WO2021039050A1 - レーダ装置 - Google Patents
レーダ装置 Download PDFInfo
- Publication number
- WO2021039050A1 WO2021039050A1 PCT/JP2020/024043 JP2020024043W WO2021039050A1 WO 2021039050 A1 WO2021039050 A1 WO 2021039050A1 JP 2020024043 W JP2020024043 W JP 2020024043W WO 2021039050 A1 WO2021039050 A1 WO 2021039050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- radome
- radar device
- transmitting antenna
- wave
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/038—Feedthrough nulling circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/027—Constructional details of housings, e.g. form, type, material or ruggedness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/3208—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
- H01Q1/3233—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
- H01Q1/422—Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93271—Sensor installation details in the front of the vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93274—Sensor installation details on the side of the vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93275—Sensor installation details in the bumper area
Definitions
- the present invention relates to a radar device.
- Such a radar device generally irradiates radio waves from a transmitting antenna, receives the radio waves reflected by the target by a receiving antenna provided separately from the transmitting antenna, and calculates the position and speed of the target.
- Radar devices for automobiles are generally installed inside bumpers provided on the front and rear of the vehicle body. Therefore, the radio waves emitted from the transmitting antenna are reflected by the bumper and returned to the radar side, and are re-reflected by the cover (radome) or antenna board installed to protect the antenna, so that the radio waves emitted from the transmitting antenna are reflected. And the reflected wave may interfere. This causes a disorder of the antenna gain pattern, which leads to a problem that the detection performance of the target in the radar device is deteriorated.
- Patent Document 1 is known as a background technique relating to the above.
- the first surface which is the surface facing the transmitting antenna portion and the receiving antenna portion, and the second surface on the opposite side are made non-parallel. So, a technique for reducing the influence of interference due to reflected wave noise is disclosed.
- the direction of the radio wave radiated to the front of the vehicle through the cover member is not horizontal to the ground, but has an angle corresponding to the inclination angle of the first surface of the cover member.
- the detection performance deteriorates, such as the distance at which parallel targets can be detected becomes shorter.
- the radio wave emitted from the transmitting antenna portion has a predetermined beam width and side lobes
- the radio wave after passing through the cover member contains a component perpendicular to the bumper. Therefore, when this component is reflected by the bumper and reflected again on the second surface, interference between the radio wave emitted from the transmitting antenna and the reflected wave occurs, and there is also a problem that the detection performance deteriorates.
- the radar device is mounted on a vehicle and receives a transmitting antenna that emits radio waves toward an object and a reflected wave that the radio waves emitted from the transmitting antenna are reflected by the object.
- a receiving antenna, an antenna substrate having a transmitting antenna and a mounting surface on which the receiving antenna is mounted, and a radome covering the transmitting antenna and the receiving antenna are provided, and the redome includes a bumper of the vehicle and the antenna.
- the first surface of the radome facing the antenna substrate and the second surface of the radome facing the bumper, which are arranged between the substrates, have portions that are non-parallel to each other, and the transmitting antenna. Emits the radio wave at an angle from a direction perpendicular to the mounting surface.
- the present invention it is possible to prevent interference between the radio wave emitted from the radar device and the reflected wave, and to avoid deterioration of the detection performance.
- the figure which shows the radar apparatus which concerns on 1st Embodiment of this invention Diagram showing an example of mounting a radar device in an automobile
- the figure which shows the radar apparatus which concerns on the comparative example The figure which shows the modification of the radar apparatus which concerns on 1st Embodiment of this invention.
- FIG. 1 is a diagram showing a radar device 1 according to the first embodiment of the present invention.
- FIG. 1A is a cross-sectional view taken along the line AA'of the radar device 1 according to the present embodiment
- FIG. 1B is a perspective perspective view of the radar device 1 according to the present embodiment.
- the transmitting antenna 3 and the receiving antenna 4 are mounted on the antenna substrate 5.
- the transmitting antenna 3 emits radio waves toward the target object, and the receiving antenna 4 receives the reflected waves in which the radio waves radiated from the transmitting antenna 3 are reflected by the target object.
- the transmitting antenna 3 and the receiving antenna 4 are each composed of an array antenna in which a plurality of antenna elements are arranged in a straight line.
- the transmitting antenna 3 and the receiving antenna 4 may be configured by using an antenna other than the array antenna.
- a transmission circuit 6 that sends a modulated signal to the transmission antenna 3 and radiates radio waves to the transmission antenna 3 is connected to the transmission antenna 3.
- the receiving antenna 4 includes a receiving circuit 7 that amplifies and demodulates the reflected wave from the target received by the receiving antenna 4 to generate a received signal, and a signal processing circuit 8 that calculates the position and speed of the target from the received signal. It is connected.
- a cover (radome) 2 for protecting the transmitting antenna 3 and the receiving antenna 4 is installed so as to cover these antennas.
- the radome 2 is made of a material that transmits radio waves, such as resin. Note that, in FIG. 1B, the transmitting antenna 3, the receiving antenna 4, and the antenna substrate 5 are shown by transmitting a part of the radome 2 so that the internal structure of the radar device 1 can be seen.
- the radome 2 is arranged between the bumper 9 of the vehicle on which the radar device 1 is mounted and the antenna substrate 5 of the radar device 1.
- the direction of the y-axis in FIGS. 1 (a) and 1 (b) corresponds to the vertical direction of the vehicle.
- the x-axis and z-axis directions correspond to the directions horizontal to the road surface on which the vehicle is traveling.
- the transmitting antenna 3 and the receiving antenna 4 are arranged side by side in the x-axis direction on the mounting surface of the antenna substrate 5. That is, the transmitting antenna 3 and the receiving antenna 4 are arranged side by side in the horizontal direction with the road surface on which the vehicle travels.
