[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021036842A1 - 同时冷暖多联机空调系统的控制方法 - Google Patents

同时冷暖多联机空调系统的控制方法 Download PDF

Info

Publication number
WO2021036842A1
WO2021036842A1 PCT/CN2020/109557 CN2020109557W WO2021036842A1 WO 2021036842 A1 WO2021036842 A1 WO 2021036842A1 CN 2020109557 W CN2020109557 W CN 2020109557W WO 2021036842 A1 WO2021036842 A1 WO 2021036842A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
valve box
effect
heating
cooling
Prior art date
Application number
PCT/CN2020/109557
Other languages
English (en)
French (fr)
Inventor
禚百田
时斌
程绍江
张锐钢
王军
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US17/637,260 priority Critical patent/US12104817B2/en
Priority to EP20857030.9A priority patent/EP4023954A4/en
Publication of WO2021036842A1 publication Critical patent/WO2021036842A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a control method of a simultaneous cooling and heating multi-line air conditioning system.
  • the outdoor unit is connected to multiple valve boxes, and each valve box is connected to multiple indoor units at the same time.
  • the valve box is used to control the flow of refrigerant in the air conditioning system.
  • Each valve box generally has a high-pressure valve and a low-pressure valve. These two valves switch between different switching states according to the working mode of the indoor unit connected to the valve box to achieve different The flow of refrigerant.
  • Multiple indoor units connected to the same valve box can only operate in the same operating mode, and multiple indoor units connected to different valve boxes can operate in different operating modes due to different refrigerant flow directions, thereby realizing the whole
  • some indoor units can be cooled, and some indoor units can be heated.
  • electronic expansion valves are generally used for high-pressure and low-pressure valves.
  • the indoor unit is cooling, the high-pressure valve in the corresponding valve box is closed, and the low-pressure valve is fully opened.
  • the indoor mechanism is hot, the high-pressure valve in the corresponding valve box is fully opened and the low-pressure valve is closed.
  • the multi-line air conditioning system has both cooling and heating indoor units, the number and capacity of the indoor units connected to each valve box are not exactly the same. Therefore, if the opening of the high-pressure valve or the low-pressure valve in the valve box is always fixed, This will result in uneven heating and cooling between different indoor units when the air conditioning system is operating, which will seriously affect the user experience.
  • the simultaneous cooling and heating multi-line air-conditioning system includes an outdoor unit, a plurality of valve boxes, and a plurality of indoor units.
  • the outdoor unit and the plurality of indoor units are connected by the plurality of valve boxes, and each valve box At least one indoor unit is connected, and the control method includes:
  • the opening degree of the valve box is selectively adjusted.
  • the step of "selectively adjusting the opening of the valve box based on the deviation of the total cooling effect and the deviation of the total heating effect" further includes :
  • the opening degree of the valve box is selectively adjusted.
  • the step of "determining the system correction value of each valve box separately based on the total cooling effect deviation and the total heating effect deviation" is further include:
  • the first preset threshold is less than the second preset threshold
  • the operation mode of the outdoor unit includes a cooling mode and a heating mode.
  • control method of the simultaneous cooling and heating multi-connected air conditioning system further includes:
  • the step of "selectively adjusting the opening degree of the valve box based on the deviation of the total cooling effect and the deviation of the total heating effect" further includes:
  • the opening degree of the valve box is selectively adjusted.
  • the opening degree of the valve box is selectively adjusted.
  • the step of "determining the system correction value of each valve box separately based on the total cooling effect deviation and the total heating effect deviation" is further include:
  • the first preset threshold is less than the second preset threshold
  • the operation mode of the outdoor unit includes a cooling mode and a heating mode.
  • the step of "determining the local correction value of each valve box separately based on the deviation of the valve box effect" further includes:
  • the working state of the valve box includes a cooling state and a heating state.
  • the step of "calculating the final correction value of each valve box based on the system correction value and the local correction value" further includes:
  • the sum of the weighted value of the system correction value and the weighted value of the local correction value is calculated as the final correction value.
  • control method of the simultaneous cooling and heating multi-line air conditioning system when adjusting the opening degree of the valve box, the control method further includes:
  • each of the valve boxes includes a high-pressure valve and a low-pressure valve
  • the step of "adjusting the opening of the valve box" further includes:
  • the simultaneous cooling and heating multi-line air-conditioning system includes an outdoor unit, a plurality of valve boxes and a plurality of indoor units.
  • Valve box connection each valve box is connected with at least one indoor unit
  • the control method includes: calculating the cooling temperature effect deviation or heating temperature of each indoor unit based on the indoor ambient temperature and the set temperature of the environment where each indoor unit is located Effect deviation; based on the number of horses of all indoor units and the corresponding cooling temperature deviation or heating temperature deviation, calculate the total cooling effect deviation and the total heating effect deviation of the multi-line air conditioning system; based on the total cooling effect deviation and the total heating effect Deviation, selectively adjust the opening of the valve box.
  • the system correction value of each valve box is determined based on the total cooling effect deviation and the total heating effect deviation of the air conditioning system, and the opening of each valve box is dynamically adjusted in real time based on the system correction value. Therefore, the control method of the present invention can ensure the balanced distribution of the system refrigerant volume, to ensure the balanced operation effects of the indoor units, and avoid the uneven heating and cooling of the multi-line air conditioning system during operation.
  • the local correction value of each valve box is also determined based on the effect deviation of the valve box, and then the final value of each valve box is calculated based on the system correction value and the local correction value.
  • the control method can further improve the control accuracy of the valve box, control the opening degree of the valve box more accurately, and ensure a balanced operation effect of the indoor unit.
  • this control method can also ensure the most basic operating effect of each indoor unit and prevent the valve box opening from being too small. There is an abnormal situation such as no refrigerant flow.
  • Figure 1 is a connection diagram of a simultaneous cooling and heating multi-connected air conditioning system in the prior art
  • FIG. 2 is a flow chart of the control method of the simultaneous cooling and heating multi-connected air conditioning system in the first embodiment of the present invention
  • FIG. 3 is a flowchart of a control method of a simultaneous cooling and heating multi-connected air conditioning system in a second embodiment of the present invention
  • Fig. 4 is a logic diagram of a control method of a simultaneous cooling and heating multi-unit air conditioning system in a possible embodiment of the invention.
  • FIG. 1 is a connection diagram of a simultaneous cooling and heating multi-line air conditioning system in the prior art.
  • the outdoor unit of the simultaneous cooling and heating multi-line air-conditioning system is connected to multiple indoor units through multiple valve boxes.
  • valve box 1 there are three valve boxes, namely valve box 1-valve box 3, and 9 indoor units, namely indoor unit 1-indoor unit 9 in the figure.
  • the valve box 1 is connected with the indoor unit 1-3
  • the valve box 2 is connected with the indoor unit 4-5
  • the valve box 3 is connected with the indoor unit 6-9.
  • Each valve box is usually provided with only one high-pressure valve and one low-pressure valve (not shown in the figure), and the high-pressure valve and the low-pressure valve can be electronically controlled valves such as solenoid valves or electronic expansion valves.
  • the first end of the high-pressure valve is connected to the high-pressure side of the compressor in the outdoor unit through a high-pressure gas pipe
  • the first end of the low-pressure valve is connected to the low-pressure side of the compressor through a low-pressure gas pipe
  • the second end of the high-pressure valve is connected to the second end of the low-pressure valve. It merges into an indoor side air pipe and is connected to the heat exchanger of the indoor unit through the indoor side air pipe.
  • the cooling or heating operation of the indoor unit can be realized by switching the opening and closing of the high-pressure valve and the low-pressure valve in the valve box.
  • multiple indoor units connected to the same valve box can only operate in the same operating mode, but indoor units connected to different valve boxes can operate in different operating modes.
  • the indoor unit 1 when the indoor unit 1 is operating in the cooling mode, the indoor unit 2 and the indoor unit 3 can only operate in the cooling mode or in the standby state; and when the indoor unit 1 is operating in the cooling mode, the indoor unit 4 and the indoor unit 6 can either It operates in cooling mode and can also operate in heating mode.
  • FIG. 2 is a flow chart of the control method of the simultaneous cooling and heating multi-unit air conditioning system in the first embodiment of the present invention.
  • control method of the simultaneous cooling and heating multi-connected air conditioning system of the present application mainly includes the following steps:
