[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021034055A1 - 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치 - Google Patents

사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2021034055A1
WO2021034055A1 PCT/KR2020/010909 KR2020010909W WO2021034055A1 WO 2021034055 A1 WO2021034055 A1 WO 2021034055A1 KR 2020010909 W KR2020010909 W KR 2020010909W WO 2021034055 A1 WO2021034055 A1 WO 2021034055A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
resource
base station
downlink
terminal
Prior art date
Application number
PCT/KR2020/010909
Other languages
English (en)
French (fr)
Inventor
김재형
박창환
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227004357A priority Critical patent/KR20220038087A/ko
Priority to CN202080058041.XA priority patent/CN114270932A/zh
Priority to EP20855741.3A priority patent/EP4017095A4/en
Publication of WO2021034055A1 publication Critical patent/WO2021034055A1/ko
Priority to US17/672,915 priority patent/US11540333B2/en
Priority to US18/087,363 priority patent/US11930540B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present specification relates to a wireless communication system supporting the Internet of Things (IoT) (eg, MTC, NB-IoT), and in detail, to a method for transmitting and receiving downlink information and an apparatus therefor.
  • IoT Internet of Things
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded to not only voice but also data services, and nowadays, due to the explosive increase in traffic, a shortage of resources is caused, and users demand for higher speed services, so a more advanced mobile communication system is required. have.
  • next-generation mobile communication system The requirements of the next-generation mobile communication system are largely explosive data traffic acceptance, dramatic increase in transmission rate per user, largely increased number of connected devices, very low end-to-end latency, and support for high energy efficiency. You should be able to. For this, dual connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), and Super Wideband Various technologies such as wideband) support and device networking are being studied.
  • MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • Super Wideband Various technologies such as wideband support and device networking are being studied.
  • An object of the present specification is to provide a method and apparatus for setting reservation resources hierarchically in a wireless communication system supporting the Internet of Things (eg, MTC, NB-IoT).
  • MTC Internet of Things
  • NB-IoT the Internet of Things
  • an object of the present specification is to provide a method and an apparatus for using reserved resources based on downlink control information (DCI).
  • DCI downlink control information
  • the present specification proposes a method of setting reserved resources for each specific resource unit (eg, narrowband, NB-IoT carrier).
  • specific resource unit eg, narrowband, NB-IoT carrier.
  • the present specification proposes a method of receiving downlink information in a wireless communication system supporting the Internet of Things (IoT).
  • the method performed by the terminal includes transmitting a physical random access channel (PRACH) preamble to a base station, and an uplink (Ulink, UL) grant based on the PRACH preamble.
  • PRACH physical random access channel
  • Ulink, UL uplink
  • Receiving an access response from the base station transmitting message 3 to the base station based on the UL grant, and receiving a message for contention resolution from the base station based on the message 3 And, receiving from the base station resource reservation configuration information including information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to the reserved resource, and Receiving downlink control information (DCI) including usage-related information from the base station, and based on the resource reservation setting information and information related to the use of the reserved resource, the downlink information is It may include receiving from the base station.
  • DCI downlink control information
  • the downlink information may be received using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the use of the reserved resource. .
  • the downlink information may be received without the use of the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the reservation of the reserved resource. .
  • the reservation resource may be one or more symbols reserved based on the symbol level bitmap in a slot reserved based on the slot level bitmap.
  • the slot level bitmap may be set in units of 10 milliseconds (ms) or 40 ms.
  • the IoT may include machine type communication (MTC) and/or narrowband Internet of Things (Narrowband-IoT, NB-IoT).
  • MTC machine type communication
  • Narrowband-IoT narrowband Internet of Things
  • the resource reservation setting information is set for each narrowband, and based on the IoT being NB-IoT, the resource reservation The configuration information may be set for each NB-IoT carrier.
  • the resource reservation configuration information may be received through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the downlink information may be received through a physical downlink control channel (PDCCH) and/or a physical downlink shared channel (PDSCH).
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a terminal receiving downlink information in a wireless communication system supporting the Internet of Things (IoT) of the present specification is functionally provided with one or more transceivers, one or more processors, and the one or more processors. It includes one or more memories connected and storing instructions for performing operations, the operations comprising: transmitting a physical random access channel (PRACH) preamble to the base station, and the PRACH preamble Receiving from the base station a random access response including an uplink (Ulink, UL) grant based on the UL grant, and transmitting message 3 to the base station based on the UL grant, and based on the message 3 And receiving a message for contention resolution from the base station, and information about a slot level bitmap related to a reserved resource and information about a symbol level bitmap related to the reserved resource.
  • PRACH physical random access channel
  • Receiving resource reservation setting information from the base station, and receiving downlink control information (DCI) including information related to the use of the reserved resource from the base station, and the resource reservation setting information and It may include the step of receiving the downlink information from the base station based on the information related to the use of the reserved resource.
  • DCI downlink control information
  • the present specification proposes a method of transmitting downlink information in a wireless communication system supporting the Internet of Things (IoT).
  • the method performed by the base station includes receiving a physical random access channel (PRACH) preamble from the terminal, and an uplink (Ulink, UL) grant based on the PRACH preamble.
  • PRACH physical random access channel
  • Ulink, UL uplink
  • Transmitting an access response to the terminal receiving message 3 from the terminal based on the UL grant, and transmitting a message for contention resolution to the terminal based on the message 3 And, transmitting resource reservation configuration information including information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to the reserved resource to the terminal, and Transmitting downlink control information (DCI) including usage-related information to the terminal, and based on the resource reservation setting information and information related to the use of the reserved resource, the downlink information is It may include transmitting to the terminal.
  • DCI downlink control information
  • the downlink information may be transmitted using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the use of the reserved resource. .
  • the downlink information may be transmitted without the use of the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the reservation of the reserved resource.
  • the reservation resource may be one or more symbols reserved based on the symbol level bitmap in a slot reserved based on the slot level bitmap.
  • the slot level bitmap may be set in units of 10 milliseconds (ms) or 40 ms.
  • the IoT may include machine type communication (MTC) and/or narrowband Internet of Things (Narrowband-IoT, NB-IoT).
  • MTC machine type communication
  • Narrowband-IoT narrowband Internet of Things
  • the resource reservation setting information is set for each narrowband, and based on the IoT being NB-IoT, the resource reservation The configuration information may be set for each NB-IoT carrier.
  • a base station that transmits downlink information in a wireless communication system supporting the Internet of Things (IoT) of the present specification is functionally provided to one or more transceivers, one or more processors, and the one or more processors. It is connected and includes one or more memories for storing instructions for performing operations, the operations include receiving a physical random access channel (PRACH) preamble from the terminal, and the PRACH preamble Transmitting a random access response including an uplink (UL) grant to the terminal based on the UL grant, receiving a message 3 from the terminal based on the UL grant, and based on the message 3 And transmitting a message for contention resolution to the terminal, including information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to the reserved resource.
  • PRACH physical random access channel
  • UL uplink
  • DCI downlink control information
  • the one or more processors may include a physical random access channel (Physical Random Access Channel). Transmits a PRACH) preamble to a base station, receives a random access response including an uplink (Ulink, UL) grant from the base station based on the PRACH preamble, and sends message 3 based on the UL grant And receive a message for contention resolution based on the message 3 from the base station, information on a slot level bitmap related to a reserved resource and a symbol level bit related to the reserved resource Receiving resource reservation configuration information including information on a map from the base station, and receiving downlink control information (DCI) including information related to the use of the reserved resource from the base station, and the resource reservation It may be configured to receive downlink information from the base station based on configuration information and information related to the use of the reserved resource.
  • DCI downlink control information
  • a terminal that stores one or more instructions of the present specification
  • one or more instructions executable by one or more processors are provided by a terminal and a physical random access channel (Physical Random Access).
  • Physical Random Access Physical Random Access
  • Channel, PRACH transmits a preamble to a base station, receives a random access response including an uplink (Ulink, UL) grant from the base station based on the PRACH preamble, and receives message 3 based on the UL grant.
  • Ulink uplink
  • Transmit to the base station receive a message for contention resolution based on the message 3 from the base station, information on a slot level bitmap related to a reserved resource and a symbol related to the reserved resource
  • Receiving resource reservation setting information including information on a level bitmap from the base station and receiving downlink control information (DCI) including information related to use of the reserved resource from the base station, and the It is possible to receive downlink information from the base station based on resource reservation configuration information and information related to the use of the reserved resource.
  • DCI downlink control information
  • the reservation resource can be dynamically used.
  • the reservation resource for each specific resource unit (eg, narrowband, NB-IoT carrier), there is an effect that the reservation resource can be used in consideration of the condition of the frequency band.
  • specific resource unit eg, narrowband, NB-IoT carrier
  • 1 illustrates physical channels and general signal transmission used in a 3GPP system.
  • FIG. 2 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 3 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 6 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
  • FIG. 7 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 8 shows an example of a frame structure in an NR system.
  • FIG. 9 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 10 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • FIG. 11 shows an example of a self-contained structure to which the method proposed in the present specification can be applied.
  • FIG 13 illustrates physical channels used in MTC and general signal transmission using them.
  • 16 illustrates scheduling in legacy LTE and MTC.
  • 17 illustrates physical channels used for NB-IoT and general signal transmission using them.
  • 19 illustrates a frame structure when the subcarrier interval is 3.75 kHz.
  • 21 illustrates the arrangement of an in-band anchor carrier in an LTE bandwidth of 10 MHz.
  • FIG. 22 illustrates transmission of an NB-IoT downlink physical channel/signal in an FDD LTE system.
  • 25 illustrates an initial network connection and a subsequent communication process.
  • 26 illustrates preamble transmission in NB-IoT RACH.
  • FIG. 27 is a flowchart illustrating a method of operating a terminal proposed in the present specification.
  • 28 is a flowchart illustrating a method of operating a base station proposed in the present specification.
  • 29 illustrates a communication system 10 applied to the present invention.
  • FIG. 30 illustrates a wireless device applicable to the present invention.
  • 31 illustrates a signal processing circuit for a transmission signal.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • A'base station (BS)' may be replaced by terms such as a fixed station, Node B, evolved-NodeB (eNB), base transceiver system (BTS), and access point (AP). .
  • 'Terminal' may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile Station
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink refers to communication from a base station to a terminal
  • uplink refers to communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • NOMA NOMA It can be used in various wireless access systems such as (non-orthogonal multiple access).
  • CDMA may be implemented with universal terrestrial radio access (UTRA) or radio technology such as CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2 wireless access systems. That is, among the embodiments of the present invention, steps or parts not described to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • the 3GPP LTE/LTE-A/NR system is mainly described, but the technical features of the present invention are not limited thereto.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S11). To this end, the UE receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station to synchronize with the base station and obtain information such as cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check a downlink channel state.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. It can be done (S12).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure (RACH) with respect to the base station (S13 to S16).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S13 and S15), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message)
  • PRACH physical random access channel
  • RAR Random Access Response
  • a contention resolution procedure may be additionally performed (S16).
  • the UE After performing the above-described procedure, the UE receives PDCCH/PDSCH (S17) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure. Control Channel; PUCCH) transmission (S18) may be performed.
  • the terminal may receive downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and different formats may be applied according to the purpose of use.
  • control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc.
  • the terminal may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • FIG. 2 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE/LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a type 1 radio frame can be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe is composed of two consecutive slots in a time domain, and subframe i is composed of a slot 2i and a slot 2i+1.
  • the time taken to transmit one subframe is referred to as a transmission time interval (TTI).
  • TTI transmission time interval
  • one sub-frame may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are classified in the frequency domain. While there is no limitation on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, an OFDM symbol is for expressing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit, and includes a plurality of consecutive subcarriers in one slot.
  • a subframe may be defined as one or more slots as follows according to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • subframe #i is defined as one 1ms slot #2i.
  • subframe #i may be defined as 6 subslots as illustrated in Table A1.
  • Table 1 exemplifies a subslot configuration in a subframe (usually CP).
  • the uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 2 shows an uplink-downlink configuration.
  • DwPTS Downlink Pilot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • Uplink-downlink configurations can be classified into 7 types, and positions and/or the number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe (S) exists for every half-frame, and in case of having a period of 5ms downlink-uplink switching time, only the first half-frame exists.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only. UpPTS and subframe The subframe immediately following the subframe is always a period for uplink transmission.
  • the uplink-downlink configuration is system information and may be known to both the base station and the terminal.
  • the base station may notify the terminal of the change in the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information whenever the uplink-downlink configuration information is changed.
  • configuration information is a kind of downlink control information and can be transmitted through a PDCCH (Physical Downlink Control Channel) like other scheduling information, and as broadcast information, it is commonly transmitted to all terminals in a cell through a broadcast channel. It could be.
  • PDCCH Physical Downlink Control Channel
  • Table 3 shows the configuration of a special subframe (length of DwPTS/GP/UpPTS).
  • X is set by an upper layer (eg, RRC) signal or is given as 0.
  • RRC upper layer
  • the structure of the radio frame according to the example of FIG. 2 is only one example, and the number of subcarriers included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed. I can.
  • FIG. 3 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in the frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a physical downlink shared channel (PDSCH) is allocated ( data region).
  • PDSCH physical downlink shared channel
  • Examples of downlink control channels used in 3GPP LTE include Physical Control Format Indicator Channel (PCFICH), Physical Downlink Control Channel (PDCCH), and Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe, and carries information on the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH is a response channel for the uplink, and carries an Acknowledgment (ACK)/Not-Acknowledgement (NACK) signal for a Hybrid Automatic Repeat Request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
  • PDCCH is a DL-SCH (Downlink Shared Channel) resource allocation and transmission format (this is also referred to as a downlink grant), UL-SCH (Uplink Shared Channel) resource allocation information (this is also referred to as an uplink grant), PCH ( Resource allocation for upper-layer control messages such as paging information in Paging Channel, system information in DL-SCH, random access response transmitted in PDSCH, arbitrary terminal It can carry a set of transmission power control commands for individual terminals in a group, and activation of VoIP (Voice over IP).
  • a plurality of PDCCHs may be transmitted within the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is composed of a set of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a Cyclic Redundancy Check (CRC) to the control information.
  • CRC Cyclic Redundancy Check
  • RNTI Radio Network Temporary Identifier
  • a unique identifier is masked according to the owner or purpose of the PDCCH. If it is a PDCCH for a specific terminal, a unique identifier of the terminal, for example, a cell-RNTI (C-RNTI) may be masked on the CRC.
  • a paging indication identifier for example, P-RNTI (Paging-RNTI) may be masked on the CRC.
  • P-RNTI Paging-RNTI
  • the PDCCH is for system information, more specifically, a system information block (SIB), a system information identifier and a system information RNTI (SI-RNTI) may be masked on the CRC.
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • EPDCCH enhanced PDCCH
  • the EPDCCH is located in a physical resource block (PRB) set specifically for the terminal.
  • PRB physical resource block
  • the PDCCH may be transmitted in up to three OFDM symbols in the first slot in the subframe, but the EPDCCH may be transmitted in a resource region other than the PDCCH.
  • the timing at which the EPDCCH in the subframe starts ie, symbol
  • EPDCCH is a transmission format related to DL-SCH, resource allocation and HARQ information, transmission format related to UL-SCH, resource allocation and HARQ information, resource allocation related to Sidelink Shared Channel (SL-SCH) and Physical Sidelink Control Channel (PSCCH) Can carry information, etc.
  • Multiple EPDCCHs may be supported, and the UE may monitor a set of EPCCHs.
  • the EPDCCH may be transmitted using one or more consecutive enhanced CCE (ECCE), and the number of ECCEs per single EPDCCH may be determined for each EPDCCH format.
  • ECCE enhanced CCE
  • Each ECCE may be composed of a plurality of resource element groups (EREG: enhanced resource element group).
  • EREG is used to define the mapping of ECCE to RE.
  • the terminal may monitor a plurality of EPDCCHs. For example, one or two EPDCCH sets in one PRB pair for the UE to monitor EPDCCH transmission may be configured.
  • EPCCH may use localized transmission or distributed transmission, and accordingly, the mapping of ECCE to the RE in the PRB may vary.
  • FIG. 5 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a PUCCH Physical Uplink Control Channel
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) carrying user data.
  • PUSCH Physical Uplink Shared Channel
  • the PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots. This is called that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • the invention proposed in the present specification below can be applied not only to the LTE/LTE-A system (or device), but also to the 5G NR system (or device).
  • 5G NR system defines eMBB (enhanced mobile broadband), mMTC (massive machine type communications), URLLC (Ultra-Reliable and Low Latency Communications), V2X (vehicle-to-everything) according to usage scenario (e.g. service type) do.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • V2X vehicle-to-everything
  • usage scenario e.g. service type
  • the 5G NR standard is classified into standalone (SA) and non-standalone (NSA) according to co-existence between the NR system and the LTE system.
  • SA standalone
  • NSA non-standalone
  • the 5G NR system supports various subcarrier spacing, and supports CP-OFDM in downlink and CP-OFDM and DFT-s-OFDM (SC-OFDM) in uplink.
  • CP-OFDM in downlink
  • SC-OFDM DFT-s-OFDM
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2 wireless access systems. That is, among the embodiments of the present invention, steps or parts not described to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • next-generation wireless access technology an environment that provides faster service to more users than an existing communication system (or an existing radio access technology) (e.g., enhanced mobile broadband communication)) needs to be considered.
  • MTC Machine Type Communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • NR New RAT, Radio Access Technology
  • NR system the wireless communication system to which the NR is applied.
  • eLTE eNB is an evolution of eNB that supports connectivity to EPC and NGC.
  • gNB A node that supports NR as well as connection with NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice is a network defined by an operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behaviors.
  • NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
  • NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
  • Non-standalone NR A deployment configuration in which gNB requires LTE eNB as an anchor for control plane connection to EPC or eLTE eNB as an anchor for control plane connection to NGC.
  • Non-standalone E-UTRA Deployment configuration where eLTE eNB requires gNB as an anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • FIG. 6 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
  • the NG-RAN is composed of gNBs that provide an NG-RA user plane (new AS sublayer/PDCP/RLC/MAC/PHY) and a control plane (RRC) protocol termination for UE (User Equipment). do.
  • NG-RA user plane new AS sublayer/PDCP/RLC/MAC/PHY
  • RRC control plane
  • the gNBs are interconnected through an X n interface.
  • the gNB is also connected to the NGC through the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth (wider carrier bandwidth) is supported, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 4 below. Further, FR2 may mean a millimeter wave (mmW).
  • mmW millimeter wave
  • the neurology may be defined by subcarrier spacing and CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier spacing may be derived by scaling the basic subcarrier spacing by an integer N (or ⁇ ). Further, even if it is assumed that a very low subcarrier spacing is not used at a very high carrier frequency, the used neurology can be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a number of OFDM neurology supported in the NR system may be defined as shown in Table 5.
  • Downlink and uplink transmission It is composed of a radio frame having a section of.
  • each radio frame It consists of 10 subframes having a section of.
  • FIG. 7 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
  • the slots are within a subframe Are numbered in increasing order of, within the radio frame Are numbered in increasing order.
  • One slot is Consisting of consecutive OFDM symbols of, Is determined according to the used neurology and slot configuration. Slot in subframe Start of OFDM symbol in the same subframe It is aligned in time with the beginning of.
  • Table 6 shows the number of OFDM symbols per slot in a normal CP ( ), the number of slots per radio frame ( ), the number of slots per subframe ( ), and Table 7 shows the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in an extended CP.
  • FIG. 8 shows an example of a frame structure in an NR system. 8 is only for convenience of description and does not limit the scope of the present invention.
  • SCS subcarrier spacing
  • a mini-slot may be composed of 2, 4 or 7 symbols, or may be composed of more or fewer symbols.
  • an antenna port In relation to the physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined such that a channel carrying a symbol on the antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location) relationship.
  • the wide-range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG. 9 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid on the frequency domain Although it is composed of subcarriers, and one subframe is composed of 14 x 2 ⁇ u OFDM symbols, it is exemplarily described, but is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers and Is described by the OFDM symbols. From here, to be. remind Denotes a maximum transmission bandwidth, which may vary between uplink and downlink as well as neurology.
  • the neurology And one resource grid may be configured for each antenna port p.
  • FIG. 10 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • each element of the resource grid for the antenna port p is referred to as a resource element, and an index pair Is uniquely identified by From here, Is the index in the frequency domain, Refers to the position of a symbol within a subframe.
  • an index pair Is used. From here, to be.
  • antenna port p Is a complex value Corresponds to. If there is no risk of confusion or if a specific antenna port or neurology is not specified, the indices p and Can be dropped, resulting in a complex value or Can be
  • the physical resource block (physical resource block) in the frequency domain It is defined as consecutive subcarriers.
  • Point A serves as a common reference point of the resource block grid and can be obtained as follows.
  • -OffsetToPointA for the PCell downlink indicates the frequency offset between the lowest subcarrier of the lowest resource block and point A of the lowest resource block that overlaps the SS/PBCH block used by the UE for initial cell selection, and the 15 kHz subcarrier spacing for FR1 and It is expressed in resource block units assuming a 60 kHz subcarrier spacing for FR2;
  • -absoluteFrequencyPointA represents the frequency-position of point A expressed as in the absolute radio-frequency channel number (ARFCN).
  • Common resource blocks set the subcarrier interval Numbered from 0 to the top in the frequency domain for.
  • Subcarrier spacing setting The center of subcarrier 0 of the common resource block 0 for is coincided with'point A'.
  • the resource element (k,l) for may be given as in Equation 1 below.
  • Is It can be defined relative to point A so that it corresponds to a subcarrier centered on point A.
  • Physical resource blocks are from 0 in the bandwidth part (BWP) Numbered to, Is the number of the BWP.
  • Physical resource block in BWP i And common resource block The relationship between may be given by Equation 2 below.
  • the TDD (Time Division Duplexing) structure considered in the NR system is a structure that processes both uplink (UL) and downlink (DL) in one slot (or subframe). This is for minimizing the latency of data transmission in the TDD system, and the structure may be referred to as a self-contained structure or a self-contained slot.
  • 11 shows an example of a self-contained structure to which the method proposed in the present specification can be applied. 10 is merely for convenience of description and does not limit the scope of the present invention.
  • one transmission unit eg, slot, subframe
  • OFDM Orthogonal Frequency Division Multiplexing
  • region 1102 refers to a downlink control region
  • region 1104 refers to an uplink control region.
  • regions other than regions 1102 and 1104 may be used for transmission of downlink data or uplink data.
  • uplink control information and downlink control information may be transmitted in one self-contained slot.
  • uplink data or downlink data may be transmitted in one self-contained slot.
  • downlink transmission and uplink transmission are sequentially performed in one self-contained slot, and downlink data transmission and uplink ACK/NACK reception may be performed.
  • a process in which a base station (eNodeB, eNB, gNB) and/or a terminal (user equipment (UE)) switches from a transmission mode to a reception mode a time gap is required for the process of switching from the reception mode to the transmission mode.
  • some OFDM symbol(s) may be set as a guard period (GP).
  • the base station transmits a related signal to the terminal through a downlink channel to be described later, and the terminal receives a related signal from the base station through a downlink channel to be described later.
  • PDSCH Physical downlink shared channel
  • the PDSCH carries downlink data (e.g., DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a demodulation reference signal (DMRS) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • PDCCH Physical downlink control channel
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • One PDCCH is composed of 1, 2, 4, 8, 16 Control Channel Elements (CCEs) according to the Aggregation Level (AL).
  • CCE consists of 6 REGs (Resource Element Group).
  • One REG is defined by one OFDM symbol and one (P)RB.
  • the PDCCH is transmitted through a control resource set (CORESET).
  • CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs constituting CORESET and the number of symbols (maximum 3) may be set by higher layer signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs constituting CORESET and the number of symbols (maximum 3) may be set by higher layer signaling.
  • the terminal acquires DCI transmitted through the PDCCH by performing decoding (aka, blind decoding) on the set of PDCCH candidates.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search space sets configured by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId represents the set of control resources related to the search space set
  • -monitoringSlotPeriodicityAndOffset indicates PDCCH monitoring period interval (slot unit) and PDCCH monitoring interval offset (slot unit)
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol(s) of the control resource set)
  • Table 8 exemplifies features of each search space type.
  • Table 9 exemplifies DCI formats transmitted through PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH I can.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs within a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the terminal transmits a related signal to the base station through an uplink channel described later, and the base station receives a related signal from the terminal through an uplink channel described later.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH carries uplink data (e.g., UL-shared channel transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform Alternatively, it is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by the UL grant in the DCI or is semi-static based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on a codebook or a non-codebook.
  • PUCCH Physical uplink control channel
  • the PUCCH carries uplink control information, HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 10 illustrates PUCCH formats.
  • PUCCH format 0 carries UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH of PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for SR configuration corresponding to only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of a maximum size of 2 bits, and the modulation symbol is spread by an orthogonal cover code (OCC) (set differently depending on whether or not frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and a modulation symbol is transmitted after DMRS and FDM (Frequency Division Multiplexing).
  • the DM-RS is located at symbol indexes #1, #4, #7 and #10 in a given resource block with a density of 1/3.
  • a PN (Pseudo Noise) sequence is used for the DM_RS sequence. Frequency hopping may be activated for 2-symbol PUCCH format 2.
  • PUCCH format 3 does not perform multiplexing of terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUCCH format 4 supports multiplexing of up to 4 terminals in the same physical resource block, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
  • MTC Machine Type Communication
  • MTC is a form of data communication in which one or more machines are included, and can be applied to M2M (Machine-to-Machine) or IoT (Internet-of-Things).
  • a machine means an entity that does not require direct human manipulation or intervention.
  • the machine includes a smart meter equipped with a mobile communication module, a vending machine, a portable terminal having an MTC function, and the like.
  • UE category 0 is an indicator of how much data a terminal can process in a communication modem.
  • UE category 0 UEs can reduce baseband/RF complexity by using a reduced peak data rate, half-duplex operation with relaxed radio frequency (RF) requirements, and a single receive antenna.
  • RF radio frequency
  • eMTC enhanced MTC
  • MTC is a term such as eMTC, LTE-M1/M2, bandwidth reduced low complexity/coverage enhanced (BL/CE), non-BL UE (in enhanced coverage), NR MTC, enhanced BL/CE, or equivalent It may be used interchangeably with other terms.
  • MTC terminals/devices encompass terminals/devices with MTC functions (eg, smart meters, bending machines, portable terminals with MTC functions).
  • the MTC device 100 is a wireless device that provides MTC communication and may be fixed or mobile.
  • the MTC device 100 includes a smart meter equipped with a mobile communication module, a bending machine, a portable terminal having an MTC function, and the like.
  • the base station 200 is connected to the MTC device 100 using a wireless access technology, and may be connected to the MTC server 700 through a wired network.
  • the MTC server 700 is connected to the MTC devices 100 and provides MTC services to the MTC devices 100. Services provided through MTC are differentiated from existing communication services involving human intervention, and various categories of services such as tracking, metering, payment, medical services, and remote control can be provided through MTC. have.
