WO2021039225A1 - Valve device and method for manufacturing valve device - Google Patents
Valve device and method for manufacturing valve device Download PDFInfo
- Publication number
- WO2021039225A1 WO2021039225A1 PCT/JP2020/028603 JP2020028603W WO2021039225A1 WO 2021039225 A1 WO2021039225 A1 WO 2021039225A1 JP 2020028603 W JP2020028603 W JP 2020028603W WO 2021039225 A1 WO2021039225 A1 WO 2021039225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- valve
- gear
- valve body
- valve device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/52—Systems for actuating EGR valves
- F02M26/53—Systems for actuating EGR valves using electric actuators, e.g. solenoids
- F02M26/54—Rotary actuators, e.g. step motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/65—Constructional details of EGR valves
- F02M26/70—Flap valves; Rotary valves; Sliding valves; Resilient valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/65—Constructional details of EGR valves
- F02M26/71—Multi-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/53—Mechanical actuating means with toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K5/00—Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
- F16K5/04—Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
Definitions
- This disclosure relates to a valve device and a method for manufacturing the valve device.
- valve device for controlling the flow of fluid in a fluid passage.
- the valve device described in Patent Document 1 has a configuration in which a valve body is rotatably provided in a fluid passage formed inside a housing and is driven by a drive unit.
- the valve body is integrally formed with the shaft.
- a protrusion having a shape having two planes facing each other across the shaft shaft is provided at one end of the shaft.
- the protrusion having that shape is referred to as a "width across flats shape portion".
- the fitting holes of the valve gears are fitted and fixed to the two-sided width shape portion provided on the shaft so as not to rotate relative to each other during driving.
- valve device when the torque of the motor is transmitted to the shaft via the reduction mechanism, the valve body is rotationally driven together with the shaft, and the valve body is seated on the valve seat provided in a part of the fluid passage formed in the housing. It is configured to leave.
- the valve body and the shaft are integrally formed by insert molding in the manufacturing process, the two-sided width shape portion provided at one end of the shaft is used to position the shaft in the rotational direction with respect to the valve body. It is possible to do.
- the direction of the fluid passage formed in the housing and the position of the valve seat may be changed according to the vehicle type and the like.
- the fitting hole provided in the valve gear is fitted and fixed to the two-sided width shape portion provided at one end of the shaft so as not to rotate relative to each other. .. Therefore, in this valve device, the orientation of the valve body with respect to the shaft and the orientation of the valve gear are uniquely determined, and the configuration has no degree of freedom.
- the fitting hole is provided so that the angle at which the shaft and the valve gear are fitted differs depending on the direction of the fluid passage formed in the housing and the position of the valve seat. It is necessary to increase the types of valve gears that have been turned around. Alternatively, it is necessary to increase the types of shafts in which the orientation of the width across flats is changed.
- the present disclosure discloses a valve device and a valve device capable of positioning the shaft in the rotational direction when integrally molding the shaft and the valve body, and suppressing an increase in the types of valve gears and shafts.
- the purpose is to provide a method.
- the valve device comprises a motor, a reduction mechanism, a shaft, a valve body and a housing.
- the motor outputs torque.
- the reduction mechanism has a plurality of gears that transmit the torque of the motor. Torque is transmitted from the reduction mechanism to rotate the shaft around the shaft.
- the valve body is integrally formed with the shaft by insert molding and rotates together with the shaft.
- the housing has a fluid passage in which the valve body is rotatably accommodated, and a valve seat in which the valve body is seated and detached in a part of the fluid passage.
- the shaft has a positioning portion capable of positioning in the rotational direction.
- the valve gear and shaft that fit to the end of the shaft are fitted in a state where they can rotate relative to each other when assembled, and the valve gear and shaft do not rotate relative to each other when driven. It is fixed as.
- the shaft has a positioning portion, when the valve body and the shaft are integrally formed by insert molding, it is possible to position the valve body in the rotational direction of the shaft. Therefore, it is possible to reduce variations in the quality of the valve subassembly in which the valve body and the shaft are integrated.
- the shaft and the valve gear are fitted in a state of being relatively rotatable at the time of assembly, the rotation angles of the shaft and the valve gear are adjusted and fixed according to the position of the valve seat of the housing. It is possible. Therefore, it is possible to suppress an increase in the types of valve gears and shafts and reduce manufacturing costs.
- the valve device can adjust the rotation angle between the valve subassembly and the valve gear and fix them in a state where the valve subassembly is arranged in the fluid passage of the housing. Is.
- the adjustment device for adjusting the variation due to the manufacturing tolerance and the adjustment process thereof, which have been conventionally required, can be eliminated, and the manufacturing cost can be reduced.
- the valve device includes a motor, a reduction mechanism, a shaft, a valve body and a housing.
- the motor outputs torque.
- the reduction mechanism has a plurality of gears that transmit the torque of the motor. Torque is transmitted from the reduction mechanism to rotate the shaft around the shaft.
- the valve body is integrally formed with the shaft by insert molding and rotates together with the shaft.
- the housing has a fluid passage in which the valve body is rotatably accommodated, and a valve seat in which the valve body is seated and detached in a part of the fluid passage.
- the method of manufacturing this valve device is to position the shaft in the rotational direction by a positioning portion provided on the shaft, integrally form the shaft and the valve body by insert molding, and a plurality of gears having a reduction mechanism.
- the valve gear that fits at the end of the shaft and the shaft are fitted in a relatively rotatable state, the valve gear and the shaft are aligned, and the valve gear and the shaft are fixed by welding or crimping.
- valve device manufactured by the method for manufacturing the valve device has the same effect as described from one viewpoint of the present disclosure.
- FIG. 1 It is a block diagram of the engine system which uses the valve device which concerns on 1st Embodiment. It is an external view of the valve device which concerns on 1st Embodiment. It is a top view which removed a part of the sensor cover in the direction III of FIG. It is sectional drawing of the IV-IV line of FIG. It is sectional drawing of the VV line of FIG. It is a perspective view of the valve subassembly which concerns on 1st Embodiment. It is a top view of the valve subassembly which concerns on 1st Embodiment. It is an enlarged view of the VIII part of FIG. It is sectional drawing of a part of a shaft and a valve gear.
- FIG. 14 is a plan view of the valve subassembly in the XV direction of FIG. It is a top view of the valve gear which concerns on 2nd Embodiment.
- FIG. 28 is an arrow view in the XXIX direction of FIG. 28. It is a side view which shows a part of the valve subassembly which concerns on 6th Embodiment.
- FIG. 30 is an arrow view in the XXXI direction of FIG. It is a side view which shows a part of the valve subassembly which concerns on 7th Embodiment.
- FIG. 32 is an arrow view in the XXXIII direction of FIG. It is a schematic diagram of the mold which forms the valve subassembly which concerns on 7th Embodiment.
- FIG. 28 is an arrow view in the XXIX direction of FIG. 28. It is a side view which shows a part of the valve subassembly which concerns on 6th Embodiment.
- FIG. 30 is an arrow view in the XXXI direction of FIG. It is a side view which shows a part of the valve subassembly which concerns on 7th Embodi
- FIG. 34 is an arrow view in the XXXV direction of FIG. 34. It is a perspective view of the valve subassembly provided in the valve device of the comparative example. It is a top view of the valve gear provided in the valve device of the comparative example. It is a top view of the valve device of the comparative example excluding a part of the sensor cover. It is an enlarged view of the XXXIX part of FIG. 38.
- the valve device 1 As shown in FIG. 1, the valve device 1 according to the first embodiment is used, for example, as an EGR valve of an engine system 100 for a vehicle.
- EGR is an abbreviation for Exhaust Gas Recirculation.
- the engine system 100 includes an engine 110, an intake system 120, an exhaust system 130, a supercharger 140, an exhaust return system 150, and the like.
- the engine 110 is a well-known prime mover that burns fuel in the combustion chamber 112 in the cylinder 111, converts the reciprocating motion of the piston 113 due to the volume change of the combustion gas into rotary motion by the crank mechanism, and obtains power for vehicle running or the like. is there.
- the intake system 120 takes in air from the outside air into the intake pipe 122 via the air cleaner 121, passes through the compressor 141 of the supercharger 140, the intercooler 123, the throttle 124, the intake manifold 125, and the like, and passes through the combustion chamber 112 of the engine 110. It is configured to supply to.
- the air cleaner 121 removes foreign matter from the air taken in from the atmosphere.
- An intake passage 126 is formed inside the intake pipe 122.
- the intercooler 123 cools the intake air compressed by the compressor 141 and raised in temperature.
- the throttle 124 adjusts the intake amount of the engine 110.
- the intake manifold 125 has a structure in which the passages are branched into the same number as the cylinders 111 of the engine 110.
- the exhaust system 130 is configured to discharge the exhaust gas discharged from the engine 110 to the outside air via the exhaust manifold 131, the exhaust pipe 132, the turbine 142 of the supercharger 140, the exhaust purification unit 133, and the like.
- the exhaust manifold 131 has a structure in which the same number of passages as the cylinder 111 are merged.
- An exhaust passage 134 is formed inside the exhaust pipe 132.
- the exhaust gas purification unit 133 captures particulate matter contained in the exhaust gas, decomposes hydrocarbons, and the like.
- the supercharger 140 uses the energy of the exhaust gas to compress the intake air and supercharges the pressurized air to the combustion chamber 112.
- the turbocharger 140 has a compressor 141, a turbine 142, and a shaft 143.
- the turbine 142 is arranged between the engine 110 and the exhaust purification unit 133 in the exhaust system 130, and is rotationally driven by the energy of the exhaust.
- the shaft 143 connects the turbine 142 and the compressor 141, and rotates the turbine 142 and the compressor 141 in synchronization with each other.
- the compressor 141 is arranged between the air cleaner 121 and the intercooler 123 in the intake system 120 to compress the intake air.
- the exhaust gas recirculation system 150 is a device that returns a part of the exhaust gas flowing through the exhaust passage 134 to the intake passage 126, and includes an EGR pipe 151, an EGR cooler 152, a valve device 1, and the like.
- the EGR pipe 151 connects a portion of the exhaust pipe 132 downstream of the exhaust purification unit 133 to the valve device 1.
- An EGR passage 153 is formed inside the EGR tube 151.
- the exhaust gas flowing through the EGR pipe 151 is referred to as EGR gas.
- the EGR cooler 152 is provided in the middle of the EGR pipe 151 and cools the EGR gas passing through the EGR passage 153.
- the valve device 1 is provided at a portion of the intake pipe 122 between the air cleaner 121 and the compressor 141, and constitutes a connection portion between the intake pipe 122 and the EGR pipe 151.
- the valve device 1 increases or decreases the flow rate of the EGR gas returned to the intake passage 126 through the EGR passage 153.
- the valve device 1 includes a housing 10, a shaft 30, a valve body 40, a reduction mechanism 50, a motor 60, and the like.
- the housing 10 has a fluid passage 11 through which intake air and EGR gas flow.
- An upstream side connection port 12, a downstream side connection port 13, and an EGR connection port 14 are provided at the end of the fluid passage 11.
- a pipe extending from the air cleaner 121 side of the intake pipe 122 is connected to the upstream side connection port 12.
- a pipe extending to the compressor 141 side of the intake pipe 122 is connected to the downstream connection port 13.
- the EGR tube 151 is connected to the EGR connection port 14. Therefore, the housing 10 forms a confluence of the intake pipe 122 and the EGR pipe 151.
- a valve chamber 15 for rotatably accommodating the valve body 40 is formed inside the housing 10.
- the flow path connecting the upstream side connection port 12 and the valve chamber 15 is referred to as an upstream side passage 16.
- the flow path connecting the downstream connection port 13 and the valve chamber 15 is referred to as a downstream passage 17.
- the flow path communicating the EGR connection port 14 and the valve chamber 15 is referred to as an EGR passage 18.
- the valve chamber 15, the upstream passage 16, the downstream passage 17, and the EGR passage 18 are all part of the fluid passage 11.
- FIGS. 4 and 5 show a state in which the valve body 40 is seated on the valve seat 20 and blocks the EGR passage 18. In this state, the valve body 40 blocks the flow of EGR gas from the EGR pipe 151 to the intake pipe 122 and allows the flow of the intake air of the intake pipe 122.
- the shaft 30 is rotatably supported around the housing 10 by a bearing 21.
- the seal member 22 is provided at a position on the shaft 30 on the valve chamber 15 side of the bearing 21.
- the seal member 22 is fixed to the housing 10 and slides on the outer periphery of the shaft 30 to seal between the drive chamber 51 provided with the speed reduction mechanism 50 and the fluid passage 11.
- the valve body 40 has a fan-shaped arm 41 to which the shaft 30 is fixed and a plate of the arm 41 that is curved in the axial direction from the outer edge on the side opposite to the shaft 30. It has a valve body portion 42 extending in a shape.
- the valve body 42 has a substantially arcuate cross section perpendicular to the axis of the shaft 30.
- the valve body 40 is configured such that the outer wall surface of the valve body 42 can be seated on and off the valve seat 20.
- the shaft 30 and the valve body 40 are integrally formed by insert molding. Therefore, in the valve chamber 15, the shaft 30 and the valve body 40 are integrally rotationally driven.
- the shaft 30 is made of metal, for example, and the valve body 40 is made of resin, for example.
- the one in which the shaft 30 and the valve body 40 are integrally formed is referred to as a valve subassembly 43.
- the end portion 31 of the shaft 30 is provided with a positioning portion 32 having a shape in which a part in the circumferential direction is recessed inward in the radial direction with respect to the circle.
- the positioning portion 32 has a so-called D-cut shape in which a part of the end portion 31 of the shaft 30 in the circumferential direction is cut out in a straight line.
- the positioning unit 32 is used for positioning the shaft 30 in the rotational direction when manufacturing the valve subassembly 43. This manufacturing method will be described later.
- the shaft 30 has a plate 33 having a shape extending radially outward from the center of the shaft 30 at a portion to be inserted into the valve body 40.
- the plate 33 is fixed to a portion of the shaft 30 to be inserted into the valve body 40 so as not to rotate relative to the portion, and is molded into the valve body 40.
- the plate 33 is a member for increasing the coupling strength between the shaft 30 and the valve body 40.
- the plate 33 is made of, for example, metal.
- the drive chamber 51 provided on one side of the shaft 30 in the axial direction is provided with a reduction mechanism 50 composed of a plurality of gears and the like.
- the speed reduction mechanism 50 reduces the rotational speed of the motor 60, amplifies the torque of the motor 60, and transmits the torque to the shaft 30.
- the reduction mechanism 50 includes a pinion gear 53 provided on the output shaft of the motor 60, an intermediate gear 54 that meshes with the pinion gear 53, a small diameter gear 55 provided coaxially with the intermediate gear 54, and the small diameter gear thereof. It is composed of a valve gear 52 that meshes with 55.
- the valve gear 52 is fixed to the end 31 of the shaft 30 so as not to rotate relative to each other. Further, the valve gear 52 is urged by the return spring 56 in the direction in which the valve body 40 is seated on the valve seat 20 (that is, one side indicated by the arrow in FIG. 5).
- the portion of the shaft 30 between the end portion 31 where the valve gear 52 is fitted and the portion inserted into the valve body 40 is referred to as a shaft intermediate portion 34.
- the outer diameter of the end portion 31 of the shaft 30 is formed to be smaller than the outer diameter of the shaft intermediate portion 34. Therefore, a step portion 35 is provided between the end portion 31 of the shaft 30 and the shaft intermediate portion 34.
- FIG. 10 is a plan view showing only the valve gear 52.
- the valve gear 52 has a fitting hole 57 that fits into the end 31 of the shaft 30.
- the fitting hole 57 of the valve gear 52 is circular. Therefore, at the time of assembly, the end portion 31 of the shaft 30 and the valve gear 52 are fitted in a relatively rotatable state. In that state, it is possible to position the shaft 30 and the valve gear 52 in the rotational direction.
- the end portion 31 of the shaft 30 and the valve gear 52 are fixed by welding.
- the welded portion between the end portion 31 of the shaft 30 and the valve gear 52 is indicated by an arrow of reference numeral W.
- the motor 60 is housed in the housing 10.
- the motor 60 is an electric motor that outputs torque when energized.
- the torque of the motor 60 is transmitted to the shaft 30 via the reduction mechanism 50.
- the valve body 40 integrally formed with the shaft 30 rotates in the valve chamber 15.
- the valve body 40 increases or decreases the opening area of the EGR passage 18 and the opening area of the upstream passage 16.
- FIGS. 4 and 5 show a state in which the valve body 40 is seated on the valve seat 20 and blocks the EGR passage 18.
- the opening area of the upstream passage 16 becomes smaller and the opening area of the EGR passage 18 becomes larger.
- the negative pressure of the downstream passage 17 on the downstream side of the valve body 40 becomes large, and the EGR gas is introduced from the EGR passage 18 to the downstream passage 17.
- the valve device 1 is provided in the intake pipe 122 on the upstream side of the compressor 141.
