[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021031585A1 - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
WO2021031585A1
WO2021031585A1 PCT/CN2020/084659 CN2020084659W WO2021031585A1 WO 2021031585 A1 WO2021031585 A1 WO 2021031585A1 CN 2020084659 W CN2020084659 W CN 2020084659W WO 2021031585 A1 WO2021031585 A1 WO 2021031585A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
focal length
object side
image side
Prior art date
Application number
PCT/CN2020/084659
Other languages
English (en)
French (fr)
Inventor
魏文哲
陈伟建
刘绪明
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to US16/941,576 priority Critical patent/US20210055519A1/en
Publication of WO2021031585A1 publication Critical patent/WO2021031585A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements

Definitions

  • the present invention relates to the field of lens imaging technology, in particular to an optical imaging lens and imaging equipment.
  • High pixels mean smaller pixel size and larger imaging area. In this case, the resolution requirements of the lens are getting higher and higher, making the edge aberration of the lens difficult to correct.
  • the action camera Since the action camera is sensitive to the chip and converts the light signal into an electrical signal, and the short-wave sensitivity range of the chip is larger than that of the human eye, it needs better correction for the secondary chromatic aberration.
  • the purpose of the present invention is to provide an optical imaging lens and imaging equipment, which can well correct the aberration of the edge field of view and provide higher-quality imaging effects, which can be applied to imaging equipment such as sports cameras.
  • the present invention provides an optical imaging lens consisting of eight lenses, from the object side to the imaging surface, including: a first lens with negative refractive power, the object side of the first lens is convex, and the first lens The image side of the lens is concave; the second lens with negative refractive power, the object side of the second lens is convex, the image side of the second lens is concave; the third lens with negative refractive power, the object of the third lens The side surface is concave; the fourth lens with positive refractive power, the object side of the fourth lens is convex; the diaphragm; the fifth lens with positive refractive power, the image side of the fifth lens is convex, and the object side of the fifth lens is Concave or convex surface; the sixth lens with positive refractive power, the image side of the sixth lens is convex; the seventh lens with negative refractive power, the object side and the image side of the seventh lens are both concave, and the sixth lens and The seventh lens constitutes
  • optical imaging lens satisfies the following conditional formula:
  • r 13 represents the curvature radius of the image side surface of the seventh lens
  • r 14 represents the curvature radius of the object side surface of the eighth lens
  • f 13 represents the focal length of the image side surface of the seventh lens
  • f 14 represents the focal length of the object side surface of the eighth lens.
  • the present invention also provides an imaging device, including the optical imaging lens and imaging element provided in the first aspect, and the imaging element is used to convert an optical image formed by the optical imaging lens into an electrical signal.
  • the first lens, the second lens, and the third lens are used for light collection, which reduces the incident angle of incident light, which is beneficial to reduce the volume of the lens and facilitate The subsequent correction of aberrations by the optical system;
  • the bending directions of the image side surface of the second lens and the object side surface of the third lens are opposite, which can effectively reduce the total length of the lens;
  • the third lens and the fourth lens cooperate to eliminate curvature of field;
  • the fourth lens has positive refractive power, which is beneficial to reduce spherical aberration and axial chromatic aberration;
  • the fifth and sixth lenses use glass materials with relatively large deviations in partial dispersion, which is beneficial to correct the secondary spectrum, so that the optical system can be Good imaging effect in a wide range of visible light;
  • the adhesive body composed of the sixth lens and the seventh lens can effectively correct chromatic aberration;
  • the eighth lens plays a role in eliminating aberrations and controlling the exit angle of the chief ray;
  • the optical imaging lens satisfie
  • FIG. 1 is a schematic diagram of the structure of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 2 is a field curvature diagram of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 3 is a diagram of vertical axis chromatic aberration of the optical imaging lens in the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of an optical imaging lens in the second embodiment of the present invention.
  • FIG. 5 is a field curvature diagram of an optical imaging lens in the second embodiment of the present invention.
  • Fig. 6 is a vertical axis chromatic aberration diagram of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 8 is a field curvature diagram of an optical imaging lens in the third embodiment of the present invention.
  • FIG. 9 is a diagram of vertical axis chromatic aberration of the optical imaging lens in the third embodiment of the present invention.
  • FIG. 11 is a field curvature diagram of the optical imaging lens in the fourth embodiment of the present invention.
  • FIG. 12 is a diagram of vertical axis chromatic aberration of the optical imaging lens in the fourth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an optical imaging lens in a fifth embodiment of the present invention.
  • 15 is a diagram of vertical axis chromatic aberration of the optical imaging lens in the fifth embodiment of the present invention.
  • 16 is a schematic diagram of the structure of an optical imaging lens in the sixth embodiment of the present invention.
  • 17 is a field curvature diagram of an optical imaging lens in the sixth embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of an optical imaging lens in a seventh embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of an optical imaging lens in the eighth embodiment of the present invention.
  • FIG. 23 is a field curvature diagram of an optical imaging lens in the eighth embodiment of the present invention.
  • FIG. 25 is a schematic diagram of the structure of the imaging device in the ninth embodiment of the present invention.
  • the embodiment of the present invention provides an optical imaging lens consisting of eight lenses, from the object side to the imaging surface, including: a first lens with negative refractive power, the object side of the first lens is convex, and the first lens
  • the image side surface is concave; the second lens with negative refractive power, the object side surface of the second lens is convex, and the image side surface is concave; the third lens with negative refractive power, the object side surface of the third lens is concave; with positive light
  • the fourth lens of power, the object side of the fourth lens is convex; the diaphragm; the fifth lens with positive refractive power, the image side of the fifth lens is convex, and the object side is concave or convex; the first with positive refractive power
  • Six lenses, the image side of the sixth lens is convex; the seventh lens with negative refractive power, the object side and the image side of the seventh lens are both concave, and the sixth lens and the seventh lens form a cemented body;
  • optical imaging lens satisfies the following conditional formula:
  • r 13 represents the curvature radius of the image side surface of the seventh lens
  • r 14 represents the curvature radius of the object side surface of the eighth lens
  • f 13 represents the focal length of the image side surface of the seventh lens
  • f 14 represents the focal length of the object side surface of the eighth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • Meeting the above conditions can improve the ability of the first lens, the second lens and the third lens to converge the beam, effectively reduce the incident angle of the incident light, facilitate the system's subsequent lenses to effectively correct aberrations, and help reduce the rear end of the lens Volume; while meeting the first condition, control the sum of the radius of curvature of the image side surface of the second lens and the object side surface of the third lens to be close to zero, which means that the image side surface of the second lens and the object side surface of the third lens have opposite curvature directions. Can effectively reduce the total length of the lens. Meeting the above two conditions can significantly reduce the overall volume of the lens, reduce the size of the camera, and effectively reduce the cost.