- the radome 2 is located inside the space in which the antenna substrate 5 is accommodated and faces the surface (hereinafter referred to as “first surface”) 2a facing the antenna substrate 5 and outside the space in which the antenna substrate 5 is accommodated. It has a surface (hereinafter, referred to as a “second surface”) 2b that is located at and faces the bumper 9.
- the first surface 2a is parallel to the y-axis and the second surface 2b has an angle with respect to the y-axis. That is, the first surface 2a is parallel to the mounting surface on which the transmitting antenna 3 and the receiving antenna 4 are mounted on the antenna substrate 5 and the surface on the radome 2 side of the bumper 9, but the second surface 2b. Is tilted with respect to these planes. Therefore, the first surface 2a and the second surface 2b are non-parallel to each other.
- the transmitting antenna 3 radiates radio waves at an angle from the z-axis corresponding to the direction perpendicular to the mounting surface of the antenna substrate 5.
- the propagation direction changes by refracting on the first surface 2a and the second surface 2b, which are the interface between the radome 2 and the air, respectively. ..
- the transmitted wave 40b from the radar device 1 is irradiated toward the target object.
- the reflected wave incident on the radar device 1 in order to maximize the reception intensity of the reflected wave incident on the radar device 1 by reflecting the transmitted wave 40b from the target object, it is received at the same angle as the angle of the radiated radio wave 40a with respect to the z-axis. It is preferable to set so that the gain of the antenna 4 is maximized.
- the first surface 2a and the second surface 2b are arranged so that the propagation direction of the transmitted wave 40b from the radar device 1 radiated from the transmitting antenna 3 and passed through the radome 2 coincides with the z-axis direction.
- the angles are set respectively.
- the first surface 2a is parallel to the mounting surface of the antenna substrate 5 as shown in FIG. 1A
- the inclination angle of the second surface 2b with respect to the mounting surface of the antenna substrate 5 is set so that the propagation direction of the transmitted wave 40b coincides with the z-axis direction.
- FIG. 2 is a diagram showing an example of mounting the radar device 1 in an automobile.
- the radar device 1 is mounted in order to detect an obstacle or the like existing in the left front of the vehicle 100, which is an automobile, so that the z-axis is directed diagonally forward to the left of the vehicle 100, for example, at the position shown in FIG.
- the radar device 1 is installed inside the bumper 9 in order to avoid the influence of contact with an obstacle or a rear-end collision.
- FIG. 2 shows an example of the mounting position of the radar device 1 in the vehicle 100, and the radar device 1 may be mounted at another position. Further, a plurality of radar devices 1 may be mounted at different positions on the vehicle 100.
- FIG. 3 is a diagram showing a radar device 10 according to a comparative example.
- FIG. 3A is a cross-sectional view taken along the line AA'of the radar device 10 according to the comparative example
- FIG. 3B is a perspective perspective view of the radar device 10 according to the comparative example.
- the radome 2 accommodates a first surface 20a located inside the space in which the antenna substrate 5 is accommodated and facing the antenna substrate 5, and the antenna substrate 5. It has a second surface 20b that is located outside the space and faces the bumper 9, both of which are parallel to the antenna substrate 5. Further, the transmitting antenna 3 radiates radio waves in the z-axis direction. Other than this, it has the same structure as the radar device 1 shown in FIG.
- the transmitted wave 40b A part of the wave is reflected by the bumper 9 and returns to the opposite side in the z-axis direction as the reflected wave 41.
- a part of the reflected wave 41 by the bumper 9 is reflected again on the second surface 20b of the radome 20 and propagates as a re-reflected wave 42 from the radome 20 in the same z-axis direction as the transmitted wave 40b.
- interference occurs between the transmitted wave 40b and the re-reflected wave 42, and the target detection performance of the radar device 10 deteriorates.
- the rest of the reflected wave 41 by the bumper 9 passes through the radome 20 and is reflected again by the antenna substrate 5. Since the re-reflected wave 43 from the antenna substrate 5 also propagates in the same z-axis direction as the transmitted wave 40b, interference occurs between the transmitted wave 40b and the re-reflected wave 43, and the detection performance of the target in the radar device 10 deteriorates. To do.
- the reflected wave 41 by the bumper 9 returns to the opposite side in the z-axis direction, so that the radar device 20 and the antenna substrate 5 have the same direction as the transmitted wave 40b of the radar device 10. Re-reflected waves 42 and 43 propagating to the above are generated, respectively. As a result, the characteristics of the radar device 10 deteriorate.
- the radiated radio wave 40a radiated from the transmitting antenna 3 tilted from the z-axis is of the radome 2 and the air when passing through the radome 2 as described above.
- the propagation direction changes by refracting at the first surface 2a and the second surface 2b, which are the boundary surfaces, respectively.
- the transmitted wave 40b from the radar device 1 is irradiated in the z-axis direction.
- a part of the transmitted wave 40b is reflected by the bumper 9 and returns to the opposite side in the z-axis direction as the reflected wave 41.
- a part of the reflected wave 41 by the bumper 9 is reflected again by the second surface 2b of the radome 2, but the second surface 2b has an angle with respect to the y-axis and is not parallel to the bumper 9. Therefore, the re-reflected wave 42 from the radome 2 propagates in a direction deviated from the z-axis direction. As a result, no interference occurs between the transmitted wave 40b and the rereflected wave 42.
- the rest of the reflected wave 41 by the bumper 9 passes through the radome 2 again, it is refracted on the second surface 2b and the first surface 2a, respectively, so that the propagation direction changes and the angle with respect to the z-axis is changed.
- the propagation direction of the re-reflected wave 43, which is reflected again by the antenna substrate 5, and the propagation direction of the radiated radio wave 40a from the transmitting antenna 3 are symmetrical with respect to the z-axis. As a result, no interference occurs between the transmitted wave 40b and the re-reflected wave 43 in which the radiated radio wave 40a has passed through the radome 2.