- valve device 1 when the valve device 1 introduces the EGR gas from the EGR passage 18 into the intake passage 126 on the engine 110 side of the intake pipe 122, the valve device 1 not only increases the opening area of the EGR passage 18 but also opens the upstream passage 16. Reduce the area. As a result, the valve device 1 effectively utilizes the negative pressure generated by the operation of the piston 113 of the engine 110, and efficiently introduces the EGR gas from the EGR passage 18 into the intake passage 126 on the engine 110 side of the intake pipe 122. Is possible.
- a sensor cover 61 is provided in the drive chamber 51 of the housing 10. Inside the sensor cover 61, a sensor device 62 for detecting the rotation angle of the shaft 30 is provided.
- the sensor device 62 is composed of, for example, a pair of magnets 63 and a yoke 64 provided on the valve gear 52, a hole IC 65 attached to the sensor cover 61 side, and the like.
- the rotation angle of the shaft 30 detected by the sensor device 62 is transmitted to an electronic control device (not shown).
- the electronic control device feedback-controls the amount of electricity supplied to the motor 60 so that the rotation angle of the shaft 30 detected by the sensor device 62 and the target value thereof match.
- step S10 shown in FIG. 11 the plate 33 is fixed to the portion of the shaft 30 on the side to be inserted into the valve body 40. At that time, the shaft 30 and the plate 33 are fitted and fixed so as not to rotate relative to each other.
- step S20 the shaft 30 and the plate 33 are installed in a mold for injection molding.
- the positioning portion 32 of the shaft 30 and the inner wall surface 74 of the lower mold 72 are brought into contact with each other.
- the shaft 30 is positioned in the rotational direction. That is, the rotation of the shaft 30 is restricted at the position where the positioning portion 32 and the inner wall surface 74 of the lower mold 72 are in contact with each other.
- step S30 the heat-melted resin is injected into the inside of the mold, and the resin is cooled and solidified.
- the shaft 30 and the valve body 40 are integrally formed by insert molding.
- FIGS. 12 and 13 show an example of the mold opening process among the injection molding processes. As shown by the arrow MO in FIG. 12, in the mold opening step, the upper mold 71 moves away from the lower mold 72. Then, in the take-out step, the valve subassembly 43 is taken out from the lower mold 72 in the same direction.
- step S40 shown in FIG. 11 the valve gear 52 is fitted to the end 31 of the shaft 30.
- the fitting of the end 31 of the shaft 30 and the valve gear 52 is performed in a state where the valve subassembly 43 is arranged in the valve chamber 15 of the housing 10.
- the fitting hole 57 of the valve gear 52 is fitted to the end 31 of the shaft 30 protruding from the valve chamber 15 side of the housing 10 to the drive chamber 51 side.
- the fitting hole 57 of the valve gear 52 is circular.
- the positioning portion 32 provided at the end portion 31 of the shaft 30 has a so-called D-cut shape. Therefore, the end 31 of the shaft 30 and the valve gear 52 are fitted in a relatively rotatable state.
- step S50 the valve gear 52 and the shaft 30 are aligned.
- the positions of the valve gear 52 and the shaft 30 are determined according to the orientation of the fluid passage 11 formed in the housing 10 and the position of the valve seat 20.
- step S60 the valve gear 52 and the end 31 of the shaft 30 are fixed so as not to rotate relative to each other during driving.
- the valve gear 52 and the end portion 31 of the shaft 30 are fixed by welding.
- the valve subassembly 43 is attached to the housing 10 of the valve device 1.
- the valve device 1 of the first embodiment described above and the method for manufacturing the valve device 1 have the following effects.
- the shaft 30 included in the valve device 1 of the first embodiment has a positioning portion 32 capable of positioning in the rotational direction.
- the shaft 30 and the valve gear 52 are fitted in a state where they can rotate relative to each other when assembled, and the shaft 30 and the valve gear 52 are fixed so as not to rotate relative to each other when driven.
- the shaft 30 since the shaft 30 has the positioning portion 32, when the valve body 40 and the shaft 30 are integrally formed by insert molding, the valve body 40 is positioned in the rotational direction of the shaft 30. It is possible. Therefore, it is possible to reduce the variation in quality of the valve subassembly 43 in which the valve body 40 and the shaft 30 are integrated.
- the rotation angle of the shaft 30 and the valve gear 52 is adjusted according to the position of the valve seat 20 of the housing 10. It is possible to do. Then, after adjusting the rotation angles of the shaft 30 and the valve gear 52, it is possible to fix them so that they do not rotate relative to each other during driving. Therefore, the valve device 1 can suppress an increase in the types of the valve gear 52 and the shaft 30, and reduce the manufacturing cost.
- the positioning portion 32 is provided at the end portion 31 of the shaft 30 which is a portion of the shaft 30 where the valve gear 52 is fitted. This makes it possible to provide the positioning portion 32 without changing the length of the shaft 30 with respect to the conventional product. Therefore, it is possible to prevent the valve device 1 from becoming large in size.
- the positioning portion 32 has a shape in which a part of the end portion 31 of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle.
- the fitting hole 57 of the valve gear 52 is circular. The shaft 30 and the valve gear 52 are fixed by welding. This makes it possible to provide the positioning portion 32 with respect to the shaft 30 in a simple configuration. Therefore, the manufacturing cost can be reduced.
- the method of manufacturing the valve device 1 is to insert-mold the shaft 30 and the valve body 40 in a state where the shaft 30 is positioned in the rotational direction by the positioning portion 32 provided on the shaft 30. Form integrally. After that, the valve gear 52 and the shaft 30 are fitted in a relatively rotatable state, the valve gear 52 and the shaft 30 are aligned, and then the valve gear 52 and the shaft 30 are fixed by welding.
- this manufacturing method it is possible to reduce the variation in the quality of the valve subassembly 43, suppress the increase in the types of the valve gear 52 and the shaft 30, and reduce the manufacturing cost.
- the second embodiment is mainly a modification of the configuration of the positioning portion 321 of the shaft 30 with respect to the first embodiment.
- the positioning portion 321 provided on the shaft 30 is provided on the shaft intermediate portion 34.
- the shaft intermediate portion 34 is a portion of the shaft 30 between the end portion 31 into which the valve gear 52 is fitted and the portion inserted into the valve body 40. Further, the positioning portion 321 is provided so as to be in contact with the stepped portion 35 of the shaft 30 in the shaft intermediate portion 34. Further, the positioning portion 321 is provided at a position in the shaft intermediate portion 34 that does not affect the functions of the bearing 21 and the seal member 22.
- the positioning portion 321 has a shape in which a part of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle. Specifically, the positioning portion 321 has a so-called D-cut shape in which a part of the shaft intermediate portion 34 in the circumferential direction is cut out in a straight line. Similar to the first embodiment, the positioning portion 321 of the second embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded. That is, when the shaft 30 and the plate 33 are installed in the mold at the time of injection molding of the valve subassembly 43, the shaft 30 is brought into contact with the positioning portion 321 provided in the shaft intermediate portion 34 and the inner wall surface of the mold. Positioning in the direction of rotation is performed.
- the end 31 of the shaft 30 on the side where the valve gear 52 is fitted is circular when viewed from the axial direction. Therefore, in the second embodiment, both welding and crimping methods can be adopted as the fixing method between the shaft 30 and the valve gear 52.
- the fitting hole 571 in which the valve gear 52 fits into the end portion 31 of the shaft 30 has a shape in which irregularities in the radial direction are arranged in the circumferential direction.
- this shape is referred to as a petal shape.
- the diameter of the petal-shaped inscribed circle is the same as or slightly larger than the outer diameter of the end 31 of the shaft 30. Therefore, the petal shape formed in the fitting hole 571 of the valve gear 52 and the end portion 31 of the shaft 30 are fitted in a relatively rotatable state.
- valve gear 52 and the shaft 30 is performed with the valve subassembly 43 arranged in the valve chamber 15 of the housing 10.
- a part of the valve subassembly 43 in the circumferential direction is provided in the valve chamber 15 of the housing 10. 1
- the valve body 40 is seated on the valve seat 20 of the valve seat member 19 provided in the EGR passage 18, and the EGR passage 18 is closed.
- the fitting hole 571 of the valve gear 52 is fitted to the end 31 of the shaft 30 protruding from the valve chamber 15 side of the housing 10 to the drive chamber 51 side.
- a part of the valve gear 52 in the circumferential direction comes into contact with the second contact portion 82 provided in the drive chamber 51.
- the positions of the valve gear 52 and the shaft 30 are determined according to the orientation of the fluid passage 11 formed in the housing 10 and the position of the valve seat 20. Further, dimensional variations due to manufacturing tolerances and the like are absorbed by the alignment of the shaft 30 and the valve gear 52.
- FIG. 36 shows the valve subassembly 430 included in the valve device of the comparative example
- FIG. 37 shows the valve gear 520 included in the valve device of the comparative example
- the end portion of the shaft 300 of the valve subassembly 430 has a shape having two planes 301 and 302 facing each other across the shaft of the shaft 300.
- this portion is referred to as a width across flats shape portion 320.
- the fitting hole 570 of the valve gear 520 is a two-sided width-shaped hole having a shape corresponding to the two-sided width-shaped portion 320 provided at the end of the shaft 300. There is.
- the fitting hole 570 (that is, the two-sided width shape hole) of the valve gear 520 is fitted so as not to rotate relative to the two-sided width shape portion 320 provided at the end of the shaft 300. It is fixed together. Therefore, the valve device 1 has a configuration in which the orientation of the valve body 40 with respect to the shaft 300 and the orientation of the valve gear 520 are uniquely determined.
- the drive chamber 51 is provided with the adjusting device 830.
- the adjusting device 830 is composed of a screw hole member 840 fixed to the housing 10 and a screw member 850 screwed into the screw hole member 840.
- valve subassembly 430 With the valve subassembly 430 attached to the housing 10, a part of the valve gear 520 in the circumferential direction comes into contact with the screw member 850 of the adjusting device 830.
- the screw member 850 is rotated about the axis in this state, the amount of protrusion of the screw member 850 from the screw hole member 840 changes, and the rotation angle of the valve subassembly 430 can be adjusted.
- the valve body 40 is seated on the valve seat 20 of the valve seat member 19 provided in the EGR passage 18 in a state where a part of the valve gear 520 in the circumferential direction is in contact with the screw member 850 of the adjusting device 830.
- the EGR passage 18 is blocked.
- the valve device 1 of the second embodiment described above has the following effects on the valve device of the comparative example. That is, the valve device 1 of the second embodiment does not rotate relative to the valve gear 52 after adjusting the rotation angles of the shaft 30 and the valve gear 52 in a state where the valve subassembly 43 is arranged in the fluid passage 11 of the housing 10. It is possible to fix it like this. As a result, the valve device 1 of the second embodiment can eliminate the adjusting device 830 and the adjusting process thereof provided in the valve device of the comparative example, and can reduce the manufacturing cost. It should be noted that this effect can be similarly exerted in the configuration of the valve device 1 described in the first embodiment. In addition, the valve device 1 of the second embodiment can exert the same effect as that of the first embodiment.
- the third embodiment will be described.
- the third embodiment is also a modification of the configuration of the positioning portion of the shaft 30 mainly with respect to the first embodiment and the like.
- the positioning portion 322 provided on the shaft 30 is provided on the shaft intermediate portion 34.
- the positioning portion 322 is provided at a position in the shaft intermediate portion 34 that does not affect the functions of the bearing 21 and the seal member 22.
- the seal member 22 includes an annular metal cover 221 fixed to the housing 10, a resin seal 222 provided inside the metal cover 221 and a member 223 that supports the resin seal 222.
- the portion where the resin seal 222 is in contact with the outer wall of the shaft 30 is the seal surface.
- the positioning portion 322 of the shaft 30 is provided inside the metal cover 221 included in the seal member 22 and on the valve body 40 side of the seal surface of the resin seal 222. Therefore, the positioning portion 322 is provided at a position that does not affect the sealing function of the sealing member 22. Further, since the positioning portion 322 is provided inside the metal cover 221 of the seal member 22, it does not affect the total length of the shaft 30.
- the positioning portion 322 has a shape in which a part of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle. Specifically, the positioning portion 322 has a so-called D-cut shape in which a part of the shaft 30 in the circumferential direction is cut out in a straight line.
- the positioning unit 32 of the third embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded, as in the first embodiment and the like.
- the end 31 of the shaft 30 on the side where the valve gear 52 is fitted is circular when viewed from the axial direction. Therefore, in the third embodiment as well as in the second embodiment, either welding or crimping can be adopted as the fixing method between the shaft 30 and the valve gear 52.
- valve device 1 of the third embodiment described above can exert the same effect as that of the first embodiment and the like.
- the fourth embodiment is also a modification of the configuration of the positioning portion of the shaft 30 with respect to the first embodiment and the like.
- the positioning portion 323 provided on the shaft 30 is a portion of the shaft 30 from which the valve gear 52 is fitted to the valve body 40 from the end portion 31 of the shaft 30. Is provided so as to project to the opposite side.
- the positioning portion 323 has a two-sided width shape having two surfaces facing each other with the shaft 30 interposed therebetween. Similar to the first embodiment, the positioning unit 323 of the fourth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded.
- the end portion 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted, is circular when viewed from the axial direction.
- the fitting hole 57 of the valve gear 52 is circular. Therefore, in the fourth embodiment, the end portion 31 of the shaft 30 and the valve gear 52 can be fixed on the entire circumference by welding.
- the valve device 1 of the fourth embodiment described above can exert the same effect as that of the first embodiment and the like.
- the width across flats forming the positioning portion 323 may be formed large in the radial direction within the range of the outer diameter of the shaft 30.
- the fifth embodiment is also a modification of the configuration of the positioning portion of the shaft 30 with respect to the first embodiment and the like.
- the positioning portion 324 provided on the shaft 30 is connected to the valve body 40 from the end 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted. Is provided so as to project to the opposite side.
- the positioning portion 324 has a chevron shape in which the distance between the two surfaces facing each other across the shaft of the shaft 30 gradually approaches toward the tip. Similar to the first embodiment, the positioning unit 324 of the fifth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded.
- the shaft 30 can be positioned in the rotational direction by supporting the chevron-shaped positioning portion 324 of the shaft 30 with a mold or a jig. Therefore, by simplifying the manufacturing process, the manufacturing cost can be reduced.
- the end portion 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted is circular when viewed from the axial direction.
- the fitting hole 57 of the valve gear 52 is circular. Therefore, also in the fifth embodiment, as in the fourth embodiment, the end portion 31 of the shaft 30 and the valve gear 52 can be fixed on the entire circumference by welding.
- valve device 1 of the fifth embodiment described above can exert the same effect as that of the first embodiment and the like.
- the sixth embodiment will be described.
- the sixth embodiment is also a modification of the configuration of the position of the shaft 30 mainly with respect to the first embodiment and the like.
- the positioning portion 325 of the shaft 30 of the sixth embodiment is the end portion 31 of the shaft 30 which is a portion of the shaft 30 to which the valve gear 52 is fitted, as in the first embodiment. It is provided in.
- the positioning portion 325 has an even-numbered polygonal outer wall in the radial direction of the end portion 31 of the shaft 30.
- the fitting hole 571 of the valve gear 52 can use a petal shape.
- the diameter of the petal-shaped inscribed circle formed in the fitting hole 571 is the same as or slightly larger than the diameter of the polygonal circumscribed circle of the positioning portion 325 provided at the end 31 of the shaft 30. Will be done. Therefore, the petal shape formed in the fitting hole 571 of the valve gear 52 and the end portion 31 of the shaft 30 are fitted in a relatively rotatable state. In that state, the shaft 30 and the valve gear 52 are positioned in the rotational direction. After that, the shaft 30 and the valve gear 52 are fixed by crimping so that the end portion 31 of the shaft 30 is plastically flowed.
- the positioning unit 325 of the sixth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded, as in the first embodiment and the like. Specifically, at the time of insert molding, two faces of the polygons constituting the positioning portion 325 facing the axis of the shaft 30 are arranged parallel to the eject direction, and the two faces and the inside of the mold are arranged. Make contact with the wall surface.
- the eject direction is the direction in which the valve subassembly 43 is taken out from the mold at the time of insert molding.
- valve device 1 of the sixth embodiment described above can exert the same effects as those of the first embodiment and the like.
- the seventh embodiment is a modification of the first embodiment and the like, in which a part of the configuration of the positioning portion of the shaft 30 and the valve body 40 is mainly changed.
- the positioning portion 326 provided on the shaft 30 is provided at a portion of the shaft 30 to be inserted into the valve body 40.
- the positioning portion 326 is provided on the surface of the plate 33 of the shaft 30 that faces the circumferential direction of the shaft 30.
- the positioning portion 326 is provided so as to be exposed in the deep portion of the hole 44 provided in a part of the valve body 40.
- the positioning unit 326 of the seventh embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded.
- FIGS. 34 and 35 an example of a mold opening step is shown in each step of injection molding.
- the lower mold 72 is provided with a support portion 73 extending in the eject direction.