  • MTC communication has a characteristic that the amount of transmitted data is small, and uplink/downlink data transmission/reception occurs occasionally. Therefore, it is effective to lower the unit cost of the MTC device and reduce battery consumption in accordance with the low data rate.
  • MTC devices generally have little mobility, and accordingly, MTC communication has a characteristic that the channel environment hardly changes.
  • an MTC terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • the terminal When the power is turned off, the terminal is powered on again or newly enters the cell and performs an initial cell search operation such as synchronizing with the base station (S1001).
  • the UE receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station, synchronizes with the base station, and obtains information such as a cell identifier (ID).
  • PSS/SSS used for the initial cell search operation of the terminal may be a PSS/SSS of legacy LTE.
  • the MTC terminal may obtain intra-cell broadcast information by receiving a PBCH (Physical Broadcast Channel) signal from the base station (S1002). Meanwhile, the UE may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
  • PBCH Physical Broadcast Channel
  • the UE may acquire more detailed system information by receiving an MPDCCH (MTC PDCCH) and a PDSCH corresponding thereto in step S1102 (S1102).
  • MTC PDCCH MPDCCH
  • S1102 PDSCH corresponding thereto
  • the terminal may perform a random access procedure to complete access to the base station (S1003 to S1006).
  • the UE may transmit a preamble through a physical random access channel (PRACH) (S1003), and receive a random access response (RAR) for the preamble through a PDCCH and a corresponding PDSCH (S1004).
  • the UE transmits a PUSCH (Physical Uplink Shared Channel) using scheduling information in the RAR (S1005), and may perform a contention resolution procedure such as a PDCCH and a corresponding PDSCH (S1006).
  • PRACH physical random access channel
  • RAR random access response
  • S1005 Physical Uplink Shared Channel
  • the UE receives MPDCCH signal and/or PDSCH signal (S1107) and physical uplink shared channel (PUSCH) signal and/or physical uplink control channel as a general uplink/downlink signal transmission procedure.
  • the (PUCCH) signal may be transmitted (S1108).
  • Control information transmitted from the UE to the base station is collectively referred to as UCI (Uplink Control Information).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), etc.
  • the base station/terminal may transmit one physical channel/signal over a plurality of opportunities (a bundle of physical channels).
  • the physical channel/signal may be repeatedly transmitted according to a pre-defined rule.
  • the receiving device may increase the decoding success rate of the physical channel/signal by decoding some or all of the physical channel/signal bundle.
  • the opportunity may mean a resource (eg, time/frequency) through which a physical channel/signal can be transmitted/received.
  • Opportunities for physical channels/signals may include subframes, slots or symbol sets in the time domain.
  • the symbol set may consist of one or more consecutive OFDM-based symbols.
  • Opportunities for a physical channel/signal may include a frequency band, RB set in the frequency domain. For example, PBCH, PRACH, MPDCCH, PDSCH, PUCCH and PUSCH may be repeatedly transmitted.
  • MTC is a specific band (or channel band) among the system bandwidth of the cell (hereinafter, MTC subband or narrow band), regardless of the system bandwidth of the cell. It can only operate in a narrowband (NB)).
  • MTC subband or narrow band the system bandwidth of the cell. It can only operate in a narrowband (NB)).
  • NB narrowband
  • the uplink/downlink operation of the MTC terminal may be performed only in the 1.08 MHz frequency band.
  • 1.08 MHz corresponds to six consecutive Physical Resource Blocks (PRBs) in the LTE system, and is defined to follow the same cell search and random access procedures as LTE terminals.
  • FIG. 15A illustrates a case in which an MTC subband is configured at the center of a cell (eg, 6 PRBs at the center), and FIG.
  • C15B illustrates a case in which a plurality of MTC subbands are configured in a cell.
  • a plurality of MTC subbands may be configured continuously/discontinuously in the frequency domain.
  • Physical channels/signals for MTC may be transmitted and received in one MTC subband.
  • the MTC subband may be defined in consideration of a frequency range and subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the size of the MTC subband may be defined as X consecutive PRBs (ie, 0.18*X*(2 ⁇ u)MHz bandwidth) (see Table A4 for u).
  • X may be defined as 20 according to the size of a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block.
  • MTC can operate in at least one Bandwidth Part (BWP). In this case, a plurality of MTC subbands may be configured in the BWP.
  • BWP Bandwidth Part
  • 16 illustrates scheduling in legacy LTE and MTC.
  • a PDSCH is scheduled using a PDCCH.
  • the PDSCH is scheduled using the MPDCCH.
  • the MTC terminal can monitor the MPDCCH candidate in a search space within a subframe.
  • monitoring includes blind decoding of MPDCCH candidates.
  • MPDCCH transmits DCI, and DCI includes uplink or downlink scheduling information.
  • MPDCCH is multiplexed with PDSCH and FDM in a subframe.
  • the MPDCCH is repeatedly transmitted in up to 256 subframes, and the DCI transmitted by the MPDCCH includes information on the number of MPDCCH repetitions.
  • the PDSCH scheduled by the MPDCCH starts transmission in subframe #N+2.
  • the PDSCH may be repeatedly transmitted in a maximum of 2048 subframes.
  • the MPDCCH and PDSCH may be transmitted in different MTC subbands. Accordingly, the MTC terminal may perform radio frequency (RF) retuning for PDSCH reception after MPDCCH reception.
  • RF radio frequency
  • MTC When repetitive transmission is applied to a physical channel, frequency hopping between different MTC subbands is supported by RF retuning. For example, when the PDSCH is repeatedly transmitted in 32 subframes, the PDSCH is transmitted in the first MTC subband in the first 16 subframes, and the PDSCH is transmitted in the second MTC subband in the remaining 16 subframes. Can be transmitted. MTC operates in half-duplex mode. HARQ retransmission of MTC is adaptive and asynchronous.
  • NB-IoT Nearband Internet of Things
  • NB-IoT represents a narrowband Internet of Things technology that supports low-power wide area networks through existing wireless communication systems (eg, LTE, NR).
  • NB-IoT may refer to a system for supporting low complexity and low power consumption through a narrowband. Since the NB-IoT system uses OFDM parameters such as subcarrier spacing (SCS) in the same manner as the existing system, there is no need to separately allocate an additional band for the NB-IoT system. For example, one PRB of the existing system band can be allocated for NB-IoT. Since the NB-IoT terminal recognizes a single PRB (single PRB) as each carrier, PRB and carrier may be interpreted as the same meaning in the description of NB-IoT.
  • SCS subcarrier spacing
  • NB-IoT is mainly described when it is applied to an existing LTE system, but the following description may be extended to a next-generation system (eg, an NR system, etc.).
  • a next-generation system eg, an NR system, etc.
  • the contents related to NB-IoT can be extended and applied to MTC aiming for similar technical purposes (eg, low-power, low-cost, coverage improvement, etc.).
  • NB-IoT may be replaced with other equivalent terms such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, and NB-NR.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • the UE When the power is turned off while the power is turned on again, or a terminal newly entering the cell performs an initial cell search operation such as synchronizing with the base station (S11).
  • the UE receives a Narrowband Primary Synchronization Signal (NPSS) and a Narrowband Secondary Synchronization Signal (NSSS) from the base station to synchronize with the base station, and obtains information such as a cell identifier (ID).
  • the terminal may obtain intra-cell broadcast information by receiving a narrowband physical broadcast channel (NPBCH) signal from the base station (S12). Meanwhile, the UE may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
  • NNBCH narrowband physical broadcast channel
  • the UE may receive a narrowband PDCCH (NPDCCH) and a narrowband PDSCH (NPDSCH) corresponding thereto in step S12 to obtain more detailed system information (S12).
  • NPDCCH narrowband PDCCH
  • NPDSCH narrowband PDSCH
  • the terminal may perform a random access procedure to complete the access to the base station (S13 to S16). Specifically, the terminal may transmit a preamble through a narrowband physical random access channel (NPRACH) (S13), and receive a random access response (RAR) for the preamble through an NPDCCH and a corresponding NPDSCH (S14). Thereafter, the UE may transmit a narrowband physical uplink shared channel (NPUSCH) using scheduling information in the RAR (S15), and perform a contention resolution procedure such as NPDCCH and corresponding NPDSCH (S16).
  • NPRACH narrowband physical random access channel
  • RAR random access response
  • NPUSCH narrowband physical uplink shared channel
  • the terminal may perform reception (S17) and NPUSCH transmission (S18) of an NPDCCH signal and/or an NPDSCH signal as a general uplink/downlink signal transmission procedure.
  • Control information transmitted from the UE to the base station is collectively referred to as UCI (Uplink Control Information).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is transmitted through NPUSCH.
  • the UE may transmit UCI periodically, aperiodic, or semi-persistent through the NPUSCH.
  • the NB-IoT frame structure may be set differently according to the subcarrier interval (SCS).
  • FIG. 18 illustrates a frame structure when a subcarrier interval is 15 kHz
  • FIG. 19 illustrates a frame structure when a subcarrier interval is 3.75 kHz.
  • the frame structure of FIG. 18 is used in downlink/uplink, and the frame structure of FIG. 19 can be used only in uplink.
  • the NB-IoT frame structure for a 15 kHz subcarrier interval may be set to be the same as the frame structure of a legacy system (ie, LTE system) (see FIG. 2). That is, a 10ms NB-IoT frame may include 10 1ms NB-IoT subframes, and a 1ms NB-IoT subframe may include two 0.5ms NB-IoT slots. Each 0.5ms NB-IoT slot may contain 7 symbols.
  • the 15kHz subcarrier interval can be applied to both downlink and uplink.
  • the symbol includes an OFDMA symbol in downlink and an SC-FDMA symbol in uplink.
  • the system band is 1.08 MHz and is defined as 12 subcarriers.
  • the 15kHz subcarrier interval is applied to both downlink and uplink, and since orthogonality with the LTE system is guaranteed, coexistence with the LTE system can be smoothly performed.
  • a 10 ms NB-IoT frame includes 5 2 ms NB-IoT subframes, and a 2 ms NB-IoT subframe includes 7 symbols and one GP ( Guard Period) symbol may be included.
  • the 2ms NB-IoT subframe may be expressed as an NB-IoT slot or an NB-IoT resource unit (RU).
  • the symbol may include an SC-FDMA symbol.
  • the system band is 1.08 MHz and is defined as 48 subcarriers.
  • the 3.75kHz subcarrier spacing is applied only to the uplink, and orthogonality with the LTE system is broken, and performance degradation due to interference may occur.
  • the drawing illustrates an NB-IoT frame structure based on an LTE system frame structure, and the illustrated NB-IoT frame structure can be extended and applied to a next-generation system (eg, NR system).
  • a next-generation system eg, NR system
  • FIG. 20 illustrates three operation modes of NB-IoT.
  • FIG. 20(a) illustrates an in-band system
  • FIG. 20(b) illustrates a guard-band system
  • FIG. 20(c) illustrates a stand-alone system.
  • the in-band system may be expressed in an in-band mode
  • the guard-band system may be expressed in a guard-band mode
  • the stand-alone system may be expressed in a stand-alone mode.
  • the NB-IoT operation mode is described based on the LTE band, but the LTE band may be replaced with a band of another system (eg, an NR system band).
  • the in-band mode refers to an operation mode for performing NB-IoT in the (legacy) LTE band.
  • some resource blocks of the LTE system carrier may be allocated for NB-IoT.
  • 1 specific RB (ie, PRB) in the LTE band may be allocated for NB-IoT.
  • In-band mode can be operated in a structure in which NB-IoT coexists in the LTE band.
  • the guard-band mode refers to an operation mode in which NB-IoT is performed in a space reserved for the guard-band of the (legacy) LTE band.
  • a guard-band of an LTE carrier that is not used as a resource block in the LTE system may be allocated for NB-IoT.
  • the (legacy) LTE band may have a guard-band of at least 100 kHz at the end of each LTE band.
  • the stand-alone mode refers to an operation mode in which NB-IoT is performed in a frequency band independently configured from the (legacy) LTE band.
  • a frequency band eg, a GSM carrier reallocated in the future
  • GERAN GSM EDGE Radio Access Network
  • the NB-IoT terminal searches for an anchor carrier in units of 100 kHz for initial synchronization, and the center frequency of the anchor carrier in the in-band and guard-band must be located within ⁇ 7.5 kHz from the 100 kHz channel raster. .
  • 6 PRBs are not allocated to NB-IoT. Therefore, the anchor carrier can be located only in a specific PRB.
  • 21 illustrates the arrangement of an in-band anchor carrier in an LTE bandwidth of 10 MHz.
  • a direct current (DC) subcarrier is located in a channel raster. Since the center frequency interval between adjacent PRBs is 180 kHz, the center frequency of PRB indexes 4, 9, 14, 19, 30, 35, 40, and 45 is located at ⁇ 2.5kH from the channel raster. Similarly, the center frequency of the PRB suitable as an anchor carrier in the LTE bandwidth of 20 MHz is located at ⁇ 2.5 kHz from the channel raster, and the center frequency of the PRB suitable as the anchor carrier in the LTE bandwidths of 3 MHz, 5 MHz, and 15 MHz is ⁇ 7.5 kHz from the channel raster Located.
  • DC direct current
  • the center frequency is located at ⁇ 2.5 kHz from the channel raster of the PRB immediately adjacent to the edge PRB of LTE at bandwidths of 10 MHz and 20 MHz.
  • the center frequency of the anchor carrier can be located at ⁇ 7.5kHz from the channel raster by using a guard frequency band corresponding to three subcarriers from the edge PRB.
  • Anchor carriers in stand-alone mode are aligned on a 100kHz channel raster, and all GSM carriers including DC carriers can be utilized as NB-IoT anchor carriers.
  • NB-IoT supports multi-carrier, and a combination of in-band + in-band, in-band + guard-band, guard band + guard-band, stand-alone + stand-alone may be used.
  • Narrowband Physical Broadcast Channel Narrowband Physical Downlink Shared Channel (NPDSCH), and Narrowband Physical Downlink Control Channel (NPDCCH) are provided for NB-IoT downlink
  • Narrowband Primary Synchronization Signal NPSS
  • Narrowband Physical Downlink NSSS
  • Physical signals such as Primary Synchronization Signal
  • NRS Narrowband Reference Signal
  • the NPBCH delivers MIB-NB (Master Information Block-Narrowband), which is the minimum system information required for system access by the NB-IoT terminal, to the terminal.
  • the NPBCH signal can be repeatedly transmitted 8 times to improve coverage.
  • the TBS (Transport Block Size) of the MIB-NB is 34 bits, and is updated every 640ms TTI period.
  • the MIB-NB includes information such as an operation mode, a system frame number (SFN), a Hyper-SFN, a cell-specific reference signal (CRS) port number, and a channel raster offset.
  • the downlink physical channel/signal is transmitted through one PRB and supports 15kHz subcarrier interval/multi-tone transmission.
  • NPSS is transmitted in the 6th subframe of every frame, and NSSS is transmitted in the last (eg, 10th) subframe of every even frame.
  • the terminal may acquire frequency, symbol, and frame synchronization using synchronization signals (NPSS, NSSS) and search for 504 PCIDs (Physical Cell IDs) (ie, base station IDs).
  • PCIDs Physical Cell IDs
  • NPBCH is transmitted in the first subframe of every frame and carries NB-MIB.
  • NRS is provided as a reference signal for downlink physical channel demodulation and is generated in the same manner as LTE.
  • NB-PCID Physical Cell ID
  • NCell ID or NCell ID, NB-IoT base station ID
  • NRS is transmitted through one or two antenna ports.
  • NPDCCH and NPDSCH may be transmitted in the remaining subframes excluding NPSS/NSSS/NPBCH.
  • NPDCCH and NPDSCH cannot be transmitted together in the same subframe.
  • NPDCCH carries DCI, and DCI supports three types of DCI formats.
  • DCI format N0 includes NPUSCH (Narrowband Physical Uplink Shared Channel) scheduling information, and DCI formats N1 and N2 include NPDSCH scheduling information.
  • the NPDCCH can be transmitted up to 2048 times to improve coverage.
  • NPDSCH is used to transmit data (eg, TB) of a transport channel such as a DL-SCH (Downlink-Shared Channel) and a PCH (Paging Channel).
  • the maximum TBS is 680 bits, and a maximum of 2048 repetitions can be transmitted to improve coverage.
  • the uplink physical channel includes a Narrowband Physical Random Access Channel (NPRACH) and NPUSCH, and supports single-tone transmission and multi-tone transmission.
  • NPRACH Narrowband Physical Random Access Channel
  • Single-tone transmission is supported for subcarrier spacing of 3.5kHz and 15kHz, and multi-tone transmission is supported only for subcarrier spacing of 15kHz.
  • NPUSCH supports two formats. NPUSCH format 1 is used for UL-SCH transmission and the maximum TBS is 1000 bits. NPUSCH format 2 is used for transmission of uplink control information such as HARQ ACK signaling. NPUSCH format 1 supports single-/multi-tone transmission, and NPUSCH format 2 supports only single-tone transmission. In the case of single-tone transmission, pi/2-BPSK (Binary Phase Shift Keying) and pi/4-QPSK (Quadrature Phase Shift Keying) are used to reduce PAPR (Peat-to-Average Power Ratio). In the NPUSCH, the number of slots occupied by one resource unit (RU) may be different according to resource allocation.
  • RU resource unit
  • the RU represents the smallest resource unit to which TB is mapped, and is composed of NULsymb * NULslots consecutive SC-FDMA symbols in the time domain and NRUsc consecutive subcarriers in the frequency domain.
  • NULsymb represents the number of SC-FDMA symbols in a slot
  • NULslots represents the number of slots
  • NRUsc represents the number of subcarriers constituting the RU.
  • Table 11 exemplifies the configuration of the RU according to the NPUSCH format and subcarrier spacing.
  • the supported NPUSCH format and SCS differ according to the uplink-downlink configuration.
  • Uplink-downlink configuration may refer to Table 2.
  • Scheduling information for UL-SCH data (eg, UL-SCH TB) transmission is included in DCI format NO, and DCI format NO is transmitted through NPDCCH.
  • the DCI format NO includes information on the start time of the NPUSCH, the number of repetitions, the number of RUs used for TB transmission, the number of subcarriers, and the resource location in the frequency domain, MCS, and the like.
  • DMRS is transmitted in one or three SC-FDMA symbols per slot according to the NPUSCH format.
  • DMRS is multiplexed with data (eg, TB, UCI), and is transmitted only in the RU including data transmission.
  • a DL/UL anchor-carrier is basically configured, and a DL (and UL) non-anchor carrier may be additionally configured.
  • Information on the non-anchor carrier may be included in RRCConnectionReconfiguration.
  • a DL non-anchor carrier is configured (DL add carrier)
  • the terminal receives data only from the DL non-anchor carrier.
  • synchronization signals NPSS, NSSS
  • MIB, SIB broadcast signals
  • paging signals are provided only in the anchor-carrier.
  • the DL non-anchor carrier When the DL non-anchor carrier is configured, the UE listens only to the DL non-anchor carrier while in the RRC_CONNECTED state.
  • the UE transmits data only on the UL non-anchor carrier, and simultaneous transmission in the UL non-anchor carrier and the UL anchor-carrier is not allowed.
  • the terminal returns to the anchor-carrier.
  • FIG. 24 shows a case where only an anchor-carrier is configured for UE1, a DL/UL non-anchor carrier is additionally configured for UE2, and a DL non-anchor carrier is additionally configured for UE3. Accordingly, carriers on which data is transmitted/received in each UE are as follows.
  • -UE1 data reception (DL anchor-carrier), data transmission (UL anchor-carrier)
  • -UE2 data reception (DL non-anchor-carrier), data transmission (UL non-anchor-carrier)
  • -UE3 data reception (DL non-anchor-carrier), data transmission (UL anchor-carrier)
  • the NB-IoT terminal cannot transmit and receive at the same time, and transmit/receive operations are limited to one band each. Therefore, even if a multi-carrier is configured, the terminal only requires one transmission/reception chain of the 180 kHz band.
  • the terminal may perform a network access procedure to perform the procedures and/or methods described/suggested above. For example, while accessing a network (eg, a base station), the terminal may receive system information and configuration information necessary to perform the procedures and/or methods described/suggested above and store them in a memory. Configuration information required for the present invention may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • higher layer eg, RRC layer; Medium Access Control, MAC, layer, etc.
  • a physical channel and a reference signal may be transmitted using beam-forming.
  • a beam-management process may be involved in order to align beams between the base station and the terminal.
  • the signal proposed in the present invention can be transmitted/received using beam-forming.
  • RRC Radio Resource Control
  • beam alignment may be performed based on SSB.
  • RRC CONNECTED mode beam alignment may be performed based on CSI-RS (in DL) and SRS (in UL).
  • an operation related to a beam may be omitted in the following description.
  • a base station may periodically transmit an SSB (S702).
  • SSB includes PSS/SSS/PBCH.
  • SSB may be transmitted using beam sweeping (see FIG. 22).
  • the PBCH includes a Master Information Block (MIB), and the MIB may include scheduling information about Remaining Minimum System Information (RMSI).
  • RMSI Remaining Minimum System Information
  • the base station may transmit RMSI and other system information (OSI) (S704).
  • the RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station. Meanwhile, after performing SSB detection, the UE identifies the best SSB.
  • the terminal may transmit a RACH preamble (Message 1, Msg1) to the base station using the PRACH resource linked/corresponding to the index (ie, the beam) of the best SSB (S706).
  • the beam direction of the RACH preamble is associated with the PRACH resource.
  • the association between the PRACH resource (and/or the RACH preamble) and the SSB (index) may be set through system information (eg, RMSI).
  • the base station transmits a RAR (Random Access Response) (Msg2) in response to the RACH preamble (S708), and the UE uses the UL grant in the RAR to make an Msg3 (eg, RRC Connection Request)
  • Msg4 may include RRC Connection Setup.
  • subsequent beam alignment may be performed based on SSB/CSI-RS (in DL) and SRS (in UL).
  • the terminal may receive an SSB/CSI-RS (S714).
  • SSB/CSI-RS may be used by the UE to generate a beam/CSI report.
  • the base station may request a beam/CSI report from the terminal through DCI (S716).
  • the UE may generate a beam/CSI report based on the SSB/CSI-RS, and transmit the generated beam/CSI report to the base station through PUSCH/PUCCH (S718).
  • the beam/CSI report may include a beam measurement result, information on a preferred beam, and the like.
  • the base station and the terminal may switch the beam based on the beam/CSI report (S720a, S720b).
  • the terminal and the base station may perform the procedures and/or methods described/suggested above.
  • the terminal and the base station process the information in the memory according to the present invention based on the configuration information obtained in the network access process (e.g., system information acquisition process, RRC connection process through RACH, etc.) Or may process the received radio signal and store it in a memory.
  • the radio signal may include at least one of a PDCCH, a PDSCH, and a reference signal (RS) in case of a downlink, and may include at least one of a PUCCH, a PUSCH, and an SRS in case of an uplink.
  • RS reference signal
  • SIB1-BR System Information Block for bandwidth reduced device
  • TBS transport block size
  • SIB1-BR is transmitted on the PDSCH.
  • SIB1-BR may be unchanged in 512 radio frames (5120 ms) to allow multiple subframes to be combined.
  • the information carried in SIB1-BR is similar to that of SIB1 in the LTE system.
  • the MTC RACH process is basically the same as the LTE RACH process and differs in the following matters:
  • the MTC RACH process is performed based on the CE (Coverage Enhancement) level. For example, in order to improve PRACH coverage, whether/the number of PRACH repetitive transmissions may be changed for each CE level.
  • CE Channel Enhancement
  • Table 12 exemplifies CE modes/levels supported by MTC.
  • MTC supports two modes (CE mode A and CE mode B) and four levels (levels 1 to 4) for coverage enhancement.
  • CE mode A is a mode for small coverage enhancement in which complete mobility and CSI feedback are supported, and there is no repetition or the number of repetitions may be set to be small.
  • CE mode B is a mode for a terminal with extremely poor coverage conditions supporting CSI feedback and limited mobility, and the number of repetitions may be large.
  • the base station broadcasts system information including a plurality of (eg, three) RSRP (Reference Signal Received Power) threshold values, and the UE may determine the CE level by comparing the RSRP threshold value with the RSRP measurement value.
  • RSRP Reference Signal Received Power
  • the following information for each CE level can be independently configured through system information.
  • -RAR window time the length of the time period in which RAR reception is expected (eg, number of subframes)
  • the UE may perform PRACH transmission based on the selected PRACH resource.
  • the PRACH waveform used in MTC is the same as the PRACH waveform used in LTE (eg, OFDM and Zadoff-Chu sequence). Signals/messages transmitted after the PRACH may also be repeatedly transmitted, and the number of repetitions may be independently set according to the CE mode/level.
  • NPSS NPSS
  • NSSS NPBCH
  • NPBCH NPBCH
  • the NB-IoT RACH process is basically the same as the LTE RACH process, and there are differences in the following points.
  • the RACH preamble format is different.
  • the preamble is based on a code/sequence (eg, zadoff-chu sequence), whereas in NB-IoT, the preamble is a subcarrier.
  • the NB-IoT RACH process is performed based on the CE level. Therefore, PRACH resources are allocated differently for each CE level.
  • the uplink resource allocation request in NB-IoT is performed using the RACH process.
  • 26 illustrates preamble transmission in NB-IoT RACH.
  • the NPRACH preamble is composed of four symbol groups, and each symbol group may be composed of a CP and a plurality of (eg, 5) SC-FDMA symbols.
  • the SC-FDMA symbol may be replaced with an OFDM symbol or a DFT-s-OFDM symbol.
  • NPRACH only supports single-tone transmission with a 3.75kHz subcarrier interval, and provides CPs of 66.7 ⁇ s and 266.67 ⁇ s in length to support different cell radii.
  • Each symbol group performs frequency hopping, and the hopping pattern is as follows.
  • the subcarrier transmitting the first symbol group is determined in a pseudo-random method.
  • the second symbol group performs 1 subcarrier hop, the third symbol group 6 subcarriers hop, and the fourth symbol group 1 subcarrier jump.
  • the frequency hopping procedure is repeatedly applied, and the NPRACH preamble can be repeatedly transmitted ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ times to improve coverage.
  • NPRACH resources can be configured for each CE level.
  • the UE may select an NPRACH resource based on a CE level determined according to a downlink measurement result (eg, RSRP), and transmit a RACH preamble using the selected NPRACH resource.
  • NPRACH may be transmitted on an anchor carrier, or may be transmitted on a non-anchor carrier in which NPRACH resources are configured.
  • the current NR (New Radio) system supports a flexible slot format. For example, uplink (UL), downlink (downlink, DL), or flexible configuration may be possible for each symbol (s) even within a subframe and/or slot. have.
  • UL uplink
  • downlink downlink
  • DL downlink
  • LTE IoT LTE IoT
  • the present specification proposes a method for an LTE IoT terminal to efficiently coexist with an NR in the same frequency band.
  • this specification looks at a method of reserving resources in units of subframes/slots/symbols (hereinafter, first embodiment), and a method of operating the reserved resources (hereinafter, second embodiment).
  • LTE IoT may be used to include LTE MTC and/or NB-IoT.
