性粉末。
- Fe系軟磁性粉末の表面に平均膜厚が1nm以上80nm以下のシリコン酸化物を被覆したシリコン酸化物被覆Fe系軟磁性粉末の製造方法であって、
25℃におけるハンセンの溶解度パラメータ値(SP値)が11.3以下のアルコールと水を混合し、水を5質量%以上50質量%以下含む混合溶媒を準備する工程と、
前記の混合溶媒にレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下のFe系軟磁性粉末を添加し、Fe系軟磁性粉末の分散したスラリーを得る分散工程と、
前記のFe系軟磁性粉末を分散したスラリーに、シリコンアルコキシドおよびシリコンアルコキシドの加水分解触媒を添加し、シリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを得る添加工程と、
前記のシリコン酸化物を被覆したFe系軟磁性粉末の分散したスラリーを固液分離し、シリコン酸化物を被覆したFe系軟磁性粉末を得る工程と、
前記のシリコン酸化物を被覆したFe系軟磁性粉末を乾燥する工程と、
を含む、シリコン酸化物被覆Fe系軟磁性粉末の製造方法。 - 前記の体積基準の累積50%粒子径D50が20μm以上200μm以下である、請求項4に記載のシリコン酸化物被覆Fe系軟磁性粉末の製造方法。
- 前記添加工程を実施する際の温度が10℃以上70℃以下である、請求項4に記載のシリコン酸化物被覆Fe系軟磁性粉末の製造方法。
- 前記添加工程を実施する際の温度が20℃以上70℃以下である、請求項4に記載のシリコン酸化物被覆Fe系軟磁性粉末の製造方法。
- 前記のシリコン酸化物被覆Fe系軟磁性粉末のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が5μm超え200μm以下である、請求項4に記載のシリコン酸化物被覆Fe系軟磁性粉末の製造方法。
- 前記のシリコン酸化物被覆Fe系軟磁性粉末のレーザー回折式粒度分布測定法により得られる体積基準の累積50%粒子径D50が20μm以上200μm以下である、請求項4に記載のシリコン酸化物被覆Fe系軟磁性粉末の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/628,295 US20220262551A1 (en) | 2019-08-30 | 2020-08-26 | SILICON OXIDE-COATED Fe-BASED SOFT MAGNETIC POWDER AND METHOD FOR PRODUCING SAME |
CN202080060280.9A CN114365242A (zh) | 2019-08-30 | 2020-08-26 | 硅氧化物被覆Fe系软磁性粉末及其制造方法 |
KR1020227010426A KR20220054382A (ko) | 2019-08-30 | 2020-08-26 | 실리콘 산화물 피복 Fe계 연자성 분말 및 이의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-158334 | 2019-08-30 | ||
JP2019158334 | 2019-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039828A1 true WO2021039828A1 (ja) | 2021-03-04 |
Family
ID=74684787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032136 WO2021039828A1 (ja) | 2019-08-30 | 2020-08-26 | シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220262551A1 (ja) |
JP (1) | JP2021040132A (ja) |
KR (1) | KR20220054382A (ja) |
CN (1) | CN114365242A (ja) |
WO (1) | WO2021039828A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238752A1 (ja) * | 2022-06-09 | 2023-12-14 | 株式会社レゾナック | コンパウンド、成形体、及び硬化物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022191084A1 (ja) | 2021-03-12 | 2022-09-15 | Agc株式会社 | 硬化性組成物及び硬化物 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012994A (ja) * | 2005-07-01 | 2007-01-18 | Mitsubishi Steel Mfg Co Ltd | 絶縁軟磁性金属粉末成形体の製造方法 |
JP2017183681A (ja) * | 2016-03-31 | 2017-10-05 | 三菱マテリアル株式会社 | シリカ系絶縁被覆軟磁性粉末およびその製造方法 |
JP2019123933A (ja) * | 2018-01-17 | 2019-07-25 | Dowaエレクトロニクス株式会社 | シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ |
JP2019143241A (ja) * | 2018-02-20 | 2019-08-29 | Dowaエレクトロニクス株式会社 | シリコン酸化物被覆軟磁性粉末およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286315A (ja) * | 2004-03-01 | 2005-10-13 | Showa Denko Kk | シリカ被覆した希土類系磁性粉末およびその製造方法並びにその用途 |