- the support portion 73 is in contact with a positioning portion 326 provided on a surface of the plate 33 facing the circumferential direction of the shaft 30. Therefore, in injection molding, when the shaft 30 is installed on the lower mold 72, the support portion 73 can position the shaft 30 in the rotational direction. That is, the rotation of the shaft 30 is restricted at the position where the positioning portion 326 and the support portion 73 of the lower mold 72 are in contact with each other.
- valve main body When the valve subassembly 43 is taken out from the lower mold 72 in the injection molding take-out process, the valve main body has almost the same shape as the support portion 73 at the portion where the support portion 73 of the lower mold 72 is arranged. A hole 44 is formed. Then, the positioning portion 326 of the shaft 30 is exposed in the deep portion of the hole 44 of the valve body.
- the support portion 73 provided on the lower mold 72 supports the positioning portion 326 of the shaft 30, and the valve device 1 in the rotation direction of the shaft 30 It is for positioning. Therefore, it is possible to position the shaft 30 in the rotational direction without processing the shaft 30. Therefore, the manufacturing cost can be reduced.
- valve device 1 of the seventh embodiment since the positioning portion 326 is provided in the shaft 30 at a portion different from the portion where the valve gear 52 fits, the shaft 30 which is the portion of the shaft 30 where the valve gear 52 fits.
- the end 31 of the can be circular. Therefore, in the seventh embodiment, both welding and crimping methods can be adopted as the fixing method between the shaft 30 and the valve gear 52.
- the valve device 1 of the seventh embodiment can exhibit the same effects as those of the first embodiment and the like.
- valve device 1 has been described as an EGR valve used in the exhaust gas recirculation system 150, but the present invention is not limited to this.
- the valve device 1 can be used for various purposes of adjusting the flow rate of the fluid flowing through the fluid passage, such as adjusting the flow rate of the gaseous fuel of the fuel cell.
- the support portion 73 is provided on the lower mold 72, but the present invention is not limited to this, and the support portion 73 may be provided on the upper mold 71. Further, the support portion 73 is configured to support the plate 33 of the shaft 30, but the present invention is not limited to this, and the support portion 73 may be configured to support a part of the shaft body. The shaft 30 may not have the plate 33.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Taps Or Cocks (AREA)
- Mechanically-Actuated Valves (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Lift Valve (AREA)
Abstract
A speed reduction mechanism (50) includes a plurality of gears (52-55) that transmit torque of a motor (60). A shaft (30) rotates about the axis in response to the torque transmitted from the speed reduction mechanism (50). A valve body (40) is integrally formed with the shaft (30) by insert molding and rotates together with the shaft (30). A housing (10) has housed therein a fluid passage (11) so as to allow the valve body (40) to be rotatable and has, in a part of the fluid passage (11), a valve seat (20) that allows the valve body (40) to sit thereon and separate therefrom. The shaft (30) includes a positioning part (32, 321-326) enabling positioning in the rotation direction. Furthermore, the shaft (30) and the valve gear (52) that fits in an end portion (31) of the shaft (30) are configured to fit in a state of being rotatable relative to each other during assembling, and the valve gear (52) and the shaft (30) are fixed so as not to relatively rotate during driving.
Description
本出願は、2019年8月30日に出願された日本特許出願番号2019-158567号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2019-158567 filed on August 30, 2019, the contents of which are incorporated herein by reference.
本開示は、バルブ装置、およびその製造方法に関するものである。
This disclosure relates to a valve device and a method for manufacturing the valve device.
従来、流体通路の流体の流れを制御するバルブ装置が知られている。
特許文献1に記載のバルブ装置は、ハウジングの内側に形成された流体通路内にバルブ体が回転可能に設けられ、駆動部により駆動される構成である。バルブ体は、シャフトと一体に形成されている。シャフトの一端には、シャフトの軸を挟んで対向する2つの平面を有する形状の突起が設けられている。以下、その形状の突起を「2面幅形状部」という。シャフトに設けられた2面幅形状部に対し、駆動部の減速機構を構成する複数のギアのうちバルブギアの嵌合穴が駆動時に相対回転しないように嵌合固定されている。バルブ装置は、モータのトルクが減速機構を経由してシャフトに伝わると、シャフトと共にバルブ体が回転駆動し、ハウジングに形成される流体通路の一部に設けられた弁座にバルブ体が着座および離座するように構成されている。
このバルブ装置は、製造工程において、インサート成形によりバルブ体とシャフトとを一体に形成する際、シャフトの一端に設けられた2面幅形状部を用いて、バルブ体に対するシャフトの回転方向の位置決めを行うことが可能である。 Conventionally, a valve device for controlling the flow of fluid in a fluid passage is known.
The valve device described inPatent Document 1 has a configuration in which a valve body is rotatably provided in a fluid passage formed inside a housing and is driven by a drive unit. The valve body is integrally formed with the shaft. At one end of the shaft, a protrusion having a shape having two planes facing each other across the shaft shaft is provided. Hereinafter, the protrusion having that shape is referred to as a "width across flats shape portion". Of the plurality of gears constituting the reduction mechanism of the drive unit, the fitting holes of the valve gears are fitted and fixed to the two-sided width shape portion provided on the shaft so as not to rotate relative to each other during driving. In the valve device, when the torque of the motor is transmitted to the shaft via the reduction mechanism, the valve body is rotationally driven together with the shaft, and the valve body is seated on the valve seat provided in a part of the fluid passage formed in the housing. It is configured to leave.
In this valve device, when the valve body and the shaft are integrally formed by insert molding in the manufacturing process, the two-sided width shape portion provided at one end of the shaft is used to position the shaft in the rotational direction with respect to the valve body. It is possible to do.
特許文献1に記載のバルブ装置は、ハウジングの内側に形成された流体通路内にバルブ体が回転可能に設けられ、駆動部により駆動される構成である。バルブ体は、シャフトと一体に形成されている。シャフトの一端には、シャフトの軸を挟んで対向する2つの平面を有する形状の突起が設けられている。以下、その形状の突起を「2面幅形状部」という。シャフトに設けられた2面幅形状部に対し、駆動部の減速機構を構成する複数のギアのうちバルブギアの嵌合穴が駆動時に相対回転しないように嵌合固定されている。バルブ装置は、モータのトルクが減速機構を経由してシャフトに伝わると、シャフトと共にバルブ体が回転駆動し、ハウジングに形成される流体通路の一部に設けられた弁座にバルブ体が着座および離座するように構成されている。
このバルブ装置は、製造工程において、インサート成形によりバルブ体とシャフトとを一体に形成する際、シャフトの一端に設けられた2面幅形状部を用いて、バルブ体に対するシャフトの回転方向の位置決めを行うことが可能である。 Conventionally, a valve device for controlling the flow of fluid in a fluid passage is known.
The valve device described in
In this valve device, when the valve body and the shaft are integrally formed by insert molding in the manufacturing process, the two-sided width shape portion provided at one end of the shaft is used to position the shaft in the rotational direction with respect to the valve body. It is possible to do.
ところで、バルブ装置が例えば車両等に搭載される場合、ハウジングに形成される流体通路の向きや弁座の位置が車種等に応じて変更されることがある。それに対し、上記の特許文献1に記載のバルブ装置は、シャフトの一端に設けられた2面幅形状部に対し、バルブギアに設けられた嵌合穴が相対回転しないように嵌合固定されている。そのため、このバルブ装置は、シャフトに対するバルブ体の向きとバルブギアの向きとが一義的に定まっており、自由度の無い構成である。したがって、特許文献1に記載のバルブ装置の構成では、ハウジングに形成される流体通路の向きや弁座の位置に応じて、シャフトとバルブギアとが嵌合する角度が異なるように、嵌合穴の向きを変えたバルブギアの種類を増やす必要がある。或いは、2面幅形状部の向きを変えたシャフトの種類を増やす必要がある。
By the way, when the valve device is mounted on a vehicle, for example, the direction of the fluid passage formed in the housing and the position of the valve seat may be changed according to the vehicle type and the like. On the other hand, in the valve device described in Patent Document 1 described above, the fitting hole provided in the valve gear is fitted and fixed to the two-sided width shape portion provided at one end of the shaft so as not to rotate relative to each other. .. Therefore, in this valve device, the orientation of the valve body with respect to the shaft and the orientation of the valve gear are uniquely determined, and the configuration has no degree of freedom. Therefore, in the configuration of the valve device described in Patent Document 1, the fitting hole is provided so that the angle at which the shaft and the valve gear are fitted differs depending on the direction of the fluid passage formed in the housing and the position of the valve seat. It is necessary to increase the types of valve gears that have been turned around. Alternatively, it is necessary to increase the types of shafts in which the orientation of the width across flats is changed.
本開示は、シャフトとバルブ体とを一体成形する際にシャフトの回転方向の位置決めを行うことが可能であり、且つ、バルブギアおよびシャフトの種類の増加を抑制可能なバルブ装置、およびバルブ装置の製造方法を提供することを目的とする。
The present disclosure discloses a valve device and a valve device capable of positioning the shaft in the rotational direction when integrally molding the shaft and the valve body, and suppressing an increase in the types of valve gears and shafts. The purpose is to provide a method.
本開示の1つの観点によれば、バルブ装置は、モータ、減速機構、シャフト、バルブ体およびハウジングを備える。モータは、トルクを出力する。減速機構は、モータのトルクを伝達する複数のギアを有する。シャフトは、減速機構からトルクを伝達されて軸周りに回転する。バルブ体は、インサート成形によりシャフトと一体に形成され、シャフトと共に回転する。ハウジングは、バルブ体が回転可能に収容される流体通路、およびその流体通路の一部にバルブ体が着座および離座する弁座を有する。そして、シャフトは、回転方向の位置決めを行うことの可能な位置決め部を有する。減速機構の有する複数のギアのうちシャフトの端部に嵌合するバルブギアとシャフトとは組付け時に相対回転可能な状態で嵌合する構成であると共に、そのバルブギアとシャフトとは駆動時に相対回転しないように固定されている。
According to one aspect of the present disclosure, the valve device comprises a motor, a reduction mechanism, a shaft, a valve body and a housing. The motor outputs torque. The reduction mechanism has a plurality of gears that transmit the torque of the motor. Torque is transmitted from the reduction mechanism to rotate the shaft around the shaft. The valve body is integrally formed with the shaft by insert molding and rotates together with the shaft. The housing has a fluid passage in which the valve body is rotatably accommodated, and a valve seat in which the valve body is seated and detached in a part of the fluid passage. Then, the shaft has a positioning portion capable of positioning in the rotational direction. Of the multiple gears of the reduction gear, the valve gear and shaft that fit to the end of the shaft are fitted in a state where they can rotate relative to each other when assembled, and the valve gear and shaft do not rotate relative to each other when driven. It is fixed as.
これによれば、シャフトが位置決め部を有しているので、バルブ体とシャフトとをインサート成形により一体に形成する際、バルブ体に対してシャフトの回転方向の位置決めを行うことが可能である。そのため、バルブ体とシャフトとが一体となったバルブサブアセンブリの品質のばらつきを低減することができる。
According to this, since the shaft has a positioning portion, when the valve body and the shaft are integrally formed by insert molding, it is possible to position the valve body in the rotational direction of the shaft. Therefore, it is possible to reduce variations in the quality of the valve subassembly in which the valve body and the shaft are integrated.
また、シャフトとバルブギアとは組付け時に相対回転可能な状態で嵌合する構成であるので、ハウジングの有する弁座の位置に応じて、シャフトとバルブギアとの回転角を調整し、それらを固定することが可能である。そのため、バルブギアおよびシャフトの種類の増加を抑制し、製造上のコストを低減することができる。
Further, since the shaft and the valve gear are fitted in a state of being relatively rotatable at the time of assembly, the rotation angles of the shaft and the valve gear are adjusted and fixed according to the position of the valve seat of the housing. It is possible. Therefore, it is possible to suppress an increase in the types of valve gears and shafts and reduce manufacturing costs.
ところで、従来のように、ハウジングの流体通路にバルブサブアセンブリを設置すると、ハウジングの有する弁座とバルブサブアセンブリとの回転角に、製造公差によるばらつきが生じる。そのため、従来では、その製造公差によるばらつきを調整するための調整装置および調整工程が必要であった。
By the way, when the valve subassembly is installed in the fluid passage of the housing as in the conventional case, the rotation angle between the valve seat and the valve subassembly of the housing varies due to manufacturing tolerances. Therefore, conventionally, an adjusting device and an adjusting process for adjusting the variation due to the manufacturing tolerance have been required.
それに対し、上述した本開示の1つの観点におけるバルブ装置は、ハウジングの流体通路にバルブサブアセンブリを配置した状態で、バルブサブアセンブリとバルブギアとの回転角を調整し、それらを固定することが可能である。これにより、従来必要とされていた製造公差によるばらつきを調整するための調整装置およびその調整工程を廃止し、製造上のコストを低減することができる。
On the other hand, the valve device according to one aspect of the present disclosure described above can adjust the rotation angle between the valve subassembly and the valve gear and fix them in a state where the valve subassembly is arranged in the fluid passage of the housing. Is. As a result, the adjustment device for adjusting the variation due to the manufacturing tolerance and the adjustment process thereof, which have been conventionally required, can be eliminated, and the manufacturing cost can be reduced.
また、本開示の別の観点は、バルブ装置の製造方法に関するものである。バルブ装置は、モータ、減速機構、シャフト、バルブ体およびハウジングを備える。モータは、トルクを出力する。減速機構は、モータのトルクを伝達する複数のギアを有する。シャフトは、減速機構からトルクを伝達されて軸周りに回転する。バルブ体は、インサート成形によりシャフトと一体に形成され、シャフトと共に回転する。ハウジングは、バルブ体が回転可能に収容される流体通路、およびその流体通路の一部にバルブ体が着座および離座する弁座を有する。
そして、このバルブ装置の製造方法は、シャフトに設けられた位置決め部によりシャフトの回転方向の位置決めを行い、シャフトとバルブ体とをインサート成形により一体に形成することと、減速機構の有する複数のギアのうちシャフトの端部に嵌合するバルブギアとシャフトとを相対回転可能な状態で嵌合することと、バルブギアとシャフトとの位置合わせを行うことと、バルブギアとシャフトとを溶接または加締めにより固定することを含んでいる。 Another aspect of the present disclosure relates to a method of manufacturing a valve device. The valve device includes a motor, a reduction mechanism, a shaft, a valve body and a housing. The motor outputs torque. The reduction mechanism has a plurality of gears that transmit the torque of the motor. Torque is transmitted from the reduction mechanism to rotate the shaft around the shaft. The valve body is integrally formed with the shaft by insert molding and rotates together with the shaft. The housing has a fluid passage in which the valve body is rotatably accommodated, and a valve seat in which the valve body is seated and detached in a part of the fluid passage.
The method of manufacturing this valve device is to position the shaft in the rotational direction by a positioning portion provided on the shaft, integrally form the shaft and the valve body by insert molding, and a plurality of gears having a reduction mechanism. Of these, the valve gear that fits at the end of the shaft and the shaft are fitted in a relatively rotatable state, the valve gear and the shaft are aligned, and the valve gear and the shaft are fixed by welding or crimping. Includes doing.
そして、このバルブ装置の製造方法は、シャフトに設けられた位置決め部によりシャフトの回転方向の位置決めを行い、シャフトとバルブ体とをインサート成形により一体に形成することと、減速機構の有する複数のギアのうちシャフトの端部に嵌合するバルブギアとシャフトとを相対回転可能な状態で嵌合することと、バルブギアとシャフトとの位置合わせを行うことと、バルブギアとシャフトとを溶接または加締めにより固定することを含んでいる。 Another aspect of the present disclosure relates to a method of manufacturing a valve device. The valve device includes a motor, a reduction mechanism, a shaft, a valve body and a housing. The motor outputs torque. The reduction mechanism has a plurality of gears that transmit the torque of the motor. Torque is transmitted from the reduction mechanism to rotate the shaft around the shaft. The valve body is integrally formed with the shaft by insert molding and rotates together with the shaft. The housing has a fluid passage in which the valve body is rotatably accommodated, and a valve seat in which the valve body is seated and detached in a part of the fluid passage.
The method of manufacturing this valve device is to position the shaft in the rotational direction by a positioning portion provided on the shaft, integrally form the shaft and the valve body by insert molding, and a plurality of gears having a reduction mechanism. Of these, the valve gear that fits at the end of the shaft and the shaft are fitted in a relatively rotatable state, the valve gear and the shaft are aligned, and the valve gear and the shaft are fixed by welding or crimping. Includes doing.
これによれば、このバルブ装置の製造方法により製造されるバルブ装置は、本開示の1つの観点で記載したことと同様の作用効果を奏する。
According to this, the valve device manufactured by the method for manufacturing the valve device has the same effect as described from one viewpoint of the present disclosure.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Note that the reference reference numerals in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
以下、本開示の複数の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same or equal parts are designated by the same reference numerals, and the description thereof will be omitted.
(第1実施形態)
第1実施形態について図面を参照しつつ説明する。
図1に示すように、第1実施形態に係るバルブ装置1は、例えば車両用のエンジンシステム100のEGR弁として用いられる。なお、EGRは、Exhaust Gas Recirculationの略である。 (First Embodiment)
The first embodiment will be described with reference to the drawings.
