[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021022391A1 - Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing - Google Patents

Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing Download PDF

Info

Publication number
WO2021022391A1
WO2021022391A1 PCT/CN2019/098974 CN2019098974W WO2021022391A1 WO 2021022391 A1 WO2021022391 A1 WO 2021022391A1 CN 2019098974 W CN2019098974 W CN 2019098974W WO 2021022391 A1 WO2021022391 A1 WO 2021022391A1
Authority
WO
WIPO (PCT)
Prior art keywords
lte
processor
base station
numerology
inter
Prior art date
Application number
PCT/CN2019/098974
Other languages
French (fr)
Inventor
Bin Han
Yiqing Cao
Yan Li
Peter Gaal
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/098974 priority Critical patent/WO2021022391A1/en
Publication of WO2021022391A1 publication Critical patent/WO2021022391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • This disclosure relates generally to base stations and user equipment devices, and more particularly to configuring base stations and user equipment devices to enable dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference or inter-numerology interference.
  • LTE Long Term Evolution
  • 5G NR 5G New Radio
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) .
  • a wireless communication network may include a number of base stations that can support communications with a number of mobile devices or user equipment (UE) .
  • a user equipment device may communicate with a base station via downlink (DL) and uplink (UL) communications.
  • the DL (or forward link) refers to the communication link of transmissions from the BS to the user equipment device
  • the UL (or reverse link) refers to the communication link of transmissions from the user equipment device to the base station.
  • 5G NR is a set of enhancements to the Long Term Evolution (LTE) mobile standard promulgated by Third Generation Partnership Project (3GPP) .
  • 5G NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • One innovative aspect of the subject matter described in this disclosure may be implemented in a base station (BS) or a user equipment (UE) device to enable dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) .
  • Some implementations may include using a first numerology to transmit both LTE communications and 5G NR communications in a first frequency spectrum, and using a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum different from the first frequency spectrum.
  • Some implementations may further include using a third numerology different from the first and second numerologies to transmit other 5G NR communications in a third frequency spectrum different from the first and second frequency spectrums.
  • the first numerology includes a 15KHz subcarrier spacing (SCS) parameter
  • the second numerology includes a 30kHz SCS parameter
  • the third numerology includes a 60kHz SCS parameter.
  • Some implementations may include transmitting 5G NR physical downlink control channel (PDCCH) and synchronization signal block (SSB) information in one or more frequency spectrums dedicated to 5G NR communications, and transmitting physical downlink shared channel (PDSCH) information on a shared frequency spectrum used for both LTE communications and 5G NR communications.
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • PDSCH physical downlink shared channel
  • Some implementations may include transmitting information so that the shared frequency spectrum used for both LTE communications and 5G NR communications does not include PDCCH or SSB information. Some implementations may include adding a parameter to indicate subcarrier spacing (SCS) for the PDSCH in a Remaining Minimum System Information (RMSI) Control Resource Set (CORESET) configuration for a 5G NR UE using the shared frequency spectrum. In some implementations, adding the parameter to indicate the SCS for the PDSCH in the RMSI CORESET configuration for the 5G NR UE using the shared frequency spectrum may include adding a PDSCH Dedicated Search Space (DSS) SCS parameter. Some implementations may include defining a measurement delta to compensate for a measurement gap between two component carriers (CCs) or 5G NR in 5G NR-only spectrum and LTE-5G NR shared spectrum.
  • CCs component carriers
  • 5G NR-only spectrum LTE-5G NR shared spectrum
  • Some implementations may include transmitting a synchronization signal block (SSB) in three symbols across 240 or more subcarriers.
  • transmitting SSB in three symbols across 240 or more subcarriers includes generating the SSB to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit.
  • PSS primary sync signal
  • PBCH physical broadcast channel
  • SSS secondary sync signal
  • Some implementations may include configuring LTE as Multimedia Broadcast And Multicast Service Over A Single Frequency Network (MBSFN) communication channel for 5G NR synchronization signal block (SSB) transmission based on an SSB period.
  • MBSFN Multimedia Broadcast And Multicast Service Over A Single Frequency Network
  • Some implementations may include not generating, setting, defining or configuring the synchronization signal block (SSB) in a secondary cell (Scell) . Some implementations may include receiving system information from a primary cell (Pcell) and performing measurements based on a synchronization signal block (SSB) in the Pcell. Some implementations may further include defining a measurement delta to compensate for a measurement gap between 5G NR in 5G NR-only spectrum and LTE-5G NR shared spectrum. In some implementations, the measurement delta may be set to zero. Some implementations may include utilizing cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell (Scell) .
  • PDCCH physical downlink control channel
  • Further aspects include a base station having a processor configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a processor configured for use in a base station and configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a base station having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a base station processor to perform operations of any of the methods summarized above.
  • Further aspects include a wireless device having a processor configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a processor configured for use in a wireless device and configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a wireless device processor to perform operations of any of the methods summarized above.
  • a communication system that includes a user equipment (UE) processor and a base station processor, one or more of which are configured to perform operations recited of any of the methods summarized above.
  • UE user equipment
  • Figure 1 shows a system block diagram conceptually illustrating an example communications system including a small cell and a problem that can develop in such systems.
  • Figure 2 shows a component block diagram illustrating an example computing system that may be configured to implement management of cell selection.
  • Figure 3 shows an example of a software architecture including a radio protocol stack for the user and control planes in wireless communications.
  • Figure 4 shows a line chart illustrating the relationship between example subcarrier spacing offset deltas and the amount of interference, or the signal interference ratio (SIR) with respect to subcarrier indices, present in a communication system.
  • SIR signal interference ratio
  • Figure 5 shows a diagram illustrating example interference caused by LTE transmissions having a first numerology (such as subcarrier spacing SCS1, etc. ) that share spectrum with 5G NR transmission having a second numerology (such as subcarrier spacing SCS2, etc. ) .
  • a first numerology such as subcarrier spacing SCS1, etc.
  • a second numerology such as subcarrier spacing SCS2, etc.
  • Figure 6 shows a diagram illustrating example interference between LTE cell-specific reference signals and the 5G NR physical downlink shared channel in shared frequency spectrum with different subcarrier spacing (D1 is the PDSCH from 5G NR, D0 and R0 are the PDSCH and CRS from LTE respectively) .
  • Figure 7 shows a diagram illustrating an example that there is no interference LTE and 5G NR transmissions on the shared frequency spectrum when the same subcarrier spacing is used for both the LTE and 5G NR transmissions.
  • Figure 8 shows a diagram illustrating an example that transmitting LTE and 5G NR communications generates little or no interference in the shared spectrum.
  • Figures 9–14 show process flow diagrams illustrating example methods for enabling dynamic spectrum sharing between an LTE system and a 5G NR system without inter-system interference (ISI) or inter-numerology interference (INI) .
  • ISI inter-system interference
  • II inter-numerology interference
  • Figure 15 shows a component block diagram of an example computing device suitable for use as a base station for enabling dynamic spectrum sharing between an LTE system and a 5G NR system.
  • Figure 16 shows a component block diagram of an example user equipment device suitable for enabling dynamic spectrum sharing between an LTE system and a 5G NR system.
  • the described implementations may be implemented in any device, system, or network that is capable of transmitting and receiving radio frequency (RF) signals according to any of the Institute of Electrical and Electronics Engineers (IEEE) 16.11 standards, or any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (L
  • the implementations described herein provide methods, and components (such as user equipment devices, base stations, etc. ) configured to implement the methods, for enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference or inter-numerology interference.
  • LTE Long Term Evolution
  • 5G NR 5G New Radio
  • dynamic spectrum sharing is used herein to refer to a group of technologies that allow for the better utilization of licensed or unlicensed radio spectrum in both the spatial and temporal domains. These technologies may allow a base station to schedule both Long Term Evolution (LTE) and 5G New Radio (5G NR) transmissions in the same frequency spectrum.
  • LTE Long Term Evolution
  • 5G NR 5G New Radio
  • bandwidth parts which in orthogonal frequency division multiplexing (OFDM) may include subcarrier spacing (SCS) , slot duration, symbol length, cyclic prefix, cyclic prefix duration (TCP) or other parameters that define the frame and lattice structure of the waveform.
  • SCS subcarrier spacing
  • TCP cyclic prefix duration
  • Waveforms in an LTE system have a fixed structure that is optimized to serve high data rate applications.
  • 5G NR allows for flexibility in the frame and waveform structure, and for the coexistence of multiple numerologies on the same single mother OFDM waveform.
  • the different numerologies may be multiplexed in the time or frequency domains to provide multiple services (including both LTE and 5G NR data services) simultaneously in a unified frame.
  • a base station that supports the coexistence of multiple numerologies or dynamic spectrum sharing between an LTE system and a 5G NR system may transmit LTE and 5G NR data with the same or different numerologies in the same sub-frame.
  • employing multiple different numerologies may introduce non-orthogonality into the system, causing the potential for inter-numerology interference (INI) between receiving user equipment belonging to the different numerologies.
  • a receiving user equipment also may experience inter-symbol interference, inter-system interference (ISI) or adjacent channel interference (ACI) caused by a base station using multiple numerologies in adjacent frequency bands.
  • ISI inter-system interference
  • ACI adjacent channel interference
  • the amount of interference (such as ISI/INI, etc. ) in a system that employs multiple numerologies or performs spectrum sharing operations may directly correspond to a carrier spacing offset delta.
  • the subcarrier spacing offset delta may be a measure of the ratio or difference between the subcarrier spacings of the different transmissions.
  • a cell-specific reference signal is transmitted from each downlink antenna port or in all downlink subframes in cells supporting the physical downlink shared channel (PDSCH) .
  • the downlink cell-specific reference signal may be used for cell search and initial acquisition, downlink channel quality measurements, downlink channel estimation for coherent demodulation/detection at the user equipment device and other similar functions.