  • the optical imaging lens in order to control the length of the lens, satisfies the conditional formula:
  • TTL represents the total optical length of the optical imaging lens
  • BFL represents the distance from the vertex of the image side surface of the eighth lens to the imaging surface.
  • the optical imaging lens in order to effectively control the distortion of the lens, satisfies the following conditional formula:
  • represents the half field angle of the optical imaging lens
  • IH represents the image height of the optical imaging lens at the half field angle ⁇ .
  • the optical imaging lens have orthographic distortion, which means that the lens has a larger image height in the edge field of view. After the taken picture is stretched, the edge field of view can have a better imaging effect.
  • the refractive powers of the third lens and the fourth lens may be controlled to satisfy the following conditional formula:
  • f 5 represents the focal length of the object side of the third lens
  • f 7 represents the focal length of the object side of the fourth lens
  • f L3 represents the focal length of the third lens
  • f L4 represents the focal length of the fourth lens.
  • the fifth lens and the sixth lens need to satisfy the following conditional expressions:
  • f 10 represents the focal length of the image side of the fifth lens
  • f 12 represents the focal length of the image side of the sixth lens
  • f L5 represents the focal length of the fifth lens
  • f L6 represents the focal length of the sixth lens
  • ⁇ Pg, F 5 represents the fifth lens
  • the relative partial dispersion of the lens deviates from the deviation value of Abbe's empirical formula
  • ⁇ Pg, F 6 represents the deviation value of the relative partial dispersion of the sixth lens from the Abbe empirical formula.
  • the imaging system can have a good imaging effect in a wider visible light range.
  • the optical imaging lens satisfies the following conditional formula:
  • Vd 6 -Vd 7 >35;
  • r 12 represents the radius of curvature of the cemented surface of the cement composed of the sixth lens and the seventh lens
  • f L67 represents the focal length of the cement composed of the sixth lens and the seventh lens
  • Vd 6 represents the sixth lens Abbe number
  • Vd 7 represents the Abbe number of the seventh lens.
  • the Abbe number difference of the positive and negative lenses is greater than 35, which can effectively correct the chromatic aberration of the lens. At the same time, it can effectively control the radius of curvature of the adhesive surface of the adhesive body composed of the sixth and seventh lenses. Reduce the chromatic aberration of magnification in the edge field of view.
  • the first lens, second lens, third lens, fourth lens, fifth lens, sixth lens, seventh lens, and eighth lens of the optical imaging lens are all glass lenses
  • the fourth lens has Positive refractive power and the use of high refractive index glass materials are beneficial to reduce spherical aberration and axial chromatic aberration. Since each lens is a glass lens, the optical imaging lens has good thermal stability and mechanical strength, which is beneficial to high temperature and high pressure. , Work in extreme environments such as cold.
  • the second lens and the eighth lens are glass aspherical lenses
  • the second lens is a glass aspherical lens, which is mainly used to correct distortion
  • the eighth lens is a glass aspherical lens, which can effectively eliminate spherical aberration.
  • the influence of lens performance and the control of the exit angle of the chief ray, the first lens, sixth lens and seventh lens are glass spherical lenses, which can effectively correct chromatic aberration.
  • the present invention also provides an imaging device, including the optical imaging lens and imaging element of any one of the above embodiments, and the imaging element is used to convert an optical image formed by the optical imaging lens into an electrical signal.
  • z represents the distance of the surface from the surface vertex in the direction of the optical axis
  • c represents the curvature of the surface vertex
  • K represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, and F represent four Order, sixth, eighth, tenth and twelfth degree surface coefficients.
  • the thickness, radius of curvature, and material selection of each lens in the optical imaging lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • an optical imaging lens 100 provided by the first embodiment of the present invention is composed of eight lenses, from the object side to the imaging surface, including: a first lens L1, a second lens L2, a third lens L3, and a second lens.
  • a first lens L1 a second lens L2, a third lens L3, and a second lens.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the first lens L1 is a glass spherical lens.
  • the second lens L2 has negative refractive power, the object side surface S3 is a convex surface, the image side surface S4 is a concave surface, and the second lens L2 is a glass aspheric lens.
  • the third lens L3 has negative refractive power, the object side surface S5 and the image side surface S6 are both concave, and the third lens L3 is a glass spherical lens. In other embodiments of the present invention, the third lens L3 may also be a glass aspheric lens.
  • the fourth lens L4 has positive refractive power, the object side surface S7 and the image side surface S8 are both convex, and the fourth lens L4 is a glass aspheric lens. In other embodiments of the present invention, the fourth lens L4 may also be a glass spherical lens.
  • the fifth lens L5 has positive refractive power, the object side surface S9 is concave, the image side surface S10 is convex, and the fifth lens L5 is a glass spherical lens. In other embodiments of the present invention, the fifth lens L5 may also be a glass aspheric lens.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12-1 are both convex.
  • the seventh lens L7 has negative refractive power, the object side S12-2 and the image side S13 are both concave, and the sixth lens L6 and the seventh lens L7 form a cemented body and both are glass spherical lenses, that is, the sixth lens
  • the image side surface S12-1 of L6 and the object side surface S12-2 of the seventh lens L7 are seamlessly bonded, and the bonding surface is S12.
  • the eighth lens L8 has a positive refractive power, the object side surface S14 and the image side surface S15 are both convex, and the eighth lens L8 is a glass aspheric lens.
  • the stop ST is provided between the fourth lens L4 and the fifth lens L5, and the filter G1 is provided between the eighth lens L8 and the imaging surface S18.
  • FIG. 4 a schematic structural diagram of the optical imaging lens 200 of this embodiment.
  • the optical imaging lens 200 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that the image side surface S6 of the third lens L3 of the optical imaging lens 200 in this embodiment is convex, and The curvature radius and material selection of each lens are different.
  • FIG. 7 a schematic structural diagram of an optical imaging lens 300 provided in this embodiment.
  • the optical imaging lens 300 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that the image side surface S6 of the third lens L3 of the optical imaging lens 300 in this embodiment is convex.
  • the object side surface S7 of the four lens L4 is convex, and the radius of curvature and material selection of each lens are different.
  • FIG. 10 a schematic structural diagram of the optical imaging lens 400 provided in this embodiment.
  • the optical imaging lens 400 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that: the image side surface S6 of the third lens L3 of the optical imaging lens 400 in this embodiment is convex, and
  • the fifth lens L5 is a glass aspheric lens, and the radius of curvature and material selection of each lens are different.
  • Figs. 11 and 12 their curvature of field and vertical axis chromatic aberration are shown in Figs. 11 and 12, respectively. It can be seen from Fig. 11 and Fig. 12 that the curvature of field and vertical axis chromatic aberration can be well corrected in this embodiment.