  • 'A/B' may be interpreted as'A and B','A or B', and/or'A and/or B'.
  • RRC radio resource control
  • UE-specific terminal-specific
  • a flexible resource (or a reserved resource) may be indicated to the LTE IoT terminal by cell-specific configuration or RRC configuration.
  • a flexible resource may be indicated to an LTE IoT terminal by a cell-specific RRC configuration or a terminal-specific RRC configuration.
  • the flexible resource refers to a section in which the downlink or uplink of the LTE IoT system is not determined and may be a section in which the LTE CRS is not expected. And/or, although it is downlink with LTE TDD configuration, special subframe configuration, and/or LTE IoT system configuration, it may be indicated as a flexible resource. In this case, it may be allowed to expect an LTE CRS from a flexible resource.
  • the flexible resource cannot be used because it is not set as a BL/CE subframe or a valid subframe, but in the case of Rel-16 LTE IoT terminals, the meaning of a resource available by base station configuration It may include.
  • Rel-16 LTE IoT terminals use more resources in units of symbols and/or slots. It may include a meaning of a resource that can be used while supporting flexible time domain resource reservation.
  • Rel-16 LTE IoT terminals use more resources in units of symbols and/or slots. This may mean that it can be used while supporting flexible time domain resource reservation.
  • the terminal before Rel-16 was set to invalid by subframe-level resource reservation, but Rel- 16
  • the terminal is set to valid by cell-specific RRC configuration, or invalid by cell-specific RRC configuration, but valid by terminal-specific RRC or downlink control information (DCI) signaling, or It can mean a resource that is directed to be used.
  • DCI downlink control information
  • a resource set to invalid for the Rel-16 LTE IoT terminal may be referred to as a reserved resource. That is, the resource set to invalid for the Rel-16 LTE IoT terminal may refer to a reserved resource for non-LTE MTC use.
  • the time resource/frequency resource in which the LTE MTC terminal cannot expect all or part of the uplink/downlink signal because it is used as an NR channel/signal is reserved to the Rel-16 LTE MTC terminal.
  • the flexible resource may have the same meaning as the reserved resource.
  • the reservation resource is referred to as a subframe unit, and the reservation resource may mean a subframe when all symbols in the subframe are reserved.
  • the reserved resource is a specific section unit (e.g., symbol, slot, subframe) in the form of a bitmap (e.g., slotBitmap, symbolBimap)(s) by cell-specific RRC configuration and/or terminal-specific RRC configuration.
  • a bitmap e.g., slotBitmap, symbolBimap
  • the reservation resource is semi-statically set in a specific section unit in the form of bitmap(s) by cell-specific RRC configuration and/or terminal-specific RRC configuration, and through dynamic DCI signaling. It may be instructed to use some or all of the corresponding reserved resources in a specific unit.
  • the specific section unit in which the bitmap (subframe level nonmap/slot level bitmap/symbol level bitmap) for semi-static time-domain resource reservation is used in NR. It can be determined by the period of a specific channel/signal. For example, in the NR, the synchronization signal block (SSB) transmission period assumed by the terminal during initial access is 20 ms, or the SSB transmission period set by RRC signaling ⁇ 5, 10, 20, 40, It may be determined as one of 80 and 160 ⁇ ms.
  • the subframe level nonmap/slot level bitmap/symbol level bitmap may be set in units of 10ms and/or 40ms.
  • a unit for dynamic time-domain resource reservation using DCI may be a subframe(s), slot(s), and/or symbol(s) unit.
  • the base station semi-statically sets the reserved resource by cell-specific RRC configuration and/or terminal-specific RRC configuration, and uses part or all of the semi-static reserved resource through DCI signaling. I can instruct.
  • the UE receives an indication of the setting of a semi-static reserved resource by cell-specific RRC configuration and/or UE-specific RRC configuration, and uplink/downlink transmission/ You can expect to receive it.
  • resources for additional uplink/downlink transmission/reception may be allocated through DCI signaling.
  • the base station sets a semi-static resource reservation based on a provisional position (i.e., candidate positions of SSBs) in which transmission of the SSB(s) is possible, and the location where the actual SSB(s) is transmitted (ie, actually transmitted positions of SSBs), dynamic resource reservations can be set.
  • DCI signaling can be used as a DL resource through a DL assignment DCI for a resource in which the SSB(s) are not actually transmitted.
  • a resource reservation method is classified into a dynamic time domain resource reservation method, a dynamic frequency domain resource reservation method, and a dynamic NB domain resource reservation method, and detailed descriptions are given.
  • the base station determines whether to use or reserve through DCI signaling after setting RRC in advance that can be used through dynamic indication or reserved time-domain resource. Can indicate. This is to reduce DCI signaling overhead. For example, the base station may indicate whether to use (or apply) or reserve the RRC configuration through DCI signaling. For example, the base station may indicate whether to use or reserve a reservation resource according to RRC configuration through DCI signaling.
  • the terminal may receive DCI and transmit and receive information by considering the reserved resource according to the RRC configuration as a usable resource.
  • the terminal receives DCI and regards it as a resource that cannot use the reserved resource according to the RRC configuration, and may transmit and receive information using resources other than the reserved resource.
  • the base station may be in the form of setting a semi-static reserved resource through RRC configuration 1 and configuring dynamic reserved resource information through RRC configuration 2, and DCI signaling Through the terminal can be selectively applied from the RRC configuration 1 and RRC configuration 2.
  • RRC configuration 2 when RRC configuration 2 is a resource configured to be additionally used, additionally available resources may be indicated through DCI signaling. For example, when RRC configuration 2 is a configuration for additional use, additionally available resources may be indicated through DCI signaling.
  • RRC setting 1 and RRC setting 2 are respectively set in the form of a bitmap of the same interval, a resource to be actually used or a reserved resource may be indicated in the form of and/or/exclusive-or.
  • the base station may indicate one of them through DCI in a state in which information on a plurality of dynamic reserved resources is previously set. For example, after setting four dynamic reserved resources, the base station may indicate one through DCI 2 bits. For example, after setting the RRC setting 2-1, the RRC setting 2-2, the RRC setting 2-3, and the RRC setting 2-4, the base station may indicate one through DCI 2 bits.
  • the base station may transmit dynamic reserved resource information by adding a field to the DCI for scheduling flexibility or repurposed.
  • the base station may indicate in the form of a combinatorial index to implement the number of all cases in a specific unit within a specific section for full flexibility.
  • a specific section and a specific unit may be set in advance by setting a higher layer.
  • a specific section and a specific unit may be set in advance by a higher layer signal.
  • a specific section may be a subframe, and a specific unit may be a symbol.
  • the base station can reuse a resource block (RB) allocation field of the conventional UL/DL DCI or use a reserved frequency-domain resource. Can indicate (indication).
  • RB resource block
  • the base station designates and/or releases available or reserved resources for each narrowband (NB) or NB-IoT carrier through dynamic DCI signaling.Dynamic resource reservation in units of NB ) Can be supported.
  • the NB hopping may operate as in Method 1 and/or Method 2 below.
  • Method 1 When the NB is designated and/or released after a specific time, the NB hopping of the LTE MTC terminal may operate based on the designated and/or released NB.
  • Method 1 can be applied only when cell-specific NB is designated and/or released because there may be a collision issue with another terminal.
  • the NB hopping operation of the LTE MTC terminal can be applied only when the cell-specific NB is designated and/or released.
  • Method 2 NB hopping of the LTE MTC terminal can be made to operate based on NBs before designation and/or release. At this time, the released NB may be punctured or postpone.
  • Method 1 may be applied in the case of DCI transmitted through a common search space
  • Method 2 may be applied in the case of DCI transmitted through a UE-specific search space.
  • the flexible resource can be selectively set among subframes/slots/symbol levels in units of time, and the unit may not be continuous.
  • the number of flexible symbols within a corresponding subframe/slot may be the minimum number of downlink symbols/uplink symbols supported by the LTE IoT system, and thereafter The values of may not be continuous.
  • a radio frame/subframe/slot location in which the corresponding symbol is located may be separately indicated.
  • the reservation resource is set by setting information including a slot level bitmap and a symbol level bitmap, and the reservation resource is based on the symbol level bitmap in one or more slots reserved based on the slot level bitmap. Thus, it may be one or more reserved symbols.
  • the slot level bitmap may be set in units of 10 milliseconds (ms) and/or 40 ms.
  • the 10 ms slot level bitmap indicates, indicates or sets whether or not slots of 10 ms are reserved, and the symbol level bitmap indicates whether or not each symbol of the slots reserved in the 10 ms slot level bitmap is reserved. Can be indicated, indicated, or set. In other words, the base station may hierarchically set the reserved resource to the terminal.
  • the unit and the minimum/maximum value range may be different according to the length of the cyclic prefix (CP) of the corresponding system.
  • the above indication method may be configured for each NB or NB-IoT carrier, and/or the terminal may be expected to be not independently configured for each NB or NB-IoT carrier when no special configuration is indicated.
  • the flexible resource indicated by subframe/slot/symbol unit is a resource other than a bandwidth reduced low complexity (BL)/Coverage Enhancement (CE) subframe or a valid subframe. May be limited. This is because conventional LTE IoT terminals cannot dynamically utilize the corresponding flexible resource, so only the resources initially selected as resources that LTE IoT cannot utilize, opportunistically/limitedly, Rel-16 LTE IoT terminals. It may be to provide a way to dynamically utilize the corresponding resource.
  • BL bandwidth reduced low complexity
  • CE Channel Enhancement
  • the bit size of the flexible resource may be determined depending on the number of '0' or '1' indicated in the BL/CE subframe or valid subframe bitmap.
  • the base station may set the flexible resource to be different from each other in two ways, and the terminal may select it.
  • the base station may set the flexible resource differently from each other through cell-specific RRC signaling and terminal-specific RRC signaling, and allow the terminal to select it.
  • the selection of the terminal may be based on, for example, a UE capability report, or a preference in terms of the terminal reported to the base station through an uplink channel and/or an uplink signal. have.
  • the base station may schedule downlink transmission or expect uplink reception based on the requesting terminal's capability or preference.
  • the base station sets the flexible resource in units of slots (or subframes) by cell-specific RRC signaling only when all symbols in the slot (or subframe) can be set as flexible resources, and the slot (or subframe) When only some symbol(s) within the frame) can be set as flexible resources, the flexible resources can be set in units of symbols by UE-specific RRC signaling.
  • the UE if the UE can use the flexible resource in units of symbols, after the UE capability report/preference report (through base station approval), the UE is uplink/downlink through the flexible resource set by specific RRC signaling. Link transmission and reception can be performed.
  • the terminal-specific RRC signaling is to configure a flexible resource that can be additionally used in addition to the flexible resource set by cell-specific RRC signaling, or, conversely, some of the flexible resources set by cell-specific RRC signaling are terminal-specific RRC signaling. It can be used for purposes limited by
  • flexible resources (or reserved resources) can be operated and resource allocated in the following manner.
  • PRACH Physical Random Access channel
  • NPRACH narrowband physical random access channel
  • the flexible resource in the RA resource is in a dynamic manner (e.g., cell-specific, group-common, and/or terminal-specific DCI), when indicated by UL, (N) PRACH transmission may be allowed, which may be exceptionally allowed only in case of PDCCH order-based PRACH transmission.
  • a dynamic manner e.g., cell-specific, group-common, and/or terminal-specific DCI
  • (N) PRACH is transmitted based on a PDCCH order
  • flexible resource configuration may be ignored. That is, it can be interpreted that the intention that the base station instructs PRACH transmission on the physical downlink control channel (PDCCH) has already changed the flexible resource to UL.
  • PDCCH physical downlink control channel
  • after transmitting (N)PRACH based on the PDCCH order in the case of retransmitting the PRACH because the RAR is not received, it may be allowed to transmit the PRACH only to the RA resources that do not include the flexible resource set to the upper layer. have.
  • the flexible subframe/flexible slot can be processed by puncturing.
  • LTE IoT PDCCH which can be monitored with UEs prior to Rel-16, may be considered to have been transmitted in the count of the number of repetitions, although the actual transmission of the LTE IoT PDCCH is omitted in the subframe/slot containing the flexible resource.
  • an LTE IoT PDCCH that can be monitored with terminals prior to Rel-16 may be punctured.
  • the LTE IoT PDDCH may refer to an MTC physical downlink control channel (MTC Physcial Downlink Control Channel, MPDCCH) and/or a narrowband physical downlink control channel (Narrowband Physcial Downlink Control Channel, NPDCCH).
  • the actual transmission of the LTE IoT PDCCH is omitted in the subframe/slot containing the flexible resource, which is not transmitted even in the repetition count. Can be considered.
  • the LTE IoT PDCCH that Rel-16 or higher terminals can monitor terminal-specifically may be postpone (and/or defer).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • SPS SPS
  • PUCCH Physical Uplink Control CHannel
  • Channel State Information e.g., Channel State Information
  • the PDSCH and/or PUSCH dynamically scheduled with DCI through a UE-specific search space is a subframe/slot including a flexible resource in a scheduling grant for transmission/reception.
  • Such an indication may be realized by an independent field in the scheduling DCI, or may be indirectly realized by a repetition number of a scheduled channel or a length value of a repetition transmission interval.
  • whether it is possible to indicate whether or not to use a subframe/slot including a flexible resource for transmission/reception in the scheduling DCI is also dependent on the CE level and/or CE mode of the corresponding terminal. Can be distinguished.
  • the cell-specific channel/signal may be omitted from transmission in the subframe/slot including the flexible resource, and may be regarded as transmitted in terms of a repetition count. For example, the cell-specific channel/signal may be punctured.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronzation Signal
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • the embodiments proposed in the present specification may be implemented independently, but may be implemented in the form of a combination (or merger) of some embodiments.
  • the information on whether the embodiments are applied (or information on the rules of the embodiments) is a rule so that the base station informs the terminal through predefined signaling (eg, physical layer signaling and/or higher layer signaling, etc.). This can be defined and/or set.
  • FIG. 27 is a flowchart illustrating a method of operating a terminal proposed in the present specification.
  • a terminal may transmit a physical random access channel (PRACH) preamble (eg, PRACH preamble/NPRACH frame) to the base station. (S2701).
  • PRACH physical random access channel
  • the operation of transmitting the PRACH preamble by the UE in step S2701 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit a PRACH preamble, and one or more RF units.
  • Reference numeral 1060 may transmit a PRACH preamble.
  • the terminal may receive a random access response including an uplink (Ulink, UL) grant from the base station based on the PRACH preamble (S2702).
  • a random access response including an uplink (Ulink, UL) grant from the base station based on the PRACH preamble (S2702).
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive a random access response.
  • Unit 1060 may receive a random access response.
  • the terminal may transmit message 3 to the base station based on the UL grant (S2703).
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit message 3, and one or more RF units 1060 may transmit message 3.
  • the terminal may receive a message for contention resolution from the base station based on message 3 (S2704).
  • an operation in which the terminal in step S2704 receives a message for conflict resolution may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive a message for conflict resolution.
  • the above RF unit 1060 may receive a message for conflict resolution.
  • the terminal (1000/2000 of FIGS. 29 to 33) includes information on a slot level bitmap (eg, slotBitmap) related to a reserved resource and a symbol level bitmap related to the reserved resource (eg: Resource reservation configuration information (eg, ResourceReservationCOnfig) including information about symbolBitmap) may be received from the base station (S2705).
  • a slot level bitmap eg, slotBitmap
  • a symbol level bitmap related to the reserved resource eg: Resource reservation configuration information (eg, ResourceReservationCOnfig) including information about symbolBitmap
  • the reservation resource may be one or more symbols reserved based on the symbol level bitmap in one or more slots reserved based on the slot level bitmap.
  • the slot level bitmap may be set in units of 10 milliseconds (ms) and/or 40 ms.
  • the 10 ms slot level bitmap indicates, indicates or sets whether or not slots of 10 ms are reserved
  • the symbol level bitmap indicates whether or not each symbol of the slots reserved in the 10 ms slot level bitmap is reserved.
  • the base station may hierarchically set the reserved resource to the terminal.
  • the reserved resource may be a resource in units of symbols, slots, subframes, and/or radio frames.
  • the proposed method of the present specification may be performed in a wireless communication system supporting the Internet of Things (IoT).
  • IoT may include Machine Type Communication (MTC) and/or narrowband Internet of Things (Narrowband-IoT, NB-IoT).
  • MTC Machine Type Communication
  • Narrowband-IoT narrowband Internet of Things
  • NB-IoT narrowband-IoT
  • resource reservation setting information may be set for each narrowband.
  • resource reservation setting information may be set for each NB-IoT carrier.
  • the resource reservation configuration information may be received through radio resource control (RRC) signaling.
  • RRC radio resource control
  • an operation in which the terminal in step S2705 receives resource reservation setting information may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive resource reservation setting information.
  • the RF unit 1060 may receive resource reservation configuration information.
  • the terminal may receive downlink control information (DCI) including information related to the use of reserved resources (eg, Resource reservation field) from the base station. It can be done (S2706). For example, if the information related to the use of the reserved resource is '0', the reserved resource based on the resource reservation setting information can be used for the terminal to receive downlink information, and the information related to the use of the reserved resource is '1'. In the case of, the reserved resource based on the resource reservation configuration information may not be used by the terminal to receive downlink information.
  • the reserved resource may be a resource in units of symbols, slots, subframes, and/or radio frames.
  • the information related to the use of the reserved resource may be information related to the use of the resource reservation setting information. For example, if the information related to the use of the reserved resource is '0', the downlink information can be received without the use of the resource reservation setting information, and if the information related to the use of the reserved resource is '1', the resource Downlink information may be received using reservation setting information.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive DCI, and one or more RF units ( 1060) may receive DCI.
  • the terminal may receive downlink information from the base station based on the resource reservation configuration information and information related to the use of the reserved resource (S2707).
  • the downlink information may be received by using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the use of the reserved resource.
  • the terminal can expect that downlink information can be received in the reserved resource.
  • the downlink information may be received without the use of the reserved resource, based on the fact that the information related to the use of the reserved resource includes an indication related to the reservation of the reserved resource.
  • the terminal may not expect that downlink information can be received in the reserved resource.
  • the reservation of the reserved resource may mean that the reserved resource is reserved or that the reserved resource is reserved without change.
  • the downlink information may be received using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the availability of the reserved resource.
  • the downlink information may be received without the use of the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the inability to use the reserved resource.
  • the downlink information may include information and/or signals transmitted and received through a channel.
  • the downlink information may include a synchronization signal (eg, PSS/SSS/NPSS/NSSS, etc.), and/or a reference signal (eg, CSI-RS/DMRS/NRS/RRS, etc.).
  • a synchronization signal eg, PSS/SSS/NPSS/NSSS, etc.
  • a reference signal eg, CSI-RS/DMRS/NRS/RRS, etc.
  • the downlink information includes a physical broadcast channel (PBCH) (eg, PBCH/NPBCH), a physical downlink control channel (PDCCH) (eg, PDCCH/NPDCCH/MPDCCH), and / Or it may be received through a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) (eg, PDSCH / NPDSCH).
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • PDSCH Physical Downlink shared channel
  • step S2707 the operation in which the UE receives downlink information in step S2707 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive downlink information.
  • Unit 1060 may receive downlink information.
  • the resource reservation configuration information may be configuration information for uplink resource reservation.
  • the terminal and/or the base station may transmit and receive uplink information based on configuration information for reservation of uplink resources.
  • the uplink information is a physical random access channel (PRACH) (eg PRACH/NPRACH), a physical uplink control channel (PUCCH), and/or a physical uplink shared channel. It may be information and/or a signal transmitted and received through (Physical Uplink Shared Channel, PUSCH) (eg, PUSCH/NPUSCH).
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink shared channel
  • the above-described signaling and operation may be implemented by an apparatus (eg, FIGS. 29 to 33) to be described below.
  • the above-described signaling and operation may be processed by one or more processors 1010 and 2020 of FIGS. 29 to 33, and the above-described signaling and operation may be performed by at least one processor of FIGS. 29 to 33 (eg: 1010, 2020) may be stored in a memory (eg, 1040, 2040) in the form of an instruction/program (eg, instruction, executable code) for driving.
  • an instruction/program eg, instruction, executable code
  • the one or more processors include a physical random access channel (PRACH) preamble. Transmits to the base station and receives a random access response including an uplink (Ulink, UL) grant based on the PRACH preamble from the base station, and transmits message 3 to the base station based on the UL grant, based on message 3
  • PRACH physical random access channel
  • resource reservation configuration information including information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to a reserved resource Is received from the base station
  • DCI downlink control information
  • one or more instructions executable by one or more processors include a terminal and a physical random access channel.
  • PRACH transmits a preamble to the base station, receives a random access response including an uplink (Ulink, UL) grant from the base station based on the PRACH preamble, and transmits message 3 to the base station based on the UL grant.
  • a message for contention resolution is received from the base station based on message 3, and includes information on the slot level bitmap related to the reserved resource and the symbol level bitmap related to the reserved resource.
  • Receiving resource reservation setting information from the base station and receiving downlink control information (DCI) including information related to the use of reserved resources from the base station, and resource reservation setting information and information related to the use of reserved resources Based on, downlink information may be received from the base station.
  • DCI downlink control information
  • 28 is a flowchart illustrating a method of operating a base station proposed in the present specification.
  • a base station (1000/2000 in FIGS. 29 to 33) may receive a physical random access channel (PRACH) preamble from a terminal (S2801).
  • PRACH physical random access channel
  • the operation of receiving the PRACH preamble by the base station in step S2801 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive a PRACH preamble, and one or more RF units.
  • Reference numeral 1060 may receive the PRACH preamble.
  • the base station (1000/2000 of FIGS. 29 to 33) may transmit a random access response including an uplink (Ulink, UL) grant to the terminal based on the PRACH preamble (S2802).
  • a random access response including an uplink (Ulink, UL) grant to the terminal based on the PRACH preamble (S2802).
  • the operation of the base station transmitting the random access response in step S2802 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 and the like to transmit a random access response.
  • Unit 1060 may transmit a random access response.
  • the base station (1000/2000 in FIGS. 29 to 33) may receive message 3 from the terminal based on the UL grant (S2803).
  • the operation of the base station receiving message 3 in step S2803 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to receive message 3, and one or more RF units 1060 may receive message 3.
  • the base station (1000/2000 in FIGS. 29 to 33) may transmit a message for contention resolution to the terminal based on message 3 (S2804).
  • the operation of the base station transmitting a message for collision resolution in step S2804 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit a message for conflict resolution.
  • the above RF unit 1060 may transmit a message for conflict resolution.
  • the base station (1000/2000 of FIGS. 29 to 33) includes information on a slot level bitmap (eg, slotBitmap) related to a reserved resource and a symbol level bitmap related to the reserved resource (eg: resource reservation configuration information (eg, ResourceReservationCOnfig) including information on (symbolBitmap) may be transmitted to the terminal (S2805).
  • a slot level bitmap eg, slotBitmap
  • a symbol level bitmap related to the reserved resource eg: resource reservation configuration information (eg, ResourceReservationCOnfig) including information on (symbolBitmap
  • the reservation resource may be one or more symbols reserved based on the symbol level bitmap in one or more slots reserved based on the slot level bitmap.
  • the slot level bitmap may be set in units of 10 milliseconds (ms) and/or 40 ms.
  • the 10 ms slot level bitmap indicates, indicates or sets whether or not slots of 10 ms are reserved
  • the symbol level bitmap indicates whether or not each symbol of the slots reserved in the 10 ms slot level bitmap is reserved.
  • the base station may hierarchically set the reserved resource to the terminal.
  • the reserved resource may be a resource in units of symbols, slots, subframes, and/or radio frames.
  • the proposed method of the present specification may be performed in a wireless communication system supporting the Internet of Things (IoT).
  • IoT may include Machine Type Communication (MTC) and/or narrowband Internet of Things (Narrowband-IoT, NB-IoT).
  • MTC Machine Type Communication
  • Narrowband-IoT narrowband Internet of Things
  • NB-IoT narrowband-IoT
  • resource reservation setting information may be set for each narrowband.
  • resource reservation setting information may be set for each NB-IoT carrier.
  • the resource reservation configuration information may be received through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the operation of the base station transmitting resource reservation configuration information in step S2805 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit resource reservation setting information, and one or more The RF unit 1060 may transmit resource reservation configuration information.
  • the base station may transmit downlink control information (DCI) including information related to the use of the reserved resource (eg, Resource reservation field) to the terminal.
  • DCI downlink control information
  • the reserved resource based on the resource reservation setting information can be used for the terminal to receive downlink information, and the information related to the use of the reserved resource is '1'.
  • the reserved resource based on the resource reservation configuration information may not be used by the terminal to receive downlink information.
  • the reserved resource may be a resource in units of symbols, slots, subframes, and/or radio frames.
  • the information related to the use of the reserved resource may be information related to the use of the resource reservation setting information. For example, if the information related to the use of the reserved resource is '0', the downlink information can be received without the use of the resource reservation setting information, and if the information related to the use of the reserved resource is '1', the resource Downlink information may be received using reservation setting information.
  • the operation of the base station transmitting the DCI in step S2806 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit DCI, and one or more RF units ( 1060) may transmit DCI.
  • the base station (1000/2000 of FIGS. 29 to 33) may transmit downlink information to the terminal based on resource reservation configuration information and information related to the use of the reserved resource (S2807).
  • the downlink information may be transmitted using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the use of the reserved resource.
  • the terminal can expect that downlink information can be received in the reserved resource.
  • the downlink information may be transmitted without the use of the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the reservation of the reserved resource.
  • the terminal may not expect that downlink information can be received in the reserved resource.
  • the reservation of the reserved resource may mean that the reserved resource is reserved or that the reserved resource is reserved without change.
  • the downlink information may be transmitted using the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the availability of the reserved resource. And/or, the downlink information may be transmitted without the use of the reserved resource based on the fact that the information related to the use of the reserved resource includes an indication related to the inability to use the reserved resource. And/or, the downlink information may include information and/or signals transmitted and received through a channel.
  • the downlink information may include a synchronization signal (eg, PSS/SSS/NPSS/NSSS, etc.), and/or a reference signal (eg, CSI-RS/DMRS/NRS, etc.).
  • a synchronization signal eg, PSS/SSS/NPSS/NSSS, etc.
  • a reference signal eg, CSI-RS/DMRS/NRS, etc.
  • the downlink information includes a physical broadcast channel (PBCH) (eg, PBCH/NPBCH), a physical downlink control channel (PDCCH) (eg, PDCCH/NPDCCH/MPDCCH), and / Or it may be transmitted through a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) (eg, PDCCH / NPDSH).
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • PDSCH Physical Downlink Shared Channel
  • the operation of the base station transmitting downlink information in step S2807 may be implemented by the apparatuses of FIGS. 29 to 33 to be described below.
  • one or more processors 1020 may control one or more memories 1040 and/or one or more RF units 1060 to transmit downlink information.
  • the unit 1060 may transmit downlink information.
  • the resource reservation configuration information may be configuration information for uplink resource reservation.
  • the terminal and/or the base station may transmit and receive uplink information based on configuration information for reservation of uplink resources.