- the rereflected waves 42 and 43 rereflected by the radome 2 and the antenna substrate 5, respectively, are transmitted waves emitted from the radar device 1 toward the target object. It propagates in a direction different from that of 40b. Therefore, it is possible to avoid interference with the transmitted wave 40b and reduce the deterioration of the characteristics of the radar device 1.
- the radar device 1 mounted on the vehicle 100 includes a transmitting antenna 3 that emits radio waves toward a target object and a receiving antenna that receives the reflected waves that the radio waves radiated from the transmitting antenna 3 are reflected by the object.
- the antenna substrate 5 has a mounting surface on which the transmitting antenna 3 and the receiving antenna 4 are mounted, and a radome 2 covering the transmitting antenna 3 and the receiving antenna 4.
- the radome 2 is arranged between the bumper 9 of the vehicle 100 and the antenna substrate 5.
- the first surface 2a of the radome 2 facing the antenna substrate 5 and the second surface 2b of the radome 2 facing the bumper 9 have portions that are not parallel to each other.
- the transmitting antenna 3 emits radio waves at an angle from the z-axis direction perpendicular to the mounting surface of the antenna substrate 5. Since this is done, it is possible to prevent interference between the radio wave emitted from the radar device 1 and the reflected wave, and to avoid deterioration of the detection performance.
- the radome 2 is an antenna so that the propagation direction of the transmitted wave 40b, which is a radio wave radiated from the transmitting antenna 3 and passed through the radome 2, is in the z-axis direction substantially perpendicular to the mounting surface of the antenna substrate 5.
- the angles of the first surface 2a and the second surface 2b with respect to the mounting surface of the substrate 5 are set respectively. Since this is done, it is possible to secure a distance at which the radar device 1 can detect the target object and prevent deterioration of the detection performance.
- the radome 2 has a trapezoidal cross-sectional shape in the vertical direction of the vehicle 100, that is, in the y-axis direction.
- the first surface 2a and the second surface 2b of the radome 2 can be made non-parallel to each other due to the simple structure that is easy to form.
- the cross-sectional shape of the radome 2 is a trapezoid as shown in FIG. 1
- the cross-sectional shape of the radome 2 in the present invention is not limited to the trapezoid.
- Transmission in which at least a part of the second surface 2b facing the bumper 9 is not parallel to the y-axis and the radiated radio wave 40a radiated from the transmitting antenna 3 at an angle with respect to the z-axis passes through the radome 2.
- the cross-sectional shape of the radome 2 can be any shape.
- FIG. 4 is a diagram showing a modified example of the radar device 1 according to the first embodiment of the present invention.
- FIG. 4 shows a cross-sectional view of a radome 2 having a cross-sectional shape different from that of FIG. 1A as a modification of the radar device 1 according to the present embodiment.
- the second surface 2b of the radome 2 facing the bumper 9 only the range through which the radiated radio wave 40a from the transmitting antenna 3 passes has an angle with respect to the y-axis. By doing so, it is possible to reduce the thickness of the radome 2 while achieving the same effects as those described above.
- the shape of the radome 2 may be set so that the first surface 2a of the radome 2 facing the antenna substrate 5 has an inclination with respect to the y-axis, that is, the mounting surface of the antenna substrate 5. By doing so, the angle difference between the second surface 2b facing the bumper 9 of the radome 2 and the y-axis is made larger, and the interference between the transmitted wave 40b and the rereflected wave 42 from the radome 2 is further reduced. It becomes possible to do.
- FIG. 5 is a diagram showing a radar device 1 according to a second embodiment of the present invention.
- FIG. 5A is a cross-sectional view taken along the line BB'of the radar device 1 according to the present embodiment
- FIG. 5B is a perspective perspective view of the radar device 1 according to the present embodiment.
- the radiation direction of the radiated radio wave 40a from the transmitting antenna 3 described with reference to FIG. 1 in the first embodiment and the reflected wave from the target object pass through the radome 2 to receive the receiving antenna 4.
- the incident direction of the received wave 44 when it is incident on the antenna is set to be different from each other.
- the cross-sectional shape of the radome 2 is different from each other at the position directly above the transmitting antenna 3 and the position directly above the receiving antenna 4. Specifically, at the position directly above the transmitting antenna 3, the cross-sectional shape is the same as that shown in FIG. 1 (a) in the first embodiment, while at the position directly above the receiving antenna 4, FIG. The cross-sectional shape is as shown in (a). As a result, the second surface 2b of the radome 2 facing the bumper 9 at the position directly above the transmitting antenna 3 and the second surface 2c of the radome 2 facing the bumper 9 at the position directly above the receiving antenna 4 are formed.
- the inclination directions of these surfaces with respect to the mounting surface of the antenna substrate 5 are different from each other.
- the second surface 2c at the position directly above the receiving antenna 4 is preferably set at an inclination angle with respect to the y-axis so that the gain of the receiving antenna 4 is maximized in the incident direction of the received wave 44.
- the cross-sectional shape of the radome 2 is different between the position directly above the transmitting antenna 3 and the position directly above the receiving antenna 4.
- the propagation direction of the transmission wave 40b from the radar device 1 is set to the z-axis direction
- the radiation direction of the radiated radio wave 40a from the transmission antenna 3 and the transmission wave 40b are reflected by the target object and the reception antenna 4
- the incident direction of the received wave 44 when it is incident on the antenna can be different from each other.
- the coupling between the transmitting antenna 3 and the receiving antenna 4 can be reduced, so that the deterioration of the detection performance of the radar device 1 due to the coupling between the antennas can be reduced.
- the transmitting antenna 3 and the receiving antenna 4 are arranged side by side on the mounting surface of the antenna substrate 5 in a direction horizontal to the road surface on which the vehicle 100 travels.
