WO2021039386A1 - Laser device - Google Patents
Laser device Download PDFInfo
- Publication number
- WO2021039386A1 WO2021039386A1 PCT/JP2020/030643 JP2020030643W WO2021039386A1 WO 2021039386 A1 WO2021039386 A1 WO 2021039386A1 JP 2020030643 W JP2020030643 W JP 2020030643W WO 2021039386 A1 WO2021039386 A1 WO 2021039386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- laser
- laser beam
- optical component
- mirrors
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
Definitions
- the present invention relates to a laser device.
- a stepped mounting surface is provided on the base, and laser light from a light emitting element mounted on each of the mounting surfaces is transmitted to the mounting surface by a mirror mounted on each of the mounting surfaces.
- a laser device that spatially multiplexes laser light by reflecting it in a direction along the line and combines the multiplexed laser light is known (for example, Patent Document 1).
- a flat mounting surface is provided on a plate-shaped base, and laser light from a light emitting element mounted in a row on the mounting surface corresponds to each of the light emitting elements.
- a laser device that spatially multiplexes laser light and combines the multiplexed laser light by reflecting it diagonally upward at the same angle by a mirror placed on the mounting surface is known. (For example, Patent Document 2).
- the heat generated by the light emitting element is transferred from the mounting surface to the bottom surface opposite to the mounting surface at the base, and is dissipated from the bottom surface. As a result, the temperature rise of the light emitting element is suppressed.
- the mirror mounted on the flat mounting surface reflects the laser light from the light emitting element diagonally upward with respect to the mounting surface so as to look up at the phase advance axis.
- the installation angle of the mirror with respect to the mounting surface affects not only the reflection angle of the laser light from the light emitting element but also the elevation angle of the laser light with respect to the mounting surface. For this reason, it is difficult to adjust the installation angle of the mirror with respect to the mounting surface, and there is a risk that it will be difficult to accurately combine the plurality of laser beams.
- the mirror since the mirror is installed in an inclined state with respect to the mounting surface, the posture of the mirror becomes unstable, and there is a possibility that it becomes difficult to accurately combine a plurality of laser beams.
- one of the problems of the present disclosure is, for example, to obtain a laser device that can more easily suppress the temperature rise of the light emitting element and more accurately combine a plurality of laser beams.
- the laser device of the present invention includes, for example, a plurality of light emitting units each having a light emitting element and arranged in the first direction, and extending in a second direction which is positioned side by side in the first direction and inclined with respect to the first direction.
- a base having a plurality of mounting surfaces on which the light emitting units are mounted, and a bottom surface extending in the first direction on the back side of the plurality of mounting surfaces, and a mounting surface arranged in the first direction and described above.
- a plurality of first deflection components mounted on each of the above and directing the laser beam from the light emitting unit mounted on the mounting surface in the second direction, and a laser deflected by each of the first deflection components. It includes an optical component that guides light into one optical fiber.
- the optical component is provided on the base.
- a plurality of rows in which the plurality of first deflection components are arranged in the first direction are provided at intervals in a direction orthogonal to the first direction.
- the optical component is formed in the plurality of rows in which the first laser light from the first row included in the plurality of rows and the polarization direction are orthogonal to the first laser light. It has a polarization synthesizing element that polarizes and synthesizes the second laser beam from the second row included.
- the optical component has a second deflection component that directs a laser beam traveling in the second direction from the plurality of first deflection components in the first direction.
- the base has a plurality of mounting surfaces and a bottom surface and extends in the first direction, and supports the optical fiber and extends in the second direction. It has a second site and.
- the elevation angle of the second direction with respect to the first direction is ⁇
- the beam diameter of the laser beam traveling in the second direction from each of the first deflection components is d
- the plurality of firsts is satisfied.
- the laser device includes, for example, a support member that projects onto the above-mentioned mounting surface and supports the first deflection component.
- the laser device includes, for example, a second support member that projects onto the surface of the base and supports the optical component.
- the light emitting unit has a case in which the light emitting element is housed.
- the light emitting element is hermetically sealed in the case.
- the laser device of the present invention includes, for example, a plurality of light emitting units each including a light emitting element and arranged in the first direction, and a second direction which is located side by side in the first direction and is inclined with respect to the first direction.
- a plate-shaped base that extends and has a plurality of mounting surfaces on which the light emitting units are mounted, and an optical component that guides laser light from the plurality of light emitting units into one optical fiber.
- the optical component is provided on the base.
- a plurality of mounting surfaces of the base are lined up in the first direction and the bottom surface of the base extends in the first direction, which affects the heat dissipation performance of the light emitting element from the base. It is possible to eliminate such thick parts. Further, since the mounting surface extends in the second direction inclined with respect to the first direction, the first deflection component is placed on the mounting surface so that the first deflection component is placed in a desired posture ( It can be installed more easily or more accurately at an angle), and thus a plurality of laser beams can be combined more accurately.
- FIG. 1 is an exemplary and schematic perspective view of the laser apparatus of the first embodiment.
- FIG. 2 is an exemplary and schematic side view of the laser apparatus of the first embodiment.
- FIG. 3 is an exemplary and schematic perspective view of a portion of the laser apparatus of the first embodiment.
- FIG. 4 is an exemplary and schematic plan view of a part of the laser apparatus of the first embodiment.
- FIG. 5 is an exemplary and schematic side view of the first portion of the base of the first embodiment.
- FIG. 6 is an exemplary and schematic side view of the mounting surface of the laser apparatus of the first embodiment and the first deflection component.
- FIG. 7 is an exemplary and schematic perspective view of the laser apparatus of the second embodiment.
- FIG. 8 is an exemplary and schematic side view of the laser apparatus of the second embodiment.
- FIG. 1 is an exemplary and schematic perspective view of the laser apparatus of the first embodiment.
- FIG. 2 is an exemplary and schematic side view of the laser apparatus of the first embodiment.
- FIG. 3 is an exemplary and schematic perspective view of
- FIG. 9 is an exemplary and schematic perspective view of a portion of the laser apparatus of the second embodiment.
- FIG. 10 is an exemplary and schematic side view of the laser apparatus of the third embodiment.
- FIG. 11 is an exemplary and schematic perspective view of the laser apparatus of the fourth embodiment.
- FIG. 12 is an exemplary and schematic plan view of a portion of the laser apparatus of the fourth embodiment.
- FIG. 13 is an exemplary and schematic perspective view of a portion of a modified example laser apparatus of the embodiment.
- FIG. 14 is an exemplary and schematic perspective view of the laser apparatus of the fifth embodiment.
- FIG. 15 is an exemplary and schematic side view of the laser apparatus of the fifth embodiment.
- FIG. 16 is an exemplary and schematic perspective view of the laser apparatus of the sixth embodiment.
- FIG. 17 is an exemplary and schematic perspective view of a portion of the laser apparatus of the seventh embodiment.
- the first direction is represented by the arrow X1
- the second direction is represented by the arrow X2
- the third direction is represented by the arrow Y3
- the fourth direction is represented by the arrow Z4.
- the first direction X1, the third direction Y3, and the fourth direction Z4 are orthogonal to each other.
- the second direction X2 and the third direction Y3 are orthogonal to each other.
- FIG. 1 is a perspective view of the semiconductor laser module 10A of the first embodiment
- FIG. 2 is a side view of the semiconductor laser module 10A.
- the semiconductor laser module 10A includes a base 100A, a plurality of light emitting units 200A-1 to 200A-15, a plurality of second collimating lenses 210-1 to 210-15, and a plurality of light emitting units 200A-1 to 200A-15. It includes mirrors 300-1 to 300-15, a plurality of optical components 400, and a support member 130 that supports the optical fiber 500.
- the number of light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 is 15 as an example. It is not limited to, and may be more than or less than 15.
- the semiconductor laser module 10A is an example of a laser device.
- the base 100A has a plate-shaped first portion 110A extending in the first direction X1 and a triangular columnar second portion 120A extending in the third direction Y3.
- the second portion 120A has a second top surface 122 extending in the second direction X2.
- the second direction X2 is the direction between the first direction X1 and the fourth direction Z4.
- the first portion 110A has a plate-shaped wall 111 extending in the first direction X1 and the third direction Y3.
- the wall 111 (first site 110A) is made of a metal material having a relatively high thermal conductivity, such as oxygen-free copper.
- the length of the wall 111 in the first direction X1 is longer than the length of the wall 111 in the third direction Y3. Therefore, the first direction X1 may be referred to as a longitudinal direction or a longitudinal direction, and the third direction Y3 may be referred to as a lateral direction or a width direction.
- the fourth direction Z4 may also be referred to as a thickness direction or a height direction.
- the first portion 110A includes a first top surface 112 and a plurality of mounting surfaces 113-1 to 113-15 located at one end (upper end in FIG. 2) of the wall 111 in the fourth direction Z4, and a fourth wall 111. It has a first bottom surface 114 at the other end (lower end in FIG. 2) in the direction Z4.
- the mounting surfaces 113-1 to 113-15 may also be referred to as the first mounting surface.
- the plurality of mounting surfaces 113-1 to 113-15 are a central portion 100a of the first direction X1 of the first portion 110A and a rear end portion 100b of the first direction X1 (the right end portion in FIGS. 1 and 2). It is provided between and. Further, the plurality of mounting surfaces 113-1 to 113-15 are arranged at a constant pitch (interval) in the first direction X1 at the central portion of the third direction Y3 of the first portion 110A. The mounting surfaces 113-1 to 113-15 extend in the second direction X2 and extend in the third direction Y3, respectively.
- the mounting surfaces 113-1 to 113-15 have a rectangular shape, and in this embodiment, as an example, the length of the third direction Y3 is longer than the length of the second direction X2. It has a shape. As shown in FIG. 2, the magnitude of the elevation angle of the second direction X2 with respect to the first direction X1 is ⁇ .
- the plurality of mounting surfaces 113-1 to 113-15 are parallel to each other.
- the plurality of mounting surfaces 113-1 to 113-15 form a stepped structure.
- the mounting surfaces 113-1 to 113-15 can also be referred to as staircase surfaces, mounting surfaces, and installation surfaces.
- the first top surface 112 extends in the first direction X1 and the third direction Y3.
- the first top surface 112 is provided so as to surround a plurality of mounting surfaces 113-1 to 113-15 between the central portion 100a and the end portion 100b of the base 100A.
- the first top surface 112 may also be referred to as a surface.
- the first bottom surface 114 extends in the first direction X1 and the third direction Y3.
- the first bottom surface 114 is located on the back side (opposite side) of the plurality of mounting surfaces 113-1 to 113-15 between the central portion 100a and the end portion 100b of the base 100A.
- the first bottom surface 114 has a rectangular shape, and in the present embodiment, as an example, the first bottom surface 114 has a rectangular shape in which the length of the first direction X1 is longer than the length of the third direction Y3. ..
- the first bottom surface 114 is an example of the bottom surface.
- the second portion 120A is between the central portion 100a of the first portion 110A in the first direction X1 and the front end portion 100c of the first portion 110A in the first direction X1 (the left end portion in FIGS. 1 and 2). It is provided adjacent to the fourth direction Z4 with respect to the site.
- the second portion 120A has a second top surface 122 and a second bottom surface 123.
- the second top surface 122 extends in the second direction X2 and the third direction Y3.
- the second bottom surface 123 extends in the first direction X1 and the third direction Y3.
- the second bottom surface 123 is in contact with the first top surface 112 of the first portion 110A.
- the first part 110A and the second part 120A can be connected by, for example, a fixture such as a screw or an adhesive.
- the second portion 120A can be made of, for example, a synthetic resin material or a metal material.
- the second part 120A may be made of, for example, a material having a thermal conductivity lower than that of the first part 110A, or may be made of a material having a specific gravity lighter than that of the first part 110A.
- a hollow portion, an opening, a recess, or the like may be provided between the second top surface 122 and the second bottom surface 123 of the second portion 120A. Further, the second part 120A may be integrated with the first part 110A.
- the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirror 300 are provided on the plurality of mounting surfaces 113-1 to 113-15, respectively.
- -1 to 300-15 are implemented one by one.
- the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are placed on the mounting surface 113-1 to 113-15, for example, with an adhesive. It is attached via.
- FIG. 3 is an enlarged perspective view of the mounting surface 113-1, the light emitting unit 200A-1, the second collimating lens 210-1, and the mirror 300-1
- FIG. 4 is an enlarged perspective view of the mounting surface 113-15
- FIG. 5 is a plan view of the light emitting unit 200A-15, the second collimating lens 210-15, the mirror 300-15, and the cylindrical lens 411 as viewed in the opposite direction of the fourth direction Z4.
- the mounting surfaces 113-1 to 113-15, the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are all subscripts. , Has the same specifications (shape, arrangement, etc.) as in FIGS. 3 and 4. That is, the subscript of the code means that the subscript is placed on the mounting surfaces 113-1 to 113-15 of the same subscript.
- the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirror 300- 1 to 300-15 are lined up in the third direction Y3.
- the second collimating lenses 210-1 to 210-15 are located between the light emitting units 200A-1 to 200A-15 and the mirrors 300-1 to 300-15.
- the plurality of light emitting units 200A-1 to 200A-15 are arranged at equal intervals in the first direction X1, and the plurality of second collimating lenses 210-1 to 210-15 are first.
- the mirrors 300-1 to 300-15 are arranged at equal intervals in the direction X1, and the plurality of mirrors 300-1 to 300-15 are arranged at equal intervals in the first direction X1.
- the light emitting units 200A-1 to 200A-15 are mounted on the submounts 203-1 to 203-15 and the top surfaces of the submounts 203-1 to 203-15. It has the light emitting elements 204-1 to 204-15.
- the first collimating lenses 202-1 to 202-15 are mounted on the side surface of the submounts 203-1 to 203-15 located at the end of the third direction Y3.
- Submounts 203-1 to 203-15 have, for example, a flat rectangular parallelepiped shape. Further, the submounts 203-1 to 203-15 can be made of an insulating material having a relatively high thermal conductivity, such as aluminum nitride (AIN), ceramic, or glass.
- AIN aluminum nitride
- the light emitting elements 204-1 to 204-15 are, for example, semiconductor laser elements, and emit laser light toward the third direction Y3 on the submounts 203-1 to 203-15.
- the phase advance axis (FA) of the light emitting elements 204-1 to 204-15 is orthogonal to the second direction X2 and the third direction Y3, in other words, the mounting surface 113-. It is mounted along the direction orthogonal to 1 to 113-15 and so that the slow axis (SA) is along the second direction X2.
- the first collimating lenses 202-1 to 202-15 are, for example, cylindrical lenses, and collimate the laser light emitted from the light emitting elements 204-1 to 204-15 in the first axis. That is, the laser beam emitted from the light emitting elements 204-1 to 204-15 and passed through the first collimating lenses 202-1 to 202-15, in other words, the phase advancing axis emitted from the light emitting units 200A-1 to 200A-15.
- the laser beam collimated in the above travels in the third direction Y3 along a plane orthogonal to the phase advance axis.
- the second collimating lenses 210-1 to 210-15 are, for example, cylindrical lenses, and receive laser light from the light emitting units 200A-1 to 200A-15, that is, from the first collimating lenses 202-1 to 202-15. Collimate on the slow axis. That is, the laser light passing through the second collimating lenses 210-1 to 210-15, in other words, the laser light collimated in the phase-advancing axis and the slow-phase axis, travels in the third direction Y3.
- the mirrors 300-1 to 300-15 reflect the light in the third direction Y3 from the second collimating lenses 210-1 to 210-15 in the second direction X2. In other words, the mirrors 300-1 to 300-15 direct the light in the third direction Y3 from the light emitting units 200A-1 to 200A-15 in the second direction X2.
- the first collimating lenses 202-1 to 202-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300 are emitted from the light emitting elements 204-1 to 204-15. While passing through -15, the laser beam travels parallel to the mounting surfaces 113-1 to 113-15.
- Mirrors 300-1 to 300-15 are examples of first deflection components and also examples of optical components.
- the first deflection component may be an optical component different from the mirrors 300-1 to 300-15, such as a prism.
- the plurality of laser beams reflected (deflected) by the plurality of mirrors 300-1 to 300-15 are directed in the second direction X2 in parallel with each other.
- the plurality of laser beams reflected (deflected) by the plurality of mirrors 300-1 to 300-15 are arranged in the fourth direction Z4.
- the cylindrical lens 411 is separated from all the mirrors 300-1 to 300-15 in the second direction X2, the cylindrical lens 412 is separated from the cylindrical lens 411 in the second direction X2, and the end portion 500a of the optical fiber 500 is separated from the optical fiber 500. It is separated from the cylindrical lens 412 in the second direction X2.
- the cylindrical lens 411 and the cylindrical lens 412 couple a plurality of laser beams from the plurality of mirrors 300-1 to 300-15 to the end portion 500a of the optical fiber 500.
- the cylindrical lenses 411 and 412 guide the light from the mirrors 300-1 to 300-15 toward the second direction X2 to the end portion 500a of the optical fiber 500.
- the cylindrical lenses 411 and 412 are also referred to as, for example, a light collecting element, and are an example of the optical component 400.
- the optical component 400 may be an optical component 400 different from the cylindrical lenses 411 and 412, and the optical component 400 includes an optical component 400 different from the cylindrical lenses 411 and 412 such as an optical filter. It may be.
- the cylindrical lens 411 is provided adjacent to the support member 141 protruding on the second top surface 122.
- the support member 141 is attached to the second portion 120A by, for example, being press-fitted into a hole provided in the second portion 120A (base 100A) and opened in the second top surface 122.
- the cylindrical lens 411 may be positioned by the support member 141, or may be attached to the support member 141 by adhesion or the like.
- the support member 141 is an example of the second support member, and may also be referred to as a second positioning member.
- the second top surface 122 is an example of a surface.
- the cylindrical lens 412 and the optical fiber 500 are attached to the support member 130, and the support member 130 and the cylindrical lens 411 are attached on the second top surface 122 of the second portion 120A. Therefore, the cylindrical lenses 411 and 412 can more accurately couple the laser beam to the end portion 500a of the optical fiber 500.
- the second top surface 122 may also be referred to as a second mounting surface.
- FIG. 5 is a side view of the first portion 110A of the base 100A.
- a thick plate-shaped material M two-point chain wire
- a posture in which the first bottom surface 114 is inclined by an angle ⁇ with respect to the machining direction so that the mounting surfaces 113-1 to 113-15 follow the machining direction by the machine tool (cutting direction, polishing direction, left-right direction in FIG. 5).
- the plurality of mounting surfaces 113-1 to 113-15 may be processed in a stepped shape by the machine.
- the machine tool can process a plurality of mounting surfaces 113-1 to 113-15 extending in the second direction X2 inclined by an angle ⁇ with respect to the first direction X1 more easily or more accurately. Can be done.
- FIG. 6 is a side view showing the mounting surfaces 113-1 and 113-2 and the mirrors 300-1 and 300-2. Assuming that the beam diameter of the laser beam B deflected by the mirrors 300-1 and 300-2 is d, the condition for the two adjacent laser beams B not to interfere with each other, that is, the gap between the two adjacent laser beams B.
- a plurality of light emitting units 200A-1 to 200A-15, a base 100A, and a plurality of mirrors 300-1 to 300-15 ( A first deflection component) and an optical component 400 are provided.
- the plurality of light emitting units 200A-1 to 200A-15 each have light emitting elements 204-1 to 204-15 and are arranged in the first direction X1.
- the base 100A is located side by side in the first direction X1, extends in the second direction X2 inclined with respect to the first direction X1, and has a plurality of mounting surfaces 113-1 on which the light emitting units 200A-1 to 200A-15 are mounted.
- the base 100A has a plate-like shape extending in the first direction X1 and has a plurality of mounting surfaces 113-1 to 113-15.
- the plurality of mirrors 300-1 to 300-15 are arranged in the first direction X1 and mounted on the mounting surfaces 113-1 to 113-15, respectively, and mounted on the mounting surfaces 113-1 to 113-15.
- the laser light from the light emitting units 200A-1 to 200A-15 is directed to the second direction X2.
- the optical component 400 (411, 412) guides the (deflected) laser light reflected by each of the mirrors 300-1 to 300-15 provided on the base 100A to one optical fiber 500.
- the thickness of the portion where the light emitting units 200A-1 to 200A-15 are placed can be made thinner in the base 100A, so that the heat dissipation performance through the base 100A can be improved. Can be enhanced.
- the mirrors 300-1 to 300-15 can be mounted on the mounting surfaces 113-1 to 113-15 extending in the second direction X2, the mirror is tilted on the surface extending in the first direction X1.
- the mirrors 300-1 to 300-15 can be installed more accurately or more easily than the configuration in which the mirrors are placed, and by extension, a plurality of laser beams can be combined more accurately.
- the elevation angle of the second direction X2 with respect to the first direction X1 is ⁇
- the mirrors 300-1 to 300-15 are second to each other.
- the semiconductor laser module 10A can be placed between two adjacent laser beams. Can be configured so that they do not interfere with each other. Further, according to the present embodiment, the mirrors 300-1 to 300-15 can be installed more accurately on the mounting surfaces 113-1 to 113-15, so that a gap G is formed between the two laser beams B. The distance D between the optical axes of the two laser beams B and the installation interval L in the first direction X1 of the mirrors 300-1 to 300-15 can be set smaller. As a result, the semiconductor laser module 10A can be compactly configured in the first direction X1.
- the semiconductor laser module 10A (laser device) of the first embodiment includes a support member 141 (second support member) that projects on the second top surface 122 (surface) and supports the cylindrical lens 411 (optical component). ing.
- the support member 141 can suppress the tilting and misalignment of the cylindrical lens 411. Further, by attaching the cylindrical lens 411 to the support member 141 by adhesion or the like, the cylindrical lens 411 can be more firmly or more stably fixed on the second top surface 122.
- FIG. 7 is a perspective view of the semiconductor laser module 10B of the second embodiment
- FIG. 8 is a side view of the semiconductor laser module 10B
- FIG. 9 is an enlarged perspective view of a part of the semiconductor laser module 10B.
- the base 100B of the present embodiment has a configuration different from that of the base 100A of the first embodiment.
- the configuration of the second site 120B is different from the configuration of the second site 120A of the first embodiment.
- the configuration of the first portion 110B between the central portion 100a and the end portion 100b of the base 100B is the same as the configuration of the first portion 110A of the first embodiment.
- the second portion 120B of the base 100B is a plate-shaped wall extending in the second direction X2 and the third direction Y3 between the central portion 100a and the end portion 100c of the base 100B.
- the second top surface 122 and the second bottom surface 123 are parallel to each other and extend in the second direction X2 and the third direction Y3.
- the base 100B has a V-shaped appearance that is bent at the central portion 100a when viewed from the side opposite to the third direction Y3 as shown in FIG.
- the cylindrical lenses 411, 412 and the support member 130 of the optical fiber 500 are mounted on the second top surface 122 as in the first embodiment.
- the wall 121 may be made integrally with the wall 111 (first part 110B) by being processed from one material, or may be made separately from the wall 111 with the wall 111. It may be combined.
- the second part 120B can be made of, for example, a synthetic resin material or a metallic material.
- the second part 120B may be made of, for example, a material having a thermal conductivity lower than that of the first part 110B, or a material having a specific gravity lighter than that of the first part 110B. May be made.