  • the cell-specific reference signal is defined for 15kHz spectrum only. As such, when the carrier spacing offset delta is greater than 1, symbols with an LTE cell-specific reference signal cannot be used for 5G NR transmissions, leading to the low usage of resources in the shared frequency spectrum (such as 15KHz) .
  • the transmission of 5G NR data using physical downlink control channel (PDCCH) and synchronization signal block (SSB) on the shared frequency spectrum may be influenced by LTE cell-specific reference signal (CRS) .
  • LTE cell-specific reference signal LTE cell-specific reference signal
  • existing/conventional base stations transmit the synchronization signal block in four (4) OFDM symbols across 240 subcarriers and in pre-defined bursts across the time domain.
  • the first symbol may be a primary sync signal (PSS)
  • the second symbol may be a physical broadcast channel (PBCH)
  • the third symbol may be a secondary sync signal (SSS)
  • the fourth symbol may be another physical broadcast channel (PBCH) .
  • PBCH physical broadcast channel
  • 5G-NR may be influenced by an LTE cell-specific reference signal (CRS) or may not allow for resource element (RE) level spectrum sharing of the LTE cell-specific reference signal symbols. It may be challenging for a conventional base station to avoid or eliminate inter-numerology interference when using different numerologies for LTE and 5G NR transmissions.
  • CRS LTE cell-specific reference signal
  • RE resource element
  • Some implementations include components (such as base stations, user equipment (UE) , etc. ) that overcome the limitations of existing or conventional solutions to enabling dynamic spectrum sharing between an LTE system and a 5G NR system, allow for resource element (RE) level spectrum sharing of LTE cell-specific reference signal (CRS) symbols, accomplish low latency communications, prevent low resource usage, and reduce, minimize or eliminate interference (such as ISI/INI) .
  • RE resource element
  • CRS cell-specific reference signal
  • the components may be configured to communicate information so that 5G NR transmissions include their own synchronization signal block (SSB) , physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) on the shared frequency spectrum for resource scheduling.
  • the components may be configured to skip LTE cell-specific reference signal (CRS) symbols when allocating 5G NR resources.
  • the components (such as UE, etc. ) may be configured to obtain system information and collect measurements based on the synchronization signal block (SSB) in each flexible bandwidth part (BWP) .
  • the components may be configured to use the same numerology to transmit/receive LTE communications and 5G NR communications in the same frequency spectrum (such as 15KHz) , and to use a different numerology to transmit/receive 5G NR communications in other frequency spectrums.
  • the components may schedule 5G NR transmissions on the frequency spectrum shared by both LTE and 5G NR to be carried by ‘secondary cell (Scell) , ’ and schedule 5G NR transmissions on the frequency spectrum for only 5G NR to be carried by ‘primary cell (Pcell) .
  • the base station may be configured to perform resource scheduling operations so that 5G NR transmissions on the shared frequency spectrum (such as 15KHz) are carried by ‘secondary cell (Scell) ’ and scheduled by physical downlink control channel (PDCCH) from ‘primary cell (Pcell) ’ in the 5G NR only spectrum (such as 30KHz, 60kHz, etc. ) .
  • PDCCH physical downlink control channel
  • the component may be configured to avoid employing, communicating or otherwise using a synchronization signal block in the shared frequency spectrum (such as 15KHz) .
  • the base station may transmit a 5G NR physical downlink control channel and synchronization signal block in a 5G NR frequency band (30kHz/60kHz) , with the corresponding physical downlink shared channel (PDSCH) being transmitted in the shared frequency spectrum with 15kHz subcarrier spacing (SCS) .
  • a 5G NR physical downlink control channel and synchronization signal block in a 5G NR frequency band (30kHz/60kHz) , with the corresponding physical downlink shared channel (PDSCH) being transmitted in the shared frequency spectrum with 15kHz subcarrier spacing (SCS) .
  • PDSCH physical downlink shared channel
  • the base station also may generate, transmit or use a 3-symbol synchronization signal block or configure the multimedia broadcast and multicast service over a single frequency network (MBSFN) for the synchronization signal block transmission based on a synchronization signal block period in shared spectrum.
  • MMSFN single frequency network
  • the base station may be configured so that it does not configure the synchronization signal block (SSB) in a secondary cell (Scell) .
  • the user equipment device may be configured to receive system information from a primary cell (Pcell) , and utilize cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell.
  • Pcell primary cell
  • PDCCH physical downlink control channel
  • the components may be configured so that they do not configure a synchronization signal block (SSB) in the shared frequency spectrum.
  • SSB synchronization signal block
  • the components may transmit 5G NR physical downlink control channel (PDCCH) and synchronization signal block information in the 5G NR frequency region (30kHz/60kHz) .
  • the components may transmit the corresponding physical downlink shared channel (PDSCH) information via the shared frequency spectrum with 15kHz subcarrier spacing (SCS) .
  • PDSCH physical downlink shared channel
  • the components may be configured so that there is no physical downlink control channel or synchronization signal block in the shared frequency spectrum (such as 15kHz) .
  • the components may be configured so that the numerologies of both the physical downlink shared channel (PDSCH) and the physical downlink control channel (PDCCH) inform a 5G NR user equipment device using the shared frequency spectrum.
  • the components may be configured so that the current remaining minimum system information control resource set (RMSI CORESET) configuration supports different subcarrier spacing for SSB and RMSI.
  • the 5G NR PDSCH may use the same subcarrier spacing for both RMSI and PDSCH.
  • a component (such as base station, etc.
  • PDSCH_DSS_SCS physical downlink shared channel dedicated search space subcarrier spacing
  • RMSI CORESET remaining minimum system information control resource set
  • Some implementations may include components configured to define the measurement delta (such as setting the measurement delta to zero, etc. ) to compensate for the measurement gap between two component carriers (CC) .
  • the components may be configured to generate, modify, transmit or receive a synchronization signal block (SSB) in three symbols across 240 subcarriers or more subcarriers if needed.
  • the components may be configured to generate the synchronization signal block to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit.
  • the components may be configured to extend the synchronization signal block in the frequency domain.
  • the components may be configured to use MBSFN for the synchronization signal block (SSB) transmission slot with radio resource control (RRC) configuration.
  • RRC radio resource control
  • the components may be configured to use resource element (RE) level spectrum sharing with the same subcarrier spacing (SCS) configuration from both LTE and 5G NR transmissions.
  • RE resource element
  • SCS subcarrier spacing
  • the components may be configured to not generate, set, define or configure the synchronization signal block (SSB) in a secondary cell (Scell) or send system information in a primary cell (Pcell) .
  • the components may be configured to receive system information from a primary cell, performing measurements based on a synchronization signal block in the primary cell, or utilizing cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell.
  • Some implementations may include components configured to define the measurement delta (such as setting the measurement delta to zero, etc. ) to compensate for the measurement gap between two component carriers (CC) .
  • the implementations may enable one or more base stations to accomplish dynamic spectrum sharing between an LTE system and a 5G NR system without significant interference (such as ISI/INI) .
  • the implementations may improve the performance or functioning of the base station, the user equipment device, or the communication system.
  • the implementations allow for resource element (RE) level spectrum sharing with 5G NR in LTE cell-specific reference signal (CRS) symbols, accomplish low latency communications, and prevent low resource usage, any or all of which may further improve the performance or functioning of the base station, the user equipment device, or the communication system.
  • RE resource element
  • CRS cell-specific reference signal
  • FIG. 1 illustrates an example of a communications system 100 that is suitable for implementing some implementations.
  • the communications system 100 may be an 5G NR network, or any other suitable network such as an LTE network.
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of user equipment devices 120a-120e.
  • the communications system 100 also may include a number of base stations 110a-110d and other network entities.
  • a base station is an entity that communicates with user equipment device (mobile devices) , and also may be referred to as an NodeB, a Node B, an LTE evolved nodeB (eNB) , an Access point (AP) , a radio head, a transmit receive point (TRP) , a new radio base station (5G NR BS) , a 5G NodeB (NB) , gNB, or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by user equipment devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by user equipment devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by user equipment devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station may support one or multiple (for example, three) cells.
  • eNB base station
  • 5G NR BS 5G NR BS
  • gNB 5G NR BS
  • TRP transmission power control
  • AP access point
  • node B node B
  • 5G NB node B
  • cell cell
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
  • the base station 110a may communicate with the core network 140 over a wired or wireless communication link 126.
  • the UE devices 120a-e may communicate with the base stations 110a-d over wireless communication links 122.
  • the wired communication link 126 may use a variety of wired networks (such as Ethernet, TV cable, telephony, fiber optic and other forms of Physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point Protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks such as Ethernet, TV cable, telephony, fiber optic and other forms of Physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point Protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • the communications system 100 also may include relay stations (such as relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a user equipment device) and send a transmission of the data to a downstream station (for example, a user equipment device or a base station) .
  • a relay station also may be a mobile device that can relay transmissions for other mobile devices.
  • a relay station 110d may communicate with macro the base station 110a and the user equipment device 120d in order to facilitate communication between the base station 110a and the user equipment device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations 110a-110d of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100.
  • macro base stations such as 110a
  • pico base stations, femto base stations, and relay base stations such as 110b-110d
  • may have lower transmit power levels for example, 0.1 to 2 Watts
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • Network controller 130 may communicate with the base stations via a backhaul.
  • the base stations 110a-110d also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the user equipment devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each user equipment device may be stationary or mobile.
  • a user equipment device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a user equipment device may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • the wireless communication links 122 and 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (such as 5G NR) , GSM, CDMA, WCDMA, WiMAX, TDMA, and other mobile telephony communication technologies cellular RATs.