  • the uplink information is a physical random access channel (PRACH) (eg PRACH/NPRACH), a physical uplink control channel (PUCCH), and/or a physical uplink shared channel. It may be information and/or a signal transmitted and received through (Physical Uplink Shared Channel, PUSCH) (eg, PUSCH/NPUSCH).
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink shared channel
  • the operation of the base station described with reference to FIG. 28 is the same as the operation of the base station described with reference to FIGS.
  • the above-described signaling and operation may be implemented by an apparatus (eg, FIGS. 29 to 33) to be described below.
  • the above-described signaling and operation may be processed by one or more processors 1010 and 2020 of FIGS. 29 to 33, and the above-described signaling and operation may be performed by at least one processor of FIGS. 29 to 33 (eg: 1010, 2020) may be stored in a memory (eg, 1040, 2040) in the form of an instruction/program (eg, instruction, executable code) for driving.
  • an instruction/program eg, instruction, executable code
  • the one or more processors include a physical random access channel (PRACH) preamble. Received from the terminal, and transmits a random access response including an uplink (Ulink, UL) grant to the terminal based on the PRACH preamble, and receives message 3 from the terminal based on the UL grant, and based on message 3
  • PRACH physical random access channel
  • resource reservation setting information including information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to a reserved resource Is transmitted to the terminal
  • DCI downlink control information
  • a non-transitory computer readable medium that stores one or more instructions
  • one or more instructions executable by one or more processors are provided by a base station and a physical random access channel.
  • PRACH receives a preamble from the terminal, transmits a random access response including an uplink (Ulink, UL) grant to the terminal based on the PRACH preamble, and receives message 3 from the terminal based on the UL grant
  • a message for contention resolution is transmitted to the terminal based on message 3, and includes information on a slot level bitmap related to a reserved resource and information on a symbol level bitmap related to a reserved resource.
  • Resource reservation setting information is transmitted to the terminal
  • DCI downlink control information
  • resource reservation setting information and information related to the use of reserved resources Based on, downlink information may be transmitted to the terminal.
  • 29 illustrates a communication system 10 applied to the present invention.
  • a communication system 10 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 1000a, vehicles 1000b-1 and 1000b-2, eXtended Reality (XR) devices 1000c, hand-held devices 1000d, and home appliances 1000e. ), an Internet of Thing (IoT) device 1000f, and an AI device/server 4000.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, and a vehicle capable of performing inter-vehicle communication.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, including HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone, It can be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 2000a may operate as a base station/network node to other wireless devices.
  • the wireless devices 1000a to 1000f may be connected to the network 3000 through the base station 2000.
  • AI Artificial Intelligence
  • the network 3000 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 1000a to 1000f may communicate with each other through the base station 2000/network 3000, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 1000b-1 and 1000b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 1000a to 1000f.
  • Wireless communication/connections 1500a, 1500b, and 1500c may be established between the wireless devices 1000a to 1000f/base station 2000 and the base station 2000/base station 2000.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication (1500a) and sidelink communication (1500b) (or D2D communication), base station communication (1500c) (eg relay, Integrated Access Backhaul (IAB)).
  • IAB Integrated Access Backhaul
  • This can be achieved through technology (eg 5G NR)
  • wireless communication/connection (1500a, 1500b, 1500c) the wireless device and the base station/wireless device, and the base station and the base station can transmit/receive radio signals to each other.
  • wireless communication/connection (1500a, 1500b, 1500c) can transmit/receive signals through various physical channels.
  • FIG. 30 illustrates a wireless device applicable to the present invention.
  • the first wireless device 1000 and the second wireless device 2000 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 1000, the second wireless device 2000 ⁇ is the ⁇ wireless device 1000x, the base station 2000 ⁇ and/or ⁇ wireless device 1000x, wireless device 1000x) of FIG. 32 ⁇ Can be matched.
  • the first wireless device 1000 includes one or more processors 1020 and one or more memories 1040, and may further include one or more transceivers 1060 and/or one or more antennas 1080.
  • the processor 1020 controls the memory 1040 and/or the transceiver 1060 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 1020 may process information in the memory 1040 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 1060.
  • the processor 1020 may receive a radio signal including the second information/signal through the transceiver 1060 and then store information obtained from signal processing of the second information/signal in the memory 1040.
  • the memory 1040 may be connected to the processor 1020 and may store various information related to the operation of the processor 1020.
  • the memory 1040 is an instruction for performing some or all of the processes controlled by the processor 1020, or performing the description, function, procedure, suggestion, method, and/or operation flow chart disclosed in this document. It can store software code including
  • the processor 1020 and the memory 1040 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 1060 may be connected to the processor 1020 and transmit and/or receive radio signals through one or more antennas 1080.
  • the transceiver 1060 may include a transmitter and/or a receiver.
  • the transceiver 1060 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 2000 may include one or more processors 2020 and one or more memories 2040, and may further include one or more transceivers 2060 and/or one or more antennas 2080.
  • the processor 2020 controls the memory 2040 and/or the transceiver 2060, and may be configured to implement the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 2020 may process information in the memory 2040 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 2060.
  • the processor 2020 may receive a radio signal including the fourth information/signal through the transceiver 2060 and then store information obtained from signal processing of the fourth information/signal in the memory 2040.
  • the memory 2040 may be connected to the processor 2020 and may store various information related to the operation of the processor 2020.
  • the memory 2040 may perform some or all of the processes controlled by the processor 2020, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 2020 and the memory 2040 may be part of a communication modem/circuit/chip designed to implement wireless communication technologies (eg, LTE, NR).
  • the transceiver 2060 may be connected to the processor 2020 and transmit and/or receive a radio signal through one or more antennas 2080.
  • the transceiver 2060 may include a transmitter and/or a receiver.
  • the transceiver 2060 may be mixed with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 1020 and 2020.
  • one or more processors 1020 and 2020 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • the one or more processors 1020 and 2020 may use one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 1020 and 2020 may generate a message, control information, data, or information according to the description, function, procedure, proposal, method, and/or operation flow chart disclosed in this document.
  • One or more processors 1020, 2020 may generate a signal (e.g., a baseband signal) including PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , It may be provided to one or more transceivers (1060, 2060).
  • One or more processors 1020, 2020 may receive signals (e.g., baseband signals) from one or more transceivers 1060, 2060, and the descriptions, functions, procedures, proposals, methods, and/or operation flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • the one or more processors 1020 and 2020 may be referred to as a controller, a microcontroller, a microprocessor, or a microcomputer.
  • the one or more processors 1020 and 2020 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document are included in one or more processors 1020, 2020, or stored in one or more memories 1040, 2040, It may be driven by the above processors 1020 and 2020.
  • the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
  • One or more memories 1040 and 2040 may be connected to one or more processors 1020 and 2020, and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • the one or more memories 1040 and 2040 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer-readable storage medium, and/or a combination thereof.
  • the one or more memories 1040 and 2040 may be located inside and/or outside the one or more processors 1020 and 2020.
  • the one or more memories 1040 and 2040 may be connected to the one or more processors 1020 and 2020 through various technologies such as wired or wireless connection.
  • the one or more transceivers 1060 and 2060 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • the one or more transceivers 1060, 2060 may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, proposals, methods and/or operation flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 1060 and 2060 may be connected to one or more processors 1020 and 2020, and may transmit and receive wireless signals.
  • the one or more processors 1020 and 2020 may control one or more transceivers 1060 and 2060 to transmit user data, control information, or radio signals to one or more other devices.
  • the one or more processors 1020 and 2020 may control one or more transceivers 1060 and 2060 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (1060, 2060) may be connected to one or more antennas (1080, 2080), one or more transceivers (1060, 2060) through the one or more antennas (1080, 2080) the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • At least one transceiver (1060, 2060) is to process the received user data, control information, radio signal / channel, etc. using one or more processors (1020, 2020), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • the one or more transceivers 1060 and 2060 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 1020 and 2020 from a baseband signal to an RF band signal.
  • one or more transceivers 1060 and 2060 may include a (analog) oscillator and/or filter.
  • 31 illustrates a signal processing circuit for a transmission signal.
  • the signal processing circuit 10000 may include a scrambler 10100, a modulator 10200, a layer mapper 10300, a precoder 10400, a resource mapper 10500, and a signal generator 10600. have.
  • the operation/function of FIG. 31 may be performed by the processors 1020 and 2020 of FIG. 30 and/or the transceivers 1060 and 2060 of FIG.
  • the hardware elements of FIG. 31 may be implemented in the processors 1020 and 2020 of FIG. 30 and/or the transceivers 1060 and 2060 of FIG.
  • blocks 10100 to 10600 may be implemented in the processors 1020 and 2020 of FIG. 30.
  • blocks 10100 to 10500 may be implemented in the processors 1020 and 2020 of FIG. 30, and block 10600 may be implemented in the transceivers 1060 and 2060 of FIG. 30.
  • the codeword may be converted into a wireless signal through the signal processing circuit 10000 of FIG. 31.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 10100.
  • the scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device.
  • the scrambled bit sequence may be modulated by the modulator 10200 into a modulation symbol sequence.
  • the modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 10300.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 10400 (precoding).
  • the output z of the precoder 10400 can be obtained by multiplying the output y of the layer mapper 10300 by an N*M precoding matrix W.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 10400 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Also, the precoder 10400 may perform precoding without performing transform precoding.
  • the resource mapper 10500 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 10100 to 10600 of FIG. 31.
  • a wireless device eg, 1000, 2000 in FIG. 30
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • a signal processing circuit for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 29).
  • the wireless devices 1000 and 2000 correspond to the wireless devices 1000 and 2000 of FIG. 31, and various elements, components, units/units, and/or modules It can be composed of (module).
  • the wireless devices 1000 and 2000 may include a communication unit 1100, a control unit 1200, a memory unit 1300, and an additional element 1400.
  • the communication unit may include a communication circuit 1120 and a transceiver(s) 1140.
  • the communication circuit 1120 may include one or more processors 1020 and 2020 of FIG. 22 and/or one or more memories 1040 and 2040.
  • the transceiver(s) 1140 may include one or more transceivers 1060 and 2060 and/or one or more antennas 1080 and 2080 of FIG. 22.
  • the control unit 1200 is electrically connected to the communication unit 1100, the memory unit 1300, and the additional element 1400 and controls all operations of the wireless device.
  • the controller 1200 may control an electrical/mechanical operation of a wireless device based on a program/code/command/information stored in the memory unit 1300.
  • control unit 1200 transmits the information stored in the memory unit 1300 to an external (eg, other communication device) through the communication unit 1100 through a wireless/wired interface, or externally through the communication unit 1100 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 1300.
  • an external eg, other communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 1300.
  • the additional element 1400 may be variously configured according to the type of wireless device.
  • the additional element 1400 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Fig. 29, 1000a), vehicle (Fig. 29, 1000b-1, 1000b-2), XR equipment (Fig. 29, 1000c), portable equipment (Fig. 29, 1000d), and home appliances. (Fig. 29, 1000e), IoT device (Fig. 29, 1000f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It may be implemented in the form of an AI server/device (FIGS. 29 and 4000), a base station (FIGS. 29 and 2000), and a network node.
  • the wireless device can be used in a mobile or fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 1000 and 2000 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 1100.
  • the control unit 1200 and the communication unit 1100 are connected by wire, and the control unit 1200 and the first unit (eg, 1300, 1400) are connected through the communication unit 1100.
  • the control unit 1200 and the first unit eg, 1300, 1400
  • each element, component, unit/unit, and/or module in the wireless devices 1000 and 2000 may further include one or more elements.
  • the control unit 1200 may be configured with one or more processor sets.
  • control unit 1200 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • the memory unit 1300 includes a random access memory (RAM), a dynamic RAM (DRAM), a read only memory (ROM), a flash memory, a volatile memory, and a non-volatile memory. volatile memory) and/or a combination thereof.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 1000 includes an antenna unit 1080, a communication unit 1100, a control unit 1200, a memory unit 1300, a power supply unit 1400a, an interface unit 1400b, and an input/output unit 1400c. ) Can be included.
  • the antenna unit 1080 may be configured as a part of the communication unit 1100. Blocks 1100 to 1300/1400a to 1400c correspond to blocks 1100 to 1300/1400 of FIG. 32, respectively.
  • the communication unit 1100 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 1200 may perform various operations by controlling components of the portable device 1000.
  • the controller 1200 may include an application processor (AP).
  • the memory unit 1300 may store data/parameters/programs/codes/commands required for driving the portable device 1000. Further, the memory unit 1300 may store input/output data/information, and the like.
  • the power supply unit 1400a supplies power to the portable device 1000 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 1400b may support connection between the portable device 1000 and other external devices.
  • the interface unit 1400b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 1400c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 1400c may include a camera, a microphone, a user input unit, a display unit 1400d, a speaker, and/or a haptic module.
  • the input/output unit 1400c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 1300. Can be saved.
  • the communication unit 1100 may convert the information/signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to a base station.
  • the communication unit 1100 may restore the received radio signal to the original information/signal.
  • the restored information/signal may be stored in the memory unit 1300 and then output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 1400c.
  • wireless communication technologies implemented in wireless devices may include LTE, NR, and 6G, as well as Narrowband Internet of Things for low power communication.
  • the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and limited to the above name no.
  • LPWAN Low Power Wide Area Network
  • a wireless communication technology implemented in a wireless device (eg, 1000, 2000, 1000a to 1000f) of the present specification may perform communication based on LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to as various names such as eMTC (enhanced machine type communication).
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above name.
  • the wireless communication technology implemented in the wireless devices (eg, 1000, 2000, 1000a to 1000f) of the present specification is ZigBee, Bluetooth, and Low Power Wide Area in consideration of low power communication.
  • Network may include at least one of, but is not limited to the above name.
  • ZigBee technology can generate personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be called various names.
  • PANs personal area networks
  • an embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention provides one or more ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, etc.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code can be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor through various known means.
  • the method for transmitting and receiving downlink information in a wireless communication system supporting the Internet of Things (eg, MTC, NB-IoT) of the present specification has been described based on an example applied to a 3GPP LTE/LTE-A system, but 3GPP LTE/ In addition to the LTE-A system, it can be applied to various wireless communication systems such as 5G systems.
  • MTC Internet of Things
  • NB-IoT Internet of Things

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치를 제안한다. 단말에 의해 수행되는 방법은, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하는 단계와, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하는 단계와, 상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하는 단계와, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하는 단계를 포함할 수 있다.

Description

사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치
본 명세서는 사물 인터넷(Internet Of Things, IoT)(예: MTC, NB-IoT)을 지원하는 무선 통신 시스템에 관한 것으로서, 상세하게는 하향링크 정보를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 사물 인터넷(예: MTC, NB-IoT)을 지원하는 무선 통신 시스템에서, 예약 자원을 계층적(hierarchical)으로 설정하는 방법 및 이를 위한 장치를 제공함에 목적이 있다.
또한, 본 명세서는 하향링크 제어 정보(Downlink Control Information, DCI)를 기반하여 예약 자원을 사용하는 방법 및 이를 위한 장치를 제공함에 목적이 있다.
또한, 본 명세서는 특정 자원 단위(예: 협대역(Narrowband), NB-IoT 캐리어) 별로 예약 자원을 설정하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 수신하는 방법을 제안한다. 단말에 의해 수행되는 방법은, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하는 단계와, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하는 단계와, 상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하는 단계와, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하는 단계와, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하는 단계와, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하는 단계와, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 기지국으로부터 수신하는 단계를 포함할 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원을 사용하여 수신될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원의 사용 없이 수신될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 예약 자원은 상기 슬롯 레벨 비트맵에 기반하여 예약된 슬롯에서, 상기 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들일 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 또는 40 ms 단위로 설정될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함할 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 사물 인터넷이 MTC인 것에 기반하여, 상기 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정되고, 상기 사물 인터넷이 NB-IoT인 것에 기반하여, 상기 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 자원 예약 설정 정보는 무선 자원 제어(Radio Resource Control, RRC) 시그널링을 통해 수신될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 하향링크 정보는 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및/또는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 통해 수신될 수 있다.
또한, 본 명세서의 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 수신하는 단말은, 하나 이상의 송수신기들과, 하나 이상의 프로세서들과, 상기 하나 이상의 프로세서들에 기능적으로 연결되고, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하고, 상기 동작들은, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하는 단계와, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하는 단계와, 상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하는 단계와, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하는 단계와, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하는 단계와, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하는 단계와, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 기지국으로부터 수신하는 단계를 포함할 수 있다.
또한, 본 명세서는 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 전송하는 방법을 제안한다. 기지국에 의해 수행되는 방법은, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하는 단계와, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 단말로 전송하는 단계와, 상기 UL 그랜트에 기반하여 메시지 3를 상기 단말로부터 수신하는 단계와, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 단말로 전송하는 단계와, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 단말로 전송하는 단계와, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 단말로 전송하는 단계와, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 단말로 전송하는 단계를 포함할 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원을 사용하여 전송될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원의 사용 없이 전송될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 예약 자원은 상기 슬롯 레벨 비트맵에 기반하여 예약된 슬롯에서, 상기 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들일 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 또는 40 ms 단위로 설정될 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함할 수 있다.
또한, 본 명세서의 상기 방법에 있어서, 상기 사물 인터넷이 MTC인 것에 기반하여, 상기 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정되고, 상기 사물 인터넷이 NB-IoT인 것에 기반하여, 상기 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정될 수 있다.
또한, 본 명세서의 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 전송하는 기지국은, 하나 이상의 송수신기들과, 하나 이상의 프로세서들과, 상기 하나 이상의 프로세서들에 기능적으로 연결되고, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하고, 상기 동작들은, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하는 단계와, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 단말로 전송하는 단계와, 상기 UL 그랜트에 기반하여 메시지 3를 상기 단말로부터 수신하는 단계와, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 단말로 전송하는 단계와, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 단말로 전송하는 단계와, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 단말로 전송하는 단계와, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 단말로 전송하는 단계를 포함할 수 있다.
또한, 본 명세서의 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 상기 하나 이상의 프로세서들은 상기 장치가, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하며, 상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하고, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하며, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하고, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하며, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 상기 기지국으로부터 수신하도록 설정될 수 있다.
또한, 본 명세서의 하나 이상의 명령어들을 저장하는 비일시적 컴퓨터 판독 가능 매체(computer readable medium, CRM)에 있어서, 하나 이상의 프로세서들에 의해 실행 가능한 하나 이상의 명령어들은 단말이, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고, 상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하며, 상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하고, 상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하며,예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하고, 상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하며, 상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 상기 기지국으로부터 수신하도록 할 수 있다.
본 명세서에 따르면, 사물 인터넷(예: MTC, NB-IoT)을 지원하는 무선 통신 시스템에서, 예약 자원을 계층적(hierarchical)으로 설정함으로써, 예약 자원을 효율적으로 시그널링할 수 있는 효과가 있다.
또한, 본 명세서에 따르면, DCI에 기반하여 예약 자원을 사용함으로써, 동적으로 예약 자원을 사용할 수 있는 효과가 있다.
또한, 본 명세서에 따르면, 특정 자원 단위(예: 협대역(Narrowband), NB-IoT 캐리어) 별로 예약 자원을 설정함으로써, 주파수 대역의 상황을 고려하여 예약 자원을 사용할 수 있는 효과가 있다.
또한, 본 명세서에 따르면, 동일 주파수 대역에서 다른 무선 통신 시스템(예: NR 시스템)과 효율적으로 공존할 수 있는 효과가 있다.
또한, 본 명세서에 따르면, 저지연 및 고신뢰성의 무선 통신 시스템을 구현할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 8은 NR 시스템에서의 프레임 구조의 일례를 나타낸다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 구조의 일례를 나타낸다.
도 12는 MTC 통신을 예시한다.
도 13은 MTC에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송을 예시한다.
도 14는 MTC에서의 셀 커버리지 개선을 예시한다.
도 15는 MTC를 위한 신호 대역을 예시한다.
도 16은 레가시 LTE와 MTC에서의 스케줄링을 예시한다.
도 17은 NB-IoT에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송을 예시한다.
도 18은 서브캐리어 간격이 15kHz인 경우의 프레임 구조를 예시한다.
도 19는 서브캐리어 간격이 3.75kHz인 경우의 프레임 구조를 예시한다.
도 20은 NB-IoT의 세가지 동작 모드(operation mode)를 예시한다.
도 21은 LTE 대역폭 10MHz에서 인-밴드 앵커 캐리어의 배치를 예시한다.
도 22는 FDD LTE 시스템에서 NB-IoT 하향링크 물리 채널/신호의 전송을 예시한다.
도 23은 NPUSCH 포맷을 예시한다.
도 24는 FDD NB-IoT에서 멀티-캐리어가 구성된 경우의 동작을 예시한다.
도 25는 네트워크 초기 접속 및 이후의 통신 과정을 예시한다.
도 26은 NB-IoT RACH에서 프리앰블 전송을 예시한다.
도 27은 본 명세서에서 제안하는 단말의 동작 방법을 설명하기 위한 흐름도이다.
도 28은 본 명세서에서 제안하는 기지국의 동작 방법을 설명하기 위한 흐름도이다.
도 29는 본 발명에 적용되는 통신 시스템(10)을 예시한다.
도 30은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 31은 전송 신호를 위한 신호 처리 회로를 예시한다.
도 32는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
도 33은 본 발명에 적용되는 휴대 기기를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR 시스템을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
물리 채널 및 일반적인 신호 전송
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S13 내지 S16). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S13 및 S15), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S17) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S18)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
LTE 시스템 일반
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 2의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
서브프레임은 SCS(Subcarrier Spacing)에 따라 다음과 같이 하나 이상의 슬롯으로 정의될 수 있다.
- SCS = 7.5 kHz 또는 15 kHz인 경우, 서브프레임 #i는 2개의 0.5ms 슬롯 #2i, #2i+1로 정의된다(i = 0~9).
- SCS = 1.25 kHz인 경우, 서브프레임 #i는 1개의 1ms 슬롯 #2i로 정의된다.
- SCS = 15 kHz인 경우, 서브프레임 #i는 표 A1에 예시된 바와 같이 6개의 서브슬롯으로 정의될 수 있다.
표 1은 서브프레임 내의 서브슬롯 구성을 예시한다(보통 CP).
Figure PCTKR2020010909-appb-T000001
도 2의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 2는 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2020010909-appb-T000002
표 2를 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 3은 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2020010909-appb-T000003
여기서, X는 상위 계층(예, RRC) 시그널에 의해 설정되거나, 0으로 주어진다.
도 2의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
EPDCCH(enhanced PDCCH)는 단말 특정(UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록(PRB: physical resource block)에 위치한다. 다시 말해, 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점(즉, 심볼)은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH(Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를 모니터링할 수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE(ECCE: enhanced CCE)를 이용하여 전송될 수 있으며, 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가 정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹(EREG: enhanced resource element group)으로 구성될 수 있다. EREG는 ECCE의 RE에의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는 순서대로 0 내지 15까지의 번호가 부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다. 예를 들어, 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율(coding rate)이 실현될 수 있다. EPCCH는 지역적 전송(localized transmission) 또는 분산적 전송(distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
NR 시스템 일반
또한, 이하 본 명세서에서 제안하는 발명은 LTE/LTE-A 시스템(또는, 장치)뿐만 아니라, 5G NR 시스템(또는, 장치)에도 적용될 수 있다.
이하, 도 6 내지 도 11을 참고하여 5G NR 시스템의 통신에 대해 설명한다.
5G NR 시스템은 usage scenario(예: 서비스 유형)에 따라 eMBB(enhanced Mobile Broadband), mMTC(massive Machine Type Communications), URLLC(Ultra-Reliable and Low Latency Communications), V2X(vehicle-to-everything)을 정의한다.
그리고, 5G NR 규격(standard)는 NR 시스템과 LTE 시스템 사이의 공존(co-existence)에 따라 standalone(SA)와 non-standalone(NSA)으로 구분한다.
그리고, 5G NR 시스템은 다양한 서브캐리어 간격(subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-s-OFDM(SC-OFDM)을 지원한다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
스마트폰(smartphone) 및 IoT(Internet Of Things) 단말들의 보급이 빠르게 확산됨에 따라, 통신 망을 통해 주고받는 정보의 양이 증가하고 있다. 이에 따라, 차세대 무선 접속 기술에서는 기존의 통신 시스템(또는 기존의 무선 접속 기술(radio access technology))보다 더 많은 사용자들에게 더 빠른 서비스를 제공하는 환경(예: 향상된 이동 광대역 통신(enhanced mobile broadband communication))이 고려될 필요가 있다.
이를 위해, 다수의 기기들 및 사물(object)들을 연결하여 서비스를 제공하는 MTC(Machine Type Communication)을 고려하는 통신 시스템의 디자인이 논의되고 있다. 또한, 통신의 신뢰성(reliability) 및/또는 지연(latency)에 민감한 서비스(service) 및/또는 단말(terminal) 등을 고려하는 통신 시스템(예: URLLC(Ultra-Reliable and Low Latency Communication)의 디자인도 논의 되고 있다.
이하 본 명세서에서, 설명의 편의를 위하여, 상기 차세대 무선 접속 기술은 NR(New RAT, Radio Access Technology)로 지칭되며, 상기 NR이 적용되는 무선 통신 시스템은 NR 시스템으로 지칭된다.
NR 시스템 관련 용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 6을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 4와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Figure PCTKR2020010909-appb-T000004
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 5와 같이 정의될 수 있다.
Figure PCTKR2020010909-appb-T000005
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2020010909-appb-I000001
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2020010909-appb-I000002
이고,
Figure PCTKR2020010909-appb-I000003
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
Figure PCTKR2020010909-appb-I000004
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2020010909-appb-I000005
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 7에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2020010909-appb-I000006
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2020010909-appb-I000007
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2020010909-appb-I000008
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2020010909-appb-I000009
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2020010909-appb-I000010
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2020010909-appb-I000011
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2020010909-appb-I000012
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2020010909-appb-I000013
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 6은 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
Figure PCTKR2020010909-appb-I000014
), 무선 프레임 별 슬롯의 개수(
Figure PCTKR2020010909-appb-I000015
), 서브프레임 별 슬롯의 개수(
Figure PCTKR2020010909-appb-I000016
)를 나타내며, 표 7은 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다
Figure PCTKR2020010909-appb-T000006
Figure PCTKR2020010909-appb-T000007
도 8은 NR 시스템에서의 프레임 구조의 일례를 나타낸다. 도 8은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
표 7의 경우, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 7을 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 8에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 7과 같이 정의될 수 있다.
또한, 미니-슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수도 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 9를 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2020010909-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2^u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2020010909-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2020010909-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2020010909-appb-I000020
이다. 상기
Figure PCTKR2020010909-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 10과 같이, 뉴머롤로지
Figure PCTKR2020010909-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure PCTKR2020010909-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2020010909-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2020010909-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2020010909-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2020010909-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2020010909-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2020010909-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2020010909-appb-I000030
는 복소 값(complex value)
Figure PCTKR2020010909-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2020010909-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2020010909-appb-I000033
또는
Figure PCTKR2020010909-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2020010909-appb-I000035
연속적인 서브캐리어들로 정의된다.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정
Figure PCTKR2020010909-appb-I000036
에 대한 주파수 영역에서 0부터 위쪽으로 넘버링(numbering)된다.