- the first part 110B and the second part 120B are integrally formed, the first part 110B and the second part 120B, that is, the base 100B are made of a metal material having a relatively high thermal conductivity, for example, oxygen-free copper. Made of.
- FIG. 9 is a perspective view of the light emitting unit 200B-1, the second collimating lens 210-1, and the mirror 300-1.
- the mounting surfaces 113-1 to 113-15, the light emitting units 200B-1 to 200B-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are all subscripts. , Has the same specifications (shape, arrangement, etc.) as in FIG.
- the light emitting units 200B-1 to 200B-15 are the cases 201-1 to 201-15 and the light emitting elements 204-1 housed in the cases 211-1 to 201-15. It has the first collimating lenses 202-1 to 202-15 exposed from the cases 211-1 to 201-15.
- the light emitting units 200B-1 to 200B-15 are mounted on a submount (not shown) housed in the cases 211-1 to 201-15.
- the light emitting units 200B-1 to 200B-15 and the submount are housed in the airtightly sealed cases 211-1 to 201-15.
- Cases 201-1 to 201-15 may also be referred to as housings.
- the light emitting elements 204-1 to 204-15 are, for example, semiconductor laser elements, and emit laser light toward the third direction Y3 in the cases 211-1 to 201-15.
- the phase advance axis (FB) of the light emitting elements 204-1 to 204-15 is orthogonal to the second direction X2 and the third direction Y3, in other words, the mounting surface 113-. It is mounted along the direction orthogonal to 1 to 113-15 and so that the slow axis (SB) is along the second direction X2.
- leads 205 for supplying a drive current to the light emitting elements 204-1 to 204-15 project in the direction opposite to the third direction Y3.
- the semiconductor laser module 10B of the second embodiment may include the light emitting units 200A-1 to 200A-15 of the first embodiment, and conversely, the semiconductor laser module 10A of the first embodiment is the first.
- the light emitting units 200B-1 to 200B-15 of the second embodiment may be provided.
- the base 100B has a plurality of mounting surfaces 113-1 to 113-15 and a first bottom surface 114 (bottom surface). It has a first portion 110B extending in the first direction X1 and a second portion 120B supporting the optical fiber 500 and extending in the second direction X2.
- the second portion 120B can be made thinner, and the base 100B and thus the semiconductor laser module 10B can be made smaller or lighter.
- the light emitting units 200B-1 to 200B-15 have cases 211-1 to 201-15 accommodating the light emitting elements 204-1 to 204-15, respectively. ..
- the protection of the light emitting elements 204-1 to 204-15 from gas and dust can be further enhanced.
- the light emitting elements 204-1 to 204-15 are hermetically sealed in the cases 201-1 to 201-15. There is.
- the protection of the light emitting elements 204-1 to 204-15 from gas and dust can be further enhanced.
- FIG. 10 is a side view of the semiconductor laser module 10C of the third embodiment.
- the base 100C of the present embodiment has a different configuration from the base 100A of the first embodiment and the base 100B of the second embodiment. .. Specifically, it has a triangular columnar second portion 120A as in the first embodiment, or the first portion 110B and the second portion 120B are bent at the central portion 100a as in the second embodiment. It has a flat plate shape that extends between the end portion 100b and the end portion 100c.
- the wedge prism 421 is provided as the optical component 400.
- the wedge prism 421 directs a plurality of laser beams traveling in the second direction X2 from the plurality of mirrors 300-1 to 300-15 toward the first direction X1 as shown by a broken line in FIG.
- the wedge prism 421 changes the traveling directions of the plurality of laser beams parallel to each other from the first direction X1 to the second direction X2.
- the central axis Ax of the light beams of the plurality of laser beams from the wedge prism 421 to the end portion 500a of the optical fiber 500 follows the first direction X1, the wedge prism 421, the cylindrical lenses 411, 412, and the optical fiber
- the end portion 500a of the 500 can be arranged in the first direction X1 with respect to the wedge prism 421.
- the first portion 110C and the second portion 120C, the wall 111 and the wall 121, the first top surface 112 and the second top surface 122, and the first bottom surface 114 and the second bottom surface 123 are formed.
- the wedge prism 421 is an example of a second deflection component.
- the second deflection component may be an optical component different from the wedge prism 421.
- the semiconductor laser module 10C may have a plurality of light emitting units 200A-1 to 200A-15 instead of the plurality of light emitting units 200B-1 to 200B-15.
- the optical component 400 advances from the plurality of mirrors 300-1 to 300-15 (first deflection component) in the second direction X2. It has a wedge prism 421 (second deflection component) that directs the laser beam in the first direction X1.
- the base 100C and thus the semiconductor laser module 10C can be configured more flatly or more linearly as a whole, and the semiconductor laser module 10C can be configured more compactly, and thus the semiconductor laser module.
- the effect of making it easier to lay out the 10C can be obtained.
- FIG. 11 is a perspective view of the semiconductor laser module 10D of the fourth embodiment
- FIG. 12 is an enlarged plan view of a part of the semiconductor laser module 10D.
- a plurality of mounting surfaces 113-1 to 113-15 are located at one end (upper end in FIG. 11) of the fourth direction Z4 of the first portion 110D (base 100D).
- a plurality of rows LA and LB arranged at a constant pitch (interval) in one direction X1 are provided at intervals in the third direction Y3.
- each row LA and LB the plurality of light emitting units 200A-1 to 200A-15 are arranged at equal intervals in the first direction X1, and the plurality of second collimating lenses 210-1 to 210-15 are arranged in the first direction.
- the mirrors 300-1 to 300-15 are arranged at equal intervals in X1, and the plurality of mirrors 300-1 to 300-15 are arranged at equal intervals in the first direction X1.
- a plurality of light emitting units 200A-1 to 200A-15, a plurality of second collimating lenses 210-1 to 210-15, and a plurality of mirrors 300-1 to 300 -15 is arranged plane-symmetrically between the two rows LA and LB with respect to a virtual plane (not shown) orthogonal to the third direction Y3 along the first direction X1 and the second direction X2. That is, in the row LA, the rows of the second collimating lenses 210-1 to 210-15 are separated from the rows of the light emitting units 200A-1 to 200A-15 in the third direction Y3, and the mirrors 300-1 to 300-15.
- the row LA1 is separated from the row of the second collimating lenses 210-1 to 210-15 in the third direction Y3, whereas in the row LB, the row of the second collimating lenses 210-1 to 210-15 is separated.
- the row LB1 of the mirrors 300-1 to 300-15 is separated from the row of the second collimating lenses 210-1 to 210-15. It is separated in the opposite direction of the third direction Y3.
- the third direction Y3 is an example of a direction orthogonal to the first direction X1.
- wedge prisms 421A and 421B are provided as in the third embodiment. Wedge prisms 421A and 421B are placed on the second top surface 122 of the second portion 120D.
- the wedge prism 421A corresponding to the row LA corresponds to the row LB by directing a plurality of laser beams traveling in the second direction X2 from the plurality of mirrors 300-1 to 300-15 in the row LA1 toward the first direction X1.
- the wedge prism 421B directs a plurality of laser beams traveling from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the second direction X2 toward the first direction X1.
- the base 100D and thus the semiconductor laser module 10D can be configured more flatly or more linearly as a whole, the semiconductor laser module 10D can be configured more compactly, and the semiconductor laser module 10D can be configured more. You can get the effect of making it easier to lay out.
- the semiconductor laser module 10D includes a mirror 450, a half-wave plate 430, and a polarization synthesis element 440.
- the mirror 450, the half-wave plate 430, and the polarization synthesizing element 440 are mounted on the second top surface 122 of the second portion 120D.
- the laser beam BA traveling in the first direction X1 from the plurality of mirrors 300-1 to 300-15 in the row LA1 via the wedge prisms 421A is incident on the first incident surface 440a of the polarization synthesizing element 440.
- the first incident surface 440a is located at the end of the polarization combining element 440 in the direction opposite to the first direction X1 and faces the wedge prism 421A.
- the plurality of laser beams BB (second laser beams) from the plurality of mirrors 300-1 to 300-15 in the column LB1 pass through the mirror 450 and the half-wave plate 430, and the polarization combining element 440 first.
- the mirror 450 directs the laser beam BB from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the first direction X1 via the wedge prisms 421A in the direction opposite to the third direction Y3.
- the laser beam BB from the mirror 450 in the direction opposite to the third direction Y3 is incident on the second incident surface 440b of the polarization combining element 440 via the half-wave plate 430.
- the second incident surface 440b is located at the end of the polarization synthesizing element 440 in the third direction Y3 and faces the half-wave plate 430.
- the polarization directions of the laser beams LB from the plurality of mirrors 300-1 to 300-15 in the row LB1 are rotated by 90 °.
- the polarization synthesizing element 440 polarizes and synthesizes the laser light BA and the laser light BB whose polarization directions are orthogonal to each other, and outputs the laser light BA and the laser light BB from the emission surface 440c toward the first direction X1.
- the exit surface 440c is located at the end of the polarization synthesis element 440 in the first direction X1 and faces the cylindrical lens 411.
- the plurality of laser beams emitted from the polarization synthesizing element 440 pass through the cylindrical lenses 411 and 412 and head toward the end portion 500a of the optical fiber 500.
- the semiconductor laser module 10D may have a plurality of light emitting units 200B-1 to 200B-15 instead of the plurality of light emitting units 200A-1 to 200A-15.
- a plurality of mirrors 300-1 to 300-15 first deflection components
- the semiconductor laser module 10D becomes longer in the first direction X1.
- a plurality of rows LA1 and LB1 in which a plurality of mirrors 300-1 to 300-15 are arranged in the first direction X1 are provided at intervals in the third direction Y3.
- the semiconductor laser module 10D can be prevented from becoming long in the first direction X1.
- a third deflection component optical such as a mirror that directs laser light from all the mirrors 300-1 to 300-15 included in the column LB1 toward the cylindrical lens 411.
- the laser light from all the mirrors 300-1 to 300-15 included in the row LA1 has a half wavelength so as to go to the cylindrical lens 411 without passing through the third deflection component. Even in a configuration that does not have the plate 430 and the polarization synthesizing element 440, the above effect can be obtained by providing the plurality of rows LA1 and LB1.
- the optical component 400 has the first laser beam BA from the row LA1 (first row) and the polarization directions from the row LB1 (second row). It has a polarization synthesizing element 440 that polarizes and synthesizes a second laser beam BB orthogonal to the first laser beam BA.
- more laser beams from the light emitting units 200A-1 to 200A-15 can be combined as compared with the case where polarization synthesis is not performed, so that the output of the semiconductor laser module 10D can be output. Can be larger.
- FIG. 13 shows the second collimating lens 210-1, the mirror 300-1, and the mirror 300-1 arranged on the mounting surface 113-1 of the first portion 110E (base 100E) in the semiconductor laser module 10E of the modified example of the embodiment.
- It is a perspective view of the support member 142.
- the mirror 300-1 is provided adjacent to the support member 142 projecting on the mounting surface 113-1 and is supported by the support member 142.
- the support member 142 is attached, for example, by being press-fitted into a hole provided in the first portion 110E (base 100E) and opened in the mounting surface 113-1.
- the support member 142 is an example of the first support member, and may also be referred to as a first positioning member.
- the support member 142 can suppress the mirror 300-1 from falling or misaligning, and the mirror 300-1 can be adhered to the support member 142 to form the mirror 300-1. It can be more firmly or more stably fixed on the mounting surface 113-1.
- FIG. 13 shows only one combination of the mounting surface 113-1, the second collimating lens 210-1, the mirror 300-1, and the support member 142, but the mounting surface 113-1 to Each of 113-15 and mirrors 300-1 to 300-15 can have a support member 142 similar to that shown in FIG. 13 for each subscript. Further, the configuration of this modification can be applied to any of the other first to sixth embodiments.
- FIG. 14 is a perspective view of the semiconductor laser module 10F of the fifth embodiment
- FIG. 15 is a side view of the semiconductor laser module 10F.
- a plurality of mounting surfaces 113-1 to 113-15 a plurality of light emitting units 200A-1 to 200A-15, and second collimating lenses 210-1 to 210-
- the configuration of the fifteenth mirror and the plurality of mirrors 300-1 to 300-15 is the same as that of the fourth embodiment.
- the configuration of the optical component 400 that guides the first laser beam BA and the second laser beam BB to the end portion 500a of the optical fiber 500 is different from that of the fourth embodiment.
- the optical component 400 has a wedge prism 421A, a wedge prism 421B, mirrors 450, 451 and a cylindrical lens 411F, and a cylindrical lens 412 provided on the second portion 120F of the base 100F.
- a part of the optical component 400 may be provided at the first portion 110F or the boundary between the first portion 110F and the second portion 120F.
- the wedge prism 421A directs the first laser beam BAs from the plurality of mirrors 300-1 to 300-15 in the row LA1 in the first direction X1.
- the first direction X1 between the mirror 300-15 closest to the wedge prism 421A and the wedge prism 421A among the plurality of mirrors 300-1 to 300-15 in the row LA1. Since the distance (first distance L1) is set to be relatively long, the first laser beam BA is input to the upper portion 421Au of the wedge prism 421A as shown in FIG.
- the first laser beam BA from the wedge prism 421A travels in the first direction X1 at a position relatively distant from the first bottom surface 114 and the first top surface 112, and is input to the upper portion 411F of the cylindrical lens 411F. ..
- the wedge prism 421A is an example of a first optical component and an example of a second deflection component.
- the wedge prism 421B directs the second laser beam BB from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the first direction X1.
- first direction X1 between the mirror 300-15 closest to the wedge prism 421B and the wedge prism 421B among the plurality of mirrors 300-1 to 300-15 in the row LB1.
- second distance L2 is set relatively short, as shown in FIG. 15, the second laser beam BB from the wedge prism 421B is relatively close to the first bottom surface 114 and the first top surface 112. Proceed to the first direction X1 at a close position.
- the first distance L1 is set longer than the second distance L2, as shown in FIG.
- the first laser beam BA traveling from the wedge prism 421A to the first direction X1 is the wedge prism. It is located farther from the first bottom surface 114 and the first top surface 112 than the second laser beam BB traveling from 421B in the first direction X1.
- the first laser beam BA traveling from the wedge prism 421A in the first direction X1 and the second laser beam BB traveling from the wedge prism 421B in the first direction X1 are deviated in the fourth direction Z4.
- the wedge prism 421B is an example of a second optical component and also an example of a second deflection component.
- the second laser beam BB from the wedge prism 421B is offset in the opposite direction of the third direction Y3 by the two mirrors 450 and 451.
- the second laser beam BB traveling from the mirror 451 to the first direction X1 is a cylindrical lens. It is input to the lower part 411Fl of 411F.
- the mirrors 450 and 451 are examples of the third optical component, and the cylindrical lens 411F is an example of the fourth optical component.
- the optical axis of the first laser beam BA input to the upper part 411F of the cylindrical lens 411F and the optical axis of the second laser beam BB input to the lower part 411Fl of the cylindrical lens 411F are arranged in a row in the fourth direction Z4. Yes, in other words, they are aligned in the fourth direction Z4.
- the cylindrical lens 411F and the cylindrical lens 412 couple the first laser beam BA and the second laser beam BB to the end portion 500a of the optical fiber 500.
- the optical component 400 includes a wedge prism 421A (first optical component), a wedge prism 421B (second optical component), and mirrors 450 and 451 (third optical component). Parts), a cylindrical lens 411F (fourth optical component), and a cylindrical lens 412 (fourth optical component).
- the wedge prism 421A deflects the first laser beam BA traveling from the row LA1 (first row) to the second direction X2 in the first direction X1.
- the wedge prism 421B deflects the second laser beam BB traveling from the row LB1 (second row) to the second direction X2 in the first direction X1.
- the first laser beam BA traveling from the wedge prism 421A in the first direction X1 and the second laser beam BB traveling from the wedge prism 421B in the first direction X1 are displaced in the fourth direction Z4. It is provided as follows.
- the mirrors 450 and 451 offset the second laser beam BB in the third direction Y3 and arrange the first laser beam BA and the second laser beam BB in the fourth direction Z4.
- the cylindrical lenses 411F and 412 focus the first laser beam BA and the second laser beam BB arranged in the fourth direction Z4 toward the optical fiber 500.
- the first laser beam BA and the second laser beam BB can be shifted in the fourth direction Z4, in other words, they can be spatially separated, so that there is no polarization synthesis element 440. Even if there is, the first laser beam BA and the second laser beam BB can be coupled to the optical fiber 500.
- the mirrors 450 and 451 as the third optical component offset the second laser beam BB in the direction opposite to the third direction Y3, but the first laser beam BA is not limited to this. It may be offset in the third direction Y3, or the first laser light BA and the second laser light BB may be offset in the opposite direction of the third direction Y3 or the third direction Y3.
- the first laser beam BA traveling from the wedge prism 421A (first optical component) to the first direction X1 moves from the wedge prism 421B (second optical component) to the first direction X1. It is located farther from the first bottom surface 114 (bottom surface) than the advancing second laser beam BB.
- the first laser beam BA in the direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 (first deflection component) included in the row LA1 (first row) are mounted extend.
- the second direction X2 which is the direction in which the light travels, and the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 included in the row LB1 (second row) are mounted extend.
- the second direction X2 which is the direction in which the second laser beam BB travels, is parallel to each other. Further, among the mirrors 300-1 to 300-15 included in the row LA1, the first distance L1 in the first direction X1 between the mirror 300-15 closest to the wedge prism 421A and the wedge prism 421A is set to the row LB1. Of the included mirrors 300-1 to 300-15, it is longer than the second distance L2 in the first direction X1 between the mirror 300-15 closest to the wedge prism 421B and the wedge prism 421B.
- the semiconductor laser module 10F in which the first laser light BA and the second laser light BB are shifted in the fourth direction Z4 can be realized by a relatively simple configuration. Further, since the angles of the mounting surfaces 113-1 to 113-15 are the same for the two rows LA1 and LA2, the labor and cost for manufacturing are likely to be reduced as compared with the configurations in which the angles are different.
- FIG. 16 is a perspective view of the semiconductor laser module 10G of the sixth embodiment.
- the semiconductor laser module 10G of the present embodiment has the same components as the semiconductor laser module 10F of the fifth embodiment. That is, also in this embodiment, the optical component 400 also has the wedge prism 421A, the wedge prism 421B, the mirrors 450, 451 and the cylindrical lens 411G, and the cylindrical lens 412 provided on the second portion 120G of the base 100G. There is. A part of the optical component 400 may be provided at the first portion 110G or the boundary between the first portion 110G and the second portion 120G.
- the second direction X21 with respect to the row LA1 and the second direction X22 with respect to the row LB1 are not the same but non-parallel.
- the second direction X21 is a direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 are mounted are extended, and the mirrors included in the row LA1. This is the direction in which the first laser beam BA from 300-1 to 300-15 travels.
- the second direction X22 is a direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 included in the row LB1 are mounted extend, and is included in the row LB1.
- the first elevation angle ⁇ 1 of the second direction X21 with respect to the first direction X1 is larger than the second elevation angle ⁇ 2 of the second direction X22 with respect to the first direction X1.
- the wedge prism 421A deflects the first laser beam BA traveling in the second direction X21 in the first direction X1.
- the wedge prism 421B deflects the second laser beam BB traveling in the second direction X22 from the mirrors 300-1 to 300-15 contained in the row LB1 in the first direction X1.
- the second laser beam BB traveling from the wedge prism 421B to the first direction X1 is offset in the opposite direction of the third direction Y3 via the mirrors 450 and 451 as in the fifth embodiment.
- the first laser beam BA traveling in the first direction X1 is input to the upper 411Gu of the cylindrical lens 411G, and the lower 411Gl of the cylindrical lens 411G is input.
- the second laser beam BB traveling in the first direction X1 is input.
- the first laser beam BA input to the upper 411Gu of the cylindrical lens 411G is farther from the first bottom surface 114 and the second top surface 122 than the second laser beam BB input to the lower Gl of the cylindrical lens 411G. ing.
- the first laser beam BA traveling from the wedge prism 421A (first optical component) to the first direction X1 starts from the wedge prism 421B (second optical component). It is farther from the first bottom surface 114 (bottom surface) than the second laser beam BB traveling in the first direction X1. Further, the first elevation angle ⁇ 1 of the second direction X21 with respect to the first direction X1 is larger than the second elevation angle ⁇ 2 of the second direction X22 with respect to the first direction X1.
- the first distance L1 between the wedge prism 421A and the mirror 300-15 closest to the wedge prism 421 can be made shorter, and the semiconductor laser module 10G can be moved to the first direction X1. Can be constructed shorter.
- FIG. 17 is a perspective view of a part of the semiconductor laser module 10H of the seventh embodiment.
- the semiconductor laser module 10H of the present embodiment does not have mirrors 300-1 to 300-15 (first deflection component), and is the first of the base 100H.
- Light emitting units 200A-1 to 200A-15 (light emitting elements 204-1 to 204-15 and first collimating lenses 202-1 to 202-) on each of the mounting surfaces 113-1 to 113-15 provided on the portion 110H.
- the second collimating lenses 210-1 to 210-15 are arranged in the direction X2 (second direction), and the laser light from the light emitting elements 204-1 to 204-15 is emitted from the first collimating lens 202-1. It is emitted in the direction X2 via ⁇ 202-15 and the second collimating lenses 210-1 to 210-15, and is emitted from the cylindrical lens 411, 412 (see FIGS. 1 and 10) and the wedge prism 421 (see FIG. 10). ) Is coupled to the end portion 500a of the optical fiber 500 via an optical component 400 such as).
- the plurality of light emitting units 200A-1 to 200A-15 (light emitting elements 204-1 to 204-15 and the first collimating lenses 202-1 to 202-15) are in the direction X1 (first direction). Lined up in. Further, in the present embodiment, the plurality of second collimating lenses 210-1 to 210-15 are also arranged in the direction X1 (first direction).
- the number of parts can be reduced because the mirrors 300-1 to 300-15 (first deflection component, optical component) can be omitted, and the labor and cost of manufacturing can be easily reduced. Further, the width of the direction Y3 (third direction) of the semiconductor laser module 10H can be narrowed, and a more compact semiconductor laser module 10H can be configured in the direction Y3.
- a heat sink heat dissipation member
- a heat dissipation fin may be connected to the bottom surface of the base, or the base and the heat sink may be integrated.
- the base is a plate-shaped portion extending in the first direction and having a substantially constant thickness.
- the light emitting unit may have at least a light emitting element, and the components and structure of the light emitting unit are not limited to those disclosed in the above-described embodiments and modifications.
- the light emitting unit may not include the first collimating lens.
- the light emitting unit may include a first collimating lens, a second collimating lens, and a first deflection component in addition to the case and the submount.
- the light emitting element is not limited to the semiconductor laser element.
- the second laser beam may be orthogonal to the first laser beam in the polarization direction without passing through the half-wave plate.
- the optical component may be provided on a component other than the base, such as the housing (casing) of the laser device.
- the optical component is A first optical component that deflects the first laser beam traveling in the second direction from the first row included in the plurality of rows in the first direction.
- a second optical component that deflects a second laser beam traveling in the second direction from the second row included in the plurality of rows in the first direction, and traveling in the first direction from the second optical component.