- the radome 2 has different inclination directions of the second surfaces 2b and 2c with respect to the mounting surface of the antenna substrate 5 at the position directly above the transmitting antenna 3 and the position directly above the receiving antenna 4. Since this is done, the coupling between the transmitting antenna 3 and the receiving antenna 4 can be reduced, and the deterioration of the detection performance of the radar device 1 can be further suppressed.
- the cross-sectional shape of the radome 2 in the present invention is not limited to this.
- the propagation direction of the transmission wave 40b from the radar device 1 is the z-axis direction
- the radiation direction of the radio wave 40a radiated from the transmission antenna 3 and the transmission wave 40b are reflected by the target object and incident on the reception antenna 4. If the incident directions of the received waves 44 can be different from each other, the cross-sectional shape of the radome 2 can be any shape.
- FIG. 6 is a diagram showing a modified example of the radar device 1 according to the second embodiment of the present invention.
- FIG. 6 shows a cross-sectional view of a radome 2 having a cross-sectional shape different from that of FIG. 5A as a modified example of the radar device 1 according to the present embodiment.
- the cross-sectional shape of the radome 2 can be made the same in the x-axis direction while exhibiting the same effects as described above, so that the radome 2 can be easily formed.
- the boundary line of the second surfaces 2d and 2e does not have to be the center line 2f of the transmitting antenna 3 and the receiving antenna 4.
- the inclinations of the second surfaces 2d and 2e of the radome 2 facing the bumper 9 are different depending on the range through which the radiated radio wave 40a from the transmitting antenna 3 passes and the range through which the received wave 44 incident on the receiving antenna 4 passes. If possible, an arbitrary boundary line can be set for the second surfaces 2d and 2e along the arrangement direction of the transmitting antenna 3 and the receiving antenna 4.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Radar Systems Or Details Thereof (AREA)
- Details Of Aerials (AREA)
Abstract
車両に搭載されるレーダ装置は、物体に向けて電波を放射する送信アンテナと、前記送信アンテナから放射された前記電波が前記物体で反射された反射波を受信する受信アンテナと、前記送信アンテナおよび前記受信アンテナが実装される実装面を有するアンテナ基板と、前記送信アンテナおよび前記受信アンテナを覆うレドームと、を備え、前記レドームは、前記車両が有するバンパと前記アンテナ基板との間に配置され、前記アンテナ基板と対向する前記レドームの第1の面と、前記バンパと対向する前記レドームの第2の面とは、互いに非平行な部分を有し、前記送信アンテナは、前記実装面に対して垂直な方向より傾けて前記電波を放射する。
Description
本発明は、レーダ装置に関する。
近年、運転者のサポートや自動運転を実現するために、自動車の周囲を検出するレーダ装置の採用が進められている。こうしたレーダ装置は一般に、送信アンテナから電波を照射し、ターゲットで反射された電波を送信アンテナとは別に設けられた受信アンテナで受信して、ターゲットの位置や速度を算出する。
自動車用のレーダ装置は、一般的に、車体の前後に設けられたバンパの内側に設置される。そのため、送信アンテナから照射した電波がバンパで反射してレーダ側に戻り、さらにアンテナを保護するために設置されたカバー(レドーム)やアンテナ基板で再反射されることで、送信アンテナから照射した電波と反射波とが干渉することがある。これは、アンテナゲインのパターンの乱れを引き起こし、レーダ装置におけるターゲットの検出性能の劣化につながるという課題がある。
上記に関する背景技術として、例えば下記の特許文献1が知られている。特許文献1では、レーダ装置に備えられるカバー部材において、送信アンテナ部および受信アンテナ部と対向する側の面である第1の面と、その反対側の第2の面とを非平行とすることで、反射波ノイズによる干渉の影響を低減する技術が開示されている。
