[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021039068A1 - 高周波モジュールおよび通信装置 - Google Patents

高周波モジュールおよび通信装置 Download PDF

Info

Publication number
WO2021039068A1
WO2021039068A1 PCT/JP2020/024599 JP2020024599W WO2021039068A1 WO 2021039068 A1 WO2021039068 A1 WO 2021039068A1 JP 2020024599 W JP2020024599 W JP 2020024599W WO 2021039068 A1 WO2021039068 A1 WO 2021039068A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
main surface
circuit
transmission
low noise
Prior art date
Application number
PCT/JP2020/024599
Other languages
English (en)
French (fr)
Inventor
幸哉 山口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021039068A1 publication Critical patent/WO2021039068A1/ja
Priority to US17/673,785 priority Critical patent/US12136614B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0552Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor

Definitions

  • the present invention relates to a high frequency module and a communication device.
  • Patent Document 1 discloses a semiconductor module having a configuration in which a filter is mounted on the upper surface of a wiring board that can be mounted on both sides, and a transmission power amplifier and a reception low noise amplifier are mounted on the lower surface.
  • An object of the present invention is to provide a small high-frequency module and a communication device in which a transmission circuit corresponding to 4G and 5G cellular bands and a GPS reception circuit coexist.
  • the high frequency module has a first main surface and a second main surface facing each other, and high frequency components are provided on the first main surface and the second main surface.
  • a mounting board that can be mounted, a first transmission power amplifier that amplifies a transmission signal in the cellular (registered trademark) band, and a second reception low noise amplifier that amplifies a reception signal of GPS (registered trademark) are provided.
  • the 1 transmission power amplifier and the 2nd reception low noise amplifier are mounted on the same mounting board.
  • the present invention it is possible to provide a small high-frequency module and a communication device in which a transmission circuit corresponding to 4G and 5G cellular bands and a GPS reception circuit coexist.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • FIG. 2A is a schematic plan view of the high frequency module according to the embodiment.
  • FIG. 2B is a schematic cross-sectional configuration of the high frequency module according to the embodiment.
  • FIG. 2C is a circuit configuration diagram of the power amplifier according to the embodiment.
  • FIG. 3A is a schematic plan view of the high frequency module according to the modified example.
  • FIG. 3B is a schematic cross-sectional configuration of the high frequency module according to the modified example.
  • C is arranged between A and B when the substrate (or the main surface of the substrate) is viewed in a plan view.
  • "Is done” means any point in the area of A projected when the substrate is viewed in a plane, and when the substrate is viewed in a plane (when the substrate is viewed from the normal direction of the substrate). It is defined as indicating that at least a part of the region of C projected when the substrate is viewed in a plan view overlaps with a line connecting an arbitrary point in the region of B projected on.
  • FIG. 1 is a circuit configuration diagram of the high frequency module 1 and the communication device 5 according to the first embodiment.
  • the communication device 5 includes a high frequency module 1, antennas 2G, 2H and 2M, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • RFIC3 is an RF signal processing circuit that processes high-frequency signals transmitted and received by antennas 2G, 2H, and 2M. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception signal path of the high frequency module 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the high frequency transmission signal generated by the signal processing to the transmission signal path of the high frequency module 1.
  • the BBIC 4 is a circuit that processes a signal using an intermediate frequency band having a lower frequency than the high frequency signal propagating in the high frequency module 1.
  • the signal processed by the BBIC 4 is used, for example, as an image signal for displaying an image, or as an audio signal for a call via a speaker.
  • the RFIC 3 also has a function as a control unit that controls the connection of the switch circuits 51, 53, and 55 of the high frequency module 1 based on the communication band used. Specifically, the control unit transmits a control signal for switching the connection of the switch circuits 51, 53 and 55 of the high frequency module 1 to the control circuit 90 of the high frequency module 1. Further, the control unit transmits a control signal for adjusting the gains of the power amplifiers 11 and 12 of the high frequency module 1 and the low noise amplifiers 21, 22 and 25 to the control circuit 90. In response to these control signals, the control circuit 90 outputs control signals to the switch circuits 51, 53 and 55, the power amplifiers 11 and 12, and the low noise amplifiers 21, 22 and 25.
  • the control circuit 90 may be a circuit that controls at least one of the switch circuits 51, 53 and 55, the power amplifiers 11 and 12, and the low noise amplifiers 21, 22 and 25. Further, the control unit may be provided outside the RFIC3, and may be provided, for example, in the BBIC4.
  • the antenna 2M is connected to the antenna connection terminal 101 of the high frequency module 1, emits a transmission signal output from the middle band circuit 1M of the high frequency module 1, and also receives a reception signal from the outside to the middle band circuit 1M. Output.
  • the antenna 2H is connected to the antenna connection terminal 102 of the high frequency module 1, emits a transmission signal output from the high band circuit 1H of the high frequency module 1, and receives an external reception signal to the high band circuit 1H. Output.
  • the antenna 2G is connected to the antenna connection terminal 105 of the high frequency module 1, receives a GPS signal from the outside, and outputs it to the GPS circuit 1G.
  • the antennas 2G, 2H, 2M, and BBIC4 are not essential components.
  • the high frequency module 1 includes antenna connection terminals 101, 102 and 105, a middle band circuit 1M, a high band circuit 1H, a GPS circuit 1G, a control circuit 90, and transmission input terminals 111 and 112. And receive output terminals 121, 122 and 125.
  • the antenna connection terminal 101 is connected to the antenna 2M, the antenna connection terminal 102 is connected to the antenna 2H, and the antenna connection terminal 105 is connected to the antenna 2G.
  • the middle band circuit 1M is a circuit that transmits a transmission signal and a reception signal of a communication band belonging to the middle band group.
  • the high band circuit 1H is a circuit that transmits a transmission signal and a reception signal of a communication band belonging to the high band group.
  • the GPS circuit 1G is a circuit that receives a reception signal in the GPS band.
  • the middle band group is a part of the cellular band, and is a frequency band group composed of a plurality of communication bands corresponding to 4G and 5G, and has a frequency range of, for example, 1.5-2.2 GHz. ..
  • the middle band group includes, for example, LTE Band 1 (transmission band: 1920-1980 MHz, reception band: 2110-2170 MHz), Band 39 (transmission band: 1880-1920 MHz), and Band 66 (transmission band: 1710-1780 MHz, reception band: 2110). -2200MHz) and other communication bands.
  • the high band group is a part of the cellular band, is a frequency band group composed of a plurality of communication bands corresponding to 4G and 5G, and is located on the higher frequency side than the middle band group. It has a frequency range of .4-2.8 GHz.
  • the high band group is composed of communication bands such as LTE Band 7 (transmission band: 2500-2570 MHz, reception band: 2620-2690 MHz), and Band 41 (transmission / reception band: 2496-2690 MHz).
  • the GPS band is, for example, a frequency band having a center frequency of 1.57542 GHz and a bandwidth of 2.046 MHz.
  • the GPS circuit 1G is a circuit that receives GPS signals from GPS satellites and transmits them to RFIC3. Since the GPS circuit 1G needs to receive a weak GPS signal from a GPS satellite with high accuracy, the passage characteristics required for the GPS circuit 1G are strict. For example, with respect to the GPS band, the required value of the attenuation of the middle band group and the high band group in the cellular band is 35 to 55 dB.
  • the middle band circuit 1M includes a power amplifier 11, a low noise amplifier 21, a filter 81, duplexers 61 and 62, matching circuits 31, 41, 71 and 72, and switches 51a, 53a and 55a.
  • the power amplifier 11 is an example of the first transmission power amplifier, and amplifies the transmission signal of the communication band belonging to the middle band group.
  • the low noise amplifier 21 is an example of the first reception low noise amplifier, and amplifies the reception signal of the communication band belonging to the middle band group with low noise.
  • the filter 81 is an example of a third filter, which is connected between the antenna connection terminal 101 and the switch 55a, has a pass band in the frequency range of the middle band group, and has both a transmission signal and a reception signal of the middle band group. Let it pass.
  • the duplexer 61 passes the high frequency signal of the communication band A of the middle band group, and is composed of a transmission filter 61T (first transmission filter) and a reception filter 61R (first reception filter).
  • the transmission filter 61T is arranged in the transmission path connecting the power amplifier 11 and the antenna connection terminal 101, and among the transmission signals amplified by the power amplifier 11, the transmission signal in the transmission band of the communication band A is passed.
  • the reception filter 61R is arranged in the reception path connecting the low noise amplifier 21 and the antenna connection terminal 101, and among the reception signals input from the antenna connection terminal 101, the reception signal in the reception band of the communication band A is passed. ..
  • the duplexer 62 passes a high frequency signal of the communication band B of the middle band group, and is composed of a transmission filter 62T (first transmission filter) and a reception filter 62R (first reception filter).
  • the transmission filter 62T is arranged in the transmission path connecting the power amplifier 11 and the antenna connection terminal 101, and among the transmission signals amplified by the power amplifier 11, the transmission signal in the transmission band of the communication band B is passed.
  • the reception filter 62R is arranged in the reception path connecting the low noise amplifier 21 and the antenna connection terminal 101, and among the reception signals input from the antenna connection terminal 101, the reception signal in the reception band of the communication band B is passed. ..
  • the matching circuit 31 is arranged in the transmission path connecting the power amplifier 11 and the transmission filters 61T and 62T, and performs impedance matching between the power amplifier 11 and the switch 51a and the transmission filters 61T and 62T.
  • the matching circuit 41 is arranged in the reception path connecting the low noise amplifier 21 and the reception filters 61R and 62R, and performs impedance matching between the low noise amplifier 21 and the switch 53a and the reception filters 61R and 62R.
  • the matching circuit 71 is arranged in a path connecting the switch 55a and the duplexer 61, and impedance matching is performed between the filter 81 and the switch 55a and the duplexer 61.
  • the matching circuit 72 is arranged in a path connecting the switch 55a and the duplexer 62, and impedance matching is performed between the filter 81 and the switch 55a and the duplexer 62.
  • the switch 51a is an example of the first switch, is arranged in the transmission path connecting the matching circuit 31 and the transmission filters 61T and 62T, connects the power amplifier 11 and the transmission filter 61T, and connects the power amplifier 11 and the transmission filter 62T. Switch the connection with.
  • the switch 51a is of, for example, a SPDT (Single Pole Double Throw) type in which a common terminal is connected to a matching circuit 31, one selection terminal is connected to a transmission filter 61T, and the other selection terminal is connected to a transmission filter 62T. It consists of a switch circuit.
  • the switch 53a is an example of the second switch, is arranged in the reception path connecting the matching circuit 41 and the reception filters 61R and 62R, connects the low noise amplifier 21 and the reception filter 61R, and receives the low noise amplifier 21.
  • the connection with the filter 62R is switched.
  • the switch 53a is composed of, for example, a SPDT type switch circuit in which a common terminal is connected to a matching circuit 41, one selection terminal is connected to a reception filter 61R, and the other selection terminal is connected to a reception filter 62R. ..
  • the switch 55a switches between the connection between the filter 81 and the matching circuit 71 and the connection between the filter 81 and the matching circuit 72.
  • the switch 55a is composed of, for example, a SPDT type switch circuit in which a common terminal is connected to a filter 81, one selection terminal is connected to a matching circuit 71, and the other selection terminal is connected to a matching circuit 72. Further, the switch 55a is in a state where the common terminal is not connected to any of the selection terminals, so that the high frequency signal of the middle band group can be prevented from being transmitted by the middle band circuit 1M. That is, the switch 55a is an antenna switch that switches between connection and non-connection between the middle band circuit 1M and the antenna 2M.
  • the number of communication bands to be transmitted is not limited to two, and may be one or three or more.
  • the necessity of the filter 81, the number of duplexers, the number of matching circuits, and the necessity of each switch are determined according to the number of communication bands.
  • the high band circuit 1H includes a power amplifier 12, a low noise amplifier 22, a high pass filter 82, duplexers 63 and 64, matching circuits 32, 42, 73 and 74, and switches 51b, 53b and 55b.
  • the power amplifier 12 is an example of the first transmission power amplifier, and amplifies the transmission signal of the communication band belonging to the high band group.
  • the low noise amplifier 22 is an example of the first reception low noise amplifier, and amplifies the reception signal of the communication band belonging to the high band group with low noise.
  • the high-pass filter 82 is an example of a third filter, which is connected between the antenna connection terminal 102 and the switch 55b, has a pass band in the frequency range of the high band group, and has both a transmission signal and a reception signal of the high band group. To pass through.
  • the high-pass filter 82 may be a band-pass filter having a pass band in the frequency range of the high-band group.
  • the duplexer 63 passes the high frequency signal of the communication band C of the high band group, and is composed of a transmission filter 63T (first transmission filter) and a reception filter 63R (first reception filter).
  • the transmission filter 63T is arranged in the transmission path connecting the power amplifier 12 and the antenna connection terminal 102, and among the transmission signals amplified by the power amplifier 12, the transmission signal in the transmission band of the communication band C is passed.
  • the reception filter 63R is arranged in the reception path connecting the low noise amplifier 22 and the antenna connection terminal 102, and among the reception signals input from the antenna connection terminal 102, the reception signal in the reception band of the communication band C is passed. ..
  • the duplexer 64 passes a high frequency signal of the communication band D of the high band group, and is composed of a transmission filter 64T (first transmission filter) and a reception filter 64R (first reception filter).
  • the transmission filter 64T is arranged in the transmission path connecting the power amplifier 12 and the antenna connection terminal 102, and among the transmission signals amplified by the power amplifier 12, the transmission signal in the transmission band of the communication band D is passed.
  • the reception filter 64R is arranged in the reception path connecting the low noise amplifier 22 and the antenna connection terminal 102, and among the reception signals input from the antenna connection terminal 102, the reception signal in the reception band of the communication band D is passed. ..
  • the matching circuit 32 is arranged in the transmission path connecting the power amplifier 12 and the transmission filters 63T and 64T, and performs impedance matching between the power amplifier 12 and the switch 51b and the transmission filters 63T and 64T.
  • the matching circuit 42 is arranged in the reception path connecting the low noise amplifier 22 and the reception filters 63R and 64R, and performs impedance matching between the low noise amplifier 22 and the switch 53b and the reception filters 63R and 64R.
  • the matching circuit 73 is arranged in a path connecting the switch 55b and the duplexer 63, and performs impedance matching between the high-pass filter 82 and the switch 55b and the duplexer 63.
  • the matching circuit 74 is arranged in a path connecting the switch 55b and the duplexer 64, and performs impedance matching between the high-pass filter 82 and the switch 55b and the duplexer 64.
  • the switch 51b is an example of the first switch, is arranged in the transmission path connecting the matching circuit 32 and the transmission filters 63T and 64T, connects the power amplifier 12 and the transmission filter 63T, and connects the power amplifier 12 and the transmission filter 64T. Switch the connection with.
  • the switch 51b is composed of, for example, a SPDT type switch circuit in which a common terminal is connected to a matching circuit 32, one selection terminal is connected to a transmission filter 63T, and the other selection terminal is connected to a transmission filter 64T. ..
  • the switch 53b is an example of the second switch, is arranged in the reception path connecting the matching circuit 42 and the reception filters 63R and 64R, connects the low noise amplifier 22 and the reception filter 63R, and receives the low noise amplifier 22. Switch the connection with the filter 64R.