  • FIG. 13 a schematic structural diagram of the optical imaging lens 500 provided by this embodiment.
  • the optical imaging lens 500 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that the image side surface S6 of the third lens L3 of the optical imaging lens 500 in this embodiment is convex, and The curvature radius and material selection of each lens are different.
  • Figs. 14 and 15 their curvature of field and vertical axis chromatic aberration are shown in Figs. 14 and 15 respectively. It can be seen from FIG. 14 and FIG. 15 that the curvature of field and vertical axis chromatic aberration can be well corrected in this embodiment.
  • FIG. 16 a schematic structural diagram of the optical imaging lens 600 provided by this embodiment.
  • the optical imaging lens 600 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment. The difference is that: the image side surface S6 of the third lens L3 of the optical imaging lens 600 in this embodiment is convex.
  • the object side surface S7 of the four lens L4 is convex, the fourth lens L4 is a glass spherical lens, the fifth lens L5 is a glass aspheric lens, and the radius of curvature and material selection of each lens are different.
  • Figs. 17 and 18 their curvature of field and vertical axis chromatic aberration are shown in Figs. 17 and 18, respectively. It can be seen from Fig. 17 and Fig. 18 that the curvature of field and vertical axis chromatic aberration can be well corrected in this embodiment.
  • the optical imaging lens 700 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that the image side surface S6 of the third lens L3 of the optical imaging lens 700 in this embodiment is convex and the The three lens L3 is a glass aspheric lens, the fourth lens L4 is a glass spherical lens, and the radius of curvature and material selection of each lens are different.
  • Figs. 23 and 24 their curvature of field and vertical axis chromatic aberration are shown in Figs. 23 and 24, respectively. It can be seen from Fig. 23 and Fig. 24 that the curvature of field and vertical axis chromatic aberration can be well corrected in this embodiment.
  • Table 17 shows the above eight embodiments and their corresponding optical characteristics, including the system focal length f, the number of apertures F#, the field of view 2 ⁇ , and the total optical length TTL, as well as the numerical values corresponding to each of the above-mentioned conditional expressions.
  • optical indicators are achieved: (1) Field of view: 2 ⁇ >155°; (2) Total optical length: TTL ⁇ 18.0mm; (3) Applicable spectrum range: 400-700nm.
  • FIG. 25 a schematic structural diagram of an imaging device 900 provided in this embodiment, which includes the optical imaging lens (for example, the optical imaging lens 100) and the imaging element 910 in any of the above embodiments.
  • the imaging element 910 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 900 can be a sports camera, a video camera, a driving recorder, a surveillance camera, or any other electronic device loaded with an optical imaging lens.
  • the imaging device 900 provided in this embodiment includes the optical imaging lens 100. Since the optical imaging lens can not only well correct the aberrations of the edge field of view, but also can reduce the generation of ghost images, provide higher-quality imaging effects, and has a good Thermal stability, large field of view, and small distortion. Therefore, the imaging device 900 has the advantages of higher-quality imaging effect, good thermal stability, large field of view and small distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头(100、200、300、400、500、600、700、800)及成像设备(900),光学成像镜头(100、200、300、400、500、600、700、800)由八个透镜组成,从物侧到成像面(S18)依次包括:具有负光焦度的第一透镜(L1);具有负光焦度的第二透镜(L2);具有负光焦度的第三透镜(L3);具有正光焦度的第四透镜(L4);光阑(ST);具有正光焦度的第五透镜(L5);具有正光焦度的第六透镜(L6);具有负光焦度的第七透镜(L7),且第六透镜(L6)与第七透镜(L7)组成粘合体;具有正光焦度的第八透镜(L8);设于第八透镜(L8)与成像面(S18)之间的滤光片(G1)。

Description

光学成像镜头及成像设备
相关申请的交叉引用
本申请要求于2019年08月20日提交中国专利局的申请号为CN201910766754.0、名称为“光学成像镜头及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及透镜成像技术领域,特别涉及一种光学成像镜头及成像设备。
背景技术
