[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021038766A1 - Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device - Google Patents

Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device Download PDF

Info

Publication number
WO2021038766A1
WO2021038766A1 PCT/JP2019/033769 JP2019033769W WO2021038766A1 WO 2021038766 A1 WO2021038766 A1 WO 2021038766A1 JP 2019033769 W JP2019033769 W JP 2019033769W WO 2021038766 A1 WO2021038766 A1 WO 2021038766A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
resin composition
thermosetting resin
semiconductor element
substrate
Prior art date
Application number
PCT/JP2019/033769
Other languages
French (fr)
Japanese (ja)
Inventor
高士 山本
貴一 稲葉
光 須藤
直紀 奈良
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021541878A priority Critical patent/JP7294429B2/en
Priority to KR1020227008236A priority patent/KR20220055471A/en
Priority to PCT/JP2019/033769 priority patent/WO2021038766A1/en
Priority to CN201980098561.0A priority patent/CN114127185A/en
Publication of WO2021038766A1 publication Critical patent/WO2021038766A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a thermosetting resin composition for light reflection, a substrate for mounting an optical semiconductor element, and an optical semiconductor device.
  • Optical semiconductor devices that combine optical semiconductor elements such as LEDs (Light Emitting Diodes) with phosphors have high energy efficiency and long life, so they are used for outdoor displays, portable liquid crystal backlights, in-vehicle applications, etc. It is used for various purposes and its demand is expanding. Along with this, the brightness of LED devices is increasing, and it is required to prevent the junction temperature from rising due to an increase in the amount of heat generated by the element or the deterioration of the optical semiconductor device due to a direct increase in light energy.
  • LEDs Light Emitting Diodes
  • Patent Document 1 discloses a substrate for mounting an optical semiconductor device using a thermosetting resin composition containing an acid anhydride as a curing agent as a material for a reflector.
  • thermosetting resin composition is required to have excellent mold releasability from the molding die from the viewpoint of productivity.
  • the cured product formed from the thermosetting resin composition is required to have heat resistance that not only enhances the light reflectance but also maintains the optical characteristics even when used for a long time at a high temperature.
  • an object of the present invention is to provide a thermosetting resin composition for light reflection, which is excellent in releasability and heat resistance, a substrate for mounting an optical semiconductor element, and an optical semiconductor device using the same.
  • the present invention contains a thermosetting resin composition for light reflection, which contains an epoxy resin, a curing agent, an inorganic filler, a white pigment and a mold release agent, and the mold release agent contains a zinc-based metal soap and an aluminum-based metal soap. Regarding things.
  • the zinc-based metal soap may contain a metal salt of zinc and a long-chain fatty acid having 10 or more carbon atoms.
  • the carbon number of the long chain fatty acid may be 20 or more.
  • the curing agent may contain a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C.
  • the inorganic filler may contain inorganic hollow particles having a central particle size of 1 to 25 ⁇ m.
  • the present invention relates to a substrate for mounting an optical semiconductor device, which comprises a cured product of the thermosetting resin composition for light reflection.
  • the substrate for mounting an optical semiconductor element according to the present invention has a recess composed of a bottom surface and a wall surface, and the bottom surface of the recess may be a mounting portion for the optical semiconductor element.
  • at least a part of the wall surface of the recess is a cured product of the thermosetting resin composition for light reflection.
  • the substrate for mounting an optical semiconductor element according to the present invention includes a substrate, a first connection terminal and a second connection terminal provided on the substrate, and a first connection terminal and a second connection terminal. A cured product of the thermosetting resin composition for light reflection provided between them may be provided.
  • the present invention relates to an optical semiconductor device having the above-mentioned optical semiconductor element mounting substrate and an optical semiconductor element mounted on the optical semiconductor element mounting substrate.
  • thermosetting resin composition for light reflection which is excellent in releasability and heat resistance
  • a substrate for mounting an optical semiconductor element and an optical semiconductor device using the same.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may include either A or B, or both.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • (meth) acrylate means at least one of acrylate and the corresponding methacrylate.
  • thermosetting resin composition for light reflection contains an epoxy resin, a curing agent, an inorganic filler and a white pigment, and the release agent contains a zinc-based metal soap and an aluminum-based metal soap. ..
  • epoxy resin an epoxy resin generally used in an epoxy resin molding material for encapsulating electronic parts can be used. Since the thermosetting resin composition according to the present embodiment contains an epoxy resin, it is possible to form a cured product having high thermal hardness and bending strength and improved mechanical properties.
  • the epoxy resin for example, an epoxy resin obtained by epoxidizing phenols such as phenol novolac type epoxy resin and orthocresol novolac type epoxy resin and novolak resin of aldehydes; bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol and the like.
  • Glysidyl ether Glysidyl ether
  • Glysidylamine type epoxy resin obtained by reacting polyamines such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin
  • Linear aliphatic epoxy resin obtained by oxidizing olefin bonds with a peracid such as peracetic acid
  • alicyclic Group epoxy resin can be mentioned.
  • the epoxy resin may be used alone or in combination of two or more.
  • the epoxy resins are diglycidyl isocyanurate, triglycidyl isocyanurate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 1,2-cyclohexanedicarboxylic acid, 1,3-. It may contain a cyclohexanedicarboxylic acid or a dicarboxylic acid diglycidyl ester derived from a 1,4-cyclohexanedicarboxylic acid.
  • the epoxy resin diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. It may contain glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which the aromatic ring is hydrogenated.
  • the epoxy resin may contain a polyorganosiloxane having an epoxy group, which is produced by heating a silane compound in the presence of an organic solvent, an organic base and water, hydrolyzing and condensing the silane compound.
  • a commercially available product may be used as the epoxy resin.
  • 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate for example, the product names of Daicel Co., Ltd. "Selokiside 2021", “Selokiside 2021A” and “Selokiside 2021P", products of Dow Chemical Japan Co., Ltd.
  • the names "ERL4221”, “ERL4221D” and "ERL4221E” are available.
  • the bis (3,4-epoxycyclohexylmethyl) adipate for example, the product name "ERL4299" of Dow Chemical Japan Co., Ltd.
  • the curing agent a curing agent generally used in epoxy resin molding materials for encapsulating electronic components can be used.
  • the curing agent is not particularly limited as long as it can react with an epoxy resin to obtain a cured product, but a curing agent with less coloring is preferable, and a colorless or pale yellow curing agent is more preferable.
  • the curing agent include an acid anhydride-based curing agent, an isocyanuric acid derivative-based curing agent, and a phenol-based curing agent.
  • the curing agent may be used alone or in combination of two or more.
  • the curing agent according to the present embodiment contains a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C. (hereinafter, may be simply referred to as "tetracarboxylic dianhydride”) as an acid anhydride-based curing agent. It's fine.
  • tetracarboxylic dianhydride a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C.
  • the melting point of the tetracarboxylic dianhydride may be 200 to 380 ° C. or 210 to 350 ° C. from the viewpoint of uniformly dispersing the tetracarboxylic dianhydride in the resin composition.
  • the tetracarboxylic dianhydride may have an aromatic ring or an alicyclic ring in order to further improve the heat resistance.
  • the tetracarboxylic dianhydride having an aromatic ring may be at least one selected from the group consisting of a tetracarboxylic dianhydride having two or more benzene rings and a tetracarboxylic dianhydride having a naphthalene ring.
  • the tetracarboxylic dianhydride having two or more benzene rings may be a compound represented by the following formula (1).
  • R represents a single bond, an ether bond, an alkyl group, a carbonyl group, a sulfonyl group, a hexafluoroisopropylidene group, or a fluorene group.
  • Examples of the tetracarboxylic dianhydride having an alicyclic ring include 1,2,3,4-cyclobutanetetracarboxylic dianhydride.
  • Examples of the tetracarboxylic dianhydride having an aromatic ring include 4,4'-biphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-sulfonyldiphthalic anhydride, and 4 , 4'-(hexafluoroisopropyridene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, and 2,3,6 , 7-Naphthalenetetracarboxylic dianhydride.
  • the curing agent according to the present embodiment may contain an acid anhydride-based curing agent having a melting point of less than 180 ° C.
  • the acid anhydride-based curing agent having a melting point of less than 180 ° C. include phthalic anhydride, maleic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic acid anhydride, and anhydrous.
  • Examples thereof include glutaric acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, and tetracarboxylic dianhydride represented by the following formula (2).
  • Rx represents a divalent organic group
  • n represents an integer of 1 to 10.
  • the divalent organic group may be a divalent saturated hydrocarbon group having a saturated hydrocarbon ring, and examples of the saturated hydrocarbon include cyclobutane, cyclopentane, cyclohexane, cycloheptan, cyclooctane, norbornen, and di. Cyclopentadiene, adamantan, naphthalene hydride and biphenyl hydride can be mentioned.
  • isocyanuric acid derivative examples include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, and 1,3,5-tris (3-). Carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate.
  • phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Formaldehyde, benzaldehyde, salicylaldehyde and other aldehydes are condensed or co-condensed under an acidic catalyst to obtain a novolak-type phenolic resin; phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl.
  • Cyclopentadiene-type phenolic resins triphenylmethane-type phenolic resins; terpen-modified phenolic resins; paraxylylene and / or metaxylylene-modified phenolic resins; melamine-modified phenolic resins; and phenolic resins obtained by copolymerizing two or more of these.
  • the content of the curing agent is 10 to 150 parts by mass, 50 to 130 parts by mass, or 60 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. Good.
  • the mixing ratio of the curing agent is 0.5 to 2.0 equivalents of the active group (acid anhydride group or hydroxyl group) in the curing agent capable of reacting with the epoxy group with respect to 1 equivalent of the epoxy group in the epoxy resin. It may be 0.6 to 1.5 equivalents or 0.7 to 1.2 equivalents.
  • the active group is 0.5 equivalent or more, the glass transition temperature of the cured product formed from the thermosetting resin composition becomes high, and a sufficient elastic modulus can be easily obtained.
  • the active group is 2.0 equivalents or less, the strength after curing is unlikely to decrease.
  • the white pigment is used to impart a white color tone to the cured product (molded product) obtained from the thermosetting resin composition according to the present embodiment, and is particularly molded by making the color tone highly white.
  • the light reflectance of the body can be improved.
  • the white pigment examples include rare earth oxides such as yttrium oxide, titanium oxide, zinc oxide, aluminum oxide (alumina), magnesium oxide, antimony oxide, zinc sulfate, and zirconium oxide. These may be used individually by 1 type or in combination of 2 or more type.
  • the white pigment preferably contains at least one selected from the group consisting of titanium oxide, zinc oxide, alumina, magnesium oxide, antimony oxide and zirconium oxide, and titanium oxide and antimony oxide. It is more preferable to contain at least one selected from the group consisting of and zirconium oxide.
  • the central particle size of the white pigment may be 0.05 to 10 ⁇ m, 0.08 to 8 ⁇ m, or 0.1 to 5 ⁇ m.
  • the central particle size of the white pigment is 0.05 ⁇ m or more, the dispersibility becomes better, and when it is less than 10 ⁇ m, the light reflection characteristic of the cured product becomes better.
  • the central particle size can be determined as the mass average value D50 (or median diameter) in the particle size distribution measurement by the laser light diffraction method.
  • thermosetting resin composition according to the present embodiment contains an inorganic filler from the viewpoint of improving moldability.
  • the inorganic filler include quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine atypical silica, barium sulfate, magnesium carbonate, barium carbonate, aluminum hydroxide, and hydroxide.
  • examples include magnesium, potassium titanate, calcium silicate, and inorganic hollow particles.
  • the inorganic filler may contain fused silica.
  • the central particle size of the molten silica may be 1 to 100 ⁇ m, 1 to 50 ⁇ m, or 1 to 40 ⁇ m from the viewpoint of improving the packing property with the white pigment.
  • the inorganic filler may contain inorganic hollow particles having a central particle size of 1 to 25 ⁇ m in order to further improve the grindability of the thermosetting resin composition.
  • Inorganic hollow particles are particles having voids inside. Since the inorganic hollow particles refract and reflect incident light on the surface and inner wall, a cured product having further improved light reflectivity and mechanical properties can be formed by using it in combination with a white pigment.
  • the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, sodium borosilicate glass and shirasu (white sand).
  • the outer shell of the inorganic hollow particles is at least one selected from the group consisting of soda glass silicate, glass aluminum silicate, soda borosilicate glass, silas, crosslinked styrene resin and crosslinked acrylic resin. It is preferably composed of seed materials, and more preferably composed of at least one material selected from the group consisting of soda glass silicate, glass aluminum silicate, soda borosilicate glass and silas.
  • the central particle size of the inorganic hollow particles may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more. Further, the central particle size of the inorganic hollow particles may be 25 ⁇ m or less or 22 ⁇ m or less because the light reflection characteristics of the formed cured product can be easily improved.
  • the thickness of the outer shell of the inorganic hollow particles is 0.4 to 1.3 ⁇ m, 0.45 to 1.2 ⁇ m, 0.5 to 1.1 ⁇ m, in order to improve the mechanical properties of the thermosetting resin composition. Alternatively, it may be 0.55 to 1.0 ⁇ m.