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal fast file transfer (FFT) size may be equal to 128, 256, 812, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth also may be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • 5G NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • 5G NR resource blocks may span 12 subcarriers with a subcarrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., downlink or uplink) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include downlink/uplink data as well as downlink/uplink control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple input multiple output (MIMO) transmissions with precoding also may be supported.
  • MIMO configurations in the downlink may support up to 8 transmit antennas with multi-layer downlink transmissions up to 8 streams and up to 2 streams per UE device. Multi-layer transmissions with up to 2 streams per UE device may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • 5G NR may support a different air interface, other than an OFDM-based air interface.
  • Some user equipment devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) user equipment devices.
  • MTC and eMTC user equipment devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some user equipment devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • the user equipment device 120 may be included inside a housing that houses components of the user equipment device 120, such as processor components, memory components, similar components, or a combination thereof.
  • Each communications system may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency Channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • 5G NR or 5G RAT networks may be deployed.
  • FIG. 2 illustrates an example computing system or SIP 200 architecture that may be used in UE devices implementing some implementations.
  • the illustrated example SIP 200 includes a two SOCs 202, 204, a clock 206, and a voltage regulator 208.
  • the first SOC 202 operate as central processing unit (CPU) of the UE device that carries out the instructions of software application programs by performing the arithmetic, logical, Control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (such as 5 Gbps, etc. ) , or very high frequency short wavelength (such as 28 GHz mmWave spectrum, etc. ) communications.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (such as vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem processor 212 such as graphics processing circuitry
  • application processor 216 such as vector co-processor
  • coprocessors 218 such as vector co-processor
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (such as FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (such as MICROSOFT WINDOWS 10) .
  • any or all of the processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, Access ports, timers, and other similar components used to support the processors and software clients running on a UE device.
  • the system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (such as CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC such as clock 206, voltage regulator 208 may be Shared by two or more of the internal SOC processors/cores.
  • implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • Figure 3 illustrates an example of a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications between a base station 350 (such as the base station 110a) and a UE device 320 (such as the UE devices 120a-e, 200) .
  • the UE device 320 may implement the software architecture 300 to communicate with the base station 350 of a communication system (such as 100) .
  • layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350.
  • the software architecture 300 may be distributed among one or more processors (such as the processors 212, 214, 216, 218, 252, 260) .
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different subscriber identity module (SIM) (such as two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • SIM subscriber identity module
  • the software architecture 300 may include a non-access stratum 302 and an access stratum 304.
  • the non-access stratum 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a processor or SIM (s) of the UE device (such as SIM (s) 204) and its core network.
  • the access stratum 304 may include functions and protocols that support communication between a processor or SIM (s) (such as SIM (s) 204) and entities of supported access networks (such as a base station) .
  • the access stratum 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • layer 1 (L1) of the access stratum 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface.
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including the Physical Downlink Control Channel (physical downlink control channel (PDCCH) ) and the Physical Downlink Shared Channel (PDSCH) .
  • PDCCH Physical downlink control channel
  • PDSCH Physical Downlink Shared Channel
  • layer 2 (L2) of the access stratum 304 may be responsible for the link between the UE device 320 and the base station 350 over the physical layer 306.
  • layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) sublayer 312, each of which form logical connections terminating at the base station 350.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • layer 3 (L3) of the access stratum 304 may include a radio resource control (RRC) sublayer 3.
  • RRC radio resource control
  • the software architecture 300 may include additional layer 3 sublayers, as well as various upper layers above layer 3.
  • the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the UE device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink (UL) functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • UL uplink
  • DL downlink
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the UE device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
  • the software architecture 300 may include one or more higher logical layer (such as transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include a network layer (such as IP layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) .
  • PDN packet data network
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (such as end user device, Server, etc. ) .
  • the software architecture 300 may further include in the access stratum 304 a hardware interface 316 between the physical layer 306 and the communication hardware (such as one or more RF transceivers) .
  • Figure 4 shows a graph illustrating an observed relationship between subcarrier spacing offset delta and the amount of interference (such as signal interference ratio (SIR) ) present in a system that employs multiple numerologies (NUM1, NUM2) .
  • SIR signal interference ratio
  • Figure 5 shows example interference caused by LTE transmissions having a first numerology (such as subcarrier spacing SCS1, etc. ) that share spectrum with 5G NR transmission having a second numerology (such as subcarrier spacing SCS2, etc. ) that is different from the first numerology.
  • the 5G NR only transmissions include a 5G NR physical downlink control channel 502, a 5G NR demodulation reference signal 504, and a 5G NR physical downlink shared channel (5G NR PDSCH) 506.
  • the LTE+5G NR transmissions include an LTE physical downlink control channel with a cell-specific reference signal 552, an LTE cell-specific reference signal 554, and an LTE physical downlink shared channel (LTE PDSCH) 556.
  • LTE PDSCH LTE physical downlink shared channel
  • There also may be interference between LTE cell-specific reference signals and 5G NR (shown in Figure 6) .
  • Figure 6 shows example interference between LTE cell-specific reference signals and the 5G NR physical downlink shared channel in shared frequency spectrum with different subcarrier spacing.
  • Figure 6 shows transmissions of LTE physical downlink shared channels (D0) , 5G NR physical downlink shared channels (D1) , LTE cell-specific reference signals (R0) .
  • Figure 6 also illustrates that there is inter-numerology interference (INI) between R0/D0 and D1 in the symbols with LTE CRS in shared frequency spectrum.
  • INI inter-numerology interference
  • Figure 7 illustrates an example that the use of the same numerology in the shared frequency spectrum may eliminate the interference between the LTE cell-specific reference signal (R0) or LTE PDSCH (D0) and 5G NR physical downlink shared channel (D1) in the symbols with LTE CRS in shared frequency spectrum.
  • R0 LTE cell-specific reference signal
  • D0 LTE PDSCH
  • D1 5G NR physical downlink shared channel
  • the base station transmits 5G NR physical downlink control channel (PDCCH) 502 and synchronization signal block information in the frequency spectrum dedicated to 5G NR-only communications (i.e., 30 kHz, 60kHz, etc.
  • PDCCH physical downlink control channel
  • the base station transmits the corresponding 5G NR physical downlink shared channel 802 information on the shared frequency spectrum (i.e., 15 kHz) .
  • the shared frequency spectrum i.e., 15 kHz
  • II inter-numerology interference
  • Figures 9–15 show process flow diagrams illustrating methods 900, 1000, 1100, 1200, 1300, 1400, 1500 of enabling dynamic spectrum sharing between an LTE system and a 5G NR system without interference (INI/ISI) in accordance with some implementations. Any or all of the methods 900, 1000, 1100, 1200, 1300, 1400, 1500 may be performed by a processor in a user equipment device or processor in a server computing device that implements all or portions of a base station.
  • the base station processor does not define, transmit or use SSB or PDCCH in the first frequency spectrum. Rather, the SSB are PDCCH are only defined, transmitted or used in the 5G NR only spectrums (e.g., in a second frequency spectrum defined by an SCS that is different from the SCS of the first frequency spectrum, in a third frequency spectrum defined by an SCS different from the SCS or the first and second frequency spectrums, etc. ) .
  • the base station processor may use a first numerology to transmit both LTE communications and 5G NR communications in the first frequency spectrum.
  • the base station processor may use a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum that is different from the first frequency spectrum.
  • the base station may use a third numerology different from the first and second numerologies to transmit other 5G NR communications in a third frequency spectrum different from the first and second frequency spectrums.
  • the first numerology may include a 15KHz sub-carrier spacing (SCS) parameter
  • the second numerology may include a 30kHz SCS parameter
  • the third numerology may include a 60kHz SCS parameter.
  • a base station processor may transmit 5G NR physical downlink control channel (PDCCH) and synchronization signal block (SSB) information in one or more frequency spectrums dedicated to 5G NR communications.
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • the base station processor may transmit physical downlink shared channel (such as LTE PDSCH and NR PDSCH) information on a shared frequency spectrum used for both LTE communications and 5G NR communications.
  • physical downlink shared channel such as LTE PDSCH and NR PDSCH
  • the base station processor may transmit information so that the shared frequency spectrum used for both LTE communications and 5G NR communications does not include PDCCH or SSB information.
  • the base station processor may add a parameter to indicate subcarrier spacing (SCS) for the PDSCH in a Remaining Minimum System Information (RMSI) Control Resource Set (CORESET) configuration for a 5G NR UE using the shared frequency spectrum.
  • adding the parameter to indicate the SCS for the PDSCH in the RMSI CORESET configuration for the 5G NR UE using the shared frequency spectrum may include adding a PDSCH Dedicated Search Space (DSS) SCS parameter to the RMSI CORESET configuration.
  • DSS PDSCH Dedicated Search Space
  • the base station processor may define a measurement delta to compensate for a measurement gap between 5G NR system in 5G NR only spectrum and LTE-5G NR shared spectrum with different numerologies.
  • the base station processor may define the measurement delta to compensate for the measurement gap between the two CCs with different numerologies when using carrier aggregation (CA) or a CA-like scheme.
  • CA carrier aggregation
  • a base station processor may transmit a synchronization signal block (SSB) in three symbols across 240 subcarriers or more than 240 subcarriers.
  • transmitting SSB in three symbols across 240 or more subcarriers may include generating the SSB to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit.
  • PSS primary sync signal
  • PBCH physical broadcast channel
  • SSS secondary sync signal
  • a base station processor may configure an LTE MBSFN communication subframe for 5G NR synchronization signal block (SSB) transmission based on the 5G NR SSB period.
  • SSB 5G NR synchronization signal block
  • a base station processor may not generate, set, define or configure the synchronization signal block (SSB) in a secondary cell (Scell) .
  • SSB synchronization signal block
  • a processor in a user equipment device may receive system information from a primary cell (Pcell) .