  • S103 Selectively adjust the opening degree of the valve box based on the deviation of the total cooling effect and the deviation of the total heating effect.
  • the cooling temperature effect deviation and the heating temperature effect deviation refer to the deviation amount of the indoor ambient temperature of the room where the indoor unit is located from the set temperature in this application.
  • the cooling temperature effect deviation refers to the deviation between the indoor ambient temperature in the room where the indoor unit operating in the cooling mode is located and the set temperature;
  • the heating temperature effect deviation refers to the room where the indoor unit operating in the heating mode is located
  • the deviation between the set temperature and the indoor ambient temperature More preferably, the indoor ambient temperature of the room where the running indoor unit is located can be collected through the temperature sensor set on the indoor unit, and the set temperature can be collected through the setting parameter information of the indoor unit, and then calculated separately based on the following formulas (1) and (2)
  • the cooling temperature effect deviation or heating temperature effect deviation of each running indoor unit can be collected through the temperature sensor set on the indoor unit, and the set temperature can be collected through the setting parameter information of the indoor unit, and then calculated separately based on the following formulas (1) and (2)
  • the cooling temperature effect deviation or heating temperature effect deviation of each running indoor unit :
  • CoolIUdiff represents the deviation of the cooling temperature effect
  • HeaTIUdiff represents the deviation of the heating temperature effect
  • setTemp represents the set temperature of the room
  • curTemp represents the current indoor ambient temperature of the room.
  • any calculation method that can reflect the offset between the current indoor ambient temperature and the set temperature can be replaced.
  • the indoor ambient temperature and set temperature of all indoor units can also be collected, and the cooling temperature effect deviation or heating temperature effect deviation of all indoor units can be calculated. During the calculation process , Can make the cooling temperature effect deviation or heating temperature effect deviation of the indoor unit not in operation directly zero.
  • the total cooling effect deviation in this application refers to the sum of the cooling capacity corresponding to the cooling temperature effect deviations of all indoor units operating in the cooling mode relative to the total cooling capacity of all indoor units operating in the cooling mode.
  • the total heating effect deviation in this application refers to the total heating capacity corresponding to the heating temperature effect deviations of all indoor units operating in heating mode relative to all operating in heating mode.
  • the offset of the total heating capacity of the indoor unit specifically, the following formulas (3) and (4) can be used to calculate the total cooling effect deviation and the total heating effect deviation:
  • CoolDiff represents the total cooling effect deviation
  • HeaTDiff represents the total heating effect deviation
  • CoolIUdiff represents the cooling temperature effect deviation
  • HeaTIUdiff represents the heating temperature effect deviation
  • HP represents the deviation from the cooling temperature effect or heating The capacity of the indoor unit corresponding to the temperature effect deviation
  • CoolsumHP represents the sum of the capacity of all indoor units operating in cooling mode
  • HeatsumHP represents the sum of the capacity of all indoor units operating in heating mode.
  • adjusting the opening degree of the valve box refers to adjusting the opening degree of the high-pressure valve or the low-pressure valve in the open state in the valve box in this application.
  • adjusting the opening of the valve box means adjusting the opening of the valve in the open state. For example, if multiple indoor units connected to the valve box are operating in the cooling mode, then the working state of the valve box is in the cooling state.
  • the high-pressure valve in the valve box is usually closed and the low-pressure valve is open; on the contrary, if the valve box is connected Multiple indoor units are operating in heating mode, then the working state of the valve box is heating state, and the high-pressure valve in the valve box is usually opened and the low-pressure valve is closed.
  • step S103 may further include: based on the total cooling effect deviation and the total heating effect deviation, respectively determining the system correction value of each valve box; based on the system correction value, selectively adjusting the valve box Opening. Specifically, first calculate the first difference between the total cooling effect deviation and the total heating effect deviation as the overall deviation of the air conditioning system; then determine the relationship between the first difference and the first preset threshold and the second preset threshold; When a difference is less than the first preset threshold or greater than the second preset threshold, the system correction value of each valve box is determined based on the corresponding relationship between the operation mode of the outdoor unit and the system correction value; based on the system correction value, the valve is adjusted The opening of the box; when the first difference is greater than the first preset threshold and less than the second preset threshold, the current opening of the valve box is maintained.
  • the first preset threshold is less than the second preset threshold
  • the operation mode of the outdoor unit includes a cooling mode and a heating mode.
  • the system correction value is in the form of the opening percentage in this application, so it can be the opening value.
  • the first preset threshold and the second preset threshold can be -10% and 10% (both can be adjusted based on actual conditions), and then use the following formula (5) to calculate the overall deviation of the air conditioning system:
  • SysDiff CoolDiff-HeatDiff (5)
  • SysDiff represents the overall deviation of the air conditioning system
  • CoolDiff represents the total cooling effect deviation
  • HeaTDiff represents the total heating effect deviation
  • the overall deviation can also be calculated using a calculation method such as the ratio of the two.
  • the adjustment of this calculation method does not deviate from the principle of the present application.
  • the overall deviation SysDiff can be compared with two preset thresholds of -10% and 10%; when -10% ⁇ SysDiff ⁇ 10%, it is proved that the overall deviation of the air conditioning system is within a reasonable range , The cooling and heating effects between different indoor units are more balanced. At this time, there is no need to adjust the opening of the valve box, just control the valve box to maintain the current opening, that is, the determined system correction value of each valve box is zero. When SysDiff ⁇ -10% or SysDiff>10%, it proves that the deviation of the air-conditioning system is relatively large at this time, and the opening degree of the valve box needs to be adjusted.
  • the heating effect in the multi-connected air conditioning system is worse than the cooling effect at this time. It is necessary to reduce the opening of the low-pressure valve in the valve box in the cooling state, and it will be in heating.
  • the opening degree of the high-pressure valve in the valve box of the state is increased to adjust the refrigerant flow rate in order to balance the cooling and heating effects of the multi-line air conditioning system.
  • the corresponding relationship between the outdoor unit's operating mode and the overall deviation and the system correction value can be used to determine the system correction value, that is, to determine the size of the adjustment opening.
  • the operation mode of the outdoor unit includes a cooling mode and a heating mode.
  • the heat exchanger in the outdoor unit When the heat exchanger in the outdoor unit is used as a condenser, it is the cooling mode, and when the heat exchanger in the outdoor unit is used as an evaporator, it is the heating mode.
  • SysCoolFixVal and SysHeatFixVal represent the system correction values of the valve box in the cooling state and the heating state respectively.
  • the specific value of the system correction value can be determined based on experiment or experience. For example, based on the operating modes of different outdoor units and the overall deviation SysDiff, multiple valve box opening adjustment tests are performed, and the adjustment values of the valve boxes in the cooling state and the heating state are recorded respectively, and the overall adjustment of the multi-line air-conditioning system is calculated. Deviation, when the value of the overall deviation is between the first preset threshold and the second preset threshold, record the adjustment value of each valve box in the cooling state and heating state in this test as the outdoor unit operating mode and The system correction value corresponding to the overall deviation.
  • the opening degree of the valve box is adjusted based on the aforementioned adjustment ratio. Among them, the specific value of the system correction value can also be determined based on experiment or experience, and will not be repeated here.
  • the control method further includes: determining whether the adjusted opening of the valve box is less than the minimum opening limit; if so, adjusting the opening of the valve box to the minimum opening Degree limit; if not, adjust the opening of the valve box according to the system correction value.
  • the minimum opening limit can be set manually or determined based on experiments.
  • the system correction value of each valve box is determined based on the total cooling effect deviation and the total heating effect deviation of the air conditioning system, and the opening of each valve box is dynamically adjusted in real time based on the system correction value. Therefore, the control method of the present invention can ensure the balanced distribution of the system refrigerant volume, to ensure the balanced operation effects of the indoor units, and avoid the uneven heating and cooling of the multi-line air conditioning system during operation.