  • the bulk density of the inorganic hollow particles is 0.20 to 0.36 g / cm 3 , 0.25 to 0.35 g / cm 3 , or 0.26 to 0.34 g / cm 3. It may be.
  • the bulk density is a density calculated by filling a container having a certain volume with inorganic hollow particles and using the internal volume as the volume.
  • the true density of inorganic hollow particles is 0.40 to 0.75 g / cm 3 , 0.45 to 0.70 g / cm 3 , or 0.50 to 0.50. It may be 0.65 g / cm 3.
  • the true density can be measured according to ASTM D2840.
  • the pressure resistance strength of the inorganic hollow particles may be 100 MPa or more, 110 MPa or more, 125 MPa or more, or 150 MPa or more at 25 ° C. In order to improve the moldability of the thermosetting resin composition, the pressure resistance strength of the inorganic hollow particles may be 500 MPa or less, 300 MPa or less, or 200 MPa or less at 25 ° C.
  • the pressure resistance can be measured according to ASTM D3102.
  • the content of the inorganic hollow particles is preferably 60 to 200 parts by mass, more preferably 80 to 180 parts by mass with respect to 100 parts by mass of the epoxy resin. It is more preferably 100 to 170 parts by mass.
  • the mold release agent according to the present embodiment includes a zinc-based metal soap and an aluminum-based metal soap.
  • Zinc-based metal soap is a metal salt of zinc and long-chain fatty acids.
  • Aluminum-based metal soap is a metal salt of aluminum and long chain fatty acids.
  • the carbon number of the long chain fatty acid may be 10 or more, 14 or more, 18 or more, or 20 or more. From the viewpoint of uniformly dispersing in the resin composition, the carbon number of the long chain fatty acid may be 40 or less, 36 or less, 30 or less, or 26 or less.
  • long chain fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, arachidic acid, lignoceric acid, cerotic acid and montanic acid.
  • the zinc-based metal soap may contain a metal salt of zinc and a long-chain fatty acid having 10 or more carbon atoms.
  • the carbon number of the long chain fatty acid constituting the zinc-based metal soap is preferably 14 or more, more preferably 18 or more, and further preferably 20 or more.
  • Aluminum-based metal soap may contain aluminum and long-chain fatty acids having 10 or more carbon atoms.
  • the carbon number of the long chain fatty acid constituting the aluminum-based metal soap is preferably 14 or more, more preferably 16 or more, and further preferably 18 or more.
  • the content of the release agent (total amount of zinc-based metal soap and aluminum-based metal soap) in the thermosetting resin composition is 1 to 15 parts by mass and 2 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. Alternatively, it may be 3 to 8 parts by mass.
  • the thermosetting resin composition according to the present embodiment may contain a curing accelerator in order to accelerate the curing reaction of the epoxy resin.
  • a curing accelerator include amine compounds, imidazole compounds, organophosphorus compounds, alkali metal compounds, alkaline earth metal compounds and quaternary ammonium salts.
  • amine compounds, imidazole compounds, organophosphorus compounds, alkali metal compounds, alkaline earth metal compounds and quaternary ammonium salts it is preferable to use an amine compound, an imidazole compound or an organic phosphorus compound.
  • the curing accelerator may be used alone or in combination of two or more.
  • Examples of the amine compound include 1,8-diazabicyclo [5.4.0] undecene-7, triethylenediamine and tri-2,4,6-dimethylaminomethylphenol.
  • Examples of the imidazole compound include 2-ethyl-4-methylimidazole.
  • Examples of the organophosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphologithioate, tetra-n-butylphosphonium-tetrafluoroborate and tetra-n. -Butylphosphonium-tetraphenylborate can be mentioned.
  • the content of the curing accelerator in the thermosetting resin composition is 0.01 to 8 parts by mass, 0.1 to 5 parts by mass, or 0.3 to 4 parts by mass with respect to 100 parts by mass of the epoxy resin. It may be there.
  • the content of the curing accelerator is 0.01 parts by mass or more, a sufficient curing promoting effect can be easily obtained, and when it is 8 parts by mass or less, discoloration of the cured product can be easily suppressed.
  • a coupling agent may be added to the thermosetting resin composition in order to improve the adhesion between the inorganic filler and the epoxy resin.
  • the coupling agent is not particularly limited, and examples thereof include a silane coupling agent and a titanate-based coupling agent.
  • examples of the silane coupling agent include epoxysilane compounds, aminosilane compounds, thionicsilane compounds, vinylsilane compounds, acrylicsilane compounds and mercaptosilane compounds.
  • the content of the coupling agent may be 5% by mass or less based on the total amount of the thermosetting resin composition.
  • Additives such as an antioxidant, an ion scavenger, and a wax dispersant may be added to the thermosetting resin composition according to the present embodiment, if necessary.
  • thermosetting resin composition according to the present embodiment can be produced by uniformly dispersing and mixing the various components described above.
  • the manufacturing means, conditions, etc. are not particularly limited.
  • a general method for producing a thermosetting resin composition a method of kneading each component with a kneader, a roll, an extruder, a rake machine, or a planetary mixer that combines rotation and revolution can be mentioned. ..
  • kneading each component it is preferable to knead each component in a molten state from the viewpoint of improving dispersibility.
  • the kneading conditions may be appropriately determined depending on the type or blending amount of each component. For example, kneading at 15 to 100 ° C. for 5 to 40 minutes is preferable, and kneading at 20 to 100 ° C. for 10 to 30 minutes is more preferable. preferable.
  • the kneading temperature is 15 ° C. or higher, each component can be easily kneaded and the dispersibility can be improved.
  • the kneading temperature is 100 ° C. or lower, it is possible to prevent the epoxy resin from being cured due to the progress of high molecular weight of the epoxy resin during kneading.
  • the kneading time is 5 minutes or more, a sufficient dispersion effect can be easily obtained.
  • the kneading time is 40 minutes or less, it is possible to prevent the epoxy resin from being cured due to the progress of high molecular weight of the epoxy resin during kneading.
  • thermosetting resin composition according to the present embodiment includes a substrate material for mounting an optical semiconductor device, an electrically insulating material, an optical semiconductor encapsulating material, an adhesive material, a coating material, and transfer molding, which require high light reflectivity and heat resistance. It is useful in various applications such as epoxy resin molding materials.
  • thermosetting resin composition according to the present embodiment as an epoxy resin molding material for transfer molding will be described.
  • the flow distance (spiral flow) when the thermosetting resin composition according to the present embodiment is transfer-molded under the conditions of a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds is filled in the mold. From the viewpoint of ensuring the property, it may be 60 to 200 cm, 80 to 180 cm, or 100 to 160 cm.
  • the initial light reflectance of the cured product of the thermosetting resin composition according to the present embodiment at a wavelength of 460 nm is preferably 93.0% or more, preferably 93.5%. The above is more preferable.
  • the light reflectance at a wavelength of 460 nm after heat-treating the cured product at 150 ° C. for 168 hours is preferably 91.0% or more, preferably 91.2% or more. Is more preferable.
  • the substrate for mounting an optical semiconductor element of the present embodiment has a recess formed by a bottom surface and a wall surface.
  • the bottom surface of the recess is an optical semiconductor device mounting portion (optical semiconductor device mounting region), and at least a part of the wall surface of the recess, that is, the inner peripheral side surface of the recess is a cured product of the thermosetting resin composition for light reflection of the present embodiment. It consists of.
  • FIG. 1 is a perspective view showing an embodiment of a substrate for mounting an optical semiconductor element.
  • the substrate 110 for mounting an optical semiconductor element has a metal wiring 105 (first connection terminal and second connection terminal) formed with Ni / Ag plating 104 and a metal wiring 105 (first connection terminal and second connection).
  • the metal wiring 105 provided with the insulating resin molded body 103'provided between the terminals) and the reflector 103, and formed with Ni / Ag plating 104, and the insulating resin molded body 103'and the reflector 103. It has an optical semiconductor element mounting region (recess) 200.
  • the bottom surface of the recess 200 is composed of a metal wiring 105 on which Ni / Ag plating 104 is formed and an insulating resin molded body 103', and the wall surface of the recess 200 is composed of a reflector 103.
  • the reflector 103 and the insulating resin molded body 103' are a molded body made of a cured product of the thermosetting resin composition for light reflection according to the above-described embodiment.
  • FIG. 2 is a schematic view showing an embodiment of a process of manufacturing a substrate for mounting an optical semiconductor element.
  • a step of forming a metal wiring 105 by a known method such as punching from a metal foil and etching, and applying Ni / Ag plating 104 by electroplating ((a) in FIG.
  • the bottom surface of the recess 200 is made of a metal wiring 105 as a first connection terminal, a metal wiring 105 as a second connection terminal, and a cured product of a thermosetting resin composition for light reflection provided between them. It is composed of an insulating resin molded body 103'.
  • the conditions for the transfer molding are a mold temperature of 170 to 200 ° C., more preferably 170 to 190 ° C., a molding pressure of 0.5 to 20 MPa, more preferably 2 to 8 MPa, and an aftercure temperature for 60 to 120 seconds. It is preferably 120 ° C. to 180 ° C. for 1 to 3 hours.
  • the optical semiconductor device includes the optical semiconductor element mounting substrate and the optical semiconductor element mounted on the optical semiconductor element mounting substrate.
  • the substrate for mounting the optical semiconductor element the optical semiconductor element provided in the recess of the substrate for mounting the optical semiconductor element, and the phosphor-containing seal that fills the recess and seals the optical semiconductor element.
  • An optical semiconductor device including a stop resin portion can be mentioned.
  • FIG. 3 is a perspective view showing an embodiment in which the optical semiconductor element 100 is mounted on the optical semiconductor element mounting substrate 110.
  • the optical semiconductor element 100 is mounted at a predetermined position in the optical semiconductor element mounting region (recess) 200 of the optical semiconductor element mounting substrate 110, and is electrically connected to the metal wiring 105 by the bonding wire 102.
  • To. 4 and 5 are schematic cross-sectional views showing an embodiment of an optical semiconductor device.
  • the optical semiconductor device includes an optical semiconductor element mounting substrate 110, an optical semiconductor element 100 provided at a predetermined position in the recess 200 of the optical semiconductor element mounting substrate 110, and the recess 200.
  • the metal wiring is provided with a sealing resin portion made of a transparent sealing resin 101 containing a phosphor 106 for sealing the optical semiconductor element, and the optical semiconductor element 100 and the Ni / Ag plating 104 are formed.
  • the 105 is electrically connected to the bonding wire 102 or the solder bump 107.
  • FIG. 6 is also a schematic cross-sectional view showing an embodiment of an optical semiconductor device.
  • the LED element 300 is arranged at a predetermined position on the lead 304 on which the reflector 303 is formed via the die bonding material 306, and the LED element 300 and the lead 304 are electrically connected by the bonding wire 301.
  • the LED element 300 is sealed by the transparent sealing resin 302 which is connected and contains the phosphor 305.
  • thermosetting resin composition for light reflection The following components were prepared in order to prepare the thermosetting resin compositions of Examples and Comparative Examples.
  • each component was compounded, sufficiently kneaded with a mixer, and then melt-kneaded at 40 ° C. for 15 minutes with a mixing roll to obtain a kneaded product.
  • the thermosetting resin compositions of Examples and Comparative Examples were prepared by cooling and pulverizing the kneaded product.
  • thermosetting resin composition is transferred under the conditions of a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. did.
  • the flow distance (cm) of the thermosetting resin composition during transfer molding was measured.
  • thermosetting resin composition is transfer-molded under the conditions of a molding die temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then post-cured at 150 ° C. for 2 hours to test a thickness of 3.0 mm. Pieces were made.
  • the light reflectance of the test piece at a wavelength of 460 nm was measured using an integrating sphere spectrophotometer V-750 (manufactured by JASCO Corporation).
  • thermosetting resin composition was poured into a mold for measuring shear release force (see FIG. 7) and molded.
  • the molding conditions were a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds.
  • the shear release force measuring die 400 is composed of an upper die 410 and a lower die 416, and the upper die 410 has a resin injection port 412 and a disk having a diameter of 20 mm and a thickness of 2 mm. It is provided with a recess 414 for molding a shaped molded product.
  • a chrome-plated stainless steel plate 420 having a length of 50 mm, a width of 35 mm, and a thickness of 0.4 mm is inserted into a die 400 for measuring shear release force, and a thermosetting resin composition is formed on the stainless steel plate 420.
  • the plate 420 was pulled out, and the maximum pulling force at that time was measured using a push-pull gauge (manufactured by Imada Seisakusho Co., Ltd., model name "SH").
  • thermosetting resin composition was repeatedly molded using the same stainless steel plate, and the shear release force was measured.
  • Tables 1 and 2 show the number of shots at which the shear release force was 0 MPa.
  • thermosetting resin composition for light reflection of the examples is excellent in mold releasability and heat resistance.
  • Optical semiconductor device 101 ... Encapsulating resin, 102 ... Bonding wire, 103 ... Reflector, 103'... Insulating resin molded body, 104 ... Ni / Ag plating, 105 ... Metal wiring, 106 ... Phosphor, 107 ... Solder Bump, 110 ... Optical semiconductor device mounting substrate, 150 ... Resin injection port, 151 ... Mold, 200 ... Optical semiconductor device mounting area, 300 ... LED element, 301 ... Bonding wire, 302 ... Encapsulating resin, 303 ... Reflector, 304 ... lead, 305 ... phosphor, 306 ... die bonding material, 400 ... shear release force measuring mold, 410 ... upper mold, 412 ... resin injection port, 414 ... recess, 416 ... lower mold, 420 ... stainless plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermosetting resin composition for light reflection according to the present disclosure comprises an epoxy resin, a curing agent, an inorganic filler, a white pigment, and a mold-releasing agent, wherein the mold-releasing agent includes a zinc-based metal soap and an aluminum-based metal soap.