在户外极限运动领域,如滑雪、冲浪、跳伞、潜水、赛车等,存在剧烈震动以及视角快速变换的情况,在这种情况下,需要一款体积小便于携带,提供较大的视野范围,且成像效果良好,拍摄出来的图片失真小的运动相机镜头。
高像素意味着更小的像素点尺寸和更大的成像面范围,在这种情况下,对镜头的分辨率要求越来越高,使得镜头的边缘像差很难矫正。
由于运动相机是由芯片感光并将光信号转化为电信号,而芯片在短波的感光范围比人眼更大,因此对于二级色差需要更好的矫正。
发明内容
本发明的目的在于提供一种光学成像镜头及成像设备,能够良好的矫正边缘视场的像差,提供更高质量的成像效果,可适用于运动相机等成像设备上。
本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供了一种光学成像镜头,由八个透镜组成,从物侧到成像面依次包括:具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;具有负光焦度的第二透镜,第二透镜的物侧面为凸面,第二透镜的像侧面为凹面;具有负光焦度的第三透镜,第三透镜的物侧面为凹面;具有正光焦度的第四透镜,第四透镜的物侧面为凸面;光阑;具有正光焦度的第五透镜,第五透镜的像侧面为凸面,第五透镜的物侧面为凹面或凸面;具有正光焦度的第六透镜,第六透镜的像侧面为凸面;具有负光焦度的第七透镜,第七透镜的物侧面和像侧面均为凹面,且第六透镜与第七透镜组成粘合体;具有正光焦度的第八透镜,第八透镜的物侧面和像侧面均为凸面;以及滤光片,滤光片设于第八透镜与成像面之间;
光学成像镜头满足以下条件式:
-0.4<r 13/f 13+r 14/f 14<-0.1;
其中,r 13表示七透镜的像侧面的曲率半径,r 14表示第八透镜的物侧面的曲率半径,f 13表示第七透镜的像侧面的焦距,f 14表示第八透镜的物侧面的焦距。
第二方面,本发明还提供一种成像设备,包括第一方面提供的光学成像镜头及成像元件,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
相较于现有技术,本发明提供的光学成像镜头及成像设备,第一透镜、第二透镜、第三透镜用于光线收集,减小入射光线的入射角,有利于减小镜头体积和便于光学系统后续对像差的矫正;第二透镜的像侧面和第三透镜的物侧面的弯曲方向相反,可以有效地减小镜头总长度;第三透镜、第四透镜配合用于消除场曲;第四透镜具有正光焦度,有利于减小球差和轴向色差;第五透镜、第六透镜采用相对部分色散偏离值较大的玻璃材料,有利于矫正二级光谱,使光学系统可以在较宽的可见光范围内都有良好的成像效果;第六透镜和第七透镜组成的粘合体,可以有效地矫正色差;第八透镜起到消除像差和控制主光线的出射角 度的作用;光学成像镜头满足条件式:-0.4<r 13/f 13+r 14/f 14<-0.1,由于第七透镜和第八透镜接近成像面,其反射光线产生的鬼影更容易聚焦在成像面上,因此满足此条件式,可以有效地消除由第七透镜、第八透镜二次反射产生的鬼影。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本发明第一实施例中光学成像镜头的结构示意图;
图2为本发明第一实施例中光学成像镜头的场曲图;
图3为本发明第一实施例中光学成像镜头的垂轴色差图;
图4为本发明第二实施例中光学成像镜头的结构示意图;
图5为本发明第二实施例中光学成像镜头的场曲图;
图6为本发明第二实施例中光学成像镜头的垂轴色差图;
图7为本发明第三实施例中光学成像镜头的结构示意图;
图8为本发明第三实施例中光学成像镜头的场曲图;
图9为本发明第三实施例中光学成像镜头的垂轴色差图;
图10为本发明第四实施例中光学成像镜头的结构示意图;
图11为本发明第四实施例中光学成像镜头的场曲图;
图12为本发明第四实施例中光学成像镜头的垂轴色差图;
图13为本发明第五实施例中光学成像镜头的结构示意图;
图14为本发明第五实施例中光学成像镜头的场曲图;
图15为本发明第五实施例中光学成像镜头的垂轴色差图;
图16为本发明第六实施例中光学成像镜头的结构示意图;
图17为本发明第六实施例中光学成像镜头的场曲图;
图18为本发明第六实施例中光学成像镜头的垂轴色差图;
图19为本发明第七实施例中光学成像镜头的结构示意图;
图20为本发明第七实施例中光学成像镜头的场曲图;
图21为本发明第七实施例中光学成像镜头的垂轴色差图;
图22为本发明第八实施例中光学成像镜头的结构示意图;
图23为本发明第八实施例中光学成像镜头的场曲图;
图24为本发明第八实施例中光学成像镜头的垂轴色差图;
图25为本发明第九实施例中成像设备的结构示意图。
附图标记说明
Figure PCTCN2020084659-appb-000001
Figure PCTCN2020084659-appb-000002
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于更好地理解本发明,下面将结合相关实施例附图对本发明进行在一种实施方式中解释。附图中给出了本发明的实施例,但本发明并不仅限于上述的优选实施例。相反,提供这些实施例的目的是为了使本发明的公开面更加得充分。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明实施例提供了一种光学成像镜头,由八个透镜组成,从物侧到成像面依次包括:具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;具有负光焦度的第二透镜,第二透镜的物侧面为凸面,像侧面为凹面;具有负光焦度的第三透镜,第三透镜的物侧面为凹面;具有正光焦度的第四透镜,第四透镜的物侧面为凸面;光阑;具有正光焦度的第五透镜,第五透镜的像侧面为凸面,物侧面为凹面或凸面;具有正光焦度的第六透镜,第六透镜的像侧面为凸面;具有负光焦度的第七透镜,第七透镜的物侧面和像侧面均为凹面,且第六透镜与第七透镜组成粘合体;具有正光焦度的第八透镜,第八透镜的物侧面和像侧面均为凸面;以及滤光片,滤光片设于第八透镜与成像面之间;
光学成像镜头满足以下条件式:
-0.4<r 13/f 13+r 14/f 14<-0.1;
其中,r 13表示七透镜的像侧面的曲率半径,r 14表示第八透镜的物侧面的曲率半径,f 13表示第七透镜的像侧面的焦距,f 14表示第八透镜的物侧面的焦距。
进一步地,在一些实施方式中,光学成像镜头满足以下条件式:
0<f 2/f L1+f 4/f L2+f 5/f L3<3;
|r 4/f 4+r 5/f 5|<1;
其中,f 2表示第一透镜的像侧面的焦距,f 4表示第二透镜的像侧面的焦距,f 5表示第三透镜的物侧面的焦距,f L1表示第一透镜的焦距,f L2表示第二透镜的焦距,f L3表示第三透镜的焦距,r 4表示第二透镜的像侧面的曲率半径,r 5表示第三透镜的物侧面的曲率半径。
满足上述条件可以提高第一透镜、第二透镜和第三透镜收束光束的能力,有效地减小入射光线的入射角度,便于系统后续镜片有效地矫正像差,并且有利于减小镜头后端体积;满足第一个条件的同时控制第二透镜的像侧面和第三透镜的物侧面的曲率半径之和接近零,表示第二透镜的像侧面和第三透镜的物侧面的弯曲方向相反,可以有效地减小镜头的总长度。满足以上两个条件,可以明显地减小镜头的整体体积,缩小相机的尺寸,有效的降低成本。
在一些实施方式中,为了控制镜头的长度,光学成像镜头满足条件式:
TTL/BFL<6;
其中,TTL表示光学成像镜头的光学总长,BFL表示第八透镜的像侧面的顶点到成像面的距离。
在一些实施方式中,为了有效地控制镜头的畸变,光学成像镜头满足以下条件式:
θ/IH 2<0.25;
其中,θ表示光学成像镜头的半视场角,IH表示光学成像镜头在半视场角θ时的像高。
满足上述条件,可以使该光学成像镜头拥有正畸变,表示镜头在边缘视场有更大的像高,在拍摄的图片拉伸后,可以使边缘视场有更好的成像效果。
在一些实施方式中,为了校正镜头的场曲,可以通过控制第三透镜和第四透镜的光焦度满足以下条件式:
-5<f 5/f L3-f 7/f L4<0;
其中,f 5表示第三透镜的物侧面的焦距,f 7表示第四透镜物侧面的焦距,f L3表示第三透镜的焦距,f L4表示第四透镜的焦距。
在一些实施方式中,为了校正镜头的二级光谱,提升短波方向的解像力,需要使第五透镜和第六透镜满足以下条件式:
-1<f 10/f L5+f 12/f L6<1;
|ΔPg,F 5|+|ΔPg,F 6|>0.02;
其中,f 10表示第五透镜像侧面的焦距,f 12表示第六透镜的像侧面的焦距,f L5表示第五透镜的焦距,f L6表示第六透镜的焦距,ΔPg,F 5表示第五透镜的相对部分色散偏离阿贝经验公式的偏离值,ΔPg,F 6表示第六透镜的相对部分色散偏离阿贝经验公式的偏离值。
由于第五透镜和第六透镜的相对部分色散偏离阿贝经验公式较大,有利于矫正二级光谱,使成像系统可以在较宽可见光范围内都有良好的成像效果。
在一些实施方式中,光学成像镜头满足以下条件式:
0<r 12/f L67<0.5;
Vd 6-Vd 7>35;
其中,r 12表示第六透镜和第七透镜组成的粘合体的粘合面的曲率半径,f L67表示第六透镜和第七透镜组成的粘合体的焦距,Vd 6表示第六透镜的阿贝数,Vd 7表示第七透镜的阿贝数。
满足上述条件,该正、负透镜的阿贝数差值大于35,可以有效地矫正镜头的色差,同时控制第六、第七透镜组成的粘合体的粘合面的曲率半径,可以有效地减小边缘视场的倍率色差。
在一些实施方式中,光学成像镜头的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜均为玻璃透镜,第四透镜具有正光焦度且使用高折射率玻璃材料,有利于减小球差和轴向色差,由于各个透镜均为玻璃镜片可以使得光学成像镜头具有较好的热稳定性能以及机械强度,利于在高温、高压、寒冷等极端环境下工作。