As shown in FIG. 1, thevalve device 1 according to the first embodiment is used, for example, as an EGR valve of an engine system 100 for a vehicle. EGR is an abbreviation for Exhaust Gas Recirculation.
第1実施形態について図面を参照しつつ説明する。
図1に示すように、第1実施形態に係るバルブ装置1は、例えば車両用のエンジンシステム100のEGR弁として用いられる。なお、EGRは、Exhaust Gas Recirculationの略である。 (First Embodiment)
The first embodiment will be described with reference to the drawings.
As shown in FIG. 1, the
まず、バルブ装置1が用いられるエンジンシステム100について説明する。エンジンシステム100は、エンジン110、吸気系120、排気系130、過給機140および排気還流系150などを備えている。
エンジン110は、シリンダ111内の燃焼室112で燃料を燃焼させ、その燃焼ガスの体積変化によるピストン113の往復運動をクランク機構により回転運動に変換し、車両走行等の動力を得る周知の原動機である。 First, theengine system 100 in which the valve device 1 is used will be described. The engine system 100 includes an engine 110, an intake system 120, an exhaust system 130, a supercharger 140, an exhaust return system 150, and the like.
Theengine 110 is a well-known prime mover that burns fuel in the combustion chamber 112 in the cylinder 111, converts the reciprocating motion of the piston 113 due to the volume change of the combustion gas into rotary motion by the crank mechanism, and obtains power for vehicle running or the like. is there.
エンジン110は、シリンダ111内の燃焼室112で燃料を燃焼させ、その燃焼ガスの体積変化によるピストン113の往復運動をクランク機構により回転運動に変換し、車両走行等の動力を得る周知の原動機である。 First, the
The
吸気系120は、外気からエアクリーナ121を介して吸気管122に取り入れた空気を、過給機140のコンプレッサ141、インタークーラ123、スロットル124、吸気マニホールド125などを経由し、エンジン110の燃焼室112に供給するように構成されている。エアクリーナ121は、大気から取り込んだ空気から異物を除去する。吸気管122の内側には吸気通路126が形成されている。インタークーラ123は、コンプレッサ141により圧縮されて昇温した吸入空気を冷却する。スロットル124は、エンジン110の吸気量を調整する。吸気マニホールド125は、エンジン110のシリンダ111と同じ数に通路を分岐する構造を有する。
The intake system 120 takes in air from the outside air into the intake pipe 122 via the air cleaner 121, passes through the compressor 141 of the supercharger 140, the intercooler 123, the throttle 124, the intake manifold 125, and the like, and passes through the combustion chamber 112 of the engine 110. It is configured to supply to. The air cleaner 121 removes foreign matter from the air taken in from the atmosphere. An intake passage 126 is formed inside the intake pipe 122. The intercooler 123 cools the intake air compressed by the compressor 141 and raised in temperature. The throttle 124 adjusts the intake amount of the engine 110. The intake manifold 125 has a structure in which the passages are branched into the same number as the cylinders 111 of the engine 110.
一方、排気系130は、エンジン110から排出される排ガスを、排気マニホールド131、排気管132、過給機140のタービン142、排気浄化ユニット133などを経由し、外気へ放出するように構成されている。排気マニホールド131は、シリンダ111と同じ数の通路を合流する構造を有する。排気管132の内側には排気通路134が形成されている。排気浄化ユニット133は、排気に含まれる微粒子状物質の捕捉、炭化水素の分解などを行う。
On the other hand, the exhaust system 130 is configured to discharge the exhaust gas discharged from the engine 110 to the outside air via the exhaust manifold 131, the exhaust pipe 132, the turbine 142 of the supercharger 140, the exhaust purification unit 133, and the like. There is. The exhaust manifold 131 has a structure in which the same number of passages as the cylinder 111 are merged. An exhaust passage 134 is formed inside the exhaust pipe 132. The exhaust gas purification unit 133 captures particulate matter contained in the exhaust gas, decomposes hydrocarbons, and the like.
過給機140は、排気のエネルギーを利用して吸入空気を圧縮し、燃焼室112に加圧した空気を過給する。過給機140は、コンプレッサ141、タービン142、およびシャフト143を有する。タービン142は、排気系130においてエンジン110と排気浄化ユニット133との間に配置され、排気のエネルギーにより回転駆動する。シャフト143は、タービン142とコンプレッサ141とを連結し、タービン142とコンプレッサ141とを同期して回転させる。コンプレッサ141は、吸気系120においてエアクリーナ121とインタークーラ123との間に配置され、吸入空気を圧縮する。
The supercharger 140 uses the energy of the exhaust gas to compress the intake air and supercharges the pressurized air to the combustion chamber 112. The turbocharger 140 has a compressor 141, a turbine 142, and a shaft 143. The turbine 142 is arranged between the engine 110 and the exhaust purification unit 133 in the exhaust system 130, and is rotationally driven by the energy of the exhaust. The shaft 143 connects the turbine 142 and the compressor 141, and rotates the turbine 142 and the compressor 141 in synchronization with each other. The compressor 141 is arranged between the air cleaner 121 and the intercooler 123 in the intake system 120 to compress the intake air.
排気還流系150は、排気通路134を流れる排ガスの一部を吸気通路126に還流する装置であり、EGR管151、EGRクーラ152およびバルブ装置1などを備えている。EGR管151は、排気管132のうち排気浄化ユニット133より下流側の部位とバルブ装置1とを接続している。EGR管151の内側にEGR通路153が形成される。なお、以下の説明では、EGR管151を流れる排ガスをEGRガスと称する。EGRクーラ152は、EGR管151の途中に設けられ、EGR通路153を通るEGRガスを冷却する。バルブ装置1は、吸気管122のうちエアクリーナ121とコンプレッサ141との間の部位に設けられ、吸気管122とEGR管151との接続部を構成している。バルブ装置1は、EGR通路153を通じて吸気通路126に還流されるEGRガスの流量を増減する。
The exhaust gas recirculation system 150 is a device that returns a part of the exhaust gas flowing through the exhaust passage 134 to the intake passage 126, and includes an EGR pipe 151, an EGR cooler 152, a valve device 1, and the like. The EGR pipe 151 connects a portion of the exhaust pipe 132 downstream of the exhaust purification unit 133 to the valve device 1. An EGR passage 153 is formed inside the EGR tube 151. In the following description, the exhaust gas flowing through the EGR pipe 151 is referred to as EGR gas. The EGR cooler 152 is provided in the middle of the EGR pipe 151 and cools the EGR gas passing through the EGR passage 153. The valve device 1 is provided at a portion of the intake pipe 122 between the air cleaner 121 and the compressor 141, and constitutes a connection portion between the intake pipe 122 and the EGR pipe 151. The valve device 1 increases or decreases the flow rate of the EGR gas returned to the intake passage 126 through the EGR passage 153.
次に、バルブ装置1の構成について説明する。
図2~図5に示すように、バルブ装置1は、ハウジング10、シャフト30、バルブ体40、減速機構50およびモータ60などを備えている。
ハウジング10は、吸入空気およびEGRガスが流れる流体通路11を有している。流体通路11の端部には、上流側接続口12、下流側接続口13およびEGR接続口14が設けられる。図1に示したように、上流側接続口12には、吸気管122のうちエアクリーナ121側から延びる配管が接続される。下流側接続口13には、吸気管122のうちコンプレッサ141側に延びる配管が接続される。EGR接続口14には、EGR管151が接続される。したがって、ハウジング10は、吸気管122とEGR管151との合流部を形成する。 Next, the configuration of thevalve device 1 will be described.
As shown in FIGS. 2 to 5, thevalve device 1 includes a housing 10, a shaft 30, a valve body 40, a reduction mechanism 50, a motor 60, and the like.
Thehousing 10 has a fluid passage 11 through which intake air and EGR gas flow. An upstream side connection port 12, a downstream side connection port 13, and an EGR connection port 14 are provided at the end of the fluid passage 11. As shown in FIG. 1, a pipe extending from the air cleaner 121 side of the intake pipe 122 is connected to the upstream side connection port 12. A pipe extending to the compressor 141 side of the intake pipe 122 is connected to the downstream connection port 13. The EGR tube 151 is connected to the EGR connection port 14. Therefore, the housing 10 forms a confluence of the intake pipe 122 and the EGR pipe 151.
図2~図5に示すように、バルブ装置1は、ハウジング10、シャフト30、バルブ体40、減速機構50およびモータ60などを備えている。
ハウジング10は、吸入空気およびEGRガスが流れる流体通路11を有している。流体通路11の端部には、上流側接続口12、下流側接続口13およびEGR接続口14が設けられる。図1に示したように、上流側接続口12には、吸気管122のうちエアクリーナ121側から延びる配管が接続される。下流側接続口13には、吸気管122のうちコンプレッサ141側に延びる配管が接続される。EGR接続口14には、EGR管151が接続される。したがって、ハウジング10は、吸気管122とEGR管151との合流部を形成する。 Next, the configuration of the
As shown in FIGS. 2 to 5, the
The
図5に示すように、ハウジング10の内側には、バルブ体40を回転可能に収容するバルブ室15が形成されている。上流側接続口12とバルブ室15とを連通する流路を上流側通路16と称する。下流側接続口13とバルブ室15とを連通する流路を下流側通路17と称する。EGR接続口14とバルブ室15とを連通する流路をEGR通路18と称する。なお、バルブ室15、上流側通路16、下流側通路17およびEGR通路18はいずれも、流体通路11の一部である。
As shown in FIG. 5, a valve chamber 15 for rotatably accommodating the valve body 40 is formed inside the housing 10. The flow path connecting the upstream side connection port 12 and the valve chamber 15 is referred to as an upstream side passage 16. The flow path connecting the downstream connection port 13 and the valve chamber 15 is referred to as a downstream passage 17. The flow path communicating the EGR connection port 14 and the valve chamber 15 is referred to as an EGR passage 18. The valve chamber 15, the upstream passage 16, the downstream passage 17, and the EGR passage 18 are all part of the fluid passage 11.
EGR通路18の内側には、筒状の弁座部材19が設けられている。弁座部材19のバルブ室15側の開口部にはバルブ体40が着座および離座する弁座20が設けられている。なお、図4および図5では、バルブ体40が弁座20に着座し、EGR通路18を閉塞している状態を示している。この状態で、バルブ体40は、EGR管151から吸気管122へのEGRガスの流れを遮断すると共に、吸気管122の吸入空気の流れを許容する。
A tubular valve seat member 19 is provided inside the EGR passage 18. A valve seat 20 on which the valve body 40 sits and leaves is provided in the opening of the valve seat member 19 on the valve chamber 15 side. Note that FIGS. 4 and 5 show a state in which the valve body 40 is seated on the valve seat 20 and blocks the EGR passage 18. In this state, the valve body 40 blocks the flow of EGR gas from the EGR pipe 151 to the intake pipe 122 and allows the flow of the intake air of the intake pipe 122.
図4に示すように、シャフト30は、ベアリング21によってハウジング10に対して軸周りに回転可能に支持されている。シール部材22は、シャフト30のうちベアリング21よりバルブ室15側の位置に設けられている。シール部材22は、ハウジング10に固定され、シャフト30の外周に摺接し、減速機構50が設けられる駆動室51と流体通路11との間をシールしている。
As shown in FIG. 4, the shaft 30 is rotatably supported around the housing 10 by a bearing 21. The seal member 22 is provided at a position on the shaft 30 on the valve chamber 15 side of the bearing 21. The seal member 22 is fixed to the housing 10 and slides on the outer periphery of the shaft 30 to seal between the drive chamber 51 provided with the speed reduction mechanism 50 and the fluid passage 11.
図4~図7に示すように、バルブ体40は、シャフト30が固定される扇状の腕部41と、その腕部41のうちシャフト30とは反対側の外縁部から軸方向に湾曲した板状に延びる弁本体部42とを有している。弁本体部42は、シャフト30の軸に垂直な断面が略円弧状に形成されている。バルブ体40は、弁本体部42の外壁面が弁座20に着座および離座可能に構成されている。
As shown in FIGS. 4 to 7, the valve body 40 has a fan-shaped arm 41 to which the shaft 30 is fixed and a plate of the arm 41 that is curved in the axial direction from the outer edge on the side opposite to the shaft 30. It has a valve body portion 42 extending in a shape. The valve body 42 has a substantially arcuate cross section perpendicular to the axis of the shaft 30. The valve body 40 is configured such that the outer wall surface of the valve body 42 can be seated on and off the valve seat 20.
図6および図7に示すように、シャフト30とバルブ体40は、インサート成形により一体に形成されている。そのため、バルブ室15内で、シャフト30とバルブ体40は一体で回転駆動する。なお、シャフト30は、例えば金属により形成されており、バルブ体40は、例えば樹脂により形成されている。以下の説明では、シャフト30とバルブ体40が一体に構成されたものをバルブサブアセンブリ43と呼ぶ。
As shown in FIGS. 6 and 7, the shaft 30 and the valve body 40 are integrally formed by insert molding. Therefore, in the valve chamber 15, the shaft 30 and the valve body 40 are integrally rotationally driven. The shaft 30 is made of metal, for example, and the valve body 40 is made of resin, for example. In the following description, the one in which the shaft 30 and the valve body 40 are integrally formed is referred to as a valve subassembly 43.
第1実施形態では、シャフト30の端部31に、周方向の一部が円に対して径方向内側に凹む形状の位置決め部32が設けられている。具体的には、位置決め部32は、シャフト30の端部31の周方向の一部が直線状に切り取られたいわゆるDカット形状とされている。この位置決め部32は、バルブサブアセンブリ43を製造する際に、シャフト30の回転方向の位置決めに用いられる。この製造方法については、後述する。
In the first embodiment, the end portion 31 of the shaft 30 is provided with a positioning portion 32 having a shape in which a part in the circumferential direction is recessed inward in the radial direction with respect to the circle. Specifically, the positioning portion 32 has a so-called D-cut shape in which a part of the end portion 31 of the shaft 30 in the circumferential direction is cut out in a straight line. The positioning unit 32 is used for positioning the shaft 30 in the rotational direction when manufacturing the valve subassembly 43. This manufacturing method will be described later.
シャフト30は、バルブ体40にインサートされる部位に、シャフト30の中心から径方向外側に延びる形状のプレート33を有している。プレート33は、シャフト30のうちバルブ体40にインサートされる部位に相対回転しないように固定されると共に、バルブ体40にモールドされている。プレート33は、シャフト30とバルブ体40との結合強度を高めるための部材である。プレート33は、例えば金属により形成されている。
The shaft 30 has a plate 33 having a shape extending radially outward from the center of the shaft 30 at a portion to be inserted into the valve body 40. The plate 33 is fixed to a portion of the shaft 30 to be inserted into the valve body 40 so as not to rotate relative to the portion, and is molded into the valve body 40. The plate 33 is a member for increasing the coupling strength between the shaft 30 and the valve body 40. The plate 33 is made of, for example, metal.
図4に示すように、シャフト30の軸方向の一方に設けられた駆動室51には、複数のギアなどから構成される減速機構50が設けられている。減速機構50は、モータ60の回転速度を減速し、そのモータ60のトルクを増幅してシャフト30に伝達する。具体的には、減速機構50は、モータ60の出力軸に設けられるピニオンギア53、そのピニオンギア53に噛み合う中間ギア54、その中間ギア54と同軸に設けられる小径ギア55、および、その小径ギア55に噛み合うバルブギア52により構成されている。バルブギア52は、シャフト30の端部31に相対回転しないように固定されている。また、バルブギア52は、リターンスプリング56により、バルブ体40が弁座20に着座する方向(すなわち、図5の矢印で示した一方側)に付勢されている。
As shown in FIG. 4, the drive chamber 51 provided on one side of the shaft 30 in the axial direction is provided with a reduction mechanism 50 composed of a plurality of gears and the like. The speed reduction mechanism 50 reduces the rotational speed of the motor 60, amplifies the torque of the motor 60, and transmits the torque to the shaft 30. Specifically, the reduction mechanism 50 includes a pinion gear 53 provided on the output shaft of the motor 60, an intermediate gear 54 that meshes with the pinion gear 53, a small diameter gear 55 provided coaxially with the intermediate gear 54, and the small diameter gear thereof. It is composed of a valve gear 52 that meshes with 55. The valve gear 52 is fixed to the end 31 of the shaft 30 so as not to rotate relative to each other. Further, the valve gear 52 is urged by the return spring 56 in the direction in which the valve body 40 is seated on the valve seat 20 (that is, one side indicated by the arrow in FIG. 5).