Description

光反射用熱硬化性樹脂組成物、光半導体素子搭載用基板及び光半導体装置Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor elements, and optical semiconductor device
 本発明は、光反射用熱硬化性樹脂組成物、光半導体素子搭載用基板及び光半導体装置に関する。 The present invention relates to a thermosetting resin composition for light reflection, a substrate for mounting an optical semiconductor element, and an optical semiconductor device.
 LED(Light Emitting Diode:発光ダイオード)等の光半導体素子と蛍光体とを組み合わせた光半導体装置は、エネルギー効率が高く、寿命が長いことから、屋外用ディスプレイ、携帯液晶バックライト、車載用途等の様々な用途に使用され、その需要が拡大している。これに伴い、LEDデバイスの高輝度化が進んでおり、素子の発熱量増大によるジャンクション温度の上昇、又は、直接的な光エネルギーの増大による光半導体装置の劣化を防ぐことが求められている。 Optical semiconductor devices that combine optical semiconductor elements such as LEDs (Light Emitting Diodes) with phosphors have high energy efficiency and long life, so they are used for outdoor displays, portable liquid crystal backlights, in-vehicle applications, etc. It is used for various purposes and its demand is expanding. Along with this, the brightness of LED devices is increasing, and it is required to prevent the junction temperature from rising due to an increase in the amount of heat generated by the element or the deterioration of the optical semiconductor device due to a direct increase in light energy.
 特許文献1には、硬化剤として酸無水物を含む熱硬化性樹脂組成物を、リフレクターの材料として用いた光半導体素子搭載用基板が開示されている。 Patent Document 1 discloses a substrate for mounting an optical semiconductor device using a thermosetting resin composition containing an acid anhydride as a curing agent as a material for a reflector.
特開2006-140207号公報Japanese Unexamined Patent Publication No. 2006-140207
 一般に、熱硬化性樹脂組成物を用いてLEDのリフレクターを形成する際には、トランスファーモールド成形が用いられている。熱硬化性樹脂組成物には、生産性の観点から成形金型からの離型性に優れることが求められる。そして、熱硬化性樹脂組成物から形成される硬化物には、光反射率をより高めるだけでなく、高温下で長時間使用された際にも光学特性を維持できる耐熱性が求められる。 Generally, transfer molding is used when forming an LED reflector using a thermosetting resin composition. The thermosetting resin composition is required to have excellent mold releasability from the molding die from the viewpoint of productivity. The cured product formed from the thermosetting resin composition is required to have heat resistance that not only enhances the light reflectance but also maintains the optical characteristics even when used for a long time at a high temperature.
 そこで、本発明は、離型性及び耐熱性に優れる光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及び光半導体装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermosetting resin composition for light reflection, which is excellent in releasability and heat resistance, a substrate for mounting an optical semiconductor element, and an optical semiconductor device using the same.
 本発明は、エポキシ樹脂、硬化剤、無機充填剤、白色顔料及び離型剤を含有し、離型剤が、亜鉛系金属石鹸とアルミニウム系金属石鹸とを含む、光反射用熱硬化性樹脂組成物に関する。 The present invention contains a thermosetting resin composition for light reflection, which contains an epoxy resin, a curing agent, an inorganic filler, a white pigment and a mold release agent, and the mold release agent contains a zinc-based metal soap and an aluminum-based metal soap. Regarding things.
 亜鉛系金属石鹸が、亜鉛と炭素数が10以上の長鎖脂肪酸との金属塩を含んでよい。また、長鎖脂肪酸の炭素数は、20以上であってよい。 The zinc-based metal soap may contain a metal salt of zinc and a long-chain fatty acid having 10 or more carbon atoms. The carbon number of the long chain fatty acid may be 20 or more.
 硬化剤は、融点が180~400℃のテトラカルボン酸二無水物を含んでよい。無機充填剤は、中心粒径が1~25μmの無機中空粒子を含んでよい。 The curing agent may contain a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C. The inorganic filler may contain inorganic hollow particles having a central particle size of 1 to 25 μm.
 別の側面において、本発明は、上記光反射用熱硬化性樹脂組成物の硬化物を備える光半導体素子搭載用基板に関する。本発明に係る光半導体素子搭載用基板は、底面及び壁面から構成される凹部を有し、当該凹部の底面が光半導体素子の搭載部であってよい。この場合、凹部の壁面の少なくとも一部が、上記光反射用熱硬化性樹脂組成物の硬化物である。また、本発明に係る光半導体素子搭載用基板は、基板と、当該基板上に設けられた第1の接続端子及び第2の接続端子と、第1の接続端子と第2の接続端子との間に設けられた、上記光反射用熱硬化性樹脂組成物の硬化物と、を備えてよい。 In another aspect, the present invention relates to a substrate for mounting an optical semiconductor device, which comprises a cured product of the thermosetting resin composition for light reflection. The substrate for mounting an optical semiconductor element according to the present invention has a recess composed of a bottom surface and a wall surface, and the bottom surface of the recess may be a mounting portion for the optical semiconductor element. In this case, at least a part of the wall surface of the recess is a cured product of the thermosetting resin composition for light reflection. Further, the substrate for mounting an optical semiconductor element according to the present invention includes a substrate, a first connection terminal and a second connection terminal provided on the substrate, and a first connection terminal and a second connection terminal. A cured product of the thermosetting resin composition for light reflection provided between them may be provided.
 さらに別の側面において、本発明は、上記光半導体素子搭載用基板と、該光半導体素子搭載用基板に搭載された光半導体素子とを有する光半導体装置に関する。 In yet another aspect, the present invention relates to an optical semiconductor device having the above-mentioned optical semiconductor element mounting substrate and an optical semiconductor element mounted on the optical semiconductor element mounting substrate.
 本発明によれば、離型性及び耐熱性に優れる光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及び光半導体装置を提供することができる。 According to the present invention, it is possible to provide a thermosetting resin composition for light reflection, which is excellent in releasability and heat resistance, a substrate for mounting an optical semiconductor element, and an optical semiconductor device using the same.
光半導体素子搭載用基板の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the substrate for mounting an optical semiconductor element. 光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the substrate for mounting an optical semiconductor element. 光半導体素子搭載用基板に光半導体素子を搭載した状態の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment in the state which the optical semiconductor element is mounted on the substrate for mounting the optical semiconductor element. 光半導体装置の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of an optical semiconductor device. 光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows the other embodiment of an optical semiconductor device. 光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows the other embodiment of an optical semiconductor device. せん断離型力測定用金型の構造を示す模式断面図である。It is a schematic cross-sectional view which shows the structure of the mold for shear release force measurement.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. Further, unless otherwise specified, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings. Furthermore, the dimensional ratios in the drawings are not limited to the ratios shown.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。また、本明細書において、(メタ)アクリレートとは、アクリレート及びそれに対応するメタクリレートの少なくとも一方を意味する。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. Further, in the present specification, (meth) acrylate means at least one of acrylate and the corresponding methacrylate.
[光反射用熱硬化性樹脂組成物]
 本実施形態の光反射用熱硬化性樹脂組成物は、エポキシ樹脂、硬化剤、無機充填剤及び白色顔料を含有し、離型剤は、亜鉛系金属石鹸とアルミニウム系金属石鹸とを含んでいる。
[Thermosetting resin composition for light reflection]
The thermosetting resin composition for light reflection of the present embodiment contains an epoxy resin, a curing agent, an inorganic filler and a white pigment, and the release agent contains a zinc-based metal soap and an aluminum-based metal soap. ..
(エポキシ樹脂)
 エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているエポキシ樹脂を用いることができる。本実施形態に係る熱硬化性樹脂組成物は、エポキシ樹脂を含有することで、熱時硬度及び曲げ強度が高く、機械的特性を向上した硬化物を形成することができる。エポキシ樹脂として、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等のフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したエポキシ樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル;ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;及び脂環族エポキシ樹脂が挙げられる。エポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いてもよい。
(Epoxy resin)
As the epoxy resin, an epoxy resin generally used in an epoxy resin molding material for encapsulating electronic parts can be used. Since the thermosetting resin composition according to the present embodiment contains an epoxy resin, it is possible to form a cured product having high thermal hardness and bending strength and improved mechanical properties. As the epoxy resin, for example, an epoxy resin obtained by epoxidizing phenols such as phenol novolac type epoxy resin and orthocresol novolac type epoxy resin and novolak resin of aldehydes; bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol and the like. Glysidyl ether; Glysidylamine type epoxy resin obtained by reacting polyamines such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin; Linear aliphatic epoxy resin obtained by oxidizing olefin bonds with a peracid such as peracetic acid; and alicyclic Group epoxy resin can be mentioned. The epoxy resin may be used alone or in combination of two or more.
 着色が少ないことから、エポキシ樹脂は、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸又は1,4-シクロヘキサンジカルボン酸から誘導されるジカルボン酸ジグリシジルエステルを含んでよい。同様の理由から、エポキシ樹脂は、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステルを含んでよい。エポキシ樹脂は、シラン化合物を有機溶媒、有機塩基及び水の存在下に加熱して、加水分解して縮合させることにより製造される、エポキシ基を有するポリオルガノシロキサンを含んでもよい。 Since there is little coloring, the epoxy resins are diglycidyl isocyanurate, triglycidyl isocyanurate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 1,2-cyclohexanedicarboxylic acid, 1,3-. It may contain a cyclohexanedicarboxylic acid or a dicarboxylic acid diglycidyl ester derived from a 1,4-cyclohexanedicarboxylic acid. For the same reason, as the epoxy resin, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. It may contain glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which the aromatic ring is hydrogenated. The epoxy resin may contain a polyorganosiloxane having an epoxy group, which is produced by heating a silane compound in the presence of an organic solvent, an organic base and water, hydrolyzing and condensing the silane compound.
 エポキシ樹脂は、市販品を使用してもよい。3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートとして、例えば、株式会社ダイセルの製品名「セロキサイド2021」、「セロキサイド2021A」及び「セロキサイド2021P」、ダウケミカル日本株式会社の製品名「ERL4221」、「ERL4221D」及び「ERL4221E」を入手できる。ビス(3,4-エポキシシクロヘキシルメチル)アジペートとして、例えば、ダウケミカル日本株式会社の製品名「ERL4299」、DIC株式会社の製品名「EXA-7015」を入手できる。1-エポキシエチル-3,4-エポキシシクロヘキサン又はリモネンジエポキシドとして、例えば、三菱ケミカル株式会社の製品名「jER YX8000」、「jER YX8034」及び「jER YL7170」、株式会社ダイセルの製品名「セロキサイド2081」、「セロキサイド3000」、「エポリードGT301」、「エポリードGT401」及び「EHPE3150」を入手できる。トリスグリシジルイソシアヌレートとしては、例えば、日産化学工業株式会社の製品名「TEPIC-S」を入手できる。 A commercially available product may be used as the epoxy resin. As 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate, for example, the product names of Daicel Co., Ltd. "Selokiside 2021", "Selokiside 2021A" and "Selokiside 2021P", products of Dow Chemical Japan Co., Ltd. The names "ERL4221", "ERL4221D" and "ERL4221E" are available. As the bis (3,4-epoxycyclohexylmethyl) adipate, for example, the product name "ERL4299" of Dow Chemical Japan Co., Ltd. and the product name "EXA-7015" of DIC Corporation can be obtained. As 1-epoxyethyl-3,4-epoxycyclohexane or limonene diepoxide, for example, the product names of Mitsubishi Chemical Co., Ltd. "jER YX8000", "jER YX8034" and "jER YL7170", and the product name of Daicel Co., Ltd. "Selokiside 2081" , "Selokiside 3000", "Epoxy GT301", "Epoxy GT401" and "EHPE3150" are available. As the trisglycidyl isocyanurate, for example, the product name "TEPIC-S" of Nissan Chemical Industries, Ltd. can be obtained.
(硬化剤)
 硬化剤としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されている硬化剤を用いることができる。硬化剤は、エポキシ樹脂と反応して硬化物が得られるものであれば、特に限定されないが、着色の少ない硬化剤が好ましく、無色又は淡黄色の硬化剤がより好ましい。硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤及びフェノール系硬化剤が挙げられる。硬化剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。
(Hardener)
As the curing agent, a curing agent generally used in epoxy resin molding materials for encapsulating electronic components can be used. The curing agent is not particularly limited as long as it can react with an epoxy resin to obtain a cured product, but a curing agent with less coloring is preferable, and a colorless or pale yellow curing agent is more preferable. Examples of the curing agent include an acid anhydride-based curing agent, an isocyanuric acid derivative-based curing agent, and a phenol-based curing agent. The curing agent may be used alone or in combination of two or more.
 本実施形態に係る硬化剤は、酸無水物系硬化剤として、融点が180~400℃のテトラカルボン酸二無水物(以下、単に「テトラカルボン酸二無水物」という場合がある。)を含んでよい。このようなテトラカルボン酸二無水物を硬化剤として用いることで、熱硬化性樹脂組成物の耐熱性を更に向上することができる。樹脂組成物中に均一に分散させる点から、テトラカルボン酸二無水物の融点は、200~380℃又は210~350℃であってもよい。 The curing agent according to the present embodiment contains a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C. (hereinafter, may be simply referred to as "tetracarboxylic dianhydride") as an acid anhydride-based curing agent. It's fine. By using such a tetracarboxylic dianhydride as a curing agent, the heat resistance of the thermosetting resin composition can be further improved. The melting point of the tetracarboxylic dianhydride may be 200 to 380 ° C. or 210 to 350 ° C. from the viewpoint of uniformly dispersing the tetracarboxylic dianhydride in the resin composition.