  • the switch 53b is composed of, for example, a SPDT type switch circuit in which a common terminal is connected to a matching circuit 42, one selection terminal is connected to a reception filter 63R, and the other selection terminal is connected to a reception filter 64R. ..
  • the switch 55b switches between the connection between the high-pass filter 82 and the matching circuit 73 and the connection between the high-pass filter 82 and the matching circuit 74.
  • the switch 55b is composed of, for example, a SPDT type switch circuit in which a common terminal is connected to a high-pass filter 82, one selection terminal is connected to a matching circuit 73, and the other selection terminal is connected to a matching circuit 74. Further, the switch 55b is in a state where the common terminal is not connected to any of the selection terminals, so that the high frequency signal of the high band group can be prevented from being transmitted by the high band circuit 1H. That is, the switch 55b is an antenna switch that switches between connection and non-connection between the high band circuit 1H and the antenna 2H.
  • the number of communication bands to be transmitted is not limited to two, and may be one or three or more.
  • the necessity of the high-pass filter 82, the number of duplexers, the number of matching circuits, and the necessity of each switch are determined according to the number of communication bands.
  • the GPS circuit 1G includes a low noise amplifier 25, filters 85 and 86, and a matching circuit 45.
  • the low noise amplifier 25 is an example of the second reception low noise amplifier, and amplifies the received signal in the GPS band with low noise.
  • the filter 85 is an example of a second reception filter, which is connected between the antenna connection terminal 105 and the matching circuit 45, and has a GPS band as a pass band and a cellular band whose frequency is different from the GPS band as an attenuation band.
  • the filter 86 is an example of a second reception filter, which is connected between the low noise amplifier 25 and the reception output terminal 125, has a GPS band as a pass band, and has a cellular band having a frequency different from that of the GPS band as an attenuation band. ..
  • filters are arranged in each of the front stage and the rear stage of the low noise amplifier 25 in order to satisfy the required value of the attenuation amount in the cellular band.
  • the matching circuit 45 is arranged in the receiving path of the GPS circuit 1G, and impedance matching is performed between the low noise amplifier 25 and the filter 85.
  • the switches 55a and 55b may be composed of one switch circuit 55.
  • the switch circuit 55 is a multi-connection type switch circuit capable of simultaneously connecting one or more of the middle band circuit 1M and the high band circuit 1H to the antenna.
  • the filters 81, 85, 86, the high-pass filter 82, the transmission filters 61T to 64T, and the reception filters 61R to 64R are, for example, an elastic surface wave filter, an elastic wave filter using BAW (Bulk Acoustic Wave), and an LC resonance filter. , And a dielectric filter, and is not limited to these.
  • the antennas 2M and 2H may be one antenna.
  • the one antenna has antenna characteristics capable of radiating (transmitting) and receiving high frequency signals of the middle band group and the high band group.
  • the filter 81 and the high-pass filter 82 form a diplexer commonly connected to the one antenna.
  • the power amplifiers 11 and 12, and the low noise amplifiers 21, 22 and 25 are, for example, field effect transistors (FETs) or heterobipolar transistors (HBTs) made of Si-based CMOS (Complementary Metal Oxide Semiconductor) or GaAs. ) Etc.
  • FETs field effect transistors
  • HBTs heterobipolar transistors
  • the low noise amplifiers 21, 22 and the switch circuits 51, 53 and 55 may be formed in one semiconductor IC (Integrated Circuit). Further, the semiconductor IC may further include power amplifiers 11 and 12.
  • the semiconductor IC is composed of, for example, CMOS. Specifically, it is composed of an SOI (Silicon On Insulator) process. This makes it possible to manufacture semiconductor ICs at low cost.
  • the semiconductor IC may be composed of at least one of GaAs, SiGe and GaN. This makes it possible to output a high-frequency signal having high-quality amplification performance and noise performance.
  • the high frequency module 1 uses the middle band circuit 1M and the high band circuit 1H to transmit high frequency signals of any of the communication bands A to D belonging to the cellular band. It is possible to perform at least one of transmission, reception, and transmission / reception by the communication band alone. Further, it is possible to execute at least one of simultaneous transmission, simultaneous reception, and simultaneous transmission / reception of high frequency signals of two or more communication bands among the communication bands A to D. Further, the high frequency module 1 can receive GPS signals by the GPS circuit 1G independently of the middle band circuit 1M and the high band circuit 1H.
  • the high frequency module 1 has been described as having the middle band circuit 1M and the high band circuit 1H, but the high frequency module 1 according to the present embodiment may have a low band circuit.
  • the low band circuit is a circuit that transmits a high frequency signal of a low band group located on the lower frequency side of the middle band group.
  • each of the duplexers 61 to 64 may have a configuration corresponding to a so-called time division duplex system, which is composed of a filter for both transmission and reception and a transmission / reception changeover switch.
  • the high frequency module 1 according to the present embodiment, a small module in which a transmission circuit corresponding to the cellular band and a GPS receiving circuit coexist is realized.
  • the configuration for miniaturization of the high frequency module 1 according to the present embodiment will be described.
  • FIG. 2A is a schematic plan view of the high frequency module 1A according to the embodiment.
  • FIG. 2B is a schematic cross-sectional configuration diagram of the high-frequency module 1A according to the embodiment, and specifically, is a cross-sectional view taken along the line IIB-IIB of FIG. 2A.
  • FIG. 2A shows an arrangement diagram of circuit elements when the main surface 91a of the main surfaces 91a and 91b of the module substrate 91 facing each other is viewed from the z-axis positive direction side. ..
  • FIG. 2A (b) shows a perspective view of the arrangement of the circuit elements when the main surface 91b is viewed from the positive direction side of the z-axis.
  • the high frequency module 1A according to the embodiment concretely shows the arrangement configuration of each circuit element constituting the high frequency module 1 according to the embodiment.
  • the high frequency module 1A according to the present embodiment further includes a module substrate 91 and resin members 92 and 93 in addition to the circuit configuration shown in FIG. There is.
  • the module board 91 has a main surface 91a (first main surface) and a main surface 91b (second main surface) facing each other, and is a mounting board on which the middle band circuit 1M and the high band circuit 1H are mounted.
  • a low temperature co-fired ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers, a printed circuit board, or the like is used.
  • the resin member 92 is arranged on the main surface 91a of the module board 91 and covers a part of the middle band circuit 1M, a part of the high band circuit 1H, a part of the GPS circuit 1G, and the main surface 91a of the module board 91. It has a function of ensuring reliability such as mechanical strength and moisture resistance of the circuit elements constituting the middle band circuit 1M, the high band circuit 1H, and the GPS circuit 1G.
  • the resin member 93 is arranged on the main surface 91b of the module board 91 and covers a part of the middle band circuit 1M, a part of the high band circuit 1H, a part of the GPS circuit 1G, and the main surface 91b of the module board 91. It has a function of ensuring reliability such as mechanical strength and moisture resistance of the circuit elements constituting the middle band circuit 1M, the high band circuit 1H, and the GPS circuit 1G.
  • the resin members 92 and 93 are not essential components for the high frequency module according to the present invention.
  • the power amplifiers 11 and 12 are surface-mounted on the main surface 91a of the module board 91.
  • the low noise amplifiers 21, 22 and 25, and the switch circuits 51, 53 and 55 are surface-mounted on the main surface 91b of the module substrate 91.
  • the matching circuits 71 to 74 are not shown in FIGS. 2A and 2B, they may be surface-mounted on any of the main surfaces 91a and 91b of the module board 91, and may be built in the module board 91. You may be.
  • the power amplifier 11 is an example of a first transmission power amplifier that amplifies the transmission signal of the middle band group, and is mounted on the main surface 91a of the module board 91.
  • the power amplifier 12 is an example of a first transmission power amplifier that amplifies a transmission signal of a high band group, and is mounted on a main surface 91a of a module board 91.
  • the low noise amplifier 25 is an example of a second reception low noise amplifier that amplifies GPS signals, and is mounted on the main surface 91b of the module board 91.
  • the power amplifiers 11 and 12 for amplifying the transmission signal in the cellular band and the low noise amplifier 25 for amplifying the GPS reception signal are mounted on the same module board 91.
  • the power amplifier that amplifies the transmission signal in the cellular band and the low noise amplifier that amplifies the GPS reception signal provide a small high-frequency module 1A as compared with the conventional configuration mounted on individual mounting boards. it can.
  • the power amplifiers 11 and 12 are mounted on the main surface 91a, and the low noise amplifier 25 is mounted on the main surface 91b.
  • the high frequency module 1A can be further miniaturized as compared with the case where the power amplifiers 11 and 12 having a large mounting area and the low noise amplifier 25 are mounted and arranged on the same mounting surface.
  • the module substrate 91 is interposed between the power amplifiers 11 and 12 and the low noise amplifier 25, the high power transmission signal in the cellular band interferes with the GPS signal requiring a high S / N ratio. It is possible to suppress deterioration of GPS reception sensitivity.
  • the filter 81, the high-pass filter 82, and the duplexers 61 to 64 are examples of conductive members, and are mounted on the main surface 91a of the module substrate 91.
  • the filter 81, the high-pass filter 82, and the duplexers 61 and 62 are arranged between the power amplifier 11 and the low noise amplifier 25. Therefore, in the plan view, the distance between the power amplifier 11 and the low noise amplifier 25 can be increased by the amount that the conductive member intervenes, so that the conductive member is placed between the power amplifier 11 and the low noise amplifier 25. Can be used as a shield material for.
  • the duplexers 61 to 63 are arranged between the power amplifier 12 and the low noise amplifier 25. Therefore, in the plan view, the distance between the power amplifier 12 and the low noise amplifier 25 can be increased by the amount that the conductive member intervenes, so that the conductive member is placed between the power amplifier 12 and the low noise amplifier 25. Can be used as a shield material for. Therefore, it is possible to suppress signal interference between the power amplifier 12 in the high band group and the low noise amplifier 25 in the GPS band.
  • the conductive member arranged between the power amplifiers 11 and 12 and the low noise amplifier 25 may be at least one of the filter 81, the high-pass filter 82, and the duplexers 61 to 64. Further, the conductive member may be at least one of a transmission filter and a reception filter constituting each of the duplexers 61 to 64.
  • the transmission filter and the reception filter constituting each of the filter 81, the high-pass filter 82, and the duplexers 61 to 64 have a plurality of conductive members such as signal extraction electrodes, and for example, at least one of the plurality of signal extraction electrodes. Is connected to a ground pattern arranged on the module board 91. As a result, unnecessary waves of transmission signals generated from the power amplifiers 11 and 12 can be shielded by the above filter.
  • the conductive member is an electronic member having a conductive member such as a signal extraction electrode, and is, for example, a resistance element, a capacitance element, an induction element, a filter, a switch, a signal wiring, and a signal. It is at least one of a passive element such as a terminal and an active element such as an amplifier and a control circuit.
  • the conductive members mounted and arranged between the power amplifiers 11 and 12 and the low noise amplifier 25 are switch circuits 51, 53, 55, filters 81, 85, 86, high-pass filters 82, and duplexers 61 to 64. , A metal conductor, a chip capacitor, a chip inductor, and a control circuit 90.
  • the metal conductor has, for example, a block shape, a plate shape, or a wire shape.
  • the filter 81, the high-pass filter 82, and the duplexers 61 and 62 are mounted and arranged between the matching circuits 31 and 32 and the matching circuit 45 in the above plan view. More specifically, in the above plan view, the inductor of the matching circuit 31 (first inductor) connected to the output terminal of the power amplifier 11 and the inductor of the matching circuit 45 connected to the input terminal of the low noise amplifier 25 (1st inductor). A conductive member is mounted between the second inductor).
  • the inductor of the matching circuit 32 (first inductor) connected to the output terminal of the power amplifier 12 and the inductor of the matching circuit 45 (second inductor) connected to the input terminal of the low noise amplifier 25.
  • a conductive member is mounted between the and.
  • the electromagnetic field generated from the inductors of the matching circuits 31 and 32 can be shielded by the conductive member. Therefore, the electromagnetic field coupling between the inductor (first inductor) of the matching circuit 31 and the inductor (second inductor) of the matching circuit 45 can be suppressed. Therefore, it is possible to suppress the interference between the transmission signal of the middle band group and the GPS reception signal.
  • the electromagnetic field coupling between the inductor of the matching circuit 32 (first inductor) and the inductor of the matching circuit 45 (second inductor) can be suppressed. Therefore, it is possible to suppress the interference between the transmission signal of the high band group and the GPS reception signal.
  • the conductive members mounted and arranged between the matching circuits 31 and 32 and the matching circuit 45 include switch circuits 51, 53, 55, filters 81, 85, 86, high-pass filters 82, and duplexers 61 to 64. It may be any of a metal conductor, a chip capacitor, a chip inductor, and a control circuit 90.
  • the metal conductor has, for example, a block shape, a plate shape, or a wire shape.
  • the conductive member has an electrode set to a ground potential or a fixed potential, and for example, it is desirable that the conductive member is connected to a ground pattern formed in the module substrate 91. As a result, the electromagnetic field shielding function of the conductive member is improved.
  • a plurality of external connection terminals 150 are arranged on the main surface 91b side of the module board 91.
  • the high frequency module 1A exchanges electric signals with an external substrate arranged on the negative side of the z axis of the high frequency module 1A via a plurality of external connection terminals 150. Further, some of the plurality of external connection terminals 150 are set to the ground potential of the external substrate.
  • the power amplifiers 11 and 12 which are difficult to reduce in height are not arranged on the main surface 91b facing the external board, and the low noise amplifiers 21, 22 and 25, which are easy to reduce in height, Further, since the switch circuits 51, 53 and 55 are arranged, it is possible to reduce the height of the entire high frequency module 1A. Further, since a plurality of external connection terminals 150 applied as ground electrodes are arranged around the low noise amplifiers 21, 22 and 25, which greatly affect the reception sensitivity of the reception circuit, deterioration of the reception sensitivity of the reception circuit can be suppressed. ..
  • a plurality of external connection terminals 150 are arranged so as to surround the low noise amplifier 25 that amplifies the GPS reception signal. As a result, it is possible to further suppress the interference of the signal in the cellular band with the GPS received signal.
  • the ground pattern is arranged in or on the surface of the module substrate 91. According to this, since the ground pattern is interposed between the power amplifiers 11 and 12 and the low noise amplifier 25, it is possible to further improve the isolation between the transmission signal and the GPS reception signal in the cellular band. Become.
  • the external connection terminal 150 may be a columnar electrode penetrating the resin member 93 in the z-axis direction, or may be a bump electrode arranged on the electrode formed on the main surface 91b. When the external connection terminal 150 is a bump electrode, the resin member 93 may be omitted.
  • the filters 81, 85, 86, the high-pass filter 82, the duplexers 61 to 64, and the matching circuits 31, 32, 41, 42, and 45 are components that are difficult to reduce in height, it is also difficult to reduce the height. It is desirable that the power amplifiers 11 and 12 are mounted on the main surface 91a. As a result, the heights of the parts mounted on the main surface 91a can be made uniform, and the heights of the parts mounted on the main surface 91b can be made uniform, and as a result, the height of the high frequency module 1A can be reduced.
  • FIG. 2C is a circuit configuration diagram of the power amplifier 11 included in the high frequency module 1A according to the embodiment.
  • the power amplifier 11 includes a transistor 140, capacitors 141 and 142, a bias circuit 143, a collector terminal 144, an emitter terminal, an input terminal 145, and an output terminal 146.
  • the transistor 140 has, for example, a collector, an emitter, and a base, and is a grounded-emitter bipolar transistor that amplifies a high-frequency current input to the base and outputs it from the collector.
  • the transistor 140 may be a field effect transistor having a drain, a source, and a gate.