  • Pcell primary cell
  • the processor in the user equipment device may perform measurements based on a synchronization signal block (SSB) in the Pcell.
  • SSB synchronization signal block
  • a server 1500 typically includes a processor 1501 coupled to volatile memory 1502 and a large capacity nonvolatile memory, such as a disk drive 1503.
  • the server 1500 also may include a floppy disc drive, compact disc (CD) or DVD disc drive 1504 coupled to the processor 1501.
  • the server 1500 also may include network access ports 1506 coupled to the processor 1501 for establishing data connections with a network 1507, such as a local area network coupled to other operator network computers and servers.
  • a smartphone 1600 may include a first SOC 202 (such as a SOC-CPU) coupled to a second SOC 204 (such as a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 1606, a display 1612, and to a speaker 1614.
  • the smartphone 1600 may include an antenna 1604 for sending and receiving electromagnetic radiation that may be connected to a wireless data link or cellular telephone transceiver 1608 coupled to one or more processors in the first or second SOCs 202, 204.
  • Smartphones 1600 typically also include menu selection buttons or rocker switches 1620 for receiving user inputs.
  • a typical smartphone 1600 also includes a sound encoding/decoding (CODEC) circuit 1610, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 1608 and CODEC 1610 may include a digital signal processor (DSP) circuit (not illustrated separately) .
  • DSP digital signal processor
  • the processors may be any programmable microprocessor, microcomputer or multiple processor chip or chips that may be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described in this application.
  • multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications.
  • software applications may be stored in the internal memory before they are accessed and loaded into the processor.
  • the processor may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a UE device and the UE device may be referred to as a component.
  • One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
  • mobile device user equipment device
  • UE user equipment
  • wireless appliances cellular telephones
  • smartphones portable computing devices
  • personal or mobile multi-media players laptop computers, tablet computers, smartbooks, palmtop computers
  • wireless electronic mail receivers multimedia Internet-enabled cellular telephones
  • wireless gaming controllers wireless-network enabled Internet of Things (IoT) devices including large and small machinery and appliances for home or enterprise use
  • IoT Internet of Things
  • UE devices affixed to or incorporated into various mobile platforms, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (such as ROM, RAM, Flash, etc. ) , and resources (such as timers, voltage regulators, oscillators, etc. ) .
  • SOCs also may include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single UE device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • multicore processor is used in this application to refer to a single integrated circuit (IC) chip or chip package that contains two or more independent processing cores (such as CPU core, Internet Protocol (IP) core, graphics processor unit (GPU) core, etc. ) configured to read and execute program instructions.
  • a SOC may include multiple multicore processors, and each processor in an SOC may be referred to as a core.
  • multiprocessor may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
  • Such services and standards include, such as third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple Access (CDMA) systems (such as cdmaOne, CDMA1020TM) , Wideband Code Division Multiple Access (WCDMA) , Time Division Multiple Access (TDMA) , orthogonal frequency division multiplexing (OFDM) , single-carrier frequency division multiplexing (SC-FDM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth generation wireless
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a non-transitory processor-readable storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available non-transitory storage media that may be accessed by a computer.
  • Such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • any connection can be properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
  • the functions described may be implemented by a processor, which may be coupled to a memory.
  • the memory may be a non-transitory computer-readable storage medium that stores processor-executable instructions.
  • the memory may store an operating system, user application software, or other executable instructions.
  • the memory also may store application data, such as an array data structure.
  • the processor may read and write information to and from the memory.
  • the memory also may store instructions associated with one or more protocol stacks.
  • a protocol stack generally includes computer executable instructions to enable communication using a radio access protocol or communication protocol.
  • a component is intended to include a computer-related part, functionality or entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, that is configured to perform particular operations or functions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a computing device and the computing device may be referred to as a component.
  • One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores.
  • these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon.
  • Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other computer, processor, or process related communication methodologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods and apparatus, and computer programs encoded on computer storage media, for wireless communication performed by a base station (BS) or a user equipment (UE) device that enables dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI). In one aspect, a processor of a base station may use a first numerology to transmit both LTE communications and 5G NR communications in a first frequency spectrum. The processor may use a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum different from the first frequency spectrum.

Description

INTER-NUMEROLOGIES INTERFERENCE AVOIDANCE FOR LONG TERM EVOLUTION (LTE) AND 5G NEW RADIO (NR) SPECTRUM SHARING TECHNICAL FIELD
This disclosure relates generally to base stations and user equipment devices, and more particularly to configuring base stations and user equipment devices to enable dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference or inter-numerology interference.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) .
A wireless communication network may include a number of base stations that can support communications with a number of mobile devices or user equipment (UE) . A user equipment device may communicate with a base station via downlink (DL) and uplink (UL) communications. The DL (or forward link) refers to the communication link of transmissions from the BS to the user equipment device, and the UL (or reverse link) refers to the communication link of transmissions from the user equipment device to the base station.
Multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment devices to communicate on a municipal, national, regional, and even global level. Fifth Generation New Radio (5G NR) is a set of enhancements to the Long Term Evolution (LTE) mobile standard promulgated by Third Generation Partnership Project (3GPP) . 5G NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
SUMMARY
The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure may be implemented in a base station (BS) or a user equipment (UE) device to enable dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) . Some implementations may include using a first numerology to transmit both LTE communications and 5G NR communications in a first frequency spectrum, and using a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum different from the first frequency spectrum. Some implementations may further include using a third numerology different from the first and second numerologies to transmit other 5G NR communications in a third frequency spectrum different from the first and second frequency spectrums. In some implementations, the first numerology includes a 15KHz subcarrier spacing (SCS) parameter, the second numerology includes a 30kHz SCS parameter, and the third numerology includes a 60kHz SCS parameter.
Some implementations may include transmitting 5G NR physical downlink control channel (PDCCH) and synchronization signal block (SSB) information in one or more frequency spectrums dedicated to 5G NR communications, and transmitting physical downlink shared channel (PDSCH) information on a shared frequency spectrum used for both LTE communications and 5G NR communications.
Some implementations may include transmitting information so that the shared frequency spectrum used for both LTE communications and 5G NR communications does not include PDCCH or SSB information. Some implementations may include adding a parameter to indicate subcarrier spacing (SCS) for the PDSCH in a Remaining Minimum System Information (RMSI) Control Resource Set (CORESET) configuration for a 5G NR UE using the shared frequency spectrum. In some implementations, adding the parameter to indicate the SCS for the PDSCH in the RMSI CORESET configuration for the 5G NR UE  using the shared frequency spectrum may include adding a PDSCH Dedicated Search Space (DSS) SCS parameter. Some implementations may include defining a measurement delta to compensate for a measurement gap between two component carriers (CCs) or 5G NR in 5G NR-only spectrum and LTE-5G NR shared spectrum.
Some implementations may include transmitting a synchronization signal block (SSB) in three symbols across 240 or more subcarriers. In some implementations, transmitting SSB in three symbols across 240 or more subcarriers includes generating the SSB to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit. Some implementations may include configuring LTE as Multimedia Broadcast And Multicast Service Over A Single Frequency Network (MBSFN) communication channel for 5G NR synchronization signal block (SSB) transmission based on an SSB period.
Some implementations may include not generating, setting, defining or configuring the synchronization signal block (SSB) in a secondary cell (Scell) . Some implementations may include receiving system information from a primary cell (Pcell) and performing measurements based on a synchronization signal block (SSB) in the Pcell. Some implementations may further include defining a measurement delta to compensate for a measurement gap between 5G NR in 5G NR-only spectrum and LTE-5G NR shared spectrum. In some implementations, the measurement delta may be set to zero. Some implementations may include utilizing cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell (Scell) .
Further aspects include a base station having a processor configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a processor configured for use in a base station and configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a base station having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a base station processor to perform operations of any of the methods summarized above.
Further aspects include a wireless device having a processor configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a processor configured for use in a wireless device and configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a wireless device processor to perform operations of any of the methods summarized above.
Further aspects include a communication system that includes a user equipment (UE) processor and a base station processor, one or more of which are configured to perform operations recited of any of the methods summarized above.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a system block diagram conceptually illustrating an example communications system including a small cell and a problem that can develop in such systems.
Figure 2 shows a component block diagram illustrating an example computing system that may be configured to implement management of cell selection.
Figure 3 shows an example of a software architecture including a radio protocol stack for the user and control planes in wireless communications.
Figure 4 shows a line chart illustrating the relationship between example subcarrier spacing offset deltas and the amount of interference, or the signal interference ratio (SIR) with respect to subcarrier indices, present in a communication system.
Figure 5 shows a diagram illustrating example interference caused by LTE transmissions having a first numerology (such as subcarrier spacing SCS1, etc. ) that share spectrum with 5G NR transmission having a second numerology (such as subcarrier spacing SCS2, etc. ) .
Figure 6 shows a diagram illustrating example interference between LTE cell-specific reference signals and the 5G NR physical downlink shared channel in shared frequency spectrum with different subcarrier spacing (D1 is the PDSCH from 5G NR, D0 and R0 are the PDSCH and CRS from LTE respectively) .
Figure 7 shows a diagram illustrating an example that there is no interference LTE and 5G NR transmissions on the shared frequency spectrum when the same subcarrier spacing is used for both the LTE and 5G NR transmissions.
Figure 8 shows a diagram illustrating an example that transmitting LTE and 5G NR communications generates little or no interference in the shared spectrum.
Figures 9–14 show process flow diagrams illustrating example methods for enabling dynamic spectrum sharing between an LTE system and a 5G NR system without inter-system interference (ISI) or inter-numerology interference (INI) .
Figure 15 shows a component block diagram of an example computing device suitable for use as a base station for enabling dynamic spectrum sharing between an LTE system and a 5G NR system.