 耐熱性をより一層向上することから、テトラカルボン酸二無水物は、芳香環又は脂環を有してよい。芳香環を有するテトラカルボン酸二無水物は、ベンゼン環を2以上有するテトラカルボン酸二無水物及びナフタレン環を有するテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種であってよい。 The tetracarboxylic dianhydride may have an aromatic ring or an alicyclic ring in order to further improve the heat resistance. The tetracarboxylic dianhydride having an aromatic ring may be at least one selected from the group consisting of a tetracarboxylic dianhydride having two or more benzene rings and a tetracarboxylic dianhydride having a naphthalene ring.
 ベンゼン環を2以上有するテトラカルボン酸二無水物は、下記式(1)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、単結合、エーテル結合、アルキル基、カルボニル基、スルホニル基、ヘキサフルオロイソプロピリデン基、又はフルオレン基を示す。
The tetracarboxylic dianhydride having two or more benzene rings may be a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
In formula (1), R represents a single bond, an ether bond, an alkyl group, a carbonyl group, a sulfonyl group, a hexafluoroisopropylidene group, or a fluorene group.
 脂環を有するテトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物が挙げられる。芳香環を有するテトラカルボン酸二無水物としては、例えば、4,4’-ビフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-スルホニルジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。 Examples of the tetracarboxylic dianhydride having an alicyclic ring include 1,2,3,4-cyclobutanetetracarboxylic dianhydride. Examples of the tetracarboxylic dianhydride having an aromatic ring include 4,4'-biphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-sulfonyldiphthalic anhydride, and 4 , 4'-(hexafluoroisopropyridene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, and 2,3,6 , 7-Naphthalenetetracarboxylic dianhydride.
 本実施形態に係る硬化剤は、融点が180℃未満の酸無水物系硬化剤を含んでよい。融点が180℃未満の酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、及び下記式(2)で表されるテトラカルボン酸二無水物が挙げられる。 The curing agent according to the present embodiment may contain an acid anhydride-based curing agent having a melting point of less than 180 ° C. Examples of the acid anhydride-based curing agent having a melting point of less than 180 ° C. include phthalic anhydride, maleic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic acid anhydride, and anhydrous. Examples thereof include glutaric acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, and tetracarboxylic dianhydride represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rxは、2価の有機基を示し、nは1~10の整数を示す。2価の有機基は、飽和炭化水素環を有する2価の飽和炭化水素基であってよく、飽和炭化水素としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロへプタン、シクロオクタン、ノルボルネン、ジシクロペンタジエン、アダマンタン、水素化ナフタレン及び水素化ビフェニルが挙げられる。
Figure JPOXMLDOC01-appb-C000002
In the formula (2), Rx represents a divalent organic group, and n represents an integer of 1 to 10. The divalent organic group may be a divalent saturated hydrocarbon group having a saturated hydrocarbon ring, and examples of the saturated hydrocarbon include cyclobutane, cyclopentane, cyclohexane, cycloheptan, cyclooctane, norbornen, and di. Cyclopentadiene, adamantan, naphthalene hydride and biphenyl hydride can be mentioned.
 イソシアヌル酸誘導体としては、例えば、1,3,5-トリス(1-カルボキシメチル)イソシアヌレート、1,3,5-トリス(2-カルボキシエチル)イソシアヌレート、1,3,5-トリス(3-カルボキシプロピル)イソシアヌレート及び1,3-ビス(2-カルボキシエチル)イソシアヌレートが挙げられる。 Examples of the isocyanuric acid derivative include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, and 1,3,5-tris (3-). Carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate.
 フェノール系硬化剤としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られる、ノボラック型フェノール樹脂;フェノール類及び/又はナフトール類と、ジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルとから合成されるフェノール・アラルキル樹脂;ビフェニレン型フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂;フェノール類及び/又はナフトール類と、ジシクロペンタジエンとの共重合によって合成される、ジシクロペンタジエン型フェノール樹脂;トリフェニルメタン型フェノール樹脂;テルペン変性フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;並びにこれら2種以上を共重合して得られるフェノール樹脂が挙げられる。 Examples of the phenolic curing agent include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene. , Formaldehyde, benzaldehyde, salicylaldehyde and other aldehydes are condensed or co-condensed under an acidic catalyst to obtain a novolak-type phenolic resin; phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl. Phenol / aralkyl resin synthesized from; aralkyl-type phenolic resin such as biphenylene-type phenol / aralkyl resin, naphthol / aralkyl resin; dicyclopentadiene synthesized by copolymerization of phenols and / or naphthols with dicyclopentadiene. Cyclopentadiene-type phenolic resins; triphenylmethane-type phenolic resins; terpen-modified phenolic resins; paraxylylene and / or metaxylylene-modified phenolic resins; melamine-modified phenolic resins; and phenolic resins obtained by copolymerizing two or more of these.
 本実施形態に係る熱硬化性樹脂組成物において、硬化剤の含有量は、エポキシ樹脂100質量部に対して、10~150質量部、50~130質量部、又は60~120質量部であってよい。 In the thermosetting resin composition according to the present embodiment, the content of the curing agent is 10 to 150 parts by mass, 50 to 130 parts by mass, or 60 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. Good.
 硬化剤の配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な硬化剤中の活性基(酸無水物基又は水酸基)が0.5~2.0当量、0.6~1.5当量、又は0.7~1.2当量であってよい。上記活性基が0.5当量以上であると、熱硬化性樹脂組成物から形成される硬化物のガラス転移温度が高くなり、充分な弾性率が得られ易くなる。一方、上記活性基が2.0当量以下であると、硬化後の強度が低下し難くなる。 The mixing ratio of the curing agent is 0.5 to 2.0 equivalents of the active group (acid anhydride group or hydroxyl group) in the curing agent capable of reacting with the epoxy group with respect to 1 equivalent of the epoxy group in the epoxy resin. It may be 0.6 to 1.5 equivalents or 0.7 to 1.2 equivalents. When the active group is 0.5 equivalent or more, the glass transition temperature of the cured product formed from the thermosetting resin composition becomes high, and a sufficient elastic modulus can be easily obtained. On the other hand, when the active group is 2.0 equivalents or less, the strength after curing is unlikely to decrease.
(白色顔料)
 白色顔料は、本実施形態に係る熱硬化性樹脂組成物から得られる硬化物(成形体)に白色系の色調を付与するために用いられ、特にその色調を高度の白色とすることにより、成形体の光反射率を向上させることができる。
(White pigment)
The white pigment is used to impart a white color tone to the cured product (molded product) obtained from the thermosetting resin composition according to the present embodiment, and is particularly molded by making the color tone highly white. The light reflectance of the body can be improved.
 白色顔料としては、例えば、酸化イットリウム等の希土類酸化物、酸化チタン、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化アンチモン、硫酸亜鉛、及び酸化ジルコニウムが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。光反射性をより向上することから、白色顔料は、酸化チタン、酸化亜鉛、アルミナ、酸化マグネシウム、酸化アンチモン及び酸化ジルコニウムからなる群より選ばれる少なくとも1種を含むことが好ましく、酸化チタン、酸化アンチモン及び酸化ジルコニウムからなる群より選ばれる少なくとも1種を含むことがより好ましい。 Examples of the white pigment include rare earth oxides such as yttrium oxide, titanium oxide, zinc oxide, aluminum oxide (alumina), magnesium oxide, antimony oxide, zinc sulfate, and zirconium oxide. These may be used individually by 1 type or in combination of 2 or more type. In order to further improve the light reflectivity, the white pigment preferably contains at least one selected from the group consisting of titanium oxide, zinc oxide, alumina, magnesium oxide, antimony oxide and zirconium oxide, and titanium oxide and antimony oxide. It is more preferable to contain at least one selected from the group consisting of and zirconium oxide.
 白色顔料の中心粒径は、0.05~10μm、0.08~8μm、又は0.1~5μmであってよい。白色顔料の中心粒径が0.05μm以上であると分散性がより良好になり、10μm未満であると硬化物の光反射特性がより良好になる。本明細書において、中心粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めることができる。 The central particle size of the white pigment may be 0.05 to 10 μm, 0.08 to 8 μm, or 0.1 to 5 μm. When the central particle size of the white pigment is 0.05 μm or more, the dispersibility becomes better, and when it is less than 10 μm, the light reflection characteristic of the cured product becomes better. In the present specification, the central particle size can be determined as the mass average value D50 (or median diameter) in the particle size distribution measurement by the laser light diffraction method.
(無機充填剤)
 本実施形態に係る熱硬化性樹脂組成物は、成形性を向上する観点から、無機充填剤を含有する。無機充填剤としては、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸カリウム、ケイ酸カルシウム、及び無機中空粒子が挙げられる。
(Inorganic filler)
The thermosetting resin composition according to the present embodiment contains an inorganic filler from the viewpoint of improving moldability. Examples of the inorganic filler include quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine atypical silica, barium sulfate, magnesium carbonate, barium carbonate, aluminum hydroxide, and hydroxide. Examples include magnesium, potassium titanate, calcium silicate, and inorganic hollow particles.
 成形性の点から、無機充填剤は溶融シリカを含んでよい。溶融シリカの中心粒径は、白色顔料とのパッキング性を向上させる観点から、1~100μm、1~50μm、又は1~40μmであってよい。 From the viewpoint of moldability, the inorganic filler may contain fused silica. The central particle size of the molten silica may be 1 to 100 μm, 1 to 50 μm, or 1 to 40 μm from the viewpoint of improving the packing property with the white pigment.
 熱硬化性樹脂組成物の粉砕性をより向上することから、無機充填剤は、中心粒径が1~25μmの無機中空粒子を含んでよい。無機中空粒子は、内部に空隙部を有する粒子である。無機中空粒子は、入射光を表面及び内壁で屈折及び反射するため、白色顔料と併用することで、光反射性及び機械的特性をより一層向上した硬化物を形成することができる。 The inorganic filler may contain inorganic hollow particles having a central particle size of 1 to 25 μm in order to further improve the grindability of the thermosetting resin composition. Inorganic hollow particles are particles having voids inside. Since the inorganic hollow particles refract and reflect incident light on the surface and inner wall, a cured product having further improved light reflectivity and mechanical properties can be formed by using it in combination with a white pigment.
 無機中空粒子としては、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス及びシラス(白砂)が挙げられる。耐熱性及び耐圧強度の観点からは、無機中空粒子の外殻は、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス、架橋スチレン系樹脂及び架橋アクリル系樹脂からなる群より選ばれる少なくとも1種の材質から構成されることが好ましく、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス及びシラスからなる群より選ばれる少なくとも1種の材質から構成されることがより好ましい。 Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, sodium borosilicate glass and shirasu (white sand). From the viewpoint of heat resistance and pressure resistance, the outer shell of the inorganic hollow particles is at least one selected from the group consisting of soda glass silicate, glass aluminum silicate, soda borosilicate glass, silas, crosslinked styrene resin and crosslinked acrylic resin. It is preferably composed of seed materials, and more preferably composed of at least one material selected from the group consisting of soda glass silicate, glass aluminum silicate, soda borosilicate glass and silas.
 熱硬化性樹脂組成物を調製する際に無機中空粒子を均一に分散し易いことから、無機中空粒子の中心粒径は、1μm以上、5μm以上又は10μm以上であってよい。また、形成される硬化物の光反射特性を向上し易いことから、無機中空粒子の中心粒径は、25μm以下又は22μm以下であってよい。 Since it is easy to uniformly disperse the inorganic hollow particles when preparing the thermosetting resin composition, the central particle size of the inorganic hollow particles may be 1 μm or more, 5 μm or more, or 10 μm or more. Further, the central particle size of the inorganic hollow particles may be 25 μm or less or 22 μm or less because the light reflection characteristics of the formed cured product can be easily improved.
 熱硬化性樹脂組成物の機械的特性を向上することから、無機中空粒子の外殻の厚みは、0.4~1.3μm、0.45~1.2μm、0.5~1.1μm、又は0.55~1.0μmであってよい。 The thickness of the outer shell of the inorganic hollow particles is 0.4 to 1.3 μm, 0.45 to 1.2 μm, 0.5 to 1.1 μm, in order to improve the mechanical properties of the thermosetting resin composition. Alternatively, it may be 0.55 to 1.0 μm.
 光反射性を向上することから、無機中空粒子のかさ密度は、0.20~0.36g/cm、0.25~0.35g/cm、又は0.26~0.34g/cmであってよい。かさ密度は、ある容積の容器に無機中空粒子を充填し、その内容積を体積として算出した密度である。 In order to improve the light reflectivity, the bulk density of the inorganic hollow particles is 0.20 to 0.36 g / cm 3 , 0.25 to 0.35 g / cm 3 , or 0.26 to 0.34 g / cm 3. It may be. The bulk density is a density calculated by filling a container having a certain volume with inorganic hollow particles and using the internal volume as the volume.
 光反射性と機械的特性とのバランスに優れることから、無機中空粒子の真密度は、0.40~0.75g/cm、0.45~0.70g/cm、又は0.50~0.65g/cmであってよい。真密度は、ASTM D2840に準拠して測定することができる。 Due to the excellent balance between light reflectivity and mechanical properties, the true density of inorganic hollow particles is 0.40 to 0.75 g / cm 3 , 0.45 to 0.70 g / cm 3 , or 0.50 to 0.50. It may be 0.65 g / cm 3. The true density can be measured according to ASTM D2840.
 熱硬化性樹脂組成物の硬化物の強度を向上することから、無機中空粒子の耐圧強度は、25℃で100MPa以上、110MPa以上、125MPa以上、又は150MPa以上であってよい。熱硬化性樹脂組成物の成形性を向上することから、無機中空粒子の耐圧強度は、25℃で500MPa以下、300MPa以下、又は200MPa以下であってよい。耐圧強度は、ASTM D3102に準拠して測定することができる。 In order to improve the strength of the cured product of the thermosetting resin composition, the pressure resistance strength of the inorganic hollow particles may be 100 MPa or more, 110 MPa or more, 125 MPa or more, or 150 MPa or more at 25 ° C. In order to improve the moldability of the thermosetting resin composition, the pressure resistance strength of the inorganic hollow particles may be 500 MPa or less, 300 MPa or less, or 200 MPa or less at 25 ° C. The pressure resistance can be measured according to ASTM D3102.