- the second laser beam is provided so as to deviate from the first optical component in the first direction and the fourth direction orthogonal to the third direction with respect to the first laser beam traveling in the first direction.
- At least one of the first laser beam traveling in the first direction from the first optical component and the second laser beam traveling in the first direction from the second optical component is offset in the third direction.
- the laser apparatus according to claim 2. [2] The first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
- the second direction which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends, and the direction in which the first laser beam from the first row travels, and the above
- the direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and is parallel to the second direction in which the second laser beam from the second row travels.
- the first distance in the first direction between the first deflection component and the first optical component closest to the first optical component in the first row is the closest to the second optical component in the second row.
- the laser apparatus according to [1] which is longer than the second distance in the first direction between the first deflection component and the second optical component.
- the first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
- the first in the second direction which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends and the direction in which the first laser beam from the first row travels.
- the first elevation angle with respect to one direction is the direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and the direction in which the second laser beam from the second row advances.
- the laser apparatus according to [1] which is larger than the second elevation angle of the second direction with respect to the first direction.
- the present invention can be applied to a laser device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
According to the present invention, a base comprises: a plurality of mounting surfaces, on each of which is mounted a light-emitting unit positioned along a first direction and extending in a second direction inclined with respect to the first direction; and a first bottom surface extending in the first direction on the reverse side of the plurality of mounting surfaces. A plurality of mirrors are arranged in the first direction, are mounted on respective mounting surfaces, and direct, in the second direction, laser light from the light-emitting units mounted on the mounting surfaces.
Description
本発明は、レーザ装置に関する。
The present invention relates to a laser device.
従来、ベースに階段状の載置面が設けられ、当該載置面のそれぞれに載置された発光素子からのレーザ光を、載置面のそれぞれに載置されたミラーによって当該載置面に沿う方向に反射することにより、レーザ光を空間的に多重化し、当該多重化されたレーザ光を結合するレーザ装置が、知られている(例えば、特許文献1)。
Conventionally, a stepped mounting surface is provided on the base, and laser light from a light emitting element mounted on each of the mounting surfaces is transmitted to the mounting surface by a mirror mounted on each of the mounting surfaces. A laser device that spatially multiplexes laser light by reflecting it in a direction along the line and combines the multiplexed laser light is known (for example, Patent Document 1).
また、従来、板状のベースに平面状の載置面が設けられ、当該載置面上に列をなすように載置された発光素子からのレーザ光を、発光素子のそれぞれに対応して載置面上に載置されたミラーによって斜め上方に同じ角度で仰ぐように反射することにより、レーザ光を空間的に多重化し、当該多重化されたレーザ光を結合するレーザ装置が、知られている(例えば、特許文献2)。
Further, conventionally, a flat mounting surface is provided on a plate-shaped base, and laser light from a light emitting element mounted in a row on the mounting surface corresponds to each of the light emitting elements. A laser device that spatially multiplexes laser light and combines the multiplexed laser light by reflecting it diagonally upward at the same angle by a mirror placed on the mounting surface is known. (For example, Patent Document 2).
この種のレーザ装置において、発光素子が生じる熱は、ベースにおいて、載置面から当該載置面とは反対側の底面へ伝達され、当該底面から放熱される。これにより、発光素子の温度上昇が抑制されている。
In this type of laser device, the heat generated by the light emitting element is transferred from the mounting surface to the bottom surface opposite to the mounting surface at the base, and is dissipated from the bottom surface. As a result, the temperature rise of the light emitting element is suppressed.
しかしながら、上記特許文献1のレーザ装置では、階段状の複数の載置面と底面とが平行であるため、階段の上に向かうほどベースが厚くなってしまい、当該階段の上に位置する発光素子に対しては、当該ベースによる放熱効果が低下する虞がある。
However, in the laser device of Patent Document 1, since the plurality of stepped mounting surfaces and the bottom surface are parallel to each other, the base becomes thicker toward the top of the stairs, and the light emitting element located on the stairs. However, there is a risk that the heat dissipation effect of the base will decrease.
この点、上記特許文献2のレーザ装置では、ベースの厚さは略一定であるため、複数の発光素子に対するベースによる放熱効果は、略一定である。
In this respect, in the laser apparatus of Patent Document 2, since the thickness of the base is substantially constant, the heat dissipation effect of the base on a plurality of light emitting elements is substantially constant.
しかしながら、特許文献2のレーザ装置では、平面状の載置面上に載置されたミラーが、発光素子からのレーザ光を、載置面に対して斜め上方に進相軸仰ぐように反射する構成であるため、載置面に対するミラーの設置角度が、発光素子からのレーザ光の反射角度に加えて、載置面に対するレーザ光の仰角にも影響を及ぼすことになる。このため、載置面に対するミラーの設置角度の調整が難しく、複数のレーザ光を精度良く結合し難くなる虞があった。また、ミラーが、載置面に対して傾いた状態で設置されるため、ミラーの姿勢が不安定になり、ひいては複数のレーザ光を精度良く結合し難くなる虞があった。
However, in the laser apparatus of Patent Document 2, the mirror mounted on the flat mounting surface reflects the laser light from the light emitting element diagonally upward with respect to the mounting surface so as to look up at the phase advance axis. Because of the configuration, the installation angle of the mirror with respect to the mounting surface affects not only the reflection angle of the laser light from the light emitting element but also the elevation angle of the laser light with respect to the mounting surface. For this reason, it is difficult to adjust the installation angle of the mirror with respect to the mounting surface, and there is a risk that it will be difficult to accurately combine the plurality of laser beams. Further, since the mirror is installed in an inclined state with respect to the mounting surface, the posture of the mirror becomes unstable, and there is a possibility that it becomes difficult to accurately combine a plurality of laser beams.
そこで、本開示の課題の一つは、例えば、発光素子の温度上昇をより抑制しやすく、かつ複数のレーザ光をより精度良く結合しやすいレーザ装置を得ること、である。
Therefore, one of the problems of the present disclosure is, for example, to obtain a laser device that can more easily suppress the temperature rise of the light emitting element and more accurately combine a plurality of laser beams.
本発明のレーザ装置は、例えば、発光素子をそれぞれ有し第一方向に並んだ複数の発光ユニットと、前記第一方向に並んで位置され前記第一方向に対して傾斜した第二方向に延び前記発光ユニットをそれぞれ載置した複数の載置面と、当該複数の載置面の裏側で前記第一方向に延びた底面と、を有したベースと、前記第一方向に並び前記載置面のそれぞれに載置され当該載置面に載置された前記発光ユニットからのレーザ光を前記第二方向に向かわせる複数の第一偏向部品と、前記第一偏向部品のそれぞれで偏向されたレーザ光を一つの光ファイバに導く光学部品と、を備える。
The laser device of the present invention includes, for example, a plurality of light emitting units each having a light emitting element and arranged in the first direction, and extending in a second direction which is positioned side by side in the first direction and inclined with respect to the first direction. A base having a plurality of mounting surfaces on which the light emitting units are mounted, and a bottom surface extending in the first direction on the back side of the plurality of mounting surfaces, and a mounting surface arranged in the first direction and described above. A plurality of first deflection components mounted on each of the above and directing the laser beam from the light emitting unit mounted on the mounting surface in the second direction, and a laser deflected by each of the first deflection components. It includes an optical component that guides light into one optical fiber.
また、前記レーザ装置では、例えば、前記光学部品は、前記ベースに設けられる。
Further, in the laser device, for example, the optical component is provided on the base.
また、前記レーザ装置では、例えば、前記複数の第一偏向部品が前記第一方向に並ぶ複数の列が前記第一方向と直交する方向に間隔をあけて設けられる。
Further, in the laser device, for example, a plurality of rows in which the plurality of first deflection components are arranged in the first direction are provided at intervals in a direction orthogonal to the first direction.
また、前記レーザ装置では、例えば、前記光学部品は、前記複数の列に含まれる第一列からの第一レーザ光と、偏波方向が当該第一レーザ光とは直交し前記複数の列に含まれる第二列からの第二レーザ光と、を偏波合成する偏波合成素子を有する。
Further, in the laser apparatus, for example, the optical component is formed in the plurality of rows in which the first laser light from the first row included in the plurality of rows and the polarization direction are orthogonal to the first laser light. It has a polarization synthesizing element that polarizes and synthesizes the second laser beam from the second row included.
また、前記レーザ装置では、例えば、前記光学部品は、前記複数の第一偏向部品から前記第二方向へ進むレーザ光を前記第一方向へ向かわせる第二偏向部品を有する。
Further, in the laser apparatus, for example, the optical component has a second deflection component that directs a laser beam traveling in the second direction from the plurality of first deflection components in the first direction.
また、前記レーザ装置では、例えば、前記ベースは、前記複数の載置面と前記底面とを有し前記第一方向に延びた第一部位と、前記光ファイバを支持し前記第二方向に延びた第二部位と、を有する。
Further, in the laser device, for example, the base has a plurality of mounting surfaces and a bottom surface and extends in the first direction, and supports the optical fiber and extends in the second direction. It has a second site and.
また、前記レーザ装置では、例えば、前記第一方向に対する前記第二方向の仰角をθ、前記第一偏向部品のそれぞれから前記第二方向へ進むレーザ光のビーム径をd、前記複数の第一偏向部品の前記第一方向における設置間隔をL、としたとき、d<L・sinθを満たす。
Further, in the laser apparatus, for example, the elevation angle of the second direction with respect to the first direction is θ, the beam diameter of the laser beam traveling in the second direction from each of the first deflection components is d, and the plurality of firsts. When the installation interval of the deflection component in the first direction is L, d <L · sin θ is satisfied.
また、前記レーザ装置は、例えば、前記載置面上に突出し、前記第一偏向部品を支持する支持部材を備える。
Further, the laser device includes, for example, a support member that projects onto the above-mentioned mounting surface and supports the first deflection component.
また、前記レーザ装置は、例えば、前記ベースの表面上に突出し、前記光学部品を支持する第二支持部材を備える。
Further, the laser device includes, for example, a second support member that projects onto the surface of the base and supports the optical component.
また、前記レーザ装置では、例えば、前記発光ユニットは、前記発光素子を収容したケースを有する。
Further, in the laser device, for example, the light emitting unit has a case in which the light emitting element is housed.
また、前記レーザ装置では、例えば、前記ケースは、前記発光素子を当該ケース内に気密封止する。
Further, in the laser device, for example, in the case, the light emitting element is hermetically sealed in the case.
また、本発明のレーザ装置は、例えば、発光素子をそれぞれ含み第一方向に並んだ複数の発光ユニットと、前記第一方向に並んで位置され前記第一方向に対して傾斜した第二方向に延び前記発光ユニットをそれぞれ載置した複数の載置面を有し、前記第一方向に延びた板状のベースと、前記複数の発光ユニットからのレーザ光を一つの光ファイバに導く光学部品と、を備える。
Further, the laser device of the present invention includes, for example, a plurality of light emitting units each including a light emitting element and arranged in the first direction, and a second direction which is located side by side in the first direction and is inclined with respect to the first direction. A plate-shaped base that extends and has a plurality of mounting surfaces on which the light emitting units are mounted, and an optical component that guides laser light from the plurality of light emitting units into one optical fiber. , Equipped with.
また、前記レーザ装置では、例えば、前記光学部品は、前記ベースに設けられる。
Further, in the laser device, for example, the optical component is provided on the base.
上記本発明のレーザ装置によれば、例えば、ベースの複数の載置面が第一方向に並ぶとともに、ベースの底面が第一方向に延びるため、ベースから、発光素子の放熱性能に影響を及ぼすような厚い部位を無くすことができる。また、載置面が、第一方向に対して傾斜した第二方向に延びているため、第一偏向部品を載置面上に載置することにより、当該第一偏向部品を所望の姿勢(角度)に、より容易にあるいはより精度良く設置することができ、ひいては、複数のレーザ光をより精度良く結合することができる。
According to the laser apparatus of the present invention, for example, a plurality of mounting surfaces of the base are lined up in the first direction and the bottom surface of the base extends in the first direction, which affects the heat dissipation performance of the light emitting element from the base. It is possible to eliminate such thick parts. Further, since the mounting surface extends in the second direction inclined with respect to the first direction, the first deflection component is placed on the mounting surface so that the first deflection component is placed in a desired posture ( It can be installed more easily or more accurately at an angle), and thus a plurality of laser beams can be combined more accurately.
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
Hereinafter, exemplary embodiments of the present invention will be disclosed. The configurations of the embodiments shown below, as well as the actions and results (effects) brought about by the configurations, are examples. The present invention can also be realized by configurations other than those disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
以下に示される複数の実施形態および変形例は、同様の構成を備えている。よって、各実施形態および変形例の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
The plurality of embodiments and modifications shown below have similar configurations. Therefore, according to the configurations of the respective embodiments and modifications, the same actions and effects based on the similar configurations can be obtained. Further, in the following, the same reference numerals are given to those similar configurations, and duplicate explanations may be omitted.
本明細書において、序数は、部品や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。
In this specification, ordinal numbers are given for convenience in order to distinguish parts, parts, etc., and do not indicate priorities or orders.
また、各図において、第一方向を矢印X1で表し、第二方向を矢印X2で表し、第三方向を矢印Y3で表し、第四方向を矢印Z4で表す。第一方向X1と、第三方向Y3と、第四方向Z4とは、互いに直交している。また、第二方向X2と、第三方向Y3とは、互いに直交している。
Further, in each figure, the first direction is represented by the arrow X1, the second direction is represented by the arrow X2, the third direction is represented by the arrow Y3, and the fourth direction is represented by the arrow Z4. The first direction X1, the third direction Y3, and the fourth direction Z4 are orthogonal to each other. Further, the second direction X2 and the third direction Y3 are orthogonal to each other.
[第1実施形態]
図1は、第1実施形態の半導体レーザモジュール10Aの斜視図、図2は、半導体レーザモジュール10Aの側面図である。図1,2に示されるように、半導体レーザモジュール10Aは、ベース100Aと、複数の発光ユニット200A-1~200A-15と、複数の第二コリメートレンズ210-1~210-15と、複数のミラー300-1~300-15と、複数の光学部品400と、光ファイバ500を支持する支持部材130と、を備えている。なお、本実施形態では、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15の数は、一例として15であるが、これには限定されず、15より多くても少なくてもよい。半導体レーザモジュール10Aは、レーザ装置の一例である。 [First Embodiment]
FIG. 1 is a perspective view of thesemiconductor laser module 10A of the first embodiment, and FIG. 2 is a side view of the semiconductor laser module 10A. As shown in FIGS. 1 and 2, the semiconductor laser module 10A includes a base 100A, a plurality of light emitting units 200A-1 to 200A-15, a plurality of second collimating lenses 210-1 to 210-15, and a plurality of light emitting units 200A-1 to 200A-15. It includes mirrors 300-1 to 300-15, a plurality of optical components 400, and a support member 130 that supports the optical fiber 500. In the present embodiment, the number of light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 is 15 as an example. It is not limited to, and may be more than or less than 15. The semiconductor laser module 10A is an example of a laser device.
図1は、第1実施形態の半導体レーザモジュール10Aの斜視図、図2は、半導体レーザモジュール10Aの側面図である。図1,2に示されるように、半導体レーザモジュール10Aは、ベース100Aと、複数の発光ユニット200A-1~200A-15と、複数の第二コリメートレンズ210-1~210-15と、複数のミラー300-1~300-15と、複数の光学部品400と、光ファイバ500を支持する支持部材130と、を備えている。なお、本実施形態では、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15の数は、一例として15であるが、これには限定されず、15より多くても少なくてもよい。半導体レーザモジュール10Aは、レーザ装置の一例である。 [First Embodiment]
FIG. 1 is a perspective view of the
[ベース]
ベース100Aは、第一方向X1に延びた板状の第一部位110Aと、第三方向Y3に延びた三角柱状の第二部位120Aと、を有している。第二部位120Aは、第二方向X2に延びた第二頂面122を有している。第二方向X2は、第一方向X1と第四方向Z4との間の方向である。 [base]
Thebase 100A has a plate-shaped first portion 110A extending in the first direction X1 and a triangular columnar second portion 120A extending in the third direction Y3. The second portion 120A has a second top surface 122 extending in the second direction X2. The second direction X2 is the direction between the first direction X1 and the fourth direction Z4.
ベース100Aは、第一方向X1に延びた板状の第一部位110Aと、第三方向Y3に延びた三角柱状の第二部位120Aと、を有している。第二部位120Aは、第二方向X2に延びた第二頂面122を有している。第二方向X2は、第一方向X1と第四方向Z4との間の方向である。 [base]
The
第一部位110Aは、第一方向X1および第三方向Y3に延びた板状の壁111を有している。壁111(第一部位110A)は、例えば無酸素銅のような、熱伝導率が比較的大きい金属材料で作られている。なお、本実施形態では、壁111の第一方向X1の長さは、壁111の第三方向Y3の長さよりも長い。よって、第一方向X1は、長手方向あるいは縦方向とも称され、第三方向Y3は、短手方向あるいは幅方向とも称されうる。また、第四方向Z4は、厚さ方向あるいは高さ方向とも称されうる。
The first portion 110A has a plate-shaped wall 111 extending in the first direction X1 and the third direction Y3. The wall 111 (first site 110A) is made of a metal material having a relatively high thermal conductivity, such as oxygen-free copper. In the present embodiment, the length of the wall 111 in the first direction X1 is longer than the length of the wall 111 in the third direction Y3. Therefore, the first direction X1 may be referred to as a longitudinal direction or a longitudinal direction, and the third direction Y3 may be referred to as a lateral direction or a width direction. Further, the fourth direction Z4 may also be referred to as a thickness direction or a height direction.
第一部位110Aは、壁111の第四方向Z4の一端(図2では上端)に位置される第一頂面112および複数の載置面113-1~113-15と、壁111の第四方向Z4の他端(図2では下端)における第一底面114と、を有している。載置面113-1~113-15は、第一載置面とも称されうる。
The first portion 110A includes a first top surface 112 and a plurality of mounting surfaces 113-1 to 113-15 located at one end (upper end in FIG. 2) of the wall 111 in the fourth direction Z4, and a fourth wall 111. It has a first bottom surface 114 at the other end (lower end in FIG. 2) in the direction Z4. The mounting surfaces 113-1 to 113-15 may also be referred to as the first mounting surface.
複数の載置面113-1~113-15は、第一部位110Aの第一方向X1の中央部100aと、第一方向X1の後方の端部100b(図1,2では右側の端部)との間に、設けられている。また、複数の載置面113-1~113-15は、第一部位110Aの第三方向Y3の中央部において、第一方向X1に一定のピッチ(インタバル)で並んでいる。載置面113-1~113-15は、それぞれ、第二方向X2に延びるとともに第三方向Y3に延びている。載置面113-1~113-15は、四角形状の形状を有しており、本実施形態では、一例として、第三方向Y3の長さが第二方向X2の長さよりも長い長方形状の形状を有している。図2に示されるように、第二方向X2の第一方向X1に対する仰角の大きさはθである。複数の載置面113-1~113-15は、互いに平行である。複数の載置面113-1~113-15は、階段状の構造を形成している。載置面113-1~113-15は、階段面や、実装面、設置面とも称されうる。
The plurality of mounting surfaces 113-1 to 113-15 are a central portion 100a of the first direction X1 of the first portion 110A and a rear end portion 100b of the first direction X1 (the right end portion in FIGS. 1 and 2). It is provided between and. Further, the plurality of mounting surfaces 113-1 to 113-15 are arranged at a constant pitch (interval) in the first direction X1 at the central portion of the third direction Y3 of the first portion 110A. The mounting surfaces 113-1 to 113-15 extend in the second direction X2 and extend in the third direction Y3, respectively. The mounting surfaces 113-1 to 113-15 have a rectangular shape, and in this embodiment, as an example, the length of the third direction Y3 is longer than the length of the second direction X2. It has a shape. As shown in FIG. 2, the magnitude of the elevation angle of the second direction X2 with respect to the first direction X1 is θ. The plurality of mounting surfaces 113-1 to 113-15 are parallel to each other. The plurality of mounting surfaces 113-1 to 113-15 form a stepped structure. The mounting surfaces 113-1 to 113-15 can also be referred to as staircase surfaces, mounting surfaces, and installation surfaces.
第一頂面112は、第一方向X1および第三方向Y3に延びている。第一頂面112は、ベース100Aの中央部100aと端部100bとの間においては、複数の載置面113-1~113-15の周囲を取り囲むように設けられている。なお、第一頂面112は、表面とも称されうる。
The first top surface 112 extends in the first direction X1 and the third direction Y3. The first top surface 112 is provided so as to surround a plurality of mounting surfaces 113-1 to 113-15 between the central portion 100a and the end portion 100b of the base 100A. The first top surface 112 may also be referred to as a surface.
第一底面114は、第一方向X1および第三方向Y3に延びている。第一底面114は、ベース100Aの中央部100aと端部100bとの間においては、複数の載置面113-1~113-15の裏(反対側)に位置されている。第一底面114は、四角形状の形状を有しており、本実施形態では、一例として、第一方向X1の長さが第三方向Y3の長さよりも長い長方形状の形状を有している。第一底面114は、底面の一例である。
The first bottom surface 114 extends in the first direction X1 and the third direction Y3. The first bottom surface 114 is located on the back side (opposite side) of the plurality of mounting surfaces 113-1 to 113-15 between the central portion 100a and the end portion 100b of the base 100A. The first bottom surface 114 has a rectangular shape, and in the present embodiment, as an example, the first bottom surface 114 has a rectangular shape in which the length of the first direction X1 is longer than the length of the third direction Y3. .. The first bottom surface 114 is an example of the bottom surface.
第二部位120Aは、第一部位110Aの第一方向X1の中央部100aと第一部位110Aの第一方向X1の前方の端部100c(図1,2では左側の端部)との間の部位に対して、第四方向Z4に隣接して、設けられている。第二部位120Aは、第二頂面122と、第二底面123と、を有している。第二頂面122は、第二方向X2および第三方向Y3に延びている。第二底面123は、第一方向X1および第三方向Y3に延びている。第二底面123は、第一部位110Aの第一頂面112と接している。第一部位110Aと第二部位120Aとは、例えば、ねじのような固定具や、接着剤によって、結合されうる。第二部位120Aは、例えば、合成樹脂材料や金属材料で作られうる。第二部位120Aは、例えば、熱伝導率が第一部位110Aの熱伝導率より低い材料で作られてもよいし、比重が第一部位110Aの比重よりも軽い材料で作られてもよい。なお、第二部位120Aの、第二頂面122と第二底面123との間には、中空部や、開口、凹部等(不図示)が設けられてもよい。また、第二部位120Aは、第一部位110Aと一体であってもよい。
The second portion 120A is between the central portion 100a of the first portion 110A in the first direction X1 and the front end portion 100c of the first portion 110A in the first direction X1 (the left end portion in FIGS. 1 and 2). It is provided adjacent to the fourth direction Z4 with respect to the site. The second portion 120A has a second top surface 122 and a second bottom surface 123. The second top surface 122 extends in the second direction X2 and the third direction Y3. The second bottom surface 123 extends in the first direction X1 and the third direction Y3. The second bottom surface 123 is in contact with the first top surface 112 of the first portion 110A. The first part 110A and the second part 120A can be connected by, for example, a fixture such as a screw or an adhesive. The second portion 120A can be made of, for example, a synthetic resin material or a metal material. The second part 120A may be made of, for example, a material having a thermal conductivity lower than that of the first part 110A, or may be made of a material having a specific gravity lighter than that of the first part 110A. A hollow portion, an opening, a recess, or the like (not shown) may be provided between the second top surface 122 and the second bottom surface 123 of the second portion 120A. Further, the second part 120A may be integrated with the first part 110A.