Figure 16 shows a component block diagram of an example user equipment device suitable for enabling dynamic spectrum sharing between an LTE system and a 5G NR system.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein may be applied in a multitude of different ways.
The described implementations may be implemented in any device, system, or network that is capable of transmitting and receiving radio frequency (RF) signals according to any of the Institute of Electrical and Electronics Engineers (IEEE) 16.11 standards, or any of the IEEE 802.11 standards, the
Figure PCTCN2019098974-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other signals that are used to communicate within a wireless, cellular or Internet of Things (IoT) network, such as a system utilizing 3G, 4G, or 5G technology, or further implementations thereof.
The implementations described herein provide methods, and components (such as user equipment devices, base stations, etc. ) configured to implement the methods, for enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference or inter-numerology interference.
The term “dynamic spectrum sharing” is used herein to refer to a group of technologies that allow for the better utilization of licensed or unlicensed radio spectrum in both the spatial and temporal domains. These technologies may allow a base station to schedule both Long Term Evolution (LTE) and 5G New Radio (5G NR) transmissions in the same frequency spectrum.
The term “numerology” is used herein to refer to a group of telecommunication parameters called bandwidth parts (BWP) , which in orthogonal frequency division multiplexing (OFDM) may include subcarrier spacing (SCS) , slot duration, symbol length, cyclic prefix, cyclic prefix duration (TCP) or other parameters that define the frame and lattice structure of the waveform. Waveforms in an LTE system have a fixed structure that is optimized to serve high data rate applications. On the other hand, 5G NR allows for flexibility in the frame and waveform structure, and for the coexistence of multiple numerologies on the same single mother OFDM waveform. The different numerologies may be multiplexed in the time or frequency domains to provide multiple services (including both LTE and 5G NR data services) simultaneously in a unified frame.
A base station that supports the coexistence of multiple numerologies or dynamic spectrum sharing between an LTE system and a 5G NR system (such as a 5G NR base station) may transmit LTE and 5G NR data with the same or different numerologies in the same sub-frame. When different numerologies of the same carrier are used for transmission, the different numerologies (such as SCS1= 15kHz for LTE transmissions and SCS2= 30kHz for 5G NR transmissions, etc. ) may not be fully orthogonal. Said another way, employing multiple different numerologies may introduce non-orthogonality into the system, causing the potential for inter-numerology interference (INI) between receiving user equipment belonging to the different numerologies. A receiving user equipment also may experience inter-symbol interference, inter-system interference (ISI) or adjacent channel interference (ACI) caused by a base station using multiple numerologies in adjacent frequency bands.
The amount of interference (such as ISI/INI, etc. ) in a system that employs multiple numerologies or performs spectrum sharing operations may directly correspond to a carrier spacing offset delta. The subcarrier spacing offset delta may be a measure of the ratio or difference between the subcarrier spacings of the different transmissions. As an example, when an LTE transmission with subcarrier spacing of SCS1=15KHz shares spectrum with 5G NR transmission with subcarrier spacing of SCS2 =15KHz, the subcarrier spacing offset delta may be SCS2/SCS1 = 1. As another example, when an LTE transmission with subcarrier spacing of SCS1=15KHz shares spectrum with 5G NR transmission with subcarrier spacing of SCS2 =30kHz, the subcarrier spacing offset delta may be SCS2/SCS1 = 2.
It has been observed that the amount of interference (such as ISI/INI) present in a wireless communication system increases as the value of the subcarrier spacing offset delta increases past SCS2/SCS1 = 1. As such, a base station may avoid, eliminate, or reduce inter-numerology interference and the low usage of resources by using the same numerology (such as SCS2=SCS1=15KHz) for both the LTE and 5G NR transmissions in the shared frequency spectrum (such as 15KHz) . However, conventional solutions/systems that use the same numerology (such as SCS2=SCS1=15KHz) for both the LTE and 5G NR do not allow or support resource element (RE) level spectrum sharing for LTE cell-specific reference signal (CRS) symbols meanwhile 5G NR use the different numerologies in 5G NR only spectrum.
That is, in some communication systems (such as LTE Advanced, etc. ) , a cell-specific reference signal (CRS) is transmitted from each downlink antenna port or in all downlink subframes in cells supporting the physical downlink shared channel (PDSCH) . The downlink cell-specific reference signal may be used for cell search and initial acquisition, downlink channel quality measurements, downlink channel estimation for coherent demodulation/detection at the user equipment device and other similar functions. However, per standards (such as 3GPP TS 36.211 version 11.3.0 Release 11, etc. ) , the cell-specific reference signal is defined for 15kHz spectrum only. As such, when the carrier spacing offset delta is greater than 1, symbols with an LTE cell-specific reference signal cannot be used for 5G NR transmissions, leading to the low usage of resources in the shared frequency spectrum (such as 15KHz) .
In addition, the transmission of 5G NR data using physical downlink control channel (PDCCH) and synchronization signal block (SSB) on the shared frequency spectrum (such as 15KHz) may be influenced by LTE cell-specific reference signal (CRS) . For example, existing/conventional base stations transmit the synchronization signal block in four (4) OFDM symbols across 240 subcarriers and in pre-defined bursts across the time domain. The first symbol may be a primary sync signal (PSS) , the second symbol may be a physical broadcast channel (PBCH) , the third symbol may be a secondary sync signal (SSS) , and the fourth symbol may be another physical broadcast channel (PBCH) . Yet, due to the location LTE cell-specific reference signal ports, it may not feasible to require that the network components find four consecutive symbols for the 5G NR synchronization signal block.
Using different numerologies for the LTE and 5G NR in conventional solutions/systems, 5G-NR may be influenced by an LTE cell-specific reference signal (CRS) or may not allow for resource element (RE) level spectrum sharing of the LTE cell-specific reference signal symbols. It may be challenging for a conventional base station to avoid or eliminate inter-numerology interference when using different numerologies for LTE and 5G NR transmissions.
Some implementations include components (such as base stations, user equipment (UE) , etc. ) that overcome the limitations of existing or conventional solutions to enabling dynamic spectrum sharing between an LTE system and a 5G NR system, allow for resource element (RE) level spectrum sharing of LTE cell-specific reference signal (CRS) symbols, accomplish low latency communications, prevent low resource usage, and reduce, minimize or eliminate interference (such as ISI/INI) .
Generally, the components may be configured to communicate information so that 5G NR transmissions include their own synchronization signal block (SSB) , physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) on the shared frequency spectrum for resource scheduling. In addition, the components may be configured to skip LTE cell-specific reference signal (CRS) symbols when allocating 5G NR resources. The components (such as UE, etc. ) may be configured to obtain system information and collect measurements based on the synchronization signal block (SSB) in each flexible bandwidth part (BWP) .
In some implementations, the components may be configured to define separate resources and use the same subcarrier spacing (such as SCS2=SCS1=15KHz) for both LTE and 5G NR communications on the shared frequency spectrum, and to use other frequency spectrums or subcarrier spacings (such as 30KHz or 60kHz) for 5G NR only communications. Said another way, the components may be configured to use the same numerology to transmit/receive LTE communications and 5G NR communications in the same frequency spectrum (such as 15KHz) , and to use a different numerology to transmit/receive 5G NR communications in other frequency spectrums.
In carrier aggregation (CA) or CA-like systems, the components may schedule 5G NR transmissions on the frequency spectrum shared by both LTE and 5G NR to be carried by  ‘secondary cell (Scell) , ’ and schedule 5G NR transmissions on the frequency spectrum for only 5G NR to be carried by ‘primary cell (Pcell) . ’ In some implementations, the base station may be configured to perform resource scheduling operations so that 5G NR transmissions on the shared frequency spectrum (such as 15KHz) are carried by ‘secondary cell (Scell) ’ and scheduled by physical downlink control channel (PDCCH) from ‘primary cell (Pcell) ’ in the 5G NR only spectrum (such as 30KHz, 60kHz, etc. ) .
In some implementations, the component may be configured to avoid employing, communicating or otherwise using a synchronization signal block in the shared frequency spectrum (such as 15KHz) . For a user equipment device scheduled in the shared frequency spectrum, the base station may transmit a 5G NR physical downlink control channel and synchronization signal block in a 5G NR frequency band (30kHz/60kHz) , with the corresponding physical downlink shared channel (PDSCH) being transmitted in the shared frequency spectrum with 15kHz subcarrier spacing (SCS) . In other ways, the base station also may generate, transmit or use a 3-symbol synchronization signal block or configure the multimedia broadcast and multicast service over a single frequency network (MBSFN) for the synchronization signal block transmission based on a synchronization signal block period in shared spectrum.
In some implementations, the base station may be configured so that it does not configure the synchronization signal block (SSB) in a secondary cell (Scell) . In some implementations, the user equipment device may be configured to receive system information from a primary cell (Pcell) , and utilize cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell.
In some implementations, the components may be configured so that they do not configure a synchronization signal block (SSB) in the shared frequency spectrum. For example, for a user equipment device scheduled in the shared frequency spectrum, the components may transmit 5G NR physical downlink control channel (PDCCH) and synchronization signal block information in the 5G NR frequency region (30kHz/60kHz) . The components may transmit the corresponding physical downlink shared channel (PDSCH) information via the shared frequency spectrum with 15kHz subcarrier spacing (SCS) .
In some implementations, the components may be configured so that there is no physical downlink control channel or synchronization signal block in the shared frequency spectrum (such as 15kHz) .