 光反射率をより向上させる点から、無機中空粒子の含有量は、エポキシ樹脂100質量部に対して、60~200質量部であることが好ましく、80~180質量部であることがより好ましく、100~170質量部であることが更に好ましい。 From the viewpoint of further improving the light reflectance, the content of the inorganic hollow particles is preferably 60 to 200 parts by mass, more preferably 80 to 180 parts by mass with respect to 100 parts by mass of the epoxy resin. It is more preferably 100 to 170 parts by mass.
(離型剤)
 本実施形態に係る離型剤は、亜鉛系金属石鹸とアルミニウム系金属石鹸とを含む。亜鉛系金属石鹸は、亜鉛と長鎖脂肪酸との金属塩である。亜鉛系金属石鹸を用いることで、本実施形態に係る熱硬化性樹脂組成物の成形金型からの離型性を向上することができる。アルミニウム系金属石鹸は、アルミニウムと長鎖脂肪酸との金属塩である。アルミニウム系金属石鹸を用いることで、本実施形態に係る熱硬化性樹脂組成物の耐熱性を高めることができる。
(Release agent)
The mold release agent according to the present embodiment includes a zinc-based metal soap and an aluminum-based metal soap. Zinc-based metal soap is a metal salt of zinc and long-chain fatty acids. By using the zinc-based metal soap, the releasability of the thermosetting resin composition according to the present embodiment from the molding die can be improved. Aluminum-based metal soap is a metal salt of aluminum and long chain fatty acids. By using an aluminum-based metal soap, the heat resistance of the thermosetting resin composition according to the present embodiment can be enhanced.
 離型性をより向上させる観点から、長鎖脂肪酸の炭素数は、10以上、14以上、18以上、又は20以上であってよい。樹脂組成物中に均一に分散させる観点から、長鎖脂肪酸の炭素数は、40以下、36以下、30以下、又は26以下であってよい。長鎖脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アラキジン酸、リグノセリン酸、セロチン酸及びモンタン酸が挙げられる。 From the viewpoint of further improving the releasability, the carbon number of the long chain fatty acid may be 10 or more, 14 or more, 18 or more, or 20 or more. From the viewpoint of uniformly dispersing in the resin composition, the carbon number of the long chain fatty acid may be 40 or less, 36 or less, 30 or less, or 26 or less. Examples of long chain fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, arachidic acid, lignoceric acid, cerotic acid and montanic acid.
 亜鉛系金属石鹸は、亜鉛と炭素数10以上長鎖脂肪酸との金属塩を含んでよい。亜鉛系金属石鹸を構成する長鎖脂肪酸の炭素数は、14以上が好ましく、18以上がより好ましく、20以上が更に好ましい。 The zinc-based metal soap may contain a metal salt of zinc and a long-chain fatty acid having 10 or more carbon atoms. The carbon number of the long chain fatty acid constituting the zinc-based metal soap is preferably 14 or more, more preferably 18 or more, and further preferably 20 or more.
 アルミニウム系金属石鹸は、アルミニウムと炭素数10以上の長鎖脂肪酸とを含んでよい。アルミニウム系金属石鹸を構成する長鎖脂肪酸の炭素数は、14以上が好ましく、16以上がより好ましく、18以上が更に好ましい。 Aluminum-based metal soap may contain aluminum and long-chain fatty acids having 10 or more carbon atoms. The carbon number of the long chain fatty acid constituting the aluminum-based metal soap is preferably 14 or more, more preferably 16 or more, and further preferably 18 or more.
 熱硬化性樹脂組成物中の離型剤の含有量(亜鉛系金属石鹸及びアルミニウム系金属石鹸の総量)は、エポキシ樹脂100質量部に対して、1~15質量部、2~10質量部、又は3~8質量部であってよい。 The content of the release agent (total amount of zinc-based metal soap and aluminum-based metal soap) in the thermosetting resin composition is 1 to 15 parts by mass and 2 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. Alternatively, it may be 3 to 8 parts by mass.
(硬化促進剤)
 本実施形態に係る熱硬化性樹脂組成物は、エポキシ樹脂の硬化反応を促進するために、硬化促進剤を含有してよい。硬化促進剤としては、例えば、アミン化合物、イミダゾール化合物、有機リン化合物、アルカリ金属化合物、アルカリ土類金属化合物及び第4級アンモニウム塩が挙げられる。これらの硬化促進剤の中でも、アミン化合物、イミダゾール化合物又は有機リン化合物を用いることが好ましい。硬化促進剤は、1種を単独で又は2種以上を組み合わせて使用してもよい。
(Curing accelerator)
The thermosetting resin composition according to the present embodiment may contain a curing accelerator in order to accelerate the curing reaction of the epoxy resin. Examples of the curing accelerator include amine compounds, imidazole compounds, organophosphorus compounds, alkali metal compounds, alkaline earth metal compounds and quaternary ammonium salts. Among these curing accelerators, it is preferable to use an amine compound, an imidazole compound or an organic phosphorus compound. The curing accelerator may be used alone or in combination of two or more.
 アミン化合物としては、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン及びトリ-2,4,6-ジメチルアミノメチルフェノールが挙げられる。イミダゾール化合物としては、例えば、2-エチル-4-メチルイミダゾールが挙げられる。有機リン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-テトラフルオロボレート及びテトラ-n-ブチルホスホニウム-テトラフェニルボレートが挙げられる。 Examples of the amine compound include 1,8-diazabicyclo [5.4.0] undecene-7, triethylenediamine and tri-2,4,6-dimethylaminomethylphenol. Examples of the imidazole compound include 2-ethyl-4-methylimidazole. Examples of the organophosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphologithioate, tetra-n-butylphosphonium-tetrafluoroborate and tetra-n. -Butylphosphonium-tetraphenylborate can be mentioned.
 熱硬化性樹脂組成物中の硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、0.01~8質量部、0.1~5質量部、又は0.3~4質量部であってよい。硬化促進剤の含有量が、0.01質量部以上であると、十分な硬化促進効果を得られ易く、8質量部以下であると、硬化物の変色を抑制し易くなる。 The content of the curing accelerator in the thermosetting resin composition is 0.01 to 8 parts by mass, 0.1 to 5 parts by mass, or 0.3 to 4 parts by mass with respect to 100 parts by mass of the epoxy resin. It may be there. When the content of the curing accelerator is 0.01 parts by mass or more, a sufficient curing promoting effect can be easily obtained, and when it is 8 parts by mass or less, discoloration of the cured product can be easily suppressed.
(カップリング剤)
 熱硬化性樹脂組成物には、無機充填剤と、エポキシ樹脂との密着性を向上させるために、カップリング剤を添加してよい。カップリング剤としては、特に限定されないが、例えば、シランカップリング剤及びチタネート系カップリング剤が挙げられる。シランカップリング剤としては、例えば、エポキシシラン化合物、アミノシラン化合物、カチオニックシラン化合物、ビニルシラン化合物、アクリルシラン化合物及びメルカプトシラン化合物が挙げられる。カップリング剤の含有量は、熱硬化性樹脂組成物の全量を基準として、5質量%以下であってよい。
(Coupling agent)
A coupling agent may be added to the thermosetting resin composition in order to improve the adhesion between the inorganic filler and the epoxy resin. The coupling agent is not particularly limited, and examples thereof include a silane coupling agent and a titanate-based coupling agent. Examples of the silane coupling agent include epoxysilane compounds, aminosilane compounds, thionicsilane compounds, vinylsilane compounds, acrylicsilane compounds and mercaptosilane compounds. The content of the coupling agent may be 5% by mass or less based on the total amount of the thermosetting resin composition.
 本実施形態に係る熱硬化性樹脂組成物には、必要に応じて、酸化防止剤、イオン捕捉剤、ワックス分散剤等の添加剤を添加してよい。 Additives such as an antioxidant, an ion scavenger, and a wax dispersant may be added to the thermosetting resin composition according to the present embodiment, if necessary.
 本実施形態に係る熱硬化性樹脂組成物は、上述した各種成分を均一に分散し混合することで作製することができる。作製手段、条件等は特に限定されない。熱硬化性樹脂組成物を作製する一般的な方法として、各成分をニーダー、ロール、エクストルーダー、らいかい機、又は、自転と公転を組み合わせた遊星式混合機によって混練する方法を挙げることができる。各成分を混練する際には、分散性を向上する観点から、溶融状態で行うことが好ましい。 The thermosetting resin composition according to the present embodiment can be produced by uniformly dispersing and mixing the various components described above. The manufacturing means, conditions, etc. are not particularly limited. As a general method for producing a thermosetting resin composition, a method of kneading each component with a kneader, a roll, an extruder, a rake machine, or a planetary mixer that combines rotation and revolution can be mentioned. .. When kneading each component, it is preferable to knead each component in a molten state from the viewpoint of improving dispersibility.
 混練の条件は、各成分の種類又は配合量により適宜決定すればよく、例えば、15~100℃で5~40分間混練することが好ましく、20~100℃で10~30分間混練することがより好ましい。混練温度が15℃以上であると、各成分を混練させ易くなり、分散性を向上できる。混練温度が100℃以下であると、混練時にエポキシ樹脂の高分子量化が進行して硬化することを抑制できる。混練時間が5分以上であると、十分な分散効果が得られ易くなる。混練時間が40分以下であると、混練時にエポキシ樹脂の高分子量化が進行して硬化することを抑制できる。 The kneading conditions may be appropriately determined depending on the type or blending amount of each component. For example, kneading at 15 to 100 ° C. for 5 to 40 minutes is preferable, and kneading at 20 to 100 ° C. for 10 to 30 minutes is more preferable. preferable. When the kneading temperature is 15 ° C. or higher, each component can be easily kneaded and the dispersibility can be improved. When the kneading temperature is 100 ° C. or lower, it is possible to prevent the epoxy resin from being cured due to the progress of high molecular weight of the epoxy resin during kneading. When the kneading time is 5 minutes or more, a sufficient dispersion effect can be easily obtained. When the kneading time is 40 minutes or less, it is possible to prevent the epoxy resin from being cured due to the progress of high molecular weight of the epoxy resin during kneading.
 本実施形態に係る熱硬化性樹脂組成物は、高い光反射性及び耐熱性を必要とする光半導体素子実装用基板材料、電気絶縁材料、光半導体封止材料、接着材料、塗料材料、トランスファー成形用エポキシ樹脂成形材料等の様々な用途において有用である。以下、本実施形態に係る熱硬化性樹脂組成物をトランスファー成形用エポキシ樹脂成形材料として使用する際の例を述べる。 The thermosetting resin composition according to the present embodiment includes a substrate material for mounting an optical semiconductor device, an electrically insulating material, an optical semiconductor encapsulating material, an adhesive material, a coating material, and transfer molding, which require high light reflectivity and heat resistance. It is useful in various applications such as epoxy resin molding materials. Hereinafter, an example of using the thermosetting resin composition according to the present embodiment as an epoxy resin molding material for transfer molding will be described.
 本実施形態に係る熱硬化性樹脂組成物を成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒間の条件でトランスファー成形する際の流動距離(スパイラルフロー)は、金型への充填性を確保する観点から、60~200cm、80~180cm、又は100~160cmであってよい。 The flow distance (spiral flow) when the thermosetting resin composition according to the present embodiment is transfer-molded under the conditions of a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds is filled in the mold. From the viewpoint of ensuring the property, it may be 60 to 200 cm, 80 to 180 cm, or 100 to 160 cm.
 光半導体装置の輝度を向上させる点から、本実施形態に係る熱硬化性樹脂組成物の硬化物の波長460nmにおける初期光反射率は、93.0%以上であることが好ましく、93.5%以上であることがより好ましい。耐熱着色性を良好にする観点から、当該硬化物を150℃で168時間熱処理した後の波長460nmにおける光反射率は、91.0%以上であることが好ましく、91.2%以上であることがより好ましい。 From the viewpoint of improving the brightness of the optical semiconductor device, the initial light reflectance of the cured product of the thermosetting resin composition according to the present embodiment at a wavelength of 460 nm is preferably 93.0% or more, preferably 93.5%. The above is more preferable. From the viewpoint of improving the heat-resistant coloring property, the light reflectance at a wavelength of 460 nm after heat-treating the cured product at 150 ° C. for 168 hours is preferably 91.0% or more, preferably 91.2% or more. Is more preferable.
[光半導体素子搭載用基板]
 本実施形態の光半導体素子搭載用基板は、底面及び壁面から構成される凹部を有する。凹部の底面が光半導体素子搭載部(光半導体素子搭載領域)であり、凹部の壁面、すなわち凹部の内周側面の少なくとも一部が本実施形態の光反射用熱硬化性樹脂組成物の硬化物からなるものである。
[Substrate for mounting optical semiconductor devices]
The substrate for mounting an optical semiconductor element of the present embodiment has a recess formed by a bottom surface and a wall surface. The bottom surface of the recess is an optical semiconductor device mounting portion (optical semiconductor device mounting region), and at least a part of the wall surface of the recess, that is, the inner peripheral side surface of the recess is a cured product of the thermosetting resin composition for light reflection of the present embodiment. It consists of.
 図1は、光半導体素子搭載用基板の一実施形態を示す斜視図である。光半導体素子搭載用基板110は、Ni/Agめっき104が形成された金属配線105(第1の接続端子及び第2の接続端子)と、金属配線105(第1の接続端子及び第2の接続端子)間に設けられた絶縁性樹脂成形体103’と、リフレクター103とを備え、Ni/Agめっき104が形成された金属配線105及び絶縁性樹脂成形体103’とリフレクター103とから形成された光半導体素子搭載領域(凹部)200を有している。この凹部200の底面は、Ni/Agめっき104が形成された金属配線105及び絶縁性樹脂成形体103’から構成され、凹部200の壁面はリフレクター103から構成される。リフレクター103及び絶縁性樹脂成形体103’が、上述の本実施形態に係る光反射用熱硬化性樹脂組成物の硬化物からなる成形体である。 FIG. 1 is a perspective view showing an embodiment of a substrate for mounting an optical semiconductor element. The substrate 110 for mounting an optical semiconductor element has a metal wiring 105 (first connection terminal and second connection terminal) formed with Ni / Ag plating 104 and a metal wiring 105 (first connection terminal and second connection). The metal wiring 105 provided with the insulating resin molded body 103'provided between the terminals) and the reflector 103, and formed with Ni / Ag plating 104, and the insulating resin molded body 103'and the reflector 103. It has an optical semiconductor element mounting region (recess) 200. The bottom surface of the recess 200 is composed of a metal wiring 105 on which Ni / Ag plating 104 is formed and an insulating resin molded body 103', and the wall surface of the recess 200 is composed of a reflector 103. The reflector 103 and the insulating resin molded body 103'are a molded body made of a cured product of the thermosetting resin composition for light reflection according to the above-described embodiment.