特許文献1の技術では、カバー部材を通って車両前方に照射される電波の方向が地面に対して水平ではなく、カバー部材の第1の面の傾き角に応じた角度を持つため、地面と平行にあるターゲットを検知できる距離が短くなるなど、検知性能が悪化するという課題がある。また、送信アンテナ部から照射される電波は、所定のビーム幅やサイドローブを持つため、カバー部材を通った後の電波には、バンパに対して垂直な成分が含まれる。そのため、この成分がバンパで反射して第2の面で再度反射することにより、送信アンテナから照射した電波と反射波との干渉が生じ、検知性能が悪化するという課題もある。
本発明によるレーダ装置は、車両に搭載されるものであって、物体に向けて電波を放射する送信アンテナと、前記送信アンテナから放射された前記電波が前記物体で反射された反射波を受信する受信アンテナと、前記送信アンテナおよび前記受信アンテナが実装される実装面を有するアンテナ基板と、前記送信アンテナおよび前記受信アンテナを覆うレドームと、を備え、前記レドームは、前記車両が有するバンパと前記アンテナ基板との間に配置され、前記アンテナ基板と対向する前記レドームの第1の面と、前記バンパと対向する前記レドームの第2の面とは、互いに非平行な部分を有し、前記送信アンテナは、前記実装面に対して垂直な方向より傾けて前記電波を放射する。
本発明によれば、レーダ装置から照射される電波と反射波との干渉を防止し、検知性能の悪化を回避することができる。
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
以下では、本発明の実施形態に係るレーダ装置について、図面を用いて説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るレーダ装置1を示す図である。図1(a)は、本実施形態に係るレーダ装置1のA-A’における断面図であり、図1(b)は、本実施形態に係るレーダ装置1の平面透視図である。
図1は、本発明の第1の実施形態に係るレーダ装置1を示す図である。図1(a)は、本実施形態に係るレーダ装置1のA-A’における断面図であり、図1(b)は、本実施形態に係るレーダ装置1の平面透視図である。
図1に示すように、本実施形態のレーダ装置1には、アンテナ基板5の上に送信アンテナ3および受信アンテナ4が実装されている。送信アンテナ3は、ターゲットの物体に向けて電波を放射し、受信アンテナ4は、送信アンテナ3から放射された電波がターゲットの物体で反射された反射波を受信する。送信アンテナ3および受信アンテナ4は、例えば図1(b)に示したように、複数のアンテナ素子を直線状に並べて配置したアレイアンテナによってそれぞれ構成される。なお、アレイアンテナ以外のアンテナを用いて送信アンテナ3および受信アンテナ4を構成してもよい。
送信アンテナ3には、送信アンテナ3へ変調された信号を送り、送信アンテナ3に電波を放射させる送信回路6が接続されている。受信アンテナ4には、受信アンテナ4が受信したターゲットからの反射波を増幅および復調して受信信号を生成する受信回路7と、受信信号からターゲットの位置や速度を算出する信号処理回路8とが接続されている。
また、本実施形態のレーダ装置1には、送信アンテナ3および受信アンテナ4を保護するためのカバー(レドーム)2が、これらのアンテナを覆うように設置されている。このレドーム2は、電波を透過する材料、例えば樹脂等を用いて構成されている。なお、図1(b)ではレーダ装置1の内部構造が分かるように、レドーム2の一部を透過させて、送信アンテナ3、受信アンテナ4およびアンテナ基板5を図示している。
本実施形態では、図1(a)に示すように、レドーム2は、レーダ装置1が搭載される車両が有するバンパ9と、レーダ装置1のアンテナ基板5との間に配置されている。なお、図1(a)、(b)におけるy軸の方向は、車両の上下方向に対応している。また、x軸およびz軸の方向は、車両が走行している路面と水平な方向にそれぞれ対応している。ここで、図1(b)に示すように、送信アンテナ3と受信アンテナ4は、アンテナ基板5の実装面においてx軸の方向に並べて配置されている。すなわち、送信アンテナ3と受信アンテナ4は、車両が走行する路面と水平な方向に並べて配置されている。
レドーム2は、アンテナ基板5が収容される空間の内側に位置してアンテナ基板5と対向する面(以下、「第1の面」と称する)2aと、アンテナ基板5が収容される空間の外側に位置してバンパ9に対向する面(以下、「第2の面」と称する)2bとを有する。第1の面2aはy軸と平行であり、第2の面2bはy軸に対して角度を持っている。すなわち、第1の面2aは、アンテナ基板5において送信アンテナ3および受信アンテナ4が実装された面である実装面や、バンパ9のレドーム2側の面と平行であるが、第2の面2bは、これらの面に対して傾いている。したがって、第1の面2aと第2の面2bとは、互いに非平行となっている。
図1(a)に示すように、送信アンテナ3は、アンテナ基板5の実装面に対して垂直な方向に対応するz軸より傾けて電波を放射する。この送信アンテナ3からの放射電波40aは、レドーム2を通過する際に、レドーム2と空気の境界面である第1の面2aおよび第2の面2bにおいてそれぞれ屈折することにより伝播方向が変化する。そして、レーダ装置1からの送信波40bとして、ターゲットの物体に向けて照射される。本実施形態では、送信波40bがターゲットの物体から反射されることでレーダ装置1に入射される反射波の受信強度を最大化するために、z軸に対する放射電波40aの角度と同じ角度で受信アンテナ4の利得が最大となるように設定することが好ましい。
本実施形態では、送信アンテナ3から放射されてレドーム2を通過したレーダ装置1からの送信波40bの伝播方向がz軸方向と一致するように、第1の面2aおよび第2の面2bの角度がそれぞれ設定されている。なお、図1(a)のように、第1の面2aをアンテナ基板5の実装面と平行にした場合、送信アンテナ3からの放射電波40aの角度と、放射電波40aの周波数におけるレドーム2の比誘電率とを考慮して、送信波40bの伝播方向がz軸方向と一致するように、アンテナ基板5の実装面に対する第2の面2bの傾き角度が設定される。
図2は、レーダ装置1の自動車への搭載例を示す図である。レーダ装置1は、自動車である車両100の左前方に存在する障害物等を検出するために、例えば図2に示す位置において、z軸を車両100の左斜め前方向に向けて搭載される。このとき、障害物との接触や追突の影響を避けるため、レーダ装置1はバンパ9の内側に設置される。
なお、図2では車両100におけるレーダ装置1の搭載位置の一例を示しており、他の位置に搭載してもよい。また、複数台のレーダ装置1を車両100において別々の位置にそれぞれ搭載してもよい。
次に、レドーム2において第1の面2aと第2の面2bとが互いに非平行となっている効果について説明する。図3は、比較例に係るレーダ装置10を示す図である。図3(a)は、比較例に係るレーダ装置10のA-A’における断面図であり、図3(b)は、比較例に係るレーダ装置10の平面透視図である。図3に示す比較例では、レーダ装置10において、レドーム2は、アンテナ基板5が収容される空間の内側に位置してアンテナ基板5と対向する第1の面20aと、アンテナ基板5が収容される空間の外側に位置してバンパ9に対向する第2の面20bとを有し、これらはともにアンテナ基板5と平行になっている。また、送信アンテナ3は、z軸方向に電波を放射する。これ以外の点は、図1に示したレーダ装置1と同様の構造を有している。