서브캐리어 간격 설정
Figure PCTKR2020010909-appb-I000037
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
Figure PCTKR2020010909-appb-I000038
와 서브캐리어 간격 설정
Figure PCTKR2020010909-appb-I000039
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
Figure PCTKR2020010909-appb-M000001
여기에서,
Figure PCTKR2020010909-appb-I000040
Figure PCTKR2020010909-appb-I000041
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
Figure PCTKR2020010909-appb-I000042
까지 번호가 매겨지고,
Figure PCTKR2020010909-appb-I000043
는 BWP의 번호이다. BWP i에서 물리 자원 블록
Figure PCTKR2020010909-appb-I000044
와 공통 자원 블록
Figure PCTKR2020010909-appb-I000045
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
Figure PCTKR2020010909-appb-M000002
여기에서,
Figure PCTKR2020010909-appb-I000046
는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록일 수 있다.
Self-contained 구조
NR 시스템에서 고려되는 TDD(Time Division Duplexing) 구조는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)를 하나의 슬롯(slot)(또는 서브프레임(subframe))에서 모두 처리하는 구조이다. 이는, TDD 시스템에서 데이터 전송의 지연(latency)을 최소화하기 위한 것이며, 상기 구조는 self-contained 구조 또는 self-contained 슬롯으로 지칭될 수 있다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 구조의 일례를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 11을 참고하면, legacy LTE의 경우와 같이, 하나의 전송 단위(예: 슬롯, 서브프레임)이 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)들로 구성되는 경우가 가정된다.
도 11에서, 영역 1102는 하향링크 제어 영역(downlink control region)을 의미하고, 영역 1104는 상향링크 제어 영역(uplink control region)을 의미한다. 또한, 영역 1102 및 영역 1104 이외의 영역(즉, 별도의 표시가 없는 영역)은 하향링크 데이터(downlink data) 또는 상향링크 데이터(uplink data)의 전송을 위해 이용될 수 있다.
즉, 상향링크 제어 정보(uplink control information) 및 하향링크 제어 정보(downlink control information)는 하나의 self-contained 슬롯에서 전송될 수 있다. 반면, 데이터(data)의 경우, 상향링크 데이터 또는 하향링크 데이터가 하나의 self-contained 슬롯에서 전송될 수 있다.
도 11에 나타난 구조를 이용하는 경우, 하나의 self-contained 슬롯 내에서, 하향링크 전송과 상향링크 전송이 순차적으로 진행되며, 하향링크 데이터의 전송 및 상향링크 ACK/NACK의 수신이 수행될 수 있다.
결과적으로, 데이터 전송의 에러가 발생하는 경우, 데이터의 재전송까지 소요되는 시간이 감소할 수 있다. 이를 통해, 데이터 전달과 관련된 지연이 최소화될 수 있다.
도 11과 같은 self-contained 슬롯 구조에서, 기지국(eNodeB, eNB, gNB) 및/또는 단말(terminal, UE(User Equipment))이 전송 모드(transmission mode)에서 수신 모드(reception mode)로 전환하는 과정 또는 수신 모드에서 전송 모드로 전환하는 과정을 위한 시간 갭(time gap)이 요구된다. 상기 시간 갭과 관련하여, 상기 self-contained 슬롯에서 하향링크 전송 이후에 상향링크 전송이 수행되는 경우, 일부 OFDM 심볼(들)이 보호 구간(Guard Period, GP)으로 설정될 수 있다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
단말은 PDCCH 후보들의 세트에 대한 디코딩(일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 8은 검색 공간 타입별 특징을 예시한다.
Figure PCTKR2020010909-appb-T000008
표 9는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
Figure PCTKR2020010909-appb-T000009
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
물리 상향링크 공유 채널(PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
물리 상향링크 제어 채널(PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 10은 PUCCH 포맷들을 예시한다.
Figure PCTKR2020010909-appb-T000010
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
MTC(Machine Type Communication)
MTC는 머신(machine)이 하나 이상 포함된 데이터 통신의 한 형태이며, M2M(Machine-to-Machine) 또는 IoT(Internet-of-Things) 등에 적용될 있다. 여기서, 머신은 사람의 직접적인 조작이나 개입이 필요하지 않는 개체를 의미한다. 예를 들어, 머신은 이동 통신 모듈이 탑재된 스마트 미터(smart meter), 벤딩 머신(vending machine), MTC 기능을 가진 휴대 단말 등을 포함한다.
3GPP에서 MTC는 release 10부터 적용되었으며, 낮은 비용 & 낮은 복잡도(low cost & low complexity), 향상된 커버리지(enhanced coverage), 낮은 파워 소비(low power consumption)의 기준을 만족하도록 구현될 수 있다. 예를 들어, 3GPP Release 12에는 저비용 MTC 장치를 위한 특징이 추가되었으며, 이를 위해 UE category 0이 정의되었다. UE category는 단말이 얼마나 많은 데이터를 통신 모뎀에서 처리할 수 있는지를 나타내는 지표이다. UE category 0의 단말은 감소된 피크 데이터 레이트, 완화된 RF(Radio Frequency) 요구 사항을 가지는 하프-듀플렉스 동작, 단일 수신 안테나를 사용함으로써 베이스밴드/RF 복잡도를 줄일 수 있다. 3GPP Release 12에는 eMTC(enhanced MTC)가 도입됐으며, 레가시(legacy) LTE에서 지원하는 최소 주파수 대역폭인 1.08MHz (즉, 6개의 RB)에서만 동작하도록 하여 MTC 단말의 가격과 전력 소모를 더 낮추었다.
이하의 설명에서 MTC는 eMTC, LTE-M1/M2, BL/CE(Bandwidth reduced low complexity/coverage enhanced), non-BL UE(in enhanced coverage), NR MTC, enhanced BL/CE 등과 같은 용어, 또는 등가의 다른 용어와 혼용될 수 있다. 또한, MTC 단말/장치는 MTC 기능을 가진 단말/장치(예, 스마트 미터, 벤딩 머신, MTC 기능을 가진 휴대 단말)을 포괄한다.
도 12는 MTC 통신을 예시한다.
도 12를 참조하면, MTC 장치(100)는 MTC 통신을 제공하는 무선 장치이며 고정되거나 이동성을 가질 수 있다. 예를 들어, MTC 장치(100)는 이동 통신 모듈이 탑재된 스마트 미터, 벤딩 머신, MTC 기능을 가진 휴대 단말 등을 포함한다. 기지국(200)은 MTC 장치(100)과 무선 접속 기술을 이용하여 연결되며, MTC 서버(700)와 유선 네트워크를 통해 연결될 수 있다. MTC 서버(700)는 MTC 장치(100)들과 연결되며 MTC 장치(100)들에게 MTC 서비스를 제공한다. MTC를 통해 제공되는 서비스는 사람이 개입하는 기존 통신 서비스와는 차별성을 가지며, MTC를 통해 추적(Tracking), 계량(Metering), 지불, 의료 분야 서비스, 원격 조정 등 다양한 범주의 서비스가 제공될 수 있다. 예를 들어, MTC를 통해 계량기 검침, 수위측정, 감시 카메라의 활용, 자판기의 재고보고 등의 서비스가 제공될 수 있다. MTC 통신은 전송 데이터량이 적고 상향/하향 링크 데이터 송수신이 가끔씩 발생하는 특성을 갖는다. 따라서, 낮은 데이터 전송률에 맞춰서 MTC 장치의 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. MTC 장치는 일반적으로 이동성이 적고, 그에 따라 MTC 통신은 채널 환경이 거의 변하지 않는 특성을 가진다.
도 13은 MTC에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 MTC 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 동작을 수행한다(S1001). 이를 위해, 단말은 기지국으로부터 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)를 수신하여 기지국과 동기를 맞추고, 셀 ID(identifier) 등의 정보를 획득한다. 단말의 초기 셀 탐색 동작에 이용되는 PSS/SSS는 레가시 LTE의 PSS/SSS일 수 있다. 그 후, MTC 단말은 기지국으로부터 PBCH(Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다(S1002). 한편, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S1102 단계에서 MPDCCH(MTC PDCCH) 및 이에 대응되는 PDSCH을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다(S1102).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)을 수행할 수 있다(S1003~S1006). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블을 전송하고(S1003), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S1004). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel)을 전송하고(S1005), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S1006).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 MPDCCH 신호 및/또는 PDSCH 신호의 수신(S1107) 및 물리 상향링크 공유 채널(PUSCH) 신호 및/또는 물리 상향링크 제어 채널(PUCCH) 신호의 전송(S1108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다
도 14는 MTC에서의 셀 커버리지 개선을 예시한다.
MTC 장치(100)를 위해 기지국의 셀 커버리지(Coverage Extension 또는 Coverage Enhancement, CE)를 확장하기 위해 다양한 셀 커버리지 확장 기법들이 논의되고 있다. 예를 들어, 셀 커버리지 확장을 위해, 기지국/단말은 하나의 물리 채널/신호를 복수의 기회(occasion)에 걸쳐 전송할 수 있다(물리 채널의 번들). 번들 구간 내에서 물리 채널/신호는 기-정의된 규칙에 따라 반복 전송될 수 있다. 수신 장치는 물리 채널/신호 번들의 일부 또는 또는 전체를 디코딩함으로써 물리 채널/신호의 디코딩 성공율을 높일 수 있다. 여기서, 기회는 물리 채널/신호가 전송/수신될 수 있는 자원(예, 시간/주파수)을 의미할 수 있다. 물리 채널/신호를 위한 기회는 시간 도메인에서 서브프레임, 슬롯 또는 심볼 세트를 포함할 수 있다. 여기서, 심볼 세트는 하나 이상의 연속된 OFDM-기반 심볼로 구성될 수 있다. OFDM-기반 심볼은 OFDM(A) 심볼, DFT-s-OFDM(A) (= SC-FDM(A)) 심볼을 포함할 수 있다. 물리 채널/신호를 위한 기회는 주파수 도메인에서 주파수 밴드, RB 세트를 포함할 수 있다. 예를 들어, PBCH, PRACH, MPDCCH, PDSCH, PUCCH 및 PUSCH가 반복 전송될 수 있다.
도 15는 MTC를 위한 신호 대역을 예시한다.
도 15를 참조하면, MTC 단말의 단가를 낮추기 위한 방법으로, MTC는 셀의 시스템 대역폭(system bandwidth)과 무관하게, 셀의 시스템 대역폭 중 특정 대역(또는 채널 대역)(이하, MTC 서브밴드 또는 협밴드(narrowband, NB))에서만 동작할 수 있다. 예를 들어, MTC 단말의 상향/하향링크 동작은 1.08 MHz 주파수 밴드에서만 수행될 수 있다. 1.08 MHz는 LTE 시스템에서 6개의 연속하는 PRB(Physical Resource Block)에 해당하며, LTE 단말과 동일한 셀 탐색 및 랜덤 액세스 절차를 따르도록 하기 위해 정의됐다. 도 15(a)는 셀의 중심(예, 중심 6개 PRB들)에 MTC 서브밴드가 구성된 경우를 예시하고, 도 C15b)는 셀 내에 복수의 MTC 서브밴드가 구성된 경우를 예시한다. 복수의 MTC 서브밴드는 주파수 영역에서 연속적/불연속적으로 구성될 수 있다. MTC를 위한 물리 채널/신호들은 하나의 MTC 서브밴드에서 송수신될 수 있다. NR 시스템에서 MTC 서브밴드는 주파수 범위(frequency range) 및 SCS(subcarrier spacing)를 고려하여 정의될 수 있다. 일 예로, NR 시스템에서 MTC 서브밴드의 크기는 X개의 연속하는 PRB(즉, 0.18*X*(2^u)MHz 대역폭)로 정의될 수 있다(u는 표 A4를 참조). 여기서, X는 SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록의 사이즈에 맞춰 20으로 정의될 수 있다. NR 시스템에서 MTC는 적어도 하나의 BWP(Bandwidth Part)에서 동작할 수 있다. 이 경우, BWP 내에 복수의 MTC 서브밴드가 구성될 수 있다.
도 16은 레가시 LTE와 MTC에서의 스케줄링을 예시한다.
도 16을 참조하면, 레가시 LTE에서 PDSCH는 PDCCH를 이용하여 스케줄링 된다. 구체적으로, PDCCH는 서브프레임에서 처음 N개의 OFDM 심볼들에서 전송될 수 있고(N=1~3), 상기 PDCCH에 의해 스케줄링 되는 PDSCH는 동일한 서브프레임에서 전송된다. 한편, MTC에서 PDSCH는 MPDCCH를 이용하여 스케줄링 된다. 이에 따라, MTC 단말은 서브프레임 내의 검색 공간(search space)에서 MPDCCH 후보를 모니터링 할 수 있다. 여기서, 모니터링은 MPDCCH 후보들을 블라인드 디코딩 하는 것을 포함한다. MPDCCH는 DCI를 전송하며, DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함한다. MPDCCH는 서브프레임에서 PDSCH와 FDM으로 다중화 된다. MPDCCH는 최대 256개의 서브프레임에서 반복 전송되며, MPDCCH에 의해 전송되는 DCI는 MPDCCH 반복 횟수에 관한 정보를 포함한다. 하향링크 스케줄링의 경우, MPDCCH의 반복 전송이 서브프레임 #N에서 끝난 경우, 상기 MPDCCH에 의해 스케줄링 되는 PDSCH는 서브프레임 #N+2에서 전송이 시작된다. PDSCH는 최대 2048개의 서브프레임에서 반복 전송될 수 있다. MPDCCH와 PDSCH는 서로 다른 MTC 서브밴드에서 전송될 수 있다. 이에 따라, MTC 단말은 MPDCCH 수신 후에 PDSCH 수신을 위해 RF(Radio Frequency) 리튜닝(retuning)을 할 수 있다. 상향링크 스케줄링의 경우, MPDCCH의 반복 전송이 서브프레임 #N에서 끝난 경우, 상기 MPDCCH에 의해 스케줄링 되는 PUSCH는 서브프레임 #N+4에서 전송이 시작된다. 물리 채널에 반복 전송이 적용되는 경우, RF 리튜닝에 의해 서로 다른 MTC 서브밴드들 사이에서 주파수 호핑이 지원된다. 예를 들어, 32개의 서브프레임들에서 PDSCH가 반복 전송되는 경우, 처음 16개의 서브프레임들에서 PDSCH는 제1 MTC 서브밴드에서 전송되고, 나머지 16개의 서브프레임들에서 PDSCH는 제2 MTC 서브밴드에서 전송될 수 있다. MTC는 하프-듀플렉스(half duplex) 모드로 동작한다. MTC의 HARQ 재전송은 적응적(adaptive), 비동기(asynchronous) 방식이다.
NB-IoT(Narrowband Internet of Things)
NB-IoT는 기존 무선 통신 시스템(예, LTE, NR)을 통해 저전력 광역망을 지원하는 협대역 사물 인터넷 기술을 나타낸다. 또한, NB-IoT는 협대역(narrowband)을 통해 낮은 복잡도(complexity), 낮은 전력 소비를 지원하기 위한 시스템을 의미할 수 있다. NB-IoT 시스템은 SCS(subcarrier spacing) 등의 OFDM 파라미터들을 기존 시스템과 동일하게 사용함으로써, NB-IoT 시스템을 위해 추가 대역을 별도로 할당할 필요가 없다. 예를 들어, 기존 시스템 대역의 1개 PRB를 NB-IoT 용으로 할당할 수 있다. NB-IoT 단말은 단일 PRB(single PRB)를 각 캐리어(carrier)로 인식하므로, NB-IoT에 관한 설명에서 PRB 및 캐리어는 동일한 의미로 해석될 수 있다.
이하에서, NB-IoT에 관한 설명은 기존 LTE 시스템에 적용되는 경우를 위주로 기재하지만, 이하의 설명은 차세대 시스템(예, NR 시스템 등)에도 확장 적용될 수 있다. 또한, 본 명세서에서 NB-IoT와 관련된 내용은 유사한 기술적 목적(예, 저-전력, 저-비용, 커버리지 향상 등)을 지향하는 MTC에 확장 적용될 수 있다. 또한, NB-IoT는 NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR 등과 같이 등가의 다른 용어로 대체될 수 있다.
도 17은 NB-IoT에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 동작을 수행한다(S11). 이를 위해, 단말은 기지국으로부터 NPSS(Narrowband Primary Synchronization Signal) 및 NSSS(Narrowband Secondary Synchronization Signal)를 수신하여 기지국과 동기를 맞추고, 셀 ID(identifier) 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 NPBCH(Narrowband Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다(S12). 한편, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 NPDCCH(Narrowband PDCCH) 및 이에 대응되는 NPDSCH(Narrowband PDSCH)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 NPRACH(Narrowband Physical Random Access Channel)를 통해 프리앰블을 전송하고(S13), NPDCCH 및 이에 대응하는 NPDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 NPUSCH(Narrowband Physical Uplink Shared Channel)을 전송하고(S15), NPDCCH 및 이에 대응하는 NPDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 NPDCCH 신호 및/또는 NPDSCH 신호의 수신(S17) 및 NPUSCH 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. NB-IoT에서 UCI는 NPUSCH를 통해 전송된다. 네트워크(예, 기지국)의 요청/지시에 따라 단말은 NPUSCH를 통해 UCI를 주기적, 비주기적, 또는 반-지속적(semi-persistent)으로 전송할 수 있다.
NB-IoT 프레임 구조는 서브캐리어 간격(SCS)에 따라 다르게 설정될 수 있다. 도 18은 서브캐리어 간격이 15kHz인 경우의 프레임 구조를 예시하고, 도 19는 서브캐리어 간격이 3.75kHz인 경우의 프레임 구조를 예시한다. 도 18의 프레임 구조는 하향링크/상향링크에서 사용되고, 도 19의 프레임 구조는 상향링크에만 사용될 수 있다.
도 18을 참조하면, 15kHz 서브캐리어 간격에 대한 NB-IoT 프레임 구조는 레가시 시스템(즉, LTE 시스템)(도 2 참조)의 프레임 구조와 동일하게 설정될 수 있다. 즉, 10ms NB-IoT 프레임은 10개의 1ms NB-IoT 서브프레임을 포함하며, 1ms NB-IoT 서브프레임은 2개의 0.5ms NB-IoT 슬롯을 포함할 수 있다. 각 0.5ms NB-IoT 슬롯은 7개의 심볼을 포함할 수 있다. 15kHz 서브캐리어 간격은 하향링크 및 상향링크에 모두 적용될 수 있다. 심볼은 하향링크에서 OFDMA 심볼을 포함하고, 상향링크에서 SC-FDMA 심볼을 포함한다. 도 18의 프레임 구조에서 시스템 대역은 1.08MHz이며 12개의 서브캐리어로 정의된다. 15kHz 서브캐리어 간격은 하향링크 및 상향링크에 모두 적용되며, LTE 시스템과의 직교성이 보장되므로 LTE 시스템과의 공존을 원활할 수 있다.
한편, 도 19를 참조하면, 서브캐리어 간격이 3.75kHz인 경우, 10ms NB-IoT 프레임은 5개의 2ms NB-IoT 서브프레임을 포함하고, 2ms NB-IoT 서브프레임은 7개의 심볼과 하나의 GP(Guard Period) 심볼을 포함할 수 있다. 2ms NB-IoT 서브프레임은 NB-IoT 슬롯 또는 NB-IoT RU(Resource Unit) 등으로 표현될 수 있다. 여기서, 심볼은 SC-FDMA 심볼을 포함할 수 있다. 도 19의 프레임 구조에서 시스템 대역은 1.08MHz이며 48개의 서브캐리어로 정의된다. 3.75kHz 서브캐리어 간격은 상향링크에만 적용되며, LTE 시스템과의 직교성이 와해되어 간섭으로 인한 성능열화가 발생할 수 있다.
도면은 LTE 시스템 프레임 구조에 기반한 NB-IoT 프레임 구조를 예시하고 있으며, 예시된 NB-IoT 프레임 구조는 차세대 시스템(예, NR 시스템)에도 확장 적용될 수 있다.
도 20은 NB-IoT의 세가지 동작 모드(operation mode)를 예시한다. 구체적으로, 도 20(a)는 인-밴드 시스템을 예시하고, 도 20(b)는 가드-밴드 시스템을 예시하며, 도 20(c)는 스탠드-얼론 시스템을 예시한다. 여기서, 인-밴드 시스템은 인-밴드 모드로, 가드-밴드 시스템은 가드-밴드 모드로, 스탠드-얼론 시스템은 스탠드-얼론 모드로 표현될 수 있다. 편의상, NB-IoT 동작 모드를 LTE 대역에 기반하여 설명하지만, LTE 대역은 다른 시스템의 대역(예, NR 시스템 대역)으로 대체될 수 있다.
인-밴드 모드는 (레가시) LTE 대역 내에서 NB-IoT를 수행하는 동작 모드를 의미한다. 인-밴드 모드에서는 LTE 시스템 캐리어의 일부 자원 블록이 NB-IoT를 위해 할당될 수 있다. 예를 들어, 인-밴드 모드에서는 LTE 대역 내 특정 1 RB(즉, PRB)가 NB-IoT를 위해 할당될 수 있다. 인-밴드 모드는 LTE 대역 내에 NB-IoT가 공존하는 구조로 운용될 수 있다. 가드-밴드 모드는 (레가시) LTE 밴드의 가드-밴드를 위해 비워놓은(reserved) 공간에서 NB-IoT를 수행하는 동작 모드를 의미한다. 따라서, 가드-밴드 모드에서는 LTE 시스템에서 자원 블록으로 사용되지 않는 LTE 캐리어의 가드-밴드가 NB-IoT를 위해 할당될 수 있다. (레가시) LTE 대역은 각 LTE 대역의 마지막에 최소 100kHz의 가드-밴드를 가질 수 있다. 스탠드-얼론 모드는 (레가시) LTE 대역으로부터 독립적으로 구성된 주파수 대역에서 NB-IoT를 수행하는 동작 모드를 의미한다. 예를 들어, 스탠드-얼론 모드에서는 GERAN(GSM EDGE Radio Access Network)에서 사용되는 주파수 대역(예, 향후 재할당된 GSM 캐리어)이 NB-IoT를 위해 할당될 수 있다.
NB-IoT 단말은 초기 동기화를 위해 100kHz 단위로 앵커(anchor) 캐리어를 탐색하며, 인-밴드 및 가드-밴드에서 앵커 캐리어의 중심 주파수는 100kHz 채널 래스터(channel raster)로부터 ±7.5kHz 이내에 위치해야 한다. 또한, LTE PRB들 중 가운데 6개 PRB는 NB-IoT에 할당되지 않는다. 따라서 앵커 캐리어는 특정 PRB에만 위치할 수 있다.
도 21은 LTE 대역폭 10MHz에서 인-밴드 앵커 캐리어의 배치를 예시한다.
도 21을 참조하면, DC(Direct Current) 서브캐리어는 채널 래스터에 위치한다. 인접 PRB들간의 중심 주파수 간격은 180kHz이므로 PRB 인덱스 4, 9, 14, 19, 30, 35, 40, 45는 채널 래스터로부터 ±2.5kH에 중심 주파수가 위치한다. 유사하게, LTE 대역폭 20MHz에서 앵커 캐리어로 적합한 PRB의 중심 주파수는 채널 래스터로부터 ±2.5kHz에 위치하며, LTE 대역폭 3MHz, 5MHz, 15MHz에서 앵커 캐리어로 적합한 PRB 의 중심 주파수는 채널 래스터로부터 ±7.5kHz에 위치한다.
가드-밴드 모드의 경우, 대역폭 10MHz와 20MHz에서 LTE의 가장자리 PRB에 바로 인접한 PRB가 채널 래스터로부터 ±2.5kHz에 중심 주파수가 위치한다. 대역폭 3MHz, 5MHz, 15MHz의 경우에는 가장자리 PRB로부터 3개의 서브캐리어에 해당하는 보호 주파수 대역을 사용함으로써 채널 래스터로부터 ±7.5kHz에 앵커 캐리어의 중심 주파수를 위치시킬 수 있다.
스탠드-얼론 모드의 앵커 캐리어는 100kHz 채널 래스터에 정렬되며, DC 캐리어를 포함한 모든 GSM 캐리어를 NB-IoT 앵커 캐리어로 활용할 수 있다.
NB-IoT는 멀티-캐리어를 지원하며, 인-밴드 + 인-밴드, 인-밴드 + 가드-밴드, guard band + 가드-밴드, 스탠드-얼론 + 스탠드-얼론의 조합이 사용될 수 있다.
NB-IoT 하향링크에는 NPBCH(Narrowband Physical Broadcast Channel), NPDSCH(Narrowband Physical Downlink Shared Channel), NPDCCH(Narrowband Physical Downlink Control Channel)와 같은 물리 채널이 제공되며, NPSS(Narrowband Primary Synchronization Signal), NSSS(Narrowband Primary Synchronization Signal), NRS(Narrowband Reference Signal)와 같은 물리 신호가 제공된다.
NPBCH는 NB-IoT 단말이 시스템 접속에 필요한 최소한의 시스템 정보인 MIB-NB(Master Information Block-Narrowband)를 단말에게 전달한다. NPBCH 신호는 커버리지 향상을 위해 총 8번의 반복 전송이 가능하다. MIB-NB의 TBS(Transport Block Size)는 34 비트이고, 640ms TTI 주기마다 새로 업데이트 된다. MIB-NB는 운용 모드, SFN(System Frame Number), Hyper-SFN, CRS(Cell-specific Reference Signal) 포트 개수, 채널 래스터 오프셋 등의 정보를 포함한다.
도 22는 FDD LTE 시스템에서 NB-IoT 하향링크 물리 채널/신호의 전송을 예시한다. 하향링크 물리 채널/신호는 1개 PRB를 통해 전송되며 15kHz 서브캐리어 간격/멀티-톤 전송을 지원한다.
도 22를 참조하면, NPSS는 매 프레임의 6번째 서브프레임, NSSS는 매 짝수 프레임의 마지막(예, 10번째) 서브프레임에서 전송된다. 단말은 동기 신호(NPSS, NSSS)를 이용해 주파수, 심볼, 프레임 동기를 획득하고 504개의 PCID(Physical Cell ID)(즉, 기지국 ID)를 탐색할 수 있다. NPBCH는 매 프레임의 1번째 서브프레임에서 전송되고 NB-MIB를 나른다. NRS는 하향링크 물리 채널 복조를 위한 기준 신호로 제공되며 LTE와 동일한 방식으로 생성된다. 다만, NRS 시퀀스 생성을 위한 초기화 값으로 NB-PCID(Physical Cell ID)(또는 NCell ID, NB-IoT 기지국 ID)가 사용된다. NRS는 하나 또는 두 개의 안테나 포트를 통해 전송된다. NPDCCH와 NPDSCH는 NPSS/NSSS/NPBCH를 제외하고 남은 서브프레임에서 전송될 수 있다. NPDCCH와 NPDSCH는 동일 서브프레임에서 함께 전송될 수 없다. NPDCCH는 DCI를 나르며 DCI는 3종류의 DCI 포맷을 지원한다. DCI 포맷 N0는 NPUSCH(Narrowband Physical Uplink Shared Channel) 스케줄링 정보를 포함하며, DCI 포맷 N1과 N2는 NPDSCH 스케줄링 정보를 포함한다. NPDCCH는 커버리지 향상을 위해 최대 2048번의 반복 전송이 가능하다. NPDSCH는 DL-SCH(Downlink-Shared Channel), PCH(Paging Channel)와 같은 전송 채널의 데이터(예, TB)를 전송하는데 사용된다. 최대 TBS는 680비트이고, 커버리지 향상을 위해 최대 2048번 반복 전송이 가능하다.