  • the capacitor 141 is a capacitance element for DC cutting, and has a function of preventing a DC current from leaking to the input terminal 145 due to a DC bias voltage applied to the base from the bias circuit 143.
  • the capacitor 142 is a capacitance element for DC cutting, has a function of removing the DC component of the high frequency amplification signal on which the DC bias voltage is superimposed, and outputs the high frequency amplification signal from which the DC component is removed from the output terminal 146. Will be done.
  • the bias circuit 143 is connected to the base of the transistor 140, and has a function of optimizing the operating point of the transistor 140 by applying a bias voltage to the base.
  • the high frequency signal RFin input from the input terminal 145 becomes the base current Ib flowing from the base of the transistor 140 to the emitter.
  • the base current Ib is amplified by the transistor 140 to become the collector current Ic, and the high frequency signal RFout corresponding to the collector current Ic is output from the output terminal 146.
  • a large current which is the sum of the base current Ib and the collector current Ic, flows from the emitter terminal to the ground.
  • the base terminal, collector terminal, and emitter terminal are arranged on the main surface 91a and are composed of a metal electrode layer, a metal bump member, or the like.
  • the through electrode 94 is a through electrode that is connected to the ground terminal of the power amplifier 11 and penetrates between the main surface 91a and the main surface 91b.
  • the through electrode 94 is connected to the external connection terminal 150 on the main surface 91b.
  • the through electrode 94 is not limited to being composed of a single cylindrical via conductor extending from the main surface 91a to the main surface 91b in the module substrate 91.
  • the through silicon via 94 may have a structure in which a plurality of cylindrical via conductors are connected in series. Via receiving electrodes are formed along each layer between a plurality of cylindrical via conductors connected in series, but when the main surface 91a to the main surface 91b are viewed in a plan view, they are adjacent to each other in the z-axis direction. At least a part of the matching cylindrical via conductors overlaps with each other. That is, the through silicon via 94 does not have a path in the xy plane direction that passes only through the plane wiring pattern, and always has a path in the z-axis direction.
  • the power amplifiers 11 and 12 may be mounted on the main surface 91b of the module board 91, and the low noise amplifier 25 may be mounted on the main surface 91a of the module board 91.
  • FIG. 3A is a schematic plan view of the high frequency module 1B according to the modified example.
  • FIG. 3B is a schematic cross-sectional configuration diagram of the high-frequency module 1B according to the modified example, and specifically, is a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A.
  • FIG. 3A (a) shows a layout diagram of circuit elements when the main surface 91a of the main surfaces 91a and 91b of the module substrate 91 facing each other is viewed from the z-axis positive direction side. ..
  • FIG. 3A (b) shows a perspective view of the arrangement of the circuit elements when the main surface 91b is viewed from the positive direction side of the z-axis.
  • the high-frequency module 1B according to the modified example concretely shows the arrangement configuration of each circuit element constituting the high-frequency module 1 according to the embodiment.
  • the high-frequency module 1B according to this modification differs from the high-frequency module 1A according to the embodiment only in the arrangement configuration of the circuit elements constituting the high-frequency module 1B.
  • the same points as those of the high frequency module 1A according to the embodiment of the high frequency module 1B according to the present modification will be omitted, and the differences will be mainly described.
  • the high-frequency module 1B according to the present modification further includes a module substrate 91 and resin members 92 and 93 in addition to the circuit configuration shown in FIG. There is.
  • the 31, 32, 41, 42 and 45 are surface-mounted on the main surface 91a of the module substrate 91.
  • the low noise amplifiers 21 and 22, the switch circuits 51, 53 and 55, and the control circuit 90 are surface-mounted on the main surface 91b of the module board 91.
  • the matching circuits 71 to 74 are not shown in FIGS. 3A and 3B, they may be surface-mounted on any of the main surfaces 91a and 91b of the module board 91, and may be built in the module board 91. You may be.
  • the power amplifier 11 is an example of a first transmission power amplifier that amplifies the transmission signal of the middle band group, and is mounted on the main surface 91a of the module board 91.
  • the power amplifier 12 is an example of a first transmission power amplifier that amplifies a transmission signal of a high band group, and is mounted on a main surface 91a of a module board 91.
  • the low noise amplifier 25 is an example of a second reception low noise amplifier that amplifies GPS signals, and is mounted on the main surface 91a of the module board 91.
  • the filter 81, the high-pass filter 82, and the duplexers 61 to 64 are examples of conductive members and are mounted on the main surface 91a of the module substrate 91.
  • the filter 81, the high-pass filter 82, and the duplexers 61 and 62 are arranged between the power amplifier 11 and the low noise amplifier 25. Therefore, in the plan view, the distance between the power amplifier 11 and the low noise amplifier 25 can be increased by the amount that the conductive member intervenes, so that the conductive member is placed between the power amplifier 11 and the low noise amplifier 25. Can be used as a shield material for.
  • the duplexers 61 to 63 are arranged between the power amplifier 12 and the low noise amplifier 25. Therefore, in the plan view, the distance between the power amplifier 12 and the low noise amplifier 25 can be increased by the amount that the conductive member intervenes, so that the conductive member is placed between the power amplifier 12 and the low noise amplifier 25. Can be used as a shield material for. Therefore, it is possible to suppress signal interference between the power amplifier 12 in the high band group and the low noise amplifier 25 in the GPS band.
  • the conductive member arranged between the power amplifiers 11 and 12 and the low noise amplifier 25 may be at least one of the filter 81, the high-pass filter 82, and the duplexers 61 to 64. Further, the conductive member may be at least one of a transmission filter and a reception filter constituting each of the duplexers 61 to 64.
  • the conductive members mounted and arranged between the power amplifiers 11 and 12 and the low noise amplifier 25 are switch circuits 51, 53, 55, filters 81, 85, 86, high-pass filters 82, and duplexers 61 to 64.
  • the metal conductor has, for example, a block shape, a plate shape, or a wire shape.
  • the filter 81, the high-pass filter 82, and the duplexers 61 and 62 are mounted and arranged between the matching circuits 31 and 32 and the matching circuit 45 in the above plan view.
  • the electromagnetic field generated from the inductors of the matching circuits 31 and 32 can be shielded by the conductive member. Therefore, the electromagnetic field coupling between the inductor (first inductor) of the matching circuit 31 and the inductor (second inductor) of the matching circuit 45 can be suppressed. Therefore, it is possible to suppress the interference between the transmission signal of the middle band group and the GPS reception signal.
  • the electromagnetic field coupling between the inductor of the matching circuit 32 (first inductor) and the inductor of the matching circuit 45 (second inductor) can be suppressed. Therefore, it is possible to suppress the interference between the transmission signal of the high band group and the GPS reception signal.
  • the conductive members mounted and arranged between the matching circuits 31 and 32 and the matching circuit 45 are the switch circuits 51, 53, 55, the filters 81, 85, 86, the high-pass filter 82, and the inductors 61 to 64. It may be any of a metal conductor, a chip capacitor, a chip inductor, and a control circuit 90.
  • the metal conductor has, for example, a block shape, a plate shape, or a wire shape.
  • a plurality of external connection terminals 150 are arranged on the main surface 91b side of the module board 91.
  • the high frequency module 1B exchanges electric signals with an external substrate arranged on the negative side of the z axis of the high frequency module 1B via a plurality of external connection terminals 150. Further, some of the plurality of external connection terminals 150 are set to the ground potential of the external substrate.
  • the power amplifiers 11 and 12 that are difficult to reduce in height are not arranged on the main surface 91b facing the external board, and the low noise amplifiers 21 and 22 that are easy to reduce in height and the switch circuit.
  • the external connection terminal 150 may be a columnar electrode penetrating the resin member 93 in the z-axis direction, or may be a bump electrode arranged on the electrode formed on the main surface 91b. When the external connection terminal 150 is a bump electrode, the resin member 93 may be omitted.
  • the low noise amplifiers 21 and 22 and the switch circuits 51, 53 and 55 may be built in the same semiconductor IC 10.
  • the semiconductor IC 10 may include a control circuit 90.
  • the high-frequency module 1 has a module substrate 91 having main surfaces 91a and 91b facing each other and capable of mounting high-frequency components on both main surfaces, and a first transmission for amplifying a transmission signal in the cellular band.
  • a power amplifier and a second reception low noise amplifier for amplifying a GPS reception signal are provided, and the first transmission power amplifier and the second reception low noise amplifier are mounted on the same module board 91.
  • the power amplifier that amplifies the transmission signal in the cellular band and the low noise amplifier that amplifies the GPS reception signal provide a small high-frequency module 1 as compared with the conventional configuration mounted on individual mounting boards. it can. Therefore, it is possible to provide a small high-frequency module 1 in which a transmission circuit corresponding to the cellular band and a GPS reception circuit coexist.
  • the first transmission power amplifier may be mounted on the main surface 91a
  • the second reception low noise amplifier may be mounted on the second main surface 91b.
  • the high frequency module 1 can be further miniaturized as compared with the case where the first transmission power amplifier and the second reception low noise amplifier, which have a large mounting area, are mounted and arranged on the same mounting surface. Further, by interposing the module board 91 between the first transmission power amplifier and the second reception low noise amplifier, the high power transmission signal in the cellular band interferes with the GPS signal requiring a high S / N ratio. Therefore, it is possible to suppress deterioration of GPS reception sensitivity.
  • the external connection terminal 150 connected to the external board may be arranged on the main surface 91b.
  • a through electrode 94 which is connected to the ground terminal of the first transmission power amplifier and penetrates between the main surface 91a and the main surface 91b of the module substrate 91 is provided, and the through electrode 94 is externally connected by the main surface 91b. It may be connected to the terminal 150.
  • a conductive member mounted between the first transmission power amplifier and the second reception low noise amplifier in the plan view of the module substrate 91 may be provided.
  • the distance between the first transmission power amplifier and the second reception low noise amplifier can be secured as large as the amount of the conductive member intervening, so that the conductive member can be used as the first transmission power amplifier. It can be used as a shield material between the second reception low noise amplifier and the second reception low noise amplifier. Therefore, it is possible to suppress signal interference between the power amplifier in the cellular band and the low noise amplifier in the GPS band.
  • first inductor connected to the output terminal of the first transmission power amplifier
  • second inductor connected to the input terminal of the second reception low noise amplifier
  • first inductor in the plan view of the module substrate 91.
  • a conductive member mounted between the second inductor and the second inductor may be provided.
  • the electromagnetic fields generated from the first inductor and the second inductor can be shielded by the conductive member. Therefore, the electromagnetic field coupling between the first inductor and the second inductor can be suppressed. Therefore, it is possible to suppress the interference between the transmission signal in the cellular band and the GPS reception signal.
  • the conductive member includes (1) an antenna switch for switching between conduction and non-conduction between a transmission path for transmitting a transmission signal in the cellular band and an antenna connection terminal, and (2) continuity between the transmission path and the first transmission power amplifier. And the first switch for switching non-conductivity, (3) the second switch for switching between continuity and non-conduction between the reception path for transmitting the reception signal in the cellular band and the first reception low noise amplifier for amplifying the reception signal, (4) the above.
  • the first transmission filter arranged in the transmission path (5) the first reception filter arranged in the reception path, (6) the second reception filter arranged in the GPS reception path for transmitting the GPS reception signal, (7).
  • a third filter arranged between the antenna connection terminal and the first transmit filter and the first receive filter, (8) block-shaped, plate-shaped, or wire-shaped metal conductor, (9) chip capacitor, (10). At least one of a chip inductor, (11) a control signal that regulates the gain of the first transmit power amplifier or the second receive low noise amplifier, and a control signal that controls the switching of the antenna switch, the first switch, and the second switch. It may be any of the control circuit 90 to be generated.
  • an external connection terminal 150 connected to an external board is arranged on the main surface 91b, and the antenna switch, the first switch, and the second switch may be mounted on the main surface 91b.
  • the power amplifier that is difficult to reduce in height is not arranged on the main surface 91b facing the external board, and the low noise amplifier and switch that are easy to reduce in height are arranged. Therefore, it is possible to reduce the height of the entire high frequency module 1.
  • the first reception low noise amplifier is mounted on the main surface 91b, and at least one of the antenna switch, the first switch and the second switch, and the first reception low noise amplifier are built in the same semiconductor IC.
  • an external connection terminal 150 connected to an external board is arranged on the main surface 91b, and the first transmission filter, the first reception filter, the second reception filter, the third filter, the chip capacitor, and the chip inductor are arranged. , May be mounted on the main surface 91a.
  • the filter, the chip capacitor, and the chip inductor are components that are difficult to reduce in height, it is desirable that they are mounted on the main surface 91a on which the power amplifier, which is also difficult to reduce in height, is mounted.
  • the heights of the parts mounted on the main surface 91a can be made uniform, and the heights of the low-profile parts mounted on the main surface 91b can be made uniform.
  • the height of the high-frequency module 1 can be made low. Can be realized.
  • the communication device 5 includes an RFIC 3 for processing a high frequency signal transmitted and received by the antenna, and a high frequency module 1 for transmitting a high frequency signal between the antenna and the RFIC 3.
  • the high-frequency module and communication device according to the embodiment of the present invention have been described above with reference to examples and modifications, but the high-frequency module and communication device according to the present invention are limited to the above-mentioned examples and modifications. It's not a thing.
  • Other embodiments realized by combining arbitrary components in the above-described embodiment and the modified example, and various modifications that can be conceived by those skilled in the art without departing from the gist of the present invention are applied to the above-described embodiment and the modified example.
  • the present invention also includes the above-mentioned modified examples and various devices incorporating the high-frequency module and the communication device.
  • another circuit element, wiring, or the like may be inserted between the paths connecting the circuit elements and the signal paths disclosed in the drawings. ..
  • the transmission circuit corresponding to the cellular band means that the frequency range having a gain of a predetermined value or more is the frequency range of one communication band belonging to the cellular band when the frequency-gain characteristic of the amplifier of the transmission circuit is measured.
  • the predetermined value include a gain that is 3 dB lower than the maximum gain of the transmission power amplifier.
  • the transmission circuit corresponding to the cellular band means that the pass band of the filter included in the transmission circuit includes the frequency range of one communication band belonging to the cellular band.
  • the transmission circuit corresponding to the cellular band means that the transmission signal output from the RFIC to the transmission circuit is included in the frequency range of one communication band belonging to the cellular band.
  • the GPS receiving circuit means that the frequency range having a gain of a predetermined value or more includes the GPS band when the frequency-gain characteristic of the amplifier included in the receiving circuit is measured.
  • the predetermined value include a gain that is 3 dB lower than the maximum gain of the transmission power amplifier.
  • the GPS receiving circuit means that the pass band of the filter included in the receiving circuit includes the GPS band.
  • the present invention can be widely used in communication devices such as mobile phones as a high-frequency module arranged in a multi-band compatible front end portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Transceivers (AREA)