図6に示すように、シャフト30のうち、バルブギア52が嵌合する端部31とバルブ体40にインサートされる部位との間の部位を、シャフト中間部34と称する。シャフト30の端部31の外径は、シャフト中間部34の外径より小さく形成されている。そのため、シャフト30の端部31とシャフト中間部34との間には段差部35が設けられている。バルブギア52がシャフト30の端部31に嵌合する際、バルブギア52のうちバルブ体40側の面は、シャフト30の段差部35に当接する。
As shown in FIG. 6, the portion of the shaft 30 between the end portion 31 where the valve gear 52 is fitted and the portion inserted into the valve body 40 is referred to as a shaft intermediate portion 34. The outer diameter of the end portion 31 of the shaft 30 is formed to be smaller than the outer diameter of the shaft intermediate portion 34. Therefore, a step portion 35 is provided between the end portion 31 of the shaft 30 and the shaft intermediate portion 34. When the valve gear 52 is fitted to the end 31 of the shaft 30, the surface of the valve gear 52 on the valve body 40 side comes into contact with the stepped portion 35 of the shaft 30.
図8および図9に示すように、バルブギア52は、シャフト30の端部31に嵌合すると共に、そのシャフト30の端部31に固定されている。
図10は、バルブギア52のみを示す平面図である。バルブギア52は、シャフト30の端部31に嵌合する嵌合穴57を有している。第1実施形態では、バルブギア52の嵌合穴57は円形とされている。そのため、組付け時において、シャフト30の端部31とバルブギア52とは、相対回転可能な状態で嵌合する。その状態で、シャフト30とバルブギア52との回転方向の位置決めをすることが可能である。その後、第1実施形態では、図8および図9に示したように、シャフト30の端部31とバルブギア52とは溶接により固定される。図8および図9では、シャフト30の端部31とバルブギア52との溶接箇所を符号Wの矢印により示している。 As shown in FIGS. 8 and 9, thevalve gear 52 is fitted to the end 31 of the shaft 30 and fixed to the end 31 of the shaft 30.
FIG. 10 is a plan view showing only thevalve gear 52. The valve gear 52 has a fitting hole 57 that fits into the end 31 of the shaft 30. In the first embodiment, the fitting hole 57 of the valve gear 52 is circular. Therefore, at the time of assembly, the end portion 31 of the shaft 30 and the valve gear 52 are fitted in a relatively rotatable state. In that state, it is possible to position the shaft 30 and the valve gear 52 in the rotational direction. After that, in the first embodiment, as shown in FIGS. 8 and 9, the end portion 31 of the shaft 30 and the valve gear 52 are fixed by welding. In FIGS. 8 and 9, the welded portion between the end portion 31 of the shaft 30 and the valve gear 52 is indicated by an arrow of reference numeral W.
図10は、バルブギア52のみを示す平面図である。バルブギア52は、シャフト30の端部31に嵌合する嵌合穴57を有している。第1実施形態では、バルブギア52の嵌合穴57は円形とされている。そのため、組付け時において、シャフト30の端部31とバルブギア52とは、相対回転可能な状態で嵌合する。その状態で、シャフト30とバルブギア52との回転方向の位置決めをすることが可能である。その後、第1実施形態では、図8および図9に示したように、シャフト30の端部31とバルブギア52とは溶接により固定される。図8および図9では、シャフト30の端部31とバルブギア52との溶接箇所を符号Wの矢印により示している。 As shown in FIGS. 8 and 9, the
FIG. 10 is a plan view showing only the
ハウジング10には、モータ60が収容されている。モータ60は、通電によりトルクを出力する電動式モータである。このモータ60が駆動すると、モータ60のトルクが減速機構50を経由してシャフト30に伝達される。シャフト30がその軸周りに回転すると、シャフト30と一体に形成されたバルブ体40がバルブ室15内で回転する。これにより、バルブ体40は、EGR通路18の開口面積および上流側通路16の開口面積を増減する。
The motor 60 is housed in the housing 10. The motor 60 is an electric motor that outputs torque when energized. When the motor 60 is driven, the torque of the motor 60 is transmitted to the shaft 30 via the reduction mechanism 50. When the shaft 30 rotates around the axis, the valve body 40 integrally formed with the shaft 30 rotates in the valve chamber 15. As a result, the valve body 40 increases or decreases the opening area of the EGR passage 18 and the opening area of the upstream passage 16.
上述したように、図4および図5は、バルブ体40が弁座20に着座し、EGR通路18を閉塞している状態を示している。この状態から、図5の矢印で示した他方側にバルブ体40が移動すると、上流側通路16の開口面積が小さくなると共に、EGR通路18の開口面積が大きくなる。これにより、バルブ体40より下流側の下流側通路17の負圧が大きくなり、EGR通路18から下流側通路17にEGRガスが導入される。なお、上述したように、バルブ装置1は、吸気管122のうちコンプレッサ141より上流側の部位に設けられている。そのため、バルブ装置1は、EGR通路18から吸気管122のうちエンジン110側の吸気通路126にEGRガスを導入する際、EGR通路18の開口面積を大きくするだけでなく、上流側通路16の開口面積を小さくする。これにより、バルブ装置1は、エンジン110のピストン113の動作による負圧を有効に利用し、EGR通路18から吸気管122のうちエンジン110側の吸気通路126にEGRガスを効率的に導入することが可能である。
As described above, FIGS. 4 and 5 show a state in which the valve body 40 is seated on the valve seat 20 and blocks the EGR passage 18. When the valve body 40 moves to the other side indicated by the arrow in FIG. 5 from this state, the opening area of the upstream passage 16 becomes smaller and the opening area of the EGR passage 18 becomes larger. As a result, the negative pressure of the downstream passage 17 on the downstream side of the valve body 40 becomes large, and the EGR gas is introduced from the EGR passage 18 to the downstream passage 17. As described above, the valve device 1 is provided in the intake pipe 122 on the upstream side of the compressor 141. Therefore, when the valve device 1 introduces the EGR gas from the EGR passage 18 into the intake passage 126 on the engine 110 side of the intake pipe 122, the valve device 1 not only increases the opening area of the EGR passage 18 but also opens the upstream passage 16. Reduce the area. As a result, the valve device 1 effectively utilizes the negative pressure generated by the operation of the piston 113 of the engine 110, and efficiently introduces the EGR gas from the EGR passage 18 into the intake passage 126 on the engine 110 side of the intake pipe 122. Is possible.
なお、図4に示すように、ハウジング10の駆動室51には、センサカバー61が設けられている。センサカバー61の内側には、シャフト30の回転角を検出するセンサ装置62が設けられている。センサ装置62は、例えば、バルブギア52に設けられた一対の磁石63およびヨーク64と、センサカバー61側に取り付けられたホールIC65などにより構成されている。センサ装置62により検出されたシャフト30の回転角は、図示しない電子制御装置に伝送される。電子制御装置は、センサ装置62によって検出されたシャフト30の回転角とその目標値とが一致するように、モータ60に対する通電量をフィードバック制御する。
As shown in FIG. 4, a sensor cover 61 is provided in the drive chamber 51 of the housing 10. Inside the sensor cover 61, a sensor device 62 for detecting the rotation angle of the shaft 30 is provided. The sensor device 62 is composed of, for example, a pair of magnets 63 and a yoke 64 provided on the valve gear 52, a hole IC 65 attached to the sensor cover 61 side, and the like. The rotation angle of the shaft 30 detected by the sensor device 62 is transmitted to an electronic control device (not shown). The electronic control device feedback-controls the amount of electricity supplied to the motor 60 so that the rotation angle of the shaft 30 detected by the sensor device 62 and the target value thereof match.
続いて、第1実施形態のバルブ装置1の製造方法のうち、バルブサブアセンブリ43の射出成形とバルブギア52の組付けについて、図11のフローチャートなどを参照して説明する。
Subsequently, among the manufacturing methods of the valve device 1 of the first embodiment, injection molding of the valve subassembly 43 and assembly of the valve gear 52 will be described with reference to the flowchart of FIG.
まず、図11に示すステップS10で、シャフト30のうちバルブ体40にインサートされる側の部位に、プレート33を固定する。その際、シャフト30とプレート33は、相対回転しないように嵌合固定される。
First, in step S10 shown in FIG. 11, the plate 33 is fixed to the portion of the shaft 30 on the side to be inserted into the valve body 40. At that time, the shaft 30 and the plate 33 are fitted and fixed so as not to rotate relative to each other.
次に、ステップS20で、シャフト30とプレート33を射出成形用の金型に設置する。このとき、図13に示すように、シャフト30の位置決め部32と、下金型72の内壁面74とを当接させる。これにより、シャフト30の回転方向の位置決めが行われる。すなわち、シャフト30は、位置決め部32と下金型72の内壁面74とが当接した位置で、軸周りの回転が規制される。
Next, in step S20, the shaft 30 and the plate 33 are installed in a mold for injection molding. At this time, as shown in FIG. 13, the positioning portion 32 of the shaft 30 and the inner wall surface 74 of the lower mold 72 are brought into contact with each other. As a result, the shaft 30 is positioned in the rotational direction. That is, the rotation of the shaft 30 is restricted at the position where the positioning portion 32 and the inner wall surface 74 of the lower mold 72 are in contact with each other.
続いて、ステップS30で、金型の内側に加熱溶融した樹脂を射出注入し、その樹脂を冷却、固化させる。これにより、シャフト30とバルブ体40とがインサート成形により一体に形成される。なお、図12および図13では、射出成形の各工程のうち、型開き工程の一例を示している。図12の矢印MOに示すように、型開き工程において、上金型71は、下金型72から離れるように移動する。そして、取出し工程において、それと同じ方向に、バルブサブアセンブリ43は下金型72から取り出される。
Subsequently, in step S30, the heat-melted resin is injected into the inside of the mold, and the resin is cooled and solidified. As a result, the shaft 30 and the valve body 40 are integrally formed by insert molding. Note that FIGS. 12 and 13 show an example of the mold opening process among the injection molding processes. As shown by the arrow MO in FIG. 12, in the mold opening step, the upper mold 71 moves away from the lower mold 72. Then, in the take-out step, the valve subassembly 43 is taken out from the lower mold 72 in the same direction.
次に、図11に示すステップS40で、シャフト30の端部31にバルブギア52を嵌合する。シャフト30の端部31とバルブギア52との嵌合は、ハウジング10のバルブ室15にバルブサブアセンブリ43を配置した状態で行われる。具体的には、ハウジング10のバルブ室15側から駆動室51側に突出したシャフト30の端部31に対し、バルブギア52の嵌合穴57を嵌合する。ここで、図10に示したように、第1実施形態では、バルブギア52の嵌合穴57は、円形である。一方、シャフト30の端部31に設けられた位置決め部32は、いわゆるDカット形状である。そのため、シャフト30の端部31とバルブギア52とは相対回転可能な状態で嵌合する。
Next, in step S40 shown in FIG. 11, the valve gear 52 is fitted to the end 31 of the shaft 30. The fitting of the end 31 of the shaft 30 and the valve gear 52 is performed in a state where the valve subassembly 43 is arranged in the valve chamber 15 of the housing 10. Specifically, the fitting hole 57 of the valve gear 52 is fitted to the end 31 of the shaft 30 protruding from the valve chamber 15 side of the housing 10 to the drive chamber 51 side. Here, as shown in FIG. 10, in the first embodiment, the fitting hole 57 of the valve gear 52 is circular. On the other hand, the positioning portion 32 provided at the end portion 31 of the shaft 30 has a so-called D-cut shape. Therefore, the end 31 of the shaft 30 and the valve gear 52 are fitted in a relatively rotatable state.
続いて、ステップS50で、バルブギア52とシャフト30の位置合わせを行う。これにより、ハウジング10に形成される流体通路11の向きや弁座20の位置に応じてバルブギア52とシャフト30の位置が定められる。なお、その際、バルブ体40が弁座20に着座した状態でバルブギア52とシャフト30の位置合わせを行うことが好ましい。
Subsequently, in step S50, the valve gear 52 and the shaft 30 are aligned. As a result, the positions of the valve gear 52 and the shaft 30 are determined according to the orientation of the fluid passage 11 formed in the housing 10 and the position of the valve seat 20. At that time, it is preferable to align the valve gear 52 and the shaft 30 with the valve body 40 seated on the valve seat 20.
次に、ステップS60で、バルブギア52とシャフト30の端部31とが駆動時に相対回転しないように固定する。図8および図9に示したように、第1実施形態では、バルブギア52とシャフト30の端部31とは溶接により固定される。これにより、バルブ装置1のハウジング10にバルブサブアセンブリ43が取り付けられる。
Next, in step S60, the valve gear 52 and the end 31 of the shaft 30 are fixed so as not to rotate relative to each other during driving. As shown in FIGS. 8 and 9, in the first embodiment, the valve gear 52 and the end portion 31 of the shaft 30 are fixed by welding. As a result, the valve subassembly 43 is attached to the housing 10 of the valve device 1.
以上説明した第1実施形態のバルブ装置1、および、その製造方法は、次の作用効果を奏する。
(1)第1実施形態のバルブ装置1が備えるシャフト30は、回転方向の位置決めを行うことの可能な位置決め部32を有している。そして、シャフト30とバルブギア52とは組付け時に相対回転可能な状態で嵌合する構成であると共に、そのシャフト30とバルブギア52とは駆動時に相対回転しないように固定されている。
これによれば、シャフト30が位置決め部32を有しているので、バルブ体40とシャフト30とをインサート成形により一体に形成する際、バルブ体40に対してシャフト30の回転方向の位置決めを行うことが可能である。そのため、バルブ体40とシャフト30とが一体となったバルブサブアセンブリ43の品質のばらつきを低減することができる。
また、シャフト30とバルブギア52とは組付け時に相対回転可能な状態で嵌合する構成であるので、ハウジング10の有する弁座20の位置に応じて、シャフト30とバルブギア52との回転角を調整することが可能である。そして、シャフト30とバルブギア52の回転角を調整した後、それらを駆動時に相対回転しないように固定することが可能である。したがって、このバルブ装置1は、バルブギア52およびシャフト30の種類の増加を抑制し、製造上のコストを低減することができる。 Thevalve device 1 of the first embodiment described above and the method for manufacturing the valve device 1 have the following effects.
(1) Theshaft 30 included in the valve device 1 of the first embodiment has a positioning portion 32 capable of positioning in the rotational direction. The shaft 30 and the valve gear 52 are fitted in a state where they can rotate relative to each other when assembled, and the shaft 30 and the valve gear 52 are fixed so as not to rotate relative to each other when driven.
According to this, since theshaft 30 has the positioning portion 32, when the valve body 40 and the shaft 30 are integrally formed by insert molding, the valve body 40 is positioned in the rotational direction of the shaft 30. It is possible. Therefore, it is possible to reduce the variation in quality of the valve subassembly 43 in which the valve body 40 and the shaft 30 are integrated.
Further, since theshaft 30 and the valve gear 52 are fitted in a state of being relatively rotatable at the time of assembly, the rotation angle of the shaft 30 and the valve gear 52 is adjusted according to the position of the valve seat 20 of the housing 10. It is possible to do. Then, after adjusting the rotation angles of the shaft 30 and the valve gear 52, it is possible to fix them so that they do not rotate relative to each other during driving. Therefore, the valve device 1 can suppress an increase in the types of the valve gear 52 and the shaft 30, and reduce the manufacturing cost.
(1)第1実施形態のバルブ装置1が備えるシャフト30は、回転方向の位置決めを行うことの可能な位置決め部32を有している。そして、シャフト30とバルブギア52とは組付け時に相対回転可能な状態で嵌合する構成であると共に、そのシャフト30とバルブギア52とは駆動時に相対回転しないように固定されている。
これによれば、シャフト30が位置決め部32を有しているので、バルブ体40とシャフト30とをインサート成形により一体に形成する際、バルブ体40に対してシャフト30の回転方向の位置決めを行うことが可能である。そのため、バルブ体40とシャフト30とが一体となったバルブサブアセンブリ43の品質のばらつきを低減することができる。
また、シャフト30とバルブギア52とは組付け時に相対回転可能な状態で嵌合する構成であるので、ハウジング10の有する弁座20の位置に応じて、シャフト30とバルブギア52との回転角を調整することが可能である。そして、シャフト30とバルブギア52の回転角を調整した後、それらを駆動時に相対回転しないように固定することが可能である。したがって、このバルブ装置1は、バルブギア52およびシャフト30の種類の増加を抑制し、製造上のコストを低減することができる。 The
(1) The
According to this, since the
Further, since the
(2)第1実施形態では、位置決め部32は、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31に設けられている。
これにより、従来の製品に対してシャフト30の長さを変えることなく、位置決め部32を設けることが可能である。したがって、バルブ装置1の体格の大型化を防ぐことができる。 (2) In the first embodiment, the positioningportion 32 is provided at the end portion 31 of the shaft 30 which is a portion of the shaft 30 where the valve gear 52 is fitted.
This makes it possible to provide thepositioning portion 32 without changing the length of the shaft 30 with respect to the conventional product. Therefore, it is possible to prevent the valve device 1 from becoming large in size.
これにより、従来の製品に対してシャフト30の長さを変えることなく、位置決め部32を設けることが可能である。したがって、バルブ装置1の体格の大型化を防ぐことができる。 (2) In the first embodiment, the positioning
This makes it possible to provide the
(3)第1実施形態では、位置決め部32は、シャフト30の端部31の周方向の一部が円に対して径方向内側に凹む形状である。一方、バルブギア52の嵌合穴57は円形である。そして、シャフト30とバルブギア52とは溶接により固定されている。
これにより、シャフト30に対して位置決め部32を簡素な構成で設けることが可能である。したがって、製造上のコストを低減することができる。 (3) In the first embodiment, the positioningportion 32 has a shape in which a part of the end portion 31 of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle. On the other hand, the fitting hole 57 of the valve gear 52 is circular. The shaft 30 and the valve gear 52 are fixed by welding.