図3に示す比較例のレーダ装置10では、送信アンテナ3からの放射電波40aがレドーム20を通過し、レーダ装置1からの送信波40bとしてz軸方向に照射されると、この送信波40bの一部がバンパ9で反射し、反射波41としてz軸方向の反対側に戻る。このバンパ9による反射波41の一部は、レドーム20の第2の面20bで再度反射し、レドーム20からの再反射波42として、送信波40bと同じz軸方向に伝搬する。その結果、送信波40bと再反射波42の間に干渉が生じ、レーダ装置10におけるターゲットの検出性能が劣化する。
また、バンパ9による反射波41の残りは、レドーム20を通過し、アンテナ基板5で再度反射する。このアンテナ基板5からの再反射波43も、送信波40bと同じz軸方向に伝搬するため、送信波40bと再反射波43の間に干渉が生じ、レーダ装置10におけるターゲットの検出性能が劣化する。
以上説明したように、比較例のレーダ装置10では、バンパ9による反射波41がz軸方向の反対側に戻ることで、レドーム20やアンテナ基板5において、レーダ装置10の送信波40bと同じ方向に伝搬する再反射波42,43がそれぞれ生じる。その結果、レーダ装置10の特性が劣化する。
一方、図1に示した本実施形態のレーダ装置1では、z軸より傾けて送信アンテナ3から放射された放射電波40aは、前述のようにレドーム2を通過する際に、レドーム2と空気の境界面である第1の面2aおよび第2の面2bにおいてそれぞれ屈折することにより伝播方向が変化する。これにより、レーダ装置1からの送信波40bは、z軸方向に照射される。この送信波40bの一部がバンパ9で反射し、反射波41としてz軸方向の反対側に戻る。このバンパ9による反射波41の一部は、レドーム2の第2の面2bで再度反射されるが、第2の面2bはy軸に対して角度を持っており、バンパ9と非平行であるため、レドーム2からの再反射波42は、z軸方向からずれた方向に伝搬する。その結果、送信波40bと再反射波42の間に干渉が生じることはない。
また、バンパ9による反射波41の残りは、レドーム2を再度通過する際に、第2の面2bおよび第1の面2aにおいてそれぞれ屈折することにより伝播方向が変化し、z軸に対して角度を持ってアンテナ基板5に到達する。この電波がアンテナ基板5で再度反射した再反射波43の伝播方向と、送信アンテナ3からの放射電波40aの伝播方向とは、z軸に対して対称となる。その結果、放射電波40aがレドーム2を通過した送信波40bと再反射波43の間にも干渉が生じることはない。
以上説明したように、本実施形態のレーダ装置1では、レドーム2やアンテナ基板5でそれぞれ再反射された再反射波42,43は、レーダ装置1からターゲットの物体に向けて照射される送信波40bとは異なる方向に伝搬する。そのため、送信波40bとの干渉を回避し、レーダ装置1の特性劣化を低減することができる。
以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)車両100に搭載されるレーダ装置1は、ターゲットの物体に向けて電波を放射する送信アンテナ3と、送信アンテナ3から放射された電波が物体で反射された反射波を受信する受信アンテナ4と、送信アンテナ3および受信アンテナ4が実装される実装面を有するアンテナ基板5と、送信アンテナ3および受信アンテナ4を覆うレドーム2とを備える。レドーム2は、車両100が有するバンパ9とアンテナ基板5との間に配置される。アンテナ基板5と対向するレドーム2の第1の面2aと、バンパ9と対向するレドーム2の第2の面2bとは、互いに非平行な部分を有する。送信アンテナ3は、アンテナ基板5の実装面に対して垂直なz軸方向より傾けて電波を放射する。このようにしたので、レーダ装置1から照射される電波と反射波との干渉を防止し、検知性能の悪化を回避することができる。
(2)レドーム2は、送信アンテナ3から放射されてレドーム2を通過した電波である送信波40bの伝播方向がアンテナ基板5の実装面に対して略垂直なz軸方向となるように、アンテナ基板5の実装面に対する第1の面2aと第2の面2bの角度がそれぞれ設定されている。このようにしたので、レーダ装置1がターゲットの物体を検知できる距離を確保し、検知性能の悪化を防ぐことができる。
(3)図1(a)に示したように、レドーム2は、車両100の上下方向、すなわちy軸方向における断面形状が台形である。このようにしたので、形成が容易な簡単な構造により、レドーム2において第1の面2aと第2の面2bとを互いに非平行とすることができる。
なお、以上説明した本発明の第1の実施形態では、レドーム2の断面形状が図1に示すような台形である例を説明したが、本発明におけるレドーム2の断面形状は台形に限らない。バンパ9に対向する第2の面2bの少なくとも一部がy軸と平行ではなく、かつ、送信アンテナ3からz軸に対して角度を持って放射される放射電波40aがレドーム2を通過した送信波40bの伝播方向がz軸方向と略一致するように、アンテナ基板5と対向する第1の面2aと、バンパ9に対向する第2の面2bとが、互いに非平行な部分を有する形状であれば、レドーム2の断面形状を任意の形状とすることができる。
図4は、本発明の第1の実施形態に係るレーダ装置1の変形例を示す図である。図4では、本実施形態に係るレーダ装置1の変形例として、図1(a)とは異なる断面形状を有するレドーム2の断面図を示している。この変形例では、レドーム2においてバンパ9に対向する第2の面2bのうち、送信アンテナ3からの放射電波40aが通過する範囲のみが、y軸に対して角度を持っている。このようにすれば、上記で説明したのと同様の作用効果を奏しつつ、レドーム2の厚みを薄くすることが可能となる。
また、レドーム2のアンテナ基板5に対向する第1の面2aが、y軸、すなわちアンテナ基板5の実装面に対して傾きを持つように、レドーム2の形状を設定してもよい。このようにすれば、レドーム2のバンパ9に対向する第2の面2bとy軸との角度差をより大きくして、送信波40bとレドーム2からの再反射波42との干渉をさらに小さくすることが可能となる。
(第2の実施形態)
図5は、本発明の第2の実施形態に係るレーダ装置1を示す図である。図5(a)は、本実施形態に係るレーダ装置1のB-B’における断面図であり、図5(b)は、本実施形態に係るレーダ装置1の平面透視図である。本実施形態のレーダ装置1では、第1の実施形態において図1で説明した送信アンテナ3からの放射電波40aの放射方向と、ターゲットの物体からの反射波がレドーム2を通過して受信アンテナ4に入射する際の受信波44の入射方向とを、互いに異なる角度とする。
図5は、本発明の第2の実施形態に係るレーダ装置1を示す図である。図5(a)は、本実施形態に係るレーダ装置1のB-B’における断面図であり、図5(b)は、本実施形態に係るレーダ装置1の平面透視図である。本実施形態のレーダ装置1では、第1の実施形態において図1で説明した送信アンテナ3からの放射電波40aの放射方向と、ターゲットの物体からの反射波がレドーム2を通過して受信アンテナ4に入射する際の受信波44の入射方向とを、互いに異なる角度とする。