在一些实施方式中,第二透镜、第八透镜为玻璃非球面透镜,第二透镜为玻璃非球面透镜,主要用于矫正畸变,第八透镜为玻璃非球面透镜可以有效地消除球面像差对镜头性能的影响以及控制主光线的出射角度,第一透镜、第六透镜和第七透镜为玻璃球面透镜,可以有效地矫正色差。
在一些实施方式中,本发明还提供一种成像设备,包括上述任意一种实施方式的光学成像镜头及成像元件,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
满足上述所有实施例的配置有利于保证光学成像镜头具有高像素、大广角和小畸变等优点,同时有效 地矫正边缘视场的像差以及整个像面的二级光谱,从而提高了光学成像镜头边缘的解像能力,使此光学成像镜头在像素达到2400万的同时,拥有良好的成像能力,光学成像镜头具有较好的热稳定性能以及机械强度,有利于在极端环境下工作,由于第七透镜和第八透镜接近成像面,其反射光线产生的鬼影更容易聚焦在成像面上,可以有效地消除由第七透镜、第八透镜二次反射产生的鬼影,能够减少鬼影的产生。
本发明中各个实施例中光学成像镜头的非球面的表面形状均满足下列方程式:
Figure PCTCN2020084659-appb-000003
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别表示四阶、六阶、八阶、十阶和十二阶曲面系数。
在以下各个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,本发明第一实施例提供的一种光学成像镜头100由八个透镜组成,从物侧到成像面依次包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、光阑ST、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1为凸面、像侧面S2为凹面,第一透镜L1是玻璃球面透镜。
第二透镜L2具有负光焦度,其物侧面S3为凸面、像侧面S4为凹面,第二透镜L2是玻璃非球面透镜。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为凹面,第三透镜L3是玻璃球面透镜。在本发明的其它实施例中,第三透镜L3还可以是玻璃非球面透镜。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面,第四透镜L4是玻璃非球面透镜。在本发明的其它实施例中,第四透镜L4还可以是玻璃球面透镜。
第五透镜L5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,第五透镜L5是玻璃球面透镜。在本发明的其它实施例中,第五透镜L5还可以是玻璃非球面透镜。
第六透镜L6具有正光焦度,其物侧面S11和像侧面S12-1均为凸面。
第七透镜L7具有负光焦度,其物侧面S12-2和像侧面S13均为凹面,且第六透镜L6和第七透镜L7组成粘合体并且均为玻璃球面透镜,也即第六透镜L6的像侧面S12-1与第七透镜L7的物侧面S12-2无缝粘合,其粘合面为S12。
第八透镜L8具有正光焦度,其物侧面S14和像侧面S15均为凸面,第八透镜L8是玻璃非球面透镜。
光阑ST设于第四透镜L4与第五透镜L5之间,滤光片G1设于第八透镜L8与成像面S18之间。
本实施例中的光学成像镜头100中各个镜片的相关参数如表1所示。
表1
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 9.634007 0.569604 1.901 37.05
S2 球面 3.001784 1.280843    
S3 非球面 7.121088 0.456613 1.497 81.52
S4 非球面 2.831167 1.908828    
S5 球面 -3.729674 0.466270 1.593 68.53
S6 球面 50.862748 0.088212    
S7 非球面 4.594279 1.577177 1.851 40.10
S8 非球面 -8.094202 0.608283    
ST 光阑 无穷 0.182425    
S9 球面 -31.591016 1.236848 1.729 54.67
S10 球面 -4.076586 0.109571    
S11 球面 23.615648 2.017297 1.593 68.53
S12 球面 -2.260257 0.467795 1.741 27.76
S13 球面 7.065731 0.671161    
S14 非球面 7.584871 2.863905 1.497 81.52
S15 非球面 -4.252406 2.033598    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 0.966386    
S18 成像面 无穷    
本实施例的各透镜非球面的参数如表2所示。
表2
Figure PCTCN2020084659-appb-000004
在本实施例中,其场曲和垂轴色差图分别如图2和图3所示。由图2和图3可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第二实施例
本实施例的光学成像镜头200的结构示意图请参阅图4。本实施例中的光学成像镜头200与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头200的第三透镜L3的像侧面S6为凸面,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头200中各个镜片的相关参数如表3所示。
表3
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 9.705422 0.540100 1.904 31.32
S2 球面 3.236027 1.123044    
S3 非球面 4.694631 0.436021 1.497 81.52
S4 非球面 2.169337 2.133758    
S5 球面 -3.623174 0.374719 1.517 64.21
S6 球面 -25.760585 0.083910    
S7 非球面 6.448480 2.050209 1.882 37.22
S8 非球面 -7.141979 0.208542    
ST 光阑 无穷 0.756226    
S9 球面 -51.674086 1.456084 1.497 81.59
S10 球面 -3.329810 0.077602    
S11 球面 17.262198 2.135196 1.603 65.46
S12 球面 -2.634046 0.358236 1.741 27.76
S13 球面 6.413126 0.331165    
S14 非球面 6.016276 2.695215 1.497 81.52
S15 非球面 -6.468511 1.472662    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 1.267325    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表4所示。
表4
Figure PCTCN2020084659-appb-000005
在本实施例中,其场曲和垂轴色差分别如图5和图6所示。由图5和图6可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第三实施例
本实施例提供的一种光学成像镜头300的结构示意图请参阅图7。本实施例中的光学成像镜头300与第一实施例中的光学成像镜头100大抵相同,不同之处在于,本实施例中的光学成像镜头300的第三透镜L3的像侧面S6为凸面,第四透镜L4的物侧面S7为凸面,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头300中各个镜片的相关参数如表5所示。
表5
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 9.123956 0.540100 1.904 31.32
S2 球面 3.030178 1.018924    
S3 非球面 3.791971 0.436021 1.497 81.52
S4 非球面 2.020961 2.117802    
S5 球面 -3.414592 0.397647 1.517 64.21
S6 球面 -23.180738 0.083910    
S7 非球面 6.899643 1.933898 1.882 37.22
S8 非球面 -7.113365 0.166408    
ST 光阑 无穷 0.887439    
S9 球面 46.982241 1.517769 1.497 81.59
S10 球面 -3.655573 0.077602    
S11 球面 17.368728 2.277265 1.603 65.46
S12 球面 -2.668624 0.398543 1.741 27.76
S13 球面 6.641187 0.305699    
S14 非球面 5.832288 2.751326 1.497 81.52