In some implementations, the components may be configured so that the numerologies of both the physical downlink shared channel (PDSCH) and the physical downlink control channel (PDCCH) inform a 5G NR user equipment device using the shared frequency spectrum. In some implementations the components may be configured so that the current remaining minimum system information control resource set (RMSI CORESET) configuration supports different subcarrier spacing for SSB and RMSI. In some implementations, the 5G NR PDSCH may use the same subcarrier spacing for both RMSI and PDSCH. In some implementations, a component (such as base station, etc. ) may be configured to add a physical downlink shared channel dedicated search space subcarrier spacing (PDSCH_DSS_SCS) parameter in a remaining minimum system information control resource set (RMSI CORESET) configuration for a user equipment device that is using the shared frequency spectrum, such as {SSB SCS, RMSI SCS, PDSCH_DSS SCS} = { {15, 30, 15} , {30, 15, 15} …} kHz. Some implementations may include components configured to define the measurement delta (such as setting the measurement delta to zero, etc. ) to compensate for the measurement gap between two component carriers (CC) .
In some implementations, the components may be configured to generate, modify, transmit or receive a synchronization signal block (SSB) in three symbols across 240 subcarriers or more subcarriers if needed. In some implementations, the components may be configured to generate the synchronization signal block to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit. In some implementations, the components may be configured to extend the synchronization signal block in the frequency domain.
In some implementations, the components may be configured to use MBSFN for the synchronization signal block (SSB) transmission slot with radio resource control (RRC) configuration. For non-synchronization signal block transmissions, the components may be configured to use resource element (RE) level spectrum sharing with the same subcarrier spacing (SCS) configuration from both LTE and 5G NR transmissions.
In some implementations, the components (such as base station, etc. ) may be configured to not generate, set, define or configure the synchronization signal block (SSB) in a secondary cell (Scell) or send system information in a primary cell (Pcell) . In some implementations, the components (such as UE, etc. ) may be configured to receive system information from a primary cell, performing measurements based on a synchronization signal block in the primary cell, or utilizing cross-scheduling if no physical downlink control channel (PDCCH) is configured in the secondary cell. Some implementations may include components configured to define the measurement delta (such as setting the measurement delta to zero, etc. ) to compensate for the measurement gap between two component carriers (CC) .
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. The implementations may enable one or more base stations to accomplish dynamic spectrum sharing between an LTE system and a 5G NR system without significant interference (such as ISI/INI) . By reducing or eliminating interference, the implementations may improve the performance or functioning of the base station, the user equipment device, or the communication system. In addition, the implementations allow for resource element (RE) level spectrum sharing with 5G NR in LTE cell-specific reference signal (CRS) symbols, accomplish low latency communications, and prevent low resource usage, any or all of which may further improve the performance or functioning of the base station, the user equipment device, or the communication system.
Figure 1 illustrates an example of a communications system 100 that is suitable for implementing some implementations. The communications system 100 may be an 5G NR network, or any other suitable network such as an LTE network.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of user equipment devices 120a-120e. The communications system 100 also may include a number of base stations 110a-110d and other network entities. A base station is an entity that communicates with user equipment device (mobile devices) , and also may be referred to as an NodeB, a Node B, an LTE evolved nodeB (eNB) , an Access point (AP) , a radio head, a transmit receive point  (TRP) , a new radio base station (5G NR BS) , a 5G NodeB (NB) , gNB, or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by user equipment devices with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by user equipment devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by user equipment devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in Figure 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “5G NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
The base station 110a may communicate with the core network 140 over a wired or wireless communication link 126. The UE devices 120a-e may communicate with the base stations 110a-d over wireless communication links 122.
The wired communication link 126 may use a variety of wired networks (such as Ethernet, TV cable, telephony, fiber optic and other forms of Physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point Protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (such as relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a user equipment device) and send a transmission of the data to a downstream station (for example, a user equipment device or a base station) . A relay station also may be a mobile device that can relay transmissions for other mobile devices. In the example illustrated in Figure 1, a relay station 110d may communicate with macro the base station 110a and the user equipment device 120d in order to facilitate communication between the base station 110a and the user equipment device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations 110a-110d of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations (such as 110a) may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations (such as 110b-110d) may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. Network controller 130 may communicate with the base stations via a backhaul. The base stations 110a-110d also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  user equipment devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each user equipment device may be stationary or mobile. A user equipment device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A user equipment device may be a cellular phone (for  example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
The  wireless communication links  122 and 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (such as 5G NR) , GSM, CDMA, WCDMA, WiMAX, TDMA, and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various wireless communication links within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy.
Certain wireless networks (such as LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal fast file transfer (FFT) size may be equal to 128, 256, 812, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth also may be partitioned into subbands. For example, a subband may cover  1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some implementations may use terminology and examples associated with LTE technologies, some implementations may be applicable to other wireless communications systems, such as new radio (5G NR) or 5G network. 5G NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. 5G NR resource blocks may span 12 subcarriers with a subcarrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., downlink or uplink) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include downlink/uplink data as well as downlink/uplink control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple input multiple output (MIMO) transmissions with precoding also may be supported. MIMO configurations in the downlink may support up to 8 transmit antennas with multi-layer downlink transmissions up to 8 streams and up to 2 streams per UE device. Multi-layer transmissions with up to 2 streams per UE device may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, 5G NR may support a different air interface, other than an OFDM-based air interface.
Some user equipment devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) user equipment devices. MTC and eMTC user equipment devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some user equipment devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. The user equipment device 120 may be included inside a housing that houses components of the user equipment device  120, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communications systems may be deployed in a given geographic area. Each communications system may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency Channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, 5G NR or 5G RAT networks may be deployed.
Some implementations may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) . Figure 2 illustrates an example computing system or SIP 200 architecture that may be used in UE devices implementing some implementations.
With reference to FIGS. 1 and 2, the illustrated example SIP 200 includes a two  SOCs  202, 204, a clock 206, and a voltage regulator 208. In some implementations, the first SOC 202 operate as central processing unit (CPU) of the UE device that carries out the instructions of software application programs by performing the arithmetic, logical, Control and input/output (I/O) operations specified by the instructions. In some implementations, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (such as 5 Gbps, etc. ) , or very high frequency short wavelength (such as 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (such as vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an  interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (such as FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (such as MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, Access ports, timers, and other similar components used to support the processors and software clients running on a UE device. The system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (such as CoreConnect,  AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (such as clock 206, voltage regulator 208) may be Shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, some implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
Figure 3 illustrates an example of a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications between a base station 350 (such as the base station 110a) and a UE device 320 (such as the UE devices 120a-e, 200) . With reference to FIGS. 1–3, the UE device 320 may implement the software architecture 300 to communicate with the base station 350 of a communication system (such as 100) . In some implementations, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (such as the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) UE device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different subscriber identity module (SIM) (such as two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a non-access stratum 302 and an access stratum 304. The non-access stratum 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a processor or SIM (s) of the UE device (such as SIM (s) 204) and its core network. The access stratum 304 may include functions and protocols that support  communication between a processor or SIM (s) (such as SIM (s) 204) and entities of supported access networks (such as a base station) . In particular, the access stratum 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, layer 1 (L1) of the access stratum 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface. Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including the Physical Downlink Control Channel (physical downlink control channel (PDCCH) ) and the Physical Downlink Shared Channel (PDSCH) .
In the user and control planes, layer 2 (L2) of the access stratum 304 may be responsible for the link between the UE device 320 and the base station 350 over the physical layer 306. In some implementations, layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) sublayer 312, each of which form logical connections terminating at the base station 350.
In the control plane, layer 3 (L3) of the access stratum 304 may include a radio resource control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional layer 3 sublayers, as well as various upper layers above layer 3. In some implementations, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the UE device 320 and the base station 350.
In some implementations, the PDCP sublayer 312 may provide uplink (UL) functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink (DL) , the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the UE device 320. In some implementations, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
In other implementations, the software architecture 300 may include one or more higher logical layer (such as transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some implementations, the software architecture 300 may include a network layer (such as IP layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some implementations, the software architecture 300 may include an application layer in which a logical connection terminates at another device (such as end user device, Server, etc. ) . In some implementations, the software architecture 300 may further include in the access stratum 304 a hardware interface 316 between the physical layer 306 and the communication hardware (such as one or more RF transceivers) .
Figure 4 shows a graph illustrating an observed relationship between subcarrier spacing offset delta and the amount of interference (such as signal interference ratio (SIR) ) present in a system that employs multiple numerologies (NUM1, NUM2) . In particular, Figure 4 shows that when Scen1 has the different subcarrier spacings with a frequency offset  delta =2 (i.e., Δf = 15kHz and 30kHz, respectively) , the signal interference ratio present in the system is less than when Scen2 has different subcarrier spacings with offset delta = 4 (i.e., Δf = 15kHz and 60kHz, respectively) .
Figure 5 shows example interference caused by LTE transmissions having a first numerology (such as subcarrier spacing SCS1, etc. ) that share spectrum with 5G NR transmission having a second numerology (such as subcarrier spacing SCS2, etc. ) that is different from the first numerology. In particular, Figure 5 shows an example LTE subframe and 5G NR slots ( 5G NR slot  1, 5G NR slot 2) that could be used for LTE and 5G NR transmissions (LTE+5G NR) where LTE use a first numerology and 5G NR use a second numerology in a first frequency spectrum and 5G NR transmissions (5G NR only) use a second numerology (such as SCS2 = 30kHz, etc. ) in a second frequency spectrum.
In the example illustrated in Figure 5, the 5G NR only transmissions include a 5G NR physical downlink control channel 502, a 5G NR demodulation reference signal 504, and a 5G NR physical downlink shared channel (5G NR PDSCH) 506. The LTE+5G NR transmissions include an LTE physical downlink control channel with a cell-specific reference signal 552, an LTE cell-specific reference signal 554, and an LTE physical downlink shared channel (LTE PDSCH) 556. There may be inter-numerology interference at the boundary 560 between  LTE PDSCH  556 and 5G NR PDSCH 506. There also may be interference between LTE cell-specific reference signals and 5G NR (shown in Figure 6) .