Abstract

高周波モジュール(1)は、互いに対向する主面(91aおよび91b)を有し、両主面に高周波部品を実装可能なモジュール基板(91)と、セルラー帯域の送信信号を増幅する電力増幅器(11)と、GPSの受信信号を増幅する低雑音増幅器(25)と、を備え、電力増幅器(11)と低雑音増幅器(25)とは、同一のモジュール基板(91)に実装されている。

Description

高周波モジュールおよび通信装置
 本発明は、高周波モジュールおよび通信装置に関する。
 携帯電話などの移動体通信機器では、特に、マルチバンド化の進展に伴い、4G(第4世代移動通信システム)および5G(第5世代移動通信システム)の周波数帯域に対応した高周波フロントエンド回路のモジュール化および小型化が要求される。
 特許文献1には、両面実装可能な配線基板の上面にフィルタが実装され、下面に送信電力増幅器および受信低雑音増幅器が実装された構成を有する半導体モジュールが開示されている。
特開2011-40602号公報
 近年、4Gおよび5Gのセルラー(登録商標)帯域に対応した伝送回路とGPS(Global Positioning Systemの略:登録商標)の受信回路とが併存した小型のフロントエンド回路が要求されている。
 本発明は、4Gおよび5Gのセルラー帯域に対応した伝送回路とGPSの受信回路とが併存した小型の高周波モジュールおよび通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、互いに対向する第1主面および第2主面を有し、前記第1主面及び前記第2主面に高周波部品を実装可能な実装基板と、セルラー(登録商標)帯域の送信信号を増幅する第1送信電力増幅器と、GPS(登録商標)の受信信号を増幅する第2受信低雑音増幅器と、を備え、前記第1送信電力増幅器と前記第2受信低雑音増幅器とは、同一の前記実装基板に実装されている。
 本発明によれば、4Gおよび5Gのセルラー帯域に対応した伝送回路とGPSの受信回路とが併存した小型の高周波モジュールおよび通信装置を提供することが可能となる。
図1は、実施の形態に係る高周波モジュールおよび通信装置の回路構成図である。 図2Aは、実施例に係る高周波モジュールの平面構成概略図である。 図2Bは、実施例に係る高周波モジュールの断面構成概略図である。 図2Cは、実施例に係る電力増幅器の回路構成図である。 図3Aは、変形例に係る高周波モジュールの平面構成概略図である。 図3Bは、変形例に係る高周波モジュールの断面構成概略図である。
 以下、本発明の実施の形態について、実施例および変形例を用いて詳細に説明する。なお、以下で説明する実施例および変形例は、いずれも包括的または具体的な例を示すものである。以下の実施例および変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 なお、以下の実施の形態において、基板上に実装されたA、BおよびCにおいて、「当該基板(または当該基板の主面)を平面視した場合に、AとBとの間にCが配置されている」とは、当該基板を平面視した場合に投影されるAの領域内の任意の点と、当該基板を平面視した場合(当該基板を当該基板の法線方向から見た場合)に投影されるBの領域内の任意の点とを結ぶ線に、当該基板を平面視した場合に投影されるCの領域の少なくとも一部が重複していることを指すものと定義される。
 (実施の形態)
 [1.高周波モジュール1および通信装置5の回路構成]
 図1は、実施の形態1に係る高周波モジュール1および通信装置5の回路構成図である。同図に示すように、通信装置5は、高周波モジュール1と、アンテナ2G、2Hおよび2Mと、RF信号処理回路(RFIC)3と、ベースバンド信号処理回路(BBIC)4と、を備える。
 RFIC3は、アンテナ2G、2Hおよび2Mで送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC3は、高周波モジュール1の受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号を、高周波モジュール1の送信信号経路に出力する。
 BBIC4は、高周波モジュール1を伝搬する高周波信号よりも低周波の中間周波数帯域を用いて信号処理する回路である。BBIC4で処理された信号は、例えば、画像表示のための画像信号として使用され、または、スピーカを介した通話のために音声信号として使用される。
 また、RFIC3は、使用される通信バンドに基づいて、高周波モジュール1が有するスイッチ回路51、53および55の接続を制御する制御部としての機能も有する。具体的には、制御部は、高周波モジュール1が有するスイッチ回路51、53および55の接続を切り替えるための制御信号を、高周波モジュール1の制御回路90に伝達する。また、制御部は、高周波モジュール1の電力増幅器11および12ならびに低雑音増幅器21、22および25の利得等を調整するための制御信号を、制御回路90に伝達する。これらの制御信号を受けて、制御回路90は、スイッチ回路51、53および55、電力増幅器11および12、ならびに低雑音増幅器21、22および25に向けて制御信号を出力する。なお、制御回路90は、スイッチ回路51、53および55、電力増幅器11および12、ならびに低雑音増幅器21、22および25のうちの少なくとも1つを制御する回路であってもよい。また、制御部は、RFIC3の外部に設けられていてもよく、例えば、BBIC4に設けられていてもよい。
 アンテナ2Mは、高周波モジュール1のアンテナ接続端子101に接続され、高周波モジュール1のミドルバンド回路1Mから出力された送信信号を放射し、また、外部からの受信信号を受信してミドルバンド回路1Mへ出力する。
 アンテナ2Hは、高周波モジュール1のアンテナ接続端子102に接続され、高周波モジュール1のハイバンド回路1Hから出力された送信信号を放射し、また、外部からの受信信号を受信してハイバンド回路1Hへ出力する。
 アンテナ2Gは、高周波モジュール1のアンテナ接続端子105に接続され、外部からのGPS信号を受信してGPS回路1Gへ出力する。
 なお、本実施の形態に係る通信装置5において、アンテナ2G、2H、2M、およびBBIC4は、必須の構成要素ではない。
 次に、高周波モジュール1の詳細な構成について説明する。
 図1に示すように、高周波モジュール1は、アンテナ接続端子101、102および105と、ミドルバンド回路1Mと、ハイバンド回路1Hと、GPS回路1Gと、制御回路90と、送信入力端子111および112と、受信出力端子121、122および125と、を備える。
 アンテナ接続端子101はアンテナ2Mに接続され、アンテナ接続端子102はアンテナ2Hに接続され、アンテナ接続端子105はアンテナ2Gに接続される。
 ミドルバンド回路1Mはミドルバンド群に属する通信バンドの送信信号および受信信号を伝送する回路である。ハイバンド回路1Hはハイバンド群に属する通信バンドの送信信号および受信信号を伝送する回路である。GPS回路1GはGPS帯域の受信信号を受信する回路である。
 ミドルバンド群は、セルラー帯域の一部であり、4Gおよび5Gに対応した複数の通信バンドで構成された周波数帯域群であり、例えば、1.5-2.2GHzの周波数範囲を有している。ミドルバンド群は、例えば、LTEのBand1(送信帯域:1920-1980MHz、受信帯域:2110-2170MHz)、Band39(送受信帯域:1880-1920MHz)、およびBand66(送信帯域:1710-1780MHz、受信帯域:2110-2200MHz)などの通信バンドで構成される。
 ハイバンド群は、セルラー帯域の一部であり、4Gおよび5Gに対応した複数の通信バンドで構成された周波数帯域群であり、ミドルバンド群よりも高周波数側に位置しており、例えば、2.4-2.8GHzの周波数範囲を有している。ハイバンド群は、例えば、LTEのBand7(送信帯域:2500-2570MHz、受信帯域:2620-2690MHz)、およびBand41(送受信帯域:2496-2690MHz)などの通信バンドで構成される。
 GPS帯域は、例えば、1.57542GHzを中心周波数とし、2.046MHzの帯域幅を有する周波数帯域である。GPS回路1Gは、GPS衛星からのGPS信号を受信し、RFIC3へ伝送する回路である。GPS回路1Gは、GPS衛星からの微弱なGPS信号を高精度で受信する必要があるため、GPS回路1Gに要求される通過特性は厳しいものとなっている。例えば、GPS帯域に対して、セルラー帯域におけるミドルバンド群およびハイバンド群の減衰量の要求値は、35~55dBである。
 ミドルバンド回路1Mは、電力増幅器11と、低雑音増幅器21と、フィルタ81と、デュプレクサ61および62と、整合回路31、41、71および72と、スイッチ51a、53aおよび55aと、を備える。
 電力増幅器11は、第1送信電力増幅器の一例であり、ミドルバンド群に属する通信バンドの送信信号を増幅する。低雑音増幅器21は、第1受信低雑音増幅器の一例であり、ミドルバンド群に属する通信バンドの受信信号を低雑音で増幅する。
 フィルタ81は、第3フィルタの一例であり、アンテナ接続端子101とスイッチ55aとの間に接続され、ミドルバンド群の周波数範囲を通過帯域としており、ミドルバンド群の送信信号および受信信号の双方を通過させる。
 デュプレクサ61は、ミドルバンド群の通信バンドAの高周波信号を通過させ、送信フィルタ61T(第1送信フィルタ)および受信フィルタ61R(第1受信フィルタ)で構成されている。送信フィルタ61Tは、電力増幅器11とアンテナ接続端子101とを結ぶ送信経路に配置され、電力増幅器11で増幅された送信信号のうち、通信バンドAの送信帯域の送信信号を通過させる。また、受信フィルタ61Rは、低雑音増幅器21とアンテナ接続端子101とを結ぶ受信経路に配置され、アンテナ接続端子101から入力された受信信号のうち、通信バンドAの受信帯域の受信信号を通過させる。
 デュプレクサ62は、ミドルバンド群の通信バンドBの高周波信号を通過させ、送信フィルタ62T(第1送信フィルタ)および受信フィルタ62R(第1受信フィルタ)で構成されている。送信フィルタ62Tは、電力増幅器11とアンテナ接続端子101とを結ぶ送信経路に配置され、電力増幅器11で増幅された送信信号のうち、通信バンドBの送信帯域の送信信号を通過させる。また、受信フィルタ62Rは、低雑音増幅器21とアンテナ接続端子101とを結ぶ受信経路に配置され、アンテナ接続端子101から入力された受信信号のうち、通信バンドBの受信帯域の受信信号を通過させる。
 整合回路31は、電力増幅器11と送信フィルタ61Tおよび62Tとを結ぶ送信経路に配置され、電力増幅器11とスイッチ51a、送信フィルタ61Tおよび62Tとのインピーダンス整合をとる。整合回路41は、低雑音増幅器21と受信フィルタ61Rおよび62Rとを結ぶ受信経路に配置され、低雑音増幅器21とスイッチ53a、受信フィルタ61Rおよび62Rとのインピーダンス整合をとる。整合回路71は、スイッチ55aとデュプレクサ61とを結ぶ経路に配置され、フィルタ81およびスイッチ55aと、デュプレクサ61とのインピーダンス整合をとる。整合回路72は、スイッチ55aとデュプレクサ62とを結ぶ経路に配置され、フィルタ81およびスイッチ55aと、デュプレクサ62とのインピーダンス整合をとる。
 スイッチ51aは、第1スイッチの一例であり、整合回路31と送信フィルタ61Tおよび62Tとを結ぶ送信経路に配置され、電力増幅器11と送信フィルタ61Tとの接続、および、電力増幅器11と送信フィルタ62Tとの接続、を切り替える。スイッチ51aは、例えば、共通端子が整合回路31に接続され、一方の選択端子が送信フィルタ61Tに接続され、他方の選択端子が送信フィルタ62Tに接続された、SPDT(Single Pole Double Throw)型のスイッチ回路で構成される。
 スイッチ53aは、第2スイッチの一例であり、整合回路41と受信フィルタ61Rおよび62Rとを結ぶ受信経路に配置され、低雑音増幅器21と受信フィルタ61Rとの接続、および、低雑音増幅器21と受信フィルタ62Rとの接続、を切り替える。スイッチ53aは、例えば、共通端子が整合回路41に接続され、一方の選択端子が受信フィルタ61Rに接続され、他方の選択端子が受信フィルタ62Rに接続された、SPDT型のスイッチ回路で構成される。
 スイッチ55aは、フィルタ81と整合回路71との接続、および、フィルタ81と整合回路72との接続、を切り替える。スイッチ55aは、例えば、共通端子がフィルタ81に接続され、一方の選択端子が整合回路71に接続され、他方の選択端子が整合回路72に接続されたSPDT型のスイッチ回路で構成される。また、スイッチ55aは、共通端子を、いずれの選択端子とも接続しない状態とすることで、ミドルバンド群の高周波信号を、ミドルバンド回路1Mで伝送させなくすることが可能である。つまり、スイッチ55aは、ミドルバンド回路1Mとアンテナ2Mとの接続および非接続を切り替えるアンテナスイッチである。
 なお、ミドルバンド回路1Mにおいて、伝送する通信バンドは2つに限定されず1つまたは3以上であってもよい。通信バンド数に応じて、フィルタ81の要否、デュプレクサの数、整合回路の数、および各スイッチの要否が決定される。
 ハイバンド回路1Hは、電力増幅器12と、低雑音増幅器22と、ハイパスフィルタ82と、デュプレクサ63および64と、整合回路32、42、73および74と、スイッチ51b、53bおよび55bと、を備える。