[発光ユニット、コリメートレンズ、およびミラー]
図1に示されるように、複数の載置面113-1~113-15のそれぞれには、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15が、一つずつ、実装されている。発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15は、載置面113-1~113-15上に、例えば、接着剤を介して取り付けられている。 [Light emitting unit, collimating lens, and mirror]
As shown in FIG. 1, thelight emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirror 300 are provided on the plurality of mounting surfaces 113-1 to 113-15, respectively. -1 to 300-15 are implemented one by one. The light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are placed on the mounting surface 113-1 to 113-15, for example, with an adhesive. It is attached via.
図1に示されるように、複数の載置面113-1~113-15のそれぞれには、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15が、一つずつ、実装されている。発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15は、載置面113-1~113-15上に、例えば、接着剤を介して取り付けられている。 [Light emitting unit, collimating lens, and mirror]
As shown in FIG. 1, the
図3は、載置面113-1、発光ユニット200A-1、第二コリメートレンズ210-1、およびミラー300-1が拡大された斜視図であり、図4は、載置面113-15、発光ユニット200A-15、第二コリメートレンズ210-15、ミラー300-15、およびシリンドリカルレンズ411が拡大された、第四方向Z4の反対方向に見た平面図である。載置面113-1~113-15、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15は、いずれも添え字毎に、図3,4と同じスペック(形状、配置等)を有している。すなわち、符号の添え字は、同じ添え字の載置面113-1~113-15上に載置されていることを意味する。
FIG. 3 is an enlarged perspective view of the mounting surface 113-1, the light emitting unit 200A-1, the second collimating lens 210-1, and the mirror 300-1, and FIG. 4 is an enlarged perspective view of the mounting surface 113-15. FIG. 5 is a plan view of the light emitting unit 200A-15, the second collimating lens 210-15, the mirror 300-15, and the cylindrical lens 411 as viewed in the opposite direction of the fourth direction Z4. The mounting surfaces 113-1 to 113-15, the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are all subscripts. , Has the same specifications (shape, arrangement, etc.) as in FIGS. 3 and 4. That is, the subscript of the code means that the subscript is placed on the mounting surfaces 113-1 to 113-15 of the same subscript.
図1~4に示されるように、載置面113-1~113-15のそれぞれにおいて、発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15が、第三方向Y3に並んでいる。第二コリメートレンズ210-1~210-15は、発光ユニット200A-1~200A-15と、ミラー300-1~300-15との間に位置されている。
As shown in FIGS. 1 to 4, on the mounting surfaces 113-1 to 113-15, the light emitting units 200A-1 to 200A-15, the second collimating lenses 210-1 to 210-15, and the mirror 300- 1 to 300-15 are lined up in the third direction Y3. The second collimating lenses 210-1 to 210-15 are located between the light emitting units 200A-1 to 200A-15 and the mirrors 300-1 to 300-15.
また、図1に示されるように、複数の発光ユニット200A-1~200A-15は、第一方向X1に等間隔で並び、複数の第二コリメートレンズ210-1~210-15は、第一方向X1に等間隔で並び、複数のミラー300-1~300-15は、第一方向X1に等間隔で並んでいる。
Further, as shown in FIG. 1, the plurality of light emitting units 200A-1 to 200A-15 are arranged at equal intervals in the first direction X1, and the plurality of second collimating lenses 210-1 to 210-15 are first. The mirrors 300-1 to 300-15 are arranged at equal intervals in the direction X1, and the plurality of mirrors 300-1 to 300-15 are arranged at equal intervals in the first direction X1.
図3,4に一例が示されるように、発光ユニット200A-1~200A-15は、サブマウント203-1~203-15と、当該サブマウント203-1~203-15の頂面上に実装された発光素子204-1~204-15と、を有している。第一コリメートレンズ202-1~202-15は、サブマウント203-1~203-15の第三方向Y3の端部に位置する側面上に実装されている。
As an example is shown in FIGS. 3 and 4, the light emitting units 200A-1 to 200A-15 are mounted on the submounts 203-1 to 203-15 and the top surfaces of the submounts 203-1 to 203-15. It has the light emitting elements 204-1 to 204-15. The first collimating lenses 202-1 to 202-15 are mounted on the side surface of the submounts 203-1 to 203-15 located at the end of the third direction Y3.
サブマウント203-1~203-15は、例えば、扁平な直方体状の形状を有している。また、サブマウント203-1~203-15は、例えば、窒化アルミニウム(AIN)や、セラミック、ガラスのような、熱伝導率が比較的大きい絶縁材料で作られうる。
Submounts 203-1 to 203-15 have, for example, a flat rectangular parallelepiped shape. Further, the submounts 203-1 to 203-15 can be made of an insulating material having a relatively high thermal conductivity, such as aluminum nitride (AIN), ceramic, or glass.
発光素子204-1~204-15は、例えば、半導体レーザ素子であり、サブマウント203-1~203-15上で、第三方向Y3に向けてレーザ光を出射する。発光ユニット200A-1~200A-15は、発光素子204-1~204-15の進相軸(FA)が、第二方向X2および第三方向Y3と直交する方向、言い換えると載置面113-1~113-15と直交する方向に沿い、かつ遅相軸(SA)が、第二方向X2に沿うように、実装される。
The light emitting elements 204-1 to 204-15 are, for example, semiconductor laser elements, and emit laser light toward the third direction Y3 on the submounts 203-1 to 203-15. In the light emitting units 200A-1 to 200A-15, the phase advance axis (FA) of the light emitting elements 204-1 to 204-15 is orthogonal to the second direction X2 and the third direction Y3, in other words, the mounting surface 113-. It is mounted along the direction orthogonal to 1 to 113-15 and so that the slow axis (SA) is along the second direction X2.
第一コリメートレンズ202-1~202-15は、例えば、シリンドリカルレンズであり、発光素子204-1~204-15から出射されたレーザ光を、第一軸においてコリメートする。すなわち、発光素子204-1~204-15から出射され第一コリメートレンズ202-1~202-15を通ったレーザ光、言い換えると、発光ユニット200A-1~200A-15から出射された進相軸においてコリメートされているレーザ光は、第三方向Y3に向けて、進相軸と直交する面に沿って進む。
The first collimating lenses 202-1 to 202-15 are, for example, cylindrical lenses, and collimate the laser light emitted from the light emitting elements 204-1 to 204-15 in the first axis. That is, the laser beam emitted from the light emitting elements 204-1 to 204-15 and passed through the first collimating lenses 202-1 to 202-15, in other words, the phase advancing axis emitted from the light emitting units 200A-1 to 200A-15. The laser beam collimated in the above travels in the third direction Y3 along a plane orthogonal to the phase advance axis.
第二コリメートレンズ210-1~210-15は、例えば、シリンドリカルレンズであり、発光ユニット200A-1~200A-15からの、すなわち第一コリメートレンズ202-1~202-15からのレーザ光を、遅相軸においてコリメートする。すなわち、第二コリメートレンズ210-1~210-15を通ったレーザ光、言い換えると、進相軸および遅相軸においてコリメートされたレーザ光は、第三方向Y3に進む。
The second collimating lenses 210-1 to 210-15 are, for example, cylindrical lenses, and receive laser light from the light emitting units 200A-1 to 200A-15, that is, from the first collimating lenses 202-1 to 202-15. Collimate on the slow axis. That is, the laser light passing through the second collimating lenses 210-1 to 210-15, in other words, the laser light collimated in the phase-advancing axis and the slow-phase axis, travels in the third direction Y3.
ミラー300-1~300-15は、第二コリメートレンズ210-1~210-15からの第三方向Y3の光を第二方向X2に反射する。言い換えると、ミラー300-1~300-15は、発光ユニット200A-1~200A-15からの第三方向Y3の光を、第二方向X2に向かわせる。このような構成において、発光素子204-1~204-15から出射され、第一コリメートレンズ202-1~202-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15を経由する間、レーザ光は、載置面113-1~113-15と平行に進む。ミラー300-1~300-15は、第一偏向部品の一例であり、光学部品の一例でもある。なお、第一偏向部品は、例えばプリズムのような、ミラー300-1~300-15とは異なる光学部品であってもよい。
The mirrors 300-1 to 300-15 reflect the light in the third direction Y3 from the second collimating lenses 210-1 to 210-15 in the second direction X2. In other words, the mirrors 300-1 to 300-15 direct the light in the third direction Y3 from the light emitting units 200A-1 to 200A-15 in the second direction X2. In such a configuration, the first collimating lenses 202-1 to 202-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300 are emitted from the light emitting elements 204-1 to 204-15. While passing through -15, the laser beam travels parallel to the mounting surfaces 113-1 to 113-15. Mirrors 300-1 to 300-15 are examples of first deflection components and also examples of optical components. The first deflection component may be an optical component different from the mirrors 300-1 to 300-15, such as a prism.
図2中に破線で示されるに示されるように、複数のミラー300-1~300-15で反射された(偏向された)複数のレーザ光は、互いに平行に、第二方向X2に向かう。複数のミラー300-1~300-15で反射された(偏向された)複数のレーザ光は、第四方向Z4に並んでいる。
As shown by the broken line in FIG. 2, the plurality of laser beams reflected (deflected) by the plurality of mirrors 300-1 to 300-15 are directed in the second direction X2 in parallel with each other. The plurality of laser beams reflected (deflected) by the plurality of mirrors 300-1 to 300-15 are arranged in the fourth direction Z4.
[光学部品]
シリンドリカルレンズ411は、全てのミラー300-1~300-15から第二方向X2に離間し、シリンドリカルレンズ412は、シリンドリカルレンズ411から第二方向X2に離間し、光ファイバ500の端部500aは、シリンドリカルレンズ412から第二方向X2に離間している。シリンドリカルレンズ411およびシリンドリカルレンズ412は、複数のミラー300-1~300-15からの複数のレーザ光を、光ファイバ500の端部500aに結合する。言い換えると、シリンドリカルレンズ411,412は、ミラー300-1~300-15からの第二方向X2へ向かう光を、光ファイバ500の端部500aに導いている。シリンドリカルレンズ411,412は、例えば、集光素子とも称され、光学部品400の一例である。なお、光学部品400は、シリンドリカルレンズ411,412とは異なる光学部品400であってもよいし、光学部品400は、例えば光学フィルタのようなシリンドリカルレンズ411,412とは別の光学部品400を含んでもよい。 [Optical parts]
Thecylindrical lens 411 is separated from all the mirrors 300-1 to 300-15 in the second direction X2, the cylindrical lens 412 is separated from the cylindrical lens 411 in the second direction X2, and the end portion 500a of the optical fiber 500 is separated from the optical fiber 500. It is separated from the cylindrical lens 412 in the second direction X2. The cylindrical lens 411 and the cylindrical lens 412 couple a plurality of laser beams from the plurality of mirrors 300-1 to 300-15 to the end portion 500a of the optical fiber 500. In other words, the cylindrical lenses 411 and 412 guide the light from the mirrors 300-1 to 300-15 toward the second direction X2 to the end portion 500a of the optical fiber 500. The cylindrical lenses 411 and 412 are also referred to as, for example, a light collecting element, and are an example of the optical component 400. The optical component 400 may be an optical component 400 different from the cylindrical lenses 411 and 412, and the optical component 400 includes an optical component 400 different from the cylindrical lenses 411 and 412 such as an optical filter. It may be.
シリンドリカルレンズ411は、全てのミラー300-1~300-15から第二方向X2に離間し、シリンドリカルレンズ412は、シリンドリカルレンズ411から第二方向X2に離間し、光ファイバ500の端部500aは、シリンドリカルレンズ412から第二方向X2に離間している。シリンドリカルレンズ411およびシリンドリカルレンズ412は、複数のミラー300-1~300-15からの複数のレーザ光を、光ファイバ500の端部500aに結合する。言い換えると、シリンドリカルレンズ411,412は、ミラー300-1~300-15からの第二方向X2へ向かう光を、光ファイバ500の端部500aに導いている。シリンドリカルレンズ411,412は、例えば、集光素子とも称され、光学部品400の一例である。なお、光学部品400は、シリンドリカルレンズ411,412とは異なる光学部品400であってもよいし、光学部品400は、例えば光学フィルタのようなシリンドリカルレンズ411,412とは別の光学部品400を含んでもよい。 [Optical parts]
The
シリンドリカルレンズ411は、第二頂面122上に突出した支持部材141と隣接して設けられている。支持部材141は、例えば、第二部位120A(ベース100A)に設けられ第二頂面122に開口した穴に圧入されることにより、第二部位120Aに取り付けられている。シリンドリカルレンズ411は、支持部材141によって位置決めされてもよいし、支持部材141に接着等により取り付けられてもよい。支持部材141は、第二支持部材の一例であり、第二位置決め部材とも称されうる。第二頂面122は、表面の一例である。
The cylindrical lens 411 is provided adjacent to the support member 141 protruding on the second top surface 122. The support member 141 is attached to the second portion 120A by, for example, being press-fitted into a hole provided in the second portion 120A (base 100A) and opened in the second top surface 122. The cylindrical lens 411 may be positioned by the support member 141, or may be attached to the support member 141 by adhesion or the like. The support member 141 is an example of the second support member, and may also be referred to as a second positioning member. The second top surface 122 is an example of a surface.
シリンドリカルレンズ412および光ファイバ500は、支持部材130に取り付けられ、支持部材130およびシリンドリカルレンズ411は、第二部位120Aの第二頂面122上に、取り付けられている。よって、シリンドリカルレンズ411,412は、光ファイバ500の端部500aに、より精度良くレーザ光を結合することができる。第二頂面122は、第二載置面とも称されうる。
The cylindrical lens 412 and the optical fiber 500 are attached to the support member 130, and the support member 130 and the cylindrical lens 411 are attached on the second top surface 122 of the second portion 120A. Therefore, the cylindrical lenses 411 and 412 can more accurately couple the laser beam to the end portion 500a of the optical fiber 500. The second top surface 122 may also be referred to as a second mounting surface.
[ベースの製造方法]
図5は、ベース100Aの第一部位110Aの側面図である。工作機械(不図示)により第一部位110Aに載置面113-1~113-15を加工するにあたっては、第一底面114が加工された厚めの板状の素材M(二点鎖線)が、載置面113-1~113-15が工作機械による加工方向(切削方向、研磨方向、図5の左右方向)に沿うよう、第一底面114が当該加工方向に対して角度θだけ傾斜した姿勢で当該機械にセットされた状態で、当該機械により、複数の載置面113-1~113-15を階段状に加工すればよい。これにより、工作機械は、第一方向X1に対して角度θだけ傾斜した第二方向X2に延びる複数の載置面113-1~113-15を、より容易にあるいはより精度良く、加工することができる。 [Base manufacturing method]
FIG. 5 is a side view of thefirst portion 110A of the base 100A. When the mounting surfaces 113-1 to 113-15 are processed on the first portion 110A by a machine tool (not shown), a thick plate-shaped material M (two-point chain wire) on which the first bottom surface 114 is processed is used. A posture in which the first bottom surface 114 is inclined by an angle θ with respect to the machining direction so that the mounting surfaces 113-1 to 113-15 follow the machining direction by the machine tool (cutting direction, polishing direction, left-right direction in FIG. 5). In the state of being set in the machine, the plurality of mounting surfaces 113-1 to 113-15 may be processed in a stepped shape by the machine. As a result, the machine tool can process a plurality of mounting surfaces 113-1 to 113-15 extending in the second direction X2 inclined by an angle θ with respect to the first direction X1 more easily or more accurately. Can be done.
図5は、ベース100Aの第一部位110Aの側面図である。工作機械(不図示)により第一部位110Aに載置面113-1~113-15を加工するにあたっては、第一底面114が加工された厚めの板状の素材M(二点鎖線)が、載置面113-1~113-15が工作機械による加工方向(切削方向、研磨方向、図5の左右方向)に沿うよう、第一底面114が当該加工方向に対して角度θだけ傾斜した姿勢で当該機械にセットされた状態で、当該機械により、複数の載置面113-1~113-15を階段状に加工すればよい。これにより、工作機械は、第一方向X1に対して角度θだけ傾斜した第二方向X2に延びる複数の載置面113-1~113-15を、より容易にあるいはより精度良く、加工することができる。 [Base manufacturing method]
FIG. 5 is a side view of the
[仰角および設置間隔の設定]
図6は、載置面113-1,113-2とミラー300-1,300-2とを示す側面図である。ミラー300-1,300-2によって偏向されたレーザ光Bのビーム径をdとすると、隣接する二つのレーザ光Bが互いに干渉しないための条件、すなわち、隣接する二つのレーザ光B間に隙間Gがある、すなわち隙間Gが0より大きいための条件は、第一方向X1に対する第二方向X2の仰角をθ、二つのレーザ光Bの光軸間の距離をD、ミラー300-1~300-15から第二方向X2へ進むレーザ光Bのビーム径をd、ミラー300-1~300-15の第一方向X1における設置間隔をL、とすると、G=D-2・0.5d>0、D=L・sinθであるから、d<L・sinθとなる。 [Setting of elevation angle and installation interval]
FIG. 6 is a side view showing the mounting surfaces 113-1 and 113-2 and the mirrors 300-1 and 300-2. Assuming that the beam diameter of the laser beam B deflected by the mirrors 300-1 and 300-2 is d, the condition for the two adjacent laser beams B not to interfere with each other, that is, the gap between the two adjacent laser beams B. The conditions for having G, that is, for the gap G to be larger than 0 are that the elevation angle of the second direction X2 with respect to the first direction X1 is θ, the distance between the optical axes of the two laser beams B is D, and the mirrors 300-1 to 300 Assuming that the beam diameter of the laser beam B traveling from -15 to the second direction X2 is d and the installation interval of the mirrors 300-1 to 300-15 in the first direction X1 is L, G = D-2.0.5d> Since 0 and D = L · sinθ, d <L · sinθ.
図6は、載置面113-1,113-2とミラー300-1,300-2とを示す側面図である。ミラー300-1,300-2によって偏向されたレーザ光Bのビーム径をdとすると、隣接する二つのレーザ光Bが互いに干渉しないための条件、すなわち、隣接する二つのレーザ光B間に隙間Gがある、すなわち隙間Gが0より大きいための条件は、第一方向X1に対する第二方向X2の仰角をθ、二つのレーザ光Bの光軸間の距離をD、ミラー300-1~300-15から第二方向X2へ進むレーザ光Bのビーム径をd、ミラー300-1~300-15の第一方向X1における設置間隔をL、とすると、G=D-2・0.5d>0、D=L・sinθであるから、d<L・sinθとなる。 [Setting of elevation angle and installation interval]
FIG. 6 is a side view showing the mounting surfaces 113-1 and 113-2 and the mirrors 300-1 and 300-2. Assuming that the beam diameter of the laser beam B deflected by the mirrors 300-1 and 300-2 is d, the condition for the two adjacent laser beams B not to interfere with each other, that is, the gap between the two adjacent laser beams B. The conditions for having G, that is, for the gap G to be larger than 0 are that the elevation angle of the second direction X2 with respect to the first direction X1 is θ, the distance between the optical axes of the two laser beams B is D, and the mirrors 300-1 to 300 Assuming that the beam diameter of the laser beam B traveling from -15 to the second direction X2 is d and the installation interval of the mirrors 300-1 to 300-15 in the first direction X1 is L, G = D-2.0.5d> Since 0 and D = L · sinθ, d <L · sinθ.
以上、説明したように、第1実施形態の半導体レーザモジュール10A(レーザ装置)は、複数の発光ユニット200A-1~200A-15と、ベース100Aと、複数のミラー300-1~300-15(第一偏向部品)と、光学部品400と、を備える。複数の発光ユニット200A-1~200A-15は、それぞれ、発光素子204-1~204-15を有し第一方向X1に並ぶ。ベース100Aは、第一方向X1に並んで位置され第一方向X1に対して傾斜した第二方向X2に延び発光ユニット200A-1~200A-15をそれぞれ載置した複数の載置面113-1~113-15と、当該複数の載置面113-1~113-15の裏側で第一方向X1に延びた第一底面114(底面)と、を有する。言い換えると、ベース100Aは、第一方向X1に延びた板状の形状を有するとともに、複数の載置面113-1~113-15を有する。複数のミラー300-1~300-15は、第一方向X1に並び載置面113-1~113-15のそれぞれに載置され当該載置面113-1~113-15に載置された発光ユニット200A-1~200A-15からのレーザ光を、第二方向X2に向かわせる。光学部品400(411,412)は、ベース100Aに設けられミラー300-1~300-15のそれぞれで反射された(偏向された)レーザ光を一つの光ファイバ500に導く。
As described above, in the semiconductor laser module 10A (laser device) of the first embodiment, a plurality of light emitting units 200A-1 to 200A-15, a base 100A, and a plurality of mirrors 300-1 to 300-15 ( A first deflection component) and an optical component 400 are provided. The plurality of light emitting units 200A-1 to 200A-15 each have light emitting elements 204-1 to 204-15 and are arranged in the first direction X1. The base 100A is located side by side in the first direction X1, extends in the second direction X2 inclined with respect to the first direction X1, and has a plurality of mounting surfaces 113-1 on which the light emitting units 200A-1 to 200A-15 are mounted. It has a first bottom surface 114 (bottom surface) extending in the first direction X1 on the back side of the plurality of mounting surfaces 113-1 to 113-15. In other words, the base 100A has a plate-like shape extending in the first direction X1 and has a plurality of mounting surfaces 113-1 to 113-15. The plurality of mirrors 300-1 to 300-15 are arranged in the first direction X1 and mounted on the mounting surfaces 113-1 to 113-15, respectively, and mounted on the mounting surfaces 113-1 to 113-15. The laser light from the light emitting units 200A-1 to 200A-15 is directed to the second direction X2. The optical component 400 (411, 412) guides the (deflected) laser light reflected by each of the mirrors 300-1 to 300-15 provided on the base 100A to one optical fiber 500.
このような構成によれば、例えば、ベース100Aにおいて発光ユニット200A-1~200A-15が載置される部位の厚さをより薄くすることができるため、当該ベース100Aを介しての放熱性能をより高めることができる。また、ミラー300-1~300-15を、第二方向X2に延びる載置面113-1~113-15上に載置することができるため、第一方向X1に延びる面上にミラーを傾けて載置する構成に比べて、ミラー300-1~300-15をより精度良くあるいはより容易に設置することができ、ひいては、複数のレーザ光をより精度良く結合することができる。
According to such a configuration, for example, the thickness of the portion where the light emitting units 200A-1 to 200A-15 are placed can be made thinner in the base 100A, so that the heat dissipation performance through the base 100A can be improved. Can be enhanced. Further, since the mirrors 300-1 to 300-15 can be mounted on the mounting surfaces 113-1 to 113-15 extending in the second direction X2, the mirror is tilted on the surface extending in the first direction X1. The mirrors 300-1 to 300-15 can be installed more accurately or more easily than the configuration in which the mirrors are placed, and by extension, a plurality of laser beams can be combined more accurately.