상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel)과 NPUSCH를 포함하며, 싱글-톤 전송과 멀티-톤 전송을 지원한다. 싱글-톤 전송은 3.5kHz와 15kHz의 서브캐리어 간격에 대해서 지원되며, 멀티-톤 전송은 15kHz 서브캐리어 간격에 대해서만 지원된다.
도 23은 NPUSCH 포맷을 예시한다.
NPUSCH는 두 가지 포맷을 지원한다. NPUSCH 포맷 1은 UL-SCH 전송에 사용되며 최대 TBS는 1000비트이다. NPUSCH 포맷 2는 HARQ ACK 시그널링과 같은 상향링크 제어정보 전송에 사용된다. NPUSCH 포맷 1은 싱글-/멀티-톤 전송을 지원하며, NPUSCH 포맷 2는 싱글-톤 전송만 지원된다. 싱글-톤 전송의 경우, PAPR(Peat-to-Average Power Ratio)을 줄이기 위해 pi/2-BPSK(Binary Phase Shift Keying), pi/4-QPSK(Quadrature Phase Shift Keying)를 사용한다. NPUSCH는 자원 할당에 따라 하나의 RU(Resource Unit)가 점유하는 슬롯 수가 다를 수 있다. RU는 TB가 매핑되는 가장 작은 자원 단위를 나타내며, 시간 영역에서 NULsymb * NULslots개의 연속된 SC-FDMA 심볼과 주파수 영역에서 NRUsc개의 연속된 서브캐리어로 구성된다. 여기서, NULsymb은 슬롯 내의 SC-FDMA 심볼 개수를 나타내고, NULslots은 슬롯 개수를 나타내며, NRUsc는 RU를 구성하는 서브캐리어의 개수를 나타낸다.
표 11은 NPUSCH 포맷과 서브캐리어 스페이싱에 따른 RU의 구성을 예시한다. TDD의 경우 uplink-downlink configuration에 따라 지원되는 NPUSCH 포맷 및 SCS가 달라진다. Uplink-downlink configuration은 표 2를 참조할 수 있다.
Figure PCTKR2020010909-appb-T000011
UL-SCH 데이터(예, UL-SCH TB) 전송을 위한 스케줄링 정보는 DCI 포맷 NO에 포함되며, DCI 포맷 NO는 NPDCCH를 통해 전송된다. DCI 포맷 NO은 NPUSCH의 시작 시점, 반복 횟수, TB 전송에 사용되는 RU 개수, 서브캐리어의 개수 및 주파수 영역에서의 자원 위치, MCS 등에 관한 정보를 포함한다.
도 23을 보면, NPUSCH 포맷에 따라 DMRS가 슬롯 당 하나 또는 세 개의 SC-FDMA 심볼에서 전송된다. DMRS는 데이터(예, TB, UCI)와 다중화되며, 데이터 전송을 포함하는 RU에서만 전송된다.
도 24는 FDD NB-IoT에서 멀티-캐리어가 구성된 경우의 동작을 예시한다.
FDD NB-IoT에서는 DL/UL 앵커-캐리어가 기본적으로 구성되며, DL (및 UL) 논-앵커 캐리어가 추가로 구성될 수 있다. RRCConnectionReconfiguration에 논-앵커 캐리어에 관한 정보가 포함될 수 있다. DL 논-앵커 캐리어가 구성되면(DL add carrier), 단말은 데이터를 DL 논-앵커 캐리어에서만 수신한다. 반면, 동기 신호(NPSS, NSSS), 방송 신호(MIB, SIB) 및 페이징 신호는 앵커-캐리어에서만 제공된다. DL 논-앵커 캐리어가 구성되면, 단말은 RRC_CONNECTED 상태에 있는 동안은 DL 논-앵커 캐리어만을 청취한다(listen). 유사하게, UL 논-앵커 캐리어가 구성되면(UL add carrier), 단말은 데이터를 UL 논-앵커 캐리어에서만 전송하며, UL 논-앵커 캐리어와 UL 앵커-캐리어에서 동시 전송은 허용되지 않는다. RRC_IDLE 상태로 천이되면, 단말은 앵커-캐리어로 돌아간다.
도 24는 UE1한테는 앵커-캐리어만 구성되고, UE2한테는 DL/UL 논-앵커 캐리어가 추가로 구성되고, UE3한테는 DL 논-앵커 캐리어가 추가로 구성된 경우를 나타낸다. 이에 따라, 각 UE에서 데이터가 송신/수신되는 캐리어는 다음과 같다.
- UE1: 데이터 수신 (DL 앵커-캐리어), 데이터 송신 (UL 앵커-캐리어)
- UE2: 데이터 수신 (DL 논-앵커-캐리어), 데이터 송신 (UL 논-앵커-캐리어)
- UE3: 데이터 수신 (DL 논-앵커-캐리어), 데이터 송신 (UL 앵커-캐리어)
NB-IoT 단말은 송신과 수신을 동시에 못하며, 송신/수신 동작은 각각 하나의 밴드로 제한된다. 따라서, 멀티-캐리어가 구성되더라도 단말은 180 kHz 대역의 송신/수신 체인을 하나만 요구한다.
네트워크 접속 및 통신 과정
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 발명에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 25는 네트워크 초기 접속 및 이후의 통신 과정을 예시한다. NR에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍-기반의 신호 전송이 지원되는 경우, 기지국과 단말간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 발명에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍-기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 25를 참조하면, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(S702). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다(도 22 참조). PBCH는 MIB(Master Information Block)를 포함하며, MIB는 RMSI(Remaining Minimum System Information)에 관한 스케줄링 정보를 포함할 수 있다. 이후, 기지국은 RMSI와 OSI(Other System Information)를 전송할 수 있다(S704). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(S706). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(S708), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(S710), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(S712). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(S714). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(S716). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(S718). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭할 수 있다(S720a, S720b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 발명의 제안에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
앞에서 설명한 내용은 기본적으로 MTC와 NB-IoT에 공통으로 적용될 수 있다. MTC와 NB-IoT에서 달라질 수 있는 부분에 대해서는 아래에서 추가로 설명한다.
MTC 네트워크 접속 과정
LTE를 기준으로 MTC 네트워크 접속 과정에 대해 추가로 설명한다. 이하의 설명은 NR에도 확장 적용될 수 있다. LTE에서 MIB는 10개의 예비 비트(reserved bit)를 포함한다. MTC에서 MIB 내 10개의 예비 비트 중 5개의 MSB(Most Significant Bit)는 SIB1-BR(System Information Block for bandwidth reduced device)에 대한 스케줄링 정보를 지시하는데 사용된다. 5개의 MSB는 SIB1-BR의 반복 횟수 및 TBS(Transport Block Size)를 지시하는데 사용된다. SIB1-BR은 PDSCH에서 전송된다. SIB1-BR은 다수의 서브프레임들이 결합되는 것을 허용하도록 512개의 무선 프레임들(5120ms)에서 변하지 않을 수 있다. SIB1-BR에서 운반되는 정보는 LTE 시스템의 SIB1과 유사하다.
MTC RACH 과정은 기본적으로 LTE RACH 과정과 동일하며 다음 사항에서 차이가 있다: MTC RACH 과정은 CE(Coverage Enhancement) 레벨에 기반하여 수행된다. 예를 들어, PRACH 커버리지 개선을 위해 CE 레벨 별로 PRACH 반복 전송 여부/횟수가 달라질 수 있다.
표 12는 MTC에서 지원하는 CE 모드/레벨을 예시한다. MTC는 커버리지 향상을 위해 2개의 모드(CE 모드 A, CE 모드 B)와 4개의 레벨(level 1~4)을 지원한다.
Figure PCTKR2020010909-appb-T000012
CE 모드 A는 완전한 이동성 및 CSI 피드백이 지원되는 작은 커버리지 향상을 위한 모드이며, 반복이 없거나 반복 횟수가 작게 설정될 수 있다. CE 모드 B는 CSI 피드백 및 제한된 이동성을 지원하는 극히 열악한 커버리지 조건의 단말을 위한 모드이며, 반복 횟수가 크게 설정될 수 있다.
기지국은 복수(예, 3개)의 RSRP(Reference Signal Received Power) 임계 값을 포함하는 시스템 정보를 방송하며, 단말은 상기 RSRP 임계 값과 RSRP 측정 값을 비교하여 CE 레벨을 결정할 수 있다. CE 레벨 별로 다음의 정보들이 시스템 정보를 통해 독립적으로 구성될 수 있다.
- PRACH 자원 정보: PRACH 기회(opportunity)의 주기/오프셋, PRACH 주파수 자원
- 프리앰블 그룹: 각 CE 레벨 별로 할당된 프리앰블 세트
- 프리앰블 시도(attempt) 별 반복 횟수, 최대 프리앰블 시도 횟수
- RAR 윈도우 시간: RAR 수신이 기대되는 시구간의 길이(예, 서브프레임 개수)
- 충돌 해결 윈도우 시간: 충돌 해결 메시지 수신이 기대되는 시구간의 길이
단말은 자신의 CE 레벨에 대응되는 PRACH 자원을 선택한 뒤, 선택된 PRACH 자원에 기반하여 PRACH 전송을 수행할 수 있다. MTC에서 사용되는 PRACH 파형(waveform)은 LTE에서 사용되는 PRACH 파형과 동일하다(예, OFDM 및 Zadoff-Chu 시퀀스). PRACH 이후에 전송되는 신호/메시지들도 반복 전송될 수 있으며, 반복 횟수는 CE 모드/레벨에 따라 독립적으로 설정될 수 있다.
NB-IoT 네트워크 접속 과정
LTE를 기준으로 NB-IoT 네트워크 접속 과정에 대해 추가로 설명한다. 이하의 설명은 NR에도 확장 적용될 수 있다. 도 12에서 S702의 PSS, SSS 및 PBCH는 각각 NB-IoT에서 NPSS, NSSS 및 NPBCH로 대체된다. NPSS, NSSS 및 NPBCH에 대한 사항은 도 22를 참조할 수 있다.
NB-IoT RACH 과정은 기본적으로 LTE RACH 과정과 동일하며 다음 사항에서 차이가 있다. 첫째, RACH 프리앰블 포맷이 상이하다. LTE에서 프리앰블은 코드/시퀀스(예, zadoff-chu 시퀀스)에 기반하는 반면, NB-IoT에서 프리앰블은 서브캐리어이다. 둘째, NB-IoT RACH 과정은 CE 레벨에 기반하여 수행된다. 따라서, CE 레벨 별로 PRACH 자원이 서로 다르게 할당된다. 셋째, NB-IoT에는 SR 자원이 구성되지 않으므로, NB-IoT에서 상향링크 자원 할당 요청은 RACH 과정을 이용하여 수행된다.
도 26은 NB-IoT RACH에서 프리앰블 전송을 예시한다.
도 26을 참조하면, NPRACH 프리앰블은 4개 심볼 그룹으로 구성되며, 각 심볼 그룹은 CP와 복수(예, 5)의 SC-FDMA 심볼로 구성될 수 있다. NR에서 SC-FDMA 심볼은 OFDM 심볼 또는 DFT-s-OFDM 심볼로 대체될 수 있다. NPRACH는 3.75kHz 서브캐리어 간격의 싱글-톤 전송만 지원하며, 서로 다른 셀 반경을 지원하기 위해 66.7μs과 266.67μs 길이의 CP를 제공한다. 각 심볼 그룹은 주파수 호핑을 수행하며 호핑 패턴은 다음과 같다. 첫 번째 심볼 그룹을 전송하는 서브캐리어는 의사 랜덤(pseudo-random) 방식으로 결정된다. 두 번째 심볼 그룹은 1 서브캐리어 도약, 세 번째 심볼 그룹은 6 서브캐리어 도약, 그리고 네 번째 심볼 그룹은 1 서브캐리어 도약을 한다. 반복 전송의 경우에는 주파수 호핑 절차를 반복 적용하며, NPRACH 프리앰블은 커버리지 개선을 위해 {1, 2, 4, 8, 16, 32, 64, 128}번 반복 전송이 가능하다. NPRACH 자원은 CE 레벨 별로 구성될 수 있다. 단말은 하향링크 측정 결과(예, RSRP)에 따라 결정된 CE 레벨에 기반하여 NPRACH 자원을 선택하고, 선택된 NPRACH 자원을 이용하여 RACH 프리앰블을 전송할 수 있다. NPRACH는 앵커 캐리어에서 전송되거나, NPRACH 자원이 설정된 논-앵커 캐리어에서 전송될 수 있다.
현재 NR(New Radio) 시스템은 플렉서블(flexible) 슬롯 포맷(slot format)을 지원한다. 예를 들어, 서브프레임(subframe) 및/또는 슬롯(slot) 내에서도 심볼(symbol)(들) 별로 상향링크(uplink,UL), 하향링크(downlink, DL), 또는 플렉서블(flexible) 설정이 가능할 수 있다. 반면에, LTE IoT 시스템에서는 서프레임 단위로만 valid/invalid 설정이 가능하기 때문에, 효율적인 NR과 LTE IoT의 공존(coexistence)을 위해서는 서브프레임보다 작은 레벨(level) 단위로 자원을 설정하고 사용하는 것이 필요하다. 즉, 슬롯 및/또는 심볼 단위로 자원을 설정하고 사용하는 것이 필요하다.
이하, 본 명세서는 LTE IoT 단말이 동일 주파수 대역에서 NR과 효율적으로 공존하기 위한 방법을 제안한다.
구체적으로, 본 명세서는 서브프레임/슬롯/심볼 단위로 자원을 예약하는 방법(이하, 제1 실시 예), 그리고, 예약 자원의 운용 방법(이하, 제2 실시 예)을 살펴본다.
본 명세서에서 LTE IoT는 LTE MTC 및/또는 NB-IoT를 포함하는 의미로 사용될 수 있다.
이하, 본 명세서에서 설명되는 실시 예들은 설명의 편의를 위해 구분된 것일 뿐, 어느 실시 예의 일부 방법 및/또는 일부 구성 등이 다른 실시 예의 방법 및/또는 구성 등과 치환되거나, 상호 간 결합되어 적용될 수 있음은 물론이다.
본 명세서에서, 'A/B'는 'A and B', 'A or B', 그리고/또는 'A and/or B'로 해석될 수 있다.
제1 실시 예
먼저, 서브프레임/슬롯/심볼 단위로 자원을 예약하는 방법에 대해 살펴본다.
LTE IoT 단말이 동일 주파수 대역에서 NR과 공존하기 위해서 셀-특정(Cell-specific) 무선 자원 제어(Radio Resource Control, RRC) 설정(cofiguration) 및/또는 단말-특정(UE-specific) RRC 설정에서 플렉서블 서브프레임/슬롯/심볼을 지시하는 방법이 고려될 수 있다.
플렉서블 슬롯 포맷을 지원하는 NR과의 공존을 위해서 LTE IoT 단말에게 셀-특정 설정 또는 RRC 설정에 의해서 플렉서블 자원(flexible resource)(또는, 예약 자원)을 지시할 수 있다. 예를 들어, 플렉서블 슬롯 포맷을 지원하는 NR과의 공존을 위해서 LTE IoT 단말에게 셀-특정 RRC 설정 또는 단말-특정 RRC 설정에 의해서 플렉서블 자원(flexible resource)을 지시할 수 있다.
상기에서 플렉서블 자원이라 함은, LTE IoT 시스템의 하향링크 또는 상향링크로 확정되지 않은 구간이면서, LTE CRS를 기대하지 못하는 구간일 수도 있다. 그리고/또는, LTE TDD 설정, 스페셜 서브프레임(special subframe) 설정, 및/또는 LTE IoT 시스템 설정으로 하향링크이지만, 플렉서블 자원으로 지시될 수 있다. 이 경우, 플렉서블 자원에서 LTE CRS를 기대하는 것은 허용될 수도 있다.
그리고/또는, 플렉서블 자원은 종래의 LTE IoT 단말들의 경우, BL/CE 서브프레임 또는 valid 서브프레임으로 설정되지 않아서 사용할 수 없지만, Rel-16 LTE IoT 단말들의 경우 기지국 설정에 의해서 사용이 가능한 자원의 의미를 포함할 수 있다. 예를 들어, 종래의 LTE IoT 단말들은 서브프레임 단위의 시간 영역 자원 예약(time-domain resource reservation)만 지원했기 때문에 사용할 수 없었던 자원을 Rel-16 LTE IoT 단말들은 심볼 및/또는 슬롯 단위의 좀 더 플렉서블한 시간 영역 자원 예약을 지원하면서 사용할 수 있게 된 자원의 의미를 포함할 수 있다. 예를 들어, 종래의 LTE IoT 단말들은 서브프레임 단위의 시간 영역 자원 예약(time-domain resource reservation)만 지원했기 때문에 사용할 수 없었던 자원을 Rel-16 LTE IoT 단말들은 심볼 및/또는 슬롯 단위의 좀 더 플렉서블한 시간 영역 자원 예약을 지원하면서 사용할 수 있게 되는 것을 의미할 수 있다.
그리고/또는, 플렉서블 자원은 Rel-16 단말만 유연하게 사용할 수 있는 자원이라는 의미에서 Rel-16 이전의 단말에게는 서브프레임-레벨 자원 예약(subframe-level resource reservation)에 의해서 invalid로 설정되었지만, Rel-16 단말에게는 셀-특정 RRC 설정에 의해서 valid로 설정되거나, 또는 셀-특정 RRC 설정에 의해서 invalid로 설정되었지만, 단말-특정 RRC 또는 하향링크 제어 정보(Downlink Control Information, DCI) 시그널링에 의해서 valid로 또는 사용되도록 지시되는 자원을 의미할 수 있다.
본 명세서에서, Rel-16 LTE IoT 단말에게 invalid로 설정되는 자원은 예약 자원(reserved resource)이라 칭할 수 있다. 즉, Rel-16 LTE IoT 단말에게 invalid로 설정되는 자원은 non-LTE MTC 사용(use)을 위한 예약 자원의 의미일 수 있다. 예를 들어, NR 채널(channel)/신호(signal)로 사용되어 LTE MTC 단말이 상향링크/하향링크 신호의 전부 또는 일부를 기대할 수 없는 시간 자원/주파수 자원을 Rel-16 LTE MTC 단말에게 예약 자원으로 할당할 수 있다. 그리고/또는, 본 명세서에서, 플렉서블 자원은 예약 자원과 동일한 의미일 수도 있다. 그리고/또는, 예약 자원은 서브프레임 단위로 칭하고, 예약 자원은 서브프레임 내 모든 심볼이 예약된 경우, 서브프레임을 의미할 수도 있다.
예약 자원은 셀-특정 RRC 설정 및/또는 단말-특정 RRC 설정에 의해서 비트맵(bitmap)(예: slotBitmap, symbolBimap)(들) 등의 형태로 특정 구간 단위(예: 심볼, 슬롯, 서브프레임)로 반-정적(semi-static)으로 설정되는 것을 기본으로 하고, 동적(dynamic) DCI 시그널링(signaling)을 통해서 해당 예약 자원의 일부 또는 전부를 특정 단위로 사용하도록 지시할 수 있다. 예를 들어, 예약 자원은 셀-특정 RRC 설정 및/또는 단말-특정 RRC 설정에 의해서 비트맵(들) 등의 형태로 특정 구간 단위로 반-정적으로 설정되고, 동적(dynamic) DCI 시그널링을 통해서 해당 예약 자원의 일부 또는 전부가 특정 단위로 사용되도록 지시될 수 있다.
상기에서 반-정적 시간 영역 자원 예약(semi-static time-domain resource reservation)을 위한 비트맵(서브프레임 레벨 비맵/슬롯 레벨 비트맵/심볼 레벨 비트맵)이 정의되는 특정 구간 단위는 NR에서 사용하는 특정 채널/신호의 주기에 의해 결정될 수 있다. 예를 들어, NR에서 초기 접속(initial access) 동안 단말이 가정하는 동기 신호 블록(Synchronization Signal Block, SSB) 전송 주기 20ms 이거나 또는 RRC 시그널링에 의해서 설정되는 SSB 전송 주기 {5, 10, 20, 40, 80, 160}ms 중의 하나의 값으로 결정될 수 있다. 예를 들어, 서브프레임 레벨 비맵/슬롯 레벨 비트맵/심볼 레벨 비트맵은 10ms 및/또는 40ms 단위로 설정될 수 있다. 반면에 DCI를 이용한 동적 시간 영역 자원 예약(dynamic time-domain resource reservation)을 위한 단위는 서브프레임(들), 슬롯(들) 및/또는 심볼(들) 단위일 수 있다.
기지국은 셀-특정 RRC 설정 및/또는 단말-특정 RRC 설정에 의해서 반-정적으로 예약 자원을 설정하고, DCI 시그널링을 통해서 반-정적 예약 자원(semi-static reserved resource)의 일부 또는 전부를 사용하도록 지시할 수 있다. 단말은 셀-특정 RRC 설정 및/또는 단말-특정 RRC 설정에 의해서 반-정적 예약 자원(semi-static reserved resource) 설정을 지시(indication) 받고 예약 자원을 제외한 자원을 통해서 상향링크/하향링크 송/수신을 기대할 수 있다. 또한 DCI 시그널링을 통해서 추가적인 상향링크/하향링크 송/수신을 위한 자원을 할당 받을 수 있다.
예를 들어, 기지국은 SSB(들)의 전송이 가능한 잠정 위치(즉, candidate positions of SSBs)를 기준으로 반-정적 자원 예약을 설정하고, 실제 SSB(들)이 전송되는 위치(즉, actually transmitted positions of SSBs)를 기준으로 동적 자원 예약(dynamic resource reservation)을 설정할 수 있다. 이 경우, DCI 시그널링은 실제 SSB(들)이 전송되지 않는 자원에 대해서 DL 할당(assignment) DCI를 통해서 DL 자원으로 활용할 수 있다.
이하, 자원 예약 방법을 동적 시간 영역 자원 예약 방법, 그리고, 동적 주파수 영역 자원 예약 방법, 그리고, 동적 NB 영역 자원 예약 방법으로, 구분하여 구체적으로 살펴본다.
동적 시간 영역 자원 예약(Dynamic time-domain resource reservation)
동적 시간 영역 자원 예약을 위해서, 기지국은 동적 지시(dynamic indication)를 통해서 사용할 수 있는 또는 예약 시간 영역 자원(reserved time-domain resource)을 사전에 RRC 설정한 후, DCI 시그널링을 통해서 사용 또는 예약 여부를 지시(indication)할 수 있다. 이는 DCI 시그널링 오버헤드(overhead)를 줄이기 위함이다. 예를 들어, 기지국은 DCI 시그널링을 통해서 RRC 설정의 사용(또는, 적용) 또는 예약 여부를 지시(indication)할 수 있다. 예를 들어, 기지국은 DCI 시그널링을 통해서 RRC 설정에 따른 예약 자원의 사용 또는 예약 여부를 지시(indication)할 수 있다.
예를 들어, 단말은 DCI를 수신하고 상기 RRC 설정에 따른 예약 자원을 사용할 수 있는 자원으로 간주하여 정보를 송수신할 수 있다. 또는, 단말은 DCI를 수신하고 상기 RRC 설정에 따른 예약 자원을 사용하지 못하는 자원으로 간주하며, 예약 자원 이외의 자원을 이용하여 정보를 송수신할 수 있다.
이 때, 기지국은 RRC 설정 1을 통해서 반-정적 예약 자원(semi-static reserved resource)을 설정하고, RRC 설정 2를 통해서 동적 예약 자원(dynamic reserved resource) 정보를 설정하는 형태일 수 있으며, DCI 시그널링을 통해서 단말이 RRC 설정 1과 RRC 설정 2 중 선택적으로 적용하도록 할 수 있다.
그리고/또는, RRC 설정 2가 추가적으로 사용하도록 설정된 자원일 경우, DCI 시그널링을 통해서 추가적으로 사용이 가능한 자원이 지시될 수 있다. 예를 들어, RRC 설정 2가 추가적인 사용을 위한 설정일 경우, DCI 시그널링을 통해서 추가적으로 사용이 가능한 자원이 지시될 수 있다.
그리고/또는, RRC 설정 1과 RRC 설정 2가 각각 동일 구간의 비트맵 형태로 설정되는 경우, and/or/exclusive-or 형태로 실제 사용할 자원 또는 예약 자원이 지시될 수 있다. 그리고/또는, 기지국은 다수 개의 동적 예약 자원(dynamic reserved resource) 정보를 사전에 설정한 상태에서 DCI를 통해서 그 중에 하나를 지시할 수 있다. 예를 들어, 기지국은 네 개의 동적 예약 자원(dynamic reserved resource)을 설정한 후, DCI 2 비트(bit)를 통해서 하나를 지시할 수 있다. 예를 들어, 기지국은 RRC 설정 2-1, RRC 설정 2-2, RRC 설정 2-3, 및 RRC 설정 2-4를 설정한 후, DCI 2 비트(bit)를 통해서 하나를 지시할 수 있다.
그리고/또는, 기지국은 스케줄링 유연성(scheduling flexibility)을 위해서 DCI에 필드(field)를 추가하거나 용도를 변경(repurpose)하여 동적 예약 자원(dynamic reserved resource) 정보를 전송할 수 있다. 예를 들어, 기지국은 완전한 유연성(full flexibility)을 위해서 특정 구간 내에서 특정 단위로 모든 경우의 수를 구현할 수 있도록 조합 인덱스(combinatorial index)의 형태로 지시할 수 있다. 이 때, 특정 구간과 특정 단위는 사전에 상위 계층(higher layer) 설정에 의해 설정될 수 있다. 예를 들어, 특정 구간과 특정 단위는 사전에 상위 계층(higher layer) 신호에 의해 설정될 수 있다. 예를 들어, 특정 구간은 서브프레임이고, 특정 단위는 심볼일 수 있다.
동적 주파수 영역 자원 예약(Dynamic frequency-domain resource reservation)
기지국은 동적 주파수 영역 자원 예약을 위해서, 종래의 UL/DL DCI의 자원 블록(Resource Block, RB) 할당(allocation) 필드(field)를 재사용하여 사용 가능한 또는 예약 주파수 영역 자원(reserved frequency-domain resource)을 지시(indication)할 수 있다.