 電力増幅器12は、第1送信電力増幅器の一例であり、ハイバンド群に属する通信バンドの送信信号を増幅する。低雑音増幅器22は、第1受信低雑音増幅器の一例であり、ハイバンド群に属する通信バンドの受信信号を低雑音で増幅する。
 ハイパスフィルタ82は、第3フィルタの一例であり、アンテナ接続端子102とスイッチ55bとの間に接続され、ハイバンド群の周波数範囲を通過帯域としており、ハイバンド群の送信信号および受信信号の双方を通過させる。なお、ハイパスフィルタ82は、ハイバンド群の周波数範囲を通過帯域とするバンドパスフィルタであってもよい。
 デュプレクサ63は、ハイバンド群の通信バンドCの高周波信号を通過させ、送信フィルタ63T(第1送信フィルタ)および受信フィルタ63R(第1受信フィルタ)で構成されている。送信フィルタ63Tは、電力増幅器12とアンテナ接続端子102とを結ぶ送信経路に配置され、電力増幅器12で増幅された送信信号のうち、通信バンドCの送信帯域の送信信号を通過させる。また、受信フィルタ63Rは、低雑音増幅器22とアンテナ接続端子102とを結ぶ受信経路に配置され、アンテナ接続端子102から入力された受信信号のうち、通信バンドCの受信帯域の受信信号を通過させる。
 デュプレクサ64は、ハイバンド群の通信バンドDの高周波信号を通過させ、送信フィルタ64T(第1送信フィルタ)および受信フィルタ64R(第1受信フィルタ)で構成されている。送信フィルタ64Tは、電力増幅器12とアンテナ接続端子102とを結ぶ送信経路に配置され、電力増幅器12で増幅された送信信号のうち、通信バンドDの送信帯域の送信信号を通過させる。また、受信フィルタ64Rは、低雑音増幅器22とアンテナ接続端子102とを結ぶ受信経路に配置され、アンテナ接続端子102から入力された受信信号のうち、通信バンドDの受信帯域の受信信号を通過させる。
 整合回路32は、電力増幅器12と送信フィルタ63Tおよび64Tとを結ぶ送信経路に配置され、電力増幅器12とスイッチ51b、送信フィルタ63Tおよび64Tとのインピーダンス整合をとる。整合回路42は、低雑音増幅器22と受信フィルタ63Rおよび64Rとを結ぶ受信経路に配置され、低雑音増幅器22とスイッチ53b、受信フィルタ63Rおよび64Rとのインピーダンス整合をとる。整合回路73は、スイッチ55bとデュプレクサ63とを結ぶ経路に配置され、ハイパスフィルタ82およびスイッチ55bと、デュプレクサ63とのインピーダンス整合をとる。整合回路74は、スイッチ55bとデュプレクサ64とを結ぶ経路に配置され、ハイパスフィルタ82およびスイッチ55bと、デュプレクサ64とのインピーダンス整合をとる。
 スイッチ51bは、第1スイッチの一例であり、整合回路32と送信フィルタ63Tおよび64Tとを結ぶ送信経路に配置され、電力増幅器12と送信フィルタ63Tとの接続、および、電力増幅器12と送信フィルタ64Tとの接続、を切り替える。スイッチ51bは、例えば、共通端子が整合回路32に接続され、一方の選択端子が送信フィルタ63Tに接続され、他方の選択端子が送信フィルタ64Tに接続された、SPDT型のスイッチ回路で構成される。
 スイッチ53bは、第2スイッチの一例であり、整合回路42と受信フィルタ63Rおよび64Rとを結ぶ受信経路に配置され、低雑音増幅器22と受信フィルタ63Rとの接続、および、低雑音増幅器22と受信フィルタ64Rとの接続、を切り替える。スイッチ53bは、例えば、共通端子が整合回路42に接続され、一方の選択端子が受信フィルタ63Rに接続され、他方の選択端子が受信フィルタ64Rに接続された、SPDT型のスイッチ回路で構成される。
 スイッチ55bは、ハイパスフィルタ82と整合回路73との接続、および、ハイパスフィルタ82と整合回路74との接続、を切り替える。スイッチ55bは、例えば、共通端子がハイパスフィルタ82に接続され、一方の選択端子が整合回路73に接続され、他方の選択端子が整合回路74に接続されたSPDT型のスイッチ回路で構成される。また、スイッチ55bは、共通端子を、いずれの選択端子とも接続しない状態とすることで、ハイバンド群の高周波信号を、ハイバンド回路1Hで伝送させなくすることが可能である。つまり、スイッチ55bは、ハイバンド回路1Hとアンテナ2Hとの接続および非接続を切り替えるアンテナスイッチである。
 なお、ハイバンド回路1Hにおいて、伝送する通信バンドは2つに限定されず1つまたは3以上であってもよい。通信バンド数に応じて、ハイパスフィルタ82の要否、デュプレクサの数、整合回路の数、および各スイッチの要否が決定される。
 GPS回路1Gは、低雑音増幅器25と、フィルタ85および86と、整合回路45と、を備える。
 低雑音増幅器25は、第2受信低雑音増幅器の一例であり、GPS帯域の受信信号を低雑音で増幅する。
 フィルタ85は、第2受信フィルタの一例であり、アンテナ接続端子105と整合回路45との間に接続され、GPS帯域を通過帯域としており、GPS帯域と周波数が異なるセルラー帯域を減衰帯域としている。フィルタ86は、第2受信フィルタの一例であり、低雑音増幅器25と受信出力端子125との間に接続され、GPS帯域を通過帯域としており、GPS帯域と周波数が異なるセルラー帯域を減衰帯域としている。本実施の形態に係るGPS回路1Gでは、セルラー帯域の減衰量の要求値を満たすため、低雑音増幅器25の前段および後段のそれぞれにフィルタが配置されている。
 整合回路45は、GPS回路1Gの受信経路に配置され、低雑音増幅器25とフィルタ85とのインピーダンス整合をとる。
 なお、高周波モジュール1において、スイッチ55aおよび55bは、1つのスイッチ回路55で構成されていてもよい。この場合、スイッチ回路55は、ミドルバンド回路1Mおよびハイバンド回路1Hのうちの1以上と、アンテナとの接続を同時に行うことが可能なマルチ接続型のスイッチ回路となる。
 また、フィルタ81、85、86、ハイパスフィルタ82、送信フィルタ61T~64T、および受信フィルタ61R~64Rは、例えば、弾性表面波フィルタ、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、LC共振フィルタ、および誘電体フィルタのいずれかであってもよく、さらには、これらには限定されない。
 また、アンテナ2Mおよび2Hは、1つのアンテナであってもよい。この場合、上記1つのアンテナは、ミドルバンド群およびハイバンド群の高周波信号を放射(送信)および受信できるアンテナ特性を有している。また、この場合、フィルタ81およびハイパスフィルタ82は、上記1つのアンテナに共通接続されたダイプレクサを構成する。
 また、電力増幅器11、12、低雑音増幅器21、22および25は、例えば、Si系のCMOS(Complementary Metal Oxide Semiconductor)またはGaAsを材料とした、電界効果型トランジスタ(FET)またはヘテロバイポーラトランジスタ(HBT)などで構成されている。
 また、低雑音増幅器21、22、スイッチ回路51、53および55は、1つの半導体IC(Integrated Circuit)に形成されていてもよい。さらに、上記半導体ICは、さらに、電力増幅器11および12を含んでいてもよい。半導体ICは、例えば、CMOSで構成されている。具体的には、SOI(Silicon On Insulator)プロセスにより構成されている。これにより、半導体ICを安価に製造することが可能となる。なお、半導体ICは、GaAs、SiGeおよびGaNの少なくともいずれかで構成されていてもよい。これにより、高品質な増幅性能および雑音性能を有する高周波信号を出力することが可能となる。
 上記回路構成によれば、本実施の形態に係る高周波モジュール1は、ミドルバンド回路1Mおよびハイバンド回路1Hにより、セルラー帯域に属する通信バンドA~Dのいずれかの通信バンドの高周波信号を、当該通信バンド単独で、送信、受信、および送受信の少なくともいずれかを実行することが可能である。また、通信バンドA~Dのうちの2以上の通信バンドの高周波信号を、同時送信、同時受信、および同時送受信の少なくともいずれかを実行することが可能である。さらに、高周波モジュール1は、ミドルバンド回路1Mおよびハイバンド回路1Hとは独立に、GPS回路1Gにより、GPS信号を受信することが可能である。
 また、上記回路構成では、高周波モジュール1は、ミドルバンド回路1Mおよびハイバンド回路1Hを有するものとして説明したが、本実施の形態に係る高周波モジュール1は、ローバンド回路を有していてもよい。ローバンド回路は、ミドルバンド群よりも低周波数側に位置するローバンド群の高周波信号を伝送する回路である。
 また、デュプレクサ61~64のそれぞれは、送受信兼用のフィルタと送受切り換えスイッチとで構成された、いわゆる時分割複信方式に対応した構成であってもよい。
 近年、4Gおよび5Gのセルラー帯域に対応した伝送回路とGPS受信回路とが併存した小型のフロントエンド回路が要求されている。
 これに対して、本実施の形態に係る高周波モジュール1では、セルラー帯域に対応した伝送回路とGPS受信回路が併存した小型のモジュールを実現するものである。以下では、本実施の形態に係る高周波モジュール1の小型化のための構成について説明する。
 [2.実施例に係る高周波モジュール1Aの回路素子配置構成]
 図2Aは、実施例に係る高周波モジュール1Aの平面構成概略図である。また、図2Bは、実施例に係る高周波モジュール1Aの断面構成概略図であり、具体的には、図2AのIIB-IIB線における断面図である。なお、図2Aの(a)には、モジュール基板91の互いに対向する主面91aおよび91bのうち、主面91aをz軸正方向側から見た場合の回路素子の配置図が示されている。一方、図2Aの(b)には、主面91bをz軸正方向側から見た場合の回路素子の配置を透視した図が示されている。
 実施例に係る高周波モジュール1Aは、実施の形態に係る高周波モジュール1を構成する各回路素子の配置構成を具体的に示したものである。
 図2Aおよび図2Bに示すように、本実施例に係る高周波モジュール1Aは、図1に示された回路構成に加えて、さらに、モジュール基板91と、樹脂部材92および93と、を有している。
 モジュール基板91は、互いに対向する主面91a(第1主面)および主面91b(第2主面)を有し、ミドルバンド回路1Mおよびハイバンド回路1Hを実装する実装基板である。モジュール基板91としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、または、プリント基板等が用いられる。
 樹脂部材92は、モジュール基板91の主面91aに配置され、ミドルバンド回路1Mの一部、ハイバンド回路1Hの一部、GPS回路1Gの一部、およびモジュール基板91の主面91aを覆っており、ミドルバンド回路1M、ハイバンド回路1HおよびGPS回路1Gを構成する回路素子の機械強度および耐湿性などの信頼性を確保する機能を有している。
 樹脂部材93は、モジュール基板91の主面91bに配置され、ミドルバンド回路1Mの一部、ハイバンド回路1Hの一部、GPS回路1Gの一部、およびモジュール基板91の主面91bを覆っており、ミドルバンド回路1M、ハイバンド回路1HおよびGPS回路1Gを構成する回路素子の機械強度および耐湿性などの信頼性を確保する機能を有している。
 なお、樹脂部材92および93は、本発明に係る高周波モジュールに必須の構成要素ではない。
 図2Aおよび図2Bに示すように、本実施例に係る高周波モジュール1Aでは、電力増幅器11および12、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、整合回路31、32、41、42および45、ならびに制御回路90は、モジュール基板91の主面91aに表面実装されている。一方、低雑音増幅器21、22および25、ならびにスイッチ回路51、53および55は、モジュール基板91の主面91bに表面実装されている。なお、整合回路71~74は、図2Aおよび図2Bには図示されていないが、モジュール基板91の主面91aおよび91bのいずれに表面実装されていてもよいし、またモジュール基板91に内蔵されていてもよい。
 電力増幅器11は、ミドルバンド群の送信信号を増幅する第1送信電力増幅器の一例であり、モジュール基板91の主面91aに実装されている。電力増幅器12は、ハイバンド群の送信信号を増幅する第1送信電力増幅器の一例であり、モジュール基板91の主面91aに実装されている。低雑音増幅器25は、GPS信号を増幅する第2受信低雑音増幅器の一例であり、モジュール基板91の主面91bに実装されている。
 本実施例に係る高周波モジュール1Aでは、セルラー帯域の送信信号を増幅する電力増幅器11および12と、GPSの受信信号を増幅する低雑音増幅器25とが、同一のモジュール基板91に実装されている。これにより、セルラー帯域の送信信号を増幅する電力増幅器とGPSの受信信号を増幅する低雑音増幅器とが、個別の実装基板に実装された従来の構成と比較して、小型の高周波モジュール1Aを提供できる。
 また、本実施例に係る高周波モジュール1Aでは、電力増幅器11および12が主面91aに実装され、低雑音増幅器25が主面91bに実装されている。これにより、実装面積が大きい電力増幅器11および12と低雑音増幅器25とを、同一の実装面に実装配置する場合と比較して、高周波モジュール1Aをさらに小型化できる。また、電力増幅器11および12と低雑音増幅器25との間にモジュール基板91が介在することにより、セルラー帯域の大電力の送信信号が、高S/N比が要求されるGPS信号に干渉してGPS受信感度が劣化することを抑制できる。