S15 非球面 -6.289885 1.472662    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 1.117053    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表6所示。
表6
Figure PCTCN2020084659-appb-000006
Figure PCTCN2020084659-appb-000007
在本实施例中,其场曲和垂轴色差分别如图8和图9所示。由图8和图9可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第四实施例
本实施例提供的光学成像镜头400的结构示意图请参阅图10。本实施例中的光学成像镜头400与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头400的第三透镜L3的像侧面S6为凸面,且第五透镜L5为玻璃非球面透镜,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头400中各个镜片的相关参数如表7所示。
表7
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 9.119022 0.540100 1.904 31.32
S2 球面 2.985832 0.986853    
S3 非球面 3.923266 0.436021 1.497 81.52
S4 非球面 2.081991 2.183508    
S5 球面 -3.593518 0.396851 1.517 64.21
S6 球面 -18.043826 0.072887    
S7 非球面 7.536893 1.676149 1.882 37.22
S8 非球面 -7.087150 0.263872    
ST 光阑 无穷 0.933758    
S9 非球面 -92.103190 1.511366 1.497 81.52
S10 非球面 -3.620990 0.084273    
S11 球面 14.120769 2.371232 1.603 65.46
S12 球面 -2.715116 0.384737 1.741 27.76
S13 球面 6.711221 0.187070    
S14 非球面 5.719275 2.753736 1.497 81.52
S15 非球面 -6.180956 1.472662    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 1.246227    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表8所示。
表8
Figure PCTCN2020084659-appb-000008
在本实施例中,其场曲和垂轴色差分别如图11和图12所示。由图11和图12可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第五实施例
本实施例提供的光学成像镜头500的结构示意图请参阅图13。本实施例中的光学成像镜头500与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例当中的光学成像镜头500的第三透镜L3的像侧面S6为凸面,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头500中各个镜片的相关参数如表9所示。
表9
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 10.922089 0.647701 1.665 54.66
S2 球面 3.752280 1.213375    
S3 非球面 2.354419 0.498502 1.583 59.46
S4 非球面 1.492589 2.583399    
S5 非球面 -3.309665 0.798282 1.808 40.92
S6 非球面 -5.560428 0.196057    
S7 球面 9.152714 1.339507 1.806 41.02
S8 球面 -6.413445 0.219292    
ST 光阑 无穷 0.576095    
S9 球面 -10.071157 0.998086 1.720 50.35
S10 球面 -4.216221 0.278200    
S11 球面 44.298932 1.823416 1.593 68.53
S12 球面 -2.480936 0.447741 1.741 27.76
S13 球面 17.670037 0.912189    
S14 非球面 6.203979 2.091304 1.554 71.72
S15 非球面 -11.904862 0.953293    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 1.929178    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表10所示。
表10
Figure PCTCN2020084659-appb-000009
在本实施例中,其场曲和垂轴色差分别如图14和图15所示。由图14和图15可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第六实施例
本实施例提供的光学成像镜头600的结构示意图请参阅图16。本实施例中的光学成像镜头600与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例当中的光学成像镜头600的第三透镜L3的像侧面S6为凸面,第四透镜L4的物侧面S7为凸面且第四透镜L4为玻璃球面透镜,第五透镜L5为玻璃非球面透镜,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头600中各个镜片的相关参数如表11所示。
表11
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 8.416552 0.600000 1.806 41.02
S2 球面 2.827889 1.845329    
S3 非球面 22.321164 0.500000 1.808 40.92
S4 非球面 3.986230 1.267547    
S5 球面 -5.302149 0.500000 1.497 81.61
S6 球面 -13.744445 0.100000    
S7 球面 16.943217 0.917841 1.904 31.42
S8 球面 -10.203621 0.379546    
ST 光阑 无穷 0.834209    
S9 非球面 7.707417 1.627571 1.774 49.60
S10 非球面 -5.516788 0.100000    
S11 球面 66.530658 2.126611 1.593 68.53
S12 球面 -2.536029 0.500000 1.806 25.38
S13 球面 12.444738 1.084938    
S14 非球面 5.483823 2.166407 1.497 81.52
S15 非球面 -11.662485 0.300000    
S16 球面 无穷 0.500000 1.517 64.20
S17 球面 无穷 2.653080    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表12所示。
表12
Figure PCTCN2020084659-appb-000010
在本实施例中,其场曲和垂轴色差分别如图17和图18所示。由图17和图18可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第七实施例
本实施例提供的光学成像镜头700的结构示意图请参阅图19。本实施例中的光学成像镜头700与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头700的第三透镜L3的像侧面S6为凸面且第三透镜L3为玻璃非球面透镜,第四透镜L4为玻璃球面透镜,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头700中各个镜片的相关参数如表13所示。
表13
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 11.089925 0.649051 1.665 54.66
S2 球面 3.571173 1.169993    
S3 非球面 2.356678 0.499467 1.583 59.46
S4 非球面 1.509702 2.548365    
S5 非球面 -3.208593 0.799744 1.808 40.92
S6 非球面 -5.292549 0.199305    
S7 球面 15.435850 1.274236 1.806 41.02
S8 球面 -5.550245 0.174101    
ST 光阑 无穷 0.558840    
S9 球面 -12.632603 0.999465 1.456 90.27
S10 球面 -3.380778 0.672749    
S11 球面 157.528260 1.906853 1.593 68.53