また、第1実施形態の半導体レーザモジュール10A(レーザ装置)では、第一方向X1に対する第二方向X2の仰角をθ、ミラー300-1~300-15(第一偏向部品)のそれぞれから第二方向X2へ進むレーザ光Bのビーム径をd、複数のミラー300-1~300-15の第一方向X1における設置間隔をL、としたとき、d<L・sinθを満たす。
Further, in the semiconductor laser module 10A (laser device) of the first embodiment, the elevation angle of the second direction X2 with respect to the first direction X1 is θ, and the mirrors 300-1 to 300-15 (first deflection component) are second to each other. When the beam diameter of the laser beam B traveling in the direction X2 is d and the installation interval of the plurality of mirrors 300-1 to 300-15 in the first direction X1 is L, d <L · sin θ is satisfied.
このような構成によれば、例えば、レーザ光Bのビーム径dに応じて適切な角度θ(仰角)および設置間隔Lを設定することにより、半導体レーザモジュール10Aを、隣接する二つのレーザ光同士が干渉しないよう、構成することができる。また、本実施形態によれば、ミラー300-1~300-15を載置面113-1~113-15上により精度良く設置することができるため、二つのレーザ光B間に隙間Gをより小さく設定することができ、ひいては、二つのレーザ光Bの光軸間の距離D、さらにはミラー300-1~300-15の第一方向X1における設置間隔Lをより小さく設定することができる。これにより、半導体レーザモジュール10Aを、第一方向X1によりコンパクトに構成することができる。
According to such a configuration, for example, by setting an appropriate angle θ (elevation angle) and installation interval L according to the beam diameter d of the laser beam B, the semiconductor laser module 10A can be placed between two adjacent laser beams. Can be configured so that they do not interfere with each other. Further, according to the present embodiment, the mirrors 300-1 to 300-15 can be installed more accurately on the mounting surfaces 113-1 to 113-15, so that a gap G is formed between the two laser beams B. The distance D between the optical axes of the two laser beams B and the installation interval L in the first direction X1 of the mirrors 300-1 to 300-15 can be set smaller. As a result, the semiconductor laser module 10A can be compactly configured in the first direction X1.
また、第1実施形態の半導体レーザモジュール10A(レーザ装置)は、第二頂面122(表面)上に突出し、シリンドリカルレンズ411(光学部品)を支持する支持部材141(第二支持部材)を備えている。
Further, the semiconductor laser module 10A (laser device) of the first embodiment includes a support member 141 (second support member) that projects on the second top surface 122 (surface) and supports the cylindrical lens 411 (optical component). ing.
このような構成によれば、支持部材141により、シリンドリカルレンズ411の倒れや位置ずれを抑制することができる。また、シリンドリカルレンズ411を支持部材141にも接着等により取り付けることで、シリンドリカルレンズ411をより強固にあるいはより安定的に第二頂面122上に固定することができる。
According to such a configuration, the support member 141 can suppress the tilting and misalignment of the cylindrical lens 411. Further, by attaching the cylindrical lens 411 to the support member 141 by adhesion or the like, the cylindrical lens 411 can be more firmly or more stably fixed on the second top surface 122.
[第2実施形態]
図7は、第2実施形態の半導体レーザモジュール10Bの斜視図、図8は、半導体レーザモジュール10Bの側面図、図9は、半導体レーザモジュール10Bの一部を拡大した斜視図である。図7と図1とを比較すれば明らかとなるように、本実施形態のベース100Bは、上記第1実施形態のベース100Aとは異なる構成を有している。具体的には、第二部位120Bの構成が、上記第1実施形態の第二部位120Aの構成とは相違している。なお、ベース100Bの中央部100aと端部100bとの間における第一部位110Bの構成は、上記第1実施形態の第一部位110Aの構成と同様である。 [Second Embodiment]
7 is a perspective view of thesemiconductor laser module 10B of the second embodiment, FIG. 8 is a side view of the semiconductor laser module 10B, and FIG. 9 is an enlarged perspective view of a part of the semiconductor laser module 10B. As will be clear by comparing FIG. 7 and FIG. 1, the base 100B of the present embodiment has a configuration different from that of the base 100A of the first embodiment. Specifically, the configuration of the second site 120B is different from the configuration of the second site 120A of the first embodiment. The configuration of the first portion 110B between the central portion 100a and the end portion 100b of the base 100B is the same as the configuration of the first portion 110A of the first embodiment.
図7は、第2実施形態の半導体レーザモジュール10Bの斜視図、図8は、半導体レーザモジュール10Bの側面図、図9は、半導体レーザモジュール10Bの一部を拡大した斜視図である。図7と図1とを比較すれば明らかとなるように、本実施形態のベース100Bは、上記第1実施形態のベース100Aとは異なる構成を有している。具体的には、第二部位120Bの構成が、上記第1実施形態の第二部位120Aの構成とは相違している。なお、ベース100Bの中央部100aと端部100bとの間における第一部位110Bの構成は、上記第1実施形態の第一部位110Aの構成と同様である。 [Second Embodiment]
7 is a perspective view of the
図7,8に示されるように、ベース100Bの第二部位120Bは、ベース100Bの中央部100aと端部100cとの間において、第二方向X2および第三方向Y3に延びた板状の壁121を有している。すなわち、第二部位120Bは、壁121の厚さ方向の一端(図8では上端)に位置される第二頂面122と、壁121の厚さ方向の他端(図8では下端)における第二底面123と、を有している。第二頂面122および第二底面123は、互いに平行であり、第二方向X2および第三方向Y3に延びている。ベース100Bは、図8に示されるような第三方向Y3とは反対側に見た側面視において、中央部100aで折れ曲がったV字状の外観を呈している。
As shown in FIGS. 7 and 8, the second portion 120B of the base 100B is a plate-shaped wall extending in the second direction X2 and the third direction Y3 between the central portion 100a and the end portion 100c of the base 100B. Has 121. That is, the second portion 120B has a second top surface 122 located at one end (upper end in FIG. 8) of the wall 121 in the thickness direction and a second portion 120B at the other end (lower end in FIG. 8) of the wall 121 in the thickness direction. It has two bottom surfaces 123 and. The second top surface 122 and the second bottom surface 123 are parallel to each other and extend in the second direction X2 and the third direction Y3. The base 100B has a V-shaped appearance that is bent at the central portion 100a when viewed from the side opposite to the third direction Y3 as shown in FIG.
シリンドリカルレンズ411,412および光ファイバ500の支持部材130は、第1実施形態と同様に、第二頂面122上に載置されている。
The cylindrical lenses 411, 412 and the support member 130 of the optical fiber 500 are mounted on the second top surface 122 as in the first embodiment.
壁121(第二部位120B)は、一つの素材から加工されるなどにより、壁111(第一部位110B)と一体に作られてもよいし、壁111とは別に作られて当該壁111と結合されてもよい。第一部位110Bと第二部位120Bとが互いに結合される場合、第二部位120Bは、例えば、合成樹脂材料や金属材料で作られうる。また、その場合、当該第二部位120Bは、例えば、熱伝導率が第一部位110Bの熱伝導率より低い材料で作られてもよいし、比重が第一部位110Bの比重よりも軽い材料で作られてもよい。第一部位110Bと第二部位120Bとが一体に作られる場合、それら第一部位110Bおよび第二部位120B、すなわちベース100Bは、例えば無酸素銅のような、熱伝導率が比較的大きい金属材料で作られる。
The wall 121 (second part 120B) may be made integrally with the wall 111 (first part 110B) by being processed from one material, or may be made separately from the wall 111 with the wall 111. It may be combined. When the first site 110B and the second part 120B are bonded to each other, the second part 120B can be made of, for example, a synthetic resin material or a metallic material. Further, in that case, the second part 120B may be made of, for example, a material having a thermal conductivity lower than that of the first part 110B, or a material having a specific gravity lighter than that of the first part 110B. May be made. When the first part 110B and the second part 120B are integrally formed, the first part 110B and the second part 120B, that is, the base 100B are made of a metal material having a relatively high thermal conductivity, for example, oxygen-free copper. Made of.
図9は、発光ユニット200B-1、第二コリメートレンズ210-1、およびミラー300-1の斜視図である。載置面113-1~113-15、発光ユニット200B-1~200B-15、第二コリメートレンズ210-1~210-15、およびミラー300-1~300-15は、いずれも添え字毎に、図9と同じスペック(形状、配置等)を有している。
FIG. 9 is a perspective view of the light emitting unit 200B-1, the second collimating lens 210-1, and the mirror 300-1. The mounting surfaces 113-1 to 113-15, the light emitting units 200B-1 to 200B-15, the second collimating lenses 210-1 to 210-15, and the mirrors 300-1 to 300-15 are all subscripts. , Has the same specifications (shape, arrangement, etc.) as in FIG.
図9に一例が示されるように、発光ユニット200B-1~200B-15は、ケース201-1~201-15と、当該ケース201-1~201-15内に収容された発光素子204-1~204-15と、ケース201-1~201-15から露出した第一コリメートレンズ202-1~202-15と、を有している。発光ユニット200B-1~200B-15は、ケース201-1~201-15内に収容されたサブマウント(不図示)上に実装されている。発光ユニット200B-1~200B-15およびサブマウントは、気密封止されたケース201-1~201-15内に収容されている。ケース201-1~201-15は、ハウジングとも称されうる。
As an example is shown in FIG. 9, the light emitting units 200B-1 to 200B-15 are the cases 201-1 to 201-15 and the light emitting elements 204-1 housed in the cases 211-1 to 201-15. It has the first collimating lenses 202-1 to 202-15 exposed from the cases 211-1 to 201-15. The light emitting units 200B-1 to 200B-15 are mounted on a submount (not shown) housed in the cases 211-1 to 201-15. The light emitting units 200B-1 to 200B-15 and the submount are housed in the airtightly sealed cases 211-1 to 201-15. Cases 201-1 to 201-15 may also be referred to as housings.
発光素子204-1~204-15は、例えば、半導体レーザ素子であり、ケース201-1~201-15内で、第三方向Y3に向けてレーザ光を出射する。発光ユニット200B-1~200B-15は、発光素子204-1~204-15の進相軸(FB)が、第二方向X2および第三方向Y3と直交する方向、言い換えると載置面113-1~113-15と直交する方向に沿い、かつ遅相軸(SB)が、第二方向X2に沿うように、実装される。また、ケース201-1~201-15からは、第三方向Y3と反対方向に、発光素子204-1~204-15に駆動電流を供給するリード205が突出している。なお、第2実施形態の半導体レーザモジュール10Bは、上記第1実施形態の発光ユニット200A-1~200A-15を備えてもよいし、逆に上記第1実施形態の半導体レーザモジュール10Aが、第二実施形態の発光ユニット200B-1~200B-15を備えてもよい。
The light emitting elements 204-1 to 204-15 are, for example, semiconductor laser elements, and emit laser light toward the third direction Y3 in the cases 211-1 to 201-15. In the light emitting units 200B-1 to 200B-15, the phase advance axis (FB) of the light emitting elements 204-1 to 204-15 is orthogonal to the second direction X2 and the third direction Y3, in other words, the mounting surface 113-. It is mounted along the direction orthogonal to 1 to 113-15 and so that the slow axis (SB) is along the second direction X2. Further, from the cases 211-1 to 201-15, leads 205 for supplying a drive current to the light emitting elements 204-1 to 204-15 project in the direction opposite to the third direction Y3. The semiconductor laser module 10B of the second embodiment may include the light emitting units 200A-1 to 200A-15 of the first embodiment, and conversely, the semiconductor laser module 10A of the first embodiment is the first. The light emitting units 200B-1 to 200B-15 of the second embodiment may be provided.
以上、説明したように、第2実施形態の半導体レーザモジュール10B(レーザ装置)では、ベース100Bは、複数の載置面113-1~113-15と第一底面114(底面)とを有し第一方向X1に延びた第一部位110Bと、光ファイバ500を支持し第二方向X2に延びた第二部位120Bと、を有している。
As described above, in the semiconductor laser module 10B (laser device) of the second embodiment, the base 100B has a plurality of mounting surfaces 113-1 to 113-15 and a first bottom surface 114 (bottom surface). It has a first portion 110B extending in the first direction X1 and a second portion 120B supporting the optical fiber 500 and extending in the second direction X2.
このような構成によれば、例えば、第二部位120Bをより薄くすることができ、ベース100Bひいては半導体レーザモジュール10Bを、より小型にあるいはより軽量に構成することができる。
According to such a configuration, for example, the second portion 120B can be made thinner, and the base 100B and thus the semiconductor laser module 10B can be made smaller or lighter.
また、第2実施形態の半導体レーザモジュール10Bでは、発光ユニット200B-1~200B-15は、それぞれ発光素子204-1~204-15を収容するケース201-1~201-15を有している。
Further, in the semiconductor laser module 10B of the second embodiment, the light emitting units 200B-1 to 200B-15 have cases 211-1 to 201-15 accommodating the light emitting elements 204-1 to 204-15, respectively. ..
このような構成によれば、例えば、発光素子204-1~204-15のガスや塵芥からの保護性をより高めることができる。
According to such a configuration, for example, the protection of the light emitting elements 204-1 to 204-15 from gas and dust can be further enhanced.
さらに、第2実施形態の半導体レーザモジュール10Bでは、ケース201-1~201-15は、発光素子204-1~204-15を、当該ケース201-1~201-15内に気密封止している。
Further, in the semiconductor laser module 10B of the second embodiment, in the cases 211-1 to 201-15, the light emitting elements 204-1 to 204-15 are hermetically sealed in the cases 201-1 to 201-15. There is.
このような構成によれば、例えば、発光素子204-1~204-15のガスや塵芥からの保護性をより一層高めることができる。
According to such a configuration, for example, the protection of the light emitting elements 204-1 to 204-15 from gas and dust can be further enhanced.
[第3実施形態]
図10は、第3実施形態の半導体レーザモジュール10Cの側面図である。図10を図2,8と比較すれば明らかとなるように、本実施形態のベース100Cは、上記第1実施形態のベース100Aおよび第2実施形態のベース100Bとは異なる構成を有している。具体的には、第1実施形態のように三角柱状の第二部位120Aを有したり、第2実施形態のように第一部位110Bと第二部位120Bとが中央部100aで折れ曲がったりすることなく、端部100bと端部100cとの間に渡る平板状の形状を有している。 [Third Embodiment]
FIG. 10 is a side view of thesemiconductor laser module 10C of the third embodiment. As will be clear when FIG. 10 is compared with FIGS. 2 and 8, the base 100C of the present embodiment has a different configuration from the base 100A of the first embodiment and the base 100B of the second embodiment. .. Specifically, it has a triangular columnar second portion 120A as in the first embodiment, or the first portion 110B and the second portion 120B are bent at the central portion 100a as in the second embodiment. It has a flat plate shape that extends between the end portion 100b and the end portion 100c.
図10は、第3実施形態の半導体レーザモジュール10Cの側面図である。図10を図2,8と比較すれば明らかとなるように、本実施形態のベース100Cは、上記第1実施形態のベース100Aおよび第2実施形態のベース100Bとは異なる構成を有している。具体的には、第1実施形態のように三角柱状の第二部位120Aを有したり、第2実施形態のように第一部位110Bと第二部位120Bとが中央部100aで折れ曲がったりすることなく、端部100bと端部100cとの間に渡る平板状の形状を有している。 [Third Embodiment]
FIG. 10 is a side view of the
このような構成を実現するため、本実施形態では、光学部品400として、ウエッジプリズム421を備えている。ウエッジプリズム421は、図10中に破線で示されるように、複数のミラー300-1~300-15から第二方向X2へ進む複数のレーザ光を、第一方向X1へ向かわせる。言い換えると、ウエッジプリズム421により、互いに平行な複数のレーザ光の進行方向が、第一方向X1から第二方向X2に変化する。よって、ウエッジプリズム421から光ファイバ500の端部500aに至るまでの複数のレーザ光の光束の中心軸Axが、第一方向X1に沿うため、ウエッジプリズム421、シリンドリカルレンズ411,412、および光ファイバ500の端部500aを、ウエッジプリズム421に対して第一方向X1に並べることができる。これにより、図10に示されるように、第一部位110Cと第二部位120C、壁111と壁121、第一頂面112と第二頂面122、および第一底面114と第二底面123を、第一方向X1に沿って並べることができる。ウエッジプリズム421は、第二偏向部品の一例である。なお、第二偏向部品は、ウエッジプリズム421とは異なる光学部品であってもよい。また、半導体レーザモジュール10Cは、複数の発光ユニット200B-1~200B-15に替えて複数の発光ユニット200A-1~200A-15を有してもよい。
In order to realize such a configuration, in this embodiment, the wedge prism 421 is provided as the optical component 400. The wedge prism 421 directs a plurality of laser beams traveling in the second direction X2 from the plurality of mirrors 300-1 to 300-15 toward the first direction X1 as shown by a broken line in FIG. In other words, the wedge prism 421 changes the traveling directions of the plurality of laser beams parallel to each other from the first direction X1 to the second direction X2. Therefore, since the central axis Ax of the light beams of the plurality of laser beams from the wedge prism 421 to the end portion 500a of the optical fiber 500 follows the first direction X1, the wedge prism 421, the cylindrical lenses 411, 412, and the optical fiber The end portion 500a of the 500 can be arranged in the first direction X1 with respect to the wedge prism 421. As a result, as shown in FIG. 10, the first portion 110C and the second portion 120C, the wall 111 and the wall 121, the first top surface 112 and the second top surface 122, and the first bottom surface 114 and the second bottom surface 123 are formed. , Can be arranged along the first direction X1. The wedge prism 421 is an example of a second deflection component. The second deflection component may be an optical component different from the wedge prism 421. Further, the semiconductor laser module 10C may have a plurality of light emitting units 200A-1 to 200A-15 instead of the plurality of light emitting units 200B-1 to 200B-15.
以上、説明したように、第3実施形態の半導体レーザモジュール10C(レーザ装置)では、光学部品400は、複数のミラー300-1~300-15(第一偏向部品)から第二方向X2へ進むレーザ光を第一方向X1へ向かわせるウエッジプリズム421(第二偏向部品)を有する。
As described above, in the semiconductor laser module 10C (laser device) of the third embodiment, the optical component 400 advances from the plurality of mirrors 300-1 to 300-15 (first deflection component) in the second direction X2. It has a wedge prism 421 (second deflection component) that directs the laser beam in the first direction X1.
このような構成によれば、例えば、ベース100Cひいては半導体レーザモジュール10Cを全体的により平坦にあるいはより直線的に構成することができ、半導体レーザモジュール10Cをよりコンパクトに構成できたり、ひいては半導体レーザモジュール10Cをよりレイアウトしやすくなったり、といった効果が得られる。
According to such a configuration, for example, the base 100C and thus the semiconductor laser module 10C can be configured more flatly or more linearly as a whole, and the semiconductor laser module 10C can be configured more compactly, and thus the semiconductor laser module. The effect of making it easier to lay out the 10C can be obtained.
[第4実施形態]
図11は、第4実施形態の半導体レーザモジュール10Dの斜視図、図12は、半導体レーザモジュール10Dの一部を拡大した平面図である。図11に示されるように、本実施形態では、第一部位110D(ベース100D)の第四方向Z4の一端(図11では上端)において、複数の載置面113-1~113-15が第一方向X1に一定のピッチ(インタバル)で並ぶ複数の列LA,LBが、第三方向Y3に間隔をあけて設けられている。また、各列LA,LBにおいて、複数の発光ユニット200A-1~200A-15は、第一方向X1に等間隔で並び、複数の第二コリメートレンズ210-1~210-15は、第一方向X1に等間隔で並び、複数のミラー300-1~300-15は、第一方向X1に等間隔で並んでいる。ただし、本実施形態では、列LAと列LBとで、複数の発光ユニット200A-1~200A-15、複数の第二コリメートレンズ210-1~210-15、および複数のミラー300-1~300-15は、二つの列LA,LBの間で第一方向X1および第二方向X2に沿い第三方向Y3と直交する仮想平面(不図示)に対して面対称に配置されている。すなわち、列LAでは、第二コリメートレンズ210-1~210-15の列が、発光ユニット200A-1~200A-15の列から第三方向Y3に離間し、ミラー300-1~300-15の列LA1が、第二コリメートレンズ210-1~210-15の列から第三方向Y3に離間しているのに対し、列LBでは、第二コリメートレンズ210-1~210-15の列が、発光ユニット200A-1~200A-15の列から第三方向Y3の反対方向に離間し、ミラー300-1~300-15の列LB1が、第二コリメートレンズ210-1~210-15の列から第三方向Y3の反対方向に離間している。しかしながら、このような配置は一例であって、必ずしも面対称に配置される必要は無い。第三方向Y3は、第一方向X1と直交する方向の一例である。 [Fourth Embodiment]
FIG. 11 is a perspective view of thesemiconductor laser module 10D of the fourth embodiment, and FIG. 12 is an enlarged plan view of a part of the semiconductor laser module 10D. As shown in FIG. 11, in the present embodiment, a plurality of mounting surfaces 113-1 to 113-15 are located at one end (upper end in FIG. 11) of the fourth direction Z4 of the first portion 110D (base 100D). A plurality of rows LA and LB arranged at a constant pitch (interval) in one direction X1 are provided at intervals in the third direction Y3. Further, in each row LA and LB, the plurality of light emitting units 200A-1 to 200A-15 are arranged at equal intervals in the first direction X1, and the plurality of second collimating lenses 210-1 to 210-15 are arranged in the first direction. The mirrors 300-1 to 300-15 are arranged at equal intervals in X1, and the plurality of mirrors 300-1 to 300-15 are arranged at equal intervals in the first direction X1. However, in the present embodiment, in the row LA and the row LB, a plurality of light emitting units 200A-1 to 200A-15, a plurality of second collimating lenses 210-1 to 210-15, and a plurality of mirrors 300-1 to 300 -15 is arranged plane-symmetrically between the two rows LA and LB with respect to a virtual plane (not shown) orthogonal to the third direction Y3 along the first direction X1 and the second direction X2. That is, in the row LA, the rows of the second collimating lenses 210-1 to 210-15 are separated from the rows of the light emitting units 200A-1 to 200A-15 in the third direction Y3, and the mirrors 300-1 to 300-15. The row LA1 is separated from the row of the second collimating lenses 210-1 to 210-15 in the third direction Y3, whereas in the row LB, the row of the second collimating lenses 210-1 to 210-15 is separated. Separated from the row of light emitting units 200A-1 to 200A-15 in the opposite direction of the third direction Y3, the row LB1 of the mirrors 300-1 to 300-15 is separated from the row of the second collimating lenses 210-1 to 210-15. It is separated in the opposite direction of the third direction Y3. However, such an arrangement is an example and does not necessarily have to be arranged symmetrically. The third direction Y3 is an example of a direction orthogonal to the first direction X1.