동적 NB 자원 예약(Dynamic NB resource reservation)
기지국은 동적(dynamic) DCI 시그널링을 통해서 협대역(narrowband, NB) 또는 NB-IoT 캐리어(carrier) 별로 사용 가능한 또는 예약 자원을 지정 및/또는 해제하는 형태로 NB 단위로 동적 자원 예약(dynamic resource reservation)을 지원할 수 있다. 상기의 정보는 DCI에 필드(field)를 추가하여 전송될 수 있으며, NB의 지정 및/또는 해제는 특정 시간(예: X=4 서브프레임들) 이후에 적용될 수 있다. 예를 들어, DCI가 송/수신된 서브프레임 이후 4 번째 서브프레임부터 결정될 수 있다.
그리고/또는, NB 호핑은 다음의 방법 1 및/또는 방법 2와 같이 동작할 수 있다.
(방법 1) NB가 특정 시간 이후에 지정 및/또는 해제되는 경우, LTE MTC 단말의 NB 호핑(hopping)은 지정 및/또는 해제된 이후의 NB를 기준으로 동작할 수 있다.
방법 1은 다른 단말과의 충돌 이슈(issue)가 있을 수 있기 때문에 셀-특정하게 NB를 지정 및/또는 해제하는 경우에 한해서 적용될 수 있다. 예를 들어, 상기의 LTE MTC 단말의 NB 호핑(hopping) 동작은 셀-특정하게 NB를 지정 및/또는 해제하는 경우에 한해 적용될 수 있다.
(방법 2) LTE MTC 단말의 NB 호핑은 지정 및/또는 해제되기 이전의 NB들을 기준으로 동작하도록 할 수 있다. 이 때, 해제된 NB에 대해서는 펑쳐링(puncturing)되거나 연기(postpone)하도록 할 수 있다.
그리고/또는, 상기의 두 가지 방법은 해당 동적(dynamic) NB 지정 및/또는 해제를 지시하는 DCI가 전송되는 검색 공간(search space) 및/또는 무선 네트워크 임시 식별자(Radio Network Temporary Identifier, RNTI)에 의해서 구분될 수 있다. 예를 들어, 방법 1은 공통 검색 공간(common search space)으로 전송되는 DCI의 경우에, 방법 2는 단말-특정 검색 공간(UE-specific search space)으로 전송되는 DCI의 경우에 적용될 수 있다.
플렉서블 자원은 시간 단위로 서브프레임/슬롯/심볼 레벨(level) 중에 선택적으로 설정 가능하며, 해당 단위는 연속적이지 않을 수 있다. 예를 들어, 심볼 단위로 플렉서블 자원이 지시되는 경우, 해당 서브프레임/슬롯 내에서 플렉서블 심볼 수는 LTE IoT 시스템에서 지원하는 최소 하향링크 심볼/상향링크 심볼 수를 최소 값으로 할 수 있으며, 이 이후의 값들이 연속적이지 않을 수 있다.
그리고/또는, 심볼 단위로 플렉서블 자원(또는, 예약 자원)이 지시되는 경우에도, 해당 심볼이 위치하는 무선 프레임(radio frame)/서브프레임/슬롯 위치가 따로 지시되는 계층 구조일 수 있다. 예를 들어, 예약 자원은 슬롯 레벨 비트맵과 심볼 레벨 비트맵을 포함하는 설정 정보에 의해 설정되고, 예약 자원은 슬롯 레벨 비트맵에 기반하여 예약된 하나 이상의 슬롯들에서, 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들일 수 있다. 그리고/또는, 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 및/또는 40 ms 단위로 설정될 수 있다. 예를 들어, 10 ms 슬롯 레벨 비트맵은 10 ms의 슬롯들의 예약 여부를 지시 또는 나타내거나 설정하고, 심볼 레벨 비트맵은 10 ms 슬롯 레벨 비트맵에서 예약된 슬롯들 각각의 심볼들에 대해 예약 여부를 지시 또는 나타내거나 설정할 수 있다. 다시 말해, 기지국은 단말에 계층적(hierarchical)으로 예약 자원을 설정할 수 있다.
그리고/또는, 해당 단위 및 최소/최대 값 범위는 해당 시스템의 순환 프리픽스(Cyclic Prefix, CP) 길이에 따라서 상이할 수 있다.
상기의 지시 방법은 NB 또는 NB-IoT 캐리어 별로 설정될 수 있으며, 그리고/또는 단말은 특별한 설정이 지시되지 않는 경우, NB 또는 NB-IoT 캐리어 별로 독립적으로 설정되지 않는다고 기대할 수 있다.
상기의 셀-특정 RRC 설정 또는 단말-특정 RRC 설정에서 서브프레임/슬롯/심볼 단위로 지시되는 플렉서블 자원은 BL(Bandwidth reduced Low complexity)/CE(Coverage Enhancement) 서브프레임 또는 valid 서브프레임이 아닌 자원으로 제한될 수 있다. 이는 종래의 LTE IoT 단말들은 해당 플렉서블(flexible) 자원을 동적(dynamic)으로 활용할 수 없기 때문에, 애초에 LTE IoT가 활용할 수 없는 자원으로 선택한 자원에 대해서만, 기회적으로/제한적으로 Rel-16 LTE IoT 단말들에게 해당 자원을 동적으로 활용할 수 있는 방법을 제공하기 위함일 수 있다.
이와 같은 특징을 활용하면, 플렉서블 자원의 비트 크기는 BL/CE 서브프레임 또는 valid 서브프레임 비트맵에서 지시되는 '0' 또는 '1'의 수에 의존적으로 결정될 수도 있다.
그리고/또는, 기지국이 플렉서블 자원을 두 가지 방법으로 서로 상이하게 설정하고, 단말이 선택하도록 할 수 있다. 예를 들어, 기지국이 플렉서블 자원을 셀-특정 RRC 시그널링과 단말-특정 RRC 시그널링으로 서로 상이하게 설정하고, 단말이 선택하도록 할 수 있다. 단말의 선택은 예를 들어, 단말 능력(UE capability) 보고(report)에 기반하거나, 상향링크 채널 및/또는 상향링크 신호 등을 통해서 기지국에 보고된 단말 입장에서의 선호(preference)에 기반한 것일 수 있다. 기지국은 요청하는 단말의 능력(capability) 또는 선호(preference)에 기반하여 하향링크 전송을 스케줄링(scheduling)하거나, 상향링크 수신을 기대할 수 있다.
그리고/또는, 기지국은, 슬롯(또는 서브프레임) 내의 모든 심볼들이 플렉서블 자원으로 설정이 가능한 경우에 한해서 셀-특정 RRC 시그널링으로 슬롯(또는 서브프레임) 단위로 플렉서블 자원을 설정하고, 슬롯(또는 서브프레임) 내의 일부 심볼(들)만 플렉서블 자원으로 설정이 가능한 경우에 단말-특정 RRC 시그널링으로 심볼 단위로 플렉서블 자원을 설정할 수 있다.
이러한 경우, 단말은 심볼 단위의 플렉서블 자원 사용이 가능할 경우, 단말 능력 보고/선호(preference) 보고(report) 후 (기지국 승인을 거쳐서) 단말-특정 RRC 시그널링에 의해 설정된 플렉서블 자원을 통한 상향링크/하향링크 송수신을 수행할 수 있다. 상기의 단말-특정 RRC 시그널링은 셀-특정 RRC 시그널링으로 설정된 플렉서블 자원에 더하여 추가적으로 사용이 가능한 플렉서블 자원을 설정하는 것이거나, 또는 반대로 셀-특정 RRC 시그널링으로 설정된 플렉서블 자원 중에서 일부를 단말-특정 RRC 시그널링에 의해서 제한하는 용도로 사용될 수 있다.
제2 실시 예
다음, 예약 자원의 운용 방법에 대해 살펴본다.
각 채널/신호에 대해서 다음과 같은 방식으로 플렉서블 자원(또는 예약 자원)을 운용 및 자원할당할 수 있다.
(1) (N)PRACH
플렉서블 자원이 포함된 UL 서브프레임 및/또는 UL 슬롯에 임의 접속(Random Access, RA) 자원이 포함된 경우, 단말은 해당 UL 서브프레임/UL 슬롯에 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 전송이 허용되지 않을 수 있으나, 해당 구간은 (N)PRACH가 실제 전송된 것으로 간주하여 (N)PRACH 반복 전송 수를 카운트(count)할 수 있다. 본 명세서에서, PRACH는 협대역 물리 임의 접속 채널(Narrowband Physical Random Access Channel, NPRACH)을 의미하거나, PRACH와 NPRACH를 포함하는 의미일 일 수 있다.
예외적으로, 상기 RA 자원 내의 플렉서블 자원이 동적(dynamic)인 방법으로 (예: 셀-특정, 그룹-공통(group-common) 및/또는 단말-특정 DCI로) UL로 지시된 경우에는 (N)PRACH 전송이 허용될 수 있으며, 이는 PDCCH order 기반의 PRACH 전송이 경우에만 예외적으로 허용될 수 있다.
그리고/또는, PDCCH order 기반으로 (N)PRACH를 전송하는 경우 플렉서블 자원 설정은 무시될 수 있다. 즉, 기지국이 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH)로 PRACH 전송을 지시한 의도가 이미 플렉서블 자원을 UL로 변경했다고 해석할 수 있다. 다만, PDCCH order 기반으로 (N)PRACH 전송한 이후에, RAR을 수신하지 못해서, PRACH를 재전송하는 경우에는 상위 레이어(layer)로 설정된 플렉서블 자원이 포함되지 않는 RA 자원에만 PRACH를 전송하도록 허용될 수 있다.
(2) PDCCH
PDCCH 후보(candidate) 구성에는 플렉서블 서브프레임/플렉서블 슬롯은 펑쳐링으로 처리할 수 있다.
Rel-16 이전의 단말들과 함께 모니터링(monitoring)할 수 있는 LTE IoT PDCCH는 플렉서블 자원이 포함된 서브프레임/슬롯에서 LTE IoT PDCCH 실제 전송이 생략되지만 반복 횟수의 카운트에서는 전송된 것으로 간주될 수 있다. 예를 들어, Rel-16 이전의 단말들과 함께 모니터링(monitoring)할 수 있는 LTE IoT PDCCH는 펑쳐링(puncturing)될 수 있다. 본 명세서에서, LTE IoT PDDCH는 MTC 물리 하향링크 제어 채널(MTC Physcial Downlink Control Channel, MPDCCH) 및/또는 협대역 물리 하향링크 제어 채널(Narrowband Physcial Downlink Control Channel, NPDCCH)를 칭할수도 있다.
Rel-16 이상의 단말들이 단말-특정하게 모니터링할 수 있는 LTE IoT PDCCH는 플렉서블 자원이 포함된 서브프레임/슬롯에서 LTE IoT PDCCH는 실제 전송이 생략되며, 이는 반복 횟수 카운트(count)에서도 전송되지 않은 것으로 간주될 수 있다. 예를 들어, Rel-16 이상의 단말들이 단말-특정하게 모니터링할 수 있는 LTE IoT PDCCH는 연기(postpone, 및/또는 defer)될 수 있다.
(3) PDSCH/PUSCH
물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH) 및/또는 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 스케줄링 시에 플렉서블 서브프레임/플렉서블 슬롯 포함 여부가 지시될 수 있다. 또는 추가적으로, 펑쳐링 또는 연기(postpone)도 지시될 수 있다. 예를 들어, 플렉서블 자원의 포함여부와 펑쳐링 또는 연기 여부가 지시될 수 있다.
주기적(periodic)으로 전송 설정되었지만 매 전송에 앞서 이를 스케줄링하는 DCI가 전송되지 않는 경우(예: SPS, CSI 보고를 위한 PUCCH 등), 해당 전송은 플렉서블 자원을 포함하는 서브프레임/슬롯에서 전송 생략될 수 있다. 상기에서 SPS, PUCCH, CSI는 각각 반-영구 스케줄링(Semi-Persistent Scheduling), 물리 상향링크 공유 채널(Physical Uplink Control CHannel), 채널 상태 정보(Channel State Information)를 의미할 수 있다.
단말-특정 검색 공간(UE-specific Search Space, USS)를 통해서 DCI로 동적으로 스케줄링되는 PDSCH 및/또는 PUSCH는 스케줄링 그랜트(scheduling grant)에서 플렉서블 자원이 포함된 서브프레임/슬롯을 해당 송/수신에 사용할지 여부를 지시할 수 있다. 이와 같은 지시는 스케줄링(scheduling) DCI 내 독립된 필드(field)에 의해서 실현되거나 또는 스케줄링된 채널(scheduled channel)의 반복 횟수(repetition number) 또는 반복 전송 구간의 길이 값에 의해서 간접적으로 실현될 수도 있다. 또한, 이와 같이 스케줄링 DCI에서 플렉서블 자원이 포함된 서브프레임/슬롯을 송/수신에 사용할지 여부를 지시할 수 있는지 여부는 해당 단말의 CE 레벨(level) 및/또는 CE 모드(mode) 등에 따라서도 구분될 수 있다.
기타 채널/신호
웨이크업 신호(Wake-Up Signal, WUS), 재 동기 신호(Re-Synchronization Signal, RSS), 페이징(Paging) PDCCH/PDSCH, 및/또는 멀티캐스트(Multicast) PDCCH/PDSCH와 같이 Release에 대한 구분 없이, 셀-특정하게 설정되는 채널/신호는 플렉서블 자원이 포함된 서브프레임/슬롯에서 전송 생략될 수 있으며, 반복 횟수 카운트(count) 측면에서는 전송된 것으로 간주될 수 있다. 예를 들어, 상기 셀-특정하게 설정되는 채널/신호는 펑쳐링(puncturing)될 수 있다.
프라이머리 동기 신호(Primary Synchronization Signal, PSS), 세컨더리 동기 신호(Secondary Synchronzation Signal, SSS), 물리 브로드캐스트(Physical Broadcast Channel, PBCH) 및/또는 시스템 정보 블록(System Information Block, SIB)과 같은 정보가 전송되는 서브프레임/슬롯/심볼은 플렉서블 자원 설정이 적용되지 않을 수 있으며, 해당 구간은 플렉서블 자원 설정 필드(field)에 처음부터 포함되지 않을 수 있다.
본 명세서에서 제안하는 실시 예들에 대한 일례들도 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 실시 예들로 간주될 수 있음은 자명하다.
또한, 앞서 언급한 바와 같이, 본 명세서에서 제안하는 실시 예들은 독립적으로 구현될 수도 있지만, 일부 실시 예들의 조합(또는 병합) 형태로 구현될 수도 있다. 실시 예들의 적용 여부에 대한 정보(또는, 상기 실시 예들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널링(예: 물리 계층 시그널링 및/또는 상위 계층 시그널링 등)을 통해서 알려주도록 규칙이 정의 및/또는 설정될 수 있다.
도 27은 본 명세서에서 제안하는 단말의 동작 방법을 설명하기 위한 흐름도이다.
도 27을 참조하면, 먼저, 단말(도 29 내지 도 33의 1000/2000)은 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블(예: PRACH 프리앰블/NPRACH 프래임블)을 기지국으로 전송할 수 있다(S2701).
예를 들어, S2701 단계의 단말이 PRACH 프리앰블을 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 PRACH 프리앰블을 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 PRACH 프리앰블을 전송할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 기지국으로부터 수신할 수 있다(S2702).
예를 들어, S2702 단계의 단말이 임의 접속 응답을 수신 하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 임의 접속 응답을 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 임의 접속 응답을 수신할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송할 수 있다(S2703).
예를 들어, S2703 단계의 단말이 메시지 3를 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 메시지 3를 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 메시지 3를 전송할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신할 수 있다(S2704).
예를 들어, S2704 단계의 단말이 충돌 해결을 위한 메시지를 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 충돌 해결을 위한 메시지를 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 충돌 해결을 위한 메시지를 수신할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵(예: slotBitmap)에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵(예: symbolBitmap)에 대한 정보를 포함하는 자원 예약 설정 정보(예: ResourceReservationCOnfig)를 기지국으로부터 수신할 수 있다(S2705).
예를 들어, 예약 자원은 슬롯 레벨 비트맵에 기반하여 예약된 하나 이상의 슬롯들에서, 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들일 수 있다. 그리고/또는, 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 및/또는 40 ms 단위로 설정될 수 있다. 예를 들어, 10 ms 슬롯 레벨 비트맵은 10 ms의 슬롯들의 예약 여부를 지시 또는 나타내거나 설정하고, 심볼 레벨 비트맵은 10 ms 슬롯 레벨 비트맵에서 예약된 슬롯들 각각의 심볼들에 대해 예약 여부를 지시 또는 나타내거나 설정할 수 있다. 다시 말해, 본 명세서에 따르면, 기지국은 단말에 계층적(hierarchical)으로 예약 자원을 설정할 수 있다. 예를 들어, 예약 자원은 심볼, 슬롯, 서브프레임 및/또는 무선프레임 단위의 자원일 수 있다.
그리고/또는, 본 명세서의 제안 방법은 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 수행될 수 있다. 예를 들어, 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함할 수 있다.
예를 들어, 사물 인터넷이 MTC인 것에 기반하여, 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정될 수 있다. 그리고/또는, 사물 인터넷이 NB-IoT인 것에 기반하여, 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정될 수 있다.
그리고/또는, 자원 예약 설정 정보는 무선 자원 제어(Radio Resource Control, RRC) 시그널링을 통해 수신될 수 있다.
예를 들어, S2705 단계의 단말이 자원 예약 설정 정보를 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 자원 예약 설정 정보를 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 자원 예약 설정 정보를 수신할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 예약 자원의 사용과 관련된 정보(예: Resource reservation field)를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 기지국으로부터 수신할 수 있다(S2706). 예를 들어, 예약 자원의 사용과 관련된 정보가 '0'인 경우, 자원 예약 설정 정보에 기반한 예약 자원은 단말이 하향링크 정보를 수신하는데 사용될 수 있고, 예약 자원의 사용과 관련된 정보가 '1'인 경우, 자원 예약 설정 정보에 기반한 예약 자원은 단말이 하향링크 정보를 수신하는 데 사용될 수 없을 수 있다. 여기서, 예약 자원은 심볼, 슬롯, 서브프레임 및/또는 무선프레임 단위의 자원일 수 있다.
또는, 예약 자원의 사용과 관련된 정보는 자원 예약 설정 정보의 사용과 관련된 정보일 수 있다. 예를 들어, 예약 자원의 사용과 관련된 정보가 '0'인 경우, 자원 예약 설정 정보의 사용 없이, 하향링크 정보는 수신될 수 있고, 예약 자원의 사용과 관련된 정보가 '1'인 경우, 자원 예약 설정 정보를 사용하여 하향링크 정보는 수신될 수 있다.
예를 들어, S2706 단계의 단말이 DCI를 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 DCI를 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 DCI를 수신할 수 있다.
그리고/또는, 단말(도 29 내지 도 33의 1000/2000)은 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 기지국으로부터 수신할 수 있다(S2707).
예를 들어, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 예약 자원을 사용하여 수신될 수 있다. 다시 말해, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 있음을 나타내는 지시를 포함하는 경우, 단말은 하향링크 정보가 예약 자원에서 수신될 수 있음을 기대할 수 있다. 그리고/또는, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 예약 자원의 사용 없이 수신될 수 있다. 다시 말해, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 없음을 나타내는 지시를 포함하는 경우, 단말은 하향링크 정보가 예약 자원에서 수신될 수 있음을 기대하지 않을 수 있다. 예를 들어, 예약 자원의 예약이란, 예약 자원의 예약되어 있음을 나타내는 것을 의미하거나 예약 자원이 변경 없이 예약되어 있음을 나타내는 것을 의미할 수 있다.
그리고/또는, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 있는 것과 관련된 지시를 포함하는 것에 기반하여, 예약 자원을 사용하여 수신될 수 있다. 다른 일 예로, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 없는 것과 관련된 지시를 포함하는 것에 기반하여, 예약 자원의 사용 없이 수신될 수 있다. 그리고/또는, 하향링크 정보는 채널을 통해 송수신되는 정보 및/또는 신호를 포함할 수 있다.
예를 들어, 하향링크 정보는 동기 신호(예: PSS/SSS/NPSS/NSSS 등), 및/또는 기준 신호(예: CSI-RS/DMRS/NRS/RRS 등) 등을 포함할 수 있다.
예를 들어, 하향링크 정보는 물리 브로드캐스트 채널(Physical Broadcast Channel, PBCH)(예: PBCH/NPBCH), 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH)(예: PDCCH/NPDCCH/MPDCCH) 및/또는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)(예: PDSCH/NPDSCH)을 통해 수신될 수 있다.
예를 들어, S2707 단계의 단말이 하향링크 정보를 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 하향링크 정보를 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 하향링크 정보를 수신할 수 있다.
이상에서, 제안 방법은 하향링크를 기준으로 설명하였으나, 본 명세서의 제안 방법은 상향링크에도 적용될 수 있음은 물론이다. 예를 들어, 자원 예약 설정 정보는 상향링크 자원의 예약에 대한 설정 정보일 수 있다. 그리고/또는, 단말 및/또는 기지국은 상향링크 자원의 예약에 대한 설정 정보에 기반하여 상향링크 정보를 송수신할 수 있다. 예를 들어, 상향링크 정보는 물리 임의 접속 채널(Physical Random Access Channel, PRACH)(예: PRACH/NPRACH), 물리 상향링크 제어 채널(Physical Uplink Contol Channl, PUCCH), 및/또는 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)(예: PUSCH/NPUSCH)을 통해 송수신되는 정보 및/또는 신호일 수 있다.
도 27을 참조하여 설명한 단말의 동작은 도 1 내지 도 26을 참조하여 설명한 단말의 동작과 동일하므로 이외 상세한 설명은 생략한다.
상술한 시그널링(signaling) 및 동작은 이하 설명될 장치(예: 도 29 내지 도 33)에 의해 구현될 수 있다. 예를 들어, 상술한 시그널링 및 동작은 도 29 내지 도 33의 하나 이상의 프로세서(1010, 2020)에 의해 처리될 수 있으며, 상술한 시그널링 및 동작은 도 29 내지 도 33의 적어도 하나의 프로세서(예: 1010, 2020)를 구동하기 위한 명령어/프로그램(예: instruction, executable code) 형태로 메모리(예: 1040, 2040)에 저장될 수도 있다.
예를 들면, 하나 이상의 메모리들 및 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 하나 이상의 프로세서들은 장치가, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고, PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 기지국으로부터 수신하며, UL 그랜트에 기반하여 메시지 3를 기지국으로 전송하고, 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 기지국으로부터 수신하며, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 기지국으로부터 수신하고, 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 기지국으로부터 수신하며, 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 기지국으로부터 수신하도록 설정될 수 있다.
다른 일 예로, 하나 이상의 명령어들을 저장하는 비일시적 컴퓨터 판독 가능 매체(computer readable medium, CRM)에 있어서, 하나 이상의 프로세서들에 의해 실행 가능한 하나 이상의 명령어들은 단말이, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고, PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 기지국으로부터 수신하며, UL 그랜트에 기반하여 메시지 3를 기지국으로 전송하고, 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 기지국으로부터 수신하며, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 예약 자원과 관련된 심볼 레벨 비트맵에 대한 벙조를 포함하는 자원 예약 설정 정보를 기지국으로부터 수신하고, 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 기지국으로부터 수신하며, 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 기지국으로부터 수신하도록 할 수 있다.
도 28은 본 명세서에서 제안하는 기지국의 동작 방법을 설명하기 위한 흐름도이다.
도 28을 참조하면, 먼저, 기지국(도 29 내지 도 33의 1000/2000)은 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신할 수 있다(S2801).
예를 들어, S2801 단계의 기지국이 PRACH 프리앰블을 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 PRACH 프리앰블을 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 PRACH 프리앰블을 수신할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 단말로 전송할 수 있다(S2802).
예를 들어, S2802 단계의 기지국이 임의 접속 응답을 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 임의 접속 응답을 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 임의 접속 응답을 전송할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 UL 그랜트에 기반하여 메시지 3를 단말로부터 수신할 수 있다(S2803).
예를 들어, S2803 단계의 기지국이 메시지 3를 수신하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 메시지 3를 수신하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 메시지 3를 수신할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 단말로 전송할 수 있다(S2804).
예를 들어, S2804 단계의 기지국이 충돌 해결을 위한 메시지를 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 충돌 해결을 위한 메시지를 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 충돌 해결을 위한 메시지를 전송할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵(예: slotBitmap)에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵(예: symbolBitmap)에 대한 정보를 포함하는 자원 예약 설정 정보(예: ResourceReservationCOnfig)를 단말로 전송할 수 있다(S2805).
예를 들어, 예약 자원은 슬롯 레벨 비트맵에 기반하여 예약된 하나 이상의 슬롯들에서, 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들일 수 있다.
그리고/또는, 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 및/또는 40 ms 단위로 설정될 수 있다. 예를 들어, 10 ms 슬롯 레벨 비트맵은 10 ms의 슬롯들의 예약 여부를 지시 또는 나타내거나 설정하고, 심볼 레벨 비트맵은 10 ms 슬롯 레벨 비트맵에서 예약된 슬롯들 각각의 심볼들에 대해 예약 여부를 지시 또는 나타내거나 설정할 수 있다. 다시 말해, 본 명세서에 따르면, 기지국은 단말에 계층적(hierarchical)으로 예약 자원을 설정할 수 있다. 예를 들어, 예약 자원은 심볼, 슬롯, 서브프레임 및/또는 무선프레임 단위의 자원일 수 있다.
그리고/또는, 본 명세서의 제안 방법은 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 수행될 수 있다. 예를 들어, 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함할 수 있다.
예를 들어, 사물 인터넷이 MTC인 것에 기반하여, 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정될 수 있다. 그리고/또는, 사물 인터넷이 NB-IoT인 것에 기반하여, 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정될 수 있다.
그리고/또는, 자원 예약 설정 정보는 무선 자원 제어(Radio Resource Control, RRC) 시그널링을 통해 수신될 수 있다.
예를 들어, S2805 단계의 기지국이 자원 예약 설정 정보를 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 자원 예약 설정 정보를 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 자원 예약 설정 정보를 전송할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 예약 자원의 사용과 관련된 정보(예: Resource reservation field)를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 단말로 전송할 수 있다(S2806). 예를 들어, 예약 자원의 사용과 관련된 정보가 '0'인 경우, 자원 예약 설정 정보에 기반한 예약 자원은 단말이 하향링크 정보를 수신하는데 사용될 수 있고, 예약 자원의 사용과 관련된 정보가 '1'인 경우, 자원 예약 설정 정보에 기반한 예약 자원은 단말이 하향링크 정보를 수신하는 데 사용될 수 없을 수 있다. 여기서, 예약 자원은 심볼, 슬롯, 서브프레임 및/또는 무선프레임 단위의 자원일 수 있다.
또는, 예약 자원의 사용과 관련된 정보는 자원 예약 설정 정보의 사용과 관련된 정보일 수 있다. 예를 들어, 예약 자원의 사용과 관련된 정보가 '0'인 경우, 자원 예약 설정 정보의 사용 없이, 하향링크 정보는 수신될 수 있고, 예약 자원의 사용과 관련된 정보가 '1'인 경우, 자원 예약 설정 정보를 사용하여 하향링크 정보는 수신될 수 있다.