 また、本実施例に係る高周波モジュール1Aでは、フィルタ81、ハイパスフィルタ82、およびデュプレクサ61~64は、導電部材の一例であり、モジュール基板91の主面91aに実装されている。ここで、モジュール基板91を平面視した場合、フィルタ81、ハイパスフィルタ82、デュプレクサ61および62は、電力増幅器11と低雑音増幅器25との間に配置されている。このため、上記平面視において、電力増幅器11と低雑音増幅器25との距離を、上記導電部材が介在する分だけ大きく確保できるため、当該導電部材を、電力増幅器11と低雑音増幅器25との間のシールド材として利用できる。よって、ミドルバンド群の電力増幅器11とGPS帯域の低雑音増幅器25との信号干渉を抑制することが可能となる。また、上記平面視において、デュプレクサ61~63は、電力増幅器12と低雑音増幅器25との間に配置されている。このため、上記平面視において、電力増幅器12と低雑音増幅器25との距離を、上記導電部材が介在する分だけ大きく確保できるため、当該導電部材を、電力増幅器12と低雑音増幅器25との間のシールド材として利用できる。よって、ハイバンド群の電力増幅器12とGPS帯域の低雑音増幅器25との信号干渉を抑制することが可能となる。
 なお、電力増幅器11および12と低雑音増幅器25との間に配置されている導電部材は、フィルタ81、ハイパスフィルタ82、およびデュプレクサ61~64の少なくとも1つであればよい。また、上記導電部材は、デュプレクサ61~64のそれぞれを構成する送信フィルタおよび受信フィルタの少なくともいずれかであってもよい。フィルタ81、ハイパスフィルタ82、およびデュプレクサ61~64のそれぞれを構成する送信フィルタおよび受信フィルタは、信号取り出し電極などの導電部材を複数有しており、例えば、複数の信号取り出し電極のうちの少なくとも1つは、モジュール基板91に配置されたグランドパターンと接続されている。これにより、電力増幅器11および12から発生する送信信号の不要波を、上記フィルタで遮蔽できる。
 なお、本明細書において、上記導電部材とは、信号取り出し電極などの導電部材を有している電子部材であり、例えば、抵抗素子、容量素子、誘導素子、フィルタ、スイッチ、信号配線、および信号端子などの受動素子、ならびに、増幅器および制御回路などの能動素子の少なくともいずれかである。
 本実施例において、電力増幅器11および12と低雑音増幅器25との間に実装配置される導電部材は、スイッチ回路51、53、55、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、金属導体、チップコンデンサ、チップインダクタ、および制御回路90のいずれかであってもよい。なお、金属導体は、例えば、ブロック形状、板状、またはワイヤ形状を有する。
 また、本実施例に係る高周波モジュール1Aでは、上記平面視において、整合回路31および32と整合回路45との間に、フィルタ81、ハイパスフィルタ82、およびデュプレクサ61および62が実装配置されている。より具体的には、上記平面視において、電力増幅器11の出力端子に接続された整合回路31のインダクタ(第1インダクタ)と、低雑音増幅器25の入力端子に接続された整合回路45のインダクタ(第2インダクタ)との間に、導電部材が実装されている。また、上記平面視において、電力増幅器12の出力端子に接続された整合回路32のインダクタ(第1インダクタ)と、低雑音増幅器25の入力端子に接続された整合回路45のインダクタ(第2インダクタ)との間に、導電部材が実装されている。これにより、整合回路31および32のインダクタから発生する電磁界を、上記導電部材で遮蔽できる。よって、整合回路31のインダクタ(第1インダクタ)と整合回路45のインダクタ(第2インダクタ)との電磁界結合を抑制できる。よって、ミドルバンド群の送信信号とGPS受信信号との干渉を抑制することが可能となる。また、整合回路32のインダクタ(第1インダクタ)と整合回路45のインダクタ(第2インダクタ)との電磁界結合を抑制できる。よって、ハイバンド群の送信信号とGPS受信信号との干渉を抑制することが可能となる。
 本実施例において、整合回路31および32と整合回路45との間に実装配置される導電部材は、スイッチ回路51、53、55、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、金属導体、チップコンデンサ、チップインダクタ、および制御回路90のいずれかであってもよい。なお、金属導体は、例えば、ブロック形状、板状、またはワイヤ形状を有する。
 なお、上記導電部材は、接地電位または固定電位に設定された電極を有していることが望ましく、例えば、モジュール基板91内に形成されたグランドパターンと接続されていることが望ましい。これにより、導電部材の電磁界遮蔽機能が向上する。
 また、本実施例に係る高周波モジュール1Aでは、モジュール基板91の主面91b側に、複数の外部接続端子150が配置されている。高周波モジュール1Aは、高周波モジュール1Aのz軸負方向側に配置される外部基板と、複数の外部接続端子150を経由して、電気信号のやりとりを行う。また、複数の外部接続端子150のいくつかは、外部基板のグランド電位に設定される。主面91aおよび91bのうち、外部基板と対向する主面91bには、低背化が困難な電力増幅器11および12が配置されず、低背化が容易な低雑音増幅器21、22および25、ならびに、スイッチ回路51、53および55が配置されているので、高周波モジュール1A全体を低背化することが可能となる。また、受信回路の受信感度に大きく影響する低雑音増幅器21、22および25の周囲に、グランド電極として適用される外部接続端子150が複数配置されるので、受信回路の受信感度の劣化を抑制できる。特に、本実施例に係る高周波モジュール1Aでは、GPS受信信号を増幅する低雑音増幅器25を囲むように、外部接続端子150が複数配置されている。これにより、GPS受信信号に、セルラー帯域の信号が干渉することをより抑制できる。
 また、本実施例に係る高周波モジュール1Aでは、モジュール基板91内またはその表面に、グランドパターンが配置されている。これによれば、電力増幅器11および12と低雑音増幅器25との間に上記グランドパターンが介在するので、セルラー帯における送信信号とGPSの受信信号とのアイソレーションをより一層向上させることが可能となる。
 なお、外部接続端子150は、樹脂部材93をz軸方向に貫通する柱状電極であってもよく、また、主面91bに形成された電極上に配置されたバンプ電極であってもよい。外部接続端子150がバンプ電極である場合には、樹脂部材93はなくてもよい。
 また、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、整合回路31、32、41、42、および45は、低背化が困難な部品であることから、同じく低背化が困難な電力増幅器11および12が実装された主面91aに実装されることが望ましい。これにより、主面91aに実装される部品の高さを揃え、主面91bに実装される部品の高さを揃えることが可能となり、結果的に高周波モジュール1Aの低背化を実現できる。
 ここで、電力増幅器11の回路構成について説明する。
 図2Cは、実施例に係る高周波モジュール1Aが有する電力増幅器11の回路構成図である。同図に示すように、電力増幅器11は、トランジスタ140と、キャパシタ141および142と、バイアス回路143と、コレクタ端子144と、エミッタ端子と、入力端子145と、出力端子146と、を備える。
 トランジスタ140は、例えば、コレクタ、エミッタおよびベースを有し、エミッタ接地型のバイポーラトランジスタであり、ベースに入力された高周波電流を増幅してコレクタから出力する。なお、トランジスタ140は、ドレイン、ソースおよびゲートを有する電界効果型のトランジスタであってもよい。
 キャパシタ141は、DCカット用の容量素子であり、バイアス回路143からベースに印加される直流バイアス電圧により、入力端子145に直流電流が漏洩するのを防止する機能を有する。
 キャパシタ142は、DCカット用の容量素子であり、直流バイアス電圧が重畳された高周波増幅信号の直流成分を除去する機能を有し、当該直流成分が除去された高周波増幅信号が出力端子146から出力される。
 バイアス回路143は、トランジスタ140のベースに接続され、当該ベースにバイアス電圧を印加することで、トランジスタ140の動作点を最適化する機能を有する。
 電力増幅器11の上記回路構成によれば、入力端子145から入力された高周波信号RFinは、トランジスタ140のベースからエミッタに流れるベース電流Ibとなる。トランジスタ140によりベース電流Ibが増幅されてコレクタ電流Icとなり、当該コレクタ電流Icに対応した高周波信号RFoutが出力端子146から出力される。このとき、エミッタ端子からグランドには、ベース電流Ibおよびコレクタ電流Icが合算された大電流が流れる。
 ベース端子、コレクタ端子、およびエミッタ端子(グランド端子)は、主面91aに配置されており、金属電極層または金属バンプ部材などで構成される。
 図2Bに示すように、貫通電極94は、電力増幅器11のグランド端子と接続され、主面91aと主面91bとの間を貫通する貫通電極である。貫通電極94は、主面91bで外部接続端子150と接続されている。
 電力増幅器11の上記回路構成により、モジュール基板91内の配線のうち熱抵抗の大きいxy平面方向に沿う平面配線パターンのみを経由した放熱経路を排除できる。よって、電力増幅器11からの外部基板への放熱性が向上した小型の高周波モジュール1Aを提供することが可能となる。
 ここで、貫通電極94は、モジュール基板91内において、主面91aから主面91bに到る一本の円筒状ビア導体で構成されていることに限られない。貫通電極94は、複数の円筒状ビア導体が直列に接続された構造を有していてもよい。なお、直列に接続された複数の円筒状ビア導体の間には、各層に沿ったビア受け電極が形成されているが、主面91aから主面91bを平面視した場合、z軸方向に隣り合う円筒状ビア導体同士は、少なくとも一部が重複している。つまり、貫通電極94には、平面配線パターンのみを経由するxy平面方向の経路はなく、必ずz軸方向の経路が存在する。
 また、電力増幅器11および12がモジュール基板91の主面91bに実装され、低雑音増幅器25がモジュール基板91の主面91aに実装されていてもよい。
 [3.変形例に係る高周波モジュール1Bの回路素子配置構成]
 図3Aは、変形例に係る高周波モジュール1Bの平面構成概略図である。また、図3Bは、変形例に係る高周波モジュール1Bの断面構成概略図であり、具体的には、図3AのIIIB-IIIB線における断面図である。なお、図3Aの(a)には、モジュール基板91の互いに対向する主面91aおよび91bのうち、主面91aをz軸正方向側から見た場合の回路素子の配置図が示されている。一方、図3Aの(b)には、主面91bをz軸正方向側から見た場合の回路素子の配置を透視した図が示されている。
 変形例に係る高周波モジュール1Bは、実施の形態に係る高周波モジュール1を構成する各回路素子の配置構成を具体的に示したものである。本変形例に係る高周波モジュール1Bは、実施例に係る高周波モジュール1Aと比較して、高周波モジュール1Bを構成する回路素子の配置構成のみが異なる。以下、本変形例に係る高周波モジュール1Bについて、実施例に係る高周波モジュール1Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図3Aおよび図3Bに示すように、本変形例に係る高周波モジュール1Bは、図1に示された回路構成に加えて、さらに、モジュール基板91と、樹脂部材92および93と、を有している。
 図3Aおよび図3Bに示すように、本変形例に係る高周波モジュール1Bでは、電力増幅器11および12、低雑音増幅器25、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、ならびに整合回路31、32、41、42および45は、モジュール基板91の主面91aに表面実装されている。一方、低雑音増幅器21および22、スイッチ回路51、53および55、ならびに制御回路90は、モジュール基板91の主面91bに表面実装されている。なお、整合回路71~74は、図3Aおよび図3Bには図示されていないが、モジュール基板91の主面91aおよび91bのいずれに表面実装されていてもよいし、またモジュール基板91に内蔵されていてもよい。
 電力増幅器11は、ミドルバンド群の送信信号を増幅する第1送信電力増幅器の一例であり、モジュール基板91の主面91aに実装されている。電力増幅器12は、ハイバンド群の送信信号を増幅する第1送信電力増幅器の一例であり、モジュール基板91の主面91aに実装されている。低雑音増幅器25は、GPS信号を増幅する第2受信低雑音増幅器の一例であり、モジュール基板91の主面91aに実装されている。
 本変形例に係る高周波モジュール1Bでは、フィルタ81、ハイパスフィルタ82、およびデュプレクサ61~64は、導電部材の一例であり、モジュール基板91の主面91aに実装されている。ここで、モジュール基板91を平面視した場合、フィルタ81、ハイパスフィルタ82、デュプレクサ61および62は、電力増幅器11と低雑音増幅器25との間に配置されている。このため、上記平面視において、電力増幅器11と低雑音増幅器25との距離を、上記導電部材が介在する分だけ大きく確保できるため、当該導電部材を、電力増幅器11と低雑音増幅器25との間のシールド材として利用できる。よって、ミドルバンド群の電力増幅器11とGPS帯域の低雑音増幅器25との信号干渉を抑制することが可能となる。また、上記平面視において、デュプレクサ61~63は、電力増幅器12と低雑音増幅器25との間に配置されている。このため、上記平面視において、電力増幅器12と低雑音増幅器25との距離を、上記導電部材が介在する分だけ大きく確保できるため、当該導電部材を、電力増幅器12と低雑音増幅器25との間のシールド材として利用できる。よって、ハイバンド群の電力増幅器12とGPS帯域の低雑音増幅器25との信号干渉を抑制することが可能となる。