JP5263654B2 (ja) | 2008-03-21 | 2013-08-14 | 日立金属株式会社 | 圧粉磁心用軟磁性粉末のシリカ被覆形成方法および圧粉磁心の製造方法 |
JP6606162B2 (ja) * | 2015-02-16 | 2019-11-13 | 株式会社東芝 | 圧粉磁心とその製造方法、およびそれを用いた磁性部品 |
KR102305736B1 (ko) * | 2016-11-16 | 2021-09-28 | 소에이 가가쿠 고교 가부시키가이샤 | 금속 분말의 제조 방법 |
-
2020
- 2020-08-26 WO PCT/JP2020/032136 patent/WO2021039828A1/ja active Application Filing
- 2020-08-26 KR KR1020227010426A patent/KR20220054382A/ko not_active Application Discontinuation
- 2020-08-26 JP JP2020142377A patent/JP2021040132A/ja active Pending
- 2020-08-26 US US17/628,295 patent/US20220262551A1/en not_active Abandoned
- 2020-08-26 CN CN202080060280.9A patent/CN114365242A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012994A (ja) * | 2005-07-01 | 2007-01-18 | Mitsubishi Steel Mfg Co Ltd | 絶縁軟磁性金属粉末成形体の製造方法 |
JP2017183681A (ja) * | 2016-03-31 | 2017-10-05 | 三菱マテリアル株式会社 | シリカ系絶縁被覆軟磁性粉末およびその製造方法 |
JP2019123933A (ja) * | 2018-01-17 | 2019-07-25 | Dowaエレクトロニクス株式会社 | シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ |
JP2019143241A (ja) * | 2018-02-20 | 2019-08-29 | Dowaエレクトロニクス株式会社 | シリコン酸化物被覆軟磁性粉末およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238752A1 (ja) * | 2022-06-09 | 2023-12-14 | 株式会社レゾナック | コンパウンド、成形体、及び硬化物 |
WO2023238338A1 (ja) * | 2022-06-09 | 2023-12-14 | 株式会社レゾナック | コンパウンド、成形体、及び硬化物 |
Also Published As
Publication number | Publication date |
---|---|
JP2021040132A (ja) | 2021-03-11 |
US20220262551A1 (en) | 2022-08-18 |
CN114365242A (zh) | 2022-04-15 |
KR20220054382A (ko) | 2022-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6719607B2 (ja) | シリコン酸化物被覆軟磁性粉末およびその製造方法 | |
JP7201417B2 (ja) | シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ | |
JP7542714B2 (ja) | シリコン酸化物被覆軟磁性粉末 | |
TW202035730A (zh) | 軟磁性粉末、軟磁性粉末之熱處理方法、軟磁性材料、壓粉磁心及壓粉磁心之製造方法 | |
CN114728334B (zh) | 硅氧化物被覆软磁性粉末及制造方法 | |
WO2021039828A1 (ja) | シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法 | |
KR102376001B1 (ko) | 실리콘 산화물 피복 철분 및 이의 제조 방법 및 이를 사용한 인덕터용 성형체 및 인덕터 | |
JP7441113B2 (ja) | 圧粉磁心 | |
TW201435930A (zh) | Fe基軟磁性粉末、使用上述Fe基軟磁性粉末之複合磁性粉末及使用上述複合磁性粉末之壓粉磁芯 | |
JP7097702B2 (ja) | Fe-Co合金粉並びにそれを用いたインダクタ用成形体およびインダクタ | |
JP2019218611A (ja) | リン酸表面処理軟磁性粉末の製造方法、及びリン酸表面処理軟磁性粉末 | |
JP2022119746A (ja) | 金属粉末 | |
JP7002179B2 (ja) | Fe-Ni合金粉並びにそれを用いたインダクタ用成形体およびインダクタ | |
JP4969556B2 (ja) | 高磁束密度圧粉磁心 | |
US20220402026A1 (en) | Method for manufacturing coated metal powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858663 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227010426 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858663 Country of ref document: EP Kind code of ref document: A1 |