さらに、本実施形態のレーダ装置1では、レドーム2の断面形状を、送信アンテナ3の直上に当たる位置と、受信アンテナ4の直上に当たる位置とで、互いに異なるものとする。具体的には、送信アンテナ3の直上に当たる位置では、第1の実施形態で図1(a)に示したのと同様の断面形状とする一方で、受信アンテナ4の直上に当たる位置では、図5(a)に示すような断面形状とする。これにより、送信アンテナ3の直上に当たる位置においてバンパ9と対向するレドーム2の第2の面2bと、受信アンテナ4の直上に当たる位置においてバンパ9と対向するレドーム2の第2の面2cとで、アンテナ基板5の実装面に対するこれらの面の傾き方向が互いに異なるようにする。なお、受信アンテナ4の直上に当たる位置における第2の面2cは、受信波44の入射方向において受信アンテナ4の利得が最大となるように、y軸に対する傾き角度が設定されることが好ましい。
以上説明したように、本実施形態のレーダ装置1では、送信アンテナ3の直上に当たる位置と、受信アンテナ4の直上に当たる位置とで、レドーム2の断面形状が異なっている。これにより、レーダ装置1からの送信波40bの伝播方向をz軸方向とした際に、送信アンテナ3からの放射電波40aの放射方向と、送信波40bがターゲットの物体で反射されて受信アンテナ4に入射されるときの受信波44の入射方向とを、互いに異なる角度とすることができる。その結果、送信アンテナ3と受信アンテナ4との間のカップリングを減らすことができるため、アンテナ間カップリングによるレーダ装置1の検知性能の劣化を低減することができる。
以上説明した本発明の第2の実施形態によれば、送信アンテナ3と受信アンテナ4は、アンテナ基板5の実装面において車両100が走行する路面と水平な方向に並べて配置されている。レドーム2は、送信アンテナ3の直上に当たる位置と、受信アンテナ4の直上に当たる位置とで、アンテナ基板5の実装面に対する第2の面2b,2cの傾き方向が互いに異なる。このようにしたので、送信アンテナ3と受信アンテナ4との間のカップリングを減らして、レーダ装置1の検知性能の劣化をさらに抑えることができる。
なお、以上説明した本発明の第2の実施形態では、レドーム2の断面形状を、送信アンテナ3の直上に当たる位置と、受信アンテナ4の直上に当たる位置とで、互いに異なるものとする例を説明したが、本発明におけるレドーム2の断面形状はこれに限らない。レーダ装置1からの送信波40bの伝播方向をz軸方向とした際に、送信アンテナ3からの放射電波40aの放射方向と、送信波40bがターゲットの物体で反射されて受信アンテナ4に入射されるときの受信波44の入射方向とを、互いに異なる角度とすることができれば、レドーム2の断面形状を任意の形状とすることができる。
図6は、本発明の第2の実施形態に係るレーダ装置1の変形例を示す図である。図6では、本実施形態に係るレーダ装置1の変形例として、図5(a)とは異なる断面形状を有するレドーム2の断面図を示している。この変形例では、x軸方向における送信アンテナ3と受信アンテナ4の中心線2fを境に、送信アンテナ3からの放射電波40aが通過する範囲においてバンパ9と対向するレドーム2の第2の面2dと、受信アンテナ4に入射される受信波44が通過する範囲においてバンパ9と対向するレドーム2の第2の面2eとで、アンテナ基板5の実装面に対するこれらの面の傾き方向が互いに異なる。このようにすれば、上記で説明したのと同様の作用効果を奏しつつ、x軸方向に対してレドーム2の断面形状を同一とすることができるため、レドーム2の形成が容易となる。
なお、図6で説明した変形例において、第2の面2d,2eの境界線は、送信アンテナ3と受信アンテナ4の中心線2fでなくてもよい。送信アンテナ3からの放射電波40aが通過する範囲と、受信アンテナ4に入射される受信波44が通過する範囲とで、バンパ9と対向するレドーム2第2の面2d,2eの傾きをそれぞれ異なるものとできれば、送信アンテナ3と受信アンテナ4の並び方向に沿って任意の境界線を第2の面2d,2eに対して設定することができる。
以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2019-156929(2019年8月29日出願)
日本国特許出願2019-156929(2019年8月29日出願)
1…レーダ装置、2…カバー(レドーム)、2a…第1の面、2b,2c,2d,2e…第2の面、2f…中心線、3…送信アンテナ、4…受信アンテナ、5…アンテナ基板、6…送信回路、7…受信回路、8…信号処理回路、9…バンパ
Claims (5)
- 車両に搭載されるレーダ装置であって、
物体に向けて電波を放射する送信アンテナと、
前記送信アンテナから放射された前記電波が前記物体で反射された反射波を受信する受信アンテナと、
前記送信アンテナおよび前記受信アンテナが実装される実装面を有するアンテナ基板と、
前記送信アンテナおよび前記受信アンテナを覆うレドームと、を備え、
前記レドームは、前記車両が有するバンパと前記アンテナ基板との間に配置され、
前記アンテナ基板と対向する前記レドームの第1の面と、前記バンパと対向する前記レドームの第2の面とは、互いに非平行な部分を有し、
前記送信アンテナは、前記実装面に対して垂直な方向より傾けて前記電波を放射するレーダ装置。 - 請求項1に記載のレーダ装置において、
前記レドームは、前記送信アンテナから放射されて前記レドームを通過した前記電波の伝播方向が前記実装面に対して略垂直な方向となるように、前記実装面に対する前記第1の面と前記第2の面の角度がそれぞれ設定されているレーダ装置。 - 請求項1または2に記載のレーダ装置において、
前記レドームは、前記車両の上下方向における断面形状が台形であるレーダ装置。 - 請求項1または2に記載のレーダ装置において、
前記送信アンテナと前記受信アンテナは、前記アンテナ基板の前記実装面において前記車両が走行する路面と水平な方向に並べて配置されており、
前記レドームは、前記送信アンテナの直上に当たる位置と、前記受信アンテナの直上に当たる位置とで、前記アンテナ基板の前記実装面に対する前記第2の面の傾き方向が互いに異なるレーダ装置。 - 請求項1または2に記載のレーダ装置において、
前記送信アンテナと前記受信アンテナは、前記アンテナ基板の前記実装面において前記車両が走行する路面と水平な方向に並べて配置されており、
前記レドームは、前記送信アンテナと前記受信アンテナの並び方向に沿った境界線を境に、前記アンテナ基板の前記実装面に対する前記第2の面の傾き方向が互いに異なるレーダ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20859483.8A EP4024611A4 (en) | 2019-08-29 | 2020-06-18 | RADAR DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156929A JP2021032846A (ja) | 2019-08-29 | 2019-08-29 | レーダ装置 |
JP2019-156929 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039050A1 true WO2021039050A1 (ja) | 2021-03-04 |
Family