This makes it possible to provide thepositioning portion 32 with respect to the shaft 30 in a simple configuration. Therefore, the manufacturing cost can be reduced.
これにより、シャフト30に対して位置決め部32を簡素な構成で設けることが可能である。したがって、製造上のコストを低減することができる。 (3) In the first embodiment, the positioning
This makes it possible to provide the
(4)第1実施形態では、バルブ装置1の製造方法は、シャフト30に設けられた位置決め部32によりシャフト30の回転方向の位置決めをした状態で、シャフト30とバルブ体40とをインサート成形により一体に形成する。その後、バルブギア52とシャフト30とを相対回転可能な状態で嵌合し、バルブギア52とシャフト30との位置合わせを行った後に、バルブギア52とシャフト30とを溶接により固定する。
この製造方法により、バルブサブアセンブリ43の品質のばらつきを低減し、且つ、バルブギア52およびシャフト30の種類の増加を抑制し、製造上のコストを低減することができる。 (4) In the first embodiment, the method of manufacturing thevalve device 1 is to insert-mold the shaft 30 and the valve body 40 in a state where the shaft 30 is positioned in the rotational direction by the positioning portion 32 provided on the shaft 30. Form integrally. After that, the valve gear 52 and the shaft 30 are fitted in a relatively rotatable state, the valve gear 52 and the shaft 30 are aligned, and then the valve gear 52 and the shaft 30 are fixed by welding.
By this manufacturing method, it is possible to reduce the variation in the quality of thevalve subassembly 43, suppress the increase in the types of the valve gear 52 and the shaft 30, and reduce the manufacturing cost.
この製造方法により、バルブサブアセンブリ43の品質のばらつきを低減し、且つ、バルブギア52およびシャフト30の種類の増加を抑制し、製造上のコストを低減することができる。 (4) In the first embodiment, the method of manufacturing the
By this manufacturing method, it is possible to reduce the variation in the quality of the
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して主にシャフト30の位置決め部321の構成を変更したものである。 (Second Embodiment)
The second embodiment will be described. The second embodiment is mainly a modification of the configuration of thepositioning portion 321 of the shaft 30 with respect to the first embodiment.
第2実施形態について説明する。第2実施形態は、第1実施形態に対して主にシャフト30の位置決め部321の構成を変更したものである。 (Second Embodiment)
The second embodiment will be described. The second embodiment is mainly a modification of the configuration of the
図14および図15に示すように、第2実施形態では、シャフト30に設けられる位置決め部321は、シャフト中間部34に設けられている。なお、シャフト中間部34とは、シャフト30のうちバルブギア52が嵌合する端部31と、バルブ体40にインサートされる部位との間の部位である。また、位置決め部321は、シャフト中間部34のうち、シャフト30の段差部35に接するように設けられている。また、位置決め部321は、シャフト中間部34のうち、ベアリング21およびシール部材22の機能に影響を与えることの無い位置に設けられている。
As shown in FIGS. 14 and 15, in the second embodiment, the positioning portion 321 provided on the shaft 30 is provided on the shaft intermediate portion 34. The shaft intermediate portion 34 is a portion of the shaft 30 between the end portion 31 into which the valve gear 52 is fitted and the portion inserted into the valve body 40. Further, the positioning portion 321 is provided so as to be in contact with the stepped portion 35 of the shaft 30 in the shaft intermediate portion 34. Further, the positioning portion 321 is provided at a position in the shaft intermediate portion 34 that does not affect the functions of the bearing 21 and the seal member 22.
位置決め部321は、シャフト30の周方向の一部が円に対して径方向内側に凹む形状とされている。具体的には、位置決め部321は、シャフト中間部34の周方向の一部が直線状に切り取られたいわゆるDカット形状とされている。第2実施形態の位置決め部321も、第1実施形態と同様に、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。すなわち、バルブサブアセンブリ43の射出形成時にシャフト30およびプレート33を金型に設置する際、シャフト中間部34に設けられた位置決め部321と金型の内壁面とを当接させることで、シャフト30の回転方向の位置決めが行われる。
The positioning portion 321 has a shape in which a part of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle. Specifically, the positioning portion 321 has a so-called D-cut shape in which a part of the shaft intermediate portion 34 in the circumferential direction is cut out in a straight line. Similar to the first embodiment, the positioning portion 321 of the second embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded. That is, when the shaft 30 and the plate 33 are installed in the mold at the time of injection molding of the valve subassembly 43, the shaft 30 is brought into contact with the positioning portion 321 provided in the shaft intermediate portion 34 and the inner wall surface of the mold. Positioning in the direction of rotation is performed.
第2実施形態では、バルブギア52が嵌合する側のシャフト30の端部31は、軸方向から視て円形とされている。そのため、第2実施形態では、シャフト30とバルブギア52との固定方法として、溶接および加締めのいずれの方法も採用することが可能である。
In the second embodiment, the end 31 of the shaft 30 on the side where the valve gear 52 is fitted is circular when viewed from the axial direction. Therefore, in the second embodiment, both welding and crimping methods can be adopted as the fixing method between the shaft 30 and the valve gear 52.
シャフト30の端部31とバルブギア52とを溶接により固定する方法については、第1実施形態で説明したので、その説明を省略する。その代り、第2実施形態では、シャフト30とバルブギア52を加締めにより固定する方法について説明する。
Since the method of fixing the end 31 of the shaft 30 and the valve gear 52 by welding has been described in the first embodiment, the description thereof will be omitted. Instead, in the second embodiment, a method of fixing the shaft 30 and the valve gear 52 by crimping will be described.
図16に示すように、第2実施形態では、バルブギア52がシャフト30の端部31に嵌合する嵌合穴571は、径方向の凹凸が周方向に並ぶ形状である。本明細書では、この形状を、花びら形状と呼ぶ。なお、その花びら形状の内接円の直径は、シャフト30の端部31の外径と同一であるか、または僅かに大きく形成される。そのため、バルブギア52の嵌合穴571に形成された花びら形状とシャフト30の端部31とは相対回転可能な状態で嵌合する。
As shown in FIG. 16, in the second embodiment, the fitting hole 571 in which the valve gear 52 fits into the end portion 31 of the shaft 30 has a shape in which irregularities in the radial direction are arranged in the circumferential direction. In the present specification, this shape is referred to as a petal shape. The diameter of the petal-shaped inscribed circle is the same as or slightly larger than the outer diameter of the end 31 of the shaft 30. Therefore, the petal shape formed in the fitting hole 571 of the valve gear 52 and the end portion 31 of the shaft 30 are fitted in a relatively rotatable state.
バルブギア52とシャフト30との位置合わせは、ハウジング10のバルブ室15にバルブサブアセンブリ43を配置した状態で行われる。その際、図17に示すように、ハウジング10のバルブ室15にバルブサブアセンブリ43を配置した状態で、バルブサブアセンブリ43の周方向の一部を、ハウジング10のバルブ室15に設けられた第1当接部81に当接する。この状態で、EGR通路18に設けられた弁座部材19の弁座20にバルブ体40が着座し、EGR通路18が閉塞される。
The alignment of the valve gear 52 and the shaft 30 is performed with the valve subassembly 43 arranged in the valve chamber 15 of the housing 10. At that time, as shown in FIG. 17, with the valve subassembly 43 arranged in the valve chamber 15 of the housing 10, a part of the valve subassembly 43 in the circumferential direction is provided in the valve chamber 15 of the housing 10. 1 Contact the contact portion 81. In this state, the valve body 40 is seated on the valve seat 20 of the valve seat member 19 provided in the EGR passage 18, and the EGR passage 18 is closed.
次に、図18および図19に示すように、ハウジング10のバルブ室15側から駆動室51側に突出したシャフト30の端部31に対し、バルブギア52の嵌合穴571を嵌合する。その際、図18に示すように、バルブギア52の周方向の一部を、駆動室51に設けられた第2当接部82に当接する。これにより、ハウジング10に形成される流体通路11の向きおよび弁座20の位置に応じてバルブギア52とシャフト30の位置が定められる。また、製造公差などによる寸法ばらつきが、シャフト30とバルブギア52との位置合わせにより吸収される。
Next, as shown in FIGS. 18 and 19, the fitting hole 571 of the valve gear 52 is fitted to the end 31 of the shaft 30 protruding from the valve chamber 15 side of the housing 10 to the drive chamber 51 side. At that time, as shown in FIG. 18, a part of the valve gear 52 in the circumferential direction comes into contact with the second contact portion 82 provided in the drive chamber 51. As a result, the positions of the valve gear 52 and the shaft 30 are determined according to the orientation of the fluid passage 11 formed in the housing 10 and the position of the valve seat 20. Further, dimensional variations due to manufacturing tolerances and the like are absorbed by the alignment of the shaft 30 and the valve gear 52.
続いて、図19の矢印Fに示すように、シャフト30の端部31を図示しない治具などにより軸方向から押圧する、いわゆるローリング加締めを行う。これにより、図20および図21に示すように、シャフト30の端部31の金属材料が塑性流動し、バルブギア52の花びら形状の凹部に入り込む。そのため、シャフト30とバルブギア52とが駆動時に相対回転しないように固定される。これにより、ハウジング10にバルブサブアセンブリ43が取り付けられる。
Subsequently, as shown by the arrow F in FIG. 19, so-called rolling crimping is performed by pressing the end 31 of the shaft 30 from the axial direction with a jig (not shown) or the like. As a result, as shown in FIGS. 20 and 21, the metal material at the end 31 of the shaft 30 plastically flows and enters the petal-shaped recess of the valve gear 52. Therefore, the shaft 30 and the valve gear 52 are fixed so as not to rotate relative to each other during driving. As a result, the valve subassembly 43 is attached to the housing 10.
ここで、第2実施形態と比較するため、比較例のバルブ装置においてシャフト300の端部とバルブギア520とを固定する方法について説明する。
Here, in order to compare with the second embodiment, a method of fixing the end of the shaft 300 and the valve gear 520 in the valve device of the comparative example will be described.
図36に比較例のバルブ装置が備えるバルブサブアセンブリ430を示し、図37に比較例のバルブ装置が備えるバルブギア520を示す。図36に示すように、比較例では、バルブサブアセンブリ430のシャフト300の端部が、シャフト300の軸を挟んで対向する2つの平面301、302を有する形状とされている。以下、この部位を2面幅形状部320という。
また、図37に示すように、比較例では、バルブギア520の嵌合穴570が、シャフト300の端部に設けられた2面幅形状部320に対応した形状の2面幅形状穴とされている。そのため、比較例のバルブ装置は、シャフト300の端部に設けられた2面幅形状部320に対し、バルブギア520の嵌合穴570(すなわち、2面幅形状穴)が相対回転しないように嵌合固定される。したがって、このバルブ装置1は、シャフト300に対するバルブ体40の向きとバルブギア520の向きとが一義的に定まる構成となっている。 FIG. 36 shows thevalve subassembly 430 included in the valve device of the comparative example, and FIG. 37 shows the valve gear 520 included in the valve device of the comparative example. As shown in FIG. 36, in the comparative example, the end portion of the shaft 300 of the valve subassembly 430 has a shape having two planes 301 and 302 facing each other across the shaft of the shaft 300. Hereinafter, this portion is referred to as a width across flats shape portion 320.
Further, as shown in FIG. 37, in the comparative example, thefitting hole 570 of the valve gear 520 is a two-sided width-shaped hole having a shape corresponding to the two-sided width-shaped portion 320 provided at the end of the shaft 300. There is. Therefore, in the valve device of the comparative example, the fitting hole 570 (that is, the two-sided width shape hole) of the valve gear 520 is fitted so as not to rotate relative to the two-sided width shape portion 320 provided at the end of the shaft 300. It is fixed together. Therefore, the valve device 1 has a configuration in which the orientation of the valve body 40 with respect to the shaft 300 and the orientation of the valve gear 520 are uniquely determined.
また、図37に示すように、比較例では、バルブギア520の嵌合穴570が、シャフト300の端部に設けられた2面幅形状部320に対応した形状の2面幅形状穴とされている。そのため、比較例のバルブ装置は、シャフト300の端部に設けられた2面幅形状部320に対し、バルブギア520の嵌合穴570(すなわち、2面幅形状穴)が相対回転しないように嵌合固定される。したがって、このバルブ装置1は、シャフト300に対するバルブ体40の向きとバルブギア520の向きとが一義的に定まる構成となっている。 FIG. 36 shows the
Further, as shown in FIG. 37, in the comparative example, the
図38および図39は、ハウジング10にバルブサブアセンブリ430が取り付けられた状態を示している。上述した比較例の構成では、ハウジング10の有する弁座20とバルブサブアセンブリ430との回転角に関し、製造公差によるばらつきが生じることがある。そのため、比較例では、駆動室51に調整装置830を備えている。調整装置830は、ハウジング10に固定されるねじ穴部材840と、そのねじ穴部材840に螺合するねじ部材850により構成されている。
38 and 39 show a state in which the valve subassembly 430 is attached to the housing 10. In the configuration of the comparative example described above, the rotation angle between the valve seat 20 included in the housing 10 and the valve subassembly 430 may vary due to manufacturing tolerances. Therefore, in the comparative example, the drive chamber 51 is provided with the adjusting device 830. The adjusting device 830 is composed of a screw hole member 840 fixed to the housing 10 and a screw member 850 screwed into the screw hole member 840.
ハウジング10にバルブサブアセンブリ430が取り付けられた状態で、バルブギア520の周方向の一部が調整装置830のねじ部材850に当接する。この状態で、ねじ部材850を軸周りに回転すると、ねじ穴部材840からのねじ部材850の突出量が変化し、バルブサブアセンブリ430の回転角を調整することが可能である。この調整により、バルブギア520の周方向の一部が調整装置830のねじ部材850に当接した状態で、EGR通路18に設けられた弁座部材19の弁座20にバルブ体40が着座し、EGR通路18が閉塞される。
With the valve subassembly 430 attached to the housing 10, a part of the valve gear 520 in the circumferential direction comes into contact with the screw member 850 of the adjusting device 830. When the screw member 850 is rotated about the axis in this state, the amount of protrusion of the screw member 850 from the screw hole member 840 changes, and the rotation angle of the valve subassembly 430 can be adjusted. By this adjustment, the valve body 40 is seated on the valve seat 20 of the valve seat member 19 provided in the EGR passage 18 in a state where a part of the valve gear 520 in the circumferential direction is in contact with the screw member 850 of the adjusting device 830. The EGR passage 18 is blocked.
このような比較例のバルブ装置に対し、上述した第2実施形態のバルブ装置1は、次の作用効果を奏する。
すなわち、第2実施形態のバルブ装置1は、ハウジング10の流体通路11にバルブサブアセンブリ43を配置した状態で、シャフト30とバルブギア52との回転角を調整した後、それらを駆動時に相対回転しないように固定することが可能である。これにより、第2実施形態のバルブ装置1は、比較例のバルブ装置に設けられていた調整装置830およびその調整工程を廃止し、製造上のコストを低減することができる。なお、この作用効果は、第1実施形態で説明したバルブ装置1の構成においても、同様に奏することができるものである。その他、第2実施形態のバルブ装置1は、第1実施形態と同様の作用効果を奏することが可能である。 Thevalve device 1 of the second embodiment described above has the following effects on the valve device of the comparative example.
That is, thevalve device 1 of the second embodiment does not rotate relative to the valve gear 52 after adjusting the rotation angles of the shaft 30 and the valve gear 52 in a state where the valve subassembly 43 is arranged in the fluid passage 11 of the housing 10. It is possible to fix it like this. As a result, the valve device 1 of the second embodiment can eliminate the adjusting device 830 and the adjusting process thereof provided in the valve device of the comparative example, and can reduce the manufacturing cost. It should be noted that this effect can be similarly exerted in the configuration of the valve device 1 described in the first embodiment. In addition, the valve device 1 of the second embodiment can exert the same effect as that of the first embodiment.
すなわち、第2実施形態のバルブ装置1は、ハウジング10の流体通路11にバルブサブアセンブリ43を配置した状態で、シャフト30とバルブギア52との回転角を調整した後、それらを駆動時に相対回転しないように固定することが可能である。これにより、第2実施形態のバルブ装置1は、比較例のバルブ装置に設けられていた調整装置830およびその調整工程を廃止し、製造上のコストを低減することができる。なお、この作用効果は、第1実施形態で説明したバルブ装置1の構成においても、同様に奏することができるものである。その他、第2実施形態のバルブ装置1は、第1実施形態と同様の作用効果を奏することが可能である。 The
That is, the
(第3実施形態)
第3実施形態について説明する。第3実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Third Embodiment)
The third embodiment will be described. The third embodiment is also a modification of the configuration of the positioning portion of theshaft 30 mainly with respect to the first embodiment and the like.