Figure 6 shows example interference between LTE cell-specific reference signals and the 5G NR physical downlink shared channel in shared frequency spectrum with different subcarrier spacing. In particular, Figure 6 shows transmissions of LTE physical downlink shared channels (D0) , 5G NR physical downlink shared channels (D1) , LTE cell-specific reference signals (R0) . Figure 6 also illustrates that there is inter-numerology interference (INI) between R0/D0 and D1 in the symbols with LTE CRS in shared frequency spectrum. As illustrated, when the carrier spacing offset delta is greater than 1, symbols with an LTE cell-specific reference signal (R0) cannot be used for 5G NR transmissions due to the INI, leading to low usage of resources in the shared frequency spectrum (such as 15KHz) .
Figure 7 illustrates an example that the use of the same numerology in the shared frequency spectrum may eliminate the interference between the LTE cell-specific reference  signal (R0) or LTE PDSCH (D0) and 5G NR physical downlink shared channel (D1) in the symbols with LTE CRS in shared frequency spectrum.
Figure 8 illustrates an example LTE subframe and example 5G NR transmission slots ( 5G NR slot  1, 5G NR slot 2) that could be used for LTE and 5G NR transmissions (LTE+5G NR) having a first numerology (such as SCS1 = 15kHz, etc. ) in a first frequency spectrum and 5G NR transmissions (5G NR only) having a second numerology (such as SCS2 = 30kHz or 60kHz, etc. ) in a second frequency spectrum. In the example illustrated in Figure 8, the base station transmits 5G NR physical downlink control channel (PDCCH) 502 and synchronization signal block information in the frequency spectrum dedicated to 5G NR-only communications (i.e., 30 kHz, 60kHz, etc. ) . The base station transmits the corresponding 5G NR physical downlink shared channel 802 information on the shared frequency spectrum (i.e., 15 kHz) . In this example, there is no inter-numerology interference (INI) in the shared spectrum.
Figures 9–15 show process flow  diagrams illustrating methods  900, 1000, 1100, 1200, 1300, 1400, 1500 of enabling dynamic spectrum sharing between an LTE system and a 5G NR system without interference (INI/ISI) in accordance with some implementations. Any or all of the  methods  900, 1000, 1100, 1200, 1300, 1400, 1500 may be performed by a processor in a user equipment device or processor in a server computing device that implements all or portions of a base station.
With reference to Figure 9, in block 902, a base station processor may define the same numerology (such as SCS = 15kHz) for LTE and 5G NR communications on a first frequency spectrum (such as SCS = 15kHz) . The base station processor does not define, transmit or use SSB or PDCCH in the first frequency spectrum. Rather, the SSB are PDCCH are only defined, transmitted or used in the 5G NR only spectrums (e.g., in a second frequency spectrum defined by an SCS that is different from the SCS of the first frequency spectrum, in a third frequency spectrum defined by an SCS different from the SCS or the first and second frequency spectrums, etc. ) .
In block 904, the base station processor may use a first numerology to transmit both LTE communications and 5G NR communications in the first frequency spectrum.
In block 906, the base station processor may use a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum that is different from the first frequency spectrum.
In some implementations, as part of the operations in block 904, the base station may use a third numerology different from the first and second numerologies to transmit other 5G NR communications in a third frequency spectrum different from the first and second frequency spectrums. In some implementations, the first numerology may include a 15KHz sub-carrier spacing (SCS) parameter, the second numerology may include a 30kHz SCS parameter, and the third numerology may include a 60kHz SCS parameter.
With reference to Figure 10, in block 1002, a base station processor may transmit 5G NR physical downlink control channel (PDCCH) and synchronization signal block (SSB) information in one or more frequency spectrums dedicated to 5G NR communications.
In block 1004, the base station processor may transmit physical downlink shared channel (such as LTE PDSCH and NR PDSCH) information on a shared frequency spectrum used for both LTE communications and 5G NR communications.
In some implementations, as part of the operations in block 1004, the base station processor may transmit information so that the shared frequency spectrum used for both LTE communications and 5G NR communications does not include PDCCH or SSB information.
In some implementations, as part of the operations in block 1004, the base station processor may add a parameter to indicate subcarrier spacing (SCS) for the PDSCH in a Remaining Minimum System Information (RMSI) Control Resource Set (CORESET) configuration for a 5G NR UE using the shared frequency spectrum. In some implementations, adding the parameter to indicate the SCS for the PDSCH in the RMSI CORESET configuration for the 5G NR UE using the shared frequency spectrum may include adding a PDSCH Dedicated Search Space (DSS) SCS parameter to the RMSI CORESET configuration.
In some implementations, as part of the operations in block 1004, the base station processor may define a measurement delta to compensate for a measurement gap between 5G  NR system in 5G NR only spectrum and LTE-5G NR shared spectrum with different numerologies.
In some implementations, the base station processor may define the measurement delta to compensate for the measurement gap between the two CCs with different numerologies when using carrier aggregation (CA) or a CA-like scheme.
With reference to Figure 11, in block 1102, a base station processor may transmit a synchronization signal block (SSB) in three symbols across 240 subcarriers or more than 240 subcarriers. In some implementations, transmitting SSB in three symbols across 240 or more subcarriers may include generating the SSB to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit.
With reference to Figure 12, in block 1202, a base station processor may configure an LTE MBSFN communication subframe for 5G NR synchronization signal block (SSB) transmission based on the 5G NR SSB period.
With reference to Figure 13, in block 1302, a base station processor may not generate, set, define or configure the synchronization signal block (SSB) in a secondary cell (Scell) .
With reference to Figure 14, in block 1402, a processor in a user equipment device may receive system information from a primary cell (Pcell) .
In block 1404, the processor in the user equipment device may perform measurements based on a synchronization signal block (SSB) in the Pcell.
Various components and implementations, such as a base station, may be implemented on any of a variety of commercially available computing devices, such as a server 1500 an example of which is illustrated in Figure 15. Such a server 1500 typically includes a processor 1501 coupled to volatile memory 1502 and a large capacity nonvolatile memory, such as a disk drive 1503. The server 1500 also may include a floppy disc drive, compact disc (CD) or DVD disc drive 1504 coupled to the processor 1501. The server 1500 also may include network access ports 1506 coupled to the processor 1501 for establishing  data connections with a network 1507, such as a local area network coupled to other operator network computers and servers.
Some implementations may be implemented on a variety of user equipment devices, an example of which in the form of a smartphone is illustrated in Figure 16. A smartphone 1600 may include a first SOC 202 (such as a SOC-CPU) coupled to a second SOC 204 (such as a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to internal memory 1606, a display 1612, and to a speaker 1614.
Additionally, the smartphone 1600 may include an antenna 1604 for sending and receiving electromagnetic radiation that may be connected to a wireless data link or cellular telephone transceiver 1608 coupled to one or more processors in the first or  second SOCs  202, 204. Smartphones 1600 typically also include menu selection buttons or rocker switches 1620 for receiving user inputs.
typical smartphone 1600 also includes a sound encoding/decoding (CODEC) circuit 1610, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 1608 and CODEC 1610 may include a digital signal processor (DSP) circuit (not illustrated separately) .
The processors may be any programmable microprocessor, microcomputer or multiple processor chip or chips that may be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described in this application. In some devices, multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications. Typically, software applications may be stored in the internal memory before they are accessed and loaded into the processor. The processor may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware,  firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. By way of illustration, both an application running on a UE device and the UE device may be referred to as a component. One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
The terms “mobile device, ” “user equipment device” and “user equipment (UE) ” may be used interchangeably in this application to refer to any one or all of wireless router devices, wireless appliances, cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, wireless gaming controllers, wireless-network enabled Internet of Things (IoT) devices including large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, UE devices affixed to or incorporated into various mobile platforms, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system on chip” (SOC) is used in this application to refer to a single integrated circuit (IC) chip that contains multiple resources or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (such as ROM, RAM, Flash, etc. ) , and resources (such as timers, voltage regulators, oscillators, etc. ) . SOCs also may include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) is used in this application to refer to a single module or package that contains multiple resources, computational units, cores or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single UE device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
The term “multicore processor” is used in this application to refer to a single integrated circuit (IC) chip or chip package that contains two or more independent processing cores (such as CPU core, Internet Protocol (IP) core, graphics processor unit (GPU) core, etc. ) configured to read and execute program instructions. A SOC may include multiple multicore processors, and each processor in an SOC may be referred to as a core. The term “multiprocessor” may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from some implementations. Such services and standards include, such as third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple Access (CDMA) systems (such as cdmaOne, CDMA1020TM) , Wideband Code Division Multiple Access (WCDMA) , Time Division Multiple Access (TDMA) , orthogonal frequency division multiplexing (OFDM) , single-carrier frequency division multiplexing (SC-FDM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) ,  wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, or content messages. It should be understood that any references to terminology or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Some implementations illustrated and described are provided merely as examples to illustrate various features of the claims. However, features illustrated and described with respect to any given implementation are not necessarily limited to the associated implementation and may be used or combined with other implementations that are illustrated and described. Further, the claims are not intended to be limited by any one example implementation. For example, one or more of the operations of the  methods  900, 1000, 1100, 1200, 1300, 1400, may be substituted for or combined with one or more operations of the  methods  900, 1000, 1100, 1200, 1300, 1400.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of some implementations may be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing implementations may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be  implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a non-transitory processor-readable storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media  includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available non-transitory storage media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
In one or more aspects, the functions described may be implemented by a processor, which may be coupled to a memory. The memory may be a non-transitory computer-readable storage medium that stores processor-executable instructions. The memory may store an operating system, user application software, or other executable instructions. The memory also may store application data, such as an array data structure. The processor may read and write information to and from the memory. The memory also may store instructions associated with one or more protocol stacks. A protocol stack generally includes computer executable instructions to enable communication using a radio access protocol or communication protocol.