ID=74677259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/024043 WO2021039050A1 (ja) | 2019-08-29 | 2020-06-18 | レーダ装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4024611A4 (ja) |
JP (1) | JP2021032846A (ja) |
WO (1) | WO2021039050A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115911820A (zh) * | 2021-09-22 | 2023-04-04 | 安弗施无线射频系统(上海)有限公司 | 天线和基站 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228238A (ja) * | 2000-02-15 | 2001-08-24 | Toyota Motor Corp | 電磁波の方位軸修正装置と方位軸修正方法およびレーダ装置とその方位軸修正方法並びにレーダ装置用のレドーム |
JP2004015408A (ja) * | 2002-06-06 | 2004-01-15 | Oki Electric Ind Co Ltd | スロットアレーアンテナ |
JP2016125883A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社日本自動車部品総合研究所 | レーダ装置、及びカバー部材 |
JP2019097118A (ja) * | 2017-11-27 | 2019-06-20 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
JP2019156929A (ja) | 2018-03-09 | 2019-09-19 | 株式会社ニイタカ | 発泡洗浄剤組成物及び洗浄方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6347424B2 (ja) * | 2013-06-25 | 2018-06-27 | パナソニックIpマネジメント株式会社 | 無線モジュール |
-
2019
- 2019-08-29 JP JP2019156929A patent/JP2021032846A/ja active Pending
-
2020
- 2020-06-18 EP EP20859483.8A patent/EP4024611A4/en active Pending
- 2020-06-18 WO PCT/JP2020/024043 patent/WO2021039050A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228238A (ja) * | 2000-02-15 | 2001-08-24 | Toyota Motor Corp | 電磁波の方位軸修正装置と方位軸修正方法およびレーダ装置とその方位軸修正方法並びにレーダ装置用のレドーム |
JP2004015408A (ja) * | 2002-06-06 | 2004-01-15 | Oki Electric Ind Co Ltd | スロットアレーアンテナ |
JP2016125883A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社日本自動車部品総合研究所 | レーダ装置、及びカバー部材 |
JP2019097118A (ja) * | 2017-11-27 | 2019-06-20 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
JP2019156929A (ja) | 2018-03-09 | 2019-09-19 | 株式会社ニイタカ | 発泡洗浄剤組成物及び洗浄方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4024611A1 (en) | 2022-07-06 |
JP2021032846A (ja) | 2021-03-01 |
EP4024611A4 (en) | 2023-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8432309B2 (en) | Automotive radar system and method for using same | |
US10644408B2 (en) | Antenna apparatus | |
JP6440123B2 (ja) | アンテナ装置、無線通信装置、及びレーダ装置 | |
US7408500B2 (en) | Automotive radar | |
US9293812B2 (en) | Radar antenna assembly | |
JP6317657B2 (ja) | レーダーセンサモジュール | |
JPWO2005055366A1 (ja) | 車載用レーダ | |
JP2003240838A (ja) | 車両用周辺監視装置 | |
US20070090991A1 (en) | Absolute velocity measuring device | |
KR20210072081A (ko) | 광선 및 레이더 방사선을 방출하기 위한 차량용 레이더 및 광선 방출 조립체 및 방법과 사용방법 | |
KR20190058072A (ko) | 차량용 레이더 장치 | |
JP2018112528A (ja) | カバー部材およびセンサーアセンブリ | |
US20160047907A1 (en) | Modular Planar Multi-Sector 90 Degrees FOV Radar Antenna Architecture | |
US12109932B2 (en) | Lamp device | |
JP2007057483A (ja) | ミリ波レーダ装置 | |
WO2021039050A1 (ja) | レーダ装置 | |
JP5032910B2 (ja) | パルスレーダ用アンテナ装置 | |
WO2020261922A1 (ja) | レーダ装置 | |
JP6738891B2 (ja) | バックミラーとアンテナを含む車両 | |
WO2022044914A1 (ja) | 車両用レーダシステム及び車両 | |
WO2020162577A1 (ja) | レーダ装置 | |
US11639993B2 (en) | Radar apparatus | |
JPH10327010A (ja) | 車載用アンテナ装置 | |
JP2024100013A (ja) | 車両用周囲監視装置 | |
JPS5912144B2 (ja) | 車載用レ−ダ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20859483 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020859483 Country of ref document: EP Effective date: 20220329 |