図11は、第4実施形態の半導体レーザモジュール10Dの斜視図、図12は、半導体レーザモジュール10Dの一部を拡大した平面図である。図11に示されるように、本実施形態では、第一部位110D(ベース100D)の第四方向Z4の一端(図11では上端)において、複数の載置面113-1~113-15が第一方向X1に一定のピッチ(インタバル)で並ぶ複数の列LA,LBが、第三方向Y3に間隔をあけて設けられている。また、各列LA,LBにおいて、複数の発光ユニット200A-1~200A-15は、第一方向X1に等間隔で並び、複数の第二コリメートレンズ210-1~210-15は、第一方向X1に等間隔で並び、複数のミラー300-1~300-15は、第一方向X1に等間隔で並んでいる。ただし、本実施形態では、列LAと列LBとで、複数の発光ユニット200A-1~200A-15、複数の第二コリメートレンズ210-1~210-15、および複数のミラー300-1~300-15は、二つの列LA,LBの間で第一方向X1および第二方向X2に沿い第三方向Y3と直交する仮想平面(不図示)に対して面対称に配置されている。すなわち、列LAでは、第二コリメートレンズ210-1~210-15の列が、発光ユニット200A-1~200A-15の列から第三方向Y3に離間し、ミラー300-1~300-15の列LA1が、第二コリメートレンズ210-1~210-15の列から第三方向Y3に離間しているのに対し、列LBでは、第二コリメートレンズ210-1~210-15の列が、発光ユニット200A-1~200A-15の列から第三方向Y3の反対方向に離間し、ミラー300-1~300-15の列LB1が、第二コリメートレンズ210-1~210-15の列から第三方向Y3の反対方向に離間している。しかしながら、このような配置は一例であって、必ずしも面対称に配置される必要は無い。第三方向Y3は、第一方向X1と直交する方向の一例である。 [Fourth Embodiment]
FIG. 11 is a perspective view of the
また、本実施形態でも、上記第3実施形態と同様に、ウエッジプリズム421A,421Bが設けられている。ウエッジプリズム421A,421Bは、第二部位120Dの第二頂面122上に載置されている。列LAに対応したウエッジプリズム421Aは、列LA1中の複数のミラー300-1~300-15から第二方向X2へ進む複数のレーザ光を、第一方向X1へ向かわせ、列LBに対応したウエッジプリズム421Bは、列LB1中の複数のミラー300-1~300-15から第二方向X2へ進む複数のレーザ光を、第一方向X1へ向かわせる。本実施形態においても、例えば、ベース100Dひいては半導体レーザモジュール10Dを全体的により平坦にあるいはより直線的に構成することができ、半導体レーザモジュール10Dをよりコンパクトに構成できたり、半導体レーザモジュール10Dをよりレイアウトしやすくなったり、といった効果が得られる。
Further, also in this embodiment, wedge prisms 421A and 421B are provided as in the third embodiment. Wedge prisms 421A and 421B are placed on the second top surface 122 of the second portion 120D. The wedge prism 421A corresponding to the row LA corresponds to the row LB by directing a plurality of laser beams traveling in the second direction X2 from the plurality of mirrors 300-1 to 300-15 in the row LA1 toward the first direction X1. The wedge prism 421B directs a plurality of laser beams traveling from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the second direction X2 toward the first direction X1. Also in the present embodiment, for example, the base 100D and thus the semiconductor laser module 10D can be configured more flatly or more linearly as a whole, the semiconductor laser module 10D can be configured more compactly, and the semiconductor laser module 10D can be configured more. You can get the effect of making it easier to lay out.
さらに、本実施形態では、図11,12に示されるように、半導体レーザモジュール10Dは、ミラー450と、半波長板430と、偏波合成素子440と、を備えている。ミラー450、半波長板430、および偏波合成素子440は、第二部位120Dの第二頂面122上に載置されている。列LA1中の複数のミラー300-1~300-15からのウエッジプリズム421Aを経由した第一方向X1へ進むレーザ光BAは、偏波合成素子440の第一入射面440aに入射する。第一入射面440aは、偏波合成素子440の第一方向X1とは反対方向の端部に位置し、ウエッジプリズム421Aと面している。他方、列LB1中の複数のミラー300-1~300-15からの複数のレーザ光BB(第二レーザ光)は、ミラー450および半波長板430を経由して、偏波合成素子440の第二入射面440bに入射する。ミラー450は、列LB1中の複数のミラー300-1~300-15からのウエッジプリズム421Aを経由した第一方向X1へ進むレーザ光BBを、第三方向Y3とは反対方向に向かわせる。ミラー450からの第三方向Y3とは反対方向に向かうレーザ光BBは、半波長板430を経由して偏波合成素子440の第二入射面440bに入射する。第二入射面440bは、偏波合成素子440の第三方向Y3の端部に位置し、半波長板430と面している。半波長板430を経由することにより、列LB1中の複数のミラー300-1~300-15からのレーザ光LBの偏波方向が90°回転する。偏波合成素子440は、偏波方向が互いに直交するレーザ光BAとレーザ光BBとを偏波合成し、出射面440cから第一方向X1に向けて出力する。出射面440cは、偏波合成素子440の第一方向X1の端部に位置し、シリンドリカルレンズ411と面している。
Further, in the present embodiment, as shown in FIGS. 11 and 12, the semiconductor laser module 10D includes a mirror 450, a half-wave plate 430, and a polarization synthesis element 440. The mirror 450, the half-wave plate 430, and the polarization synthesizing element 440 are mounted on the second top surface 122 of the second portion 120D. The laser beam BA traveling in the first direction X1 from the plurality of mirrors 300-1 to 300-15 in the row LA1 via the wedge prisms 421A is incident on the first incident surface 440a of the polarization synthesizing element 440. The first incident surface 440a is located at the end of the polarization combining element 440 in the direction opposite to the first direction X1 and faces the wedge prism 421A. On the other hand, the plurality of laser beams BB (second laser beams) from the plurality of mirrors 300-1 to 300-15 in the column LB1 pass through the mirror 450 and the half-wave plate 430, and the polarization combining element 440 first. (2) It is incident on the incident surface 440b. The mirror 450 directs the laser beam BB from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the first direction X1 via the wedge prisms 421A in the direction opposite to the third direction Y3. The laser beam BB from the mirror 450 in the direction opposite to the third direction Y3 is incident on the second incident surface 440b of the polarization combining element 440 via the half-wave plate 430. The second incident surface 440b is located at the end of the polarization synthesizing element 440 in the third direction Y3 and faces the half-wave plate 430. By passing through the half-wave plate 430, the polarization directions of the laser beams LB from the plurality of mirrors 300-1 to 300-15 in the row LB1 are rotated by 90 °. The polarization synthesizing element 440 polarizes and synthesizes the laser light BA and the laser light BB whose polarization directions are orthogonal to each other, and outputs the laser light BA and the laser light BB from the emission surface 440c toward the first direction X1. The exit surface 440c is located at the end of the polarization synthesis element 440 in the first direction X1 and faces the cylindrical lens 411.
偏波合成素子440から出射した複数のレーザ光は、シリンドリカルレンズ411,412を経由して、光ファイバ500の端部500aに向かう。なお、半導体レーザモジュール10Dは、複数の発光ユニット200A-1~200A-15に替えて複数の発光ユニット200B-1~200B-15を有してもよい。
The plurality of laser beams emitted from the polarization synthesizing element 440 pass through the cylindrical lenses 411 and 412 and head toward the end portion 500a of the optical fiber 500. The semiconductor laser module 10D may have a plurality of light emitting units 200B-1 to 200B-15 instead of the plurality of light emitting units 200A-1 to 200A-15.
以上、説明したように、本実施形態の半導体レーザモジュール10D(レーザ装置)では、複数のミラー300-1~300-15(第一偏向部品)が第一方向X1に並ぶ複数の列LA1,LB1が第三方向Y3(第一方向X1と直交する方向)に間隔をあけて設けられている。
As described above, in the semiconductor laser module 10D (laser device) of the present embodiment, a plurality of rows LA1 and LB1 in which a plurality of mirrors 300-1 to 300-15 (first deflection components) are arranged in the first direction X1. Are provided at intervals in the third direction Y3 (the direction orthogonal to the first direction X1).
仮に、列LA1,LB1に含まれる全てのミラー300-1~300-15が第一方向X1に一列に並ぶと、半導体レーザモジュール10Dが、第一方向X1に長くなってしまう。この点、本実施形態によれば、例えば、複数のミラー300-1~300-15が第一方向X1に並ぶ複数の列LA1,LB1が第三方向Y3に間隔をあけて設けられているため、半導体レーザモジュール10Dが、第一方向X1に長くなるのを抑制することができる。なお、偏波合成素子440に替えて、例えば、列LB1に含まれる全てのミラー300-1~300-15からのレーザ光をシリンドリカルレンズ411に向かわせる例えばミラーのような第三偏向部品(光学部品、不図示)が設けられ、列LA1に含まれる全てのミラー300-1~300-15からのレーザ光は、当該第三偏向部品を経由せずにシリンドリカルレンズ411に向かうような、半波長板430および偏波合成素子440を有しない構成にあっても、複数の列LA1,LB1が設けられることによる上記効果は得られる。
If all the mirrors 300-1 to 300-15 included in the rows LA1 and LB1 are lined up in a row in the first direction X1, the semiconductor laser module 10D becomes longer in the first direction X1. In this regard, according to the present embodiment, for example, a plurality of rows LA1 and LB1 in which a plurality of mirrors 300-1 to 300-15 are arranged in the first direction X1 are provided at intervals in the third direction Y3. , The semiconductor laser module 10D can be prevented from becoming long in the first direction X1. Instead of the polarization synthesizing element 440, for example, a third deflection component (optical) such as a mirror that directs laser light from all the mirrors 300-1 to 300-15 included in the column LB1 toward the cylindrical lens 411. Parts, not shown) are provided, and the laser light from all the mirrors 300-1 to 300-15 included in the row LA1 has a half wavelength so as to go to the cylindrical lens 411 without passing through the third deflection component. Even in a configuration that does not have the plate 430 and the polarization synthesizing element 440, the above effect can be obtained by providing the plurality of rows LA1 and LB1.
また、本実施形態の半導体レーザモジュール10D(レーザ装置)では、光学部品400は、列LA1(第一列)からの第一レーザ光BAと、列LB1(第二列)からの偏波方向が当該第一レーザ光BAとは直交した第二レーザ光BBと、を偏波合成する偏波合成素子440を有する。
Further, in the semiconductor laser module 10D (laser device) of the present embodiment, the optical component 400 has the first laser beam BA from the row LA1 (first row) and the polarization directions from the row LB1 (second row). It has a polarization synthesizing element 440 that polarizes and synthesizes a second laser beam BB orthogonal to the first laser beam BA.
このような構成によれば、例えば、偏波合成しない場合に比べて、より多くの発光ユニット200A-1~200A-15からのレーザ光を結合することができるため、半導体レーザモジュール10Dの出力をより大きくすることができる。
According to such a configuration, for example, more laser beams from the light emitting units 200A-1 to 200A-15 can be combined as compared with the case where polarization synthesis is not performed, so that the output of the semiconductor laser module 10D can be output. Can be larger.
[実施形態の変形例]
図13は、実施形態の変形例の半導体レーザモジュール10Eにおいて、第一部位110E(ベース100E)の載置面113-1上に配置された第二コリメートレンズ210-1、ミラー300-1、および支持部材142の斜視図である。図11に示されるように、ミラー300-1は、載置面113-1上に突出した支持部材142と隣接して設けられ、当該支持部材142に支持されている。支持部材142は、例えば、第一部位110E(ベース100E)に設けられ載置面113-1に開口した穴に圧入されることにより、取り付けられる。支持部材142は、第一支持部材の一例であり、第一位置決め部材とも称されうる。 [Modified example of the embodiment]
FIG. 13 shows the second collimating lens 210-1, the mirror 300-1, and the mirror 300-1 arranged on the mounting surface 113-1 of thefirst portion 110E (base 100E) in the semiconductor laser module 10E of the modified example of the embodiment. It is a perspective view of the support member 142. As shown in FIG. 11, the mirror 300-1 is provided adjacent to the support member 142 projecting on the mounting surface 113-1 and is supported by the support member 142. The support member 142 is attached, for example, by being press-fitted into a hole provided in the first portion 110E (base 100E) and opened in the mounting surface 113-1. The support member 142 is an example of the first support member, and may also be referred to as a first positioning member.
図13は、実施形態の変形例の半導体レーザモジュール10Eにおいて、第一部位110E(ベース100E)の載置面113-1上に配置された第二コリメートレンズ210-1、ミラー300-1、および支持部材142の斜視図である。図11に示されるように、ミラー300-1は、載置面113-1上に突出した支持部材142と隣接して設けられ、当該支持部材142に支持されている。支持部材142は、例えば、第一部位110E(ベース100E)に設けられ載置面113-1に開口した穴に圧入されることにより、取り付けられる。支持部材142は、第一支持部材の一例であり、第一位置決め部材とも称されうる。 [Modified example of the embodiment]
FIG. 13 shows the second collimating lens 210-1, the mirror 300-1, and the mirror 300-1 arranged on the mounting surface 113-1 of the
このような構成によれば、支持部材142により、ミラー300-1の倒れや位置ずれを抑制することができるとともに、ミラー300-1を支持部材142にも接着することで、ミラー300-1をより強固にあるいはより安定的に載置面113-1上に固定することができる。なお、図13には、載置面113-1、第二コリメートレンズ210-1、ミラー300-1、および支持部材142の一つの組み合わせのみが示されているが、載置面113-1~113-15およびミラー300-1~300-15は、いずれも添え字毎に、図13と同様の支持部材142を有することができる。また、本変形例の構成は、他の第1~第6実施形態のいずれにも適用可能である。
According to such a configuration, the support member 142 can suppress the mirror 300-1 from falling or misaligning, and the mirror 300-1 can be adhered to the support member 142 to form the mirror 300-1. It can be more firmly or more stably fixed on the mounting surface 113-1. Note that FIG. 13 shows only one combination of the mounting surface 113-1, the second collimating lens 210-1, the mirror 300-1, and the support member 142, but the mounting surface 113-1 to Each of 113-15 and mirrors 300-1 to 300-15 can have a support member 142 similar to that shown in FIG. 13 for each subscript. Further, the configuration of this modification can be applied to any of the other first to sixth embodiments.
[第5実施形態]
図14は、第5実施形態の半導体レーザモジュール10Fの斜視図、図15は、半導体レーザモジュール10Fの側面図である。図14を図11と比較すれば明らかとなるように、複数の載置面113-1~113-15、複数の発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、および複数のミラー300-1~300-15の構成は、第4実施形態と同様である。 [Fifth Embodiment]
FIG. 14 is a perspective view of thesemiconductor laser module 10F of the fifth embodiment, and FIG. 15 is a side view of the semiconductor laser module 10F. As will be clear when FIG. 14 is compared with FIG. 11, a plurality of mounting surfaces 113-1 to 113-15, a plurality of light emitting units 200A-1 to 200A-15, and second collimating lenses 210-1 to 210- The configuration of the fifteenth mirror and the plurality of mirrors 300-1 to 300-15 is the same as that of the fourth embodiment.
図14は、第5実施形態の半導体レーザモジュール10Fの斜視図、図15は、半導体レーザモジュール10Fの側面図である。図14を図11と比較すれば明らかとなるように、複数の載置面113-1~113-15、複数の発光ユニット200A-1~200A-15、第二コリメートレンズ210-1~210-15、および複数のミラー300-1~300-15の構成は、第4実施形態と同様である。 [Fifth Embodiment]
FIG. 14 is a perspective view of the
ただし、本実施形態の半導体レーザモジュール10Fでは、第一レーザ光BAおよび第二レーザ光BBを光ファイバ500の端部500aに導く光学部品400の構成が、上記第4実施形態とは相違する。本実施形態では、光学部品400は、ベース100Fの第二部位120F上に設けられた、ウエッジプリズム421A、ウエッジプリズム421B、ミラー450,451、シリンドリカルレンズ411F、およびシリンドリカルレンズ412を有している。なお、光学部品400の一部は、第一部位110Fや第一部位110Fと第二部位120Fとの境界などに設けられてもよい。
However, in the semiconductor laser module 10F of the present embodiment, the configuration of the optical component 400 that guides the first laser beam BA and the second laser beam BB to the end portion 500a of the optical fiber 500 is different from that of the fourth embodiment. In the present embodiment, the optical component 400 has a wedge prism 421A, a wedge prism 421B, mirrors 450, 451 and a cylindrical lens 411F, and a cylindrical lens 412 provided on the second portion 120F of the base 100F. A part of the optical component 400 may be provided at the first portion 110F or the boundary between the first portion 110F and the second portion 120F.
具体的には、図15に示されるように、ウエッジプリズム421Aは、列LA1中の複数のミラー300-1~300-15からの第一レーザ光BAを、第一方向X1へ向かわせる。ここで、図14に示されるように、列LA1中の複数のミラー300-1~300-15のうちウエッジプリズム421Aに最も近いミラー300-15とウエッジプリズム421Aとの間の第一方向X1における距離(第一距離L1)が比較的長く設定されているため、図15に示されるように、第一レーザ光BAは、ウエッジプリズム421Aの上部421Auに入力される。これにより、ウエッジプリズム421Aからの第一レーザ光BAは、第一底面114および第一頂面112から比較的離れた位置で、第一方向X1に進み、シリンドリカルレンズ411Fの上部411Fuに入力される。ウエッジプリズム421Aは、第一光学部品の一例であり、第二偏向部品の一例でもある。
Specifically, as shown in FIG. 15, the wedge prism 421A directs the first laser beam BAs from the plurality of mirrors 300-1 to 300-15 in the row LA1 in the first direction X1. Here, as shown in FIG. 14, in the first direction X1 between the mirror 300-15 closest to the wedge prism 421A and the wedge prism 421A among the plurality of mirrors 300-1 to 300-15 in the row LA1. Since the distance (first distance L1) is set to be relatively long, the first laser beam BA is input to the upper portion 421Au of the wedge prism 421A as shown in FIG. As a result, the first laser beam BA from the wedge prism 421A travels in the first direction X1 at a position relatively distant from the first bottom surface 114 and the first top surface 112, and is input to the upper portion 411F of the cylindrical lens 411F. .. The wedge prism 421A is an example of a first optical component and an example of a second deflection component.
他方、ウエッジプリズム421Bは、列LB1中の複数のミラー300-1~300-15からの第二レーザ光BBを、第一方向X1へ向かわせる。ここで、図14に示されるように、列LB1中の複数のミラー300-1~300-15のうちウエッジプリズム421Bに最も近いミラー300-15とウエッジプリズム421Bとの間の第一方向X1における距離(第二距離L2)が比較的短く設定されているため、図15に示されるように、ウエッジプリズム421Bからの第二レーザ光BBは、第一底面114および第一頂面112に比較的近い位置で、第一方向X1に進む。本実施形態では、第一距離L1は第二距離L2よりも長く設定されているため、図15に示されるように、ウエッジプリズム421Aから第一方向X1に進む第一レーザ光BAは、ウエッジプリズム421Bから第一方向X1に進む第二レーザ光BBよりも第一底面114および第一頂面112から遠くに位置される。言い換えると、ウエッジプリズム421Aから第一方向X1に進む第一レーザ光BAと、ウエッジプリズム421Bから第一方向X1に進む第二レーザ光BBとは、第四方向Z4にずれている。ウエッジプリズム421Bは、第二光学部品の一例であり、第二偏向部品の一例でもある。
On the other hand, the wedge prism 421B directs the second laser beam BB from the plurality of mirrors 300-1 to 300-15 in the row LB1 in the first direction X1. Here, as shown in FIG. 14, in the first direction X1 between the mirror 300-15 closest to the wedge prism 421B and the wedge prism 421B among the plurality of mirrors 300-1 to 300-15 in the row LB1. Since the distance (second distance L2) is set relatively short, as shown in FIG. 15, the second laser beam BB from the wedge prism 421B is relatively close to the first bottom surface 114 and the first top surface 112. Proceed to the first direction X1 at a close position. In the present embodiment, since the first distance L1 is set longer than the second distance L2, as shown in FIG. 15, the first laser beam BA traveling from the wedge prism 421A to the first direction X1 is the wedge prism. It is located farther from the first bottom surface 114 and the first top surface 112 than the second laser beam BB traveling from 421B in the first direction X1. In other words, the first laser beam BA traveling from the wedge prism 421A in the first direction X1 and the second laser beam BB traveling from the wedge prism 421B in the first direction X1 are deviated in the fourth direction Z4. The wedge prism 421B is an example of a second optical component and also an example of a second deflection component.
また、ウエッジプリズム421Bからの第二レーザ光BBは、二つのミラー450,451により第三方向Y3の反対方向にオフセットされ、ミラー451から第一方向X1に進む第二レーザ光BBは、シリンドリカルレンズ411Fの下部411Flに入力される。ミラー450,451は、第三光学部品の一例であり、シリンドリカルレンズ411Fは、第四光学部品の一例である。
Further, the second laser beam BB from the wedge prism 421B is offset in the opposite direction of the third direction Y3 by the two mirrors 450 and 451. The second laser beam BB traveling from the mirror 451 to the first direction X1 is a cylindrical lens. It is input to the lower part 411Fl of 411F. The mirrors 450 and 451 are examples of the third optical component, and the cylindrical lens 411F is an example of the fourth optical component.
シリンドリカルレンズ411Fの上部411Fuに入力される第一レーザ光BAの光軸と、シリンドリカルレンズ411Fの下部411Flに入力される第二レーザ光BBの光軸とは、第四方向Z4に一列に並んでいる、言い換えると、第四方向Z4に整列されている。シリンドリカルレンズ411Fおよびシリンドリカルレンズ412は、第一レーザ光BAおよび第二レーザ光BBを、光ファイバ500の端部500aに結合する。
The optical axis of the first laser beam BA input to the upper part 411F of the cylindrical lens 411F and the optical axis of the second laser beam BB input to the lower part 411Fl of the cylindrical lens 411F are arranged in a row in the fourth direction Z4. Yes, in other words, they are aligned in the fourth direction Z4. The cylindrical lens 411F and the cylindrical lens 412 couple the first laser beam BA and the second laser beam BB to the end portion 500a of the optical fiber 500.
以上、説明したように、本実施形態の半導体レーザモジュール10Fでは、光学部品400は、ウエッジプリズム421A(第一光学部品)、ウエッジプリズム421B(第二光学部品)、ミラー450,451(第三光学部品)、シリンドリカルレンズ411F(第四光学部品)、およびシリンドリカルレンズ412(第四光学部品)を有している。ウエッジプリズム421Aは、列LA1(第一列)から第二方向X2に進む第一レーザ光BAを第一方向X1に偏向する。ウエッジプリズム421Bは、列LB1(第二列)から第二方向X2に進む第二レーザ光BBを第一方向X1に偏向する。ウエッジプリズム421Aおよびウエッジプリズム421Bは、ウエッジプリズム421Aから第一方向X1に進む第一レーザ光BAと、ウエッジプリズム421Bから第一方向X1に進む第二レーザ光BBとが、第四方向Z4にずれるように設けられている。ミラー450,451は、第二レーザ光BBを第三方向Y3にオフセットして、第一レーザ光BAと第二レーザ光BBとを第四方向Z4に並べる。そして、シリンドリカルレンズ411F,412は、第四方向Z4に並んだ第一レーザ光BAと第二レーザ光BBとを、光ファイバ500に向けて集束する。
As described above, in the semiconductor laser module 10F of the present embodiment, the optical component 400 includes a wedge prism 421A (first optical component), a wedge prism 421B (second optical component), and mirrors 450 and 451 (third optical component). Parts), a cylindrical lens 411F (fourth optical component), and a cylindrical lens 412 (fourth optical component). The wedge prism 421A deflects the first laser beam BA traveling from the row LA1 (first row) to the second direction X2 in the first direction X1. The wedge prism 421B deflects the second laser beam BB traveling from the row LB1 (second row) to the second direction X2 in the first direction X1. In the wedge prism 421A and the wedge prism 421B, the first laser beam BA traveling from the wedge prism 421A in the first direction X1 and the second laser beam BB traveling from the wedge prism 421B in the first direction X1 are displaced in the fourth direction Z4. It is provided as follows. The mirrors 450 and 451 offset the second laser beam BB in the third direction Y3 and arrange the first laser beam BA and the second laser beam BB in the fourth direction Z4. Then, the cylindrical lenses 411F and 412 focus the first laser beam BA and the second laser beam BB arranged in the fourth direction Z4 toward the optical fiber 500.