The term “component” is intended to include a computer-related part, functionality or entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, that is configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. By way of illustration, both an application running on a computing device and the computing device may be referred to as a component. One or more  components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other computer, processor, or process related communication methodologies.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example process in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the  implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (24)

  1. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    using a first numerology to transmit both LTE communications and 5G NR communications in a first frequency spectrum; and
    using a second numerology different from the first numerology to transmit other 5G NR communications in a second frequency spectrum different from the first frequency spectrum.
  2. The method of claim 1, further comprising using a third numerology different from the first and second numerologies to transmit other 5G NR communications in a third frequency spectrum different from the first and second frequency spectrums.
  3. The method of claim 2, wherein:
    the first numerology includes a 15KHz subcarrier spacing (SCS) parameter;
    the second numerology includes a 30kHz SCS parameter; and
    the third numerology includes a 60kHz SCS parameter.
  4. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    transmitting 5G NR physical downlink control channel (PDCCH) and synchronization signal block (SSB) information in one or more frequency spectrums dedicated to 5G NR communications; and
    transmitting physical downlink shared channel (PDSCH) information on a shared frequency spectrum used for both LTE communications and 5G NR communications.
  5. The method of claim 4, further comprising transmitting information so that the shared frequency spectrum used for both LTE communications and 5G NR communications does not include PDCCH or SSB information.
  6. The method of claim 4, further comprising adding a parameter to indicate subcarrier spacing (SCS) for the PDSCH in a Remaining Minimum System Information (RMSI) Control Resource Set (CORESET) configuration for a 5G NR UE using the shared frequency spectrum.
  7. The method of claim 6, wherein adding the parameter to indicate the SCS for the PDSCH in the RMSI CORESET configuration for the 5G NR UE using the shared frequency spectrum comprises:
    adding a PDSCH Dedicated Search Space (DSS) SCS parameter.
  8. The method of claim 4, further comprising defining a measurement delta to compensate for a measurement gap between 5G NR in 5G NR-only spectrum and LTE-5G NR shared spectrum.
  9. The method of claim 8, wherein defining a measurement delta comprises setting the measurement delta to zero.
  10. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    transmitting a synchronization signal block (SSB) in three symbols across 240 or more subcarriers.
  11. The method of claim 10, wherein transmitting the SSB in three symbols across 240 or more subcarriers comprises:
    generating the SSB to contain all bits of the SSB, including a primary sync signal (PSS) bit, a physical broadcast channel (PBCH) bit, and a secondary sync signal (SSS) bit.
  12. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    configuring LTE as Multimedia Broadcast And Multicast Service Over A Single Frequency Network (MBSFN) communication channel for 5G NR synchronization signal block (SSB) transmission based on an SSB period.
  13. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    not generating, setting, defining or configuring a synchronization signal block (SSB) in a secondary cell (Scell) .
  14. A method of wireless communication performed by a base station (BS) or a user equipment (UE) device enabling dynamic spectrum sharing between a Long Term Evolution (LTE) system and a 5G New Radio (5G NR) system without inter-system interference (ISI) or inter-numerology interference (INI) , comprising:
    receiving system information from a primary cell (Pcell) ; and
    performing measurements based on a synchronization signal block (SSB) in the Pcell.
  15. The method of claim 14, further comprising defining a measurement delta to compensate for a measurement gap between two component carriers (CCs) .
  16. The method of claim 15, wherein defining the measurement delta to compensate for the measurement gap between the twO CCs comprises defining the measurement delta to be equal to zero.
  17. The method of claim 14, further comprising:
    utilizing cross-scheduling if no physical downlink control channel (PDCCH) is configured in a secondary cell (Scell) .
  18. A base station comprising at least one processor configured with processor-executable instructions to perform operations recited in any of claims 1-17.
  19. A user equipment (UE) device comprising at least one processor configured with processor-executable instructions to perform operations recited in any of claims 1-17.
  20. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a base station processor to perform operations recited in any of claims 1-17.
  21. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a user equipment (UE) processor to perform operations recited in any of claims 1-17.
  22. A base station device having means for performing functions for accomplishing operations recited in any of claims 1-17.
  23. A user equipment (UE) device having means for performing functions for accomplishing operations recited in any of claims 1-17.
  24. A communication system comprising a user equipment (UE) processor and a base station processor, one or more of which are configured to perform operations recited in any of claims 1-17.
PCT/CN2019/098974 2019-08-02 2019-08-02 Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing WO2021022391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098974 WO2021022391A1 (en) 2019-08-02 2019-08-02 Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098974 WO2021022391A1 (en) 2019-08-02 2019-08-02 Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing

Publications (1)

Publication Number Publication Date
WO2021022391A1 true WO2021022391A1 (en) 2021-02-11

Family

ID=74502388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098974 WO2021022391A1 (en) 2019-08-02 2019-08-02 Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing

Country Status (1)

Country Link
WO (1) WO2021022391A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002785A (en) * 2021-03-02 2022-09-02 中国联合网络通信集团有限公司 Antenna port data processing method and communication device
CN115065581A (en) * 2022-06-08 2022-09-16 Oppo广东移动通信有限公司 Signal compensation method and related device
CN115549880A (en) * 2022-09-15 2022-12-30 中国联合网络通信集团有限公司 Interference suppression method, device, equipment and storage medium
WO2023129035A3 (en) * 2021-12-30 2023-08-17 Tobb Ekonomi Ve Teknoloji Universitesi Inter-numerology interference blocker in multi-numerology systems
EP4171093A4 (en) * 2020-07-01 2023-12-06 Huawei Technologies Co., Ltd. Resource configuration method and apparatus
EP4274113A4 (en) * 2021-04-14 2024-07-17 Samsung Electronics Co Ltd Apparatus and method for performing communication on basis of timing alignment error (tae) in wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391397A (en) * 2017-08-10 2019-02-26 中国电信股份有限公司 Downlink compatible transmission method, device and computer readable storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391397A (en) * 2017-08-10 2019-02-26 中国电信股份有限公司 Downlink compatible transmission method, device and computer readable storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Remaining details on DL sharing between LTE and NR", 3GPP DRAFT; R1-1710353 LTE-NR COEXISTENCE DL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051299567 *
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "SS-block transmission in multi CC deployments", 3GPP DRAFT; R1-1711263, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051300458 *
NTT DOCOMO, INC.: "Discussion on SS block composition, SS burst set composition and SS block index indication for NR", 3GPP DRAFT; R1-1705705_DISCUSSION ON SS BLOCK_BURST SET COMPOSITION AND SS BLOCK INDEX INDICATION FOR NR_FINAL2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051243820 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4171093A4 (en) * 2020-07-01 2023-12-06 Huawei Technologies Co., Ltd. Resource configuration method and apparatus
CN115002785A (en) * 2021-03-02 2022-09-02 中国联合网络通信集团有限公司 Antenna port data processing method and communication device
CN115002785B (en) * 2021-03-02 2024-06-04 中国联合网络通信集团有限公司 Antenna port data processing method and communication device
EP4274113A4 (en) * 2021-04-14 2024-07-17 Samsung Electronics Co Ltd Apparatus and method for performing communication on basis of timing alignment error (tae) in wireless communication system
WO2023129035A3 (en) * 2021-12-30 2023-08-17 Tobb Ekonomi Ve Teknoloji Universitesi Inter-numerology interference blocker in multi-numerology systems
CN115065581A (en) * 2022-06-08 2022-09-16 Oppo广东移动通信有限公司 Signal compensation method and related device
CN115065581B (en) * 2022-06-08 2024-03-19 Oppo广东移动通信有限公司 Signal compensation method and related device
CN115549880A (en) * 2022-09-15 2022-12-30 中国联合网络通信集团有限公司 Interference suppression method, device, equipment and storage medium
CN115549880B (en) * 2022-09-15 2024-04-12 中国联合网络通信集团有限公司 Interference suppression method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
US11582776B2 (en) Managing cross-carrier scheduling by a wireless device
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
US11804998B2 (en) Machine learning based receiver performance improvement using peak reduction tones
WO2021022391A1 (en) Inter-numerologies interference avoidance for long term evolution (lte) and 5g new radio (nr) spectrum sharing
US11405859B2 (en) Enhancement to system information block (SIB) validity check for non-public networks (NPNs)
US11770772B2 (en) Discontinuous reception for sidelink control signaling
US11765747B2 (en) Managing primary cell cross-carrier scheduling
WO2021197474A1 (en) Managing downlink signal reception
US11382044B2 (en) Determining a transmit power of uplink transmissions
US20230036243A1 (en) Systems and methods for responding to a maximum permissible exposure condition
US20210105732A1 (en) Clarification on cumulative timing advance (ta)
US20210360679A1 (en) Cross-Carrier Scheduling In The Presence Of Multi-Downlink Control Information (DCI)(Multi-DCI) Based Multi-Transmit-Receive Point (MTRP)
US11234259B2 (en) Managing wireless device communication with a base station
US20240107455A1 (en) Managing control channel monitoring
US20230041665A1 (en) Method To Support ENTV Broadcast And Unicast Modes In UE
US11690022B2 (en) Managing transmit power control
US11764855B2 (en) Managing beam selection
US20220346025A1 (en) Early Uplink Transmit Power Control
US12126994B2 (en) User plane integrity protection (UP IP) capability signaling in 5G/4G systems
US11589327B2 (en) Managing uplink timing advance configuration
US11864225B2 (en) Managing uplink spatial filter configuration
WO2021253369A1 (en) Methods for managing network communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940194

Country of ref document: EP

Kind code of ref document: A1