 なお、電力増幅器11および12と低雑音増幅器25との間に配置されている導電部材は、フィルタ81、ハイパスフィルタ82、およびデュプレクサ61~64の少なくとも1つであればよい。また、上記導電部材は、デュプレクサ61~64のそれぞれを構成する送信フィルタおよび受信フィルタの少なくともいずれかであってもよい。
 本変形例において、電力増幅器11および12と低雑音増幅器25との間に実装配置される導電部材は、スイッチ回路51、53、55、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、金属導体、チップコンデンサ、チップインダクタ、および制御回路90のいずれかであってもよい。なお、金属導体は、例えば、ブロック形状、板状、またはワイヤ形状を有する。
 また、本変形例に係る高周波モジュール1Bでは、上記平面視において、整合回路31および32と整合回路45との間に、フィルタ81、ハイパスフィルタ82、デュプレクサ61および62が実装配置されている。これにより、整合回路31および32のインダクタから発生する電磁界を、上記導電部材で遮蔽できる。よって、整合回路31のインダクタ(第1インダクタ)と整合回路45のインダクタ(第2インダクタ)との電磁界結合を抑制できる。よって、ミドルバンド群の送信信号とGPS受信信号との干渉を抑制することが可能となる。また、整合回路32のインダクタ(第1インダクタ)と整合回路45のインダクタ(第2インダクタ)との電磁界結合を抑制できる。よって、ハイバンド群の送信信号とGPS受信信号との干渉を抑制することが可能となる。
 本変形例において、整合回路31および32と整合回路45との間に実装配置される導電部材は、スイッチ回路51、53、55、フィルタ81、85、86、ハイパスフィルタ82、デュプレクサ61~64、金属導体、チップコンデンサ、チップインダクタ、および制御回路90のいずれかであってもよい。なお、金属導体は、例えば、ブロック形状、板状、またはワイヤ形状を有する。
 また、本変形例に係る高周波モジュール1Bでは、モジュール基板91の主面91b側に、複数の外部接続端子150が配置されている。高周波モジュール1Bは、高周波モジュール1Bのz軸負方向側に配置される外部基板と、複数の外部接続端子150を経由して、電気信号のやりとりを行う。また、複数の外部接続端子150のいくつかは、外部基板のグランド電位に設定される。主面91aおよび91bのうち、外部基板と対向する主面91bには、低背化が困難な電力増幅器11および12が配置されず、低背化が容易な低雑音増幅器21および22、スイッチ回路51、53および55、ならびに制御回路90が配置されているので、高周波モジュール1B全体を低背化することが可能となる。また、受信回路の受信感度に大きく影響する低雑音増幅器21および22の周囲に、グランド電極として適用される外部接続端子150が複数配置されるので、受信回路の受信感度の劣化を抑制できる。
 なお、外部接続端子150は、樹脂部材93をz軸方向に貫通する柱状電極であってもよく、また、主面91bに形成された電極上に配置されたバンプ電極であってもよい。外部接続端子150がバンプ電極である場合には、樹脂部材93はなくてもよい。
 また、図3Aの(b)に示すように、低雑音増幅器21および22、スイッチ回路51、53および55は、同一の半導体IC10に内蔵されていてもよい。これらの低背化が可能な部品が内蔵された半導体IC10を主面91bに配置することにより、製造プロセスにおいて、主面91b側を研磨して薄型化することが可能となる。よって、高周波モジュール1Bの低背化を実現できる。なお、半導体IC10は、制御回路90を内蔵していてもよい。
 [4.効果など]
 以上、実施の形態に係る高周波モジュール1は、互いに対向する主面91aおよび91bを有し、両主面に高周波部品を実装可能なモジュール基板91と、セルラー帯域の送信信号を増幅する第1送信電力増幅器と、GPSの受信信号を増幅する第2受信低雑音増幅器と、を備え、第1送信電力増幅器と第2受信低雑音増幅器とは、同一のモジュール基板91に実装されている。
 これにより、セルラー帯域の送信信号を増幅する電力増幅器とGPSの受信信号を増幅する低雑音増幅器とが、個別の実装基板に実装された従来の構成と比較して、小型の高周波モジュール1を提供できる。よって、セルラー帯域に対応した伝送回路とGPSの受信回路とが併存した小型の高周波モジュール1を提供することが可能となる。
 また、第1送信電力増幅器は主面91aに実装されており、第2受信低雑音増幅器は2主面91bに実装されていてもよい。
 これにより、実装面積が大きい第1送信電力増幅器と第2受信低雑音増幅器とを、同一の実装面に実装配置する場合と比較して、高周波モジュール1をさらに小型化できる。また、第1送信電力増幅器と第2受信低雑音増幅器との間にモジュール基板91が介在することにより、セルラー帯域の大電力の送信信号が、高S/N比が要求されるGPS信号に干渉してGPS受信感度が劣化することを抑制できる。
 また、主面91bには、外部基板と接続される外部接続端子150が配置されていてもよい。
 これにより、主面91bに実装された第2受信低雑音増幅器を含む受信回路の受信感度の劣化を抑制できる。
 また、さらに、第1送信電力増幅器のグランド端子と接続され、モジュール基板91の主面91aと主面91bとの間を貫通する貫通電極94を備え、貫通電極94は、主面91bで外部接続端子150と接続されてもよい。
 これにより、モジュール基板91内の配線のうち熱抵抗の大きい主面方向に沿う平面配線パターンのみを経由した放熱経路を排除できる。よって、第1送信電力増幅器からの外部基板への放熱性が向上した小型の高周波モジュール1を提供することが可能となる。
 また、さらに、モジュール基板91の平面視において第1送信電力増幅器と第2受信低雑音増幅器との間に実装された導電部材を備えてもよい。
 これによれば、上記平面視において、第1送信電力増幅器と第2受信低雑音増幅器との距離を、上記導電部材が介在する分だけ大きく確保できるため、当該導電部材を、第1送信電力増幅器と第2受信低雑音増幅器との間のシールド材として利用できる。よって、セルラー帯域の電力増幅器とGPS帯域の低雑音増幅器との信号干渉を抑制することが可能となる。
 また、さらに、第1送信電力増幅器の出力端子に接続された第1インダクタと、第2受信低雑音増幅器の入力端子に接続された第2インダクタと、モジュール基板91の平面視において第1インダクタと第2インダクタとの間に実装された導電部材と、を備えてもよい。
 これにより、第1インダクタおよび第2インダクタから発生する電磁界を、上記導電部材で遮蔽できる。よって、第1インダクタと第2インダクタとの電磁界結合を抑制できる。よって、セルラー帯域の送信信号とGPS受信信号との干渉を抑制することが可能となる。
 また、上記導電部材は、(1)セルラー帯域の送信信号を伝送する送信経路とアンテナ接続端子との導通および非導通を切り替えるアンテナスイッチ、(2)上記送信経路と第1送信電力増幅器との導通および非導通を切り替える第1スイッチ、(3)セルラー帯域の受信信号を伝送する受信経路と受信信号を増幅する第1受信低雑音増幅器との導通および非導通を切り替える第2スイッチ、(4)上記送信経路に配置された第1送信フィルタ、(5)上記受信経路に配置された第1受信フィルタ、(6)GPSの受信信号を伝送するGPS受信経路に配置された第2受信フィルタ、(7)アンテナ接続端子と第1送信フィルタおよび第1受信フィルタとの間に配置された第3フィルタ、(8)ブロック形状、板状、またはワイヤ形状の金属導体、(9)チップコンデンサ、(10)チップインダクタ、(11)第1送信電力増幅器または第2受信低雑音増幅器の利得を調整する制御信号、ならびに、アンテナスイッチ、第1スイッチおよび第2スイッチの切り替えを制御する制御信号の少なくとも1つを生成する制御回路90、のいずれかであってもよい。
 また、主面91bには、外部基板と接続される外部接続端子150が配置されており、アンテナスイッチ、第1スイッチおよび第2スイッチは、主面91bに実装されていてもよい。
 これにより、主面91aおよび91bのうち、外部基板と対向する主面91bには、低背化が困難な電力増幅器が配置されず、低背化が容易な低雑音増幅器およびスイッチが配置されているので、高周波モジュール1全体を低背化することが可能となる。
 また、第1受信低雑音増幅器は主面91bに実装され、アンテナスイッチ、第1スイッチおよび第2スイッチの少なくとも1つと、第1受信低雑音増幅器とは、同一の半導体ICに内蔵されている。
 これにより、高周波モジュール1の小型化がさらに加速される。
 また、主面91bには、外部基板と接続される外部接続端子150が配置されており、第1送信フィルタ、第1受信フィルタ、第2受信フィルタ、第3フィルタ、チップコンデンサ、およびチップインダクタは、主面91aに実装されていてもよい。
 これによれば、フィルタ、チップコンデンサおよびチップインダクタは、低背化が困難な部品であることから、同じく低背化が困難な電力増幅器が実装された主面91aに実装されることが望ましい。これにより、主面91aに実装される部品の高さを揃え、また、主面91bに実装される低背可能な部品の高さを揃えることが可能となり、結果的に高周波モジュール1の低背化を実現できる。
 また、本実施の形態に係る通信装置5は、アンテナで送受信される高周波信号を処理するRFIC3と、アンテナとRFIC3との間で高周波信号を伝送する高周波モジュール1と、を備える。
 これにより、セルラー帯域に対応した伝送回路とGPSの受信回路とが併存した小型の通信装置5を提供することが可能となる。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る高周波モジュールおよび通信装置について、実施例および変形例を挙げて説明したが、本発明に係る高周波モジュールおよび通信装置は、上記実施例および変形例に限定されるものではない。上記実施例および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施例および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施例および変形例に係る高周波モジュールおよび通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されていてもよい。
 また、セルラー帯域に対応した伝送回路とは、当該伝送回路が有する増幅器の周波数-利得特性を測定した場合、所定値以上の利得を有する周波数範囲がセルラー帯域に属する一の通信バンドの周波数範囲を含むことである。上記所定値としては、例えば、上記送信電力増幅器が有する最大利得から3dB低下した利得が挙げられる。または、セルラー帯域に対応した伝送回路とは、当該伝送回路が有するフィルタの通過帯域がセルラー帯域に属する一の通信バンドの周波数範囲を含むことである。または、セルラー帯域に対応した伝送回路とは、RFICから上記伝送回路に出力される送信信号が、セルラー帯域に属する一の通信バンドの周波数範囲に含まれることである。
 また、GPSの受信回路とは、当該受信回路が有する増幅器の周波数-利得特性を測定した場合、所定値以上の利得を有する周波数範囲がGPS帯域を含むことである。上記所定値としては、例えば、上記送信電力増幅器が有する最大利得から3dB低下した利得が挙げられる。または、GPSの受信回路とは、当該受信回路が有するフィルタの通過帯域がGPS帯域を含むことである。
 本発明は、マルチバンド対応のフロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。
 1、1A、1B  高周波モジュール
 1G  GPS回路
 1H  ハイバンド回路
 1M  ミドルバンド回路
 2G、2H、2M  アンテナ
 3  RF信号処理回路(RFIC)
 4  ベースバンド信号処理回路(BBIC)
 5  通信装置
 10  半導体IC
 11、12  電力増幅器
 21、22、25  低雑音増幅器
 31、32、41、42、45、71、72、73、74  整合回路
 51、53、55  スイッチ回路
 51a、51b、53a、53b、55a、55b  スイッチ
 61、62、63、64  デュプレクサ
 61R、62R、63R、64R  受信フィルタ
 61T、62T、63T、64T  送信フィルタ
 81、85、86  フィルタ
 82  ハイパスフィルタ
 90  制御回路
 91  モジュール基板
 91a、91b  主面
 92、93  樹脂部材
 94  貫通電極
 101、102、105  アンテナ接続端子
 111、112  送信入力端子
 121、122、125  受信出力端子
 140  トランジスタ
 141、142  キャパシタ
 143  バイアス回路
 144  コレクタ端子
 145  入力端子
 146  出力端子
 150  外部接続端子