S12 球面 -2.651287 0.449409 1.741 27.76
S13 球面 283.159515 0.939373    
S14 非球面 6.479964 1.767962 1.554 71.72
S15 非球面 -22.693857 0.953293    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 1.937846    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表14所示。
表14
Figure PCTCN2020084659-appb-000011
在本实施例中,其场曲和垂轴色差分别如图20和图21所示。由图20和图21可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
第八实施例
本实施例提供的一种光学成像镜头800的结构示意图请参阅图22。本实施例中的光学成像镜头800与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例当中的光学成像镜头800的第四透镜L4的像侧面S8为凹面,第五透镜L5的物侧面S9为凸面,以及各透镜的曲率半径、材料选择不同。
本实施例中的光学成像镜头800中各个镜片的相关参数如表15所示。
表15
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
物面 物面 无穷    
S1 球面 8.588295 0.587171 1.901 37.05
S2 球面 3.215063 1.189477    
S3 非球面 4.871782 0.456521 1.497 81.52
S4 非球面 2.092124 1.853217    
S5 球面 -3.940101 0.468192 1.593 68.53
S6 球面 8.998686 0.090857    
S7 非球面 3.810407 1.313832 1.851 40.10
S8 非球面 204.384445 0.349381    
ST 光阑 无穷 0.188761    
S9 球面 11.956060 1.694640 1.593 68.53
S10 球面 -3.107656 0.586936    
S11 球面 26.449892 2.240365 1.593 68.53
S12 球面 -2.605537 0.469490 1.717 29.51
S13 球面 7.281090 0.417493    
S14 非球面 5.737610 2.594098 1.497 81.52
S15 非球面 -5.445476 0.671367    
S16 球面 无穷 0.500000 1.517 64.21
S17 球面 无穷 2.328290    
S18 成像面 无穷    
本实施例的各透镜的非球面参数如表16所示。
表16
Figure PCTCN2020084659-appb-000012
Figure PCTCN2020084659-appb-000013
在本实施例中,其场曲和垂轴色差分别如图23和图24所示。由图23和图24可以看出,本实施例中场曲、垂轴色差都能被很好地校正。
表17是上述8个实施例及其对应的光学特性,包括系统焦距f、光圈数F#、视场角2θ和光学总长TTL,以及与上述每个条件式对应的数值。
表17
Figure PCTCN2020084659-appb-000014
综合上述各实施例,均达到了以下的光学指标:(1)视场角:2θ>155°;(2)光学总长:TTL≤18.0mm;(3)适用光谱范围为:400~700nm。
本发明提供的光学成像镜头中,第一透镜L1、第二透镜L2、第三透镜L3用于光线收集,减小入射光线的入射角,有利于减小镜头的体积,便于光学系统后续对像差的矫正;第二透镜L2为玻璃非球面透镜,主要用于矫正畸变;第三透镜L3、第四透镜L4配合用于消除场曲;第四透镜L4使用高折射率玻璃材料,有利于消除球差;第五透镜L5和第六透镜L6的相对部分色散偏离阿贝经验公式较大,有利于矫正二级光谱,使光学系统可以在较宽的可见光范围内都有良好的成像效果;第六透镜L6和第七透镜L7组成粘合体,且该正、负透镜的阿贝数差值大于35,可以有效地矫正色差;第八透镜L8起到消除像差和控制主光 线的出射角度的作用;各个透镜均为玻璃镜片可以使得该光学成像镜头具有较好的热稳定性能以及机械强度,利于在极端环境下工作;由于第七透镜和第八透镜接近成像面,其反射光线产生的鬼影更容易聚焦在成像面上,可以有效地消除由第七透镜、第八透镜二次反射产生的鬼影,能够减少鬼影的产生。因此,本发明提供的光学成像镜头,不仅能够良好地矫正边缘视场的像差,提供更高质量的成像效果,而且,具有良好的热稳定性、超大的视场角和畸变小等优点,可适用于运动相机等成像设备上。
第九实施例
本实施例提供的一种成像设备900的结构示意图请参阅图25,包括上述任一实施例中的光学成像镜头(例如光学成像镜头100)及成像元件910。成像元件910可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备900可以是运动相机、摄像机、行车记录仪、监控摄像头以及其他任意一种形态的装载了光学成像镜头的电子设备。
本实施例提供的成像设备900包括光学成像镜头100,由于光学成像镜头不仅能够良好地矫正边缘视场的像差,能够减少鬼影的产生,提供更高质量的成像效果,而且,具有良好的热稳定性,超大的视场角,畸变小,因此,该成像设备900具有更高质量的成像效果、良好的热稳定性、超大视场角和畸变小等优点。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学成像镜头,由八个透镜组成,其特征在于,从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凸面,像侧面为凹面;
    具有负光焦度的第三透镜,所述第三透镜的物侧面为凹面;
    具有正光焦度的第四透镜,所述第四透镜的物侧面为凸面;
    光阑;
    具有正光焦度的第五透镜,所述第五透镜的像侧面为凸面,物侧面为凹面或凸面;
    具有正光焦度的第六透镜,所述第六透镜的像侧面为凸面;
    具有负光焦度的第七透镜,所述第七透镜的物侧面和像侧面均为凹面,且所述第六透镜与所述第七透镜组成粘合体;
    具有正光焦度的第八透镜,所述第八透镜的物侧面和像侧面均为凸面;以及
    滤光片,所述滤光片设于所述第八透镜与成像面之间;
    所述光学成像镜头满足以下条件式:
    -0.4<r 13/f 13+r 14/f 14<-0.1;
    其中,r 13表示所述七透镜的像侧面的曲率半径,r 14表示所述第八透镜的物侧面的曲率半径,f 13表示所述第七透镜的像侧面的焦距,f 14表示所述第八透镜的物侧面的焦距。
  2. 如权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0<f 2/f L1+f 4/f L2+f 5/f L3<3;
    |r 4/f 4+r 5/f 5|<1;
    其中,f 2表示所述第一透镜的像侧面的焦距,f 4表示所述第二透镜的像侧面的焦距,f 5表示所述第三透镜的物侧面的焦距,f L1表示所述第一透镜的焦距,f L2表示所述第二透镜的焦距,f L3表示所述第三透镜的焦距,r 4表示所述第二透镜的像侧面的曲率半径,r 5表示所述第三透镜的物侧面的曲率半径。
  3. 如权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    TTL/BFL<6;
    其中,TTL表示所述光学成像镜头的光学总长,BFL表示所述第八透镜像侧面的顶点到成像面的距离。
  4. 如权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    θ/IH 2<0.25;
    其中,θ表示所述光学成像镜头的半视场角,IH表示所述光学成像镜头在半视场角θ时的像高。
  5. 如权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -5<f 5/f L3-f 7/f L4<0;
    其中,f 5表示所述第三透镜的物侧面的焦距,f 7表示所述第四透镜物侧面的焦距,f L3表示所述第三透镜的焦距,f L4表示所述第四透镜的焦距。
  6. 如权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -1<f 10/f L5+f 12/f L6<1;
    |ΔPg,F 5|+|ΔPg,F 6|>0.02;
    其中,f 10表示所述第五透镜像侧面的焦距,f 12表示所述第六透镜的像侧面的焦距,f L5表示所述第五透镜的焦距,f L6表示所述第六透镜的焦距,ΔPg,F 5表示所述第五透镜的相对部分色散偏离阿贝经验公式的偏离值,ΔPg,F 6表示所述第六透镜的相对部分色散偏离阿贝经验公式的偏离值。
  7. 如权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0<r 12/f L67<0.5;
    Vd 6-Vd 7>35;
    其中,r 12表示所述第六透镜和所述第七透镜组成的粘合体的粘合面的曲率半径,f L67表示所述第六透镜和所述第七透镜组成的粘合体的焦距,Vd 6表示所述第六透镜的阿贝数,Vd 7表示所述第七透镜的阿贝数。