第3実施形態について説明する。第3実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Third Embodiment)
The third embodiment will be described. The third embodiment is also a modification of the configuration of the positioning portion of the
図22および図23に示すように、第3実施形態も、第2実施形態と同様に、シャフト30に設けられる位置決め部322は、シャフト中間部34に設けられている。位置決め部322は、シャフト中間部34のうち、ベアリング21およびシール部材22の機能に影響を与えることの無い位置に設けられている。
As shown in FIGS. 22 and 23, in the third embodiment as in the second embodiment, the positioning portion 322 provided on the shaft 30 is provided on the shaft intermediate portion 34. The positioning portion 322 is provided at a position in the shaft intermediate portion 34 that does not affect the functions of the bearing 21 and the seal member 22.
具体的には、シール部材22は、ハウジング10に固定される環状の金属カバー221、およびその金属カバー221の内側に設けられる樹脂シール222、その樹脂シール222を支持する部材223を備えている。樹脂シール222がシャフト30の外壁に接する箇所がシール面となる。一方、シャフト30の位置決め部322は、シール部材22が備える金属カバー221の内側、且つ、樹脂シール222のシール面よりもバルブ体40側に設けられている。したがって、位置決め部322は、シール部材22のシール機能に影響を与えることの無い位置に設けられている。また、位置決め部322は、シール部材22が有する金属カバー221の内側に設けられているので、シャフト30の全長に影響を与えることも無い。
Specifically, the seal member 22 includes an annular metal cover 221 fixed to the housing 10, a resin seal 222 provided inside the metal cover 221 and a member 223 that supports the resin seal 222. The portion where the resin seal 222 is in contact with the outer wall of the shaft 30 is the seal surface. On the other hand, the positioning portion 322 of the shaft 30 is provided inside the metal cover 221 included in the seal member 22 and on the valve body 40 side of the seal surface of the resin seal 222. Therefore, the positioning portion 322 is provided at a position that does not affect the sealing function of the sealing member 22. Further, since the positioning portion 322 is provided inside the metal cover 221 of the seal member 22, it does not affect the total length of the shaft 30.
位置決め部322は、シャフト30の周方向の一部が円に対して径方向内側に凹む形状とされている。具体的には、位置決め部322は、シャフト30の周方向の一部が直線状に切り取られたいわゆるDカット形状とされている。第3実施形態の位置決め部32も、第1実施形態等と同様に、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。
The positioning portion 322 has a shape in which a part of the shaft 30 in the circumferential direction is recessed inward in the radial direction with respect to the circle. Specifically, the positioning portion 322 has a so-called D-cut shape in which a part of the shaft 30 in the circumferential direction is cut out in a straight line. The positioning unit 32 of the third embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded, as in the first embodiment and the like.
また、バルブギア52が嵌合する側のシャフト30の端部31は、軸方向から視て円形とされている。そのため、第3実施形態でも、第2実施形態と同様に、シャフト30とバルブギア52との固定方法として、溶接および加締めのいずれの方法も採用することが可能である。
Further, the end 31 of the shaft 30 on the side where the valve gear 52 is fitted is circular when viewed from the axial direction. Therefore, in the third embodiment as well as in the second embodiment, either welding or crimping can be adopted as the fixing method between the shaft 30 and the valve gear 52.
以上説明した第3実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することが可能である。
The valve device 1 of the third embodiment described above can exert the same effect as that of the first embodiment and the like.
(第4実施形態)
第4実施形態について説明する。第4実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Fourth Embodiment)
A fourth embodiment will be described. The fourth embodiment is also a modification of the configuration of the positioning portion of theshaft 30 with respect to the first embodiment and the like.
第4実施形態について説明する。第4実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Fourth Embodiment)
A fourth embodiment will be described. The fourth embodiment is also a modification of the configuration of the positioning portion of the
図24~図26に示すように、第4実施形態では、シャフト30に設けられる位置決め部323は、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31からバルブ体40とは反対側に突出するように設けられている。この位置決め部323は、シャフト30の軸を挟んで対向する2面を有する2面幅形状である。第4実施形態の位置決め部323も、第1実施形態等と同様に、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。
As shown in FIGS. 24 to 26, in the fourth embodiment, the positioning portion 323 provided on the shaft 30 is a portion of the shaft 30 from which the valve gear 52 is fitted to the valve body 40 from the end portion 31 of the shaft 30. Is provided so as to project to the opposite side. The positioning portion 323 has a two-sided width shape having two surfaces facing each other with the shaft 30 interposed therebetween. Similar to the first embodiment, the positioning unit 323 of the fourth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded.
また、第4実施形態では、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31は、軸方向から視て円形とされている。一方、バルブギア52の嵌合穴57は円形とされる。したがって、第4実施形態では、シャフト30の端部31とバルブギア52とを溶接により全周を固定することが可能である。
Further, in the fourth embodiment, the end portion 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted, is circular when viewed from the axial direction. On the other hand, the fitting hole 57 of the valve gear 52 is circular. Therefore, in the fourth embodiment, the end portion 31 of the shaft 30 and the valve gear 52 can be fixed on the entire circumference by welding.
以上説明した第4実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することが可能である。
なお、第4実施形態の変形例として、図27に示すように、位置決め部323を構成する2面幅形状をシャフト30の外径の範囲内で径方向に大きく形成してもよい。 Thevalve device 1 of the fourth embodiment described above can exert the same effect as that of the first embodiment and the like.
As a modification of the fourth embodiment, as shown in FIG. 27, the width across flats forming thepositioning portion 323 may be formed large in the radial direction within the range of the outer diameter of the shaft 30.
なお、第4実施形態の変形例として、図27に示すように、位置決め部323を構成する2面幅形状をシャフト30の外径の範囲内で径方向に大きく形成してもよい。 The
As a modification of the fourth embodiment, as shown in FIG. 27, the width across flats forming the
(第5実施形態)
第5実施形態について説明する。第5実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Fifth Embodiment)
A fifth embodiment will be described. The fifth embodiment is also a modification of the configuration of the positioning portion of theshaft 30 with respect to the first embodiment and the like.
第5実施形態について説明する。第5実施形態も、第1実施形態等に対して主にシャフト30の位置決め部の構成を変更したものである。 (Fifth Embodiment)
A fifth embodiment will be described. The fifth embodiment is also a modification of the configuration of the positioning portion of the
図28および図29に示すように、第5実施形態でも、シャフト30に設けられる位置決め部324は、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31からバルブ体40とは反対側に突出するように設けられている。この位置決め部324は、シャフト30の軸を挟んで対向する2面の距離が先端に向けて次第に近づく山形形状である。第5実施形態の位置決め部324も、第1実施形態等と同様に、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。具体的には、インサート成形の際、シャフト30のうち山形形状とされた位置決め部324を金型または治具などで支持することで、シャフト30の回転方向の位置決めを行うことが可能である。したがって、製造工程を簡素にすることで、製造上のコストを低減することができる。
As shown in FIGS. 28 and 29, also in the fifth embodiment, the positioning portion 324 provided on the shaft 30 is connected to the valve body 40 from the end 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted. Is provided so as to project to the opposite side. The positioning portion 324 has a chevron shape in which the distance between the two surfaces facing each other across the shaft of the shaft 30 gradually approaches toward the tip. Similar to the first embodiment, the positioning unit 324 of the fifth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded. Specifically, at the time of insert molding, the shaft 30 can be positioned in the rotational direction by supporting the chevron-shaped positioning portion 324 of the shaft 30 with a mold or a jig. Therefore, by simplifying the manufacturing process, the manufacturing cost can be reduced.
また、第5実施形態でも、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31は、軸方向から視て円形とされている。一方、バルブギア52の嵌合穴57は円形とされる。したがって、第5実施形態でも、第4実施形態と同様に、シャフト30の端部31とバルブギア52とを溶接により全周を固定することが可能である。
Further, also in the fifth embodiment, the end portion 31 of the shaft 30, which is a portion of the shaft 30 where the valve gear 52 is fitted, is circular when viewed from the axial direction. On the other hand, the fitting hole 57 of the valve gear 52 is circular. Therefore, also in the fifth embodiment, as in the fourth embodiment, the end portion 31 of the shaft 30 and the valve gear 52 can be fixed on the entire circumference by welding.
以上説明した第5実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することが可能である。
The valve device 1 of the fifth embodiment described above can exert the same effect as that of the first embodiment and the like.
(第6実施形態)
第6実施形態について説明する。第6実施形態も、第1実施形態等に対して主にシャフト30の位置の構成を変更したものである。 (Sixth Embodiment)
The sixth embodiment will be described. The sixth embodiment is also a modification of the configuration of the position of theshaft 30 mainly with respect to the first embodiment and the like.
第6実施形態について説明する。第6実施形態も、第1実施形態等に対して主にシャフト30の位置の構成を変更したものである。 (Sixth Embodiment)
The sixth embodiment will be described. The sixth embodiment is also a modification of the configuration of the position of the
図30および図31に示すように、第6実施形態のシャフト30の位置決め部325は、第1実施形態と同様に、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31に設けられている。この位置決め部325は、シャフト30の端部31の径方向の外壁が偶数の多角形とされた形状である。
As shown in FIGS. 30 and 31, the positioning portion 325 of the shaft 30 of the sixth embodiment is the end portion 31 of the shaft 30 which is a portion of the shaft 30 to which the valve gear 52 is fitted, as in the first embodiment. It is provided in. The positioning portion 325 has an even-numbered polygonal outer wall in the radial direction of the end portion 31 of the shaft 30.
一方、バルブギア52の嵌合穴571は、花びら形状を用いることが可能である。その嵌合穴571に形成された花びら形状の内接円の直径は、シャフト30の端部31に設けられる位置決め部325の多角形の外接円の直径と同一であるか、または僅かに大きく形成される。そのため、バルブギア52の嵌合穴571に形成された花びら形状とシャフト30の端部31とは相対回転可能な状態で嵌合する。その状態で、シャフト30とバルブギア52との回転方向の位置決めがされる。その後、シャフト30とバルブギア52とは、シャフト30の端部31を塑性流動させる加締めにより固定される。
On the other hand, the fitting hole 571 of the valve gear 52 can use a petal shape. The diameter of the petal-shaped inscribed circle formed in the fitting hole 571 is the same as or slightly larger than the diameter of the polygonal circumscribed circle of the positioning portion 325 provided at the end 31 of the shaft 30. Will be done. Therefore, the petal shape formed in the fitting hole 571 of the valve gear 52 and the end portion 31 of the shaft 30 are fitted in a relatively rotatable state. In that state, the shaft 30 and the valve gear 52 are positioned in the rotational direction. After that, the shaft 30 and the valve gear 52 are fixed by crimping so that the end portion 31 of the shaft 30 is plastically flowed.
第6実施形態の位置決め部325も、第1実施形態等と同様に、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。具体的には、インサート成形の際、位置決め部325を構成する多角形のうちシャフト30の軸に対して対向する2つの面をイジェクト方向と平行に配置し、その2つの面と金型の内壁面とを当接させる。なお、イジェクト方向とは、インサート成形時に金型からバルブサブアセンブリ43を取り出す方向である。このようにシャフト30の位置決め部325を金型に配置することで、インサート成形の型開き工程において、金型からバルブサブアセンブリ43を容易に取り出すことが可能である。したがって、製造上のコストを低減することができる。
The positioning unit 325 of the sixth embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded, as in the first embodiment and the like. Specifically, at the time of insert molding, two faces of the polygons constituting the positioning portion 325 facing the axis of the shaft 30 are arranged parallel to the eject direction, and the two faces and the inside of the mold are arranged. Make contact with the wall surface. The eject direction is the direction in which the valve subassembly 43 is taken out from the mold at the time of insert molding. By arranging the positioning portion 325 of the shaft 30 in the mold in this way, the valve subassembly 43 can be easily taken out from the mold in the mold opening step of insert molding. Therefore, the manufacturing cost can be reduced.
以上説明した第6実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することが可能である。
The valve device 1 of the sixth embodiment described above can exert the same effects as those of the first embodiment and the like.
(第7実施形態)
第7実施形態について説明する。第7実施形態は、第1実施形態等に対して主にシャフト30の位置決め部とバルブ体40の構成の一部を変更したものである。 (7th Embodiment)
A seventh embodiment will be described. The seventh embodiment is a modification of the first embodiment and the like, in which a part of the configuration of the positioning portion of theshaft 30 and the valve body 40 is mainly changed.
第7実施形態について説明する。第7実施形態は、第1実施形態等に対して主にシャフト30の位置決め部とバルブ体40の構成の一部を変更したものである。 (7th Embodiment)
A seventh embodiment will be described. The seventh embodiment is a modification of the first embodiment and the like, in which a part of the configuration of the positioning portion of the
図32および図33に示すように、第7実施形態では、シャフト30に設けられる位置決め部326は、シャフト30のうちバルブ体40にインサートされる部位に設けられている。具体的には、位置決め部326は、シャフト30の有するプレート33のうちシャフト30の周方向を向く面に設けられている。そして、位置決め部326は、バルブ体40の一部に設けられた穴44の深部に露出するように設けられている。
As shown in FIGS. 32 and 33, in the seventh embodiment, the positioning portion 326 provided on the shaft 30 is provided at a portion of the shaft 30 to be inserted into the valve body 40. Specifically, the positioning portion 326 is provided on the surface of the plate 33 of the shaft 30 that faces the circumferential direction of the shaft 30. The positioning portion 326 is provided so as to be exposed in the deep portion of the hole 44 provided in a part of the valve body 40.
第7実施形態の位置決め部326も、シャフト30とバルブ体40とをインサート成形する際に、シャフト30の回転方向の位置決めに用いられる。図34および図35では、射出成形の各工程のうち、型開き工程の一例を示している。
The positioning unit 326 of the seventh embodiment is also used for positioning the shaft 30 in the rotational direction when the shaft 30 and the valve body 40 are insert-molded. In FIGS. 34 and 35, an example of a mold opening step is shown in each step of injection molding.
図34および図35に示すように、下金型72には、イジェクト方向に延びる支持部73が設けられている。その支持部73は、プレート33のうちシャフト30の周方向を向く面に設けられた位置決め部326に当接している。そのため、射出成形において、シャフト30を下金型72に設置する際、支持部73は、シャフト30の回転方向の位置決めを行うことが可能である。すなわち、シャフト30は、位置決め部326と下金型72の支持部73とが当接した位置で、軸周りの回転が規制される。
As shown in FIGS. 34 and 35, the lower mold 72 is provided with a support portion 73 extending in the eject direction. The support portion 73 is in contact with a positioning portion 326 provided on a surface of the plate 33 facing the circumferential direction of the shaft 30. Therefore, in injection molding, when the shaft 30 is installed on the lower mold 72, the support portion 73 can position the shaft 30 in the rotational direction. That is, the rotation of the shaft 30 is restricted at the position where the positioning portion 326 and the support portion 73 of the lower mold 72 are in contact with each other.
射出成形の取出し工程において、バルブサブアセンブリ43が下金型72から取り出されると、バルブ本体のうち下金型72の支持部73が配置されていた箇所には、支持部73とほぼ同じ形状の穴44が形成される。そして、そのバルブ本体の穴44の深部には、シャフト30の位置決め部326が露出することとなる。
When the valve subassembly 43 is taken out from the lower mold 72 in the injection molding take-out process, the valve main body has almost the same shape as the support portion 73 at the portion where the support portion 73 of the lower mold 72 is arranged. A hole 44 is formed. Then, the positioning portion 326 of the shaft 30 is exposed in the deep portion of the hole 44 of the valve body.
以上説明した第7実施形態のバルブ装置1は、バルブサブアセンブリ43を射出成形する際、下金型72に設けた支持部73によりシャフト30の位置決め部326を支持し、シャフト30の回転方向の位置決めを行うものである。そのため、シャフト30に加工を加えることなくシャフト30の回転方向の位置決めを行うことが可能である。したがって、製造上のコストを低減することができる。
In the valve device 1 of the seventh embodiment described above, when the valve subassembly 43 is injection-molded, the support portion 73 provided on the lower mold 72 supports the positioning portion 326 of the shaft 30, and the valve device 1 in the rotation direction of the shaft 30 It is for positioning. Therefore, it is possible to position the shaft 30 in the rotational direction without processing the shaft 30. Therefore, the manufacturing cost can be reduced.
また、第7実施形態のバルブ装置1では、シャフト30のうちバルブギア52が嵌合する部位とは異なる部位に位置決め部326を設けるので、シャフト30のうちバルブギア52が嵌合する部位であるシャフト30の端部31を円形とすることが可能である。したがって、第7実施形態では、シャフト30とバルブギア52との固定方法として、溶接および加締めのいずれの方法も採用することが可能である。
その他、第7実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することができる。 Further, in thevalve device 1 of the seventh embodiment, since the positioning portion 326 is provided in the shaft 30 at a portion different from the portion where the valve gear 52 fits, the shaft 30 which is the portion of the shaft 30 where the valve gear 52 fits. The end 31 of the can be circular. Therefore, in the seventh embodiment, both welding and crimping methods can be adopted as the fixing method between the shaft 30 and the valve gear 52.