  • FIG. 3 is a flow chart of the control method of the simultaneous cooling and heating multi-unit air conditioning system in the second embodiment of the present invention.
  • control method of the simultaneous cooling and heating multi-connected air conditioning system of the present application mainly includes the following steps:
  • S201 Calculate the cooling temperature effect deviation or heating temperature effect deviation of each indoor unit based on the indoor ambient temperature and the set temperature of the environment where each indoor unit is located;
  • S203 Calculate the valve box effect deviation of each valve box based on the number of horses of all indoor units connected to the same valve box and the corresponding cooling temperature deviation or heating temperature deviation;
  • S204 Selectively adjust the opening degree of the valve box based on the deviation of the total refrigeration effect, the deviation of the total heating effect, and the deviation of the valve box effect.
  • Embodiment 1 The main difference between this embodiment and Embodiment 1 is that when adjusting the opening of the valve box, the valve box effect deviation of each valve box is introduced, and the valve box effect deviation is compared with the total cooling effect deviation and the total heating effect. The deviation is used as a judgment parameter to selectively adjust the opening of the valve box.
  • steps S201 and S202 in this embodiment is similar to the implementation process of steps S101 and S102 in Embodiment 1, so they will not be repeated in this embodiment.
  • This embodiment mainly focuses on the differences from Embodiment 1.
  • the valve box effect deviation in this application refers to the sum of the cooling/heating capacity corresponding to the cooling/heating temperature effect deviations of all indoor units connected to the same valve box relative to that of the same valve box.
  • the deviation of the total cooling/heating capacity of all indoor units connected to the box specifically, the following formulas (6) and (7) can be used to calculate the valve box effect deviation of the valve box in the cooling/heating state:
  • CoolBSdiff represents the valve box effect deviation of the valve box in the cooling state
  • HeaTBSdiff represents the valve box effect deviation of the valve box in the heating state
  • CoolIUdiff represents the cooling temperature effect deviation
  • HeaTIUdiff represents the heating Temperature effect deviation
  • HP represents the capacity horses of the indoor unit corresponding to the cooling temperature effect deviation or heating temperature effect deviation
  • CoolBSsumHP represents the sum of the capacity horses of all running indoor units connected to the same valve box in the cooling state
  • HeatBSsumHP represents the sum of the capacity horses of all running indoor units connected to the same valve box in the heating state.
  • step S204 may further include: based on the total refrigeration effect deviation and the total heating effect deviation, respectively determining the system correction value of each valve box; based on the valve box effect deviation, respectively determining each valve box Based on the system correction value and the local correction value, calculate the final correction value of each valve box; based on the final correction value, selectively adjust the opening of the valve box.
  • the steps of calculating the system correction value of each valve box are the same as or similar to the embodiment 1, and will not be repeated here.
  • the step of calculating the local correction value of each valve box is specifically: calculating the second difference between the maximum value of the valve box effect deviation and the minimum value of the valve box effect deviation in all valve boxes in the same working state as the The partial deviation of the valve box in the working state; determine the relationship between the partial deviation and the third preset threshold; when the local deviation is greater than the third preset threshold, based on the valve box effect deviation of each valve box in the same working state and the same The number of valve boxes in working state, calculate the average effect deviation of all valve boxes in the same working state; compare the size of the valve box effect deviation of each valve box in the same working state with the corresponding average effect deviation; based on By comparing the results, respectively determine the local correction value of each valve box in the same working state; when the local deviation is less than the third preset threshold, the valve box is controlled to maintain the current opening degree.
  • the working state of the valve box includes a cooling state and a heating state.
  • PartCoolDiff CoolMaxBSdiff-CoolMinBSdiff (8)
  • PartCoolDiff represents the partial deviation of the valve box in the cooling state
  • CoolMaxBSdiff and CoolMinBSdiff represent the maximum and minimum value of the valve box effect deviation in all valve boxes in the cooling state, respectively.
  • the partial deviation PartCoolDiff can be compared with 5%; when PartCoolDiff ⁇ 5%, it is proved that the partial deviation is within a reasonable range, and the cooling effect of the indoor unit running in each cooling mode is relatively balanced, and no adjustment is required at this time
  • the valve box can be controlled to maintain the current opening degree, that is, the determined local correction value of each valve box is zero.
  • PartCoolDiff>5% it proves that the cooling effect deviation between the indoor units operating in each cooling mode is relatively large at this time, and the opening degree of the valve box in the cooling state needs to be adjusted.
  • PartCoolAVG represents the average effect deviation
  • CoolBSdiff represents the valve box effect deviation of the valve box in the cooling state
  • M is the number of valve boxes in the cooling state.
  • PartCoolFixVal and PartHeatFixVal may be used to represent the partial correction values of the valve box in the cooling state and the heating state, respectively.
  • the specific value of the local correction value can be determined based on experiment or experience, and its determination method is similar to the above-mentioned system correction value, and will not be repeated here.
  • the specific numerical value of the above partial correction value is only used to explain the principle of the present invention, and is not intended to limit the protection scope of the present application. Those skilled in the art can adjust the numerical value so that the present application can meet more specific application scenarios.
  • the step of calculating the final correction value of each valve box may further include: calculating the weighted value of the system correction value and the weighted value of the local correction value The sum value of is used as the final correction value of each valve box. That is, the following formulas (10) and (11) are used to calculate the final correction values of the valve box in the cooling state and the valve box in the heating state:
  • CoolFixVal SysCoolFixVal ⁇ CoolRate+PartCoolFixVal ⁇ (1-CoolRate) (10)
  • CoolFixVal represents the final correction value of the valve box in the cooling state
  • HeatFixVal represents the final correction value of the valve box in the heating state
  • SysCoolFixVal and SysHeatFixVal represent the cooling state and heating state, respectively
  • PartCoolFixVal and PartHeatFixVal represent the local correction value of the valve box in the cooling state and the heating state, respectively
  • CoolRate and HeatRate represent the difference between the system correction value and the local correction value of the valve box in the cooling and heating state, respectively
  • the opening degree of the valve box is adjusted based on the final correction value.
  • the control method further includes: determining whether the adjusted opening of the valve box is less than the minimum opening limit; if so, adjusting the opening of the valve box to the minimum opening Degree limit; if not, adjust the opening of the valve box according to the final correction value.
  • the minimum opening limit can be set manually or determined based on experiments.
  • the local correction value of each valve box is also determined based on the effect deviation of the valve box, and then the final correction value of each valve box is calculated based on the system correction value and the local correction value,
  • This control method can further improve the control accuracy of the valve box, and control the opening degree of the valve box more accurately.
  • it can also further ensure that the connection with the same valve box The balance of cooling/heating effects among multiple indoor units.
  • 4 is a logic diagram of the control method of the air conditioning system of the simultaneous cooling and heating multi-line air conditioning system in a possible embodiment of the present invention.
  • the aforementioned simultaneous cooling and heating multi-line air conditioning system also includes some other well-known structures, such as processors, controllers, memories, etc., where the memories include, but are not limited to, random access memory, flash memory, read-only memory, and programmable memory. Read memory, volatile memory, non-volatile memory, serial memory, parallel memory or registers, etc. Processors include but are not limited to CPLD/FPGA, DSP, ARM processor, MIPS processor, etc. In order to unnecessarily obscure the embodiments of the present disclosure, these well-known structures are not shown in the drawings.
  • Each control method embodiment of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • the present invention can be implemented as a device or device program (for example, a PC program and a PC program product) for executing part or all of the methods described herein.
  • a program for realizing the present invention may be stored on a PC-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空气调节技术领域,具体涉及一种同时冷暖多联机空调系统的控制方法。本发明旨在解决现有同时冷暖多联机空调系统在运行时容易出现冷热不均的问题。为此目的,本发明的控制方法包括:基于每个室内机所处环境的室内环境温度和设定温度,计算每个室内机的制冷温度效果偏差或制热温度效果偏差;基于所有的室内机的匹数和对应的制冷温度偏差或制热温度偏差,计算多联机空调系统的总制冷效果偏差和总制热效果偏差;基于总制冷效果偏差和总制热效果偏差,选择性地调整阀盒的开度。本发明的控制方法能够确保系统冷媒量的均衡分配,来保证各室内机的运行效果均衡,避免多联机空调系统在运行时冷热不均的情况出现。