  8. 如权利要求1-7任一项所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜均为玻璃透镜。
  9. 如权利要求8所述的光学成像镜头,其特征在于,所述第二透镜、所述第八透镜为玻璃非球面透镜,所述第一透镜、所述第六透镜和所述第七透镜均为玻璃球面透镜。
  10. 一种成像设备,其特征在于,包括如权利要求1-9任一项所述的光学成像镜头及成像元件,所述成像元件用于将所述光学成像镜头形成的光学图像转换为电信号。
PCT/CN2020/084659 2019-08-20 2020-04-14 光学成像镜头及成像设备 WO2021031585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/941,576 US20210055519A1 (en) 2019-08-20 2020-07-29 Lens group, camera module and motion camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910766754.0 2019-08-20
CN201910766754.0A CN110286476B (zh) 2019-08-20 2019-08-20 光学成像镜头及成像设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/941,576 Continuation-In-Part US20210055519A1 (en) 2019-08-20 2020-07-29 Lens group, camera module and motion camera

Publications (1)

Publication Number Publication Date
WO2021031585A1 true WO2021031585A1 (zh) 2021-02-25

Family

ID=68025229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084659 WO2021031585A1 (zh) 2019-08-20 2020-04-14 光学成像镜头及成像设备

Country Status (2)

Country Link
CN (1) CN110286476B (zh)
WO (1) WO2021031585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791371B (zh) * 2022-01-07 2023-02-01 今國光學工業股份有限公司 八片式成像鏡頭
EP4152072A1 (en) * 2021-09-17 2023-03-22 LARGAN Precision Co., Ltd. Optical photographing system and image capturing unit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286476B (zh) * 2019-08-20 2019-11-12 江西联创电子有限公司 光学成像镜头及成像设备
WO2021128382A1 (zh) * 2019-12-28 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111198436A (zh) * 2020-02-26 2020-05-26 浙江舜宇光学有限公司 光学成像镜头
CN112955804B (zh) * 2020-03-30 2022-04-15 深圳市大疆创新科技有限公司 光学系统、拍摄装置及可移动平台
CN114280756B (zh) * 2020-09-28 2024-01-26 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN114675406B (zh) * 2022-05-27 2022-10-25 江西联创电子有限公司 光学镜头
CN115494624B (zh) * 2022-11-16 2023-04-07 江西联创电子有限公司 光学镜头
CN117270167B (zh) * 2023-11-23 2024-02-20 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834076A (zh) * 2015-05-26 2015-08-12 中山联合光电科技股份有限公司 一种小f-θ畸变、高分辨率光学系统
CN107728293A (zh) * 2017-11-08 2018-02-23 广东弘景光电科技股份有限公司 高像素超广角光学系统
CN107728292A (zh) * 2017-11-08 2018-02-23 广东弘景光电科技股份有限公司 高像素超广角摄像模组
JP2018081240A (ja) * 2016-11-17 2018-05-24 コニカミノルタ株式会社 撮像光学系及び撮像装置
CN108241202A (zh) * 2016-12-23 2018-07-03 信泰光学(深圳)有限公司 成像镜头
CN110286476A (zh) * 2019-08-20 2019-09-27 江西联创电子有限公司 光学成像镜头及成像设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552446B2 (ja) * 2004-01-29 2010-09-29 カシオ計算機株式会社 投影レンズ
CN107167898B (zh) * 2017-06-29 2023-05-02 江西联创电子有限公司 鱼眼镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834076A (zh) * 2015-05-26 2015-08-12 中山联合光电科技股份有限公司 一种小f-θ畸变、高分辨率光学系统
JP2018081240A (ja) * 2016-11-17 2018-05-24 コニカミノルタ株式会社 撮像光学系及び撮像装置
CN108241202A (zh) * 2016-12-23 2018-07-03 信泰光学(深圳)有限公司 成像镜头
CN107728293A (zh) * 2017-11-08 2018-02-23 广东弘景光电科技股份有限公司 高像素超广角光学系统
CN107728292A (zh) * 2017-11-08 2018-02-23 广东弘景光电科技股份有限公司 高像素超广角摄像模组
CN110286476A (zh) * 2019-08-20 2019-09-27 江西联创电子有限公司 光学成像镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152072A1 (en) * 2021-09-17 2023-03-22 LARGAN Precision Co., Ltd. Optical photographing system and image capturing unit
TWI791371B (zh) * 2022-01-07 2023-02-01 今國光學工業股份有限公司 八片式成像鏡頭

Also Published As

Publication number Publication date
CN110286476B (zh) 2019-11-12
CN110286476A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021031585A1 (zh) 光学成像镜头及成像设备
WO2021047222A1 (zh) 广角成像镜头
TWI510804B (zh) 取像用光學鏡組、取像裝置及電子裝置
TWI449944B (zh) 廣視角光學鏡頭組
TWI457594B (zh) 影像鏡頭
TWI449947B (zh) 影像鏡片系統組
WO2021238648A1 (zh) 光学成像镜头及成像设备
WO2020119278A1 (zh) 广角镜头及成像设备
TWI435106B (zh) 攝像鏡頭組
WO2021031580A1 (zh) 高像素广角镜头及成像设备
WO2021031586A1 (zh) 广角镜头及成像设备
CN110609378B (zh) 广角镜头及成像设备
KR101412627B1 (ko) 왜곡이 보정된 광각 촬영 렌즈 시스템
TW201337320A (zh) 結像鏡片系統組及取像裝置
TW201310056A (zh) 光學影像擷取鏡頭
TW201333520A (zh) 取像光學鏡片系統
TWI660193B (zh) 光學鏡頭
TWI828321B (zh) 光學成像鏡頭
TW201305651A (zh) 光學影像擷取系統
WO2021008319A1 (zh) 广角镜头及成像设备
TWI625546B (zh) 攝像光學鏡片系統、取像裝置及電子裝置
KR20150033321A (ko) 왜곡이 보정된 광각 촬영 렌즈 시스템
TW202037956A (zh) 五片式廣角鏡片組
WO2019024490A1 (zh) 光学成像镜头
TWI724919B (zh) 六片式廣角鏡片組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855585

Country of ref document: EP

Kind code of ref document: A1