예를 들어, S2806 단계의 기지국이 DCI를 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 DCI를 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 DCI를 전송할 수 있다.
그리고/또는, 기지국(도 29 내지 도 33의 1000/2000)은 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 단말로 전송할 수 있다(S2807).
예를 들어, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 예약 자원을 사용하여 전송될 수 있다. 다시 말해, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 있음을 나타내는 지시를 포함하는 경우, 단말은 하향링크 정보가 예약 자원에서 수신될 수 있음을 기대할 수 있다. 그리고/또는, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 예약 자원의 사용 없이 전송될 수 있다. 다시 말해, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 없음을 나타내는 지시를 포함하는 경우, 단말은 하향링크 정보가 예약 자원에서 수신될 수 있음을 기대하지 않을 수 있다. 예를 들어, 예약 자원의 예약이란, 예약 자원의 예약되어 있음을 나타내는 것을 의미하거나 예약 자원이 변경 없이 예약되어 있음을 나타내는 것을 의미할 수 있다.
그리고/또는, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 있는 것과 관련된 지시를 포함하는 것에 기반하여, 예약 자원을 사용하여 전송될 수 있다. 그리고/또는, 하향링크 정보는, 예약 자원의 사용과 관련된 정보가 예약 자원을 사용할 수 없는 것과 관련된 지시를 포함하는 것에 기반하여, 예약 자원의 사용 없이 전송될 수 있다. 그리고/또는, 하향링크 정보는 채널을 통해 송수신되는 정보 및/또는 신호를 포함할 수 있다.
예를 들어, 하향링크 정보는 동기 신호(예: PSS/SSS/NPSS/NSSS 등), 및/또는 기준 신호(예: CSI-RS/DMRS/NRS 등) 등을 포함할 수 있다.
예를 들어, 하향링크 정보는 물리 브로드캐스트 채널(Physical Broadcast Channel, PBCH)(예: PBCH/NPBCH), 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH)(예: PDCCH/NPDCCH/MPDCCH) 및/또는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)(예: PDCCH/NPDSH)을 통해 전송될 수 있다.
예를 들어, S2807 단계의 기지국이 하향링크 정보를 전송하는 동작은 이하 설명될 도 29 내지 도 33의 장치에 의해 구현될 수 있다. 예를 들어, 도 30을 참조하면, 하나 이상의 프로세서(1020)는 하향링크 정보를 전송하기 위해 하나 이상의 메모리(1040) 및/또는 하나 이상의 RF 유닛(1060) 등을 제어할 수 있으며, 하나 이상의 RF 유닛(1060)은 하향링크 정보를 전송할 수 있다.
이상에서, 제안 방법은 하향링크를 기준으로 설명하였으나, 본 명세서의 제안 방법은 상향링크에도 적용될 수 있음은 물론이다. 예를 들어, 자원 예약 설정 정보는 상향링크 자원의 예약에 대한 설정 정보일 수 있다. 그리고/또는, 단말 및/또는 기지국은 상향링크 자원의 예약에 대한 설정 정보에 기반하여 상향링크 정보를 송수신할 수 있다. 예를 들어, 상향링크 정보는 물리 임의 접속 채널(Physical Random Access Channel, PRACH)(예: PRACH/NPRACH), 물리 상향링크 제어 채널(Physical Uplink Contol Channl, PUCCH), 및/또는 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)(예: PUSCH/NPUSCH)을 통해 송수신되는 정보 및/또는 신호일 수 있다.
도 28을 참조하여 설명한 기지국의 동작은 도 1 내지 도 27을 참조하여 설명한 기지국의 동작과 동일하므로 이외 상세한 설명은 생략한다.
상술한 시그널링(signaling) 및 동작은 이하 설명될 장치(예: 도 29 내지 도 33)에 의해 구현될 수 있다. 예를 들어, 상술한 시그널링 및 동작은 도 29 내지 도 33의 하나 이상의 프로세서(1010, 2020)에 의해 처리될 수 있으며, 상술한 시그널링 및 동작은 도 29 내지 도 33의 적어도 하나의 프로세서(예: 1010, 2020)를 구동하기 위한 명령어/프로그램(예: instruction, executable code) 형태로 메모리(예: 1040, 2040)에 저장될 수도 있다.
예를 들면, 하나 이상의 메모리들 및 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 하나 이상의 프로세서들은 장치가, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하고, PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 단말로 전송하며, UL 그랜트에 기반하여 메시지 3를 단말로부터 수신하고, 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 단말로 전송하며, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 단말로 전송하고, 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 단말로 전송하며, 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 단말로 전송하도록 설정될 수 있다.
다른 일 예로, 하나 이상의 명령어들을 저장하는 비일시적 컴퓨터 판독 가능 매체(computer readable medium, CRM)에 있어서, 하나 이상의 프로세서들에 의해 실행 가능한 하나 이상의 명령어들은 기지국이, 물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하고, PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 단말로 전송하며, UL 그랜트에 기반하여 메시지 3를 단말로부터 수신하고, 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 단말로 전송하며, 예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 단말로 전송하고, 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 단말로 전송하며, 자원 예약 설정 정보 및 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 단말로 전송하도록 할 수 있다.
본 발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 29는 본 발명에 적용되는 통신 시스템(10)을 예시한다.
도 29를 참조하면, 본 발명에 적용되는 통신 시스템(10)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(1000a), 차량(1000b-1, 1000b-2), XR(eXtended Reality) 기기(1000c), 휴대 기기(Hand-held device)(1000d), 가전(1000e), IoT(Internet of Thing) 기기(1000f), AI기기/서버(4000)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(2000a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(1000a~1000f)는 기지국(2000)을 통해 네트워크(3000)와 연결될 수 있다. 무선 기기(1000a~1000f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(1000a~1000f)는 네트워크(300)를 통해 AI 서버(4000)와 연결될 수 있다. 네트워크(3000)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(1000a~1000f)는 기지국(2000)/네트워크(3000)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(1000b-1, 1000b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(1000a~1000f)와 직접 통신을 할 수 있다.
무선 기기(1000a~1000f)/기지국(2000), 기지국(2000)/기지국(2000) 간에는 무선 통신/연결(1500a, 1500b, 1500c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(1500a)과 사이드링크 통신(1500b)(또는, D2D 통신), 기지국간 통신(1500c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(1500a, 1500b, 1500c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(1500a, 1500b, 1500c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 발명이 적용되는 무선 기기 예
도 30은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 30을 참조하면, 제1 무선 기기(1000)와 제2 무선 기기(2000)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(1000), 제2 무선 기기(2000)}은 도 32의 {무선 기기(1000x), 기지국(2000)} 및/또는 {무선 기기(1000x), 무선 기기(1000x)}에 대응할 수 있다.
제1 무선 기기(1000)는 하나 이상의 프로세서(1020) 및 하나 이상의 메모리(1040)를 포함하며, 추가적으로 하나 이상의 송수신기(1060) 및/또는 하나 이상의 안테나(1080)을 더 포함할 수 있다. 프로세서(1020)는 메모리(1040) 및/또는 송수신기(1060)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(1020)는 메모리(1040) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(1060)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(1020)는 송수신기(1060)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(1040)에 저장할 수 있다. 메모리(1040)는 프로세서(1020)와 연결될 수 있고, 프로세서(1020)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(1040)는 프로세서(1020)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(1020)와 메모리(1040)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(1060)는 프로세서(1020)와 연결될 수 있고, 하나 이상의 안테나(1080)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(1060)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(1060)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(2000)는 하나 이상의 프로세서(2020), 하나 이상의 메모리(2040)를 포함하며, 추가적으로 하나 이상의 송수신기(2060) 및/또는 하나 이상의 안테나(2080)를 더 포함할 수 있다. 프로세서(2020)는 메모리(2040) 및/또는 송수신기(2060)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(2020)는 메모리(2040) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(2060)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(2020)는 송수신기(2060)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(2040)에 저장할 수 있다. 메모리(2040)는 프로세서(2020)와 연결될 수 있고, 프로세서(2020)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(2040)는 프로세서(2020)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(2020)와 메모리(2040)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(2060)는 프로세서(2020)와 연결될 수 있고, 하나 이상의 안테나(2080)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(2060)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(2060)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(1000, 2000)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(1020, 2020)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(1020, 2020)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(1020, 2020)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(1020, 2020)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(1020, 2020)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(1060, 2060)에게 제공할 수 있다. 하나 이상의 프로세서(1020, 2020)는 하나 이상의 송수신기(1060, 2060)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(1020, 2020)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(1020, 2020)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(1020, 2020)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(1020, 2020)에 포함되거나, 하나 이상의 메모리(1040, 2040)에 저장되어 하나 이상의 프로세서(1020, 2020)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(1040, 2040)는 하나 이상의 프로세서(1020, 2020)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(1040, 2040)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(1040, 2040)는 하나 이상의 프로세서(1020, 2020)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(1040, 2040)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(1020, 2020)와 연결될 수 있다.
하나 이상의 송수신기(1060, 2060)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(1060, 2060)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(1060, 2060)는 하나 이상의 프로세서(1020, 2020)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(1020, 2020)는 하나 이상의 송수신기(1060, 2060)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(1020, 2020)는 하나 이상의 송수신기(1060, 2060)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(1060, 2060)는 하나 이상의 안테나(1080, 2080)와 연결될 수 있고, 하나 이상의 송수신기(1060, 2060)는 하나 이상의 안테나(1080, 2080)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(1060, 2060)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(1020, 2020)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(1060, 2060)는 하나 이상의 프로세서(1020, 2020)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(1060, 2060)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 발명이 적용되는 신호 처리 회로 예
도 31은 전송 신호를 위한 신호 처리 회로를 예시한다.
도 31을 참조하면, 신호 처리 회로(10000)는 스크램블러(10100), 변조기(10200), 레이어 매퍼(10300), 프리코더(10400), 자원 매퍼(10500), 신호 생성기(10600)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 31의 동작/기능은 도 30의 프로세서(1020, 2020) 및/또는 송수신기(1060, 2060)에서 수행될 수 있다. 도 31의 하드웨어 요소는 도 30의 프로세서(1020, 2020) 및/또는 송수신기(1060, 2060)에서 구현될 수 있다. 예를 들어, 블록 10100~10600은 도 30의 프로세서(1020, 2020)에서 구현될 수 있다. 또한, 블록 10100~10500은 도 30의 프로세서(1020, 2020)에서 구현되고, 블록 10600은 도 30의 송수신기(1060, 2060)에서 구현될 수 있다.
코드워드는 도 31의 신호 처리 회로(10000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(10100)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(10200)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(10300)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(10400)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(10400)의 출력 z는 레이어 매퍼(10300)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(10400)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(10400)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(10500)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(10600)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(10600)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 31의 신호 처리 과정(10100~10600)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 30의 1000, 2000)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
본 발명이 적용되는 무선 기기 활용 예
도 32는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 29 참조). 도 32를 참조하면, 무선 기기(1000, 2000)는 도 31의 무선 기기(1000,2000)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(1000, 2000)는 통신부(1100), 제어부(1200), 메모리부(1300) 및 추가 요소(1400)를 포함할 수 있다. 통신부는 통신 회로(1120) 및 송수신기(들)(1140)을 포함할 수 있다. 예를 들어, 통신 회로(1120)는 도 22의 하나 이상의 프로세서(1020,2020) 및/또는 하나 이상의 메모리(1040,2040) 를 포함할 수 있다. 예를 들어, 송수신기(들)(1140)는 도 22의 하나 이상의 송수신기(1060,2060) 및/또는 하나 이상의 안테나(1080,2080)을 포함할 수 있다. 제어부(1200)는 통신부(1100), 메모리부(1300) 및 추가 요소(1400)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(1200)는 메모리부(1300)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(1200)는 메모리부(1300)에 저장된 정보를 통신부(1100)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(1100)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(1300)에 저장할 수 있다.
추가 요소(1400)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(1400)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 29, 1000a), 차량(도 29, 1000b-1, 1000b-2), XR 기기(도 29, 1000c), 휴대 기기(도 29, 1000d), 가전(도 29, 1000e), IoT 기기(도 29, 1000f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 29, 4000), 기지국(도 29, 2000), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 32에서 무선 기기(1000, 2000) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(1100)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(1000, 2000) 내에서 제어부(1200)와 통신부(1100)는 유선으로 연결되며, 제어부(1200)와 제1 유닛(예, 1300, 1400)은 통신부(1100)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(1000, 2000) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(1200)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(1200)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(1300)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 33은 본 발명에 적용되는 휴대 기기를 예시한다.
휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 33을 참조하면, 휴대 기기(1000)는 안테나부(1080), 통신부(1100), 제어부(1200), 메모리부(1300), 전원공급부(1400a), 인터페이스부(1400b) 및 입출력부(1400c)를 포함할 수 있다. 안테나부(1080)는 통신부(1100)의 일부로 구성될 수 있다. 블록 1100~1300/1400a~1400c는 각각 도 32의 블록 1100~1300/1400에 대응한다.
통신부(1100)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(1200)는 휴대 기기(1000)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(1200)는 AP(Application Processor)를 포함할 수 있다. 메모리부(1300)는 휴대 기기(1000)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(1300)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(1400a)는 휴대 기기(1000)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(1400b)는 휴대 기기(1000)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(1400b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(1400c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(1400c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(1400d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(1400c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(1300)에 저장될 수 있다. 통신부(1100)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(1100)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(1300)에 저장된 뒤, 입출력부(1400c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
여기서, 본 명세서의 무선 기기(예: 1000, 2000, 1000a~1000f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(예: 1000, 2000, 1000a~1000f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(예: 1000, 2000, 1000a~1000f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 명세서의 사물 인터넷(예: MTC, NB-IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하기 위한 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 5G 시스템 등 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (20)

  1. 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 수신하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하는 단계;
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하는 단계;
    상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하는 단계;
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하는 단계;
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하는 단계;
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하는 단계; 및
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 기지국으로부터 수신하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원을 사용하여 수신되는 방법.
  3. 제1항에 있어서,
    상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원의 사용 없이 수신되는 방법.
  4. 제1항에 있어서,
    상기 예약 자원은 상기 슬롯 레벨 비트맵에 기반하여 예약된 슬롯에서, 상기 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들인 방법.
  5. 제1항에 있어서,
    상기 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 또는 40 ms 단위로 설정되는 방법.
  6. 제1항에 있어서,
    상기 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함하는 방법.
  7. 제6항에 있어서, 상기 사물 인터넷이 MTC인 것에 기반하여, 상기 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정되고,
    상기 사물 인터넷이 NB-IoT인 것에 기반하여, 상기 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정되는 방법.
  8. 제1항에 있어서,
    상기 자원 예약 설정 정보는 무선 자원 제어(Radio Resource Control, RRC) 시그널링을 통해 수신되는 방법.
  9. 제1항에 있어서, 상기 하향링크 정보는 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및/또는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 통해 수신되는 방법.
  10. 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 수신하는 단말에 있어서,
    하나 이상의 송수신기들;
    하나 이상의 프로세서들;
    상기 하나 이상의 프로세서들에 기능적으로 연결되고, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하고,
    상기 동작들은,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하는 단계;
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하는 단계;
    상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하는 단계;
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하는 단계;
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하는 단계;
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하는 단계; 및
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 기지국으로부터 수신하는 단계를 포함하는 단말.
  11. 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 전송하는 방법에 있어서, 기지국에 의해 수행되는 방법은,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하는 단계;
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 단말로 전송하는 단계;
    상기 UL 그랜트에 기반하여 메시지 3를 상기 단말로부터 수신하는 단계;
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 단말로 전송하는 단계;
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 단말로 전송하는 단계;
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 단말로 전송하는 단계; 및
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 단말로 전송하는 단계를 포함하는 방법.
  12. 제11항에 있어서,
    상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 사용과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원을 사용하여 전송되는 방법.
  13. 제11항에 있어서,
    상기 하향링크 정보는, 상기 예약 자원의 사용과 관련된 정보가 상기 예약 자원의 예약과 관련된 지시를 포함하는 것에 기반하여, 상기 예약 자원의 사용 없이 전송되는 방법.
  14. 제11항에 있어서,
    상기 예약 자원은 상기 슬롯 레벨 비트맵에 기반하여 예약된 슬롯에서, 상기 심볼 레벨 비트맵에 기반하여 예약된 하나 이상의 심볼들인 방법.
  15. 제11항에 있어서,
    상기 슬롯 레벨 비트맵은 10 밀리초(milisecond, ms) 또는 40 ms 단위로 설정되는 방법.
  16. 제11항에 있어서,
    상기 사물 인터넷은 기계 타입 통신(Machine Type Communication, MTC) 및/또는 협대역 사물 인터넷(Narrowband-IoT, NB-IoT)을 포함하는 방법.
  17. 제16항에 있어서, 상기 사물 인터넷이 MTC인 것에 기반하여, 상기 자원 예약 설정 정보는 협대역(Narrowband) 별로 설정되고,
    상기 사물 인터넷이 NB-IoT인 것에 기반하여, 상기 자원 예약 설정 정보는 NB-IoT 캐리어 별로 설정되는 방법.
  18. 사물 인터넷(Internet Of Things, IoT)을 지원하는 무선 통신 시스템에서 하향링크 정보를 전송하는 기지국에 있어서,
    하나 이상의 송수신기들;
    하나 이상의 프로세서들;
    상기 하나 이상의 프로세서들에 기능적으로 연결되고, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하고,
    상기 동작들은,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 단말로부터 수신하는 단계;
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 단말로 전송하는 단계;
    상기 UL 그랜트에 기반하여 메시지 3를 상기 단말로부터 수신하는 단계;
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 단말로 전송하는 단계;
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 단말로 전송하는 단계;
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 단말로 전송하는 단계; 및
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 상기 하향링크 정보를 상기 단말로 전송하는 단계를 포함하는 기지국.
  19. 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서,
    상기 하나 이상의 프로세서들은 상기 장치가,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고,
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하며,
    상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하고,
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하며,
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하고,
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하며,
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 상기 기지국으로부터 수신하도록 설정되는 장치.
  20. 하나 이상의 명령어들을 저장하는 비일시적 컴퓨터 판독 가능 매체(computer readable medium, CRM)에 있어서,
    하나 이상의 프로세서들에 의해 실행 가능한 하나 이상의 명령어들은 단말이,
    물리 임의 접속 채널(Physical Random Access Channel, PRACH) 프리앰블을 기지국으로 전송하고,
    상기 PRACH 프리앰블에 기반하여 상향링크(Ulink, UL) 그랜트(grant)를 포함하는 임의 접속 응답을 상기 기지국으로부터 수신하며,
    상기 UL 그랜트에 기반하여 메시지 3를 상기 기지국으로 전송하고,
    상기 메시지 3에 기반하여 충돌 해결(contention resolution)을 위한 메시지를 상기 기지국으로부터 수신하며,
    예약 자원(reserved resource)과 관련된 슬롯 레벨 비트맵에 대한 정보 및 상기 예약 자원과 관련된 심볼 레벨 비트맵에 대한 정보를 포함하는 자원 예약 설정 정보를 상기 기지국으로부터 수신하고,
    상기 예약 자원의 사용과 관련된 정보를 포함하는 하향링크 제어 정보(Downlink Control Information, DCI)를 상기 기지국으로부터 수신하며,
    상기 자원 예약 설정 정보 및 상기 예약 자원의 사용과 관련된 정보에 기반하여, 하향링크 정보를 상기 기지국으로부터 수신하도록 하는 비일시적 컴퓨터 판독 가능 매체.
PCT/KR2020/010909 2019-08-16 2020-08-14 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치 WO2021034055A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227004357A KR20220038087A (ko) 2019-08-16 2020-08-14 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치
CN202080058041.XA CN114270932A (zh) 2019-08-16 2020-08-14 用于在支持物联网的无线通信系统中发送和接收下行链路信息的方法及其装置
EP20855741.3A EP4017095A4 (en) 2019-08-16 2020-08-14 METHOD OF TRANSMITTING AND RECEIVING DOWNLINK INFORMATION IN A WIRELESS COMMUNICATION SYSTEM SUPPORTING THE INTERNET OF THINGS AND DEVICE THEREFOR
US17/672,915 US11540333B2 (en) 2019-08-16 2022-02-16 Method for transmitting and receiving downlink information in wireless communication system supporting internet of things, and device for same
US18/087,363 US11930540B2 (en) 2019-08-16 2022-12-22 Information in wireless communication system supporting internet of things, and device for same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190100620 2019-08-16
KR10-2019-0100620 2019-08-16
KR10-2019-0123437 2019-10-04
KR20190123437 2019-10-04
KR20190142929 2019-11-08
KR10-2019-0142929 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,915 Continuation US11540333B2 (en) 2019-08-16 2022-02-16 Method for transmitting and receiving downlink information in wireless communication system supporting internet of things, and device for same

Publications (1)

Publication Number Publication Date
WO2021034055A1 true WO2021034055A1 (ko) 2021-02-25

Family

ID=74660055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010909 WO2021034055A1 (ko) 2019-08-16 2020-08-14 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (2) US11540333B2 (ko)
EP (1) EP4017095A4 (ko)
KR (1) KR20220038087A (ko)
CN (1) CN114270932A (ko)
WO (1) WO2021034055A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4017094A4 (en) * 2019-08-16 2023-08-09 LG Electronics Inc. METHOD OF TRANSMITTING/RECEIVING DOWNLINK INFORMATION IN A WIRELESS COMMUNICATION SYSTEM SUPPORTING THE INTERNET OF THINGS AND DEVICE THEREFOR
EP4142332A4 (en) * 2020-04-21 2024-01-17 Ntt Docomo, Inc. TERMINAL DEVICE AND COMMUNICATION METHOD
US11856609B2 (en) * 2021-03-30 2023-12-26 Qualcomm Incorporated Random access channel preamble transmission parameters based on coverage enhancement level
WO2024028296A1 (en) * 2022-08-05 2024-02-08 Nokia Technologies Oy Method for split prach format transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030412A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서의 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2018196746A1 (zh) * 2017-04-28 2018-11-01 电信科学技术研究院有限公司 下行控制信道检测接收方法、终端和网络侧设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009702A1 (en) * 2011-07-08 2013-01-17 Huawei Technologies Co., Ltd. System and method for communicating reference signals
TWI488513B (zh) * 2013-05-03 2015-06-11 Univ Nat Taiwan Science Tech 動態資源分配方法
US10582492B2 (en) * 2013-12-18 2020-03-03 Lg Electronics Inc. Method for transmitting and receiving signal by terminal in wireless communication system and apparatus therefor
CN106105366B (zh) * 2014-03-11 2019-10-18 Lg 电子株式会社 在无线通信系统中在随机接入过程中将临时标识符分配给终端的方法及其装置
WO2017039374A1 (en) * 2015-09-02 2017-03-09 Lg Electronics Inc. Method and apparatus for performing random access procedure in nb-iot carrier in wireless communication system
US20170265169A1 (en) * 2016-03-10 2017-09-14 Qualcomm Incorporated Methods and apparatus for resource management for ultra low latency (ull) and legacy transmissions
WO2018012899A1 (ko) * 2016-07-13 2018-01-18 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 랜덤액세스 프리앰블 송수신 방법 및 장치
CN107734667A (zh) * 2016-08-12 2018-02-23 夏普株式会社 执行随机接入的方法、用户设备和基站
WO2018062370A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 移動通信システム
WO2018204593A1 (en) * 2017-05-03 2018-11-08 Motorola Mobility Llc Feedback for a system information request
EP3471496A4 (en) * 2017-05-03 2020-03-11 LG Electronics Inc. -1- METHOD FOR TRANSMITTING / RECEIVING RANDOM ACCESS CHANNEL AND ASSOCIATED DEVICE
CN110800235B (zh) * 2017-05-04 2022-05-24 Lg电子株式会社 无线通信系统中的信号发送和接收方法以及装置
US11647544B2 (en) * 2017-07-27 2023-05-09 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
JP6843252B2 (ja) * 2017-11-17 2021-03-17 エルジー エレクトロニクス インコーポレイティド 物理任意接続チャネルを送受信する方法及びそのための装置
CN110035532B (zh) * 2018-01-12 2022-12-27 华为技术有限公司 一种保留资源的指示方法及设备
KR20210122857A (ko) * 2019-02-15 2021-10-12 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030412A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서의 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2018196746A1 (zh) * 2017-04-28 2018-11-01 电信科学技术研究院有限公司 下行控制信道检测接收方法、终端和网络侧设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Coexistence of LTE-MTC with NR", 3GPP TSG RAN WG1 MEETING #97; R1-1905959, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 May 2019 (2019-05-04), Reno, Nevada, USA; 20190513 - 20190517, XP051708001 *
ERICSSON: "Feature lead summary for Coexistence of LTE-MTC with NR", 3GPP TSG RAN WG1 MEETING #97; R1-1907581, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 May 2019 (2019-05-16), Reno, USA; 20190513 - 20190517, XP051739883 *
OPPO: "Multiplexing between slot-based and symbol-based transmissions and pre-emption indication", 3GPP TSG RAG WG1 MEETING #91; R1-1719974, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 18 November 2017 (2017-11-18), Reno, USA; 20171127 - 20171201, XP051369670 *
See also references of EP4017095A4 *

Also Published As

Publication number Publication date
US11540333B2 (en) 2022-12-27
US20220183082A1 (en) 2022-06-09
US11930540B2 (en) 2024-03-12
US20230138067A1 (en) 2023-05-04
EP4017095A1 (en) 2022-06-22
CN114270932A (zh) 2022-04-01
KR20220038087A (ko) 2022-03-25
EP4017095A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2020032726A1 (ko) 무선 통신 시스템에서 통신 장치가 wus 신호를 감지 또는 송신하는 방법 및 장치
WO2020130755A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2019216699A1 (ko) 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2020145773A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2016099196A1 (ko) 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
WO2016028059A1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2021034056A1 (ko) 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치
WO2021034055A1 (ko) 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치
WO2020032713A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2021015564A1 (ko) 기계 타입 통신을 지원하는 무선 통신 시스템에서 긴급 정보를 송수신하는 방법 및 이를 위한 장치
WO2019212216A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2021066606A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020204497A1 (ko) 다중 전송 블록 스케줄링을 위한 신호의 송수신 방법 및 이를 위한 장치
WO2020231125A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2020167077A1 (ko) 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2020166844A1 (ko) 무선 통신 시스템에서 단말의 데이터 신호 수신 방법 및 이를 지원하는 단말 및 기지국
WO2020218904A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2020167075A1 (ko) 무선 통신 시스템에서 상향링크 제어 신호에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2020197335A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2020091403A1 (ko) 무선 통신 시스템에서 srs의 송수신 방법 및 그 장치
WO2020091315A1 (ko) 무선 통신 시스템에서 릴레이 단말의 신호 송수신 방법 및 그 장치
WO2021066602A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2021066605A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020204682A1 (ko) 비면허 대역에서 전송을 수행하기 위한 자원할당 방법 및 이를 이용하는 장치
WO2020032717A1 (ko) 무선 통신 시스템에서 신호를 수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004357

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855741

Country of ref document: EP

Effective date: 20220316