 光半導体素子搭載用基板の製造方法は特に限定されないが、例えば、光反射用熱硬化性樹脂組成物を用いたトランスファー成形により製造することができる。図2は、光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。光半導体素子搭載用基板は、例えば、金属箔から打ち抜き、エッチング等の公知の方法により金属配線105を形成し、電気めっきによりNi/Agめっき104を施す工程(図2の(a))、次いで、該金属配線105を所定形状の金型151に配置し、金型151の樹脂注入口150から光反射用熱硬化性樹脂組成物を注入し、所定の条件でトランスファー成形する工程(図2の(b))、そして、金型151を外す工程(図2の(c))を経て製造することができる。このようにして、光半導体素子搭載用基板には、光反射用熱硬化性樹脂組成物の硬化物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200が形成される。また、凹部200の底面は、第1の接続端子となる金属配線105及び第2の接続端子となる金属配線105と、これらの間に設けられ光反射用熱硬化性樹脂組成物の硬化物からなる絶縁性樹脂成形体103’とから構成される。なお、上記トランスファー成形の条件としては、金型温度170~200℃、より好ましくは170~190℃、成形圧力0.5~20MPa、より好ましくは2~8MPaで、60~120秒間、アフターキュア温度120℃~180℃で1~3時間が好ましい。 The method for manufacturing the substrate for mounting the optical semiconductor element is not particularly limited, but it can be manufactured, for example, by transfer molding using a thermosetting resin composition for light reflection. FIG. 2 is a schematic view showing an embodiment of a process of manufacturing a substrate for mounting an optical semiconductor element. In the substrate for mounting an optical semiconductor element, for example, a step of forming a metal wiring 105 by a known method such as punching from a metal foil and etching, and applying Ni / Ag plating 104 by electroplating ((a) in FIG. 2), and then A step of arranging the metal wiring 105 in a mold 151 having a predetermined shape, injecting a heat-curable resin composition for light reflection from a resin injection port 150 of the mold 151, and performing transfer molding under predetermined conditions (FIG. 2). It can be manufactured through the steps (b)) and the step of removing the mold 151 ((c) of FIG. 2). In this way, the optical semiconductor element mounting region (recess) 200 formed on the optical semiconductor element mounting substrate is surrounded by a reflector 103 made of a cured product of the thermosetting resin composition for light reflection. .. Further, the bottom surface of the recess 200 is made of a metal wiring 105 as a first connection terminal, a metal wiring 105 as a second connection terminal, and a cured product of a thermosetting resin composition for light reflection provided between them. It is composed of an insulating resin molded body 103'. The conditions for the transfer molding are a mold temperature of 170 to 200 ° C., more preferably 170 to 190 ° C., a molding pressure of 0.5 to 20 MPa, more preferably 2 to 8 MPa, and an aftercure temperature for 60 to 120 seconds. It is preferably 120 ° C. to 180 ° C. for 1 to 3 hours.
[光半導体装置]
 本実施形態に係る光半導体装置は、上記光半導体素子搭載用基板と、当該光半導体素子搭載用基板に搭載された光半導体素子とを有する。より具体的な例として、上記光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部内に設けられた光半導体素子と、凹部を充填して光半導体素子を封止する蛍光体含有封止樹脂部とを備える光半導体装置が挙げられる。
[Optical semiconductor device]
The optical semiconductor device according to the present embodiment includes the optical semiconductor element mounting substrate and the optical semiconductor element mounted on the optical semiconductor element mounting substrate. As a more specific example, the substrate for mounting the optical semiconductor element, the optical semiconductor element provided in the recess of the substrate for mounting the optical semiconductor element, and the phosphor-containing seal that fills the recess and seals the optical semiconductor element. An optical semiconductor device including a stop resin portion can be mentioned.
 図3は、光半導体素子搭載用基板110に光半導体素子100を搭載した状態の一実施形態を示す斜視図である。図3に示すように、光半導体素子100は、光半導体素子搭載用基板110の光半導体素子搭載領域(凹部)200の所定位置に搭載され、金属配線105とボンディングワイヤ102により電気的に接続される。図4及び図5は、光半導体装置の一実施形態を示す模式断面図である。図4及び図5に示すように、光半導体装置は、光半導体素子搭載用基板110と、光半導体素子搭載用基板110の凹部200内の所定位置に設けられた光半導体素子100と、凹部200を充填して光半導体素子を封止する蛍光体106を含む透明な封止樹脂101からなる封止樹脂部とを備えており、光半導体素子100とNi/Agめっき104が形成された金属配線105とがボンディングワイヤ102又ははんだバンプ107により電気的に接続されている。 FIG. 3 is a perspective view showing an embodiment in which the optical semiconductor element 100 is mounted on the optical semiconductor element mounting substrate 110. As shown in FIG. 3, the optical semiconductor element 100 is mounted at a predetermined position in the optical semiconductor element mounting region (recess) 200 of the optical semiconductor element mounting substrate 110, and is electrically connected to the metal wiring 105 by the bonding wire 102. To. 4 and 5 are schematic cross-sectional views showing an embodiment of an optical semiconductor device. As shown in FIGS. 4 and 5, the optical semiconductor device includes an optical semiconductor element mounting substrate 110, an optical semiconductor element 100 provided at a predetermined position in the recess 200 of the optical semiconductor element mounting substrate 110, and the recess 200. The metal wiring is provided with a sealing resin portion made of a transparent sealing resin 101 containing a phosphor 106 for sealing the optical semiconductor element, and the optical semiconductor element 100 and the Ni / Ag plating 104 are formed. The 105 is electrically connected to the bonding wire 102 or the solder bump 107.
 図6もまた、光半導体装置の一実施形態を示す模式断面図である。図6に示す光半導体装置では、リフレクター303が形成されたリード304上の所定位置にダイボンド材306を介してLED素子300が配置され、LED素子300とリード304とがボンディングワイヤ301により電気的に接続され、蛍光体305を含む透明な封止樹脂302によりLED素子300が封止されている。 FIG. 6 is also a schematic cross-sectional view showing an embodiment of an optical semiconductor device. In the optical semiconductor device shown in FIG. 6, the LED element 300 is arranged at a predetermined position on the lead 304 on which the reflector 303 is formed via the die bonding material 306, and the LED element 300 and the lead 304 are electrically connected by the bonding wire 301. The LED element 300 is sealed by the transparent sealing resin 302 which is connected and contains the phosphor 305.
 以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited thereto.
 以下、本発明を実施例により詳述するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[光反射用熱硬化性樹脂組成物の作製]
 実施例及び比較例の熱硬化性樹脂組成物を作製するために、以下の成分を準備した。
[Preparation of thermosetting resin composition for light reflection]
The following components were prepared in order to prepare the thermosetting resin compositions of Examples and Comparative Examples.
(エポキシ樹脂)
日産化学工業株式会社製の商品名「TEPIC-S」(トリスグリシジルイソシアヌレート、エポキシ当量:100)
(硬化剤)
式(2)のテトラカルボン酸二無水物(Rx:シクロヘキサン環、軟化点:40℃)
新日本理化株式会社製の商品名「リカシッドHH」(ヘキサヒドロ無水フタル酸、融点:35℃)
マナック株式会社製の商品名「ODPA」(4,4’-オキシジフタル酸無水物、融点:229℃)
(硬化促進剤)
日本化学工業株式会社製の商品名「PX-4PB」(テトラブチルホスホニウムテトラフェニルボラート)
(カップリング剤)
エポキシシラン化合物(3-グリシドキシプロピルトリメトキシシラン)
(Epoxy resin)
Product name "TEPIC-S" manufactured by Nissan Chemical Industries, Ltd. (Trisglycidyl isocyanurate, epoxy equivalent: 100)
(Hardener)
Tetracarboxylic dianhydride of formula (2) (Rx: cyclohexane ring, softening point: 40 ° C)
Product name "Ricacid HH" manufactured by New Japan Chemical Co., Ltd. (Hexahydrophthalic anhydride, melting point: 35 ° C)
Product name "ODPA" manufactured by Manac Inc. (4,4'-oxydiphthalic anhydride, melting point: 229 ° C)
(Curing accelerator)
Product name "PX-4PB" manufactured by Nippon Chemical Industrial Co., Ltd. (Tetrabutylphosphonium tetraphenylborate)
(Coupling agent)
Epoxysilane compound (3-glycidoxypropyltrimethoxysilane)
(離型剤)
日油株式会社製の商品名「ZNST」(ジンクステアレート)
株式会社サンエース製の商品名「SCI-ZNB」(ジンクベヘネート)
日東化成工業株式会社製の商品名「Al-St(102)」(アルミニウムステアレート)
(添加剤)
株式会社ADEKA製の商品名「アデカスタブ AO-60」(ヒンダードフェノール系酸化防止剤)
株式会社ADEKA製の商品名「アデカスタブ PEP-36A」(ホスファイト系酸化防止剤)
Gelest社製の商品名「DBL-C32」(シリコーン系ワックス分散剤)
(Release agent)
Product name "ZNST" manufactured by NOF CORPORATION (Zinc stearate)
Product name "SCI-ZNB" (Zinkbehenate) manufactured by San Ace Co., Ltd.
Product name "Al-St (102)" (aluminum stearate) manufactured by Nitto Kasei Kogyo Co., Ltd.
(Additive)
Product name "ADEKA STAB AO-60" manufactured by ADEKA Corporation (Hindered phenolic antioxidant)
Product name "ADEKA STAB PEP-36A" manufactured by ADEKA Corporation (phosphite-based antioxidant)
Product name "DBL-C32" manufactured by Gelest (silicone wax dispersant)
(無機中空粒子)
スリーエムジャパン株式会社製の商品名「iM30K」(中心粒径:18μm、シェル層の厚み:0.61μm、かさ密度:0.33g/cm、耐圧強度:186MPa)
(シリカ)
デンカ株式会社製の商品名「FP-950」(溶融シリカ)
株式会社アドマテックス製、商品名「SO-25R」(溶融シリカ)
富士シリシア化学株式会社製の商品名「サイロホービック702」(疎水性微粉末シリカ)
(白色顔料)
酸化チタン(中心粒径0.2μm)
(Inorganic hollow particles)
Product name "iM30K" manufactured by 3M Japan Ltd. (center particle size: 18 μm, shell layer thickness: 0.61 μm, bulk density: 0.33 g / cm 3 , pressure resistance strength: 186 MPa)
(silica)
Product name "FP-950" (fused silica) manufactured by Denka Corporation
Made by Admatex Co., Ltd., Product name "SO-25R" (molten silica)
Product name "Silo Hobic 702" manufactured by Fuji Silysia Chemical Ltd. (hydrophobic fine powder silica)
(White pigment)
Titanium oxide (center particle size 0.2 μm)
 表1又は表2に示す配合比(質量部)に従い、各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより40℃で15分間溶融混練して混練物を得た。混練物を冷却し、粉砕することによって、実施例及び比較例の熱硬化性樹脂組成物をそれぞれ作製した。 According to the compounding ratio (parts by mass) shown in Table 1 or Table 2, each component was compounded, sufficiently kneaded with a mixer, and then melt-kneaded at 40 ° C. for 15 minutes with a mixing roll to obtain a kneaded product. The thermosetting resin compositions of Examples and Comparative Examples were prepared by cooling and pulverizing the kneaded product.
[評価]
(スパイラルフロー)
 EMMI-1-66の規格に準じたスパイラルフロー測定用金型を用いて、熱硬化性樹脂組成物を成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒間の条件下でトランスファー成形した。トランスファー成形する際の熱硬化性樹脂組成物の流動距離(cm)を測定した。
[Evaluation]
(Spiral flow)
Using a spiral flow measurement mold conforming to the EMMI-1-66 standard, the thermosetting resin composition is transferred under the conditions of a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. did. The flow distance (cm) of the thermosetting resin composition during transfer molding was measured.
(光反射率)
 熱硬化性樹脂組成物を、成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒間の条件でトランスファー成形した後、150℃で2時間ポストキュアすることによって、厚み3.0mmの試験片を作製した。積分球型分光光度計V-750型(日本分光株式会社製)を用いて、波長460nmにおける試験片の光反射率を測定した。
(Light reflectance)
The thermosetting resin composition is transfer-molded under the conditions of a molding die temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then post-cured at 150 ° C. for 2 hours to test a thickness of 3.0 mm. Pieces were made. The light reflectance of the test piece at a wavelength of 460 nm was measured using an integrating sphere spectrophotometer V-750 (manufactured by JASCO Corporation).
(離型性)
 熱硬化性樹脂組成物を、せん断離型力測定用金型(図7を参照)に流し込み、成形した。成形条件は、成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒間とした。図7に示すように、せん断離型力測定用金型400は、上型410と下型416とから構成され、上型410は、樹脂注入口412と、直径20mm、厚さ2mmの円板状の成形品を成形するための凹部414とを備える。せん断離型力測定用金型400に、縦50mm×横35mm×厚さ0.4mmのクロムめっきステンレス板420を挿入し、ステンレス板420上に熱硬化性樹脂組成物を成形した後、直ちにステンレス板420を引き抜き、その際の最大引き抜き力をプッシュプルゲージ(株式会社今田製作所製、型名「SH」)を用いて測定した。
(Releasability)
The thermosetting resin composition was poured into a mold for measuring shear release force (see FIG. 7) and molded. The molding conditions were a molding mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. As shown in FIG. 7, the shear release force measuring die 400 is composed of an upper die 410 and a lower die 416, and the upper die 410 has a resin injection port 412 and a disk having a diameter of 20 mm and a thickness of 2 mm. It is provided with a recess 414 for molding a shaped molded product. A chrome-plated stainless steel plate 420 having a length of 50 mm, a width of 35 mm, and a thickness of 0.4 mm is inserted into a die 400 for measuring shear release force, and a thermosetting resin composition is formed on the stainless steel plate 420. The plate 420 was pulled out, and the maximum pulling force at that time was measured using a push-pull gauge (manufactured by Imada Seisakusho Co., Ltd., model name "SH").
 上記最大引き抜き力を1ショット目のせん断離型力とし、同じステンレス板を用いて熱硬化性樹脂組成物の成形を繰り返し行い、せん断離型力を測定した。せん断離型力が0MPaとなったショット数を表1及び2に示す。 The maximum pull-out force was used as the shear release force of the first shot, and the thermosetting resin composition was repeatedly molded using the same stainless steel plate, and the shear release force was measured. Tables 1 and 2 show the number of shots at which the shear release force was 0 MPa.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び2より、実施例の光反射用熱硬化性樹脂組成物は、離型性及び耐熱性に優れることが確認できる。 From Tables 1 and 2, it can be confirmed that the thermosetting resin composition for light reflection of the examples is excellent in mold releasability and heat resistance.
 100…光半導体素子、101…封止樹脂、102…ボンディングワイヤ、103…リフレクター、103’…絶縁性樹脂成形体、104…Ni/Agめっき、105…金属配線、106…蛍光体、107…はんだバンプ、110…光半導体素子搭載用基板、150…樹脂注入口、151…金型、200…光半導体素子搭載領域、300…LED素子、301…ボンディングワイヤ、302…封止樹脂、303…リフレクター、304…リード、305…蛍光体、306…ダイボンド材、400…せん断離型力測定用金型、410…上型、412…樹脂注入口、414…凹部、416…下型、420…ステンレス板。 100 ... Optical semiconductor device, 101 ... Encapsulating resin, 102 ... Bonding wire, 103 ... Reflector, 103'... Insulating resin molded body, 104 ... Ni / Ag plating, 105 ... Metal wiring, 106 ... Phosphor, 107 ... Solder Bump, 110 ... Optical semiconductor device mounting substrate, 150 ... Resin injection port, 151 ... Mold, 200 ... Optical semiconductor device mounting area, 300 ... LED element, 301 ... Bonding wire, 302 ... Encapsulating resin, 303 ... Reflector, 304 ... lead, 305 ... phosphor, 306 ... die bonding material, 400 ... shear release force measuring mold, 410 ... upper mold, 412 ... resin injection port, 414 ... recess, 416 ... lower mold, 420 ... stainless plate.