In addition, thevalve device 1 of the seventh embodiment can exhibit the same effects as those of the first embodiment and the like.
その他、第7実施形態のバルブ装置1は、第1実施形態等と同様の作用効果を奏することができる。 Further, in the
In addition, the
(他の実施形態)
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, they are clearly limited to a specific number. It is not limited to the specific number except when it is done. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, they are clearly limited to a specific number. It is not limited to the specific number except when it is done. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
(1)上記各実施形態では、バルブ装置1は、排気還流系150に用いられるEGR弁として説明したが、これに限らない。バルブ装置1は、例えば燃料電池の気体燃料の流量調整など、流体通路を流れる流体の流量を調整する種々の用途に用いることが可能である。
(1) In each of the above embodiments, the valve device 1 has been described as an EGR valve used in the exhaust gas recirculation system 150, but the present invention is not limited to this. The valve device 1 can be used for various purposes of adjusting the flow rate of the fluid flowing through the fluid passage, such as adjusting the flow rate of the gaseous fuel of the fuel cell.
(2)上記第7実施形態では、下金型72に支持部73を設けたが、これに限らず、支持部73は上金型71に設けてもよい。また、支持部73はシャフト30が有するプレート33を支持する構成としたが、これに限らず、支持部73はシャフト本体の一部を支持する構成としてもよい。なお、シャフト30はプレート33を有しない構成としてもよい。
(2) In the seventh embodiment, the support portion 73 is provided on the lower mold 72, but the present invention is not limited to this, and the support portion 73 may be provided on the upper mold 71. Further, the support portion 73 is configured to support the plate 33 of the shaft 30, but the present invention is not limited to this, and the support portion 73 may be configured to support a part of the shaft body. The shaft 30 may not have the plate 33.
Claims (15)
- バルブ装置において、
トルクを出力するモータ(60)と、
前記モータのトルクを伝達する複数のギア(52~55)を有する減速機構(50)と、
前記減速機構からトルクを伝達されて軸周りに回転するシャフト(30)と、
インサート成形により前記シャフトと一体に形成され、前記シャフトと共に回転するバルブ体(40)と、
前記バルブ体が回転可能に収容される流体通路(11)、および前記流体通路の一部に前記バルブ体が着座および離座する弁座(20)を有するハウジング(10)と、を備え、
前記シャフトは、回転方向の位置決めを行うことの可能な位置決め部(32、321~326)を有し、
前記減速機構の有する複数のギアのうち前記シャフトの端部に嵌合するバルブギア(52)と前記シャフトとは組付け時に相対回転可能な状態で嵌合する構成であると共に、前記バルブギアと前記シャフトとは駆動時に相対回転しないように固定されている、バルブ装置。 In the valve device
A motor (60) that outputs torque and
A reduction mechanism (50) having a plurality of gears (52 to 55) for transmitting the torque of the motor, and
A shaft (30) that rotates around an axis by transmitting torque from the reduction mechanism,
A valve body (40) that is integrally formed with the shaft by insert molding and rotates together with the shaft.
A fluid passage (11) in which the valve body is rotatably accommodated, and a housing (10) having a valve seat (20) in which the valve body is seated and detached are provided in a part of the fluid passage.
The shaft has positioning portions (32, 321 to 326) capable of positioning in the rotational direction.
Of the plurality of gears of the reduction mechanism, the valve gear (52) fitted to the end of the shaft and the shaft are fitted in a relatively rotatable state at the time of assembly, and the valve gear and the shaft are fitted. Is a valve device that is fixed so that it does not rotate relative to each other when driven. - 前記位置決め部(32)は、前記シャフトのうち前記バルブギアが嵌合する部位(31)に設けられている、請求項1に記載のバルブ装置。 The valve device according to claim 1, wherein the positioning portion (32) is provided at a portion (31) of the shaft where the valve gear is fitted.
- 前記位置決め部(32)は、前記シャフトの周方向の一部が円に対して径方向内側に凹む形状であり、
前記バルブギアが前記シャフトに嵌合する嵌合穴(57)は円形であり、
前記シャフトと前記バルブギアとは溶接により固定されている、請求項2に記載のバルブ装置。 The positioning portion (32) has a shape in which a part of the shaft in the circumferential direction is recessed inward in the radial direction with respect to the circle.
The fitting hole (57) into which the valve gear fits into the shaft is circular.
The valve device according to claim 2, wherein the shaft and the valve gear are fixed by welding. - 前記位置決め部(325)は、前記シャフトの径方向の外壁が偶数の多角形とされた形状であり、
前記バルブギアが前記シャフトに嵌合する嵌合穴(571)は、径方向の凹凸が周方向に並ぶ形状であり、
前記シャフトと前記バルブギアとは、前記シャフトの端部を塑性流動させた加締めにより固定されている、請求項2に記載のバルブ装置。 The positioning portion (325) has an even-numbered polygonal outer wall in the radial direction of the shaft.
The fitting hole (571) into which the valve gear is fitted to the shaft has a shape in which irregularities in the radial direction are lined up in the circumferential direction.
The valve device according to claim 2, wherein the shaft and the valve gear are fixed by crimping by plastically flowing the end portion of the shaft. - 前記位置決め部(321、322)は、前記シャフトのうち前記バルブギアが嵌合する部位と前記バルブ体にインサートされる部位との間の部位(34)に設けられており、
前記バルブギアが前記シャフトに嵌合する嵌合穴(57、571)は、径方向の凹凸が周方向に並ぶ形状、または円形であり、
前記シャフトと前記バルブギアとは、溶接または加締めにより固定されている、請求項1に記載のバルブ装置。 The positioning portion (321, 322) is provided at a portion (34) of the shaft between the portion where the valve gear is fitted and the portion inserted into the valve body.
The fitting holes (57, 571) into which the valve gear is fitted to the shaft have a shape or a circular shape in which radial irregularities are lined up in the circumferential direction.
The valve device according to claim 1, wherein the shaft and the valve gear are fixed by welding or crimping. - 前記位置決め部は、前記シャフトの周方向の一部が円に対して径方向内側に凹む形状である、請求項5に記載のバルブ装置。 The valve device according to claim 5, wherein the positioning portion has a shape in which a part of the shaft in the circumferential direction is recessed inward in the radial direction with respect to a circle.
- 前記バルブ装置は、前記ハウジングに対して前記シャフトを回転可能に支持するベアリング(21)と、
前記ハウジングに固定され、前記シャフトの外周に摺接し、前記流体通路と前記減速機構との間をシールするシール部材(22)と、をさらに備え、
前記位置決め部は、前記シャフトのうち、前記ベアリングおよび前記シール部材の機能に影響を与えることの無い位置に設けられている、請求項5または6に記載のバルブ装置。 The valve device includes a bearing (21) that rotatably supports the shaft with respect to the housing.
A sealing member (22) fixed to the housing, slidably contacting the outer periphery of the shaft, and sealing between the fluid passage and the speed reduction mechanism is further provided.
The valve device according to claim 5 or 6, wherein the positioning portion is provided at a position of the shaft that does not affect the functions of the bearing and the seal member. - 前記位置決め部(323、324)は、前記シャフトのうち前記バルブギアが嵌合する部位から前記バルブ体とは反対側に突出するように設けられており、
前記バルブギアが前記シャフトに嵌合する嵌合穴(57)は円形であり、
前記シャフトと前記バルブギアとは溶接により固定されている、請求項1に記載のバルブ装置。 The positioning portion (323, 324) is provided so as to project from a portion of the shaft where the valve gear fits to the side opposite to the valve body.
The fitting hole (57) into which the valve gear fits into the shaft is circular.
The valve device according to claim 1, wherein the shaft and the valve gear are fixed by welding. - 前記位置決め部(323)は、前記シャフトの軸を挟んで対向する2面を有する2面幅形状である、請求項8に記載のバルブ装置。 The valve device according to claim 8, wherein the positioning portion (323) has a two-sided width shape having two surfaces facing each other across the shaft of the shaft.
- 前記位置決め部(324)は、前記シャフトの軸を挟んで対向する2面の距離が先端に向けて次第に近づく山形形状である、請求項8に記載のバルブ装置。 The valve device according to claim 8, wherein the positioning portion (324) has a chevron shape in which the distance between two surfaces facing each other across the shaft of the shaft gradually approaches toward the tip.
- 前記位置決め部(326)は、前記シャフトのうち前記バルブ体にインサートされる部位に設けられており、
前記バルブ体の一部に設けられた穴(44)の深部に前記位置決め部が露出している構成であり、
前記バルブギアが前記シャフトに嵌合する嵌合穴(57、571)は、径方向の凹凸が周方向に並ぶ形状、または円形であり、
前記シャフトと前記バルブギアとは、溶接または加締めにより固定されている、請求項1に記載のバルブ装置。 The positioning portion (326) is provided at a portion of the shaft to be inserted into the valve body.
The positioning portion is exposed in the deep portion of the hole (44) provided in a part of the valve body.
The fitting holes (57, 571) into which the valve gear is fitted to the shaft have a shape or a circular shape in which radial irregularities are lined up in the circumferential direction.
The valve device according to claim 1, wherein the shaft and the valve gear are fixed by welding or crimping. - 前記シャフトは、前記シャフトのうち前記バルブ体にインサートされる部位に前記シャフトの中心から径方向外側に延びるプレート(33)を有しており、
前記位置決め部は、前記プレートのうち前記シャフトの周方向を向く面に設けられている、請求項11に記載のバルブ装置。 The shaft has a plate (33) extending radially outward from the center of the shaft at a portion of the shaft to be inserted into the valve body.
The valve device according to claim 11, wherein the positioning portion is provided on a surface of the plate facing the circumferential direction of the shaft. - トルクを出力するモータ(60)と、
前記モータのトルクを伝達する複数のギア(52~55)を有する減速機構(50)と、
前記減速機構からトルクを伝達されて軸周りに回転するシャフト(30)と、
インサート成形により前記シャフトと一体に形成され、前記シャフトと共に回転するバルブ体(40)と、
前記バルブ体が回転可能に収容される流体通路(11)、および前記流体通路の一部に前記バルブ体が着座および離座する弁座(20)を有するハウジング(10)と、を備えるバルブ装置の製造方法において、
前記シャフトに設けられた位置決め部(32、321~326)により前記シャフトの回転方向の位置決めを行い、前記シャフトと前記バルブ体とをインサート成形により一体に形成すること(S20、S30)と、
前記減速機構の有する複数のギアのうち前記シャフトの端部に嵌合するバルブギア(52)と前記シャフトとを相対回転可能な状態で嵌合すること(S40)と、
前記バルブギアと前記シャフトとの位置合わせを行うこと(S50)と、
前記バルブギアと前記シャフトとを溶接または加締めにより固定すること(S60)を含むバルブ装置の製造方法。 A motor (60) that outputs torque and
A reduction mechanism (50) having a plurality of gears (52 to 55) for transmitting the torque of the motor, and
A shaft (30) that rotates around an axis by transmitting torque from the reduction mechanism,
A valve body (40) that is integrally formed with the shaft by insert molding and rotates together with the shaft.
A valve device including a fluid passage (11) in which the valve body is rotatably accommodated, and a housing (10) having a valve seat (20) in which the valve body is seated and detached in a part of the fluid passage. In the manufacturing method of
Positioning of the shaft in the rotational direction is performed by positioning portions (32, 321 to 326) provided on the shaft, and the shaft and the valve body are integrally formed by insert molding (S20, S30).
Of the plurality of gears of the reduction gear, the valve gear (52) fitted to the end of the shaft and the shaft are fitted in a relatively rotatable state (S40).
Aligning the valve gear with the shaft (S50) and
A method for manufacturing a valve device, comprising fixing the valve gear and the shaft by welding or crimping (S60). - 前記シャフトに設けられた前記位置決め部により前記シャフトの回転方向の位置決めを行うことは、前記シャフトのうち前記バルブ体にインサートされる部位に設けられた前記位置決め部(326)を、金型(71、72)に設けた支持部(73)によって支持することであり、
前記シャフトと前記バルブ体とがインサート成形により一体に形成されたバルブサブアセンブリ(43)を前記金型から取り出す際、前記支持部が配置されていた箇所に、前記位置決め部が露出する穴(44)が形成される、請求項13に記載のバルブ装置の製造方法。 Positioning the shaft in the rotational direction by the positioning portion provided on the shaft causes the positioning portion (326) provided at a portion of the shaft to be inserted into the valve body to be formed into a mold (71). , 72) is to be supported by the support portion (73) provided.
When the valve subassembly (43) in which the shaft and the valve body are integrally formed by insert molding is taken out from the mold, a hole (44) in which the positioning portion is exposed at a position where the support portion is arranged. ) Is formed, according to claim 13. The method for manufacturing a valve device. - 前記バルブギアと前記シャフトとの位置合わせを行うことは、
前記シャフトと前記バルブ体とがインサート成形により一体に形成されたバルブサブアセンブリを前記ハウジングの前記流体通路に配置した状態で行われる、請求項13または14に記載のバルブ装置の製造方法。 Aligning the valve gear with the shaft
The method for manufacturing a valve device according to claim 13 or 14, wherein the valve subassembly in which the shaft and the valve body are integrally formed by insert molding is arranged in the fluid passage of the housing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-158567 | 2019-08-30 | ||
JP2019158567A JP7160003B2 (en) | 2019-08-30 | 2019-08-30 | VALVE DEVICE, VALVE DEVICE MANUFACTURING METHOD |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039225A1 true WO2021039225A1 (en) | 2021-03-04 |
Family
ID=74684491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028603 WO2021039225A1 (en) | 2019-08-30 | 2020-07-24 | Valve device and method for manufacturing valve device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7160003B2 (en) |
WO (1) | WO2021039225A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019787A (en) * | 2006-07-13 | 2008-01-31 | Denso Corp | Air passage opening/closing device |
JP2010053713A (en) * | 2008-08-26 | 2010-03-11 | Mikuni Corp | Throttle device |
JP2013044415A (en) * | 2011-08-25 | 2013-03-04 | Fuji Koki Corp | Flow path switching valve |
JP2015218833A (en) * | 2014-05-19 | 2015-12-07 | 愛三工業株式会社 | Double eccentric valve |
JP2019044815A (en) * | 2017-08-31 | 2019-03-22 | 愛三工業株式会社 | Double eccentric valve |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6460012B2 (en) * | 2016-03-03 | 2019-01-30 | 株式会社デンソー | Valve device |
JP6776866B2 (en) * | 2016-12-15 | 2020-10-28 | 株式会社デンソー | Valve device and manufacturing method of valve device |
-
2019
- 2019-08-30 JP JP2019158567A patent/JP7160003B2/en active Active
-
2020
- 2020-07-24 WO PCT/JP2020/028603 patent/WO2021039225A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019787A (en) * | 2006-07-13 | 2008-01-31 | Denso Corp | Air passage opening/closing device |
JP2010053713A (en) * | 2008-08-26 | 2010-03-11 | Mikuni Corp | Throttle device |
JP2013044415A (en) * | 2011-08-25 | 2013-03-04 | Fuji Koki Corp | Flow path switching valve |
JP2015218833A (en) * | 2014-05-19 | 2015-12-07 | 愛三工業株式会社 | Double eccentric valve |
JP2019044815A (en) * | 2017-08-31 | 2019-03-22 | 愛三工業株式会社 | Double eccentric valve |
Also Published As
Publication number | Publication date |
---|---|
JP7160003B2 (en) | 2022-10-25 |
JP2021038673A (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2462326B1 (en) | Product comprising an engine breathing system valve and a passage | |
US8261725B2 (en) | Low pressure EGR apparatus | |
US9525321B2 (en) | Rotation driving device | |
US20190264620A1 (en) | Valve device | |
US11085548B2 (en) | Valve device | |
EP2131012B1 (en) | Variable geometry turbine of a turbocharger and corresponding method for adjusting geometry of this turbine | |
JP5699662B2 (en) | Exhaust device for internal combustion engine | |
JP2009013934A (en) | Intake control device for internal combustion engine | |
JP2011058536A (en) | Fluid control valve and manufacturing method thereof | |
JP5273203B2 (en) | Gear subassembly and exhaust gas recirculation device | |
JP2018059583A (en) | Valve device | |
WO2021039225A1 (en) | Valve device and method for manufacturing valve device | |
JP2010265923A (en) | Valve device | |
WO2011108093A1 (en) | Control device for internal combustion engine having supercharger | |
WO2019054393A1 (en) | Valve device | |
US11773955B2 (en) | Rotating component and method for manufacturing the same | |
JP2003148107A (en) | Actuator adjusting device for variable displacement turbine | |
US10018279B2 (en) | Fluid control device | |
WO2021079721A1 (en) | Resin molded body | |
JP7099026B2 (en) | Valve device | |
JP6756318B2 (en) | Valve device | |
JP7342670B2 (en) | valve device | |
JP7347326B2 (en) | EGR valve device | |
JP2002332936A (en) | Intake device of engine | |
JP2015175345A (en) | Turbocharger and assembly method of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858994 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858994 Country of ref document: EP Kind code of ref document: A1 |