このような構成によれば、第一レーザ光BAと第二レーザ光BBとを第四方向Z4にずらす、言い換えると空間的に離散化することができるため、偏波合成素子440が無い構成であっても、第一レーザ光BAと第二レーザ光BBとを光ファイバ500に結合することができる。なお、本実施形態では、第三光学部品としてのミラー450,451は、第二レーザ光BBを第三方向Y3の反対方向にオフセットしたが、これには限定されず、第一レーザ光BAを第三方向Y3にオフセットしてもよいし、第一レーザ光BAおよび第二レーザ光BBを第三方向Y3あるいは第三方向Y3の反対方向にオフセットしてもよい。
According to such a configuration, the first laser beam BA and the second laser beam BB can be shifted in the fourth direction Z4, in other words, they can be spatially separated, so that there is no polarization synthesis element 440. Even if there is, the first laser beam BA and the second laser beam BB can be coupled to the optical fiber 500. In the present embodiment, the mirrors 450 and 451 as the third optical component offset the second laser beam BB in the direction opposite to the third direction Y3, but the first laser beam BA is not limited to this. It may be offset in the third direction Y3, or the first laser light BA and the second laser light BB may be offset in the opposite direction of the third direction Y3 or the third direction Y3.
また、本実施形態の半導体レーザモジュール10Fでは、ウエッジプリズム421A(第一光学部品)から第一方向X1に進む第一レーザ光BAは、ウエッジプリズム421B(第二光学部品)から第一方向X1に進む第二レーザ光BBよりも、第一底面114(底面)から離れて位置される。列LA1(第一列)に含まれるミラー300-1~300-15(第一偏向部品)が載置される載置面113-1~113-15が延びる方向であって第一レーザ光BAの進む方向である第二方向X2と、列LB1(第二列)に含まれるミラー300-1~300-15が載置される載置面113-1~113-15が延びる方向であって第二レーザ光BBの進む方向である第二方向X2とが、平行である。また、列LA1に含まれるミラー300-1~300-15のうちウエッジプリズム421Aに最も近いミラー300-15と当該ウエッジプリズム421Aとの間の第一方向X1における第一距離L1が、列LB1に含まれるミラー300-1~300-15のうちウエッジプリズム421Bに最も近いミラー300-15と当該ウエッジプリズム421Bとの間の第一方向X1における第二距離L2よりも長い。
Further, in the semiconductor laser module 10F of the present embodiment, the first laser beam BA traveling from the wedge prism 421A (first optical component) to the first direction X1 moves from the wedge prism 421B (second optical component) to the first direction X1. It is located farther from the first bottom surface 114 (bottom surface) than the advancing second laser beam BB. The first laser beam BA in the direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 (first deflection component) included in the row LA1 (first row) are mounted extend. The second direction X2, which is the direction in which the light travels, and the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 included in the row LB1 (second row) are mounted extend. The second direction X2, which is the direction in which the second laser beam BB travels, is parallel to each other. Further, among the mirrors 300-1 to 300-15 included in the row LA1, the first distance L1 in the first direction X1 between the mirror 300-15 closest to the wedge prism 421A and the wedge prism 421A is set to the row LB1. Of the included mirrors 300-1 to 300-15, it is longer than the second distance L2 in the first direction X1 between the mirror 300-15 closest to the wedge prism 421B and the wedge prism 421B.
このような構成によれば、第一レーザ光BAと第二レーザ光BBとを第四方向Z4にずれる半導体レーザモジュール10Fを、比較的簡素な構成によって実現することができる。また、二つの列LA1,LA2について、載置面113-1~113-15の角度が同じであるため、当該角度が相違する構成に比べて、製造の手間やコストが低減されやすい。
According to such a configuration, the semiconductor laser module 10F in which the first laser light BA and the second laser light BB are shifted in the fourth direction Z4 can be realized by a relatively simple configuration. Further, since the angles of the mounting surfaces 113-1 to 113-15 are the same for the two rows LA1 and LA2, the labor and cost for manufacturing are likely to be reduced as compared with the configurations in which the angles are different.
[第6実施形態]
図16は、第6実施形態の半導体レーザモジュール10Gの斜視図である。図16を図15と比較すれば明らかとなるように、本実施形態の半導体レーザモジュール10Gは、上記第5実施形態の半導体レーザモジュール10Fと同様の構成要素を有している。すなわち、本実施形態でも、光学部品400は、ベース100Gの第二部位120G上に設けられた、ウエッジプリズム421A、ウエッジプリズム421B、ミラー450,451、シリンドリカルレンズ411G、およびシリンドリカルレンズ412を有している。なお、光学部品400の一部は、第一部位110Gや第一部位110Gと第二部位120Gとの境界などに設けられてもよい。 [Sixth Embodiment]
FIG. 16 is a perspective view of thesemiconductor laser module 10G of the sixth embodiment. As will be clear when FIG. 16 is compared with FIG. 15, the semiconductor laser module 10G of the present embodiment has the same components as the semiconductor laser module 10F of the fifth embodiment. That is, also in this embodiment, the optical component 400 also has the wedge prism 421A, the wedge prism 421B, the mirrors 450, 451 and the cylindrical lens 411G, and the cylindrical lens 412 provided on the second portion 120G of the base 100G. There is. A part of the optical component 400 may be provided at the first portion 110G or the boundary between the first portion 110G and the second portion 120G.
図16は、第6実施形態の半導体レーザモジュール10Gの斜視図である。図16を図15と比較すれば明らかとなるように、本実施形態の半導体レーザモジュール10Gは、上記第5実施形態の半導体レーザモジュール10Fと同様の構成要素を有している。すなわち、本実施形態でも、光学部品400は、ベース100Gの第二部位120G上に設けられた、ウエッジプリズム421A、ウエッジプリズム421B、ミラー450,451、シリンドリカルレンズ411G、およびシリンドリカルレンズ412を有している。なお、光学部品400の一部は、第一部位110Gや第一部位110Gと第二部位120Gとの境界などに設けられてもよい。 [Sixth Embodiment]
FIG. 16 is a perspective view of the
ただし、本実施形態の半導体レーザモジュール10Gでは、列LA1に関する第二方向X21と、列LB1に関する第二方向X22とが、同一ではなく、非平行である。第二方向X21は、列LA1中に含まれるミラー300-1~300-15が載置される載置面113-1~113-15が延びる方向であって、当該列LA1中に含まれるミラー300-1~300-15からの第一レーザ光BAが進む方向である。また、第二方向X22は、列LB1に含まれるミラー300-1~300-15が載置される載置面113-1~113-15が延びる方向であって、当該列LB1中に含まれるミラー300-1~300-15からの第二レーザ光BBが進む方向である。ここで、本実施形態では、第一方向X1に対する第二方向X21の第一仰角θ1が、第一方向X1に対する第二方向X22の第二仰角θ2よりも大きい。これにより、列LA1中に含まれるミラー300-1~300-15のうちウエッジプリズム421Aに最も近いミラー300-15とウエッジプリズム421Aとの第一距離L1が比較的短い場合にあっても、列LA1中に含まれるミラー300-1~300-15からの第一レーザ光BAは、ウエッジプリズム421Aの上部421Auに入力される。ウエッジプリズム421Aは、第二方向X21に進む第一レーザ光BAを、第一方向X1に偏向する。他方、ウエッジプリズム421Bは、列LB1中に含まれるミラー300-1~300-15からの第二方向X22に進む第二レーザ光BBを、第一方向X1に偏向する。ウエッジプリズム421Bから第一方向X1に進む第二レーザ光BBは、上記第5実施形態と同様に、ミラー450,451を経由して第三方向Y3の反対方向にオフセットされる。
However, in the semiconductor laser module 10G of the present embodiment, the second direction X21 with respect to the row LA1 and the second direction X22 with respect to the row LB1 are not the same but non-parallel. The second direction X21 is a direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 are mounted are extended, and the mirrors included in the row LA1. This is the direction in which the first laser beam BA from 300-1 to 300-15 travels. Further, the second direction X22 is a direction in which the mounting surfaces 113-1 to 113-15 on which the mirrors 300-1 to 300-15 included in the row LB1 are mounted extend, and is included in the row LB1. This is the direction in which the second laser beam BB from the mirrors 300-1 to 300-15 travels. Here, in the present embodiment, the first elevation angle θ1 of the second direction X21 with respect to the first direction X1 is larger than the second elevation angle θ2 of the second direction X22 with respect to the first direction X1. As a result, even when the first distance L1 between the mirror 300-15 closest to the wedge prism 421A and the wedge prism 421A among the mirrors 300-1 to 300-15 included in the row LA1 is relatively short, the row The first laser beam BA from the mirrors 300-1 to 300-15 contained in LA1 is input to the upper portion 421Au of the wedge prism 421A. The wedge prism 421A deflects the first laser beam BA traveling in the second direction X21 in the first direction X1. On the other hand, the wedge prism 421B deflects the second laser beam BB traveling in the second direction X22 from the mirrors 300-1 to 300-15 contained in the row LB1 in the first direction X1. The second laser beam BB traveling from the wedge prism 421B to the first direction X1 is offset in the opposite direction of the third direction Y3 via the mirrors 450 and 451 as in the fifth embodiment.
このような構成にあっても、上記第5実施形態と同様に、シリンドリカルレンズ411Gの上部411Guには、第一方向X1に進む第一レーザ光BAが入力され、シリンドリカルレンズ411Gの下部411Glには、第一方向X1に進む第二レーザ光BBが入力される。言い換えると、シリンドリカルレンズ411Gの上部411Guに入力される第一レーザ光BAは、シリンドリカルレンズ411Gの下部Glに入力される第二レーザ光BBよりも、第一底面114および第二頂面122から離れている。さらに、ミラー450,451によるオフセットにより、シリンドリカルレンズ411Gの上部411Guに入力される第一レーザ光BAの光軸と、シリンドリカルレンズ411Gの下部411Glに入力される第二レーザ光BBの光軸とは、第四方向Z4に一列に並んでいる、言い換えると、第四方向Z4に整列されている。そして、シリンドリカルレンズ411Gおよびシリンドリカルレンズ412は、第一レーザ光BAおよび第二レーザ光BBを、光ファイバ500の端部500aに結合する。
Even in such a configuration, as in the fifth embodiment, the first laser beam BA traveling in the first direction X1 is input to the upper 411Gu of the cylindrical lens 411G, and the lower 411Gl of the cylindrical lens 411G is input. , The second laser beam BB traveling in the first direction X1 is input. In other words, the first laser beam BA input to the upper 411Gu of the cylindrical lens 411G is farther from the first bottom surface 114 and the second top surface 122 than the second laser beam BB input to the lower Gl of the cylindrical lens 411G. ing. Further, the optical axis of the first laser beam BA input to the upper part 411Gu of the cylindrical lens 411G and the optical axis of the second laser beam BB input to the lower part 411Gl of the cylindrical lens 411G due to the offset by the mirrors 450 and 451 , Lined up in the fourth direction Z4, in other words, lined up in the fourth direction Z4. Then, the cylindrical lens 411G and the cylindrical lens 412 couple the first laser beam BA and the second laser beam BB to the end portion 500a of the optical fiber 500.
以上、説明したように、本実施形態の半導体レーザモジュール10Gでは、ウエッジプリズム421A(第一光学部品)から第一方向X1に進む第一レーザ光BAは、ウエッジプリズム421B(第二光学部品)から第一方向X1に進む第二レーザ光BBよりも、第一底面114(底面)から離れている。また、第二方向X21の第一方向X1に対する第一仰角θ1は、第二方向X22の第一方向X1に対する第二仰角θ2よりも、大きい。
As described above, in the semiconductor laser module 10G of the present embodiment, the first laser beam BA traveling from the wedge prism 421A (first optical component) to the first direction X1 starts from the wedge prism 421B (second optical component). It is farther from the first bottom surface 114 (bottom surface) than the second laser beam BB traveling in the first direction X1. Further, the first elevation angle θ1 of the second direction X21 with respect to the first direction X1 is larger than the second elevation angle θ2 of the second direction X22 with respect to the first direction X1.
このような構成によれば、例えば、ウエッジプリズム421Aと当該ウエッジプリズム421に最も近いミラー300-15との第一距離L1をより短くすることができ、ひいては、半導体レーザモジュール10Gを第一方向X1により短く構成することができる。
According to such a configuration, for example, the first distance L1 between the wedge prism 421A and the mirror 300-15 closest to the wedge prism 421 can be made shorter, and the semiconductor laser module 10G can be moved to the first direction X1. Can be constructed shorter.
[第7実施形態]
図17は、第7実施形態の半導体レーザモジュール10Hの一部の斜視図である。図17を図3等と比較すれば明らかとなるように、本実施形態の半導体レーザモジュール10Hは、ミラー300-1~300-15(第一偏向部品)を有さず、ベース100Hの第一部位110Hに設けられた載置面113-1~113-15のそれぞれにおいて、発光ユニット200A-1~200A-15(発光素子204-1~204-15および第一コリメートレンズ202-1~202-15)と、第二コリメートレンズ210-1~210-15とが、方向X2(第二方向)に並び、発光素子204-1~204-15からのレーザ光が、第一コリメートレンズ202-1~202-15および第二コリメートレンズ210-1~210-15を経由して、方向X2に向けて出射され、シリンドリカルレンズ411,412(図1,図10参照)やウエッジプリズム421(図10参照)のような光学部品400を経由して光ファイバ500の端部500aに結合される。なお、本実施形態でも、複数の発光ユニット200A-1~200A-15(発光素子204-1~204-15および第一コリメートレンズ202-1~202-15)は、方向X1(第一方向)に並んでいる。また、本実施形態では、複数の第二コリメートレンズ210-1~210-15も、方向X1(第一方向)に並んでいる。 [7th Embodiment]
FIG. 17 is a perspective view of a part of thesemiconductor laser module 10H of the seventh embodiment. As is clear from comparing FIG. 17 with FIG. 3 and the like, the semiconductor laser module 10H of the present embodiment does not have mirrors 300-1 to 300-15 (first deflection component), and is the first of the base 100H. Light emitting units 200A-1 to 200A-15 (light emitting elements 204-1 to 204-15 and first collimating lenses 202-1 to 202-) on each of the mounting surfaces 113-1 to 113-15 provided on the portion 110H. 15) and the second collimating lenses 210-1 to 210-15 are arranged in the direction X2 (second direction), and the laser light from the light emitting elements 204-1 to 204-15 is emitted from the first collimating lens 202-1. It is emitted in the direction X2 via ~ 202-15 and the second collimating lenses 210-1 to 210-15, and is emitted from the cylindrical lens 411, 412 (see FIGS. 1 and 10) and the wedge prism 421 (see FIG. 10). ) Is coupled to the end portion 500a of the optical fiber 500 via an optical component 400 such as). Also in this embodiment, the plurality of light emitting units 200A-1 to 200A-15 (light emitting elements 204-1 to 204-15 and the first collimating lenses 202-1 to 202-15) are in the direction X1 (first direction). Lined up in. Further, in the present embodiment, the plurality of second collimating lenses 210-1 to 210-15 are also arranged in the direction X1 (first direction).
図17は、第7実施形態の半導体レーザモジュール10Hの一部の斜視図である。図17を図3等と比較すれば明らかとなるように、本実施形態の半導体レーザモジュール10Hは、ミラー300-1~300-15(第一偏向部品)を有さず、ベース100Hの第一部位110Hに設けられた載置面113-1~113-15のそれぞれにおいて、発光ユニット200A-1~200A-15(発光素子204-1~204-15および第一コリメートレンズ202-1~202-15)と、第二コリメートレンズ210-1~210-15とが、方向X2(第二方向)に並び、発光素子204-1~204-15からのレーザ光が、第一コリメートレンズ202-1~202-15および第二コリメートレンズ210-1~210-15を経由して、方向X2に向けて出射され、シリンドリカルレンズ411,412(図1,図10参照)やウエッジプリズム421(図10参照)のような光学部品400を経由して光ファイバ500の端部500aに結合される。なお、本実施形態でも、複数の発光ユニット200A-1~200A-15(発光素子204-1~204-15および第一コリメートレンズ202-1~202-15)は、方向X1(第一方向)に並んでいる。また、本実施形態では、複数の第二コリメートレンズ210-1~210-15も、方向X1(第一方向)に並んでいる。 [7th Embodiment]
FIG. 17 is a perspective view of a part of the
このような構成によれば、ミラー300-1~300-15(第一偏向部品、光学部品)を省略することができる分、部品点数が減り、製造の手間やコストが低減されやすい。また、半導体レーザモジュール10Hの方向Y3(第三方向)の幅をより狭くすることができ、当該方向Y3においてよりコンパクトな半導体レーザモジュール10Hを構成することができる。
According to such a configuration, the number of parts can be reduced because the mirrors 300-1 to 300-15 (first deflection component, optical component) can be omitted, and the labor and cost of manufacturing can be easily reduced. Further, the width of the direction Y3 (third direction) of the semiconductor laser module 10H can be narrowed, and a more compact semiconductor laser module 10H can be configured in the direction Y3.
以上、本発明の実施形態および変形例が例示されたが、上記実施形態および変形例は一例であって、発明の範囲を限定することは意図していない。上記実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
Although the embodiments and modifications of the present invention have been illustrated above, the above embodiments and modifications are examples, and the scope of the invention is not intended to be limited. The above-described embodiment and modification can be implemented in various other forms, and various omissions, replacements, combinations, and changes can be made without departing from the gist of the invention. In addition, specifications such as each configuration and shape (structure, type, direction, model, size, length, width, thickness, height, number, arrangement, position, material, etc.) are changed as appropriate. Can be carried out.
また、例えば、ベースの底面には、例えば放熱フィンのようなヒートシンク(放熱部材)が接続されてもよいし、ベースとヒートシンクとが一体化されてもよい。ベースとヒートシンクとが一体化された構成にあっては、ベースは、第一方向に延びた厚さが略一定の板状の部位である。
Further, for example, a heat sink (heat dissipation member) such as a heat dissipation fin may be connected to the bottom surface of the base, or the base and the heat sink may be integrated. In the configuration in which the base and the heat sink are integrated, the base is a plate-shaped portion extending in the first direction and having a substantially constant thickness.
また、発光ユニットは、少なくとも発光素子を有するものであればよく、発光ユニットの構成部品や構造は、上記実施形態や変形例に開示されたものには限定されない。例えば、発光ユニットは、第一コリメートレンズを含まなくてもよい。また、例えば、発光ユニットは、ケースやサブマウントに加えて、第一コリメートレンズや、第二コリメートレンズを含んでもよいし、さらに第一偏向部品を含んでもよい。また、発光素子は、半導体レーザ素子には限定されない。
Further, the light emitting unit may have at least a light emitting element, and the components and structure of the light emitting unit are not limited to those disclosed in the above-described embodiments and modifications. For example, the light emitting unit may not include the first collimating lens. Further, for example, the light emitting unit may include a first collimating lens, a second collimating lens, and a first deflection component in addition to the case and the submount. Further, the light emitting element is not limited to the semiconductor laser element.
また、例えば、第二レーザ光は、半波長板を介さずとも第一レーザ光に対する偏波方向が直交していてもよい。
Further, for example, the second laser beam may be orthogonal to the first laser beam in the polarization direction without passing through the half-wave plate.
また、光学部品は、例えば、レーザ装置のハウジング(ケーシング)のようなベース以外の部品に設けられてもよい。
Further, the optical component may be provided on a component other than the base, such as the housing (casing) of the laser device.
また、本発明は、以下の[1]~[3]のような態様として実施することができる。
[1]
前記光学部品は、
前記複数の列に含まれる第一列からの前記第二方向に進む第一レーザ光を前記第一方向に偏向する第一光学部品と、
前記複数の列に含まれる第二列からの前記第二方向に進む第二レーザ光を前記第一方向に偏向する第二光学部品であって、当該第二光学部品から前記第一方向に進む前記第二レーザ光が前記第一光学部品から前記第一方向に進む前記第一レーザ光に対して前記第一方向および前記第三方向と直交する第四方向にずれるように設けられた、前記第二光学部品と、
前記第一光学部品から前記第一方向に進む前記第一レーザ光、および前記第二光学部品から前記第一方向に進む前記第二レーザ光のうち少なくとも一方を前記第三方向にオフセットして、当該第一レーザ光と当該第二レーザ光とを前記第四方向に並べる第三光学部品と、
前記第四方向に並んだ前記第一レーザ光と前記第二レーザ光とを前記光ファイバに向けて集束する第四光学部品と、
を有した、請求項2に記載のレーザ装置。
[2]
前記第一光学部品から前記第一方向に進む前記第一レーザ光は、前記第二光学部品から前記第一方向に進む前記第二レーザ光よりも前記底面から離れ、
前記第一列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第一列からの前記第一レーザ光が進む方向である前記第二方向と、前記第二列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第二列からの前記第二レーザ光が進む方向である前記第二方向とが、平行であり、
前記第一列のうち前記第一光学部品に最も近い前記第一偏向部品と前記第一光学部品との第一方向における第一距離が、前記第二列のうち前記第二光学部品に最も近い前記第一偏向部品と前記第二光学部品との第一方向における第二距離よりも長い、[1]に記載のレーザ装置。
[3]
前記第一光学部品から前記第一方向に進む前記第一レーザ光は、前記第二光学部品から前記第一方向に進む前記第二レーザ光よりも前記底面から離れ、
前記第一列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第一列からの前記第一レーザ光が進む方向である前記第二方向の前記第一方向に対する第一仰角が、前記第二列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第二列からの前記第二レーザ光が進む方向である前記第二方向の前記第一方向に対する第二仰角よりも大きい、[1]に記載のレーザ装置。 Further, the present invention can be carried out as the following aspects [1] to [3].
[1]
The optical component is
A first optical component that deflects the first laser beam traveling in the second direction from the first row included in the plurality of rows in the first direction.
A second optical component that deflects a second laser beam traveling in the second direction from the second row included in the plurality of rows in the first direction, and traveling in the first direction from the second optical component. The second laser beam is provided so as to deviate from the first optical component in the first direction and the fourth direction orthogonal to the third direction with respect to the first laser beam traveling in the first direction. With the second optical component
At least one of the first laser beam traveling in the first direction from the first optical component and the second laser beam traveling in the first direction from the second optical component is offset in the third direction. A third optical component that arranges the first laser beam and the second laser beam in the fourth direction, and
A fourth optical component that focuses the first laser beam and the second laser beam arranged in the fourth direction toward the optical fiber, and
The laser apparatus according toclaim 2.