Claims (9)

  1.  エポキシ樹脂、硬化剤、無機充填剤、白色顔料及び離型剤を含有し、
     前記離型剤が、亜鉛系金属石鹸とアルミニウム系金属石鹸とを含む、光反射用熱硬化性樹脂組成物。
    Contains epoxy resin, hardener, inorganic filler, white pigment and mold release agent,
    A thermosetting resin composition for light reflection, wherein the release agent contains a zinc-based metal soap and an aluminum-based metal soap.
  2.  前記亜鉛系金属石鹸が、亜鉛と炭素数が10以上の長鎖脂肪酸との金属塩を含む、請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the zinc-based metal soap contains a metal salt of zinc and a long-chain fatty acid having 10 or more carbon atoms.
  3.  前記長鎖脂肪酸の炭素数が、20以上である、請求項2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 2, wherein the long chain fatty acid has 20 or more carbon atoms.
  4.  前記硬化剤が、融点が180~400℃のテトラカルボン酸二無水物を含む、請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the curing agent contains a tetracarboxylic dianhydride having a melting point of 180 to 400 ° C.
  5.  前記無機充填剤が、中心粒径が1~25μmの無機中空粒子を含む、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 4, wherein the inorganic filler contains inorganic hollow particles having a central particle size of 1 to 25 μm.
  6.  請求項1~5のいずれか一項に記載の光反射用熱硬化性樹脂組成物の硬化物を備える、光半導体素子搭載用基板。 A substrate for mounting an optical semiconductor device, comprising a cured product of the thermosetting resin composition for light reflection according to any one of claims 1 to 5.
  7.  底面及び壁面から構成される凹部を有し、当該凹部の前記底面が光半導体素子の搭載部であり、
     前記凹部の前記壁面の少なくとも一部が、請求項1~5のいずれか一項に記載の光反射用熱硬化性樹脂組成物の硬化物からなる、光半導体素子搭載用基板。
    It has a recess composed of a bottom surface and a wall surface, and the bottom surface of the recess is a mounting portion for an optical semiconductor element.
    A substrate for mounting an optical semiconductor device, wherein at least a part of the wall surface of the recess is a cured product of the thermosetting resin composition for light reflection according to any one of claims 1 to 5.
  8.  基板と、当該基板上に設けられた第1の接続端子及び第2の接続端子とを備え、
     前記第1の接続端子と前記第2の接続端子との間に、請求項1~5のいずれか一項に記載の光反射用熱硬化性樹脂組成物の硬化物を有する、光半導体素子搭載用基板。
    A board and a first connection terminal and a second connection terminal provided on the board are provided.
    An optical semiconductor device having a cured product of the thermosetting resin composition for light reflection according to any one of claims 1 to 5 between the first connection terminal and the second connection terminal. Board for.
  9.  請求項6~8のいずれか一項に記載の光半導体素子搭載用基板と、当該光半導体素子搭載用基板に搭載された光半導体素子と、を有する、光半導体装置。 An optical semiconductor device comprising the substrate for mounting an optical semiconductor element according to any one of claims 6 to 8 and the optical semiconductor element mounted on the substrate for mounting the optical semiconductor element.
PCT/JP2019/033769 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device WO2021038766A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021541878A JP7294429B2 (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
KR1020227008236A KR20220055471A (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
PCT/JP2019/033769 WO2021038766A1 (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
CN201980098561.0A CN114127185A (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033769 WO2021038766A1 (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2021038766A1 true WO2021038766A1 (en) 2021-03-04