Description

同时冷暖多联机空调系统的控制方法 技术领域
本发明涉及空气调节技术领域,具体涉及一种同时冷暖多联机空调系统的控制方法。
背景技术
在同时冷暖多联机空调系统中,室外机连接有多个阀盒,每个阀盒同时连接多台室内机。阀盒用来控制空调系统内的冷媒流向,每个阀盒中一般有一个高压阀和低压阀,这两个阀根据该阀盒连接的室内机的工作模式切换不同的开关状态,从而实现不同的冷媒流向。与同一阀盒连接的多个室内机只能以相同的运行模式运行,与不同阀盒连接的多个室内机之间由于可以有不同的冷媒流向而能够以不同的运行模式运行,进而实现整个空调系统中有些室内机可以制冷,有些室内机可以制热。
为了更加精准地控制流量和降低冷媒流动产生的噪音,高压阀和低压阀一般使用电子膨胀阀。当室内机制冷时,对应的阀盒内高压阀关闭,低压阀全开。室内机制热时,对应的阀盒内高压阀全开,低压阀关闭。在多联机空调系统同时存在制冷和制热室内机时,由于每个阀盒连接的室内机的个数和容量均不完全相同,因此如果阀盒内的高压阀或低压阀开度一直固定,则会导致空调系统运转时不同室内机之间冷热不均的情况出现,严重影响用户的使用体验。
相应地,本领域需要一种新的同时冷暖多联机空调系统的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有同时冷暖多联机空调系统在运行时容易出现冷热不均的问题,本发明提供了一种同时冷暖多联机空调系统的控制方法,该所述同时冷暖多联机空调系统包括室外机、多个阀盒和多个室内机,所述室外机与所述多个室内机之 间通过所述多个阀盒连接,每个所述阀盒连接有至少一个室内机,所述控制方法包括:
基于每个所述室内机所处环境的室内环境温度和设定温度,计算每个所述室内机的制冷温度效果偏差或制热温度效果偏差;
基于所有的所述室内机的匹数和对应的所述制冷温度偏差或所述制热温度偏差,计算所述多联机空调系统的总制冷效果偏差和总制热效果偏差;
基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值;
基于所述系统修正值,选择性地调整所述阀盒的开度。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值”的步骤进一步包括:
计算所述总制冷效果偏差与所述总制热效果偏差的第一差值;
判断所述第一差值与第一预设阈值和第二预设阈值的关系;
当所述第一差值小于所述第一预设阈值或大于所述第二预设阈值时,基于所述室外机的运行模式和所述第一差值与所述系统修正值的对应关系,确定每个所述阀盒的系统修正值;
其中,所述第一预设阈值小于所述第二预设阈值,所述室外机的运行模式包括制冷模式和制热模式。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,所述控制方法还包括:
基于与同一所述阀盒连接的所有所述室内机的匹数和对应的所述制冷温度偏差或所述制热温度偏差,计算每个所述阀盒的阀盒效果偏差;
“基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
基于所述总制冷效果偏差、所述总制热效果偏差以及所述阀盒效果偏差,选择性地调整所述阀盒的开度。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述总制冷效果偏差、所述总制热效果偏差以及所述阀盒效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值;
基于所述阀盒效果偏差,分别确定每个所述阀盒的局部修正值;
基于所述系统修正值和所述局部修正值,计算每个所述阀盒的最终修正值;
基于所述最终修正值,选择性地调整所述阀盒的开度。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值”的步骤进一步包括:
计算所述总制冷效果偏差与所述总制热效果偏差的第一差值;
判断所述第一差值与第一预设阈值和第二预设阈值的关系;
当所述第一差值小于所述第一预设阈值或大于所述第二预设阈值时,基于所述室外机的运行模式和所述第一差值与所述系统修正值的对应关系,确定每个所述阀盒的系统修正值;
其中,所述第一预设阈值小于所述第二预设阈值,所述室外机的运行模式包括制冷模式和制热模式。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述阀盒效果偏差,分别确定每个所述阀盒的局部修正值”的步骤进一步包括:
计算所有处于同一工作状态的阀盒中阀盒效果偏差的最大值与阀盒效果偏差的最小值之间的第二差值;
判断所述第二差值与第三预设阈值的关系;
当所述第二差值大于所述第三预设阈值时,基于处于同一工作状态的每个所述阀盒的阀盒效果偏差和处于同一工作状态的阀盒的个数,计算处于同一工作状态的所有阀盒的效果偏差平均值;
比较处于同一工作状态的每个阀盒的阀盒效果偏差与对应的所述效果偏差平均值的大小;
基于比较结果,分别确定处于同一工作状态的每个所述阀盒的局部修正值;
其中,所述阀盒的工作状态包括制冷状态和制热状态。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,“基于所述系统修正值和所述局部修正值,计算每个所述阀盒的最终修正值”的步骤进一步包括:
计算所述系统修正值的加权值与所述局部修正值的加权值的和值,作为所述最终修正值。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,在调整所述阀盒的开度时,所述控制方法还包括:
判断所述阀盒调整后的开度是否小于最小开度限值;
若是,则将所述阀盒的开度调整至所述最小开度限值。
在上述同时冷暖多联机空调系统的控制方法的优选技术方案中,每个所述阀盒包括高压阀和低压阀,“调整所述阀盒的开度”的步骤进一步包括:
调整所述阀盒中处于打开状态的高压阀或低压阀的开度。
本领域技术人员能够理解的是,在本发明的优选技术方案中,同时冷暖多联机空调系统包括室外机、多个阀盒和多个室内机,室外机与多个室内机之间通过多个阀盒连接,每个阀盒连接有至少一个室内机,控制方法包括:基于每个室内机所处环境的室内环境温度和设定温度,计算每个室内机的制冷温度效果偏差或制热温度效果偏差;基于所有的室内机的匹数和对应的制冷温度偏差或制热温度偏差,计算多联机空调系统的总制冷效果偏差和总制热效果偏差;基于总制冷效果偏差和总制热效果偏差,选择性地调整阀盒的开度。
通过在同时冷暖多联机空调系统的运行过程中,基于空调系统的总制冷效果偏差和总制热效果偏差确定每个阀盒的系统修正值,并 基于系统修正值动态实时调整各阀盒的开度,本发明的控制方法能够确保系统冷媒量的均衡分配,来保证各室内机的运行效果均衡,避免多联机空调系统在运行时冷热不均的情况出现。
进一步地,通过在确定每个阀盒的系统修正值的同时,还基于阀盒的效果偏差确定每个阀盒的局部修正值,然后基于系统修正值与局部修正值计算每个阀盒的最终修正值,本控制方法还能够进一步提高阀盒的控制精度,对阀盒的开度控制更加精准,保证室内机的运行效果均衡。
进一步地,通过在调整阀盒开度时判断阀盒调整后的开度是否小于开度限制,本控制方法还能够保证每个室内机最基本的运行效果,防止由于阀盒开度过小而出现无冷媒流量等异常情况。
附图说明
下面参照附图来描述本发明的同时冷暖多联机空调系统的控制方法。附图中:
图1为现有技术中同时冷暖多联机空调系统的连接示意图;
图2为本发明的第一种实施方式中同时冷暖多联机空调系统的控制方法的流程图;
图3为本发明的第二种实施方式中同时冷暖多联机空调系统的控制方法的流程图;
图4为发明的一种可能的实施方式中同时冷暖多联机空调系统的控制方法的逻辑图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。例如,在实施例2中虽然步骤S202先于步骤S203执行,但是显然 这两个步骤彼此之间时可以对调的,对调后的控制方法并未偏离本申请的保护范围。
实施例1
首先参照图1,对现有技术中的多联机空调系统进行介绍。其中,图1为现有技术中同时冷暖多联机空调系统的连接示意图。如图1所示,在现有技术中,同时冷暖多联机空调系统的室外机通过多个阀盒与多个室内机连接。图1中阀盒设置有三个,即阀盒1-阀盒3,室内机设置有9个,即图中的室内机1-室内机9。其中,阀盒1与室内机1-3连接,阀盒2与室内机4-5连接,阀盒3与室内机6-9连接。每个阀盒内通常只设置有一个高压阀和一个低压阀(图中未示出),高压阀和低压阀可以采用电磁阀或电子膨胀阀等电控阀。高压阀的第一端通过高压气管与室外机中压缩机的高压侧连接,低压阀的第一端通过低压气管与压缩机的低压侧连接,高压阀的第二端与低压阀的第二端汇合于一室内侧气管并通过室内侧气管与室内机的换热器连接。
在多联机空调系统运行时,通过切换阀盒内的高压阀和低压阀的开闭,可以实现室内机的制冷或制热运行。并且,与同一阀盒连接的多个室内机只能以相同的运行模式运行,但是与不同阀盒连接的室内机之间可以按照不同的运行模式运行。例如,在室内机1以制冷模式运行时,室内机2和室内机3只能以制冷模式运行或处于待机状态;而在室内机1以制冷模式运行时,室内机4和室内机6既可以在制冷模式下运行,也可以在制热模式下运行。
如背景技术中所述,在多联机空调系统存在同时运行的制冷室内机和制热室内机时,由于每个阀盒同时连接的室内机的个数和容量均不相同,因此不同室内机之间会出现冷热不均的现象,严重影响用户的使用体验。
接下来参照图2,对本申请的同时冷暖多联机空调系统的控制方法第一种实施方式进行阐述。其中,图2为本发明的第一种实施方式中同时冷暖多联机空调系统的控制方法的流程图。
如图2所示,为解决上述技术问题,本申请的同时冷暖多联机空调系统的控制方法主要包括以下步骤:
S101、基于每个室内机所处环境的室内环境温度和设定温度,计算每个室内机的制冷温度效果偏差或制热温度效果偏差;
S102、基于所有的室内机的匹数和对应的制冷温度偏差或制热温度偏差,计算多联机空调系统的总制冷效果偏差和总制热效果偏差;
S103、基于总制冷效果偏差和总制热效果偏差,选择性地调整阀盒的开度。
在步骤S101中,制冷温度效果偏差和制热温度效果偏差在本申请中指的是室内机所处的房间的室内环境温度相较于设定温度的偏移量。具体地,制冷温度效果偏差指处于制冷模式运行的室内机所在的房间内的室内环境温度与设定温度之间的偏差;制热温度效果偏差指处于制热模式运行的室内机所在的房间内的设定温度与室内环境温度之间的偏差。较为优选地,可以通过室内机上设置的温度传感器采集正在运行的室内机所在房间的室内环境温度,通过室内机的设置参数信息采集设定温度,然后基于如下公式(1)和(2)分别计算每个运行的室内机的制冷温度效果偏差或制热温度效果偏差:
Figure PCTCN2020109557-appb-000001
Figure PCTCN2020109557-appb-000002
公式(1)和(2)中,CoolIUdiff代表制冷温度效果偏差;HeaTIUdiff代表制热温度效果偏差;setTemp代表房间的设定温度;curTemp代表房间当前的室内环境温度。
当然,除采用上述公式进行偏差计算外,任何能够反映出当前室内环境温度与设定温度之间的偏移量的计算方法均可以进行替换。如使用室内环境温度与设定温度之间的差值作为偏移量等。此外,除只对正在运行的室内机进行采集计算外,可也采集全部室内机的室内环境温度和设定温度,计算所有室内机的制冷温度效果偏差或制热温度效果偏差,在计算过程中,可令未运行的室内机的制冷温度效果偏差或制热温度效果偏差直接为零。
在步骤S102中,总制冷效果偏差在本申请中指的是所有处于制冷模式运行的室内机的制冷温度效果偏差所对应的制冷能力的总和相对于所有处于制冷模式运行的室内机的总制冷能力的偏移量;相应地, 总制热效果偏差在本申请中指的是所有处于制热模式运行的室内机的制热温度效果偏差所对应的制热能力的总和相对于所有处于制热模式运行的室内机的总制热能力的偏移量;具体地,可采用下列公式(3)和(4)计算总制冷效果偏差和总制热效果偏差:
Figure PCTCN2020109557-appb-000003
Figure PCTCN2020109557-appb-000004
公式(3)和(4)中,CoolDiff代表总制冷效果偏差;HeaTDiff代表总制热效果偏差;CoolIUdiff代表制冷温度效果偏差;HeaTIUdiff代表制热温度效果偏差;HP代表与制冷温度效果偏差或制热温度效果偏差对应的室内机的能力匹数;CoolsumHP代表所有以制冷模式运行的室内机的能力匹数之和;HeatsumHP代表所有以制热模式运行的室内机的能力匹数之和。
在步骤S103中,调整阀盒的开度在本申请中指的是调整阀盒中处于打开状态的高压阀或低压阀的开度。由于阀盒在工作时,高压阀与低压阀无法同时开启,通常只有一个处于打开状态,因此调整阀盒的开度也就是调整处于打开状态的阀门的开度。比如,如果阀盒所连接的多个室内机处于制冷模式运行,那么此时阀盒的工作状态为制冷状态,阀盒内通常为高压阀关闭,低压阀打开;反之,如果阀盒所连接的多个室内机处于制热模式运行,那么此时阀盒的工作状态为制热状态,阀盒内通常为高压阀打开,低压阀关闭。
在一种可能的实施方式中,步骤S103可以进一步包括:基于总制冷效果偏差和总制热效果偏差,分别确定每个阀盒的系统修正值;基于系统修正值,选择性地调整阀盒的开度。具体地,首先计算总制冷效果偏差与总制热效果偏差的第一差值作为空调系统的整体偏差;然后判断第一差值与第一预设阈值和第二预设阈值的关系;当第一差值小于第一预设阈值或大于第二预设阈值时,基于室外机的运行模式与系统修正值的对应关系,分别确定每个阀盒的系统修正值;基于系统修正值,调整阀盒的开度;当第一差值大于第一预设阈值且小于第二预设阈值时,保持阀盒的当前开度。其中,第一预设阈值小于第二预设阈值,室外机 的运行模式包括制冷模式和制热模式。其中,系统修正值在本申请中为开度百分比的形式,让然其可以为开度值。
举例而言,首先可以设定第一预设阈值和第二预设阈值分别为-10%和10%(均可基于实际情况调整),然后采用如下公式(5)计算空调系统的整体偏差:
SysDiff=CoolDiff-HeatDiff        (5)
公式(5)中,SysDiff代表空调系统的整体偏差;CoolDiff代表总制冷效果偏差;HeaTDiff代表总制热效果偏差。
当然,除采用总制冷效果偏差与总制热效果偏差的差值以外,也可以利用二者的比值等计算方式来计算整体偏差,这种计算方式的调整并未偏离本申请的原理。
在计算出整体偏差SysDiff后,可以将该整体偏差SysDiff与-10%和10%两个预设阈值进行比较;当-10%≤SysDiff≤10%时,证明空调系统的整体偏差在合理范围内,不同室内机之间的冷热效果较为均衡,此时无需调整阀盒的开度,控制阀盒保持当前的开度即可,也即确定出的各阀盒的系统修正值为零。当SysDiff<-10%或SysDiff>10%时,证明此时空调系统的偏差较大,需要对阀盒的开度进行调整。
具体地,当SysDiff<-10%时,证明此时多联机空调系统中的制热效果比制冷效果差,需要将处于制冷状态的阀盒中的低压阀的开度减小,将处于制热状态的阀盒中的高压阀的开度增大来调节冷媒流量,以便均衡多联机空调系统的冷热效果。此时可以通过室外机的运行模式和整体偏差与系统修正值的对应关系,确定系统修正值也即确定调节开度的大小。其中,室外机的运行模式包括制冷模式和制热模式,当室外机中的换热器作为冷凝器使用时为制冷模式,当室外机中的换热器作为蒸发器使用时为制热模式。例如,SysCoolFixVal和SysHeatFixVal分别代表处于制冷状态和制热状态的阀盒的系统修正值,当室外机为制冷模式时,可取SysCoolFixVal=2%,SysHeatFixVal=5%,当室外机为制热模式时,可取SysCoolFixVal=5%,SysHeatFixVal=2%。当基于室外机的运行模式和系统修正值的对应关系确定系统修正值后,基于上述调整比例调整阀盒的开度。
其中,系统修正值的具体数值可以基于试验或经验确定。例如,基于不同室外机的运行模式和整体偏差SysDiff进行多次阀盒开度调整试验,分别记录处于制冷状态和制热状态的阀盒的调整值,并计算调整后的多联机空调系统的整体偏差,当整体偏差的值处于第一预设阈值与第二预设阈值之间时,记录本次试验中每个处于制冷状态和制热状态的阀盒的调整值作为该室外机运行模式和整体偏差对应的系统修正值。
需要说明的是,上述系统修正值的具体数值仅仅用于解释本发明的原理,并非旨在于限制本申请的保护范围,本领域技术人员可以对该数值进行调整,以便本申请能够满足更加具体的应用场景。
相对地,当SysDiff>10%时,证明此时多联机空调系统中的制冷效果比制热效果差,需要将处于制冷状态的阀盒中低压阀的开度增大,将处于制热状态的阀盒中高压阀开度减小来调节冷媒流量,以便均衡多联机空调系统的冷热效果。此时同样可以通过室外机的运行模式与系统修正值的对应关系,确定系统修正值也即调节开度的大小。例如,当室外机为制冷模式时,同样可取SysCoolFixVal=2%,SysHeatFixVal=5%,当室外机为制热模式时,同样可取SysCoolFixVal=5%,SysHeatFixVal=2%。当基于室外机的运行模式和系统修正值的对应关系确定系统修正值后,基于上述调整比例调整阀盒的开度。其中,系统修正值的具体数值同样可以基于试验或经验确定,在此不再赘述。
此外,在调整阀盒的开度的过程中,为保证最基本的运行效果,避免由于阀盒的开度过小而出现无冷媒流量等异常情况,还可以加入对调整后的阀盒开度的判断步骤,即在调整所述阀盒的开度时,控制方法还包括:判断阀盒调整后的开度是否小于最小开度限值;若是,则将阀盒的开度调整至最小开度限值;若否,则按照系统修正值调整阀盒的开度。其中,最小开度限制可以人为设定或基于试验的方式确定。
通过在同时冷暖多联机空调系统的运行过程中,基于空调系统的总制冷效果偏差和总制热效果偏差确定每个阀盒的系统修正值,并基于系统修正值动态实时调整各阀盒的开度,本发明的控制方法能够确保系统冷媒量的均衡分配,来保证各室内机的运行效果均衡,避免多联机空调系统在运行时冷热不均的情况出现。
实施例2
接下来参照图3,对本申请的同时冷暖多联机空调系统的控制方法第二种实施方式进行阐述。其中,图3为本发明的第二种实施方式中同时冷暖多联机空调系统的控制方法的流程图。
如图3所示,为解决上述技术问题,本申请的同时冷暖多联机空调系统的控制方法主要包括以下步骤:
S201、基于每个室内机所处环境的室内环境温度和设定温度,计算每个室内机的制冷温度效果偏差或制热温度效果偏差;
S202、基于所有的室内机的匹数和对应的制冷温度偏差或制热温度偏差,计算多联机空调系统的总制冷效果偏差和总制热效果偏差;
S203、基于与同一阀盒连接的所有室内机的匹数和对应的制冷温度偏差或制热温度偏差,计算每个阀盒的阀盒效果偏差;
S204、基于总制冷效果偏差、总制热效果偏差以及阀盒效果偏差,选择性地调整所述阀盒的开度。
本实施例与实施例1的主要区别在于,在调整阀盒的开度时,引入了每个阀盒的阀盒效果偏差,并将该阀盒效果偏差与总制冷效果偏差和总制热效果偏差一起作为判定参数,来选择性的调整阀盒的开度。
其中,本实施例中的步骤S201与S202与实施例1中的步骤S101和S102的实施过程相似,因此本实施例中不再赘述。本实施例主要着重介绍与实施例1的区别部分。
在步骤S203中,阀盒效果偏差在本申请中指的是与同一个阀盒连接的所有室内机的制冷/制热温度效果偏差所对应的的制冷/制热能力的总和相对于与同一个阀盒连接的所有室内机的总制冷/制热能力的偏移量;具体地,可采用下列公式(6)和(7)计算处于制冷/制热状态的阀盒的阀盒效果偏差:
Figure PCTCN2020109557-appb-000005
Figure PCTCN2020109557-appb-000006
公式(6)和(7)中,CoolBSdiff代表处于制冷状态的阀盒的阀盒效果偏差;HeaTBSdiff代表处于制热状态的阀盒的阀盒效果偏差;CoolIUdiff代表制冷温度效果偏差;HeaTIUdiff代表制热温度效果偏差;HP代表与制冷温度效果偏差或制热温度效果偏差对应的室内机的能力匹 数;CoolBSsumHP代表与同一处于制冷状态的阀盒连接的所有运行的室内机的能力匹数之和;HeatBSsumHP代表与同一处于制热状态的阀盒连接的所有运行的室内机的能力匹数之和。
在一种可能的实施方式中,步骤S204可以进一步包括:基于总制冷效果偏差和总制热效果偏差,分别确定每个阀盒的系统修正值;基于阀盒效果偏差,分别确定每个阀盒的局部修正值;基于系统修正值和局部修正值,计算每个阀盒的最终修正值;基于最终修正值,选择性地调整阀盒的开度。其中,计算每个阀盒的系统修正值的步骤与实施例1相同或相似,再此不再赘述。其中,计算每个阀盒的局部修正值的步骤具体为:计算所有处于同一工作状态的阀盒中阀盒效果偏差的最大值与阀盒效果偏差的最小值之间的第二差值作为该工作状态的阀盒的局部偏差;判断局部偏差与第三预设阈值的关系;当局部偏差大于第三预设阈值时,基于处于同一工作状态的每个阀盒的阀盒效果偏差和处于同一工作状态的阀盒的个数,计算处于同一工作状态的所有阀盒的效果偏差平均值;比较处于同一工作状态的每个阀盒的阀盒效果偏差与对应的效果偏差平均值的大小;基于比较结果,分别确定处于同一工作状态的每个阀盒的局部修正值;当局部偏差小于第三预设阈值时,控制阀盒保持当前开度。其中,阀盒的工作状态包括制冷状态和制热状态。
下面以处于制冷状态的阀盒为例,说明局部修正值的计算过程:
设定第三设定阈值为5%(可基于实际情况调整),当计算出所有处于制冷状态的阀盒的阀盒效果偏差后,首先基于下述公式(8)计算处于制冷状态的阀盒的局部偏差:
PartCoolDiff=CoolMaxBSdiff-CoolMinBSdiff       (8)
公式(8)中,PartCoolDiff代表处于制冷状态的阀盒的局部偏差;CoolMaxBSdiff和CoolMinBSdiff分别代表所有处于制冷状态的阀盒中阀盒效果偏差的最大值和最小值。
在计算出局部偏差后,可以将该局部偏差PartCoolDiff与5%进行比较;当PartCoolDiff≤5%时,证明局部偏差在合理范围内,各制冷模式运行室内机的制冷效果较为均衡,此时无需调整处于制冷状态的阀盒的开度,控制阀盒保持当前的开度即可,也即确定出的每个阀盒的局 部修正值都为零。当PartCoolDiff>5%时,证明此时各制冷模式运行的室内机之间制冷效果偏差较大,需要对处于制冷状态的阀盒的开度进行调整。
具体地,当PartCoolDiff>5%时,首先基于下列公式(9)计算处于制冷状态的所有阀盒的效果偏差平均值:
Figure PCTCN2020109557-appb-000007
公式(9)中,PartCoolAVG代表效果偏差平均值;CoolBSdiff代表处于制冷状态的阀盒的阀盒效果偏差;M为处于制冷状态的阀盒的个数。
在计算出效果偏差平均值PartCoolAVG后,将每个制冷状态的阀盒的阀盒效果偏差CoolBSdiff与该效果偏差平均值PartCoolAVG进行比较;当CoolBSdiff>PartCoolAVG时,证明该阀盒所对应的室内机的制冷效果较差,需要增大阀盒内低压阀的开度以提高对应室内机的制冷效果;当CoolBSdiff<PartCoolAVG时,证明该阀盒所对应的室内机的制冷效果较好,需要减小阀盒内低压阀的开度以降低对应室内机的制冷效果,最终达到所有制冷模式运行的室内机的制冷效果均衡。处于制热状态的阀盒的局部修正值的计算与处于制冷状态的阀盒的局部修正值的计算过程相似,再此不再赘述。
本实施例中,可以使用PartCoolFixVal和PartHeatFixVal分别代表处于制冷状态和制热状态的阀盒的局部修正值。例如,可取SysCoolFixVal=3%,SysHeatFixVal=4%。局部修正值的具体数值可以基于试验或经验确定,其确定方式与上述系统修正值类似,再此不再赘述。此外,上述局部修正值的具体数值仅仅用于解释本发明的原理,并非旨在于限制本申请的保护范围,本领域技术人员可以对该数值进行调整,以便本申请能够满足更加具体的应用场景。
在确定出系统修正值和局部修正值后,基于系统修正值和局部修正值,计算每个阀盒的最终修正值的步骤可以进一步包括:计算系统修正值的加权值与局部修正值的加权值的和值,作为每个阀盒的最终修正值。即,采用下列公式(10)和(11)分别计算处于制冷状态的阀盒和处于制热状态的阀盒的最终修正值:
CoolFixVal=SysCoolFixVal×CoolRate+PartCoolFixVal×(1-CoolRate)                 (10)
HeatFixVal=SysHeatFixVal×HeatRate+PartHeatFixVal×(1-HeatRate)               (11)
公式(10)和(11)中,CoolFixVal代表处于制冷状态的阀盒的最终修正值;HeatFixVal代表处于制热状态的阀盒的最终修正值;SysCoolFixVal和SysHeatFixVal分别代表处于制冷状态和制热状态的阀盒的系统修正值;PartCoolFixVal和PartHeatFixVal分别代表处于制冷状态和制热状态的阀盒的局部修正值;CoolRate和HeatRate分别代表处于制冷和制热状态的阀盒的系统修正值与局部修正值之间的分配比例系数(即权重系数),该比例通常可由经验确定或由试验确定。如选取CoolRate=HeatRate=0.6等。
在确定所有阀盒的最终修正值后,基于最终修正值,调整阀盒的开度。
此外,在调整阀盒的开度的过程中,为保证最基本的运行效果,避免由于阀盒的开度过小而出现无冷媒流量等异常情况,还可以加入对调整后的阀盒开度的判断步骤,即在调整所述阀盒的开度时,控制方法还包括:判断阀盒调整后的开度是否小于最小开度限值;若是,则将阀盒的开度调整至最小开度限值;若否,则按照最终修正值调整阀盒的开度。其中,最小开度限制可以人为设定或基于试验的方式确定。
通过在确定每个阀盒的系统修正值的同时,还基于阀盒的效果偏差确定每个阀盒的局部修正值,然后基于系统修正值与局部修正值计算每个阀盒的最终修正值,本控制方法还能够进一步提高阀盒的控制精度,对阀盒的开度控制更加精准,在保证不同室内机之间的制冷制热效果均衡的基础上,还能够进一步保证与同一阀盒连接的多个室内机之间制冷/制热效果的均衡。
下面结合图4,对本发明的一种可能的实施方式中同时冷暖多联机空调系统的工作流程作简要说明。其中,4为本发明的一种可能的实施方式中同时冷暖多联机空调系统空调系统的控制方法的逻辑图。
如图4所示,在一种可能的控制过程中:
(1)基于各运行室内机的设定温度和对应的室内环境温度,计算每个室内机的制冷温度效果偏差和制热温度效果偏差;
(2)基于制冷温度效果偏差、制热温度效果偏差和各室内机的匹数,分别计算空调系统的总制冷效果偏差、总制热效果偏差、和每个阀盒的阀盒效果偏差;
(3)基于总制冷效果偏差和总制热效果偏差,计算整体偏差,并判断整体偏差与第一预设阈值和第二预设阈值的关系;在整体偏差处于第一预设阈值与第二预设阈值之间时,确定系统修正值为零,否则,基于室外机模式和整体偏差,确定各阀盒的系统修正值;
(4)基于各阀盒的阀盒效果偏差,计算局部偏差,并判断局部偏差与第三预设阈值的大小;在局部偏差小于第三预设阈值时,确定局部修正值为零,否则基于局部偏差和效果偏差平均值,确定各阀盒的局部修正值。
(5)基于系统修正值和局部修正值和权重系数,计算各阀盒的最终修正值;
(6)基于最终修正值,调整各阀盒的开度;
(7)间隔10分钟后,重新执行上述流程。
本领域技术人员可以理解,上述同时冷暖多联机空调系统还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
本发明的各个控制方法实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,本发明可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,PC程序和PC程序产品)。这样的实现本发明的程序可以存储在PC可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上 述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种同时冷暖多联机空调系统的控制方法,所述同时冷暖多联机空调系统包括室外机、多个阀盒和多个室内机,所述室外机与所述多个室内机之间通过所述多个阀盒连接,每个所述阀盒连接有至少一个室内机,其特征在于,所述控制方法包括:
    基于每个所述室内机所处环境的室内环境温度和设定温度,计算每个所述室内机的制冷温度效果偏差或制热温度效果偏差;
    基于所有的所述室内机的匹数和对应的所述制冷温度偏差或所述制热温度偏差,计算所述多联机空调系统的总制冷效果偏差和总制热效果偏差;
    基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度。
  2. 根据权利要求1所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
    基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值;
    基于所述系统修正值,选择性地调整所述阀盒的开度。
  3. 根据权利要求2所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值”的步骤进一步包括:
    计算所述总制冷效果偏差与所述总制热效果偏差的第一差值;
    判断所述第一差值与第一预设阈值和第二预设阈值的关系;
    当所述第一差值小于所述第一预设阈值或大于所述第二预设阈值时,基于所述室外机的运行模式和所述第一差值与所述系统修正值的对应关系,确定每个所述阀盒的系统修正值;
    其中,所述第一预设阈值小于所述第二预设阈值,所述室外机的运行模式包括制冷模式和制热模式。
  4. 根据权利要求1所述的同时冷暖多联机空调系统的控制方法,其特征在于,所述控制方法还包括:
    基于与同一所述阀盒连接的所有所述室内机的匹数和对应的所述制冷温度偏差或所述制热温度偏差,计算每个所述阀盒的阀盒效果偏差;
    “基于所述总制冷效果偏差和所述总制热效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
    基于所述总制冷效果偏差、所述总制热效果偏差以及所述阀盒效果偏差,选择性地调整所述阀盒的开度。
  5. 根据权利要求4所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述总制冷效果偏差、所述总制热效果偏差以及所述阀盒效果偏差,选择性地调整所述阀盒的开度”的步骤进一步包括:
    基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值;
    基于所述阀盒效果偏差,分别确定每个所述阀盒的局部修正值;
    基于所述系统修正值和所述局部修正值,计算每个所述阀盒的最终修正值;
    基于所述最终修正值,选择性地调整所述阀盒的开度。
  6. 根据权利要求5所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述总制冷效果偏差和所述总制热效果偏差,分别确定每个所述阀盒的系统修正值”的步骤进一步包括:
    计算所述总制冷效果偏差与所述总制热效果偏差的第一差值;
    判断所述第一差值与第一预设阈值和第二预设阈值的关系;
    当所述第一差值小于所述第一预设阈值或大于所述第二预设阈值时,基于所述室外机的运行模式和所述第一差值与所述系统修正值的对应关系,确定每个所述阀盒的系统修正值;
    其中,所述第一预设阈值小于所述第二预设阈值,所述室外机的运行模式包括制冷模式和制热模式。
  7. 根据权利要求5所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述阀盒效果偏差,分别确定每个所述阀盒的局部修正值”的步骤进一步包括:
    计算所有处于同一工作状态的阀盒中阀盒效果偏差的最大值与阀盒效果偏差的最小值之间的第二差值;
    判断所述第二差值与第三预设阈值的关系;
    当所述第二差值大于所述第三预设阈值时,基于处于同一工作状态的每个所述阀盒的阀盒效果偏差和处于同一工作状态的阀盒的个数,计算处于同一工作状态的所有阀盒的效果偏差平均值;
    比较处于同一工作状态的每个阀盒的阀盒效果偏差与对应的所述效果偏差平均值的大小;
    基于比较结果,分别确定处于同一工作状态的每个所述阀盒的局部修正值;
    其中,所述阀盒的工作状态包括制冷状态和制热状态。
  8. 根据权利要求5所述的同时冷暖多联机空调系统的控制方法,其特征在于,“基于所述系统修正值和所述局部修正值,计算每个所述阀盒的最终修正值”的步骤进一步包括:
    计算所述系统修正值的加权值与所述局部修正值的加权值的和值,作为所述最终修正值。
  9. 根据权利要求1所述的同时冷暖多联机空调系统的控制方法,其特征在于,在调整所述阀盒的开度时,所述控制方法还包括:
    判断所述阀盒调整后的开度是否小于最小开度限值;
    若是,则将所述阀盒的开度调整至所述最小开度限值。
  10. 根据权利要求1至9中任一项所述的同时冷暖多联机空调系统的控制方法,其特征在于,每个所述阀盒包括高压阀和低压阀,“调整所述阀盒的开度”的步骤进一步包括:
    调整所述阀盒中处于打开状态的高压阀或低压阀的开度。
PCT/CN2020/109557 2019-08-30 2020-08-17 同时冷暖多联机空调系统的控制方法 WO2021036842A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/637,260 US12104817B2 (en) 2019-08-30 2020-08-17 Control method for multi-split air conditioning system capable of simultaneous cooling and heating
EP20857030.9A EP4023954A4 (en) 2019-08-30 2020-08-17 CONTROL METHOD FOR MULTI-DIVISION AIR CONDITIONING SYSTEM CAPABLE OF REALIZING SIMULTANEOUS COOLING AND HEATING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910815570.9 2019-08-30
CN201910815570.9A CN112443947B (zh) 2019-08-30 2019-08-30 同时冷暖多联机空调系统的控制方法

Publications (1)

Publication Number Publication Date
WO2021036842A1 true WO2021036842A1 (zh) 2021-03-04

Family

ID=74683472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109557 WO2021036842A1 (zh) 2019-08-30 2020-08-17 同时冷暖多联机空调系统的控制方法

Country Status (4)

Country Link
US (1) US12104817B2 (zh)
EP (1) EP4023954A4 (zh)
CN (1) CN112443947B (zh)
WO (1) WO2021036842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237197A (zh) * 2021-05-31 2021-08-10 青岛海尔空调电子有限公司 空调机组及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811845B (zh) * 2022-03-28 2023-11-24 青岛海尔空调电子有限公司 多联机系统及其控制方法、装置、设备和存储介质
CN115183398B (zh) * 2022-07-29 2023-10-20 青岛海尔空调电子有限公司 一种空调控制方法、装置、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130425A (ja) * 2001-10-19 2003-05-08 Fujitsu General Ltd 空気調和機の制御方法
CN104006497A (zh) * 2014-05-26 2014-08-27 广东美的集团芜湖制冷设备有限公司 一拖多空调系统的冷媒流量的控制方法及装置
CN105698268A (zh) * 2016-03-23 2016-06-22 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN107726554A (zh) * 2017-09-19 2018-02-23 青岛海尔空调电子有限公司 一种多联机舒适度均衡控制方法及系统
CN109237703A (zh) * 2018-08-20 2019-01-18 青岛海尔空调电子有限公司 用于多联机空调系统的控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
JP3404150B2 (ja) * 1994-09-28 2003-05-06 東芝キヤリア株式会社 空気調和機及びその制御方法
CN1120335C (zh) * 2000-06-07 2003-09-03 三星电子株式会社 空调机的启动控制系统及其启动控制方法
JP4179783B2 (ja) * 2002-01-18 2008-11-12 三洋電機株式会社 空気調和装置
JP4979308B2 (ja) * 2006-08-28 2012-07-18 三機工業株式会社 空調システム
KR101176635B1 (ko) * 2007-06-22 2012-08-24 삼성전자주식회사 동시 냉난방형 멀티 공기조화기 및 그 제어방법
CN103697559B (zh) * 2012-09-27 2016-04-13 广东美的暖通设备有限公司 模块式多联机及其制冷时冷媒均匀分配的控制方法
CN103175284B (zh) * 2013-03-26 2015-09-02 青岛海尔空调电子有限公司 实现同时冷暖多联机空调机组控制器的通信装置及方法
JP5790729B2 (ja) * 2013-09-30 2015-10-07 ダイキン工業株式会社 空調システム及びその制御方法
JP5831661B1 (ja) * 2014-09-30 2015-12-09 ダイキン工業株式会社 空調機
JP6249932B2 (ja) * 2014-12-04 2017-12-20 三菱電機株式会社 空調システム
JP6609417B2 (ja) * 2015-04-03 2019-11-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN105066539B (zh) * 2015-07-16 2018-07-10 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法
CN106642521A (zh) * 2016-09-21 2017-05-10 广东美的暖通设备有限公司 多联机空调系统的控制方法
CN108151350B (zh) * 2017-12-20 2020-05-08 广东美的暖通设备有限公司 三管制多联机系统及其控制方法
EP3760938B1 (en) * 2018-02-26 2023-09-27 Mitsubishi Electric Corporation Air conditioning system
CN108592342B (zh) * 2018-05-02 2020-09-01 广东美的制冷设备有限公司 频率控制方法及频率控制装置、一拖多空调器和存储介质
WO2020016959A1 (ja) * 2018-07-18 2020-01-23 三菱電機株式会社 空気調和装置及び空気調和方法
KR102599897B1 (ko) * 2018-09-19 2023-11-09 삼성전자주식회사 공조 장치 및 공조 장치의 제어 방법
CN109114759B (zh) * 2018-10-15 2020-05-22 广东美的制冷设备有限公司 控制终端、一拖多空调器的控制方法及装置和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130425A (ja) * 2001-10-19 2003-05-08 Fujitsu General Ltd 空気調和機の制御方法
CN104006497A (zh) * 2014-05-26 2014-08-27 广东美的集团芜湖制冷设备有限公司 一拖多空调系统的冷媒流量的控制方法及装置
CN105698268A (zh) * 2016-03-23 2016-06-22 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN107726554A (zh) * 2017-09-19 2018-02-23 青岛海尔空调电子有限公司 一种多联机舒适度均衡控制方法及系统
CN109237703A (zh) * 2018-08-20 2019-01-18 青岛海尔空调电子有限公司 用于多联机空调系统的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023954A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237197A (zh) * 2021-05-31 2021-08-10 青岛海尔空调电子有限公司 空调机组及其控制方法

Also Published As

Publication number Publication date
CN112443947A (zh) 2021-03-05
US20220307720A1 (en) 2022-09-29
US12104817B2 (en) 2024-10-01
EP4023954A1 (en) 2022-07-06
EP4023954A4 (en) 2022-11-02
CN112443947B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021036842A1 (zh) 同时冷暖多联机空调系统的控制方法
JP5627620B2 (ja) 空気調和機
WO2022068968A1 (zh) 空调器的制热控制方法
WO2021184615A1 (zh) 空调系统的控制方法
WO2019179452A1 (zh) 室外机、多联机系统及其控制方法
CN114353277B (zh) 防结霜控制方法以及防结霜空调
JP7203946B2 (ja) 空調管理装置、空調管理システム、空調管理方法及びプログラム
JP5951397B2 (ja) 空気調和機
JP6887979B2 (ja) 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
CN110579010A (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN110486984B (zh) 一种可自由调控冷热能力的方法及机组
JP2008298335A (ja) 冷凍装置および同冷凍装置に用いられる冷媒追加充填キット並びに冷凍装置の冷媒追加充填方法
WO2023160065A1 (zh) 一种多联机系统控制方法
WO2021042654A1 (zh) 全热回收融霜控制方法、控制系统和空气调节装置
CN210861783U (zh) 冷媒循环系统及空调
CN110500667B (zh) 一种多联室内机降噪方法、空调系统及存储介质
WO2021052193A1 (zh) 多联机空调系统中室外机均衡结霜的控制方法
JP7415750B2 (ja) ヒートポンプサイクル装置
CN210425631U (zh) 一种可自由调控冷热能力的机组
CN108692425B (zh) 空调器除霜控制方法
CN114322220B (zh) 一种空气调节装置及其控制方法
CN110579040A (zh) 冷媒循环系统及其控制方法、装置、设备、空调
JPWO2020079835A1 (ja) 空調装置
JPWO2020110289A1 (ja) 制御装置及び空気調和装置
CN111121242B (zh) 一种空调系统运行参数的调节方法、调节装置和空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857030

Country of ref document: EP

Effective date: 20220330