[2]
The first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
The second direction, which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends, and the direction in which the first laser beam from the first row travels, and the above The direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and is parallel to the second direction in which the second laser beam from the second row travels. And
The first distance in the first direction between the first deflection component and the first optical component closest to the first optical component in the first row is the closest to the second optical component in the second row. The laser apparatus according to [1], which is longer than the second distance in the first direction between the first deflection component and the second optical component.
[3]
The first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
The first in the second direction, which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends and the direction in which the first laser beam from the first row travels. The first elevation angle with respect to one direction is the direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and the direction in which the second laser beam from the second row advances. The laser apparatus according to [1], which is larger than the second elevation angle of the second direction with respect to the first direction.
[1]
前記光学部品は、
前記複数の列に含まれる第一列からの前記第二方向に進む第一レーザ光を前記第一方向に偏向する第一光学部品と、
前記複数の列に含まれる第二列からの前記第二方向に進む第二レーザ光を前記第一方向に偏向する第二光学部品であって、当該第二光学部品から前記第一方向に進む前記第二レーザ光が前記第一光学部品から前記第一方向に進む前記第一レーザ光に対して前記第一方向および前記第三方向と直交する第四方向にずれるように設けられた、前記第二光学部品と、
前記第一光学部品から前記第一方向に進む前記第一レーザ光、および前記第二光学部品から前記第一方向に進む前記第二レーザ光のうち少なくとも一方を前記第三方向にオフセットして、当該第一レーザ光と当該第二レーザ光とを前記第四方向に並べる第三光学部品と、
前記第四方向に並んだ前記第一レーザ光と前記第二レーザ光とを前記光ファイバに向けて集束する第四光学部品と、
を有した、請求項2に記載のレーザ装置。
[2]
前記第一光学部品から前記第一方向に進む前記第一レーザ光は、前記第二光学部品から前記第一方向に進む前記第二レーザ光よりも前記底面から離れ、
前記第一列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第一列からの前記第一レーザ光が進む方向である前記第二方向と、前記第二列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第二列からの前記第二レーザ光が進む方向である前記第二方向とが、平行であり、
前記第一列のうち前記第一光学部品に最も近い前記第一偏向部品と前記第一光学部品との第一方向における第一距離が、前記第二列のうち前記第二光学部品に最も近い前記第一偏向部品と前記第二光学部品との第一方向における第二距離よりも長い、[1]に記載のレーザ装置。
[3]
前記第一光学部品から前記第一方向に進む前記第一レーザ光は、前記第二光学部品から前記第一方向に進む前記第二レーザ光よりも前記底面から離れ、
前記第一列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第一列からの前記第一レーザ光が進む方向である前記第二方向の前記第一方向に対する第一仰角が、前記第二列に含まれる前記第一偏向部品が載置される前記載置面が延びる方向であって当該第二列からの前記第二レーザ光が進む方向である前記第二方向の前記第一方向に対する第二仰角よりも大きい、[1]に記載のレーザ装置。 Further, the present invention can be carried out as the following aspects [1] to [3].
[1]
The optical component is
A first optical component that deflects the first laser beam traveling in the second direction from the first row included in the plurality of rows in the first direction.
A second optical component that deflects a second laser beam traveling in the second direction from the second row included in the plurality of rows in the first direction, and traveling in the first direction from the second optical component. The second laser beam is provided so as to deviate from the first optical component in the first direction and the fourth direction orthogonal to the third direction with respect to the first laser beam traveling in the first direction. With the second optical component
At least one of the first laser beam traveling in the first direction from the first optical component and the second laser beam traveling in the first direction from the second optical component is offset in the third direction. A third optical component that arranges the first laser beam and the second laser beam in the fourth direction, and
A fourth optical component that focuses the first laser beam and the second laser beam arranged in the fourth direction toward the optical fiber, and
The laser apparatus according to
[2]
The first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
The second direction, which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends, and the direction in which the first laser beam from the first row travels, and the above The direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and is parallel to the second direction in which the second laser beam from the second row travels. And
The first distance in the first direction between the first deflection component and the first optical component closest to the first optical component in the first row is the closest to the second optical component in the second row. The laser apparatus according to [1], which is longer than the second distance in the first direction between the first deflection component and the second optical component.
[3]
The first laser beam traveling in the first direction from the first optical component is farther from the bottom surface than the second laser beam traveling in the first direction from the second optical component.
The first in the second direction, which is the direction in which the previously described surface on which the first deflection component included in the first row is placed extends and the direction in which the first laser beam from the first row travels. The first elevation angle with respect to one direction is the direction in which the previously described mounting surface on which the first deflection component included in the second row is mounted extends and the direction in which the second laser beam from the second row advances. The laser apparatus according to [1], which is larger than the second elevation angle of the second direction with respect to the first direction.
本発明は、レーザ装置に適用することができる。
The present invention can be applied to a laser device.
10A~10H…半導体レーザモジュール(レーザ装置)
100A~100H…ベース
100a…中央部
100b…端部
100c…端部
110A~110H…第一部位
111…壁
112…第一頂面
113-1~113-15…載置面
114…第一底面(底面)
120A~120D…第二部位
121…壁
122…第二頂面(表面)
123…第二底面
130…支持部材
141…支持部材(第二支持部材)
142…支持部材(第一支持部材)
200A-1~200A-15…発光ユニット
200B-1~200B-15…発光ユニット
201-1~201-15…ケース
202-1~202-15…第一コリメートレンズ
203-1~203-15…サブマウント
204-1~204-15…発光素子
205…リード
210-1~210-15…第二コリメートレンズ
300-1~300-15…ミラー(第一偏向部品、光学部品)
400…光学部品
411…シリンドリカルレンズ
411F,411G…シリンドリカルレンズ(第四光学部品)
411Fu,411Gu…上部
411Fl,411Gl…下部
412…シリンドリカルレンズ(第四光学部品)
421…ウエッジプリズム(第二偏向部品)
421A…ウエッジプリズム(第一光学部品、第二偏向部品)
421B…ウエッジプリズム(第二光学部品、第二偏向部品)
421Au…上部
430…半波長板
440…偏波合成素子
440a…第一入射面
440b…第二入射面
440c…出射面
450…ミラー(第三光学部品)
451…ミラー(第三光学部品)
500…光ファイバ
500a…端部
Ax…中心軸
B…レーザ光
BA…レーザ光(第一レーザ光)
BB…レーザ光(第二レーザ光)
d…ビーム径
D…距離
G…隙間
L…設置間隔
L1…第一距離
L2…第二距離
LA,LB…(載置面の)列
LA1,LB1…(ミラーの)列
M…素材
X1…第一方向
X2…第二方向
Y3…第三方向(第一方向と直交する方向)
Z4…第四方向
θ…角度(仰角)
θ1…第一仰角
θ2…第二仰角 10A-10H ... Semiconductor laser module (laser device)
100A to 100H ...Base 100a ... Central part 100b ... End part 100c ... End part 110A to 110H ... First part 111 ... Wall 112 ... First top surface 113-1 to 113-15 ... Mounting surface 114 ... First bottom surface ( Bottom)
120A-120D ...Second part 121 ... Wall 122 ... Second top surface (surface)
123 ... Secondbottom surface 130 ... Support member 141 ... Support member (second support member)
142 ... Support member (first support member)
200A-1 to 200A-15 ...Light emitting unit 200B-1 to 200B-15 ... Light emitting unit 201-1 to 201-15 ... Case 202-1 to 202-15 ... First collimating lens 203-1 to 203-15 ... Sub Mount 204-1 to 204-15 ... Light emitting element 205 ... Lead 210-1 to 210-15 ... Second collimating lens 300-1 to 300-15 ... Mirror (first deflection component, optical component)
400 ...Optical component 411 ... Cylindrical lens 411F, 411G ... Cylindrical lens (fourth optical component)
411Fu, 411Gu ... Upper part 411Fl, 411Gl ...Lower part 412 ... Cylindrical lens (fourth optical component)
421 ... Wedge prism (second deflection component)
421A ... Wedge prism (first optical component, second deflection component)
421B ... Wedge prism (second optical component, second deflection component)
421Au ...Upper 430 ... Half-wave plate 440 ... Polarization synthesis element 440a ... First incident surface 440b ... Second incident surface 440c ... Exit surface 450 ... Mirror (third optical component)
451 ... Mirror (third optical component)
500 ...Optical fiber 500a ... End Ax ... Central axis B ... Laser light BA ... Laser light (first laser light)
BB ... Laser light (second laser light)
d ... Beam diameter D ... Distance G ... Gap L ... Installation interval L1 ... First distance L2 ... Second distance LA, LB ... (Mounting surface) rows LA1, LB1 ... (Mirror) rows M ... Material X1 ... First One direction X2 ... Second direction Y3 ... Third direction (direction orthogonal to the first direction)
Z4 ... Fourth direction θ ... Angle (elevation angle)
θ1… First elevation angle θ2… Second elevation angle
100A~100H…ベース
100a…中央部
100b…端部
100c…端部
110A~110H…第一部位
111…壁
112…第一頂面
113-1~113-15…載置面
114…第一底面(底面)
120A~120D…第二部位
121…壁
122…第二頂面(表面)
123…第二底面
130…支持部材
141…支持部材(第二支持部材)
142…支持部材(第一支持部材)
200A-1~200A-15…発光ユニット
200B-1~200B-15…発光ユニット
201-1~201-15…ケース
202-1~202-15…第一コリメートレンズ
203-1~203-15…サブマウント
204-1~204-15…発光素子
205…リード
210-1~210-15…第二コリメートレンズ
300-1~300-15…ミラー(第一偏向部品、光学部品)
400…光学部品
411…シリンドリカルレンズ
411F,411G…シリンドリカルレンズ(第四光学部品)
411Fu,411Gu…上部
411Fl,411Gl…下部
412…シリンドリカルレンズ(第四光学部品)
421…ウエッジプリズム(第二偏向部品)
421A…ウエッジプリズム(第一光学部品、第二偏向部品)
421B…ウエッジプリズム(第二光学部品、第二偏向部品)
421Au…上部
430…半波長板
440…偏波合成素子
440a…第一入射面
440b…第二入射面
440c…出射面
450…ミラー(第三光学部品)
451…ミラー(第三光学部品)
500…光ファイバ
500a…端部
Ax…中心軸
B…レーザ光
BA…レーザ光(第一レーザ光)
BB…レーザ光(第二レーザ光)
d…ビーム径
D…距離
G…隙間
L…設置間隔
L1…第一距離
L2…第二距離
LA,LB…(載置面の)列
LA1,LB1…(ミラーの)列
M…素材
X1…第一方向
X2…第二方向
Y3…第三方向(第一方向と直交する方向)
Z4…第四方向
θ…角度(仰角)
θ1…第一仰角
θ2…第二仰角 10A-10H ... Semiconductor laser module (laser device)
100A to 100H ...
120A-120D ...
123 ... Second
142 ... Support member (first support member)
200A-1 to 200A-15 ...
400 ...
411Fu, 411Gu ... Upper part 411Fl, 411Gl ...
421 ... Wedge prism (second deflection component)
421A ... Wedge prism (first optical component, second deflection component)
421B ... Wedge prism (second optical component, second deflection component)
421Au ...
451 ... Mirror (third optical component)
500 ...
BB ... Laser light (second laser light)
d ... Beam diameter D ... Distance G ... Gap L ... Installation interval L1 ... First distance L2 ... Second distance LA, LB ... (Mounting surface) rows LA1, LB1 ... (Mirror) rows M ... Material X1 ... First One direction X2 ... Second direction Y3 ... Third direction (direction orthogonal to the first direction)
Z4 ... Fourth direction θ ... Angle (elevation angle)
θ1… First elevation angle θ2… Second elevation angle
Claims (13)
- 発光素子をそれぞれ有し第一方向に並んだ複数の発光ユニットと、
前記第一方向に並んで位置され前記第一方向に対して傾斜した第二方向に延び前記発光ユニットをそれぞれ載置した複数の載置面と、当該複数の載置面の裏側で前記第一方向に延びた底面と、を有したベースと、
前記第一方向に並び前記載置面のそれぞれに載置され当該載置面に載置された前記発光ユニットからのレーザ光を前記第二方向に向かわせる複数の第一偏向部品と、
前記第一偏向部品のそれぞれで偏向されたレーザ光を一つの光ファイバに導く光学部品と、
を備えた、レーザ装置。 A plurality of light emitting units each having a light emitting element and arranged in the first direction,
A plurality of mounting surfaces that are arranged side by side in the first direction and extend in a second direction that is inclined with respect to the first direction and on which the light emitting units are mounted, and the first on the back side of the plurality of mounting surfaces. A base with a bottom extending in the direction,
A plurality of first deflection components arranged in the first direction and mounted on each of the above-described mounting surfaces to direct the laser light from the light emitting unit mounted on the mounting surface in the second direction.
An optical component that guides the laser beam deflected by each of the first deflection components to one optical fiber, and
A laser device equipped with. - 前記光学部品は、前記ベースに設けられた、請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the optical component is provided on the base.
- 前記複数の第一偏向部品が前記第一方向に並ぶ複数の列が前記第一方向と直交する第三方向に間隔をあけて設けられた、請求項1または2に記載のレーザ装置。 The laser device according to claim 1 or 2, wherein a plurality of rows of the plurality of first deflection components arranged in the first direction are provided at intervals in a third direction orthogonal to the first direction.
- 前記光学部品は、前記複数の列に含まれる第一列からの第一レーザ光と、偏波方向が当該第一レーザ光とは直交し前記複数の列に含まれる第二列からの第二レーザ光と、を偏波合成する偏波合成素子を有した、請求項3に記載のレーザ装置。 The optical component has a first laser beam from the first row included in the plurality of rows and a second laser beam from the second row included in the plurality of rows whose polarization direction is orthogonal to the first laser beam. The laser apparatus according to claim 3, further comprising a polarization synthesizing element for synthesizing a laser beam and a polarized light.
- 前記光学部品は、前記複数の第一偏向部品から前記第二方向へ進むレーザ光を前記第一方向へ向かわせる第二偏向部品を有した、請求項1~4のうちいずれか一つに記載のレーザ装置。 The optical component according to any one of claims 1 to 4, wherein the optical component has a second deflection component that directs a laser beam traveling in the second direction from the plurality of first deflection components to the first direction. Laser device.
- 前記ベースは、
前記複数の載置面と前記底面とを有し前記第一方向に延びた第一部位と、
前記光ファイバを支持し前記第二方向に延びた第二部位と、
を有した、請求項1~5のうちいずれか一つに記載のレーザ装置。 The base is
A first portion having the plurality of mounting surfaces and the bottom surface and extending in the first direction,
A second portion that supports the optical fiber and extends in the second direction,
The laser apparatus according to any one of claims 1 to 5. - 前記第一方向に対する前記第二方向の仰角をθ、前記第一偏向部品のそれぞれから前記第二方向へ進むレーザ光のビーム径をd、前記複数の第一偏向部品の前記第一方向における設置間隔をL、としたとき、
d<L・sinθを満たす、請求項1~6のうちいずれか一つに記載のレーザ装置。 The elevation angle of the second direction with respect to the first direction is θ, the beam diameter of the laser beam traveling in the second direction from each of the first deflection components is d, and the plurality of first deflection components are installed in the first direction. When the interval is L,
The laser apparatus according to any one of claims 1 to 6, which satisfies d <L · sin θ. - 前記載置面上に突出し、前記第一偏向部品を支持する第一支持部材を備えた、請求項1~7のうちいずれか一つに記載のレーザ装置。 The laser device according to any one of claims 1 to 7, further comprising a first support member that projects onto the above-mentioned mounting surface and supports the first deflection component.
- 前記ベースの表面上に突出し、前記光学部品を支持する第二支持部材を備えた、請求項1~8のうちいずれか一つに記載のレーザ装置。 The laser device according to any one of claims 1 to 8, further comprising a second support member that projects onto the surface of the base and supports the optical component.
- 前記発光ユニットは、前記発光素子を収容したケースを有した、請求項1~9のうちいずれか一つに記載のレーザ装置。 The laser device according to any one of claims 1 to 9, wherein the light emitting unit has a case accommodating the light emitting element.
- 前記ケースは、前記発光素子を当該ケース内に気密封止した、請求項10に記載のレーザ装置。 The laser device according to claim 10, wherein the case is an airtight seal of the light emitting element in the case.
- 発光素子をそれぞれ含み第一方向に並んだ複数の発光ユニットと、
前記第一方向に並んで位置され前記第一方向に対して傾斜した第二方向に延び前記発光ユニットをそれぞれ載置した複数の載置面を有し、前記第一方向に延びた板状のベースと、
前記複数の発光ユニットからのレーザ光を一つの光ファイバに導く光学部品と、
を備えた、レーザ装置。 Multiple light emitting units, each including a light emitting element, arranged in the first direction,
It has a plurality of mounting surfaces that are arranged side by side in the first direction, extend in the second direction inclined with respect to the first direction, and mount the light emitting units, respectively, and have a plate shape extending in the first direction. With the base
An optical component that guides laser light from the plurality of light emitting units into one optical fiber,
A laser device equipped with. - 前記光学部品は、前記ベースに設けられた、請求項12に記載のレーザ装置。 The laser device according to claim 12, wherein the optical component is provided on the base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021542710A JP7558955B2 (en) | 2019-08-23 | 2020-08-12 | Laser Equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019152824 | 2019-08-23 | ||
JP2019-152824 | 2019-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039386A1 true WO2021039386A1 (en) | 2021-03-04 |
Family
ID=74683713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030643 WO2021039386A1 (en) | 2019-08-23 | 2020-08-12 | Laser device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7558955B2 (en) |
WO (1) | WO2021039386A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3622906A (en) * | 1967-10-24 | 1971-11-23 | Rca Corp | Light-emitting diode array |
US5987043A (en) * | 1997-11-12 | 1999-11-16 | Opto Power Corp. | Laser diode arrays with offset components |
US6240116B1 (en) * | 1997-08-14 | 2001-05-29 | Sdl, Inc. | Laser diode array assemblies with optimized brightness conservation |
JP2007142439A (en) * | 2005-11-22 | 2007-06-07 | Nlight Photonics Corp | Modular assembly utilizing laser diode partial assembly with winged mounting block |
JP2007538404A (en) * | 2004-05-17 | 2007-12-27 | テクストロン・システムズ・コーポレイション | Staggered array type coupler |
JP2017120753A (en) * | 2015-12-25 | 2017-07-06 | 日亜化学工業株式会社 | Wavelength conversion member and light source device using the same |
WO2017122792A1 (en) * | 2016-01-14 | 2017-07-20 | 古河電気工業株式会社 | Semiconductor laser module and semiconductor laser module manufacturing method |
JP2017208483A (en) * | 2016-05-19 | 2017-11-24 | 株式会社フジクラ | Semiconductor laser device |
US20170358900A1 (en) * | 2016-04-26 | 2017-12-14 | Nlight, Inc. | Low Size and Weight, High Power Fiber Laser Pump |
US20180031850A1 (en) * | 2016-01-11 | 2018-02-01 | BWT Beijing Ltd. | A Semiconductor Laser |
JP2018155791A (en) * | 2017-03-15 | 2018-10-04 | 株式会社フジクラ | Optical module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008026462A (en) | 2006-07-19 | 2008-02-07 | Sumitomo Electric Ind Ltd | Optical module |
WO2014192944A1 (en) | 2013-05-30 | 2014-12-04 | 古河電気工業株式会社 | Semiconductor laser module |
-
2020
- 2020-08-12 WO PCT/JP2020/030643 patent/WO2021039386A1/en active Application Filing
- 2020-08-12 JP JP2021542710A patent/JP7558955B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3622906A (en) * | 1967-10-24 | 1971-11-23 | Rca Corp | Light-emitting diode array |
US6240116B1 (en) * | 1997-08-14 | 2001-05-29 | Sdl, Inc. | Laser diode array assemblies with optimized brightness conservation |
US5987043A (en) * | 1997-11-12 | 1999-11-16 | Opto Power Corp. | Laser diode arrays with offset components |
JP2007538404A (en) * | 2004-05-17 | 2007-12-27 | テクストロン・システムズ・コーポレイション | Staggered array type coupler |
JP2007142439A (en) * | 2005-11-22 | 2007-06-07 | Nlight Photonics Corp | Modular assembly utilizing laser diode partial assembly with winged mounting block |
JP2017120753A (en) * | 2015-12-25 | 2017-07-06 | 日亜化学工業株式会社 | Wavelength conversion member and light source device using the same |
US20180031850A1 (en) * | 2016-01-11 | 2018-02-01 | BWT Beijing Ltd. | A Semiconductor Laser |
WO2017122792A1 (en) * | 2016-01-14 | 2017-07-20 | 古河電気工業株式会社 | Semiconductor laser module and semiconductor laser module manufacturing method |
US20170358900A1 (en) * | 2016-04-26 | 2017-12-14 | Nlight, Inc. | Low Size and Weight, High Power Fiber Laser Pump |
JP2017208483A (en) * | 2016-05-19 | 2017-11-24 | 株式会社フジクラ | Semiconductor laser device |
JP2018155791A (en) * | 2017-03-15 | 2018-10-04 | 株式会社フジクラ | Optical module |
Also Published As
Publication number | Publication date |
---|---|
JP7558955B2 (en) | 2024-10-01 |
JPWO2021039386A1 (en) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11428382B2 (en) | Light-emitting device | |
KR100835619B1 (en) | Modular assembly utilizing laser diode subassemblies with winged mounting blocks | |
US8213479B2 (en) | High power diode laser having multiple emitters and method for its production | |
US7420996B2 (en) | Modular diode laser assembly | |
KR102312472B1 (en) | Optical assembly | |
US7436868B2 (en) | Modular diode laser assembly | |
US9450377B1 (en) | Multi-emitter diode laser package | |
US7139296B2 (en) | Semiconductor laser chip unit and semiconductor laser module using the same | |
CN107251343B (en) | The construction and its operating method of multiple diode laser modules | |
KR101623651B1 (en) | Laser light source module and laser light source device | |
JP2006284851A (en) | Lens holder and laser array unit using the same | |
EP3687008B1 (en) | Light source unit | |
WO2019003546A1 (en) | Laser light source device | |
US11387623B2 (en) | Light source device and external cavity laser module | |
JP2003124559A (en) | Optical module and manufacture therefor | |
JPH06232504A (en) | Laser scanning device | |
WO2021039386A1 (en) | Laser device | |
JP7212274B2 (en) | Light source device, direct diode laser device | |
JP2020145355A (en) | Semiconductor laser device | |
JP2002026445A (en) | Light source device | |
CN115513768A (en) | Semiconductor laser device | |
JP6460082B2 (en) | Manufacturing method of optical assembly and optical assembly | |
JP2020194799A (en) | Semiconductor laser module and laser processing device | |
JP2020194799A5 (en) | ||
US20240184126A1 (en) | Device for producing a polychromatic light beam by combining a plurality of individual light beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858041 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021542710 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858041 Country of ref document: EP Kind code of ref document: A1 |