Family

ID=74683422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033769 WO2021038766A1 (en) 2019-08-28 2019-08-28 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Country Status (4)

Country Link
JP (1) JP7294429B2 (en)
KR (1) KR20220055471A (en)
CN (1) CN114127185A (en)
WO (1) WO2021038766A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041472A1 (en) * 2007-09-25 2009-04-02 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, substrate made therefrom for photosemiconductor element mounting, process for producing the same, and photosemiconductor device
JP2015152643A (en) * 2014-02-10 2015-08-24 パナソニックIpマネジメント株式会社 Thermosetting resin composition for light reflector, light reflector and light-emitting device
WO2017131152A1 (en) * 2016-01-27 2017-08-03 クラスターテクノロジー株式会社 Curable epoxy resin composition for white reflectors, cured product thereof, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2019026710A (en) * 2017-07-28 2019-02-21 日立化成株式会社 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate and method for producing the same, and optical semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060707B2 (en) 2004-11-10 2012-10-31 日立化成工業株式会社 Thermosetting resin composition for light reflection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041472A1 (en) * 2007-09-25 2009-04-02 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, substrate made therefrom for photosemiconductor element mounting, process for producing the same, and photosemiconductor device
JP2015152643A (en) * 2014-02-10 2015-08-24 パナソニックIpマネジメント株式会社 Thermosetting resin composition for light reflector, light reflector and light-emitting device
WO2017131152A1 (en) * 2016-01-27 2017-08-03 クラスターテクノロジー株式会社 Curable epoxy resin composition for white reflectors, cured product thereof, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2019026710A (en) * 2017-07-28 2019-02-21 日立化成株式会社 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate and method for producing the same, and optical semiconductor device

Also Published As

Publication number Publication date
JP7294429B2 (en) 2023-06-20
CN114127185A (en) 2022-03-01
JPWO2021038766A1 (en) 2021-03-04
KR20220055471A (en) 2022-05-03

Similar Documents

Publication Publication Date Title
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP4586925B2 (en) Thermosetting resin composition, epoxy resin molding material, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device
JP5936804B2 (en) Thermosetting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device
JP2022075700A (en) Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate and method for producing the same, and optical semiconductor device
JP2017103470A (en) Board for mounting optical semiconductor element and manufacturing method therefor, and optical semiconductor device
JP7294429B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
JP7567317B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
WO2021038771A1 (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
WO2023281922A1 (en) Heat-curable resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
JP6988234B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and its manufacturing method, and optical semiconductor device
JP2015017271A (en) Thermosetting resin composition, substrate for mounting optical semiconductor element and method for manufacturing the same, and optical semiconductor device
JP2013163777A (en) Epoxy resin composition for led reflector, led reflector using the resin composition, surface-mounting led light-emitting device, and led luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008236

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19943017

Country of ref document: EP

Kind code of ref document: A1