Claims (11)

  1.  互いに対向する第1主面および第2主面を有し、前記第1主面及び前記第2主面に高周波部品を実装可能な実装基板と、
     セルラー(登録商標)帯域の送信信号を増幅する第1送信電力増幅器と、
     GPS(登録商標)の受信信号を増幅する第2受信低雑音増幅器と、を備え、
     前記第1送信電力増幅器と前記第2受信低雑音増幅器とは、同一の前記実装基板に実装されている、
     高周波モジュール。
  2.  前記第1送信電力増幅器は、前記第1主面に実装されており、
     前記第2受信低雑音増幅器は、前記第2主面に実装されている、
     請求項1に記載の高周波モジュール。
  3.  前記第2主面には、外部基板と接続される外部接続端子が配置されている、
     請求項2に記載の高周波モジュール。
  4.  さらに、
     前記第1送信電力増幅器のグランド端子と接続され、前記実装基板の前記第1主面と前記第2主面との間を貫通する貫通電極を備え、
     前記貫通電極は、前記第2主面で前記外部接続端子と接続されている、
     請求項3に記載の高周波モジュール。
  5.  さらに、
     前記実装基板の平面視において前記第1送信電力増幅器と前記第2受信低雑音増幅器との間に配置された導電部材を備える、
     請求項1~4のいずれか1項に記載の高周波モジュール。
  6.  さらに、
     前記第1送信電力増幅器の出力端子に接続された第1インダクタと、
     前記第2受信低雑音増幅器の入力端子に接続された第2インダクタと、
     前記実装基板の平面視において前記第1インダクタと前記第2インダクタとの間に実装された導電部材と、を備える、
     請求項1~5のいずれか1項に記載の高周波モジュール。
  7.  前記導電部材は、
     (1)セルラー帯域の送信信号を伝送する送信経路とアンテナ接続端子との導通および非導通を切り替えるアンテナスイッチ、
     (2)前記送信経路と前記第1送信電力増幅器との導通および非導通を切り替える第1スイッチ、
     (3)セルラー帯域の受信信号を伝送する受信経路と前記受信信号を増幅する第1受信低雑音増幅器との導通および非導通を切り替える第2スイッチ、
     (4)前記送信経路に配置された第1送信フィルタ、
     (5)前記受信経路に配置された第1受信フィルタ、
     (6)GPSの受信信号を伝送するGPS受信経路に配置された第2受信フィルタ、
     (7)前記アンテナ接続端子と前記第1送信フィルタおよび前記第1受信フィルタとの間に配置された第3フィルタ、
     (8)ブロック形状、板状、またはワイヤ形状の金属導体、
     (9)チップコンデンサ、
     (10)チップインダクタ、
     (11)前記第1送信電力増幅器または前記第2受信低雑音増幅器の利得を調整する制御信号、ならびに、前記アンテナスイッチ、前記第1スイッチおよび前記第2スイッチの切り替えを制御する制御信号の少なくとも1つを生成する制御回路、
     のいずれかである、
     請求項6に記載の高周波モジュール。
  8.  前記第2主面には、外部基板と接続される外部接続端子が配置されており、
     前記アンテナスイッチ、前記第1スイッチおよび前記第2スイッチは、前記第2主面に実装されている、
     請求項7に記載の高周波モジュール。
  9.  前記第1受信低雑音増幅器は、前記第2主面に実装され、
     前記アンテナスイッチ、前記第1スイッチおよび前記第2スイッチの少なくとも1つと、前記第1受信低雑音増幅器とは、同一の半導体ICに内蔵されている、
     請求項8に記載の高周波モジュール。
  10.  前記第2主面には、外部基板と接続される外部接続端子が配置されており、
     前記第1送信フィルタ、前記第1受信フィルタ、前記第2受信フィルタ、前記第3フィルタ、前記チップコンデンサ、および前記チップインダクタは、第1主面に実装されている、
     請求項7~9のいずれか1項に記載の高周波モジュール。
  11.  アンテナで送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナと前記RF信号処理回路との間で前記高周波信号を伝送する請求項1~10のいずれか1項に記載の高周波モジュールと、を備える、
     通信装置。
PCT/JP2020/024599 2019-08-30 2020-06-23 高周波モジュールおよび通信装置 WO2021039068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/673,785 US12136614B2 (en) 2019-08-30 2022-02-17 Radio frequency module and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-158613 2019-08-30
JP2019158613 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,785 Continuation US12136614B2 (en) 2019-08-30 2022-02-17 Radio frequency module and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021039068A1 true WO2021039068A1 (ja) 2021-03-04

Family

ID=74683635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024599 WO2021039068A1 (ja) 2019-08-30 2020-06-23 高周波モジュールおよび通信装置

Country Status (2)

Country Link
US (1) US12136614B2 (ja)
WO (1) WO2021039068A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209755A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール
WO2022209750A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール及び通信装置
WO2022209751A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール及び通信装置
WO2022209730A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392926B (zh) * 2017-03-14 2022-12-06 株式会社村田制作所 高频模块
CN219350203U (zh) * 2022-12-29 2023-07-14 盛合晶微半导体(江阴)有限公司 一种三维射频模块系统封装结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028673A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Circuit radioelectrique haute frequence
JP2015111748A (ja) * 2013-10-30 2015-06-18 太陽誘電株式会社 回路モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201939A1 (en) * 2002-04-29 2003-10-30 Reece John K. Integrated dual or quad band communication and GPS band antenna
US7768792B2 (en) * 2005-09-12 2010-08-03 Lg Innotek Co., Ltd. Front end module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028673A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Circuit radioelectrique haute frequence
JP2015111748A (ja) * 2013-10-30 2015-06-18 太陽誘電株式会社 回路モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209755A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール
WO2022209750A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール及び通信装置
WO2022209751A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール及び通信装置
WO2022209730A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 高周波モジュール

Also Published As

Publication number Publication date
US12136614B2 (en) 2024-11-05
US20220173086A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US11303308B2 (en) Radio frequency module and communication device
US11757478B2 (en) Radio frequency module and communication device
WO2021039068A1 (ja) 高周波モジュールおよび通信装置
CN213213456U (zh) 高频模块和通信装置
US11336312B2 (en) Radio frequency module and communication device
KR102448317B1 (ko) 고주파 모듈 및 통신 장치
KR102414508B1 (ko) 고주파 모듈 및 통신 장치
JP2021048565A (ja) 高周波モジュールおよび通信装置
KR102417477B1 (ko) 고주파 모듈 및 통신 장치
CN213879810U (zh) 高频模块和通信装置
US20220393706A1 (en) Radio frequency module and communication apparatus
KR102471373B1 (ko) 고주파 모듈 및 통신 장치
JP2021197644A (ja) 高周波モジュールおよび通信装置
JP2021048561A (ja) 高周波モジュールおよび通信装置
US11483023B2 (en) Radio-frequency module and communication device
KR102455844B1 (ko) 고주파 모듈 및 통신장치
WO2022044456A1 (ja) 高周波モジュールおよび通信装置
JP2022011971A (ja) 高周波モジュール及び通信装置
WO2023021982A1 (ja) 高周波モジュール
WO2023022047A1 (ja) 高周波モジュール
WO2023021792A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP