WO2021034716A1 - Thrombosomes as an anticoagulant reversal agent - Google Patents
Thrombosomes as an anticoagulant reversal agent Download PDFInfo
- Publication number
- WO2021034716A1 WO2021034716A1 PCT/US2020/046522 US2020046522W WO2021034716A1 WO 2021034716 A1 WO2021034716 A1 WO 2021034716A1 US 2020046522 W US2020046522 W US 2020046522W WO 2021034716 A1 WO2021034716 A1 WO 2021034716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platelets
- subject
- administering
- composition
- incubating
- Prior art date
Links
- 239000003146 anticoagulant agent Substances 0.000 title claims description 121
- 229940127219 anticoagulant drug Drugs 0.000 title claims description 116
- 239000012313 reversal agent Substances 0.000 title description 9
- 238000000034 method Methods 0.000 claims abstract description 268
- 239000000203 mixture Substances 0.000 claims abstract description 165
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 135
- 239000000872 buffer Substances 0.000 claims abstract description 73
- 150000003839 salts Chemical class 0.000 claims abstract description 60
- 239000002577 cryoprotective agent Substances 0.000 claims abstract description 55
- 239000003960 organic solvent Substances 0.000 claims abstract description 53
- 206010053567 Coagulopathies Diseases 0.000 claims abstract description 33
- 208000015294 blood coagulation disease Diseases 0.000 claims abstract description 15
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 claims description 77
- 229960005080 warfarin Drugs 0.000 claims description 68
- 230000000694 effects Effects 0.000 claims description 46
- 150000001720 carbohydrates Chemical class 0.000 claims description 43
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 38
- 229920000669 heparin Polymers 0.000 claims description 35
- 229960002897 heparin Drugs 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 33
- 238000001356 surgical procedure Methods 0.000 claims description 32
- -1 TTP889 Chemical compound 0.000 claims description 30
- KGFYHTZWPPHNLQ-AWEZNQCLSA-N rivaroxaban Chemical compound S1C(Cl)=CC=C1C(=O)NC[C@@H]1OC(=O)N(C=2C=CC(=CC=2)N2C(COCC2)=O)C1 KGFYHTZWPPHNLQ-AWEZNQCLSA-N 0.000 claims description 28
- 238000011282 treatment Methods 0.000 claims description 26
- YBSJFWOBGCMAKL-UHFFFAOYSA-N dabigatran Chemical compound N=1C2=CC(C(=O)N(CCC(O)=O)C=3N=CC=CC=3)=CC=C2N(C)C=1CNC1=CC=C(C(N)=N)C=C1 YBSJFWOBGCMAKL-UHFFFAOYSA-N 0.000 claims description 25
- 229960001148 rivaroxaban Drugs 0.000 claims description 24
- QNZCBYKSOIHPEH-UHFFFAOYSA-N Apixaban Chemical compound C1=CC(OC)=CC=C1N1C(C(=O)N(CC2)C=3C=CC(=CC=3)N3C(CCCC3)=O)=C2C(C(N)=O)=N1 QNZCBYKSOIHPEH-UHFFFAOYSA-N 0.000 claims description 23
- 229960003850 dabigatran Drugs 0.000 claims description 21
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 20
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 20
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 20
- 238000004108 freeze drying Methods 0.000 claims description 20
- 229960003886 apixaban Drugs 0.000 claims description 19
- HGVDHZBSSITLCT-JLJPHGGASA-N Edoxaban Chemical compound N([C@H]1CC[C@@H](C[C@H]1NC(=O)C=1SC=2CN(C)CCC=2N=1)C(=O)N(C)C)C(=O)C(=O)NC1=CC=C(Cl)C=N1 HGVDHZBSSITLCT-JLJPHGGASA-N 0.000 claims description 18
- KANJSNBRCNMZMV-ABRZTLGGSA-N fondaparinux Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O4)NS(O)(=O)=O)[C@H](O3)C(O)=O)O)[C@@H](COS(O)(=O)=O)O2)NS(O)(=O)=O)[C@H](C(O)=O)O1 KANJSNBRCNMZMV-ABRZTLGGSA-N 0.000 claims description 15
- 229940127215 low-molecular weight heparin Drugs 0.000 claims description 15
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 14
- 239000000504 antifibrinolytic agent Substances 0.000 claims description 14
- 229960000622 edoxaban Drugs 0.000 claims description 14
- 230000023597 hemostasis Effects 0.000 claims description 14
- 108010007267 Hirudins Proteins 0.000 claims description 11
- 102000007625 Hirudins Human genes 0.000 claims description 11
- 229960003856 argatroban Drugs 0.000 claims description 11
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 claims description 11
- 229960001318 fondaparinux Drugs 0.000 claims description 11
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 claims description 11
- 229940006607 hirudin Drugs 0.000 claims description 11
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 10
- 239000013589 supplement Substances 0.000 claims description 10
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 claims description 8
- 239000008121 dextrose Substances 0.000 claims description 8
- 238000002297 emergency surgery Methods 0.000 claims description 8
- 102000014914 Carrier Proteins Human genes 0.000 claims description 6
- 108010078791 Carrier Proteins Proteins 0.000 claims description 6
- 159000000007 calcium salts Chemical class 0.000 claims description 6
- 159000000003 magnesium salts Chemical class 0.000 claims description 6
- MUQWDYYIYNYBQD-OFHININYSA-N (2s,3s,4s,5r,6r)-3-[(2r,3r,4r,5s,6r)-3-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoylamino]-4,5-dimethoxy-6-(sulfooxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-6-[(2r,3s,4s,5r,6r)-2-carboxy-4,5-dimethoxy- Chemical compound OS(=O)(=O)O[C@@H]1[C@@H](OS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](OC)[C@H](O[C@@H]4[C@@H]([C@@H](OC)[C@H](OC)[C@@H](COS(O)(=O)=O)O4)NC(=O)CCCCCNC(=O)CCCC[C@H]4[C@H]5NC(=O)N[C@H]5CS4)[C@H](O3)C(O)=O)OC)[C@@H](COS(O)(=O)=O)O2)OS(O)(=O)=O)[C@H](C(O)=O)O1 MUQWDYYIYNYBQD-OFHININYSA-N 0.000 claims description 5
- WFFZGYRTVIPBFN-UHFFFAOYSA-N 3h-indene-1,2-dione Chemical class C1=CC=C2C(=O)C(=O)CC2=C1 WFFZGYRTVIPBFN-UHFFFAOYSA-N 0.000 claims description 5
- 108010055141 Tifacogin Proteins 0.000 claims description 5
- 229960002054 acenocoumarol Drugs 0.000 claims description 5
- VABCILAOYCMVPS-UHFFFAOYSA-N acenocoumarol Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=C([N+]([O-])=O)C=C1 VABCILAOYCMVPS-UHFFFAOYSA-N 0.000 claims description 5
- DJMVASRJWAOIAN-UHFFFAOYSA-N anivamersen Chemical compound O1C(N2C(N=C(N)C=C2)=O)C(OC)C(O)C1COP(O)(=O)OC(C(C(O1)N2C3=NC=NC(N)=C3N=C2)OC)C1COP(O)(=O)OC(C(C(O1)N2C(N=C(N)C=C2)=O)OC)C1COP(O)(=O)OC(C1OC)C(COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2COP(O)(=O)OC2C(C(OC2CO)N2C(N=C(N)C=C2)=O)OC)N2C3=C(C(NC(N)=N3)=O)N=C2)OC)N2C(N=C(N)C=C2)=O)OC)N2C3=C(C(NC(N)=N3)=O)N=C2)OC)N2C3=C(C(NC(N)=N3)=O)N=C2)OC)N2C(NC(=O)C=C2)=O)OC)N2C3=NC=NC(N)=C3N=C2)OC)N2C(NC(=O)C=C2)=O)OC)N2C3=NC=NC(N)=C3N=C2)OC)N2C3=C(C(NC(N)=N3)=O)N=C2)OC)N2C(NC(=O)C=C2)=O)OC)OC1N1C=CC(N)=NC1=O DJMVASRJWAOIAN-UHFFFAOYSA-N 0.000 claims description 5
- 229950000179 anivamersen Drugs 0.000 claims description 5
- 229950011103 betrixaban Drugs 0.000 claims description 5
- XHOLNRLADUSQLD-UHFFFAOYSA-N betrixaban Chemical compound C=1C=C(Cl)C=NC=1NC(=O)C1=CC(OC)=CC=C1NC(=O)C1=CC=C(C(=N)N(C)C)C=C1 XHOLNRLADUSQLD-UHFFFAOYSA-N 0.000 claims description 5
- OIRCOABEOLEUMC-GEJPAHFPSA-N bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 claims description 5
- 108010055460 bivalirudin Proteins 0.000 claims description 5
- 229960001500 bivalirudin Drugs 0.000 claims description 5
- NASXCEITKQITLD-UHFFFAOYSA-N fluindione Chemical compound C1=CC(F)=CC=C1C1C(=O)C2=CC=CC=C2C1=O NASXCEITKQITLD-UHFFFAOYSA-N 0.000 claims description 5
- 229960005298 fluindione Drugs 0.000 claims description 5
- 229960004408 lepirudin Drugs 0.000 claims description 5
- OTQCKZUSUGYWBD-BRHMIFOHSA-N lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 claims description 5
- MVPQUSQUURLQKF-MCPDASDXSA-E nonasodium;(2s,3s,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3s,4s,5r,6r)-2-carboxylato-4,5-dimethoxy-6-[(2r,3r,4s,5r,6s)-6-methoxy-4,5-disulfonatooxy-2-(sulfonatooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-disulfonatooxy-2-(sulfonatooxymethyl)oxan-3-yl]oxy-4,5-di Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]S(=O)(=O)O[C@@H]1[C@@H](OS([O-])(=O)=O)[C@@H](OC)O[C@H](COS([O-])(=O)=O)[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@@H]2[C@@H]([C@@H](OS([O-])(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](OC)[C@H](O[C@@H]4[C@@H]([C@@H](OC)[C@H](OC)[C@@H](COS([O-])(=O)=O)O4)OC)[C@H](O3)C([O-])=O)OC)[C@@H](COS([O-])(=O)=O)O2)OS([O-])(=O)=O)[C@H](C([O-])=O)O1 MVPQUSQUURLQKF-MCPDASDXSA-E 0.000 claims description 5
- QGVYYLZOAMMKAH-UHFFFAOYSA-N pegnivacogin Chemical compound COCCOC(=O)NCCCCC(NC(=O)OCCOC)C(=O)NCCCCCCOP(=O)(O)O QGVYYLZOAMMKAH-UHFFFAOYSA-N 0.000 claims description 5
- 229950011036 pegnivacogin Drugs 0.000 claims description 5
- 229960004923 phenprocoumon Drugs 0.000 claims description 5
- DQDAYGNAKTZFIW-UHFFFAOYSA-N phenprocoumon Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC)C1=CC=CC=C1 DQDAYGNAKTZFIW-UHFFFAOYSA-N 0.000 claims description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 5
- 159000000001 potassium salts Chemical class 0.000 claims description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 5
- 159000000000 sodium salts Chemical class 0.000 claims description 5
- 229950005830 tifacogin Drugs 0.000 claims description 5
- ZXIBCJHYVWYIKI-PZJWPPBQSA-N ximelagatran Chemical compound C1([C@@H](NCC(=O)OCC)C(=O)N2[C@@H](CC2)C(=O)NCC=2C=CC(=CC=2)C(\N)=N\O)CCCCC1 ZXIBCJHYVWYIKI-PZJWPPBQSA-N 0.000 claims description 5
- 229960001522 ximelagatran Drugs 0.000 claims description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 4
- 108010039627 Aprotinin Proteins 0.000 claims description 4
- 108010049003 Fibrinogen Proteins 0.000 claims description 4
- 102000008946 Fibrinogen Human genes 0.000 claims description 4
- 229960003375 aminomethylbenzoic acid Drugs 0.000 claims description 4
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 claims description 4
- 229960004405 aprotinin Drugs 0.000 claims description 4
- 229940012952 fibrinogen Drugs 0.000 claims description 4
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 claims description 4
- 239000003055 low molecular weight heparin Substances 0.000 claims description 4
- 229960000401 tranexamic acid Drugs 0.000 claims description 4
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 claims description 4
- 239000007995 HEPES buffer Substances 0.000 claims description 2
- 108090000190 Thrombin Proteins 0.000 description 99
- 210000002381 plasma Anatomy 0.000 description 99
- 229960004072 thrombin Drugs 0.000 description 99
- 239000008280 blood Substances 0.000 description 47
- 210000004369 blood Anatomy 0.000 description 46
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 238000003556 assay Methods 0.000 description 24
- 238000011534 incubation Methods 0.000 description 22
- 230000035602 clotting Effects 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 21
- 210000004623 platelet-rich plasma Anatomy 0.000 description 20
- 239000002245 particle Substances 0.000 description 19
- 239000003153 chemical reaction reagent Substances 0.000 description 18
- 238000012032 thrombin generation assay Methods 0.000 description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- 239000008223 sterile water Substances 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 208000007536 Thrombosis Diseases 0.000 description 13
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 229930006000 Sucrose Natural products 0.000 description 12
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 12
- 239000005720 sucrose Substances 0.000 description 12
- 102000007327 Protamines Human genes 0.000 description 11
- 108010007568 Protamines Proteins 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229950008679 protamine sulfate Drugs 0.000 description 11
- 229940072645 coumadin Drugs 0.000 description 10
- 230000000670 limiting effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 208000032843 Hemorrhage Diseases 0.000 description 9
- 108010000499 Thromboplastin Proteins 0.000 description 9
- 102000002262 Thromboplastin Human genes 0.000 description 9
- 239000013543 active substance Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 102000008186 Collagen Human genes 0.000 description 8
- 108010035532 Collagen Proteins 0.000 description 8
- 238000002617 apheresis Methods 0.000 description 8
- 229920001436 collagen Polymers 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 229930003448 Vitamin K Natural products 0.000 description 7
- 208000034158 bleeding Diseases 0.000 description 7
- 230000000740 bleeding effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 235000019168 vitamin K Nutrition 0.000 description 7
- 239000011712 vitamin K Substances 0.000 description 7
- 150000003721 vitamin K derivatives Chemical class 0.000 description 7
- 229940046010 vitamin k Drugs 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 108010074860 Factor Xa Proteins 0.000 description 5
- 102000009123 Fibrin Human genes 0.000 description 5
- 108010073385 Fibrin Proteins 0.000 description 5
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 5
- 108010018682 PRT064445 Proteins 0.000 description 5
- 229950002054 andexanet alfa Drugs 0.000 description 5
- 229940127218 antiplatelet drug Drugs 0.000 description 5
- 150000002016 disaccharides Chemical class 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 229940047562 eliquis Drugs 0.000 description 5
- 229950003499 fibrin Drugs 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229940066336 pradaxa Drugs 0.000 description 5
- 229940024790 prothrombin complex concentrate Drugs 0.000 description 5
- 229940011622 savaysa Drugs 0.000 description 5
- 229940055725 xarelto Drugs 0.000 description 5
- HRDUUSCYRPOMSO-ROUUACIJSA-N Ciraparantag Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCCCN1CCN(CCCNC(=O)[C@@H](N)CCCN=C(N)N)CC1 HRDUUSCYRPOMSO-ROUUACIJSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 108010094028 Prothrombin Proteins 0.000 description 4
- 230000001668 ameliorated effect Effects 0.000 description 4
- 229940104697 arixtra Drugs 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000002439 hemostatic effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229960001407 sodium bicarbonate Drugs 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 102000004506 Blood Proteins Human genes 0.000 description 3
- 108010017384 Blood Proteins Proteins 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229940123688 Direct Factor Xa inhibitor Drugs 0.000 description 3
- 208000005189 Embolism Diseases 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 102100027378 Prothrombin Human genes 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 206010047249 Venous thrombosis Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000020650 eye health related herbal supplements Nutrition 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000002840 non-reducing disaccharides Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 229940039716 prothrombin Drugs 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 2
- GMVPRGQOIOIIMI-UHFFFAOYSA-N (8R,11R,12R,13E,15S)-11,15-Dihydroxy-9-oxo-13-prostenoic acid Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CCCCCCC(O)=O GMVPRGQOIOIIMI-UHFFFAOYSA-N 0.000 description 2
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 2
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 2
- 240000002234 Allium sativum Species 0.000 description 2
- 102000004411 Antithrombin III Human genes 0.000 description 2
- 108090000935 Antithrombin III Proteins 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 description 2
- 241000219357 Cactaceae Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 108010056764 Eptifibatide Proteins 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 208000010378 Pulmonary Embolism Diseases 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 240000003186 Stachytarpheta cayennensis Species 0.000 description 2
- 235000009233 Stachytarpheta cayennensis Nutrition 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229960000711 alprostadil Drugs 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229960005348 antithrombin iii Drugs 0.000 description 2
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 229950008711 ciraparantag Drugs 0.000 description 2
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- CZKPOZZJODAYPZ-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CNC2=CC=CC=C12 CZKPOZZJODAYPZ-LROMGURASA-N 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 235000004611 garlic Nutrition 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 229920006158 high molecular weight polymer Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 229940050526 hydroxyethylstarch Drugs 0.000 description 2
- 229960002308 idarucizumab Drugs 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000003868 thrombin inhibitor Substances 0.000 description 2
- 230000009424 thromboembolic effect Effects 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 238000013389 whole blood assay Methods 0.000 description 2
- HQHQCEKUGWOYPS-URBBEOKESA-N 1-[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-(octadecylamino)pyrimidin-2-one Chemical class O=C1N=C(NCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 HQHQCEKUGWOYPS-URBBEOKESA-N 0.000 description 1
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 1
- FWPVKDFOUXHOKQ-UHFFFAOYSA-N 2-[1-(carboxymethyl)cyclopentyl]acetic acid Chemical compound OC(=O)CC1(CC(O)=O)CCCC1 FWPVKDFOUXHOKQ-UHFFFAOYSA-N 0.000 description 1
- AJTVSSFTXWNIRG-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid Chemical compound OCC[NH+](CCO)CCS([O-])(=O)=O AJTVSSFTXWNIRG-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- GPICKHDXBPTBLD-UHFFFAOYSA-N 2-methylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(C)(CC(O)=O)C(O)=O GPICKHDXBPTBLD-UHFFFAOYSA-N 0.000 description 1
- JKTORXLUQLQJCM-UHFFFAOYSA-N 4-phosphonobutylphosphonic acid Chemical compound OP(O)(=O)CCCCP(O)(O)=O JKTORXLUQLQJCM-UHFFFAOYSA-N 0.000 description 1
- 239000007991 ACES buffer Substances 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 239000005465 B01AC22 - Prasugrel Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 206010051055 Deep vein thrombosis Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229940123900 Direct thrombin inhibitor Drugs 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 229940117942 Factor IX inhibitor Drugs 0.000 description 1
- 108010023321 Factor VII Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 229940105278 Factor XI inhibitor Drugs 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000002298 Purinergic P2Y Receptors Human genes 0.000 description 1
- 108010000818 Purinergic P2Y Receptors Proteins 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 102000003938 Thromboxane Receptors Human genes 0.000 description 1
- 108090000300 Thromboxane Receptors Proteins 0.000 description 1
- 108010059382 Zea mays trypsin inhibitor Proteins 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229940000279 aggrastat Drugs 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 239000000729 antidote Substances 0.000 description 1
- 229940075522 antidotes Drugs 0.000 description 1
- 229940082620 antifibrinolytics Drugs 0.000 description 1
- 239000004019 antithrombin Substances 0.000 description 1
- 239000003698 antivitamin K Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940090880 ardeparin Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QNSOHXTZPUMONC-UHFFFAOYSA-N benzene-1,2,3,4,5-pentacarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O QNSOHXTZPUMONC-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960001080 cangrelor Drugs 0.000 description 1
- COWWROCHWNGJHQ-OPKBHZIBSA-J cangrelor tetrasodium Chemical compound [Na+].[Na+].[Na+].[Na+].C1=NC=2C(NCCSC)=NC(SCCC(F)(F)F)=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)C(Cl)(Cl)P([O-])([O-])=O)[C@@H](O)[C@H]1O COWWROCHWNGJHQ-OPKBHZIBSA-J 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960003009 clopidogrel Drugs 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229960004969 dalteparin Drugs 0.000 description 1
- 229960003828 danaparoid Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000010102 embolization Effects 0.000 description 1
- 229960000610 enoxaparin Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960004468 eptifibatide Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940056984 integrilin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 229940076483 kcentra Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002625 monoclonal antibody therapy Methods 0.000 description 1
- 229960000899 nadroparin Drugs 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229940127065 non-vitamin K antagonist oral anticoagulant Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940089787 novel oral anticoagluant drug Drugs 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 229940020573 plavix Drugs 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920003258 poly(methylsilmethylene) Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- DTGLZDAWLRGWQN-UHFFFAOYSA-N prasugrel Chemical compound C1CC=2SC(OC(=O)C)=CC=2CN1C(C=1C(=CC=CC=1)F)C(=O)C1CC1 DTGLZDAWLRGWQN-UHFFFAOYSA-N 0.000 description 1
- 229960004197 prasugrel Drugs 0.000 description 1
- 229940096959 praxbind Drugs 0.000 description 1
- 238000012802 pre-warming Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000013061 process characterization study Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000003805 procoagulant Substances 0.000 description 1
- 230000008742 procoagulation Effects 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 229940107685 reopro Drugs 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001210 retinal vessel Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 230000003582 thrombocytopenic effect Effects 0.000 description 1
- 201000005665 thrombophilia Diseases 0.000 description 1
- 201000005060 thrombophlebitis Diseases 0.000 description 1
- RZWIIPASKMUIAC-VQTJNVASSA-N thromboxane Chemical compound CCCCCCCC[C@H]1OCCC[C@@H]1CCCCCCC RZWIIPASKMUIAC-VQTJNVASSA-N 0.000 description 1
- OEKWJQXRCDYSHL-FNOIDJSQSA-N ticagrelor Chemical compound C1([C@@H]2C[C@H]2NC=2N=C(N=C3N([C@H]4[C@@H]([C@H](O)[C@@H](OCCO)C4)O)N=NC3=2)SCCC)=CC=C(F)C(F)=C1 OEKWJQXRCDYSHL-FNOIDJSQSA-N 0.000 description 1
- 229960002528 ticagrelor Drugs 0.000 description 1
- 229960005062 tinzaparin Drugs 0.000 description 1
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 description 1
- 229960003425 tirofiban Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940019333 vitamin k antagonists Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/19—Platelets; Megacaryocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
- A61K31/245—Amino benzoic acid types, e.g. procaine, novocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
- A61K31/37—Coumarins, e.g. psoralen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7008—Compounds having an amino group directly attached to a carbon atom of the saccharide radical, e.g. D-galactosamine, ranimustine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7016—Disaccharides, e.g. lactose, lactulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/726—Glycosaminoglycans, i.e. mucopolysaccharides
- A61K31/727—Heparin; Heparan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0644—Platelets; Megakaryocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
Definitions
- This disclosure serves to describe the use of thrombosomes as a treatment for drug- induced coagulopathy.
- Anticoagulant drugs such as warfarin, heparin, and the NOAC class inhibit various plasma factors of the coagulation cascade, resulting in increased bleeding potential.
- warfarin, heparin, and the NOAC class inhibit various plasma factors of the coagulation cascade, resulting in increased bleeding potential.
- thrombosomes circumvent or overcome this inhibition to restore hemostasis.
- Anticoagulant drugs are common in the U.S. adult population and employ a wide variety of mechanisms to disable segments of the clotting cascade. Anticoagulants are used to treat a number of cardiac or thromboembolic events.
- warfarin e.g., COUMADIN®
- COUMADIN® is approved for the prophylaxis and treatment of venous thrombosis and its extension, pulmonary embolism; the prophylaxis and treatment of thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement; the reduction in the risk of death, recurrent myocardial infarction, and thromboembolic events such as stroke or systemic embolization after myocardial infarction (see, e.g., Prescribing Information for warfarin (COUMADIN®)).
- COUMADIN® Prescribing Information for warfarin
- heparin is approved for the treatment of thrombophlebitis, phlebothrombosis, and cerebral, coronary, and retinal vessel thrombosis to prevent extension of clots and thromboembolic phenomena. It is also used prophylactically to prevent the occurrence of thromboembolism, and to prevent clotting during dialysis and surgical procedures, particularly vascular surgery.
- Other drugs that have anticoagulant properties can include agents that inhibit factor Ila (thrombin) (also called anti-IIa agents, thrombin inhibitors, or direct thrombin inhibitors, depending on the mechanism of action), including dabigatran (e.g., PRADAXA®), argatroban, and hirudin; and agents that inhibit factor Xa, including rivaroxaban (e.g., XARELTO®), apixaban (e.g., ELIQUIS®), edoxaban (e.g., SAVAYSA®), and fondaparinux (e.g., ARIXTRA®).
- thrombin also called anti-IIa agents, thrombin inhibitors, or direct thrombin inhibitors, depending on the mechanism of action
- dabigatran e.g., PRADAXA®
- argatroban argatroban
- hirudin agents that inhibit factor Xa
- agents that inhibit factor Xa including rivarox
- Traditional anticoagulants can include warfarin (e.g., COUMADIN®) and heparin / LMWH (low molecular weight heparins). Additional anticoagulants include heparainoids, factor IX inhibitors, Factor XI inhibitors, Factor Vila inhibitors, and Tissue Factor inhibitors.
- warfarin e.g., COUMADIN®
- heparin / LMWH low molecular weight heparins
- Additional anticoagulants include heparainoids, factor IX inhibitors, Factor XI inhibitors, Factor Vila inhibitors, and Tissue Factor inhibitors.
- ADEs inpatient ADEs
- Warfarin has been implicated in 17% of all emergency hospital visits in adults >65 years. At least 2000 patients suffer fatal bleeding after vitamin K-antagonist therapy with warfarin.
- Warfarin reversal therapies can also be very expensive, with the exception of vitamin K - which may be no less dangerous than warfarin.
- Kcentra Prothrombin complex concentrate; PCC
- NOACs have similar bleeding risk to coumadin, cannot be monitored and present a challenge for reversal situations when emergency surgery is required.
- a method of treating a coagulopathy in a subject including administering to the subject in need thereof an effective amount of a composition including platelets or platelet derivatives and an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a method of treating a coagulopathy in a subject including administering to the subject in need thereof an effective amount of a composition prepared by a process including incubating platelets with an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- a method of restoring normal hemostasis in a subject including administering to the subject in need thereof an effective amount of a composition including platelets or platelet derivatives and an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a method of restoring normal hemostasis in a subject including administering to the subject in need thereof an effective amount of a composition prepared by a process including incubating platelets with an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- a method of preparing a subject for surgery including administering to the subject in need thereof an effective amount of a composition including platelets or platelet derivatives and an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Implementations can include one or more of the following features.
- the surgery can be an emergency surgery.
- the surgery can be a scheduled surgery.
- a method of preparing a subject for surgery including administering to the subject in need thereof an effective amount of a composition prepared by a process including incubating platelets with an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Implementations can include one or more of the following features.
- the surgery can be an emergency surgery.
- the surgery can be a scheduled surgery.
- the subject has been treated or is being treated with an anticoagulant.
- treatment with the anticoagulant can be stopped.
- treatment with the anticoagulant can be continued.
- provided herein is a method of ameliorating the effects of an anticoagulant in a subject, the method including administering to the subject in need thereof an effective amount of a composition including platelets or platelet derivatives and an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a method of ameliorating the effects of an anticoagulant in a subject the method including administering to the subject in need thereof an effective amount of a composition prepared by a process including incubating platelets with an incubating agent including one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- the effects of the anticoagulant can be the result of an overdose of the anticoagulant.
- the anticoagulant can be selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, a low molecular weight heparin, and a supplement.
- the anticoagulant can be warfarin.
- the anticoagulant can be heparin.
- the subject before the administering, can have an INR of at least 4.0. In some embodiments, after the administering, the subject can have an INR of 3.0 or less. In some embodiments, after the administering, the subject can have an INR of 2.0 or less.
- the subject before the administering, can have an INR of at least 3.0. In some embodiments, after the administering, the subject can have an INR of 2.0 or less.
- Administering can include administering topically.
- Administering can include administering parenterally.
- Administering can include administering intravenously.
- Administering can include administering intramuscularly.
- Administering can include administering intrathecally.
- Administering can include administering subcutaneously.
- Administering can include administering intraperitoneally.
- the composition can be dried prior to the administration step.
- the composition can be rehydrated following the drying step.
- the composition can be freeze-dried prior to the administration step.
- the composition can be rehydrated following the freeze-drying step.
- the incubating agent can include one or more salts selected from phosphate salts, sodium salts, potassium salts, calcium salts, magnesium salts, and a combination of two or more thereof.
- the incubating agent can include a carrier protein.
- the buffer can include HEPES, sodium bicarbonate (NaHCCh), or a combination thereof.
- the composition can include one or more saccharides.
- the one or more saccharides can include trehalose.
- the one or more saccharides can include polysucrose.
- the one or more saccharides can include dextrose.
- the composition can include an organic solvent.
- the platelets or platelet derivatives can include thrombosomes.
- Figure 1 shows peak thrombin generation obtained by adding 400 x 10 3 /pL thrombosomes to warfarin plasma at various INR levels.
- FIG. 2 shows endogenous thrombin potential (ETP) values obtained by adding
- Figure 3 shows peak thrombin generation by thrombosomes and by fresh platelets in INR 2 warfarin plasma.
- Figure 4 shows the effect on r-time of warfarin plasma samples in a TEG assay as a result of the addition of 300 x 10 3 /pL thrombosomes.
- Figure 5 shows that thrombosomes provide a dose-dependent increase in peak thrombin generation.
- Figure 6 shows a plot of the concentration of platelets or thrombosomes versus peak thrombin generation.
- Figure 7A shows a plot of the concentration of platelets, thrombosomes, or a combination thereof versus peak thrombin generation in INR-2 plasma.
- Figure 7B shows thrombin generation in INR-1 plasma, INR-2 plasma (treated with warfarin), and INR-2 plasma (treated with warfarin) plus thrombosomes (150 x 10 3 /pL), for four different batches of thrombosomes.
- Figure 8 shows the generation of thrombus by thrombosomes in warfarin plasma in a shear-dependent collagen adhesion assay under flow (T-TAS®)
- Figure 9 shows a plot of the time to generation of thrombus increasing with increasing concentrations of rivaroxaban in whole blood (WB).
- Figure 10A shows a plot of the time to generation of thrombus in the presence of
- Figure 10B shows a plot of the time to generation of thrombus in control plasma, in plasma treated with 3 mM rivaroxaban, and in plasma treated with 3 mM rivaroxaban and 300 x 10 3 /pL thrombosomes.
- Figure IOC shows a plot of the time to generation of occulsion of T-TAS® AR chip from Figure 10B.
- Figure 15 shows a plot of the decrease in lag time for samples with different INR values supplemented thrombosomes.
- Figure 16 is an exemplary thrombelastography (TEG) waveform with parameters labeled.
- Figure 17 is a plot of R-time for various INR values of warfarin plasma, with or without supplementation with various concentrations of thrombosomes.
- Figure 18 is a plot of activated clotting time in plasma levels of various INR levels, with and without supplemented thrombosomes.
- Figure 20A shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1 and 2.
- Figure 20B shows the effect on peak thrombin generation of thrombosomes in plasma with an INR of 3.
- Figure 20C shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1 and 6.
- Figure 21A shows the effect on endogenous thrombin potential of thrombosomes in plasma with INRs of 1 and 2.
- Figure 21B shows the effect on endogenous thrombin potential of thrombosomes in plasma with an INR of 3.
- Figure 21C shows the effect on endogenous thrombin potential of thrombosomes in plasma with INRs of 1 and 6.
- Figure 22A shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1, 2, 3, and 6 (left) and a zoomed-in image of the same data from 0 to 30 nM (right) for a replicate of thrombosomes batch 1.
- Figure 22B shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1, 2, 3, and 6 for a replicate of thrombosomes batch 1.
- Figure 22C shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1, 2, 3, and 6 for a replicate of thrombosomes batch 1.
- Figure 22D shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1, 2, 3, and 6 (left) and a zoomed-in image of the same data from 0 to 2.5 nM (right) for thrombosomes batch 2.
- Figure 22E shows the effect on peak thrombin generation of thrombosomes in plasma with INRs of 1, 2, and 3 for thrombosomes batch 3.
- Figure 23A shows aPTT values for plasma and plasma treated with heparin.
- Figure 23B shows thrombin generation for plasma treated with heparin, with the addition of fresh platelets or thrombosomes initiated with PPP low reagent.
- Figure 23C shows thrombin generation for plasma treated with heparin, with the addition of fresh platelets or thrombosomes initiated with PRP reagent.
- Figure 24A shows aPTT values for plasma, plasma treated with heparin, and plasma treated with heparin and protamine sulfate.
- Figure 24B shows thrombin generation for plasma treated with heparin and thrombosomes, without (relatively flat lines) or with (curves) addition of protamine sulfate, initiated with PPP low reagent.
- Figure 24C shows thrombin generation for plasma treated with heparin and thrombosomes, without (relatively flat lines) or with (curves) addition of protamine sulfate, initiated with PRP reagent.
- Figure 25A shows thrombin generation for control plasma, plasma treated with dabigatran, or plasma treated with dabigatran and thrombosomes initiated with PRP reagent.
- Figure 25B shows the time to peak (TTP) in a thrombin generation assay for control plasma, plasma treated with dabigatran, or plasma treated with dabigatran and thrombosomes initiated with PRP reagent.
- platelet can include whole platelets, fragmented platelets, platelet derivatives, or thrombosomes.
- Platelets within the above definition may include, for example, platelets in whole blood, platelets in plasma, platelets in buffer optionally supplemented with select plasma proteins, cold stored platelets, dried platelets, cryopreserved platelets, thawed cryopreserved platelets, rehydrated dried platelets, rehydrated cryopreserved platelets, lyopreserved platelets, thawed lyopreserved platelets, or rehydrated lyopreserved platelets.
- Platelets may be “platelets” of mammals, such as of humans, or such as of non-human mammals.
- thrombosomes (sometimes also herein called “Tsomes” or
- Ts are platelet derivatives that have been treated with an incubating agent (e.g., any of the incubating agents described herein) and lyopreserved (such as freeze-dried).
- an incubating agent e.g., any of the incubating agents described herein
- lyopreserved such as freeze-dried
- thrombosomes can be prepared from pooled platelets. Thrombosomes can have a shelf life of 2-3 years in dry form at ambient temperature and can be rehydrated with sterile water within minutes for immediate infusion.
- THROMBOSOMES® which are in clinical trials for the treatment of acute hemorrhage in thrombocytopenic patients. Agents that inhibit Factor Ila, Vila, IX, Xa, XI,
- Tissue Factor or vitamin K-dependent synthesis of clotting factors (e.g., Factor II, VII, IX, or X) or that activate antithrombin (e.g., antithrombin III) are anticoagulants for the purpose of the present disclosure.
- clotting factors e.g., Factor II, VII, IX, or X
- antithrombin e.g., antithrombin III
- Other mechanisms of anticoagulants are known.
- Non-limiting examples of anticoagulants include dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, and low molecular weight heparins (e.g., dalteparin, enoxaparin, tinzaparin, ardeparin, nadroparin, reveparin, danaparoid).
- anticoagulants include tifacogin, Factor VIlai, SB249417, pegnivacogin (with or without anivamersen), TTP889, idraparinux, idrabiotaparinux, SR23781A, apixaban, betrixaban, lepirudin, bivalirudin, ximelagatran, phenprocoumon, acenocoumarol, indandiones, and fluindione.
- the anticoagulant is selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, low molecular weight heparins, tifacogin, Factor VIlai, SB249417, pegnivacogin (with or without anivamersen), TTP889, idraparinux, idrabiotaparinux, SR23781A, apixaban, betrixaban, lepirudin, bivalirudin, ximelagatran, phenprocoumon, acenocoumarol, indandiones, and fluindione.
- an "anticoagulant” is an antithrombotic that does not include antiplatelet agents.
- antiplatelet agents include aspirin, cangrelor, ticagrelor, clopidogrel (e.g., PLAVIX®), prasugrel eptifibatide (e.g., INTEGRILIN®), tirofiban (e.g., AGGRASTAT®), and abciximab (e.g., REOPRO®).
- agents that inhibit P2Y receptors e.g., P2Y12
- glycoprotein Ilb/IIIa or that antagonize thromboxane synthase or thromboxane receptors
- Other mechanisms of antiplatelet agents are known.
- aspirin is considered to be an antiplatelet agent but not an anticoagulant.
- Warfarin e.g., COUMADIN®
- COUMADIN® prothrombin complex concentrate
- Vitamin K is low-cost and slow acting (more than 24hrs PO) but can pose significant risk of inducing thrombosis in the patient, while PCC is expensive at roughly $5000/dose.
- Dabigatran e.g., PRADAXA®
- Dabigatran is a direct inhibitor of thrombin.
- the monoclonal antibody therapy idarucizumab (e.g., PRAXBIND®, Boehringer-Ingelheim, Germany) at dose of 5 grams (at two dose intervals each 2.5grams) can typically reverse the effects of dabigatran within a few minutes.
- One wholesale price is $3482.50 for such a treatment.
- Rivaroxaban e.g., XARELTO®
- Rivaroxaban is a direct Factor Xa inhibitor.
- Rivaroxaban is reversed by Andexanet Alfa (e.g., ANDEXXA®), a recombinant Factor Xa decoy. This treatment can cost roughly $50,000 for a high-dose treatment.
- Apixaban e.g., ELIQUIS®
- Apixaban is a direct Factor Xa inhibitor.
- Apixaban is reversed by Andexanet Alfa, a recombinant Factor Xa decoy. This treatment costs roughly can cost $50,000 for a high-dose treatment.
- Edoxaban e.g., SAVAYSA®, LIXIANA®
- Edoxaban is a direct Factor Xa inhibitor. Exoxaban does not have an approved reversal agent. Ciraparantag (aripazine) and Andexanet Alfa have not been clinically proven to be appropriate.
- Heparin and low molecular weight heparins are activators of antithrombin III
- AT inactivates proteases such as thrombin and Factor Xa.
- Protamine sulfate is a highly positively-charged polypeptide that binds to the negatively charged heparin and prevents its action on AT. Protamine sulfate is typically dosed at about 1.0 to about 1.5 mg/100 IU of active heparin.
- Platelet-derived products are not currently used as a treatment method for anticoagulant drugs.
- Treatments for anticoagulant drugs are not necessarily targeted antidotes.
- Some novel anticoagulant treatments such as Andexanet Alfa (e.g., ANDEXXA®), have seen some success, yet can be expensive.
- emergency treatments pre-op, trauma, and the like
- Non-limiting examples include infusion of plasma, red blood cells, and anti-fibrinolytics.
- Platelet derivatives e.g., lyopreserved platelets (e.g., thrombosomes)
- thrombosomes can work at least in part by providing a procoagulant negatively charged surface to augment thrombin generation above and beyond that suppressed by the anti-coagulants.
- Products and methods are described herein for controlling bleeding and improving healing.
- the products and methods described herein can also be used to counteract the activity of an anticoagulant (e.g., warfarin (e.g., COUMADIN®), heparin, LMWH, dabigatran (e.g., PRADAXA®), argatroban, hirudin, rivaroxaban (e.g., XARELTO®), apixaban (e.g., ELIQUIS®), edoxaban (e.g., SAVAYSA®), fondaparinux (e.g., ARIXTRA®).
- warfarin e.g., COUMADIN®
- heparin LMWH
- dabigatran e.g., PRADAXA®
- argatroban hirudin
- rivaroxaban e.g., XARELTO®
- apixaban e.g., ELIQUIS®
- a composition comprising platelets such as lyophilized platelets or platelet derivatives may be delivered to a wound on the surface of or in the interior of a patient.
- a composition comprising platelets or platelet derivatives can be applied in selected forms including, but not limited to, adhesive bandages, compression bandages, liquid solutions, aerosols, matrix compositions, and coated sutures or other medical closures.
- a platelet derivative may be administered to all or only a portion of an affected area on the surface of a patient.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives may be administered systemically, for example via the blood stream.
- an application of the platelet derivative can produce hemostatic effects for 2 or 3 days, preferably 5 to 10 days, or most preferably for up to 14 days.
- Some embodiments provide a method of treating a coagulopathy in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant (also called a lyophilizing agent), and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant (also called a lyophilizing agent), and optionally an organic solvent.
- Some embodiments provide a method of treating a coagulopathy in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- the coagulopathy is the result of an anticoagulant.
- Some embodiments provide a method of treating coagulopathy in a subject, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of treating coagulopathy in a subject, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Some embodiments provide a method of restoring normal hemostasis in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of restoring normal hemostasis in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Some embodiments provide a method of restoring normal hemostasis in a subject, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of restoring normal hemostasis in a subject, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- compositions as described herein can also be administered to prepare a subject for surgery, in some cases.
- an anticoagulant it may be difficult or impossible to reduce the dosage of the anticoagulant before surgery (e.g., in the case of trauma or other emergency surgery).
- it may be inadvisable to reduce the dosage of the anticoagulant before surgery e.g., if the patient would be at risk of a thrombotic event (e.g., deep vein thrombosis, pulmonary embolism, or stroke) if the dosage of the anticoagulant were reduced over time.
- a thrombotic event e.g., deep vein thrombosis, pulmonary embolism, or stroke
- some embodiments provide a method of preparing a subject for surgery, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of preparing a subject for surgery, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Some embodiments provide a method of preparing a subject for surgery, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of preparing a subject for surgery, wherein the subject has been treated or is being treated with an anticoagulant, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- a surgery can be an emergency surgery (e.g., in the case of trauma) or a scheduled surgery.
- treatment with an anticoagulant can be stopped (e.g., in preparation for surgery). In some embodiments, treatment with an anticoagulant can continue.
- the subject may or may not be also treated with an anticoagulant reversal agent (e.g., idarucizumab, Andexanet Alfa, Ciraparantag (aripazine), protamine sulfate, vitamin K).
- an anticoagulant reversal agent e.g., idarucizumab, Andexanet Alfa, Ciraparantag (aripazine), protamine sulfate, vitamin K.
- the subject is not also treated with an anticoagulant reversal agent.
- the subject is also treated with an anticoagulant reversal agent. It will be understood that an anticoagulant reversal agent can be chosen based on the anticoagulant administered to the subject.
- Some embodiments provide a method of ameliorating the effects of an anticoagulant in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of ameliorating the effects of an anticoagulant in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- the effects of an anticoagulant may need to be ameliorated due to an incorrect dosage of an anticoagulant.
- the effects of an anticoagulant can be ameliorated following an overdose of the anticoagulant.
- the effects of an anticoagulant may need to be ameliorated due to a potential for interaction with another drug (e.g., a second anticoagulant).
- the effects of an anticoagulant can be ameliorated following an erroneous dosing of two or more drugs, at least one of which is an anticoagulant.
- the composition can further comprise an active agent, such as an anti-fibrinolytic agent.
- Non-limiting examples of anti-fibrinolytic agents include e-aminocaproic acid (EACA), tranexamic acid, aprotinin, aminomethylbenzoic acid, and fibrinogen.
- EACA e-aminocaproic acid
- tranexamic acid e.g., aprotinin
- aminomethylbenzoic acid e.g., aprotinin
- fibrinogen e-aminocaproic acid
- platelets or platelet derivatives can be loaded with an active agent, such as an anti-fibrinolytic agent.
- Clotting parameters of blood can be assessed at any appropriate time during the methods described herein.
- one or more clotting parameters of blood can be assessed before administration of a composition comprising platelets such as lyophilized platelets or platelet derivatives as described herein, e.g., in order to determine the need for administration of a composition comprising platelets or platelet derivatives as described herein.
- one or more clotting parameters of blood can be assessed after administration of a composition comprising platelets such as lyophilized platelets or platelet derivatives as described herein, e.g., in order to determine the effectiveness of the administered composition, to determine whether additional administration of the composition is warranted, or to determine whether it is safe to perform a surgical procedure.
- platelets such as lyophilized platelets or platelet derivatives as described herein, e.g., in order to determine the effectiveness of the administered composition, to determine whether additional administration of the composition is warranted, or to determine whether it is safe to perform a surgical procedure.
- any of the methods described herein can include steps of assessing one or more clotting parameters of blood before administration of a composition comprising platelets or platelet derivatives as described herein, assessing one or more clotting parameters of blood after administration of a composition comprising platelets such as lyophilized platelets or platelet derivatives as described herein, or both.
- Any appropriate method can be used to assess clotting parameters of blood.
- methods include the prothrombin time assay, international normalized ratio (INR), thrombin generation (TGA; which can be used to generate parameters such as, e.g., peak thrombin, endogenous thrombin potential (ETP), and lag time), thromboelastography (TEG), activated clotting time (ACT), and partial thromboplastin time (PTT or aPTT).
- INR is a standard method of determining dosing, see equation below, where “PT(x)” is the result of the prothrombin time assay, while the ISI constant is dependent on the manufacturer of the Tissue Factor used in the prothrombin time assay.
- Warfarin inhibits the synthesis of four major plasma proteins that are integral to healthy clot formation. A therapeutic maintenance dose of warfarin is typically targeted to an INR of about 2.0 to about 3.0. Thrombosomes present a unique treatment to restore hemostasis in the presence of warfarin-type drugs. Warfarin dose can be expressed by INR, a ratio that increases with the amount of warfarin (1 is a normal value).
- a subject has an INR of more than 2.0 (e.g., at least 2.2, at least 2.4, at least 2.5, at least 2.6, at least 2.8, at least 3.0, at least 3.2, at least 3.4, at least 3.5, at least 3.6, at least 3.8, at least 4.0, at least 4.2, at least 4.4, at least 4.5, at least 4.6, at least 4.8, or at least 5.0) before administration of a composition comprising platelets such as lyophilized platelets or platelet derivatives as described herein.
- INR of more than 2.0 (e.g., at least 2.2, at least 2.4, at least 2.5, at least 2.6, at least 2.8, at least 3.0, at least 3.2, at least 3.4, at least 3.5, at least 3.6, at least 3.8, at least 4.0, at least 4.2, at least 4.4, at least 4.5, at least 4.6, at least 4.8, or at least 5.0) before administration of a composition comprising platelets such as lyophil
- a subject e.g., a subject being treated with an anticoagulant, such as warfarin
- an anticoagulant such as warfarin
- a subject has a lower INR (or a normal INR) after administration of a composition comprising platelets such as lyophilized platelets or platelet derivatives as described herein.
- a subject can have an INR of 3.0 or less (e.g., less than 2.8, less than 2.6, less than 2.5, less than 2.4, less than 2.2, less than 2.0, less than 1.8, less than 1.6, less than 1.5, less than 1.4, less than 1.2, or less than 1.0) after administration of a composition comprising platelets or platelet derivatives ad described herein.
- the thrombin generation assay measured the production of thrombin after sample activation via a pro-coagulation agent resulting of thrombin enzymatic cleavage of a fluorescent peptide and release of fluorescent molecule.
- the peak thrombin is a measure of the maximum thrombin produced, lag time, the time to start of thrombin production, and ETP as the total thrombin potentially produced.
- a patient can have a peak thrombin of about 60 nM to about 170 nM, such as about 65 nM to about 170 nM, such as about 65 nM to about 120 nM, such as about 80 nM, before administration of a composition comprising platelets or platelet derivatives as described herein.
- TEG assesses intrinsic hemostasis via plots of clot strength over time.
- Calcium chloride (CaCb) is typically used as the initiating reagent.
- a TEG waveform (see, e.g., Figure 16) has multiple parameters that can provide information about clotting.
- R-time reaction time (s) - time of latency from start of test to initial fibrin formation.
- K kinetics (s) - speed of initial fibrin formation, time taken to achieve a certain level of clot strength (e.g., an amplitude of 20 mm)
- alpha angle slope of line between R and K - measures the rate of clot formation.
- MA maximum amplitude (mm) - represents the ultimate strength of the fibrin clot.
- A30 amplitude 30 minutes after maximum amplitude is reached- represents rate of lysis phase.
- R-time increases and MA decreases.
- R-time typically provides a broader response range than MA.
- T-TAS® Total Thrombus-formation Analysis System
- FUJIMORI KOGYO CO., LTD the sample is forced through collagen-coated microchannels using mineral oil. Changes in pressure are used to assess thrombus formation.
- an AR chip can be used for analyzing the formation of a mixed white thrombus consisting chiefly of fibrin and activated platelets.
- a PL chip has a flow path (300 pm wide by 50 pm high) coated with collagen and tissue factors and can be used to analyze the clotting function and platelet function.
- a PL chip can be used for analyzing the formation of a platelet thrombus consisting chiefly of activated platelets.
- a PL chip has a flow path coated with collagen only and can be used to analyze the platelet function.
- the ACT assay is the most basic, but possibly most reliable, way to measure clotting time (tAcr), determined by a magnet’s resistance to gravity as a clot forms around it.
- Typical donor blood has a tACT ⁇ 200-300s using only CaCh.
- Some embodiments provide a method of increasing thrombin generation in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of increasing peak thrombin in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- a composition comprising platelets such as lyophilized platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Some embodiments provide a method of increasing peak thrombin in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- the peak thrombin of the subject was below 66 nM (e.g., below 64 nM, 62 nM, 60 nM, 55 nM, 50 nM, 45 nM, 40 nM, 35 nM, 30 nM, 25 nM, 20 nM, 15 nM, 10 nM, or 5 nM).
- the peak thrombin of the subject is above 66 nM (e.g., above 68 nM, 70 nM, 75 nM, 80 nM, 85 nM, 90 nM, 95 nM, 100 nM, 110 nM, 120 nM, 130 nM, 140 nM, or 150 nM). In some embodiments, after the administering, the peak thrombin of the subject is between 66 and 166 nM. Peak thrombin can be measured by any appropriate method.
- an “effective amount” as used herein is an amount of the composition that comprises an amount of platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes) effective in treating the subject.
- Such an amount of platelets or platelet derivatives (e.g., thrombosomes) includes any appropriate dosage of a composition comprising platelets or platelet derivatives as described herein that can be administered to the subject.
- a dose of a composition comprising platelets or platelet derivatives can include about 1.0 x 10 7 particles to about 1.0 x 10 10 particles, such as about 1.6 x 10 7 particles (e.g., thrombosomes)/kg to about 1.0 x 10 10 particles/kg (e.g., about 1.6 x 10 7 to about 5.1 x 10 9 particles/kg, about 1.6 x 10 7 to about 3.0 x 10 9 particles/kg, about 1.6 x 10 7 to about 1.0 x 10 9 particles/kg, about 1.6 x 10 7 to about 5.0 x 10 8 particles/kg, about 1.6 x 10 7 to about 1.0 x 10 8 particles/kg, about 1.6 xlO 7 to about 5.0 x 10 7 particles/kg, about 5.0 x 10 7 to about 1.0 x 10 8 particles/kg, about 1.0 x 10 8 to about 5.0 x 10 8 particles/kg, about 5.0 x 10 7 particles/kg, about 5.0 x 10 7 to about 1.0 x
- topical administration can include administration via a solution, cream, gel, suspension, putty, particulates, or powder.
- topical administration can include administration via a bandage (e.g. an adhesive bandage or a compression bandage) or medical closure (e.g., sutures, staples)); for example the platelet derivatives (e.g., lyopreserved platelets (e.g., thrombosomes)) can be embedded therein or coated thereupon), as described in PCT Publication No. W02017/040238 (e.g., paragraphs [013]-[069]), corresponding to U S. Patent Application Serial number 15/776,255, the entirety of which is herein incorporated by reference.
- the composition is administered parenterally.
- the composition is administered intravenously.
- the composition is administered intramuscularly.
- the composition is administered intrathecally.
- the composition is administered subcutaneously.
- the composition is administered intraperitoneally.
- the composition is dried prior to the administration step. In some embodiments of the method, the composition is freeze-dried prior to the administration step. In some embodiments of the method, the composition is rehydrated following the drying or freeze-drying step.
- the anticoagulant is selected from the group consisting of an anti-factor Ila agent such as dabigatran (e.g., PRADAXA®), argatroban, or hirudin; an anti factor Xa agent such as rivaroxaban (e.g., XARELTO®), apixaban (e.g., ELIQUIS®), edoxaban (e.g., SAVAYSA®), or fondaparinux (e.g., ARIXTRA®); a traditional anticoagulant such as warfarin (e.g., COUMADIN®) and heparin / LMWH (low molecular weight heparins); supplements such as herbal supplements, and a combination thereof. Examples of supplements include garlic, coenzyme CoQlO, glucosamine, glucosamine-condroitin sulfate. A non-limiting example of an herbal supplement is garlic.
- an anti-factor Ila agent such as dabigatran (e.g.,
- the anticoagulant is dabigatran (e.g., PRADAXA®).
- the anticoagulant is argatroban.
- the anticoagulant is hirudin.
- the anticoagulant is rivaroxaban (e.g., XARELTO®).
- the anticoagulant is apixaban (e.g., ELIQUIS®).
- the anticoagulant is edoxaban (e.g., SAVAYSA®).
- the anticoagulant is fondaparinux (e.g., ARIXTRA®).
- the anticoagulant is heparin or a low molecular weight heparin (LMWH).
- LMWH low molecular weight heparin
- the anticoagulant is warfarin (e.g., COUMADIN®).
- the anticoagulant is tifacogin.
- the anticoagulant is Factor Vllai.
- the anticoagulant is SB249417.
- the anticoagulant is pegnivacogin (with or without anivamersen).
- the anticoagulant is TTP889.
- the anticoagulant is idraparinux.
- the anticoagulant is idrabiotaparinux.
- the anticoagulant is SR23781A.
- the anticoagulant is apixaban.
- the anticoagulant is betrixaban.
- the anticoagulant is lepirudin. [00153] In some embodiments, the anticoagulant is bivalirudin.
- the anticoagulant is ximelagatran.
- the anticoagulant is phenprocoumon.
- the anticoagulant is acenocoumarol.
- the anticoagulant an indandione.
- the anticoagulant is fluindione.
- the anticoagulant is a supplement.
- the anticoagulant is an herbal supplement.
- the aqueous liquid is water.
- the aqueous liquid is an aqueous solution (e.g., a buffer).
- the aqueous liquid is a saline solution.
- the aqueous liquid is a suspension.
- the rehydrated platelets or platelet derivatives e.g., thrombosomes
- the platelets or platelet derivatives have less than about 10%, such as less than about 8%, such as less than about 6%, such as less than about 4%, such as less than about 2%, such as less than about 0.5% crosslinking of platelet membranes via proteins and/or lipids present on the membranes.
- the rehydrated platelets or platelet derivatives e.g., thrombosomes
- the platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes) have a particle size (e.g., diameter, max dimension) of at least about 0.2 pm (e.g., at least about 0.3 pm, at least about 0.4 pm, at least about 0.5 pm, at least about 0.6 pm, at least about 0.7 pm, at least about 0.8 pm, at least about 0.9 pm, at least about 1.0 pm, at least about 1.2 pm, at least about 1.5 pm, at least about 2.0 pm, at least about 2.5 pm, or at least about 5.0 pm).
- a particle size e.g., diameter, max dimension
- the particle size is less than about 5.0 pm (e.g., less than about 2.5 pm, less than about 2.0 pm, less than about 1.5 pm, less than about 1.0 pm, less than about 0.9 mih, less than about 0.8 mih, less than about 0.7 mih, less than about 0.6 mhi, less than about 0.5 mih, less than about 0.4 mih, or less than about 0.3 mhi).
- the particle size is from about 0.3 mih to about 5.0 mhi (e.g., from about 0.4 mih to about 4.0 mih, from about 0.5 mih to about 2.5 mih, from about 0.6 mih to about 2.0 mih, from about 0.7 mhi to about 1.0 mih, from about 0.5 mih to about 0.9 mih, or from about 0.6 mih to about 0.8 mih).
- At least 50% (e.g., at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 99%) of platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes), have a particle size in the range of about 0.3 pm to about 5.0 pm (e.g., from about 0.4 pm to about 4.0 pm, from about 0.5 pm to about 2.5 pm, from about 0.6 pm to about 2.0 pm, from about 0.7 pm to about 1.0 pm, from about 0.5 pm to about 0.9 pm, or from about 0.6 pm to about 0.8 pm).
- At most 99% e.g., at most about 95%, at most about 80%, at most about 75%, at most about 70%, at most about 65%, at most about 60%, at most about 55%, or at most about 50%
- the platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes)
- lyophilized platelets or platelet derivatives e.g., thrombosomes
- about 50% to about 99% (e.g., about 55% to about 95%, about 60% to about 90%, about 65% to about 85, about 70% to about 80%) of the platelets are in the range of about 0.3 pm to about 5.0 pm (e.g., from about 0.4 pm to about 4.0 pm, from about 0.5 pm to about 2.5 pm, from about 0.6 pm to about 2.0 pm, from about 0.7 pm to about 1.0 pm, from about 0.5 pm to about 0.9 pm, or from about 0.6 pm to about 0.8 pm).
- platelets are isolated, for example in a liquid medium, prior to treating a subject.
- platelets are donor-derived platelets.
- platelets are obtained by a process that comprises an apheresis step.
- platelets are pooled platelets.
- platelets are pooled from a plurality of donors. Such platelets pooled from a plurality of donors may be also referred herein to as pooled platelets.
- the donors are more than 5, such as more than 10, such as more than 20, such as more than 50, such as up to about 100 donors.
- the donors are from about 5 to about 100, such as from about 10 to about 50, such as from about 20 to about 40, such as from about 25 to about 35. Pooled platelets can be used to make any of the compositions described herein.
- platelets are derived in vitro. In some embodiments, platelets are derived or prepared in a culture. In some embodiments, preparing the platelets comprises deriving or growing the platelets from a culture of megakaryocytes. In some embodiments, preparing the platelets comprises deriving or growing the platelets (or megakaryocytes) from a culture of human pluripotent stem cells (PCSs), including embryonic stem cells (ESCs) and/or induced pluripotent stem cells (iPSCs).
- PCSs human pluripotent stem cells
- ESCs embryonic stem cells
- iPSCs induced pluripotent stem cells
- platelets are prepared prior to treating a subject as described herein.
- the platelets are lyophilized.
- the platelets are cryopreserved.
- the platelets or pooled platelets may be acidified to a pH of about 6.0 to about 7.4 prior to the incubation with the incubating agent.
- the method comprises acidifying the platelets to a pH of about 6.5 to about 6.9.
- the method comprises acidifying the platelets to a pH of about 6.6 to about 6.8.
- the acidifying comprises adding to the pooled platelets a solution comprising Acid Citrate Dextrose (ACD).
- the platelets are isolated prior to the incubation with the incubating agent.
- the method further comprises isolating platelets by using centrifugation.
- the centrifugation occurs at a relative centrifugal force (RCF) of about 1000 xg to about 2000 x g. In some embodiments, the centrifugation occurs at relative centrifugal force (RCF) of about 1300 x g to about 1800 x . In some embodiments, the centrifugation occurs at relative centrifugal force (RCF) of about 1500 xg. In some embodiments, the centrifugation occurs for about 1 minute to about 60 minutes.
- RCF relative centrifugal force
- an incubating agent can include any appropriate components.
- the incubating agent may comprise a liquid medium.
- the incubating agent may comprise one or more salts selected from phosphate salts, sodium salts, potassium salts, calcium salts, magnesium salts, and any other salt that can be found in blood or blood products, or that is known to be useful in drying platelets, or any combination of two or more of these.
- the incubating agent comprises one or more salts, such as phosphate salts, sodium salts, potassium salts, calcium salts, magnesium salts, and any other salt that can be found in blood or blood products.
- exemplary salts include sodium chloride (NaCl), potassium chloride (KC1), and combinations thereof.
- the incubating agent includes from about 0.5 mM to about 100 mM of the one or more salts.
- the incubating agent includes from about 0.5 mM to about 100 mM (e.g., about 0.5 to about 2 mM, about 2 mM to about 90 mM, about 2 mM to about 6 mM, about 50 mM to about 100 mM, about 60 mM to about 90 mM, about 70 to about 85 mM) about of the one or more salts.
- the incubating agent includes about 5 mM, about 60 mM, about 65 mM, about 70 mM, about 75 mM, or about 80 mM of the one or more salts.
- the incubating agent comprises one or more salts selected from calcium salts, magnesium salts, and a combination of the two, in a concentration of about 0.5 mM to about 2 mM.
- these salts are present in the composition comprising platelets or platelet derivatives, such as freeze-dried platelets, at an amount that is about the same as is found in whole blood.
- the incubating agent further comprises a carrier protein.
- the carrier protein comprises human serum albumin, bovine serum albumin, or a combination thereof. In some embodiments, the carrier protein is present in an amount of about 0.05% to about 1.0% (w/v).
- the incubating agent may be any buffer that is non-toxic to the platelets and provides adequate buffering capacity to the solution at the temperatures at which the solution will be exposed during the process provided herein.
- the buffer may comprise any of the known biologically compatible buffers available commercially, such as phosphate buffers, such as phosphate buffered saline (PBS), bicarbonate/carbonic acid, such as sodium-bicarbonate buffer, N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid (HEPES), and tris-based buffers, such as tris-buffered saline (TBS).
- PBS phosphate buffered saline
- bicarbonate/carbonic acid such as sodium-bicarbonate buffer
- HEPES N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid
- TBS tris-based buffers
- buffers propane- 1,2, 3 -tricarboxylic (tricarballylic); benzenepentacarboxylic; maleic; 2,2- dimethylsuccinic; EDTA; 3,3-dimethylglutaric; bis(2- hydroxyethyl)imino- tris(hydroxymethyl)-methane (BIS-TRIS); benzenehexacarboxylic (mellitic); N-(2- acetamido)imino-diacetic acid (ADA), butane-1, 2, 3, 4-tetracarboxy lie; pyrophosphoric; 1,1-cyclopentanediacetic (3,3 tetramethylene-glutaric acid); piperazine- 1,4- bis-(2-ethanesulfonic acid) (PIPES); N-(2-acetamido )-2- amnoethanesulfonic acid (ACES); 1,1-cyclohexanediacetic; 3, 6-
- the incubating agent includes one or more buffers, e.g., N-2- hydroxyethylpiperazine-N'-2- ethanesulfonic acid (HEPES), or sodium-bicarbonate (NaHCCh).
- buffers e.g., N-2- hydroxyethylpiperazine-N'-2- ethanesulfonic acid (HEPES), or sodium-bicarbonate (NaHCCh).
- the incubating agent includes from about 5 to about 100 mM of the one or more buffers. In some embodiments, the incubating agent includes from about 5 to about 50 mM (e.g., from about 5 mM to about 40 mM, from about 8 mM to about 30 mM, about 10 mM to about 25 mM) about of the one or more buffers. In some embodiments, the incubating agent includes about 10 mM, about 20 mM, about 25 mM, or about 30 mM of the one or more buffers.
- the incubating agent includes one or more saccharides, such as monosaccharides and disaccharides, including sucrose, maltose, trehalose, glucose, mannose, dextrose, and xylose.
- the saccharide is a monosaccharide.
- the saccharide is a disaccharide.
- the saccharide is a monosaccharide, a disaccharide, or a combination thereof.
- the saccharide is a non-reducing disaccharide.
- the saccharide comprises sucrose, maltose, trehalose, glucose (e.g., dextrose), mannose, or xylose. In some embodiments, the saccharide comprises trehalose. In some embodiments, the incubating agent comprises a starch.
- the incubating agent includes polysucrose, a polymer of sucrose and epichlorohydrin. In some embodiments, the incubating agent includes from about 10 mM to about 1,000 mM of the one or more saccharides. In some embodiments, the incubating agent includes from about 50 to about 500 mM of the one or more saccharides. In embodiments, one or more saccharides is present in an amount of from 10 mM 10 to 500 mM. In some embodiments, one or more saccharides is present in an amount of from 50 mM to 200 mM. In embodiments, one or more saccharides is present in an amount from 100 mM to 150 mM.
- the one or more saccharides are the lyophilizing agent; for example, in some embodiments, the lyophilizing agent comprises trehalose, polysucrose, or a combination thereof.
- the composition comprising platelets or platelet derivatives may comprise one or more of water or a saline solution.
- the composition comprising platelets or platelet derivatives, such as freeze-dried platelets may comprise DMSO.
- the incubating agent comprises an organic solvent, such as an alcohol (e.g., ethanol).
- the amount of solvent can range from 0.1 % to 5.0 % (v/v).
- the organic solvent can range from about 0.1 % (v/v) to about 5.0 % (v/v), such as from about 0.3 % (v/v) to about 3.0 % (v/v), or from about 0.5 % (v/v) to about 2 % (v/v).
- suitable organic solvents include, but are not limited to alcohols, esters, ketones, ethers, halogenated solvents, hydrocarbons, nitriles, glycols, alkyl nitrates, water or mixtures thereof.
- suitable organic solvents includes, but are not limited to methanol, ethanol, n-propanol, isopropanol, acetic acid, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, isopropyl acetate, tetrahydrofuran, isopropyl ether (IPE), tert-butyl methyl ether, dioxane (e.g., 1,4-dioxane), acetonitrile, propionitrile, methylene chloride, chloroform, toluene, anisole, cyclohexane, hexane, heptane, ethylene glycol, nitromethane, dimethylformamide, dimethyl sulfoxide, N-methyl pyrrolidone, dimethylacetamide, and combinations thereof.
- IPE isopropyl ether
- dioxane
- the organic solvent is selected from the group consisting of ethanol, acetic acid, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide (DMSO), dioxane, methanol, n-propanol, isopropanol, tetrahydrofuran (THF), N-methyl pyrrolidone, dimethylacetamide (DMAC), or combinations thereof.
- the organic solvent comprises ethanol, DMSO, or a combination thereof.
- the presence of organic solvents, such as ethanol can be beneficial in the processing of platelets, platelet derivatives, or thrombosomes (e.g., freeze-dried platelet derivatives).
- the incubating agent is incubated into the platelets in the presence of an aqueous medium. In some embodiments the incubating agent is incubated in the presence of a medium comprising DMSO.
- one or more other components may be incubated in the platelets.
- Exemplary components may include Prostaglandin El or Prostacyclin and or EDTA/EGTAto prevent platelet aggregation and activation during the incubating process.
- Non-limiting examples of incubating agent compositions that may be used are shown in Tables 1-5.
- Buffer B can used when incubating platelets, e.g., for flow cytometry. Such an incubation can be done at room temperature in the dark. Albumin is an optional component of Buffer B.
- Table 4 is another exemplary incubating agent.
- the pH can be adjusted to 7.4 with NaOH.
- Albumin is an optional component of Buffer B.
- Table 5 is another exemplary incubating agent. The pH can be adjusted to 7.4 with NaOH. Albumin is an optional component of Buffer B.
- Table 5 is another exemplary incubating agent.
- platelets e.g., apheresis platelets, platelets isolated from whole blood, pooled platelets, or a combination thereof
- the incubating agent for different durations at or at different temperatures from 15-45 °C, or about 37°C.
- platelets e.g., apheresis platelets, platelets isolated from whole blood, pooled platelets, or a combination thereof
- a suspension in an incubating agent comprising a liquid medium at a concentration from 10,000 platelets/pL to 10,000,000 platelets/pL, such as 50,000 platelets/pL to 2,000,000 platelets/pL, such as 100,000 platelets/pL to 500,000 platelets/pL, such as 150,000 platelets/pL to 300,000 platelets/pL, such as 200,000 platelets/pL.
- the platelets may be incubated with the incubating agent for different durations, such as, for example, for at least about 5 minutes (mins) (e.g., at least about 20 mins, about 30 mins, about 1 hour (hr), about 2 hrs, about 3 hrs, about 4 hrs, about 5 hrs, about 6 hrs, about 7 hrs, about 8 hrs, about 9 hrs, about 10 hrs, about 12 hrs, about 16 hrs, about 20 hrs, about 24 hrs, about 30 hrs, about 36 hrs, about 42 hrs, about 48 hrs, or at least about 48 hrs.
- mins e.g., at least about 20 mins, about 30 mins, about 1 hour (hr)
- hr e.g., at least about 2 mins, about 3 hrs, about 4 hrs, about 5 hrs, about 6 hrs, about 7 hrs, about 8 hrs, about 9 hrs, about 10 hrs, about 12 hrs, about 16 hrs, about 20 hrs
- the platelets may be incubated with the incubating agent for no more than about 48 hrs (e.g., no more than about 20 mins, about 30 mins, about 1 hour (hr), about 2 hrs, about 3 hrs, about 4 hrs, about 5 hrs, about 6 hrs, about 7 hrs, about 8 hrs, about 9 hrs, about 10 hrs, about 12 hrs, about 16 hrs, about 20 hrs, about 24 hrs, about 30 hrs, about 36 hrs, or no more than about 42 hrs).
- 48 hrs e.g., no more than about 20 mins, about 30 mins, about 1 hour (hr), about 2 hrs, about 3 hrs, about 4 hrs, about 5 hrs, about 6 hrs, about 7 hrs, about 8 hrs, about 9 hrs, about 10 hrs, about 12 hrs, about 16 hrs, about 20 hrs, about 24 hrs, about 30 hrs, about 36 hrs, or no more than about 42 hrs).
- the platelets may be incubated with the incubating agent for from about 10 mins to about 48 hours (e.g., from about 20 mins to about 36 hrs, from about 30 mins to about 24 hrs, from about 1 hr to about 20 hrs, from about 2 hrs to about 16 hours, from about 10 mins to about 24 hours, from about 20 mins to about 12 hours, from about 30 mins to about 10 hrs, or from about 1 hr to about 6 hrs.
- 10 mins to about 48 hours e.g., from about 20 mins to about 36 hrs, from about 30 mins to about 24 hrs, from about 1 hr to about 20 hrs, from about 2 hrs to about 16 hours, from about 10 mins to about 24 hours, from about 20 mins to about 12 hours, from about 30 mins to about 10 hrs, or from about 1 hr to about 6 hrs.
- the platelets, the platelet derivatives, or the thrombosomes are incubated with the incubating agent for a period of time of 5 minutes to 48 hours, such as 10 minutes to 24 hours, such as 20 minutes to 12 hours, such as 30 minutes to 6 hours, such as 1 hour minutes to 3 hours, such as about 2 hours.
- the platelets are incubated with the incubating agents at different temperatures.
- incubation is conducted at 37°C.
- incubation is performed at 4 °C to 45°C, such as 15 °C to 42°C.
- incubation is performed at 35°C to 40°C (e.g., 37°C) for 110 to 130 (e.g., 120) minutes and for as long as 24-48 hours.
- the platelets are incubated with the incubating agent for different durations as disclosed herein, and at temperatures from 15-45 °C, or about 37°C.
- platelets e.g., apheresis platelets, platelets isolated from whole blood, pooled platelets, or a combination thereof
- the platelets can be loaded with an anti-fibrinolytic agent.
- anti-fibrinolytic agents include e-aminocaproic acid (EACA), tranexamic acid, aprotinin, aminomethylbenzoic acid, and fibrinogen.
- Loading platelets e.g., apheresis platelets, platelets isolated from whole blood, pooled platelets, or a combination thereof
- an active agent e.g., an anti-fibrinolytic agent
- the loading includes contacting the platelets with the anti-fibrinolytic agent.
- the loading can be performed by combining the active agent with the incubating agent.
- the loading can be performed in a separate step from the incubating step.
- the loading can be performed in a step prior to the incubation step.
- the active agent can be supplied to the platelets as a solution or suspension in any of the incubation agents described herein, which may or may not be the same as the incubating agent used in the incubating step.
- the loading step can be performed during the incubation step.
- the active agent can be added to the incubation agent (e.g., as a solid or in a solution or suspension) during the incubation).
- the loading step can be performed in a step following the incubation step.
- an active agent can be applied to the platelets in any appropriate concentration.
- an active agent can be applied to the platelets (e g., as part of the incubating agent or another solution or suspension) in a concentration of about 1 mIU ⁇ to about 100 mM (e.g., about 1 mM to about 10 pm, about 1 pM to about 50 pM, about 1 pM to about 100 pM, about 1 pM to about 500 pM, about 1 pM to about 1 mM, about 1 pM to about 10 mM, about 1 pM to about 25 mM, about 1 pM to about 50 mM, about 1 pM to about 75 mM, about 10 pM to about 100 mM, about 50 pM to about 100 mM, about 100 pM to about 100 mM, about 500 pM to about 100 mM, about 1 mM to about 100 mM, about 10 mM to about 100 mM, about 100 pM to
- the method further comprises drying the platelets.
- the drying step comprises lyophilizing the platelets.
- the drying step comprises freeze-drying the platelets.
- the method further comprises rehydrating the platelets obtained from the drying step.
- the platelets are cold stored, cryopreserved, or lyophilized (e.g., to produce thrombosomes) prior to use in therapy or in functional assays.
- any known technique for drying platelets can be used in accordance with the present disclosure, as long as the technique can achieve a final residual moisture content of less than 5%. Preferably, the technique achieves a final residual moisture content of less than 2%, such as 1%, 0.5%, or 0.1%.
- suitable techniques are freeze-drying (lyophilization) and spray-drying.
- a suitable lyophilization method is presented in Table A. Additional exemplary lyophilization methods can be found in U S. Patent No. 7,811,558, U.S. Patent No. 8,486,617, and U.S. Patent No. 8,097,403.
- An exemplary spray-drying method includes: combining nitrogen, as a drying gas, with a incubating agent according to the present disclosure, then introducing the mixture into GEA Mobile Minor spray dryer from GEA Processing Engineering, Inc. (Columbia MD, USA), which has a Two-Fluid Nozzle configuration, spray drying the mixture at an inlet temperature in the range of 150°C to 190°C, an outlet temperature in the range of 65°C to 100°C, an atomic rate in the range of 0.5 to 2.0 bars, an atomic rate in the range of 5 to 13 kg/hr, a nitrogen use in the range of 60 to 100 kg/hr, and a run time of 10 to 35 minutes.
- the final step in spray drying is preferentially collecting the dried mixture.
- the dried composition in some embodiments is stable for at least six months at temperatures that range from -20°C or lower to 90°C or higher.
- Step Temp Set Type Duration Pressure Set
- the step of drying the platelets that are obtained as disclosed herein comprises incubating the platelets with a lyophilizing agent (e.g., a non-reducing disaccharide).
- a lyophilizing agent e.g., a non-reducing disaccharide
- the methods for preparing platelets further comprise incubating the platelets with a lyophilizing agent.
- the lyophilizing agent is a saccharide.
- the saccharide is a disaccharide, such as a non-reducing disaccharide.
- the platelets are incubated with a lyophilizing agent for a sufficient amount of time and at a suitable temperature to incubate the platelets with the lyophilizing agent.
- suitable lyophilizing agents are saccharides, such as monosaccharides and disaccharides, including sucrose, maltose, trehalose, glucose (e.g., dextrose), mannose, and xylose.
- non-limiting examples of lyophilizing agent include serum albumin, dextran, polyvinyl pyrolidone (PVP), starch, and hydroxyethyl starch (HES).
- exemplary' lyophilizing agents can include a high molecular weight polymer.
- high molecular weight it is meant a polymer having an average molecular weight of about or above 70 kDa and up to 1,000,000 kDa.
- Non- limiting examples are polymers of sucrose and epichlorohydrin (e.g., poly sucrose).
- the lyophilizing agent is polysucrose.
- any amount of high molecular weight polymer can be used as a lyophilizing agent, it is preferred that an amount be used that achieves a final concentration of about 3% to 10% (w/v), such as 3% to 7%, for example 6%.
- An exemplary saccharide for use in the compositions disclosed herein is trehalose. Regardless of the identity of the saccharide, it can be present in the composition in any suitable amount. For example, it can be present in an amount of 1 mM to 1 M. In embodiments, it is present in an amount of from 10 mM 10 to 500 mM. In some embodiments, it is present in an amount of from 20 mM to 200 mM. In embodiments, it is present in an amount from 40 mM to 100 mM. In various embodiments, the saccharide is present in different specific concentrations within the ranges recited above, and one of skill in the art can immediately understand the various concentrations without the need to specifically recite each herein. Where more than one saccharide is present in the composition, each saccharide can be present in an amount according to the ranges and particular concentrations recited above.
- addition of the lyophilizing agent can be the last step prior to drying.
- the lyophilizing agent is added at the same time or before other components of the composition, such as a salt, a buffer, optionally a cryoprotectant, or other components.
- the lyophilizing agent is added to the incubating agent, thoroughly mixed to form a drying solution, dispensed into a drying vessel (e g., a glass or plastic serum vial, a lyophilization bag), and subjected to conditions that allow for drying of the solution to form a dried composition.
- a drying vessel e g., a glass or plastic serum vial, a lyophilization bag
- the step of incubating the platelets with a cryoprotectant can include incubating the platelets for a time suitable for loading, as long as the time, taken in conjunction with the temperature, is sufficient for the cryoprotectant to come into contact with the platelets and, preferably, be incorporated, at least to some extent, into the platelets. In embodiments, incubation is carried out for about 1 minute to about 180 minutes or longer.
- the step of incubating the platelets with a cryoprotectant can include incubating the platelets and the cryoprotectant at a temperature that, when selected in conjunction with the amount of time allotted, is suitable for incubating.
- the composition is incubated at a temperature above freezing for at least a sufficient time for the cryoprotectant to come into contact with the platelets.
- incubation is conducted at 37°C.
- incubation is performed at 20°C to 42°C.
- incubation is performed at 35°C to 40°C (e.g., 37°C) for 110 to 130 (e.g., 120) minutes.
- the lyophilization bag is a gas-permeable bag configured to allow gases to pass through at least a portion or all portions of the bag during the processing.
- the gas-permeable bag can allow for the exchange of gas within the interior of the bag with atmospheric gas present in the surrounding environment.
- the gas-permeable bag can be permeable to gases, such as oxygen, nitrogen, water, air, hydrogen, and carbon dioxide, allowing gas exchange to occur in the compositions provided herein.
- the gas-permeable bag allows for the removal of some of the carbon dioxide present within an interior of the bag by allowing the carbon dioxide to permeate through its wall.
- the release of carbon dioxide from the bag can be advantageous to maintaining a desired pH level of the composition contained within the bag.
- the container of the process herein is a gas-permeable container that is closed or sealed.
- the container is a container that is closed or sealed and a portion of which is gas-permeable.
- the surface area of a gas-permeable portion of a closed or sealed container (e g., bag) relative to the volume of the product being contained in the container (hereinafter referred to as the “SA/V ratio”) can be adjusted to improve pH maintenance of the compositions provided herein.
- the SA/V ratio of the container can be at least about 2.0 cnr/mL (e.g., at least about 2.1 cm 2 /mL, at least about 2.2 cm 2 /mL, at least about 2.3 cm 2 /mL, at least about 2.4 cm 2 /mL, at least about 2.5 cm 2 /mL, at least about 2.6 cm 2 /mL, at least about
- the SA/V ratio of the container can be at most about 10.0 cm 2 /mL (e.g., at most about 9.9 cm 2 /mL, at most about 9.8 cm 2 /mL, at most about 9.7 cm 2 /mL, at most about 9.6 cm 2 /mL, at most about 9.5 cm 2 /mL, at most about 9.4 cm 2 /mL, at most about 9.3 cm 2 /mL, at most about
- the SA/V ratio of the container can range from about 2.0 to about 10.0 cm 2 /mL (e.g., from about 2.1 cm 2 /mL to about 9.9 cm 2 /mL, from about 2.2 cm 2 /mL to about 9.8 cm 2 /mL, from about 2.3 cm 2 /mL to about 9.7 cm 2 /mL, from about 2.4 cm 2 /mL to about 9.6 cm 2 /mL, from about 2.5 cm 2 /mL to about 9.5 cm 2 /mL, from about 2.6 cm 2 /mL to about 9.4 cnr/mL, from about 2.7 cm 2 /mL to about 9.3 cnr/mL, from about 2.8 cm 2 /mL to about 9.2 cm 2 /mL, from about 2.9 cm 2 /mL to about 9.1 cm 2 /mL, from about 3.0 cm 2 /mL to about 9.0 cm 2 /mL, from about 3.1 cm 2 /mL
- Gas-permeable closed containers e.g., bags
- the gas-permeable bag can be made of one or more polymers including fluoropolymers (such as polytetrafluoroethylene (PTFE) and perfluoroalkoxy (PFA) polymers), polyolefins (such as low-density polyethylene (LDPE), high-density polyethylene (HDPE)), fluorinated ethylene propylene (FEP), polystyrene, polyvinylchloride (PVC), silicone, and any combinations thereof.
- fluoropolymers such as polytetrafluoroethylene (PTFE) and perfluoroalkoxy (PFA) polymers
- polyolefins such as low-density polyethylene (LDPE), high-density polyethylene (HDPE)
- FEP fluorinated ethylene propylene
- PVC polyvinylchloride
- silicone silicone
- dried platelets or platelet derivatives can undergo heat treatment. Heating can be performed at a temperature above about 25°C (e.g., greater than about 40°C, 50°C, 60°C, 70°C, 80°C or higher). In some embodiments, heating is conducted between about 70°C and about 85°C (e.g., between about 75°C and about 85°C, or at about 75°C or 80 °C). The temperature for heating can be selected in conjunction with the length of time that heating is to be performed. Although any suitable time can be used, typically, the lyophilized platelets are heated for at least 1 hour, but not more than 36 hours.
- heating is performed for at least 2 hours, at least 6 hours, at least 12 hours, at least 18 hours, at least 20 hours, at least 24 hours, or at least 30 hours.
- the lyophilized platelets can be heated for 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 24 hours, 25 hours, 26 hours, 27 hours, 28 hours, 29 hours, or 30 hours.
- Non-limiting exemplary combinations include: heating the dried platelets or platelet derivatives (e.g., thrombosomes) for at least 30 minutes at a temperature higher than 30°C; heating the dried platelets or platelet derivatives (e.g., thrombosomes) for at least 10 hours at a temperature higher than 50°C, heating the dried platelets or platelet derivatives (e.g., thrombosomes) for at least 18 hours at a temperature higher than 75°C; and heating the dried platelets or platelet derivatives (e.g., thrombosomes) for 24 hours at 80°C.
- heating can be performed in sealed container, such as a capped vial.
- a sealed container be subjected to a vacuum prior to heating.
- the heat treatment step particularly in the presence of a cryoprotectant such as albumin or polysucrose, has been found to improve the stability and shelf-life of the freeze-dried platelets. Indeed, advantageous results have been obtained with the particular combination of serum albumin or poly sucrose and a post-lyophilization heat treatment step, as compared to those cryoprotectants without a heat treatment step.
- a cryoprotectant e.g., sucrose
- can be present in any appropriate amount e.g. about 3% to about 10% by mass or by volume of the platelets or platelet derivatives (e.g., thrombosomes).
- the platelets or platelet derivatives prepared as disclosed herein by a process comprising incubation with an incubating agent have a storage stability that is at least about equal to that of the platelets prior to the incubation.
- the method further comprises cryopreserving the platelets or platelet derivatives prior to administering the platelets or platelet derivatives (e.g., with an incubating agent, e.g., an incubating agent described herein).
- an incubating agent e.g., an incubating agent described herein.
- the method further comprises drying a composition comprising platelets or platelet derivatives, (e.g., with an incubating agent e.g., an incubating agent described herein) prior to administering the platelets or platelet derivatives (e.g., thrombosomes).
- the method may further comprise heating the composition following the drying step.
- the method may further comprise rehydrating the composition following the freeze-drying step or the heating step.
- the method further comprises freeze-drying a composition comprising platelets or platelet derivatives (e.g., with an incubating agent e.g., an incubating agent described herein) prior to administering the platelets or platelet derivatives (e.g., thrombosomes)
- the method may further comprise heating the composition following the freeze-drying step.
- the method may further comprise rehydrating the composition following the freeze-drying step or the heating step.
- the method further comprises cold storing the platelets, platelet derivatives, or the thrombosomes prior to administering the platelets, platelet derivatives, or thrombosomes (e.g., with an incubating agent, e.g., an incubating agent described herein).
- Storing conditions include, for example, standard room temperature storing (e.g., storing at a temperature ranging from about 20 to about 30 °C) or cold storing (e.g., storing at a temperature ranging from about 1 to about 10°C).
- the method further comprises cry opreserving, freeze-drying, thawing, rehydrating, and combinations thereof, a composition comprising platelets or platelet derivatives (e.g., thrombosomes) (e.g., with an incubating agent e.g., an incubating agent described herein) prior to administering the platelets or platelet derivatives (e.g., thrombosomes).
- a composition comprising platelets or platelet derivatives (e.g., thrombosomes) (e.g., with an incubating agent e.g., an incubating agent described herein) prior to administering the platelets or platelet derivatives (e.g., thrombosomes).
- the method further comprises drying (e.g., freeze-drying) a composition comprising platelets or platelet derivatives (e.g., with an incubating agent e.g., an incubating agent described herein) (e.g., to form thrombosomes) prior to administering the platelets or platelet derivatives (e.g., thrombosomes).
- the method may further comprise rehydrating the composition obtained from the drying step.
- composition comprising platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes), polysucrose and trehalose made by the process of obtaining fresh platelets, optionally incubating the platelets in DMSO, isolating the platelets by centrifugation, resuspending the platelets in an incubating agent which comprises trehalose and ethanol thereby forming a first mixture, incubating the first mixture, mixing polysucrose with the first mixture, thereby forming a second mixture, and lyophilizing the second mixture to form a freeze dried composition comprising platelets or platelet derivatives (e.g., thrombosomes), polysucrose and trehalose.
- platelets such as lyophilized platelets or platelet derivatives (e.g., thrombosomes), polysucrose and trehalose
- a method of making a freeze-dried platelet composition comprising platelets or platelet derivatives (e.g., thrombosomes), polysucrose and trehalose comprising obtaining fresh platelets, optionally incubating the platelets in DMSO, isolating the platelets by centrifugation, resuspending the platelets in a incubating agent which comprises trehalose and ethanol thereby forming a first mixture, incubating the first mixture, mixing polysucrose with the first mixture, thereby forming a second mixture, and lyophilizing the second mixture to form a freeze-dried composition comprising platelets or platelet derivatives (e.g., thrombosomes), poly sucrose and trehalose.
- platelets or platelet derivatives e.g., thrombosomes
- polysucrose and trehalose e.g., thrombosomes
- a process for making freeze-dried platelets comprising incubating isolated platelets in the presence of at least one saccharide under the following conditions: a temperature of from 20° C. to 42° C for about 10 minutes to about 180 minutes, adding to the platelets at least one cryoprotectant, and lyophilizing the platelets, wherein the process optionally does not include isolating the platelets between the incubating and adding steps, and optionally wherein the process does not include exposing the platelets to a platelet activation inhibitor.
- the cryoprotectant can be a polysugar (e.g., polysucrose).
- the process can further include heating the lyophilized platelets at a temperature of 70° C to 80° C for 8 to 24 hours.
- the step of adding to the platelets at least one cryoprotectant can further include exposing the platelets to ethanol.
- the step of incubating isolated platelets in the presence of at least one saccharide can include incubating in the presence of at least one saccharide.
- the step of incubating isolated platelets in the presence of at least one saccharide can include incubating in the presence of at least one saccharide.
- the conditions for incubating can include incubating for about 100 minutes to about 150 minutes.
- the conditions for incubating can include incubating for about 110 minutes to about 130 minutes.
- the conditions for incubating can include incubating for about 120 minutes.
- the conditions for incubating can include incubating at 35° C to 40° C.
- the conditions for incubating can include incubating at 37° C.
- the conditions for incubating can include incubating at 35° C. to 40° C for 110 minutes to 130 minutes.
- the conditions for incubating can include incubating at 37° C for 120 minutes.
- the at least one saccharide can be trehalose, sucrose, or both trehalose and sucrose.
- the at least one saccharide can be trehalose.
- the at least one saccharide can be sucrose.
- a method of preparing freeze-dried platelets including providing platelets, suspending the platelets in a salt buffer that includes about 100 mM trehalose and about 1% (v/v) ethanol to make a first composition, incubating the first composition at about 37° C. for about 2 hours, adding polysucrose (e g., polysucrose 400) to a final concentration of about 6% (w/v) to make a second composition, lyophilizing the second composition to make freeze-dried platelets, and heating the freeze-dried platelets at 80° C for 24 hours.
- a salt buffer that includes about 100 mM trehalose and about 1% (v/v) ethanol
- polysucrose e g., polysucrose 400
- Embodiment 1 is a method of treating a coagulopathy in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Embodiment 2 is a method of treating a coagulopathy in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Embodiment 3 is a method of restoring normal hemostasis in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Embodiment 4 is a method of restoring normal hemostasis in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Embodiment 5 is a method of preparing a subject for surgery, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Embodiment 6 is a method of preparing a subject for surgery, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Embodiment 7 is the method of any one of embodiments 5-6, wherein the surgery is an emergency surgery.
- Embodiment 8 is the method of any one of embodiments 5-6, wherein the surgery is a scheduled surgery.
- Embodiment 9 is the method of any one of embodiments 1-8, wherein the subject has been treated or is being treated with an anticoagulant.
- Embodiment 10 is the method of embodiment 9, wherein treatment with the anticoagulant is stopped.
- Embodiment 11 is the method of embodiment 9, wherein treatment with the anticoagulant is continued.
- Embodiment 12 is a method of ameliorating the effects of an anticoagulant in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition comprising platelets or platelet derivatives and an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent.
- Embodiment 13 is a method of ameliorating the effects of an anticoagulant in a subject, the method comprising administering to the subject in need thereof an effective amount of a composition prepared by a process comprising incubating platelets with an incubating agent comprising one or more salts, a buffer, optionally a cryoprotectant, and optionally an organic solvent, to form the composition.
- Embodiment 14 is the method of embodiment 12 or embodiment 13, wherein the effects of the anticoagulant are the result of an overdose of the anticoagulant.
- Embodiment 15 is the method of any one of embodiments 1-14, wherein the composition further comprises an anti-fibrinolytic agent.
- Embodiment 16 is the method of embodiment 15, wherein the anti-fibrinolytic agent is selected from the group consisting of e-aminocaproic acid (EACA), tranexamic acid, aprotinin, aminomethylbenzoic acid, fibrinogen, and a combination thereof.
- EACA e-aminocaproic acid
- tranexamic acid aprotinin
- aminomethylbenzoic acid fibrinogen, and a combination thereof.
- Embodiment 17 is the method of embodiment 15 or embodiment 16, wherein the platelets or platelet derivatives are loaded with the anti-fibrinolytic agent.
- Embodiment 18 is the method of any one of embodiments 9-17, wherein the anticoagulant is selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, a low molecular weight heparin, a supplement, and a combination thereof.
- the anticoagulant is selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, a low molecular weight heparin, a supplement, and a combination thereof.
- Embodiment 19 is the method of any one of embodiments 9-17, wherein the anticoagulant is selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxaban, apixaban, edoxaban, fondaparinux, warfarin, heparin, low molecular weight heparins, tifacogin, Factor VIlai, SB249417, pegnivacogin (with or without anivamersen), TTP889, idraparinux, idrabiotaparinux, SR23781A, apixaban, betrixaban, lepirudin, bivalirudin, ximelagatran, phenprocoumon, acenocoumarol, indandiones, fluindione, a supplement, and a combination thereof.
- the anticoagulant is selected from the group consisting of dabigatran, argatroban, hirudin, rivaroxa
- Embodiment 20 is the method of embodiment 18 or embodiment 19, wherein the anticoagulant is warfarin.
- Embodiment 21 is the method of embodiment 18 or embodiment 19, wherein the anticoagulant is heparin.
- Embodiment 22 is the method of any one of embodiments 1-21, wherein before the administering, the subject had an INR of at least 4.0.
- Embodiment 23 is the method of embodiment 22, wherein after the administering, the subject has an INR of 3.0 or less.
- Embodiment 24 is the method of embodiment 22, wherein after the administering, the subject has an INR of 2.0 or less.
- Embodiment 25 is the method of any one of embodiments 1-21, wherein before the administering, the subject had an INR of at least 3.0.
- Embodiment 26 is the method of embodiment 25, wherein after the administering, the subject has an INR of 2.0 or less.
- Embodiment 27 is the method of any one of embodiments 1-26, wherein administering comprises administering topically.
- Embodiment 28 is the method of any one of embodiments 1-26, wherein administering comprises administering parenterally.
- Embodiment 29 is the method of any one of embodiments 1-26, wherein administering comprises administering intravenously.
- Embodiment 30 is the method of any one of embodiments 1-26, wherein administering comprises administering intramuscularly.
- Embodiment 31 is the method of any one of embodiments 1-26, wherein administering comprises administering intrathecally.
- Embodiment 32 is the method of any one of embodiments 1-26, wherein administering comprises administering subcutaneously.
- Embodiment 33 is the method of any one of embodiments 1-26, wherein administering comprises administering intraperitoneally.
- Embodiment 34 is the method of any one of embodiments 1-33, wherein the composition is dried prior to the administration step.
- Embodiment 35 is the method of embodiment 34, wherein the composition is rehydrated following the drying step.
- Embodiment 36 is the method of any one of embodiments 1-34, wherein the composition is freeze-dried prior to the administration step.
- Embodiment 37 is the method of embodiment 36, wherein the composition is rehydrated following the freeze-drying step.
- Embodiment 38 is the method of any one of embodiments 1-37, wherein the incubating agent comprises one or more salts selected from phosphate salts, sodium salts, potassium salts, calcium salts, magnesium salts, and a combination of two or more thereof.
- Embodiment 39 is the method of any one of embodiments 1-38, wherein the incubating agent comprises a carrier protein.
- Embodiment 40 is the method of any one of embodiments 1-39, wherein the buffer comprises HEPES, sodium bicarbonate (NaHCCb), or a combination thereof.
- Embodiment 41 is the method of any one of embodiments 1-40, wherein the composition comprises one or more saccharides.
- Embodiment 42 is the method of embodiment 41, wherein the one or more saccharides comprise trehalose.
- Embodiment 43 is the method of embodiment 41 or embodiment 42, wherein the one or more saccharides comprise polysucrose.
- Embodiment 44 is the method of any one of embodiments 41-43, wherein the one or more saccharides comprise dextrose.
- Embodiment 45 is the method of any one of embodiments 1-44, wherein the composition comprises an organic solvent.
- Embodiment 46 is the method of any one of embodiments 1-45, wherein the platelets or platelet derivatives comprise thrombosomes.
- thrombosomes demonstrate the impact of the thrombosomes product in an in vitro model for patients taking warfarin, a common anticoagulant drug. Warfarin inhibits the synthesis of numerous hemostatic plasma proteins in the liver that are dependent on vitamin K.
- Warfarin inhibits the synthesis of numerous hemostatic plasma proteins in the liver that are dependent on vitamin K.
- Thrombosomes and other lyophilized platelet products are designed for infusion into a patient’s bloodstream following diagnosis of trauma or hemostatic failure.
- thrombosomes were introduced first into a plasma- based system, followed by a whole-blood system in Example 2 to more closely mimic conditions in vivo.
- TGA thrombin generation
- TAG thromboelastography
- the samples used in the plasma model were prepared by combining 1 : 1 volumes of warfarin plasma (source: George King Biomedical, at various INR values) or platelet-rich plasma (PRP) and Control Buffer detailed below in Table 6, with or without rehydrated thrombosomes at the concentrations indicated in Figures 1-3.
- Warfarin plasma was obtained from the blood drawn from patients using the drug. Because warfarin inhibits the biological synthesis of hemostatic proteins, it cannot be added ex vivo.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), incorporated herein by reference in their entirety and rehydrated by addition of sterile water.
- thrombosomes have a positive impact on thrombin generation (a measure of clotting capability) in a model of warfarin in plasma, assessed in a thrombin generation assay (TGA) as described in Example 3.
- TGA thrombin generation assay
- peak thrombin generation is improved by adding 400 x lOVpL thrombosomes to warfarin plasma.
- Figure 2 shows that the endogenous thrombin potential (ETP; determined as the area under the curve in the thrombin generation assay) is improved by adding 100 x 10 3 /pL thrombosomes to warfarin plasma.
- Figures 3 shows peak thrombin generation by thrombosomes and by platelet-rich plasma (PRP) in INR 2 warfarin plasma.
- thrombosomes even generate more thrombin than the platelets, and without being bound by any particular theory or mechanism, this could possibly be due to elevated activation of the thrombosomes. This forecasts a reduction in bleeding in vivo because additional thrombin generation stimulates endogenous clotting mechanisms.
- PRP platelet-rich plasma
- Figure 4 features data from a thromboelastography (TEG) assay as described in Example 3, a system that measures the viscoelastic properties of blood and plasma.
- TEG thromboelastography
- the R-time plotted in Figure 4 correlates to the speed of clot generation in the plasma model.
- a reduction in R-time across all warfarin doses was observed with the addition of thrombosomes.
- the addition of 300 x 10 3 /pL thrombosomes substantially reduced R-time of the warfarin plasma samples (TEG assay).
- TEG assay Compared to normal R-time (about 5-10 minutes), the addition of thrombosomes almost completely corrected R-time across all INR levels.
- Example 2 Whole blood assays:
- thrombosomes were introduced into a similar warfarin model using donor whole blood. Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. To generate comparable anticoagulant conditions, the native plasma of type O donor blood was removed and replaced with warfarin plasma as described in Example 3. TGA assays were performed as described in Example 3. Figure 5 shows that thrombosomes provide a dose-dependent effect on peak thrombin generation.
- HBS HEPES-buffered saline
- Thromboelastography Assay (TEG® 5000 THROMBOELASTOGRAPH® Hemostasis Analyzer System)
- the T-TAS® instrument was prepared for use according to the manufacturer's instructions.
- AR Chips Diapharma Cat. # TC0101
- AR Chip Calcium Corn Trypsin Inhibitor (CaCTI; Diapharma Cat. # TR0101) were warmed to room temperature. 300 uL of rehydrated thrombosomes were transferred to a 1.7 mL microcentrifuge tube and centrifuged at 3900 g x 10 minutes to pellet.
- the thrombosomes pellet was resuspended in George King (GK) pooled normal human plasma or autologous plasma with or without autologous platelets to a concentration of approximately 100,000- 450,000/uL, as determined by AcT counts (Beckman Coulter AcT Diff 2 Cell Counter). 20 uL of CaCTI with 480 uL of thrombosomes sample in GK plasma were mixed with gentle pipetting. The sample was loaded and run on the T-TAS® according to the manufacturer’s instructions.
- Thrombosomes elicit a specific dose-dependent recovery of thrombin generation in coumadin plasma in a manner superior to fresh platelets.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. TGA assays were performed as described in Example 3. At a dose of INR 3, thrombosomes demonstrate a dose-dependent recovery of peak thrombin ( Figure 6). Additionally, adding Thrombosomes is more effective than an equivalent dose of fresh platelets.
- Example 5 Combination with Fresh Platelets
- Thrombosomes cooperate with platelets increasing thrombin generation in warfarin plasma.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3) and rehydrated by addition of sterile water.
- TGA assays were performed as described in Example 3. Thrombosomes not only show greater efficacy, but also an additive effect with endogenous platelets (Figure 7A).
- thrombosomes can push the model patient back into a healthy peak thrombin range (e.g., between about 66 and 166 nM).
- the ‘both’ line includes the two components in equal amounts in the amounts shown (e.g., at the ‘50’ value on the x-axis, the y -value represents the peak thrombin of a mixture of 50k platelets from PRP/pL and 50k thrombosomes/pL.
- Thrombosomes adhere to and generate fibrin in warfarin plasma using shear- dependent collagen adhesion assay under flow (T-TAS®) ( Figure 8).
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water.
- T-TAS® assays were performed according to Example 3.
- Rivaroxaban (sometimes herein called Riv) dose-response in whole blood was measured using T-TAS®.
- An AR chip Cold TF
- T-TAS® assays were performed according to Example 3. The donor platelets were used at 307k/pL.
- a 9 mM dose (a pharmacological dose) inhibits occlusion but not all thrombus formation ( Figure 9, Table 7).
- Table 7 [00306] Table 7.
- Thrombosomes partially restore thrombus formation in rivaroxaban- anticoagulated whole blood.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e g., Examples 1-3), and rehydrated by addition of sterile water.
- T-TAS® assays were run according to Example 3 using 3 mM rivaroxaban and different concentrations of thrombosomes ( Figure 10A, Table 8).
- the ‘No Riv’ vertical line indicates the approximate occlusion time of a sample with no added rivaroxaban.
- Thrombosomes decrease lag time at all tested thrombosome concentrations, and the plateau effect demonstrates no hypercoagulability (Figure 15).
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. TGA assays were performed as described in Example 3.
- thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. T-TAS® assays were performed according to Example 3. Figure 17 shows that thrombosomes lower R-time for various INR values. A plateau is seen before R-times of 20 min, suggesting that thrombosomes could produce therapeutically significant results. [00318] Example 11. Activated Clotting Time
- Thrombosomes exhibit an effect on activated clotting time in warfarin plasma.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water.
- Thrombosomes increase thrombin generation in 3.0 and 6.2 INR whole blood.
- Thrombosomes were prepared consistent with the procedures described in U.S. Patent Nos. 8,486,617 (such as, e g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water.
- TGA assays were performed as described in Example 3.
- the thrombosomes increase peak thrombin; however, the magnitude of the effect is small.
- the thrombosomes exhibit minimal effect on a normal blood state ( Figure 19). In these experiments, the platelet count was 150 x 10 3 /pL (as measured by CBC of the whole blood).
- Thrombosomes were prepared consistent with the procedures described in U. S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. TGA assays were performed as described in Example 3.
- INR 1 : The increase of the Peak Thrombin was saturated at about 800 k thrombosomes and was almost doubled from the normal level of about 100 nM at maximal thrombosomes concentration (Figure 20C). Repeating the test on the same lot showed a large increase to about 145 nM at 700k thrombosomes followed by a decrease to 120 nM at highest thrombosomes concentrations ( Figure 20A). Previous tests showed either no increase or slight increase in Peak Thrombin with following decrease at higher thrombosomes concentrations (See, e g., Figure 22A-E).
- INR 2 Freshly prepared thrombosomes resulted in an increase of the Peak Thrombin from approximately lOnM to about 80 nM at maximal thrombosomes concentration (Figure 20A). Previous tests showed similar tendencies with ranges 0-20 nM to 30-80 nM (See, e ., Figure 22A-E).
- INR 3 Freshly prepared thrombosomes resulted in an increase of the Peak Thrombin from zero to about 40 nM at maximal thrombosomes concentration (Figure 20B). Previous tests showed similar tendencies to a maximum of about 40 nM) (batch 1; Figure 22A- C); 1-2 nM (batch 2; Figure 22D); 0-10 nM (batch 3; Figure 22E).
- INR 6 Freshly prepared thrombosomes resulted in an increase of the Peak Thrombin from zero to about 20 nM at maximal thrombosomes concentration (Figure 20C). Previous tests showed similar tendencies. (See, e.g., Figure 22A-E).
- INR 1 The ETP slightly increased at 50 - 150 k thrombosomes and then slightly decreased to a stable level at higher thrombosomes concentrations (Figure 17A, Figure 17C). Previous tests showed similar tendencies ( Figures 21A-C). ETP range was 1000-1600 nM*min.
- INR 2 The ETP increased from about 200 nM*min to about 850 nM*min at highest thrombosomes concentrations ( Figure 21 A). Previous tests showed similar tendencies with ranges 200-400 nM*min to 500-900 nM*min.
- INR 3 The ETP value increased from about 100 nM*min to 400 nM*min at highest thrombosomes concentrations (Figure 2 IB). Previous tests showed similar tendencies with range 100-350 (batch 1); 100-200 nM*min.
- INR 6 The ETP value increased from about 100 nM*min to 300 nM*min at highest thrombosomes concentrations ( Figure 21C). Previous tests showed similar tendencies with the range of 100 nM*min to 200 nM*min.
- Example 14 Thrombosomes but not Fresh Platelets Restore Thrombin Generation in Heparinized Plasma
- Thrombosomes were prepared consistent with the procedures described in U. S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. aPTT and thrombin generation assays were performed as described in Example 3.
- Figure 23 A shows the aPTT of George King Plasma (GKP) in the absence and presence of various concentrations of heparin as noted on the x-axis.
- the dashed line at approximately 70 seconds denotes the limit of abnormal aPTT and the second dashed line is the maximum time measured by the instrument (120 sec). Thrombin generation in heparin treated samples was also measured.
- Figure 23B shows the effect of 0.1 U heparin in GKP on thrombin generation, in GKP, comparing apheresis units (APU) with thrombosomes at 5K (dotted lines), and 50K (solid lines) platelets or thrombosomes per pL when thrombin generation is initiated with the PPP Low reagent containing mostly phospholipids.
- Figure 23C also shows thrombin generation similar to Figure 23B, except thrombin generation is initiated by PRP reagent containing a mixture of phospholipids and tissue factor.
- the dashed line in Figures 23B and 23C denotes a typical thrombin peak value seen in this assay for control plasma.
- Example 15 Protamine Sulfate Neutralization Restores Thrombosome- Mediated Thrombin Generation in Therapeutic Heparinized Plasma
- Thrombosomes were prepared consistent with the procedures described in U. S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water.
- aPTT and thrombin generation assays were performed as described in Example 3.
- Figure 24A shows the aPTT of George King Plasma (GKP) in the absence and presence of Heparin (H) (U/mL) and Protamine Sulfate (P) as noted on the x-axis.
- the dashed line at approximately 70 seconds denotes the limit of abnormal aPTT and the second dashed line is the maximum time measured by the instrument (120 sec). Thrombin generation in heparin treated samples was also measured, with and without protamine sulfate.
- Figure 24B shows the effect of 2 U/mL heparin before (relatively flat lines) and after (curves) reversal by 20 pg/mL protamine sulfate on thrombin generation, in GKP, with thrombosomes at 5K (dotted line), 50K (dashed line), and 150K (solid line) thrombosomes per pL when thrombin generation is initiated with the PPP Low reagent containing mostly phospholipids.
- Figure 24C also shows thrombin generation similar to Figure 24B, except thrombin generation is initiated by PRP reagent containing a mixture of phospholipids and tissue factor.
- the dashed line in Figures 24B and 24C denotes a typical thrombin peak value seen in this assay for control plasma.
- Example 16 Thrombosomes Restore Thrombin Generation in Dabigatran- treated Platelet Rich Plasma
- Thrombosomes were prepared consistent with the procedures described in U. S. Patent Nos. 8,486,617 (such as, e.g., Examples 1-5) and 8,097,403 (such as, e.g., Examples 1-3), and rehydrated by addition of sterile water. Thrombin generation assays were performed as described in Example 3.
- Figures 25A and 25B show that thrombin generation returns to normal in dabigatran treated PRP when treated with thrombosomes.
- Thrombin generation of PRP treated in the presence or absence of dabigatran (lOOng/mL) stimulated with PRP reagent was reversed with 150k/pL of thrombosomes. Time to peak was increased with dabigatran to 34.67 minutes from 18.89 untreated but returned to 18.33 minutes with 150k/pL of thrombosomes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Developmental Biology & Embryology (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Virology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dermatology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3150933A CA3150933A1 (en) | 2019-08-16 | 2020-08-14 | Thrombosomes as an anticoagulant reversal agent |
AU2020333666A AU2020333666A1 (en) | 2019-08-16 | 2020-08-14 | Thrombosomes as an anticoagulant reversal agent |
JP2022509584A JP2022544788A (en) | 2019-08-16 | 2020-08-14 | Thrombosomes as anticoagulant antagonists |
EP20855619.1A EP4013432A4 (en) | 2019-08-16 | 2020-08-14 | Thrombosomes as an anticoagulant reversal agent |
IL290584A IL290584A (en) | 2019-08-16 | 2022-02-13 | Thrombosomes as an anticoagulant reversal agent |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962887985P | 2019-08-16 | 2019-08-16 | |
US62/887,985 | 2019-08-16 | ||
US202063065337P | 2020-08-13 | 2020-08-13 | |
US63/065,337 | 2020-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021034716A1 true WO2021034716A1 (en) | 2021-02-25 |
Family
ID=74568034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/046522 WO2021034716A1 (en) | 2019-08-16 | 2020-08-14 | Thrombosomes as an anticoagulant reversal agent |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210046120A1 (en) |
EP (1) | EP4013432A4 (en) |
JP (1) | JP2022544788A (en) |
AU (1) | AU2020333666A1 (en) |
CA (1) | CA3150933A1 (en) |
IL (1) | IL290584A (en) |
WO (1) | WO2021034716A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022178191A1 (en) * | 2021-02-17 | 2022-08-25 | Cellphire, Inc. | Freeze-dried platelet derivative compositions for treating anticoagulant-induced coagulopathy |
US11529587B2 (en) | 2019-05-03 | 2022-12-20 | Cellphire, Inc. | Materials and methods for producing blood products |
US11701388B2 (en) | 2019-08-16 | 2023-07-18 | Cellphire, Inc. | Thrombosomes as an antiplatelet agent reversal agent |
US11767511B2 (en) | 2018-11-30 | 2023-09-26 | Cellphire, Inc. | Platelets as delivery agents |
US11903971B2 (en) | 2020-02-04 | 2024-02-20 | Cellphire, Inc. | Treatment of von Willebrand disease |
US11965178B2 (en) | 2018-11-30 | 2024-04-23 | Cellphire, Inc. | Platelets loaded with anti-cancer agents |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113848332B (en) * | 2021-09-17 | 2024-04-19 | 广州徕西姆医学诊断技术有限公司 | Thrombus elastography detection reagent and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110189151A1 (en) * | 2002-11-08 | 2011-08-04 | Velico Medical, Inc. | Compositions and methods for prolonging survival of platelets |
US20190076478A1 (en) * | 2017-09-13 | 2019-03-14 | Cellphire, Inc. | Canine blood platelet preparations |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967862B1 (en) * | 1997-02-07 | 2003-01-15 | Elan Drug Delivery Limited | Methods and compositions for producing dried, storage-stable platelets |
JP5138372B2 (en) * | 2004-08-12 | 2013-02-06 | セルフィアー インコーポレイテッド | Method for preparing freeze-dried platelets, compositions containing freeze-dried platelets, and methods of use |
US20060051731A1 (en) * | 2004-08-12 | 2006-03-09 | David Ho | Processes for preparing lyophilized platelets |
AU2020334903B2 (en) * | 2019-08-16 | 2023-12-21 | Cellphire, Inc. | Thrombosomes as an antiplatelet agent reversal agent |
-
2020
- 2020-08-14 US US16/994,330 patent/US20210046120A1/en active Pending
- 2020-08-14 EP EP20855619.1A patent/EP4013432A4/en active Pending
- 2020-08-14 JP JP2022509584A patent/JP2022544788A/en active Pending
- 2020-08-14 CA CA3150933A patent/CA3150933A1/en active Pending
- 2020-08-14 WO PCT/US2020/046522 patent/WO2021034716A1/en unknown
- 2020-08-14 AU AU2020333666A patent/AU2020333666A1/en active Pending
-
2022
- 2022-02-13 IL IL290584A patent/IL290584A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110189151A1 (en) * | 2002-11-08 | 2011-08-04 | Velico Medical, Inc. | Compositions and methods for prolonging survival of platelets |
US20190076478A1 (en) * | 2017-09-13 | 2019-03-14 | Cellphire, Inc. | Canine blood platelet preparations |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11767511B2 (en) | 2018-11-30 | 2023-09-26 | Cellphire, Inc. | Platelets as delivery agents |
US11965178B2 (en) | 2018-11-30 | 2024-04-23 | Cellphire, Inc. | Platelets loaded with anti-cancer agents |
US11529587B2 (en) | 2019-05-03 | 2022-12-20 | Cellphire, Inc. | Materials and methods for producing blood products |
US11752468B2 (en) | 2019-05-03 | 2023-09-12 | Cellphire, Inc. | Materials and methods for producing blood products |
US11813572B2 (en) | 2019-05-03 | 2023-11-14 | Cellphire, Inc. | Materials and methods for producing blood products |
US11701388B2 (en) | 2019-08-16 | 2023-07-18 | Cellphire, Inc. | Thrombosomes as an antiplatelet agent reversal agent |
US11903971B2 (en) | 2020-02-04 | 2024-02-20 | Cellphire, Inc. | Treatment of von Willebrand disease |
WO2022178191A1 (en) * | 2021-02-17 | 2022-08-25 | Cellphire, Inc. | Freeze-dried platelet derivative compositions for treating anticoagulant-induced coagulopathy |
Also Published As
Publication number | Publication date |
---|---|
JP2022544788A (en) | 2022-10-21 |
EP4013432A4 (en) | 2023-10-18 |
IL290584A (en) | 2022-04-01 |
EP4013432A1 (en) | 2022-06-22 |
CA3150933A1 (en) | 2021-02-25 |
US20210046120A1 (en) | 2021-02-18 |
AU2020333666A1 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020334903B2 (en) | Thrombosomes as an antiplatelet agent reversal agent | |
US20210046120A1 (en) | Thrombosomes as an anticoagulant reversal agent | |
US20220279777A1 (en) | Freeze-dried platelet derivative compositions for treating anticoagulant-induced coagulopathy | |
US7811558B2 (en) | Use of stabilized platelets as hemostatic agent | |
US20210308185A1 (en) | Methods of treating acquired hemophilia with anti-fibrinolytic loaded platelets | |
WO2022178191A1 (en) | Freeze-dried platelet derivative compositions for treating anticoagulant-induced coagulopathy | |
US20220168353A1 (en) | Freeze-dried platelet derivative compositions for treating antiplatelet induced coagulopathy | |
US20220273724A1 (en) | Freeze-dried platelet derivative compositions for treating antiplatelet induced coagulopathy | |
EP3829604A1 (en) | Cryopreserved platelet compositions and methods for making | |
US20200291356A1 (en) | Canine blood platelet preparations | |
US20230112136A1 (en) | Canine blood platelet preparations | |
US20230248772A1 (en) | Products and methods using a platelet-derived hemostatic agent for controlling bleeding and improving healing | |
CA2868862C (en) | Method and apparatus for preparing single donor thrombin serum | |
US20240066065A1 (en) | Platelet derivatives for treating coagulopathy | |
Yeh Jr et al. | Cardiopulmonary bypass and the coagulation system | |
US8802363B2 (en) | Zeodration method for the preservation of blood platelets | |
CA3211079A1 (en) | Freeze-dried platelet derivative compositions for treating antiplatelet-induced coagulopathy | |
Ambekar et al. | Haemostasis in Cardiac Surgery | |
Feinstein et al. | Complications of Anticoagulants and Blood Transfusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20855619 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3150933 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2022509584 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020855619 Country of ref document: EP Effective date: 20220316 |
|
ENP | Entry into the national phase |
Ref document number: 2020333666 Country of ref document: AU Date of ref document: 20200814 Kind code of ref document: A |